
NISTIR 8337

An Integrated Set of XML Tools –
User Guide

Thomas R. Kramer
Zeid Kootbally

Craig Schlenoff

This publication is available free of charge from:
https://doi.org/10.6028/NIST.IR.8337

NISTIR 8337

An Integrated Set of XML Tools –
User Guide

Thomas R. Kramer
Catholic University of America

Zeid Kootbally
University of Southern California

Craig Schlenoff
Intelligent Systems Division

Engineering Laboratory, NIST

This publication is available free of charge from:
https://doi.org/10.6028/NIST.IR.8337

December 2020

U.S. Department of Commerce
Wilbur L. Ross, Jr., Secretary

National Institute of Standards and Technology
Walter Copan, NIST Director and Undersecretary of Commerce for Standards and Technology

Certain commercial entities, equipment, or materials may be identified in this
 document in order to describe an experimental procedure or concept adequately.

Such identification is not intended to imply recommendation or endorsement by the
National Institute of Standards and Technology, nor is it intended to imply that the
entities, materials, or equipment are necessarily the best available for the purpose.

National Institute of Standards and Technology Interagency or Internal Report 8337
Natl. Inst. Stand. Technol. Interag. Intern. Rep. 8337, 128 pages (December 2020)

This publication is available free of charge from:
https://doi.org/10.6028/NIST.IR.8337

i

Abstract

This user guide describes an integrated set of C++ software tools for manipulating XML
(eXtensible Markup Language) schemas and XML instance files. The tools are:

• xmlSchemaParser - parses and reformats XML schema files, and prints type
derivation hierarchies

• xmlInstanceParserGenerator - generates C++ classes and a YACC/Lex instance
file parser from an XML schema – it’s a software tool that writes software tools

• orphanFinder - identifies unused types and undefined types in one or a set of
XML schema files

• xmlSchemaAttributeConverter - rewrites an XML schema file, converting
attributes to elements

All of the tools are invoked by giving a command in a terminal window.

The tools were built at the National Institute of Standards and Technology. The
xmlSchemaParser and the xmlInstanceParserGenerator were originally built in support
of the Agility Performance of Robotic Systems project. They have been greatly
extended since that time. The orphanFinder and xmlSchemaAttributeConverter are
more recent.

Keywords: automatic, C++, information model, generator, schema, software, tool, XML,
XSDL, YACC, Lex

XML Tools

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8337

XML Tools

ii

Contents

1 Introduction ..1

Overview ...1

Typographical Conventions ...2

Previous Report ..2

Organization of This Manual ...2

2 How the Tools Work Together..3

3 An Example ...6

4 Using the xmlSchemaParser ..9

What the xmlSchemaParser Does ..9

Invoking the xmlSchemaParser ...10

Warnings Issued ...12

Limitations of the xmlSchemaParser ...12

4.4.1 One schema file ...12

4.4.2 Comment Location Limited ..12

4.4.3 Constraints Not Checked for Validity ..12

4.4.4 Prefix Required for XML Schema Namespace ...13

4.4.5 Only One User-defined Namespace ..13

4.4.6 Not All Qnames ..13

4.4.7 Not All XSDL ..13

4.4.8 Limited Regular Expressions ...13

4.4.9 Final Not Enforced ...13

4.4.10 Data Types Not Checked ...14

5 Using the xmlInstanceParserGenerator ...14

What the xmlInstanceParserGenerator Does ..14

5.1.1 Parse Schema ...14

5.1.2 Generate Code Files ..14

5.1.3 Save User Changes to C++ Header ...16

5.1.4 Pattern Restrictions..16

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8337

XML Tools

iii

Invoking the xmlInstanceParserGenerator ..17

5.2.1 App Include Prefix (-a) ...17

5.2.2 Get and Set (-f) ..18

5.2.3 Header Update (-h) ..18

5.2.4 Include Prefix (-i) ..18

5.2.5 Output (-o) ...18

5.2.6 Prefix (-p) ...19

5.2.7 Xsi:type (-x)..19

Processing Generated Files ..19

5.3.1 Processing by Flex and Bison ..19

5.3.2 Compiling ...20

Example – Generating from Line.xsd ..23

Saving Header File Changes Made Manually ...23

Limitations of the xmlInstanceParserGenerator ...24

5.6.1 Limitations Inherited from xmlSchemaParser ...25

5.6.2 Type Definitions Must Be At Schema Level ...25

5.6.3 No Code to Check Some Constraints...25

5.6.4 Several Constructs Not Handled ..25

5.6.5 Some Basic Data Types Not Handled ..25

5.6.6 Names Not Guaranteed to be Unique ..26

5.6.7 Prefixes ignored ...26

5.6.8 Not All Patterns Handled ..26

6 Using the orphanFinder..26

What the orphanFinder Does ..26

Invoking the orphanFinder ..27

Examples of Using the orphanFinder ..27

Limitations of the orphanFinder ...28

7 Using the xmlSchemaAttributeConverter ...28

What the xmlSchemaAttributeConverter Does ..28

Invoking the xmlSchemaAttributeConverter ..29

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8337

 XML Tools

iv

 Example of Using the xmlSchemaAttributeConverter ..29

 Limitations of the xmlSchemaAttributeConverter ...29

8 Using Domain Instance XML Parsers ...30

 What a Domain Parser Does...30

 Invoking a Domain Parser ...31

8.2.1 Numbers with Decimal Points ..31

8.2.2 The Times Argument ...32

 Example of Running a Domain Parser ..32

 Limitations of Domain Parsers ..32

9 Software Overview ...32

 Code ...32

9.1.1 Code Documentation ...33

9.1.2 Code Formatting ..33

 Differences in Approach Among Tools ..33

9.2.1 xmlInstanceParserGenerator ...34

9.2.2 xmlSchemaParser..34

9.2.3 xmlSchemaAttributeConverter ...34

9.2.4 orphanFinder ...34

 Makefiles ..34

9.3.1 Makefile for Purely XML Tools ...34

9.3.2 Makefile for Example lineParser...36

10 xmlSchemaParser Details ..38

 xmlSchemaParser.cc ..38

 xmlSchemaClasses.cc and xmlSchemaClasses.hh ..39

 xmlSchema.y ..39

10.3.1 Comments ...40

10.3.2 Checking Pattern Regular Expressions ..40

10.3.3 doXmlXXXAttributes functions ...40

10.3.4 YACC Types and Rules ...41

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8337

XML Tools

v

10.3.5 Bison Conflicts ...41

11 xmlInstanceParserGenerator Details ..41

 How the xmlInstanceParserGenerator Runs ...42

11.1.1 Initialize..42

11.1.2 Process Included Schema files ..42

11.1.3 Build Classes ...43

11.1.4 Build Information ..44

11.1.5 Print Everything ...44

11.1.6 Finish ...45

 Code Coordination ..45

 xmlInstanceParserGenerator Methods ..46

11.3.1 Build YACC ..46

11.3.2 Print YACC ..46

11.3.3 Print C++ Header Files ..47

11.3.4 Print C++ Code Files ..47

11.3.5 Print Lex ..47

11.3.6 Other Data Builders ...47

11.3.7 Data Finders ..47

 Printing to a File or a String ...47

 Lists, Maps, and Sets ..48

11.5.1 Uses of Lists, Maps, and Sets ..48

11.5.2 List Terminology ..49

 Issues Handled in the xmlInstanceParserGenerator ...50

11.6.1 Keeping Track of Which Elements and Defined Types Are Used50

11.6.2 Choice, Mock Types, and Mock Elements ...51

11.6.3 Handling Optional Elements ...53

11.6.4 Handling xsi:type ...53

11.6.5 Handling Ref ..54

11.6.6 Handling XML Attributes ..56

11.6.7 Handling Chains of Simple Restrictions ...57

11.6.8 Handling SubstitutionGroups ...57

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8337

 XML Tools

vi

11.6.9 Handling Simple Lists ..59

11.6.10 Checking Restrictions on XML Simple List Types ...59

11.6.11 ComplexType usesEndTag ..60

11.6.12 YACC Names ...61

11.6.13 Preventing Memory Leaks in Domain Parsers ..62

11.6.14 Ideas not Implemented ...62

12 xmlSchemaAttributeConverter Details ..62

13 orphanFinder Details ..63

14 xmlSchemaInstance Details ...63

 C++ Classes ...63

 Printing Basic Data Types for Element or Attribute ..64

 Checking ID and IDREF ..64

15 Domain Instance Parser Details ...64

 Re-running a Domain Parser...64

 Preventing Memory Leaks in Domain Parsers ..65

 Lists in Domain Parsers ..66

16 XML and XSDL...67

 XML Schemas ..67

 XML Instance Files Conforming to XML Schemas ..69

17 YACC Basics ..70

 Arrangement of a YACC file ..70

 YACC Rules ..70

18 Use of the Tools ...71

 xmlSchemaParser Use ...71

 xmlInstanceParserGenerator Use ...71

 orphanFinder Use ...72

 xmlSchemaAttributeConverter Use ...72

19 Testing the Tools ..72

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8337

XML Tools

vii

 Test Case Files ...72

 regressionTestGenerate ...73

 regressionTestCompile ...74

 regressionTestExecute ...74

 regressionTest ..74

20 Future Work ...74

21 Acknowledgements ..75

 XML schema file primitives.xsdecho ..76

 C++ File primitivesClasses.hh ...78

 C++ File lineClasses.hh ...80

 C++ File primitivesClasses.cc ..83

 C++ File lineClasses.cc ...86

 C++ File lineParser.cc ...96

 YACC File line.y .. 102

 Lex File line.lex.. 110

 XML Schema File lineNoAtt.xsd .. 113

 XML Instance File lineNoAtt1.xml .. 115

Bibliography .. 116

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8337

 XML Tools

viii

Figures

Figure 1 Tools Work Together ...5
Figure 2 XML Schema File primitives.xsd – 2D Point and Vector ..7
Figure 3 XML Schema File line.xsd – 2D Line Model ..8
Figure 4 Instance File line1.xml – Instance of 2D Line ...9
Figure 5 Type Hierarchy File ...11
Figure 6 Hierarchies of Includes and Generators – Example ...43
Figure 7 Structure of the Line Model ...68

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8337

XML Tools

1

1 Introduction

This document is a user manual for a set of four software tools that process XML files.
The manual is intended for people who want to use the tools and for programmers who
want to understand and/or modify the code of the tools. To read this manual one should
be familiar with XML files and know a little bit about XML Schema Definition Language
(XSDL). If you are not familiar with XSDL, read section 16 after reading this introduction.

 Overview

The tools are:

xmlSchemaParser
• reads one XML schema file, stopping if an error is found
• stores the contents of the file in an abstract syntax tree built in terms of a set of

C++ classes that represent XSDL
• reprints the file as directed by the user

xmlInstanceParserGenerator

• reads an XML schema embodied in a top-level XML schema file and any
additional XML schema files connected to it by include directives, stopping if an
error is found

• generates a YACC file for a parser of XML instance files that conform to the
schema

• generates a Lex scanner used by the YACC parser
• generates a set of C++ classes representing the schema, with separate C++

header (.hh) and implementation (.cc) files for each XML schema file

orphanFinder

• reads one or a set of XML schema files (as directed by the command that starts
it)

• lists types that are defined but not used in any of the schema files
• lists types that are used but not defined in any of the schema files

xmlSchemaAttributeConverter

• reads an XML schema embodied in a top-level XML schema file and any
additional XML schema files connected to it by include directives, stopping if an
error is found

• for each input file, prints a new schema file in which attributes have been
converted to elements, so that the information content is unchanged

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8337

 XML Tools

2

This manual also describes how to compile and use the code generated by the
xmlInstanceParserGenerator.

The different tools have differing levels of functionality for handling XSDL schemas and
XML instance files conforming to schemas. The level of functionality of each tool is
described in the section about that tool.

 Typographical Conventions

From this point on, reserved words from XSDL are set in this font, as are sample
files. File names are set in this font. User commands are set in this font. C++ code
(including variable, field and function/method names) is set in this font. When the word
domain is set in italics, it stands for a particular information domain.

If any tool is called incorrectly, it prints a message describing how to call it. In such
messages optional arguments are enclosed in square brackets. For example, [-x]
indicates that -x is optional.

 Previous Report

A report, Software Tools for XML to OWL Translation, NISTIR 8068, was published in
June 2015. It was less detailed than the current document, focused primarily on the
XML to OWL tools, and did not describe in detail the other tools that existed at the time,
all of which have been upgraded since then. The orphanFinder and
xmlSchemaAttributeConverter tools described in this report were developed after that
report appeared. The earlier report described related research and similar tools. This
report focuses on describing the tools built by the authors.

 Organization of This Manual

Section 2 describes how the tools work together and gives typical scenarios of using the
tools.

Section 3 gives an example of using the tools.

Sections 4 through 8 describe how to use each tool, including examples of commands.
Tool users should read some or all of those sections. Each tool, if invoked with no
arguments, prints a message about how to invoke it.

Section 9 gives an overview of the software of the tools. The section includes Makefiles
for building:

• the XML tools
• an example XML instance file parser

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8337

XML Tools

3

Sections 10 through 15 describe details of the code for the tools. These sections are for
C++ programmers who wish to modify the tools.

Section 16 gives a brief overview of XML and XSDL. Read that section first if you are
not familiar with XML and XSDL. Section 17 provides a brief introduction to YACC.
Section 18 describes how the tools have been used, up to 2020. Section 19 describes
testing of the tools, and section 20 discusses future work on the tools.

2 How the Tools Work Together

Figure 1 shows the tools, the file types the tools manipulate, and the connections
among them. The tools all run from a command shell; they have no graphical user
interfaces. This makes them independent of any operating system. A python graphical
user interface for the xmlInstanceParserGenerator was built in 2013 but has not been
maintained.

The file domain.xsd on the figure is an information model file. An information model
shows how instances of information should be structured. For example, a point might be
modeled in an information model as x, y, and z coordinate values. The files
domainInstance.xml on the right side of the figure are instance files that contain specific
data instances that conform to an information model. For example, a specific point in an
instance file might be (7, 2, -3), corresponding to the x, y, z model. Many instance files
may correspond to a given information model.

The subject matter area of an information model is called its domain. All the tools except
those on the right side of Figure 1 are domain independent. Each tool will work with any
XML schema that meets that tool's restrictions on the usage of the XSDL. The
restrictions vary among the tools.

Two of the four domain independent tools (xmlInstanceParserGenerator and
xmlSchemaAttributeConverter) read and process all files in a set of XML schema files
connected by inclusion. The orphanFinder does not deal with inclusion but does
process multiple files. By telling it to process all the files in a set, the same results are
obtained as would be obtained if it did process connected files. The xmlSchemaParser
processes only one file at a time.

The tools on the right side of Figure 1 are domain dependent. They take as input only
XML instance files in the domain for which the tools were generated.

A typical tool-using scenario for a user interested in XML is:

• An XML schema model file, domain.xsd, is built or otherwise acquired. There is no
representation of building it on Figure 1.

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8337

 XML Tools

4

• Optionally, the xmlSchemaParser is used to check that domain.xsd is valid (Figure

1, Arrow C pointing up). Errors in the schema file cause the xmlSchemaParser to
exit. Pointless legal constructions such as empty sequences cause the
xmlSchemaParser to issue warnings. The schema file is pretty-printed with a
different name (Figure 1, Arrow C pointing down). Optionally, the
documentation nodes are removed or reformatted. Optionally, a derivation
hierarchy of types defined in the file is printed (Figure 1, Arrow A).

• Optionally, the orphanFinder is used to examine a set of XML schema files

headed by domain.xsd and find (1) defined types that are not used and (2)
undefined types that are used (Figure 1, Arrow G). These are printed to the
monitor (Figure 1, Arrow H).

• The domain.xsd file is processed by the xmlInstanceParserGenerator (Figure 1,

Arrow D) to generate code for parsing XML instance files that conform to
domain.xsd (Figure 1, Arrow B). This includes generating C++ classes equivalent
to the types defined in domain.xsd.

• A Domain Instance XML Parser is compiled from the code.

• An XML instance file, domainInstance.xml, conforming to domain.xsd is built or
otherwise acquired. There is no representation of building it on Figure 1.

• Optionally, the Domain Instance XML Parser is used to check that

domainInstance.xml conforms to domain.xsd (Figure 1, Arrow E pointing up) and
pretty-print the file with a different name (Figure 1, Arrow E pointing down).

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8337

XML Tools

5

The xmlSchemaAttributeConverter may be used to read a schema file containing
attributes and write a schema file representing the same information model in which

YACC/Lex
domain instance

XML parser
(with C++ classes)

xmlSchema-
AttributeConverter

orphanFinder

xmlSchema-
Parser

xmlInstance-
Parser-

Generator

domain.xsd
domain

Instance.xml

type derivation
hierarchy

A B

C D

G

H

F

E

unused and
undefined types

KEY

file generated
automatically

software tool from
 automatically
generated code

tool reads and
writes files

tool reads or
writes files

dashed line indicates
instance file on right
conforms to model
file on left

software tool from
hand written code

file generated
by user

Figure 1 Tools Work Together

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8337

 XML Tools

6

all the attributes have been changed to elements. This is represented by Arrow F
on Figure 1 and described in Section 7.

The steps of the scenario that build code are taken only once for a given set of XML
schema files, but the step that deals with instance files (Figure 1, Arrow E) may be
repeated many times.

3 An Example

To show how the various tools work, the simple schema shown in Figure 2 and Figure 3
that models two-dimensional points, vectors, and lines will be used along with the XML
instance file shown in Figure 4 as an example. The instance file conforms to the
schema. To show how the tools deal with a set of files connected by include, the
example schema has been divided into two schema files: line.xsd and primitives.xsd. On
line 7, line.xsd includes primitives.xsd. Files produced by tools from these files are
shown in figures or in the annexes.

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8337

XML Tools

7

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 elementFormDefault="qualified"
 attributeFormDefault="unqualified">
<!-- This file defines BaseType, PointType and VectorType -->

 <xs:complexType name="BaseType" abstract="true">
 <xs:sequence>
 <xs:element name="Name" type="xs:ID"/>
 </xs:sequence>
 </xs:complexType>

 <xs:complexType name="PointType">
 <xs:complexContent>
 <xs:extension base="BaseType">
 <xs:sequence>
 <xs:element name="X" type="xs:decimal">
 <xs:annotation>
 <xs:documentation>
The X element is the X coordinate of the point.
 </xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:element name="Y" type="xs:decimal"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>

 <xs:complexType name="VectorType">
 <xs:complexContent>
 <xs:extension base="BaseType">
 <xs:sequence>
 <xs:element name="X" type="xs:decimal"/>
 <xs:element name="Y" type="xs:decimal"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
</xs:schema>

Figure 2 XML Schema File primitives.xsd – 2D Point and Vector

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8337

 XML Tools

8

<?xml version="1.0" encoding="UTF-8"?>
<!-- This file defines the root element Line and the LineType -->
<xs:schema
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 elementFormDefault="qualified"
 attributeFormDefault="unqualified">
 <xs:include schemaLocation="primitives.xsd"/>

 <xs:element name="Line"
 type="LineType">
 <xs:annotation>
 <xs:documentation>
 Root element
 </xs:documentation>
 </xs:annotation>
 </xs:element>

 <xs:complexType name="LineType">
 <xs:complexContent>
 <xs:extension base="BaseType">
 <xs:sequence>
 <xs:element name="Point"
 type="PointType"/>
 <xs:element name="Vector"
 type="VectorType"/>
 </xs:sequence>
 <xs:attribute name=”color”
 type=”xs:token”/>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>

</xs:schema>

Figure 3 XML Schema File line.xsd – 2D Line Model

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8337

XML Tools

9

4 Using the xmlSchemaParser

Using the xmlSchemaParser is indicated by Arrows A and C on Figure 1.

 What the xmlSchemaParser Does

The xmlSchemaParser reads and writes XML schema files. It handles almost all of
XSDL. When it runs, it reads an input file, stores it in terms of a C++ class model of XML
schemas, and writes it in a file with almost the same name as the input file; “echo” is
appended to the file name. The output file is formatted to be easily readable for humans
who can read XSDL files directly. While it runs, the xmlSchemaParser prints what it is
reading in the command window in which it is running. If there is any syntax error, the
xmlSchemaParser stops reading at the point where the first error occurred, prints an
error message, and exits; no output file is generated. The xmlSchemaParser also
checks for some pointless constructs and issues warnings, as described below.

The xmlSchemaParser (when invoked with the -h option) will also print the type
derivation hierarchy of the types defined in the schema. If a type in the schema is
derived from some other base type (by extension or restriction), the base type is
higher in the hierarchy than the derived type. If the base type is from an included

<?xml version="1.0" encoding="UTF-8"?>
<Line
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="../schema/line.xsd"
 color=”green”>
 <Name>Line_1</Name>
 <Point>
 <Name>Point_1</Name>
 <X>0</X>
 <Y>0</Y>
 </Point>
 <Vector>
 <Name>Vector_1</Name>
 <X>0</X>
 <Y>1</Y>
 </Vector>
</Line>

 Figure 4 Instance File line1.xml – Instance of 2D Line

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8337

 XML Tools

10

schema, the xmlSchemaParser will not know whether the base type is derived from
some other type, and if so, that other type will not be shown in the hierarchy.

The -d option may be used to reformat or remove documentation nodes.

If the xmlSchemaParser is invoked with the -c option, it will preserve comments.
Otherwise, comments will be removed.

If the xmlSchemaParser is invoked with the -k option, it will remove key, keyref, and
unique declarations. Otherwise, those items will be kept in the output file.

 Invoking the xmlSchemaParser

If the xmlSchemaParser is invoked with no arguments, as shown below, it prints
examples of valid invocations.

bin/xmlSchemaParser

usage: xmlSchemaParser [-d <docPrint>] [-c] [-h] [-k] <schema>
Optional arguments may be given in any order.
<docPrint> controls documentation printing and
must be asIs, indent, left, or none
-c means keep comments included in the input schema
-h means generate a class inheritance hierarchy
-k means do not print key, keyref, or unique
<schema> is the XML schema file to read
Example 1: bin/xmlSchemaParser plan.xsd
Example 2: bin/xmlSchemaParser -d indent plan.xsd
Example 3: bin/xmlSchemaParser –k -d asIs -c plan.xsd
Example 4: bin/xmlSchemaParser -c -h plan.xsd
defaults are asIs documentation, remove comments
do not make inheritance hierarchy, keep id constraints

Using the XML schema file primitives.xsd shown in Figure 2, suppose the following
command is given from the directory containing that file:

 bin/xmlSchemaParser -d indent -h primitives.xsd

An output file named primitives.xsdecho will be created with the schema pretty-printed in
it as shown in Annex A. Since the -c flag was not used, the comment on the sixth line of
the file does not appear in the output. Since the -h flag was used, a (very simple)
hierarchy file named primitivesHierarchy.txt will be printed as shown in Figure 5. It
indicates that PointType and VectorType are derived from BaseType. Each derived
type is listed below its parent type and indented more deeply than the parent type.

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8337

XML Tools

11

The meanings of the choices for printing documentation nodes are:

• asIs means do not change the white space in documentation nodes.

• indent means pretty-print documentation nodes so that each line begins
indented (by using space characters) two spaces more than <documentation>
and ends after at most 75 characters (including the spaces) have been printed on
the line. So that the user may put formatted text such as lists into
documentation nodes, however, a documentation node is not reformatted if
all of the following conditions are met:

o Each line of the documentation is indented at least as much as it would be
if it were pretty-printed.

o At least one line is indented exactly two spaces more than it would be if it
were pretty-printed.

o No line extends beyond 75 characters, including the spaces at the
beginning.

Also, to give the user leeway to format manually, a documentation node is not
reformatted if all of the following conditions are met:

o Each line of the documentation is indented exactly as much as it would be
if it were pretty-printed.

o No line extends beyond 75 characters, including the spaces at the
beginning.

• left means collapse all the white space so that words are separated by just one
space. This is beneficial when a schema is going to be fed to a tool that
generates fancy documentation, since such tools may keep the existing white
space and add more.

• none means remove all documentation nodes entirely along with the

enclosing annotation nodes. This is useful for studying the structure of a
schema file or for reducing its size before further processing that does not deal
with documentation nodes. Note that any appinfo will also be removed.

BaseType
 PointType
 VectorType

 Figure 5 Type Hierarchy File

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8337

 XML Tools

12

The –k option, which removes key, keyref, and unique constraints, is useful for
dealing with large schemas with many of those items. Commonly available commercial
XML tools may have difficulty with such schemas – for example being unable to load if
constraint checking is turned on and taking a very long time to load even if constraint
checking is off. Hence, it may be convenient to remove constraints so that a commercial
tool may be used readily.

 Warnings Issued

The xmlSchemaParser prints warnings for eight situations. Each of these situations is
legal XSDL but accomplishes nothing useful while making the schema more complex.
In each case, the warning message includes the number of occurrences.

• An empty documentation node is found.
• An empty sequence is found.
• An empty all is found.
• An empty choice is found.
• A choice node is found with only one choice.
• A sequence is found nested inside another sequence, and the enclosing

sequence has nothing else in it.
• A choice is found nested inside a sequence, and the enclosing sequence has

nothing else in it.
• A name is found with white space inside the quotes surrounding the name.

 Limitations of the xmlSchemaParser

The xmlSchemaParser can handle most constructs allowed in an XML schema file, but
it does have the following limitations.

4.4.1 One schema file
The executable xmlSchemaParser deals with only one schema file. If the file includes
any other schema files, they are not read.

4.4.2 Comment Location Limited
The xmlSchemaParser cannot handle comments in the middle of a type definition,
element definition, or other construct. Any comments must be between such items.

4.4.3 Constraints Not Checked for Validity
Although the xmlSchemaParser reads and writes uniques, keys, and keyrefs, it
does not check that they are valid.

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8337

XML Tools

13

4.4.4 Prefix Required for XML Schema Namespace
The XML schema namespace http://www.w3.org/2001/XMLSchema must be assigned
a prefix. The prefix is usually xs or xsd, although some other prefix may be used.

4.4.5 Only One User-defined Namespace
There may be only one user-defined namespace (i.e., a namespace other than the
XML schema namespace and the schema instance namespace). The user-defined
namespace may have both an empty prefix and a non-empty prefix. Redeclarations of
the XML schema namespace inside elements and types are allowed but are not
included in the output schema.

4.4.6 Not All Qnames
Some names in XML (and XSDL) may have prefixes separated from the rest of the
name by a colon. These are called Qnames. In the generator, some Qnames do not have
prefixes implemented.

4.4.7 Not All XSDL
The following XSDL constructs are not implemented and will cause a parse error if
included in the schema being parsed.

• restriction types: fractionDigits, totalDigits, whiteSpace
• redefine
• anyAttribute
• wildcards
• block
• notation

4.4.8 Limited Regular Expressions
Not all regular expressions that may appear in patterns allowed by XSDL are allowed.
All regular expression syntax as described on pages 180-200 of [1] and in
https://www.regular-expressions.info/xml.html is supported other than the following:

• block escapes (for example, \p{IsBasicLatin})
• multi-character escapes (which have the form \p{XX})
• Unicode character representations (which have the form &#XXXX;).

4.4.9 Final Not Enforced
The final construct is parsed, but the restrictions on type derivation it makes are not
enforced.

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8337

http://www.w3.org/2001/XMLSchema
https://www.regular-expressions.info/xml.html

 XML Tools

14

4.4.10 Data Types Not Checked

The xmlSchemaParser is not checking that data types used in a schema are valid data
types. For example, if a data type of noSuchType were used in a schema, the
xmlSchemaParser would not signal an error or warning.

5 Using the xmlInstanceParserGenerator

Using the xmlInstanceParserGenerator is indicated by Arrows D and B on Figure 1.

 What the xmlInstanceParserGenerator Does

The xmlInstanceParserGenerator reads an XML schema file and all other XML schema
files connected to it by include. It also, optionally, reads an existing C++ header file. It
generates code files.

5.1.1 Parse Schema
The xmlInstanceParserGenerator uses the same parser as the xmlSchemaParser to
read schema files and store them in terms of C++ classes. However, unlike the
xmlSchemaParser, the xmlInstanceParserGenerator:

• parses all schema files connected to a top-level schema file by includes.
• checks that all data types are either XSDL basic (i.e., built-in) data types or

defined data types.

5.1.2 Generate Code Files
The files that the xmlInstanceParserGenerator generates from the domain.xsd XML
schema file (where domain may be any name allowed by XSDL and C++) are:

• domain.lex – a Lex file for a lexical scanner used by the YACC parser.
• domain.y – a YACC file for a parser for XML files in the domain.
• domainClasses.hh – a C++ header file defining classes for the domain. Each class

has one to three constructors, a destructor, and a printSelf function (for a
complexType) or two printSelf functions (for a simpleType)1. For most classes
there are a number of data fields. Data fields are always pointers. The header file
may also have “get” and “set” functions for accessing values of protected fields.

• domainClasses.cc – a C++ code file implementing the classes.
• domainParser.cc – a C++ code file with a main program.

1 See section 11.4 for more information about the printSelf functions.

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8337

XML Tools

15

The domain parser, Lex, and YACC files are generated only if the schema file whose
name is used in the command that starts the generator has a root element at the
beginning.

If the XML schema file on which the xmlInstanceParserGenerator is operating
includes one or more other XML schema files, a pair of domainClasses C++ files is
generated for each additional schema file, but there is still only one Lex file, one YACC
file, and one main domain parser file.

The executable domain parser that is generated from domainParser.cc is a simple
application of the rest of the code (parser and C++ classes). The rest of the code may be
reused in other applications.

All output code files are carefully formatted to be human readable – if the reader is
familiar with the language in which the file is written.

5.1.2.1 Constructors
One of the constructors for every class takes no arguments (unless xsi:type is allowed
as described below). That constructor sets the values of all the data fields to a null
pointer. If the type from which the class was constructed is a complexType with no
contents, then there are no data fields and only this one constructor is defined.

If the type from which the class was constructed is a complexType with a sequence or
sequences, a second constructor is defined that takes values for all the elements of
the sequence(s) as arguments.

If the type is as described in the preceding paragraph and also has attributes, a
third constructor is defined that has arguments that are values for all the attributes
and elements.

If xsi:type is allowed, the constructors just described also have printTypp as an
additional argument at the end of the arguments. If there would otherwise be no
arguments, printTypp has a default value of 0 so that the constructor can be called with
no arguments.

Second constructors for classes representing other XSDL constructs (choice,
enumeration, etc.) or lists are different. Examples are provided in the in-line
documentation of the code and, hence, in the HTML documentation.

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8337

 XML Tools

16

5.1.2.2 Destructor
The destructor that is generated for each class normally has the effect of deleting all the
data fields of the class. However, if the code is compiled with NODESTRUCT defined,
the data fields are not deleted2.

5.1.3 Save User Changes to C++ Header
The xmlInstanceParserGenerator is able to preserve changes made manually to the
automatically generated domainClasses.hh header file if the input schema is modified and
the header file is regenerated. If the arguments to the command that starts the
xmlInstanceParserGenerator include -h domainClasses.hh, where domainClasses.hh
is the manually changed header file, any allowed changes in the old header file will be
transcribed into the corresponding positions in the new header file that is generated.
Details are given in Section 5.5.

5.1.4 Pattern Restrictions
XML Schema Definition Language includes a method of restricting string-like data
values in instance files by specifying the character pattern that the data must have.
Regular expression syntax is used to describe the pattern restrictions. When
the generator parses a schema file containing a pattern restriction, it is checked
that the regular expression in the restriction is a valid regular expression. How this
is done is described in section 10.3.2.

The generator writes code to check that an instance of data subject to a pattern
restriction conforms to the pattern. The code that is written calls the boost
regular expression parser [2]. When an instance file is being checked, the pattern and
the data are passed to the boost parser. Boost regular expressions are almost a
superset of XSDL pattern regular expressions, but there are minor differences. For
example $ is a special character in boost but not in XSDL. If boost cannot handle the
pattern, a warning message is printed saying that the pattern is not being checked.
If boost can check the pattern, the data is checked. If the check fails, an error
message is printed and the instance parser exits.

Since boost is used, if the schema used to build an instance parser includes pattern
restrictions, boost must be linked in when the instance parser is compiled. The
generator always puts a #include <boost/regex.hpp> line in the .cc file it generates for a
schema file. That can be deleted if the file has no pattern restrictions.

2 See section 5.3.2.4 for more on destructors.

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8337

XML Tools

17

 Invoking the xmlInstanceParserGenerator

If the xmlInstanceParserGenerator is invoked with no arguments or if the invocation has
incorrect arguments, the generator prints a message containing instructions on how to
invoke it and examples of valid invocations. The message is shown below.

usage: xmlInstanceParserGenerator [-a <app include prefix>] [-f
getset] [-h <header>] [-i <include prefix>] [-o <output type>]
[-p <prefix>] -s <schema> [-x]
arguments may be given in any order
<schema> is the XML schema file to read
<header> is the existing header file
<output type> is one of: file, string, or macros
<prefix> is the prefix to use in YACC and Lex files
<include prefix> is the prefix for these header files
<app include prefix> is the prefix for application header files
-f getset means generate "get" and "set" access functions for
 fields in the classes, and make the fields protected
-x means allow xsi:type in instance files

Example 1: xmlInstanceParserGenerator -s plan.xsd -x -o macros
Example 2: xmlInstanceParserGenerator -p yypl -f getset -s plan.xsd
Example 3: xmlInstanceParserGenerator -s plan.xsd –h planClasses.hh -f getset
Example 4: xmlInstanceParserGenerator -i generator/ -a crcl/ -s plan.xsd

The command arguments (-x or a flag-name pair) may be given in any order.
The -s schema argument is required. All other arguments are optional. The base name
of generated files is the schema name with the “.xsd” removed. In the examples above,
the base name for files will be “plan”.

The command to start the generator should be given while working in the directory
containing the schema. The generated files will be placed in that directory.

In all of the examples above, the name of the schema file being processed is plan.xsd.
However, if plan.xsd includes other schema files, those files and any schema files
they include (and so on) will also be processed.

5.2.1 App Include Prefix (-a)
The app include prefix is added to the beginning of paths in #include statements in code
that is generated. For instance, in example 4 above, the base name used for code
files will be “plan” and the app include prefix is “crcl/”, so the statement
#include crcl/planClasses.hh will appear in planClasses.cc, plan.y, and plan.lex.

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8337

 XML Tools

18

5.2.2 Get and Set (-f)
By default, all fields of the generated C++ classes are public, so they may be accessed
directly (with object.field or object→field). However, if -f getset is included in the
command that starts the generator, the fields of classes are protected and “get” and “set”
functions are defined for obtaining and setting the values of fields. These are used with
code such as object.getfield() and object.setfield(value) or object→getfield() and
object→setfield(value).

5.2.3 Header Update (-h)
As described in Section 5.1.3, the -h flag is used with the name of an existing
automatically generated header file in which manual changes have been made. That
header file must be for an earlier version of the schema being processed. In Example
3 above the existing header file is named planClasses.hh. Manually made changes that
are specially marked in the existing file will be transcribed into the newly generated file.
Details are given in Section 5.5.

5.2.4 Include Prefix (-i)
The include prefix is added to the beginning of the path for xmlSchemaInstance.hh in
#include statements in the XXXClasses.cc files that are generated. For instance, in
Example 4 above, which has -i generator/, the planClasses.cc file will have
#include generator/xmlSchemaInstance.hh. The xmlSchemaInstance.hh file is needed
because it declares classes for the basic XML data types.

5.2.5 Output (-o)
From a logical point of view, an XML instance file is just a string of characters. The
characters may appear in a file or in a string. A user might prefer one or the other.

If the -o flag is not used, the code generated by the generator puts output into a file.

If the -o flag is used, it controls whether the code generated by the generator puts
output into a file or into a string. There are three choices.

• If “file” follows the -o flag, the code generated by the generator puts output into a
file.

• If “string” follows the -o flag, the code generated by the generator puts output into
a string.

• If “macro” follows the -o flag, the code generated by the generator contains
macros that allow output to go into either a file or a string, as determined by a
flag used when compiling the code.

The generated code is easiest to read when it puts output in a file.

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8337

XML Tools

19

The input to an automatically generated parser may also come from either a file or a
string. The default is file input, but by compiling with STRINGIN defined, the input will be
taken from a string. No generator argument is needed.

5.2.6 Prefix (-p)
The -p flag with a <prefix> (such as yypl shown in Example 2 above) refers to the
prefix for global symbols used by YACC and Lex files. This prefix has a default value of
yy. With that default value, the parsing function that is built is called yyparse. If two or
more parsers are to be included in a process, each parsing function (and all the other
global symbols) must have a different name. In Example 2, the parsing function that is
generated will be named yyplparse, and all the other global symbol names used by
YACC and Lex will also start with yypl.

5.2.7 Xsi:type (-x)
The -x flag means that xsi:type declarations should be allowed with elements. The
rules for what is allowed in an XML instance file that conforms to an XML schema
provide that xsi:type may always be used with elements that are of schema-defined
type.

Some schemas are written in such a way that an instance file cannot be written without
using xsi:type. Such schemas must be processed with the -x flag.

However, by using substitutionGroups, it is usually feasible, regardless of the
information content of a schema, to build the schema so that xsi:type is never
required in an instance file. Since xsi:type is unnecessary characters requiring
parsing in instance files conforming to such schemas, the users of such schemas may
adopt a business rule that xsi:type may not be used. That is the default behavior of a
parser generated by the generator; the parser will signal an error if xsi:type is
encountered. By disallowing xsi:type, the YACC file will be significantly smaller. With
one international standard, the YACC file is reduced from 165592 lines to 103793 lines.

Further information about how the generator deals with xsi:type is given in section
11.6.4.

 Processing Generated Files

After the xmlInstanceParserGenerator has finished running, further processing builds a
Domain Instance XML Parser from the code that has been generated. Using the parser
is described in section 8.

5.3.1 Processing by Flex and Bison
The flex Lex processor [3] is used to generate the C++ file domainLex.cc automatically
from domain.lex. The bison YACC processor [4] is used to generate domainYACC.cc and

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8337

 XML Tools

20

domainYACC.hh automatically from domain.y. Calls to flex and bison are included in the
Makefile of section 9.3.2.

5.3.2 Compiling
The four (or more) .cc files are then compiled and linked by using a Makefile in any
operating system that uses standard Makefiles (see 9.3.2 for an example) or by using
Visual Studio for MS Windows.

The parsing function (default name yyparse) is used in the executable domain instance
parser that is created by compiling. The parsing function may also be used in any
program that uses input from an XML instance file that conforms to domain.xsd. For such
a program, all the object files created from code written by the
xmlInstanceParserGenerator (except for domainParser.cc) must be linked in when the
program is compiled.

A variety of behaviors of domain parsers is available depending on
• options chosen when generating the code for the parser
• compiler flags used when compiling the code
• the version of the object file made from xmlSchemaInstance.cc that is linked with

the parser code.

XML has a number of basic datatypes such as string and integer, as described in
[1] and [5]. These datatypes are modeled in xmlSchemaInstance.hh and
xmlSchemaInstance.cc. An object file built from those files must also be linked into the
executable domain instance parser or any program that creates XML instance files for
the domain. By using compile flags, four versions of the object file can be compiled,
depending on whether xsi:type is allowed and whether output should go to a string.
More information about this is given in section 5.3.2.3 and section 14.

5.3.2.1 Echo While Parsing – or Not
By default, the input (an XML instance file) to a domain parser will be echoed as it is
read. That is often helpful since if there is a parse error, the parser stops where the
error occurs. A user can get a good idea of where the problem lies by looking at the last
text that was echoed.

A user might not want to have the input echoed. That can be achieved by using the
NO_ECHO flag when the lex.cc file is compiled.

5.3.2.2 Taking Input from a File or a String

The underlying parser of a domain parser can take input from either a file or a string.
This is determined entirely by a compiler flag.

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8337

XML Tools

21

If an executable domain parser is compiled with STRINGIN defined, it will read the input
file into a string and then parse it from the string; the underlying parser takes input from
a string in this case. Otherwise it will parse directly from the file.

5.3.2.3 Printing Output to a File or a String

The printing routines of a domain parser will print either to a file or to a string. This is
determined by all three bulleted items above.

5.3.2.3.1 Always to a File
If the code was generated with no -o option or if -o file was used, domain parser output
will go to a file, and no compiler flag for output should be used when compiling the
domain parser. If the -x flag was used when the code was generated,
xmlSchemaInstanceXsi.o (xmlSchemaInstance.cc compiled with USEXSITYPE defined)
must be linked in. Otherwise, xmlSchemaInstance.o must be linked in.

5.3.2.3.2 Always to a String

If the code was generated with -o string, domain parser output will go to a string, and
the flag STRINGOUT must be used when compiling the domain parser. In this case
printing to the string will include line endings but no other extra whitespace. If the -x flag
was used when the code was generated, xmlSchemaInstanceStrXsi.o
(xmlSchemaInstance.cc compiled with USEXSITYPE and STRNGOUT defined) must be
linked in. Otherwise, xmlSchemaInstancStr.o must be linked in.

5.3.2.3.3 To Either String or File

If the code was generated with -o macros, it contains macros that will output to either a
file or a string, depending on how the code is compiled.

If the flag STRINGOUT is used when compiling the domain parser, output will be sent to
a string. In this case, if the -x flag was used when the code was generated,
xmlSchemaInstanceStrXsi.o (xmlSchemaInstance.cc compiled with USEXSITYPE and
STRINGOUT defined) must be linked in. If the -x flag was not used when the code was
generated, xmlSchemaInstanceStr.o (xmlSchemaInstance.cc compiled with STRINGOUT
defined) must be linked in.

If the flag STRINGOUT is not used when compiling the domain parser, output will be
sent to a file. In this case, if the -x flag was used when the code was generated,
xmlSchemaInstanceXsi.o (xmlSchemaInstance.cc compiled with USEXSITYPE defined)
must be linked in. If the -x flag was not used when the code was generated,
xmlSchemaInstance.o must be linked in.

5.3.2.4 Destructors and Clearing Memory

In many applications, it will be desirable to process a series of XML instance files
conforming to the same schema. In such applications, it will be desirable (or necessary)

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8337

 XML Tools

22

to remove the abstract syntax tree representing one file before going on to the next file.
The code that is generated implements two methods for doing that. The choice is
determined by a compiler flag. If it is not necessary to clean abstract syntax trees out of
memory while an application is running, it does not matter which way the flag is set
when the code is compiled. In that case the memory will be recovered automatically
when the application exits. The rest of this section assumes it is necessary to reclaim
memory while the application is running.

5.3.2.4.1 First Method

In the first method, implemented by default, all objects should be created using new, for
example:
 point * pointA;
 point A = new point;
 line->firstPoint = pointA;

This method is used when the automatically generated parser is used to read files.
Hence, if an application uses the parser to read an existing file and then modifies the
file, the application programmer must use this method. This method may also be used
when generating instance file trees programmatically.

The destructors that are generated in the C++ classes delete all of the fields of the class.
By doing that, all memory for a tree of class instances is freed by deleteing the root of the
tree.

Since all fields are pointers, if any object in the tree has been referenced more than
once, there will be an error when the tree is deleted. One method of avoiding that is to
remove all references but one to an object before deleteing the tree. Having to keep
track of references to an object, however, would be a significant burden for the
programmer. A much simpler method for dealing with this is not to create multiple
references to any object. This is feasible because an XML file is a tree with no cross
links. To implement this, it may be necessary to make copies of objects, but that is easy
to do. For example, two references to an object named cmm1 might be created as
follows.

 ReferenceType * cmm1Ref1 = new ReferenceType();
 cmm1Ref1->setval(cmm1->getid());

 ReferenceType * cmm1Ref2 = new ReferenceType();
 *cmm1Ref2 = *cmm1Ref1;

Making multiple copies in this situation (handling objects with the same content) is what
the parser does automatically, and thus is not unreasonably wasteful of memory.

5.3.2.4.2 Second Method

In the second method, all objects should be made using automatic variables, for
example:

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8337

XML Tools

23

 point pointA;
 line.firstPoint = &pointA;
This method may be used when generating trees programmatically.

The second method is implemented by using the flag NODESTRUCT when compiling
the .cc files corresponding to the schema files. Using that flag stops the destructors from
deleteing the fields of the class. In this method, all objects disappear automatically when
they go out of scope, and the memory they used is recovered automatically (because
that’s how C++ works).

5.3.2.4.3 Recommendation

In experimenting with the methods, using the first method with no multiple references to
the same object appeared to work the most smoothly. Users may wish to try different
methods to see what works best in particular applications.

 Example – Generating from Line.xsd

Using the XML schema file line.xsd shown in Figure 3, suppose the following command
is given from the directory containing that file:

 bin/xmlInstanceParserGenerator -f getset -x -s line.xsd

Seven files will be generated, five for line.xsd itself and two for primitives.xsd (shown in
Figure 2), which is included by line.xsd:

• primitivesClasses.hh - Annex B
• lineClasses.hh - Annex C
• primitivesClasses.cc - Annex D
• lineClasses.cc - Annex E
• lineParser.cc - Annex F
• line.y - Annex G
• line.lex - Annex H

The first four of those will implement “get” and “set” functions. The line.lex and line.y files
will allow xsi:type.

The Makefile for this example is shown in section 9.3.2.

 Saving Header File Changes Made Manually

A well-known drawback with automatically generated code is that a user may modify the
code, but the modifications will be lost if the code is regenerated. As mentioned earlier,
the xmlInstanceParserGenerator is able to preserve some types of changes made
manually to an existing automatically generated header file, if the header file is being
regenerated. The code generated by the xmlInstanceParserGenerator is formatted to be

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8337

 XML Tools

24

human-readable and is relatively straightforward, so that making changes manually is
feasible.

The xmlInstanceParserGenerator is able to preserve manually-made modifications if the
modifications are additions to the classes – entirely new classes or new fields or functions
in existing classes. In C++, this is not an insurmountable problem for implementation
(.cc) files because new implementation code can be put into a separate file that is linked
in during compilation. For header (.hh) files, however, it is not possible to write a
separate header file that modifies an existing class; any changes have to be in a single
header file.

Two types of manual changes to header files can be preserved. First, immediately after
the list of #includes near the top of the file, a two-slashes-style (i.e., //) comment line
may be inserted followed by more #includes. Second, immediately before the right curly
brace that closes each class declaration, a // style comment line may be inserted
followed by any lines that are syntactically correct in that position (for example, a field
declaration or a constructor declaration).

To accomplish the transcription of changes in class declarations, when the
xmlInstanceParserGenerator starts, it reads the old header file and builds a std::map
from class names to std::lists of character arrays containing the changes. When the new
header is being printed, just before the printing of each class ends, if the std::map has an
entry for the class, the contents of the std::list of changes for that class are copied into the
new header file. At the same time, “done” is put at front of the std::list of changes to
indicate that the changes for that class have been transcribed. After the new header file
has been generated, the change std::map is checked to be sure all changes are marked
done. If a change is not marked done, that implies that a class defined in the old header
file is not present in the new one, and a warning message is printed.

Any manually written code implementing changes in the header file, such as a new
constructor, should be put into a separate .cc file, not into domainClasses.cc. Otherwise,
the changes will be lost if domainClasses.cc is regenerated.

Augmenting C++ code by adding fields and functions to classes to support building an
application is frequently done, so being able to preserve manual changes to header files
is valuable.

 Limitations of the xmlInstanceParserGenerator

The xmlInstanceParserGenerator has the following limitations. A few other statements
allowed in XSDL not listed here cannot be handled but are expected to be encountered
rarely. Those that have been identified are noted in the in-line documentation of the
generator with the word “FIX”. There may be other limitations not yet discovered.

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8337

XML Tools

25

5.6.1 Limitations Inherited from xmlSchemaParser
The generator uses the parse function from the xmlSchemaParser. Hence, except as
noted in Section 5.1.1, it has all of the limitations of the xmlSchemaParser, as given in
Section 4.4.

5.6.2 Type Definitions Must Be At Schema Level
The generator handles only schemas in which all type definitions are at the schema
level; that ensures that every type has a name. This is not a major limitation because
embedded type definitions can easily be moved to the top level in a way that lets the
revised schema handle exactly the same instance files as the original schema. New
types are defined, but no new elements are introduced.

5.6.3 No Code to Check Some Constraints
While the generator does write code that checks many types of constraints, some types
of constraints can be parsed for which no enforcing code is generated. Specifically, the
generator does not generate code to verify that an instance file satisfies fixed,
unique, key, or keyref constraints in the schema.

5.6.4 Several Constructs Not Handled
The generator is not able to generate code dealing with following constructs that the
xmlSchemaParser is able to parse. If one of the constructs is encountered, the
xmlInstanceParserGenerator prints a “cannot handle” error message and exits.

• complexContent restriction
• simpleContent restriction
• enumerations of numbers
• restrictions of strings other than enumerations and patterns
• all
• a choice with no items
• a sequence with no items
• an extension of an extension that adds a choice
• a non-element in an element group sequence
• maxOccurs or minOccurs of an element group reference
• maxOccurs or minOccurs of a sequence
• duplicate elements in a sequence or choice
• an optional item in a choice (which is pointless)
• an element group with no sequence (which is pointless)

5.6.5 Some Basic Data Types Not Handled

The generator handles 26 of XSDL’s basic (i.e., built-in) data types. However, the date,
time, and dateTime data types are handled as strings, and the following data types

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8337

 XML Tools

26

are not handled: byte, ENTITY, ENTITIES, hexBinary, IDREFS, language, Name,
NCName, NMTOKENS, normalizedString, NOTATION, QName.

5.6.6 Names Not Guaranteed to be Unique
C++ gives the dash (-) and period (.) characters special meaning, so they cannot be
used in C++ names. They can be used in XSDL names. For use in C++ code, the
generator changes dashes and periods in names used in the schema to underscores. If
a schema contains two names that are identical except that one has an underscore
where the other has a dash or a period (e.g., half-track and half_track), an error will
occur. If duplicate type names result, the xmlInstanceParserGenerator will print a
“duplicate class name” error message and exit. If duplicate field names in a class result,
compiler errors will occur.3

Names in a schema that contain underscores and are similar can result in duplicate
names in the generated code. For example, if the element foo_bar has type baz and
the element foo has type bar_baz, the name foo_bar_baz may be generated twice for
different uses, leading to processing errors.

5.6.7 Prefixes ignored
The generator does not consider the prefix when keeping track of the names of
simpleTypes and complexTypes defined in the schema. Hence, no type definitions
in the schema may have the same name as a basic type. For example, a simpleType
definition with the name co:string would not work because it is too similar to the
basic xs:string.

5.6.8 Not All Patterns Handled
Because, as described in section 4.4.8, not all regular expressions allowed by XSDL are
parsable, the generator cannot handle all character patterns.

6 Using the orphanFinder

Using the orphanFinder is indicated by Arrows G and H on Figure 1.

 What the orphanFinder Does

The orphanFinder examines one or many schema files and finds:
• types that are used but are not defined
• types that are defined but are not used

3 C++ reserved words also cannot be used as names. The generator changes names that are C++
reserved words by appending “_AltNaym” to the name.

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8337

XML Tools

27

XSDL allows defining simpleTypes and complexTypes that are not used anywhere.
This is pointless, but it is easy for it to occur in a complex schema that is revised
several times. Using a type that is not defined is also an easy mistake to make – by
misspelling the name, for example.

 Invoking the orphanFinder

If the orphanFinder is invoked with no arguments, it prints the following message
explaining how to make a correct invocation.

Usage: orphanFinder <file> <file> ...
Where each <file> is the name of an XML schema file

Only the named files are examined; chains of includes are not followed. For example,
the file line.xsd shown in Figure 3 includes the file primitives.xsd shown in Figure 2 and
uses types defined in primitives.xsd.

Because the orphanFinder does not parse schema files, it is a good idea to use the
xmlSchemaParser first on any schemas to be fed to the orphanFinder. The file echoed
by the xmlSchemaParser can be used as input to the orphanFinder if the original
schema file is valid but not in good format.

 Examples of Using the orphanFinder

If the command orphanFinder line.xsd is given, the following is printed in the
command window.

 DEFINED DATA TYPES NOT USED

 USED DATA TYPES NOT DEFINED
 BaseType – line.xsd
 PointType – line.xsd
 VectorType – line.xsd

This indicates that there are no defined data types that are not used but that there are
three data types that are used but not defined.

On the other hand, if the command orphanFinder line.xsd primitives.xsd is given, the
following is printed.

 DEFINED DATA TYPES NOT USED

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8337

 XML Tools

28

 USED DATA TYPES NOT DEFINED

This indicates that there are no defined data types that are not used and no data types
that are used but not defined.

As shown above, the name of the schema file is printed on each line of the output that
names a type. If an undefined data type is found that is used in more than one schema
file, the data type name is printed only once, and each file name is printed on a
separate line.

 Limitations of the orphanFinder

The orphanFinder does not use the parse function from the xmlSchemaParser (or any
other parser), so it does not have the limitations of the xmlSchemaParser. It works by
looking for text patterns. Hence, any sort of error in a schema other than using an
undefined type will not be detected.

The orphanFinder requires that all complexType and simpleType definitions be at
the top level of a schema starting on a new line.

The orphanFinder requires that the XML schema prefix be xs.

7 Using the xmlSchemaAttributeConverter

Using the xmlSchemaAttributeConverter is indicated by Arrow F on Figure 1.

 What the xmlSchemaAttributeConverter Does

The xmlSchemaAttributeConverter reads an XML schema file, checks the syntax of the
file, builds an abstract syntax tree, changes all attributes in the tree to elements,
and reprints the file from the modified tree. The name of the reprinted file is the name of
the original file with "NoAtt" added before the “.xsd” at the end.

If the schema file has includes, each included schema file is also converted (and
so on, so that the entire tree or graph of included files is converted).

All references to global attributes and global attributeGroups are replaced by
elements with types. The global attributes and global attributeGroups are
removed. Local attributes are also removed after being replaced by elements.

If a complexType with simpleContent extends a basic type or simpleType by
adding attributes, it is converted to a complexType with complexContent. The

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8337

XML Tools

29

new type is not an extension of the original type. Hence, the original type cannot be
used as the head of a substitutionGroup that includes the new type or its
descendants.

Because the default for attributes is to be optional, while the default for elements is
to be required, if an attribute is required, the corresponding element has no
maxOccurs or minOccurs, while if an attribute is not required, the element has
minOccurs="0".

Documentation nodes are reprinted indented but with no other change. In particular, if
a documentation node describes what it is documenting as an attribute, that
documentation remains unchanged in the converted file and becomes misleading.

 Invoking the xmlSchemaAttributeConverter

If the xmlSchemaAttributeConverter is invoked with no arguments, it prints the following
message explaining how to make a correct invocation.

usage: xmlSchemaAttributeConverter <schema>
<schema> is the XML schema file to read
Example: xmlSchemaAttributeConverter plan.xsd

 Example of Using the xmlSchemaAttributeConverter

If the command xmlSchemaAttributeConverter line.xsd is given, the files
lineNoAtt.xsd and primitivesNoAtt.xsd will be written. The primitivesNoAtt.xsd file is
identical to primitives.xsd since it does not deal with attributes. The file lineNoAtt.xsd
shown in Annex I, however, differs from line.xsd in the obvious way that the two lines
declaring the color attribute have been removed, and there is one more element
line. The new color element appears after the other elements.

The lineNoAtt.xsd file can be processed by the other tools like any other schema file.

 Limitations of the xmlSchemaAttributeConverter

The xmlSchemaAttributeConverter uses the parse function from the xmlSchemaParser,
so it has the same limitations, as given in Section 4.4.

Keys, keyrefs, and other constraints that reference attributes are not being
converted to referencing elements. Hence, such constructs become invalid in the
output file.

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8337

 XML Tools

30

8 Using Domain Instance XML Parsers

Using a Domain Instance XML Parser (domain parser, for short) is indicated by Arrow D
on Figure 1. A domain parser is created by compiling the output of the
xmlInstanceParserGenerator as indicated by Arrow B on Figure 1 and described in
Section 5.3. An example Makefile is shown in section 9.3.2.

 What a Domain Parser Does

A domain parser reads and writes XML instance files intended to conform to the
domain.xsd information model. The name of an output file (if there is only one output file
– see section 8.2.2) is the name of the input file with “1” appended. If there are no
errors, the contents of the output file are identical to the contents of the input file except,
possibly, for:

• the location white space (spaces, tabs, newlines, carriage returns).
• the use of exponential notation and number of decimal places in numbers that

are not whole numbers, which may be specified in the call to the domain parser
(see section 8.2.1 for details).

The methods of handling the printing of numbers (as described in section 8.2.1) make it
feasible in many cases for the output file to be identical to the input file. Without those
methods, a number such as 3.5 in the input file might be changed to something like
3.49999999999 in the output file.

The output file is formatted for human readability, so domain parsers are useful for
changing instance files from unreadable to readable.

Tabs are not used in output files, so input and output files that appear to be identical
may be found to differ by utilities that compare files. Trailing white space on lines of
input files will also cause differences.

A domain parser requires strict conformance of instance files to the syntax implied by
the domain.xsd schema. A domain parser (by default) prints what it is reading in the
command window in which it is running. Echoing input while reading can be turned off
by a compiler flag as described in Annex H. If there is any syntax error, the domain
parser stops reading at the point where the first error occurred, prints an error message,
and exits; no output file is generated.

Domain parsers check that all values of the XML basic ID type in an instance file are
unique and that every IDREF value is the value of an ID. They also check all the
restrictions on data (such as patterns) that the xmlInstanceParserGenerator can
handle.

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8337

XML Tools

31

Domain parsers use C++ definitions of the XML basic data types given in the files
xmlSchemaInstance.hh and xmlSchemaInstance.cc.

 Invoking a Domain Parser

If a domain parser is invoked with no arguments, it prints a message explaining how to
make a correct invocation. For example, if the domain parser “lineParser” generated
from line.xsd is called with no arguments, it prints:

Usage: lineParser <file name> [-n|N <places>] [-f|F <format>] [<times>]
<places> and <times> are integers; <format> is f, e, or E
Example 1: bin/lineParser dFile.xml
Example 2: bin/lineParser dFile.xml 2
Example 3: bin/lineParser dFile.xml -n 5
Example 4: bin/lineParser dFile.xml -F e 2
Example 5: bin/lineParser dFile.xml -n 6 -F E

8.2.1 Numbers with Decimal Points
A domain parser’s C++ representation of XML numbers with decimal points (double,
float, and decimal) all have fields for (1) the number of decimal places to use when
printing (places) and (2) the format to use (format). Those fields are populated when a
number is read from a file and their values are determined both by the format in the file
and the call to the parser. The values of the places and format fields may also be set
programmatically.

In the call to the parser, the [-n|N <places>] and [-f|F <format>] determine how double,
float, and decimal are printed in the echoed file. In the following text, DFD means a
number of one of those types, and DF means double and float numbers. <places> is
a non-negative integer. <format> is one of f, e, or E and their meaning is as given for
printf in the C++ standard (floating point, exponential with lower case e, exponential with
upper case E).

If -N is used, all DFDs are printed with <places> decimal places.

If -n is used, DFDs are printed out with the same number of decimal places as they had
when they were read in.

If neither -n nor -N is used, DFDs are printed out with the same number of decimal
places as they had when they were read in.

The -f and -F options have no effect on decimal numbers (since decimal numbers
may not use exponential notation).

If -F is used all DFs are printed with the given <format>.

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8337

 XML Tools

32

If -f is used, DFs are printed out using exponential notation (e or E) if they had
exponential notation when they were read in, but otherwise are printed with the given
<format>.

If neither -f nor -F is used, DFs are printed out using exponential notation (e or E) if they
had exponential notation when they were read in, but otherwise are printed with the f
format.

Examples: Suppose a number in dFile.xml is 23.14159265.
1. If the command is lineParser dFile.xml, the number is printed as 23.14159265
 regardless of which type of number with a decimal point it is.
2. If the command is lineParser dFile.xml –N 6, the number is printed as
 23.141592 regardless of which type of number with a decimal point it is.
3. If the command is lineParser dFile.xml –N 5 –F e, the number is printed as
 2.31415E1 if it is double or float, but as 23.14159 if it is decimal.

8.2.2 The Times Argument
The <times> argument gives the number of times the file should be parsed. The
argument exists to help test for memory leaks and is not expected to be useful
otherwise. The number of output files is the value of <times>, and their names are the
name of the input file, with 1, 2, … appended.

 Example of Running a Domain Parser

If the command lineParser line1.xml is given, the file line1.xml1 will be printed, and it
will be identical to line1.xml as shown in Figure 4 except for a small amount of white
space.

 Limitations of Domain Parsers

Domain parsers do not check conformance of instance files to any key and keyref
constraints that may be present in domain.xsd.

9 Software Overview

 Code

The code for the tools is written in C++, YACC, and Lex. Modifying the code requires
good command of those languages in addition to knowledge of XSDL and XML instance
files.

As mentioned previously, the source code for the four hand-written tools (all of which
take one or more XML schema files as input) is primarily in C++. All of them except the
orphanFinder use xmlSchemaClasses.hh and xmlSchemaClasses.cc (classes for representing

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8337

XML Tools

33

XSDL structures), xmlSchema.y (the YACC parser for schema files), and xmlSchema.lex
(the lexer used by the YACC parser). To deal with XSDL pattern constraints, the
xmlSchemaParser and the xmlInstanceParserGenerator also use a second YACC-Lex
parser built from pattern.y and pattern.lex. Each of the four tools has a C++ file
dedicated to its particular job in addition to the other files. The largest of those is
xmlInstanceParserGenerator.cc at over 21,000 lines.

9.1.1 Code Documentation
The hand-written code for the tools is heavily documented to provide additional
information for programmers. Each C++ function is introduced by a comment section
that gives “Returned Value” and “Called By” plus a description of what the function
does. Some comment sections include examples. Where the code has dealt with a
thorny problem, a description of the problem and how the code deals with it may be
included. Much of the text of sections 10 through 15.3 is copied from the in-line
documentation.

The in-line documentation is formatted to be processable by the Doxygen
documentation generator (https://www.doxygen.nl). Four Doxygen configuration files
(one for each tool) are included in the code distribution for generating HTML
documentation. The HTML documentation files themselves are also included in the
distribution. The HTML may be regenerated by a command such as doxygen
DoxyGenerator (for the xmlInstanceParserGenerator). Programmers may prefer using
the HTML documentation to reading the documentation in the code. The HTML has
more information than the code files, such as links to parent types and derived types.

9.1.2 Code Formatting
All of the hand-written code is carefully formatted (with the help of the emacs editor
running in the appropriate mode) so that it is easily readable by a programmer. With
very few exceptions, lines do not have more than 80 characters.

To make the code easier to follow, the C++ function definitions in the hand-written .cc
files are arranged in alphabetical order. The .hh files are not alphabetical because of the
need to define a parent class before any of its child classes. Items in xmlSchema.y are
also in alphabetical order.

 Differences in Approach Among Tools
Three of the four tools use the same YACC/Lex XML schema parser to read in XML
schema files and build an abstract syntax tree for each file using the classes defined in
xmlSchemaClasses.hh and xmlSchemaClasses.cc.

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8337

https://www.doxygen.nl/

 XML Tools

34

The source code for the automatically generated domain instance XML parsers is
described in section 15.

9.2.1 xmlInstanceParserGenerator
The source code for the xmlInstanceParserGenerator defines a generator class
containing all the functions needed for the tool as well as a set of variables for data
about the XML schema being processed. In the xmlInstanceParserGenerator, if
include commands are used in the schema, so that more than one schema file is to
be processed, a separate instance of the generator class is created for each included
file. Each generator uses the YACC/Lex XML schema parser to read in the XML
schema file for the generator.

The other three tools do not use a generator class.

9.2.2 xmlSchemaParser
The xmlSchemaParser processes only one schema file. It uses the YACC/Lex XML
schema parser and the xmlSchemaClasses to build a model of the input schema file.
The rest of the xmlSchemaParser prints out the model in a format selected by the user.

9.2.3 xmlSchemaAttributeConverter
The xmlSchemaAttributeConverter uses the YACC/Lex XML schema parser and the
xmlSchemaClasses to build a model of each input schema file in a group of schema
files connected by include. It extracts data from all of the models and then processes
the extracted data.

9.2.4 orphanFinder
The orphanFinder does not use the YACC/Lex XML schema parser. However, it does
process all files in a set of schema files connected by include. It does string
processing.

 Makefiles

The tools may be compiled in Linux and similar systems using a Makefile. As may be
seen below, the Makefiles are all straightforward.

9.3.1 Makefile for Purely XML Tools
The following is the Makefile for the XML tools. Since building a domain instance parser
requires using one of four versions of an object file for xmlSchemaInstance (as
described in section 5.3.2), this Makefile also compiles them.

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8337

XML Tools

35

LINCOMPILE = g++ -c -v -g -Wall
LINLINK = g++ -v
INCLUD = -Isource -Iinclude
HHDIR = include
bin/orphanFinder: ofiles/orphanFinder.o
 $(LINLINK) -o $@ ofiles/orphanFinder.o
bin/xmlInstanceParserGenerator : ofiles/xmlInstanceParserGenerator.o \
 ofiles/xmlSchemaYACC.o \
 ofiles/xmlSchemaLex.o \
 ofiles/xmlSchemaClasses.o \
 ofiles/patternLex.o \
 ofiles/patternYACC.o
 $(LINLINK) -o $@ ofiles/xmlInstanceParserGenerator.o \
 ofiles/xmlSchemaYACC.o \
 ofiles/xmlSchemaLex.o \
 ofiles/xmlSchemaClasses.o \
 ofiles/patternLex.o \
 ofiles/patternYACC.o
bin/xmlSchemaAttributeConverter : ofiles/xmlSchemaAttributeConverter.o \
 ofiles/xmlSchemaYACC.o \
 ofiles/xmlSchemaLex.o \
 ofiles/xmlSchemaClasses.o \
 ofiles/patternLex.o \
 ofiles/patternYACC.o
 $(LINLINK) -o $@ ofiles/xmlSchemaAttributeConverter.o \
 ofiles/xmlSchemaYACC.o \
 ofiles/xmlSchemaLex.o \
 ofiles/xmlSchemaClasses.o \
 ofiles/patternLex.o \
 ofiles/patternYACC.o
bin/xmlSchemaParser : ofiles/xmlSchemaParser.o \
 ofiles/xmlSchemaYACC.o \
 ofiles/xmlSchemaLex.o \
 ofiles/xmlSchemaClasses.o \
 ofiles/patternLex.o \
 ofiles/patternYACC.o
 $(LINLINK) -o $@ ofiles/xmlSchemaParser.o \
 ofiles/xmlSchemaYACC.o \
 ofiles/xmlSchemaLex.o \
 ofiles/xmlSchemaClasses.o \
 ofiles/patternLex.o \
 ofiles/patternYACC.o
ofiles/orphanFinder.o : source/orphanFinder.cc
 $(LINCOMPILE) -o $@ source/orphanFinder.cc
ofiles/xmlInstanceParserGenerator.o :
 $(HHDIR)/xmlInstanceParserGenerator.hh \
 source/xmlInstanceParserGenerator.cc \
 $(HHDIR)/xmlSchemaClasses.hh
 $(LINCOMPILE) $(INCLUD) -o $@ source/xmlInstanceParserGenerator.cc
ofiles/patternLex.o : source/patternLex.cc \
 source/patternYACC.hh
 $(LINCOMPILE) -o $@ source/patternLex.cc

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8337

 XML Tools

36

ofiles/patternYACC.o : source/patternYACC.cc \
 source/patternYACC.hh
 $(LINCOMPILE) -o $@ source/patternYACC.cc
ofiles/xmlSchemaAttributeConverter.o : $(HHDIR)/xmlSchemaClasses.hh \
 source/xmlSchemaAttributeConverter.cc
 $(LINCOMPILE) $(INCLUD) -o $@ source/xmlSchemaAttributeConverter.cc
ofiles/xmlSchemaClasses.o : $(HHDIR)/xmlSchemaClasses.hh \
 source/xmlSchemaClasses.cc
 $(LINCOMPILE) $(INCLUD) -o $@ source/xmlSchemaClasses.cc
ofiles/xmlSchemaInstance.o : source/xmlSchemaInstance.cc \
 $(HHDIR)/xmlSchemaInstance.hh
 $(LINCOMPILE) $(INCLUD) -o $@ source/xmlSchemaInstance.cc
ofiles/xmlSchemaInstanceXsi.o : source/xmlSchemaInstance.cc \
 $(HHDIR)/xmlSchemaInstance.hh
 $(LINCOMPILE) $(INCLUD) -o $@ -DUSEXSITYPE source/xmlSchemaInstance.cc
ofiles/xmlSchemaInstanceStr.o : source/xmlSchemaInstance.cc \
 $(HHDIR)/xmlSchemaInstance.hh
 $(LINCOMPILE) $(INCLUD) -o $@ -DSTRINGOUT source/xmlSchemaInstance.cc
ofiles/xmlSchemaInstanceStrXsi.o : source/xmlSchemaInstance.cc \
 $(HHDIR)/xmlSchemaInstance.hh
 $(LINCOMPILE) $(INCLUD) -o $@ -DSTRINGOUT -DUSEXSITYPE source/xmlSchemaInstance.cc
ofiles/xmlSchemaLex.o : source/xmlSchemaLex.cc\
 source/xmlSchemaYACC.hh
 $(LINCOMPILE) $(INCLUD) -o $@ source/xmlSchemaLex.cc
ofiles/xmlSchemaParser.o : $(HHDIR)/xmlSchemaClasses.hh \
 source/xmlSchemaParser.cc
 $(LINCOMPILE) $(INCLUD) -o $@ source/xmlSchemaParser.cc
ofiles/xmlSchemaYACC.o : source/xmlSchemaYACC.cc \
 source/xmlSchemaYACC.hh
 $(LINCOMPILE) $(INCLUD) -o $@ source/xmlSchemaYACC.cc
source/patternLex.cc : source/pattern.lex \
 source/patternYACC.cc
 flex -L -t -Pyyre source/pattern.lex > source/patternLex.cc
source/patternYACC.cc : source/pattern.y
 bison -d -l -p yyre -o $@ source/pattern.y
source/xmlSchemaLex.cc : source/xmlSchema.lex \
 source/xmlSchemaYACC.cc \
 $(HHDIR)/xmlSchemaClasses.hh
 flex -L -t source/xmlSchema.lex > source/xmlSchemaLex.cc
source/xmlSchemaYACC.cc : source/xmlSchema.y \
 $(HHDIR)/xmlSchemaClasses.hh
 bison -d -l -o $@ source/xmlSchema.y

9.3.2 Makefile for Example lineParser
The following Makefile is for the lineParser example. It may be used to build lineParser
and lineParserStr. See section 5.4, Annex B, Annex C, Annex D, Annex E, Annex F,
Annex G, and Annex H for more information about the example.

LINCOMPILE = g++ -c -v -g –Wall -DUSEXSITYPE
LINLINK = g++ -v
XTOOLSHH = ../../../tools/include

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8337

XML Tools

37

XTOOLSO = ../../../tools/ofiles
INCLUD = -Isource -I ../../../tools/include

bin/lineParser : ofiles/lineParser.o \
 ofiles/lineClasses.o \
 ofiles/lineLex.o \
 ofiles/lineYACC.o \
 ofiles/primitivesClasses.o \
 $(XTOOLSO)/xmlSchemaInstanceXsi.o
 $(LINLINK) -o $@ ofiles/lineParser.o \
 ofiles/lineClasses.o \
 ofiles/lineLex.o \
 ofiles/lineYACC.o \
 ofiles/primitivesClasses.o \
 $(XTOOLSO)/xmlSchemaInstanceXsi.o

bin/lineParserStrIn : ofiles/lineParserStrIn.o \
 ofiles/lineClasses.o \
 ofiles/lineLexStrIn.o \
 ofiles/lineYACC.o \
 ofiles/primitivesClasses.o \
 $(XTOOLSO)/xmlSchemaInstanceXsi.o
 $(LINLINK) -o $@ ofiles/lineParserStrIn.o \
 ofiles/lineClasses.o \
 ofiles/lineLexStrIn.o \
 ofiles/lineYACC.o \
 ofiles/primitivesClasses.o \
 $(XTOOLSO)/xmlSchemaInstanceXsi.o

ofiles/primitivesClasses.o : source/primitivesClasses.hh \
 $(XTOOLSHH)/xmlSchemaInstance.hh \
 source/primitivesClasses.cc
 $(LINCOMPILE) -o $@ $(INCLUD) source/primitivesClasses.cc

ofiles/lineClasses.o : source/lineClasses.hh \
 source/lineYACC.hh \
 $(XTOOLSHH)/xmlSchemaInstance.hh \
 source/primitivesClasses.hh \
 source/lineClasses.cc
 $(LINCOMPILE) -o $@ $(INCLUD) source/lineClasses.cc

ofiles/lineLex.o : source/lineLex.cc \
 source/lineYACC.hh
 $(LINCOMPILE) -DNO_ECHO -o $@ $(INCLUD) source/lineLex.cc

ofiles/lineLexStrIn.o : source/lineLex.cc \
 source/lineYACC.hh
 $(LINCOMPILE) -DSTRINGIN -DNO_ECHO -o $@ $(INCLUD) source/lineLex.cc

ofiles/lineParser.o : source/lineParser.cc
 $(LINCOMPILE) -o $@ $(INCLUD) source/lineParser.cc

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8337

 XML Tools

38

ofiles/lineParserStrIn.o : source/lineParser.cc
 $(LINCOMPILE) -DSTRINGIN -o $@ $(INCLUD) source/lineParser.cc

ofiles/lineYACC.o : source/lineClasses.hh \
 source/lineYACC.hh \
 $(XTOOLSHH)/xmlSchemaInstance.hh \
 source/primitivesClasses.hh \
 source/lineYACC.cc
 $(LINCOMPILE) -o $@ $(INCLUD) source/lineYACC.cc

source/lineYACC.hh : source/lineYACC.cc

source/lineYACC.cc : source/line.y
 bison -d -l -o $@ source/line.y

source/lineLex.cc : source/line.lex
 flex -L -t source/line.lex > source/lineLex.cc

10 xmlSchemaParser Details

Using the xmlSchemaParser is described in section 4. That section also describes the
options for the parser. This section gives further details about the parser.

The xmlSchemaParser uses a YACC-Lex parser. It runs in O(N2) time where N is the
number of lines in the schema file. The parsing step populates an abstract syntax tree
in terms of a C++ model of an XSDL schema file.

As shown in section 9.3.1, building the xmlSchemaParser requires seven source files:
• xmlSchemaParser.cc
• xmlSchemaClasses.cc
• xmlSchemaClasses.hh
• xmlSchema.y
• xmlSchema.lex
• pattern.y
• pattern.lex

 xmlSchemaParser.cc

The xmlSchemaParser.cc file (382 lines) is an application of the underlying YACC/Lex
parser. What it does is covered thoroughly in section 4.

The main function does the following:

1. Checks that the number of arguments is reasonable, sets the inFileName, and calls
processArguments to deal with the rest of the arguments.

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8337

XML Tools

39

2. Opens the file named inFileName. If the file does not open, it prints an error message
and exits.

3. Parses the file named inFileName and closes the file. The parsing builds a parse tree
with the root at xmlSchemaFile. The parsing also may set the following warning counters:

• emptyAlls (all nodes with nothing inside)
• emptyDocs (documentation nodes with an empty string)
• emptySeqs (sequences with nothing inside)
• emptyChos (choices with nothing inside)
• oneChos (choices with one choice)
• nestedSeqs (sequences with nothing but a sequence inside)
• seqWithChos (sequences with nothing but a choice inside)
• whiteNames (names that have leading or trailing white space).

4. Opens the echo file and prints the schema into it from the xmlSchemaFile parse tree.
The process of printing the tree builds the globalInheritanceMap and the globalIsSubtype.

5. If XmlSchemaFile::printHierarchy is true, goes through the globalIsSubtype std::map and
calls printKids for each type that is in the std::map, has kids, and is NOT derived from
some other type. That causes the inheritance hierarchy (as seen by the schema) to be
printed.

6. If any of the warning counters is non-zero, prints the number of occurrences of each
type of warning.

 xmlSchemaClasses.cc and xmlSchemaClasses.hh

The xmlSchemaClasses.cc (4500 lines) and xmlSchemaClasses.hh (2673 lines) files define
the classes that represent XSDL. The top-level class is named XmlCppBase, and all but a
very few other classes derive from it. For many of the classes, a section of the XSDL
standard [6] giving a BNF production for the XSDL construct is included in the
documentation.

Some of the classes include a boolean mock field. That is not used by the
xmlSchemaParser but is used in the xmlInstanceParserGenerator, which creates mock
elements to deal with nested sequences and choices. In the xmlSchemaParser, the
value of the mock fields is always false.

 xmlSchema.y
The xmlSchema.y YACC file has a little over 4900 lines.

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8337

 XML Tools

40

10.3.1 Comments
As noted in section 4.2, one of the options of the xmlSchemaParser is to reprint
comments.

The xmlSchema.y YACC file saves all allowed comments (not to be confused with
annotations) for possible reprinting. Whether the comments are reprinted depends
on the user’s choice. The use of comments is restricted from what is normally allowed in
an XML schema, as follows.

1. Multiple comments may appear immediately after the first line of the file (which gives
the XML version).

2. Multiple comments may appear immediately before a key or keyref (annotations
are not allowed there).

3. A single comment may appear instead of or immediately before an annotation. As
a result:

3A. where a single annotation is allowed, there may be any of:
• an annotation
• a single comment (of any length)
• a comment followed by an annotation.

3B. where multiple annotations are allowed, there may be multiple comments,
possibly mixed with annotations.

10.3.2 Checking Pattern Regular Expressions
As mentioned in section 5.1.4, the parser checks that any regular expression used in a
pattern restriction is valid. It does this by passing the expression as a char *
string to a pattern regular expression parser. That parser is a separate YACC/Lex
parser, the source files for which are pattern.lex and pattern.y. These files are used in
building the xmlSchemaParser as shown in the Makefile of section 9.3.1. The data types
for which pattern regular expressions are checked this way are xs:string,
xs:token, xs:ID, xs:IDREF, and xs:NMTOKEN.

10.3.3 doXmlXXXAttributes functions
In an XML schema, many of the specifications (e.g., name, type, id, minOccurs,
maxOccurs) are given as attributes. Since the attributes may occur in any
order, writing YACC rules to recognize all orders would be prohibitively complex. Hence,
for each XSDL structure (attribute, element, complexType, etc.) a std::list of the
attributes and their values is collected in the YACC rule for the structure. Then a
function named doXmlXXXAttributes (where XXX is the structure name) is called to
check the validity of the attributes and set the values of the C++ fields in an instance
of the structure. The collection of attributes is represented by a C++

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8337

XML Tools

41

std::list<XmlAttribPair *>. The term XmlAttribPair is something of misnomer since it has
three fields: name, pref (prefix), and val (value).

The doXmlXXXAttributes functions take up more than half of the lines of the xmlSchema.y
file.

10.3.4 YACC Types and Rules
Most of the YACC types match a C++ class from the xmlSchemaClasses and have
names matching the class name but starting with a lower case letter. For example, the
YACC type xmlComplexType matches the C++ XmlComplexType class. Most of the rules
for a YACC type call the corresponding doXMLXXXAttributes function. For example, the
rules for xmlComplexType call doXmlComplexTypeAttributes.

10.3.5 Bison Conflicts
The YACC file makes one shift/reduce and two reduce/reduce conflicts when processed
by bison, but these do not affect the functioning of the parser. The conflicts are caused
by the way XML comments are handled. Comments in xmlSchema.y identify the
productions causing the conflicts.

11 xmlInstanceParserGenerator Details

Using the xmlInstanceParserGenerator is described in section 5.

If the larger of the number of complexTypes and the number of simpleTypes in a
schema file is N, the time taken by the xmlInstanceParserGenerator is O(N2).

As shown in section 9.3.1, building the xmlInstanceParserGenerator requires eight
source files:

• xmlInstanceParserGenerator.cc
• xmlInstanceParserGenerator.hh
• xmlSchemaClasses.cc
• xmlSchemaClasses.hh
• xmlSchema.y
• xmlSchema.lex
• pattern.y
• pattern.lex

The last six of these are also used in the xmlSchemaParser, as described in section 10.

The xmlInstanceParserGenerator.cc file is over 21,000 lines long, and the
xmlInstanceParserGenerator.hh file has over 700 lines. Because the
xmlInstanceParserGenerator generates five or more files in three different languages, it
is by far the most complex of the tools described in this manual. For a schema up to

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8337

 XML Tools

42

several thousand lines long, however, the xmlInstanceParserGenerator runs in a
fraction of a second on an ordinary desktop or laptop computer.

 How the xmlInstanceParserGenerator Runs

The main function of the xmlInstanceParserGenerator goes through the following
stages. The descriptions here provide an overview of the stages but not enough detail
to understand the nuts and bolts; only examining the xmlInstanceParserGenerator.hh and
xmlInstanceParserGenerator.cc files (and/or the HTML documentation for the generator) is
adequate for that.

11.1.1 Initialize
To initialize, the main function:

• declares a primary generator variable (of class type generator) and several (global)
variables needed by every generator.

• checks the arguments in the command to run. If they are bad, a usage message
is printed and the executable quits.

• calls readOldHeader to read the existing header (only if the command arguments
include the –h option followed by the name of an existing C++ header file
corresponding to the top-level schema file). That populates a changeMap which
holds additions to make to the new top-level C++ header file while it is being
generated.

• sets the output switches
• sets some of the generator variables according to the arguments and sets other

generator variables to point at the corresponding global variables.
• uses the parser to read the schema file whose name is a command argument

and build a parse tree, then saves the major parts of the parse tree in variables
of the generator.

• puts pointers to other variables into the appropriate fields of the generator.
• records the names of included files in a global std::list (includeds) of files

included for all generators.

11.1.2 Process Included Schema files
Next, the parent generator calls its processIncludes method, passing it a pointer to the
global includeds std::list. The processIncludes method goes through the includedSchemas
std::list in the parse tree built by the parent generator. For each included schema file
that has not already been parsed, the processIncludes method:

• creates a new generator class instance
• copies pointers to shared data fields from the parent generator into the new

generator
• parses the included schema
• adds the name of the included schema to the global includeds and the parent

generator’s includedSchemas

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8337

XML Tools

43

• calls (recursively) the processIncludes method of the new generator
• calls the buildClassesIncluded method of the new generator
• adds a pointer to the new generator to the subordinates std::list of the parent

generator.

The two hierarchies in Figure 6 below are an example. The one on the left represents a
hierarchy of includes. The one on the right represents a generator hierarchy that
might result from those includes. Capital letters represent schema files on the left and
generators on the right. On the left, any given schema file may be named in several
includes. On the right, there is only one generator per schema file.

Figure 6 Hierarchies of Includes and Generators – Example

11.1.3 Build Classes
Then the primary generator calls its buildClasses method.

The xmlInstanceParserGenerator has to deal with the difficulty that an XML schema
may have several elements defined at the top level, for each of which a conforming
instance file may be written, but an XML instance file conforming to an XML schema
has only one top-level element. The xmlInstanceParserGenerator generates a parser
for only one top-level element. The xmlInstanceParserGenerator expects a top-level
element to be the first thing after the header of a schema, and that is the element for
which a parser is generated.

The buildClasses method records the first top-level element if there is one (calling it
top), and then goes through all the top-level items of the schema and gathers
information about them.

T

A B

F C C D

F F F

C D

A B

T

F

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8337

 XML Tools

44

11.1.4 Build Information
In the next step, the primary generator calls its buildInformation method, which builds
information needed to print C++, Lex and YACC files by calling methods that each build
a particular kind of information. In particular, it:

• flattens any nested substitutionGroups
• calls buildAllKidsEtc to build the C++ class inheritance hierarchy
• calls buildAllElementInfo
• calls buildAllAttributes
• calls buildDescendants
• calls buildUsesEndTag.

If there is a top element (so that a YACC-Lex parser is to be generated),
buildInformation also calls methods that generate information need for printing the YACC
and Lex files, namely:

• markElementUsed
• checkElementInfoDuplicatesUsed
• buildElementSubstitutes
• checkElementInfoDuplicatesProdBase
• buildYaccUnionElementPairs
• buildXsiTypeNamesAll (if xsi:type is allowed)
• buildYaccRulesEnd.

11.1.5 Print Everything
Next to last, the primary generator calls its printSelf method, which calls the printSelf
method of each of the subordinates of the primary generator. The subordinates each call
the printSelf method of their subordinates, and so on. After telling the subordinates to print
themselves, the printSelf method calls either printTop (if the generator has a top
element, which can happen only for the primary generator) or printNotTop (for the
primary generator if it has no top element and for all other generators).

The printTop method:
• calls printCppHeader to print the header file for the C++ classes derived from the

types defined in the top schema file. While the subordinate methods of
printCppHeader are running, several of them call printCppHeaderChanges to put in
text from the changeMap.

• calls printCppCode to print the implementation of the classes
• calls printYacc to print the YACC parser file for an instance file conforming to the

schema
• calls printLex to print the lexical scanner used by the YACC file
• calls printParser to print the parser application.

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8337

XML Tools

45

The printNotTop method:
• calls printCppHeader to print the header file for the C++ classes derived from the

types defined in the schema file
• calls printCppCode to print the implementation of the classes.

The C++ header files and the C++ code files produced by the generator are clear and
nicely formatted. The C++ parser files produced by the generator are nicely formatted,
but they are a little hard to read because

• the main program that runs the parser takes a variety of arguments
• the main program can run the parser multiple times
• input to the parse function might come from a string or a file.

Good formatting for instance files is also implemented in the PRINTSELF functions in
the C++ class code that is generated. For example, if an instance of a type has multiple
attributes, the second and any successive attributes are each printed on a
separate line. This is implemented in the printCppCodePrintAttribs function and in the
functions that call it.

The YACC and Lex files produced by the generator are displeasing to the eye. YACC
has strange syntax, uses special characters to separate sections, uses $n in C++ code,
and mixes C++ code with production code. Lex has strange syntax, uses regular
expressions, and mixes C++ code with regular expression code. The net effect is that
YACC and Lex files are inevitably unattractive. A human could not improve the
formatting significantly.

The portions of the generator code that write files are also unattractive. That is
inescapable for code that writes formatted code. For example, to print a " in a file
written by code generated by the generator, the " must be doubly escaped in the
generator code like so \\\". The printing of code is done using C-style print commands
since they enable fine control more easily than C++ print commands. The formatting of
the YACC file is done in two stages. The rules in the file are constructed as a std::list of
pairs of strings by many buildYaccXXX functions. The string pairs are alphabetized and
unduplicated. Then the file is printed by printYaccXXX functions.

11.1.6 Finish
The final action of main function of the xmlInstanceParserGenerator is to call the
reviewChanges method of the generator class. This reviews the texts in the changeMap to
see if all of them have been marked done. If any is not so marked, reviewChanges prints
a warning message.

 Code Coordination

In the xmlInstanceParserGenerator code, it is often the case that symbols that must be
the same or closely related are spread across the code that the generator writes, and

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8337

 XML Tools

46

the generator code does not make this obvious. For example, the XML schema
TruckLoadingPlan.xsd defines a TruckLoadingPlan element whose type is
TruckLoadingPlanType. When the generator produces files for this schema,
symbols containing some form of “TruckLoadingPlan” are used as follows.

1. The C++ header file is named TruckLoadingPlanClasses.hh, and in that file:
 a. TruckLoadingPlanType is listed in the class declarations at the beginning of the file.
 b. The TruckLoadingPlanType class is declared in the middle of the file.
2. The C++ code file is named TruckLoadingPlanClasses.cc and the TruckLoadingPlanType
 class is defined in the middle of the file.
3. The YACC file is named TruckLoadingPlan.y, and in that file:
 a. The union definition in the second section includes a TruckLoadingPlanTypeVal
 variable which is a pointer to an instance of the TruckLoadingPlanType class.
 b. The YACC type declarations in the third section include a declaration that
 TruckLoadingPlanTypeVal is the type of the y_TruckLoadingPlanType production.
 c. The YACC tokens that comprise the fourth section include TruckLoadingPlanEND
 and TruckLoadingPlanSTART.
 d. The YACC rule for the y_TruckLoadingPlanType production is given in the fifth
 section.
4. The Lex file is named TruckLoadingPlan.lex, and in that file the Lex rules for
 recognizing TruckLoadingPlanEND and TruckLoadingPlanSTART are given.

The generator includes code-writing code that ensures that all these items are
coordinated. However, although the in-line documentation of the generator code
describes some of the required coordination, it is not obvious in the code itself.
Any programmer modifying the code should be aware that when any code-writing
section of the generator is changed, it may be necessary to change some or all of
the other sections that deal with the same sort of item.

 xmlInstanceParserGenerator Methods
The generator class for the xmlInstanceParserGenerator has over 240 methods and over
60 data fields. As mentioned in section 11.1.2, a separate instance of the generator class
is used for each XML schema file that is processed. Most of the methods fall into one
group or another, as follows.

Most of the data building is done before any files are printed, but some data (mostly
data regarding what has been printed) is built while printing is in progress.

11.3.1 Build YACC
Over 50 methods, all of whose names start with buildYacc, are used to create the data
used to print the YACC file.

11.3.2 Print YACC
Another 19 methods, whose names start with printYacc, print the YACC file.

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8337

XML Tools

47

11.3.3 Print C++ Header Files
C++ header (i.e., .hh) files are printed by 33 methods whose names begin with
printCppHeader. Some of them, printCppHeaderSequenceArgs, for example, are also called
by the methods that print the .cc files. The generator class has pointer variables named
ccFile and hhFile for the FILEs to print in. To use printCppHeader methods to print in a .cc
file, the hhFile variable is simply set temporarily to point to the .cc file.

11.3.4 Print C++ Code Files
The .cc files are printed by 49 methods whose names begin with printCppCode.

11.3.5 Print Lex
Half a dozen methods, whose names start with printLex, are used to print the Lex file.

11.3.6 Other Data Builders
Fifteen methods whose names start with build (but not buildYacc) help to build various
data structures used in the xmlInstanceParserGenerator. Another 13 methods, whose
names start with enter, put data into std::lists or std::maps.

11.3.7 Data Finders
There are nine methods whose names start with find that look in a std::list or std::map for
data with a particular name or characteristic.

 Printing to a File or a String

As discussed in section 5.3.2, the generator code is written so that the automatically
generated XML instance file parsers can take input from either a string or a file and can
write to either a string or a file. The choices for writing are:

• call functions that write to a file
• call functions that write to a string
• use macros that write to either a string or a file depending on how they are

compiled.

This is implemented in the generator code by using function pointers that point to
functions for writing different types of item. There are nine different types of item, and
for each type of item there are three functions and a function pointer. Each of the
functions returns a string to be printed in the code generated by the generator. In the
functions that write macros the nine items are:

PRINTSELF – a function that tells an object to print itself with “>” (for elements)
PRINTSELFDECL – a declaration of the PRINTSELF function
OPRINTSELF – a function that tells an object to print itself without “>” (for attributes)

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8337

 XML Tools

48

OPRINTSELFDECL– a declaration of the OPRINTSELF function
PRINTNAMEDECL – a declaration of a function that tells an object to print its name
XFPRINTF – a function that prints to a file or string
SPACESPLUS – a function that increases the number of spaces in the spaces variable
SPACESMINUS – a function that decreases the number of spaces in the spaces variable
SPACESZERO – a function that prints the spaces variable

For example, for the function that tells an object to print itself, the code is:
const char * macroprintself() {return "PRINTSELF";}
const char * fileprintself() {return "printSelf(outFile)";}
const char * stringprintself() {return "printSelf(outStr, remain, N)";}
const char * (*prself)(void);

According to the value of -o option used in calling the generator, the function pointer for
each of the nine items is set to point at one of the three functions. For example,
prself = macroprintself; if -o macros was used.

The macros are defined and explained at the beginning of the file xmlSchemaInstance.hh.
They have definitions that are equivalent to the string printing functions if STRINGOUT
is defined or equivalent to the file printing functions if not.

The three SPACES macros do nothing when writing to a string but help provide proper
indenting when writing to a file.

 Lists, Maps, and Sets

11.5.1 Uses of Lists, Maps, and Sets
Several std::lists and std::maps of things are used by the generator as follows.

std::lists that are C++ fields of the generator class

• allAttributeNames (used in printing Lex and YACC)
• allElementInfos (of all schema files, populated only in top generator)
• classes (of schema file of This generator)
• contents1 (of schema file of This generator)
• contents2 (of schema file of This generator)
• endRules (YACC rules to be put in the fifth section of the YACC file)
• includedSchemas (the included schema files of a schema file)
• moreIncludes (used for preserving #includes in changed C++ header files)
• startEndNames (names used in START and END tokens)
• subordinates (the subordinate generators of This generator)
• typePairs (types to go into the YACC types)

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8337

XML Tools

49

• unionPairs (items to go into the YACC union)
• xsiTypeNames (names of types that may be used with xsi:type)

std::maps that are C++ fields of the generator class (all use std::string as the key)

• allComplex (used widely, includes complexTypes in all schemas)
• allSimple (used widely, includes simpleTypes in all schemas)
• attributeGroupRefables (of all schema files)
• attributeLonerRefables (of all schema files)
• changeMap (changes in changed C++ header files)
• descends (descendants of used types plus the type)
• elementGroups (all element groups)
• elementInfoDuplicates (duplicate elementInfos)
• elementRefables (of all schema files, shared by all generators)

A number of std::lists are used in XML schema classes as described in
xmlSchemaClasses.hh.

A number of std::lists, std::maps, and std::sets are transient in generator functions.

11.5.2 List Terminology
Specific terminology is used in the documentation to distinguish among four types of list:
1. occurrence list - oList (for multiple occurrences of an element)
2. XML simple list - sList
3. lists in C++ code - std::list
4. lists in YACC - YACC list

To avoid confusion, sequences of lines in a file (such as the class declarations that
appear at the beginning of a header file) are not called lists.

For oLists, a std::list of the type of the element is constructed. This is consistent
through the C++ files and the YACC files that are generated. There does not appear to
be any down-side to handling oLists that way. For sLists also, a std::list of the type of the
element is constructed.

C++ names related to sLists and oLists are of the form XXXLisd. YACC names related
to sLists and oLists are of the form LiztXXX. The odd spellings are used to avoid
conflicts among automatically generated names. For example, a line from the YACC
union might be:
 XmlIntegerLisd * LiztXmlIntegerVal;
and a line from the list of %type might be
 %type <LiztXmlIntegerVal> y_LiztIntElement_XmlInteger_u

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8337

 XML Tools

50

 Issues Handled in the xmlInstanceParserGenerator

Small, medium, and large issues arose in building the xmlInstanceParserGenerator and
had to be overcome. This section discusses some of the larger issues and how they
were overcome.

11.6.1 Keeping Track of Which Elements and Defined Types Are Used
XSDL does not require that all defined types be used. When one schema file includes
another, if the second schema file is a utility file used by more than one other schema
file, the second schema file may contain types that are not used. If YACC productions
are written for those types and/or the elements in them, bison will issue warnings.
Bison checks that every production but the top-level production (which is for the Top
C++ XmlElementLocal) is used in the tree whose root is the top-level production.

To deal with this, the procedure described below walks the tree before YACC is
generated and marks types and elements that are in the tree. Then YACC is
generated only for those items that have been marked as being in the tree.

The C++ model of every non-basic type (i.e., every XmlSimpleType and
XmlComplexType) has an integer-valued used field that is initially set to zero. When a
simpleType or complexType is used as the type of an element, the used field of its
model is set to 2. When a simpleType is used as the item type of a simple list and
its model’s used field is zero, the field is set to 1. In addition, the code keeps track of
whether the basic types (e.g., integer) are used, by having an integer hasXXX field for
each of the basic types. hasXXX is originally set to 0, is set to 1 if hasXXX is zero and the
XXX type is used as the type of a list element, and is set to 2 if the XXX type is used
as the type of an element.

A production is printed in the YACC file for every simpleType or complexType T
whose used is non-zero. If the value of used is 2 and xsi:type is allowed, a production
is also printed for every derived type of T (since the derived type may be used in place
of T via xsi:type). An xsi:type recognizer is printed in the Lex file for every
simpleType T whose used is 2 (and for every derived type of T).

A production is printed in the YACC file for every basic type XXX whose hasXXX is not
zero. If the value of hasXXX is 2 and xsi:type is allowed, a production is also printed
for every derived type of XXX. Also if xsi:type is allowed, an xsi:type recognizer is
printed in the Lex file for every basic type XXX whose hasXXX is 2 (and for every derived
type of XXX).

The marking of types is done by a markElementUsed function and four subordinates. The
markComplexTypeUsed subordinate calls markElementUsed recursively so that the two
functions walk the tree. The process starts by calling markElementUsed on the top level
element.

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8337

XML Tools

51

Types used only for attribute values are not marked because attributes are not
parsed by YACC productions. Attributes of a type (other than xsi:type) are
parsed by the badAttributes function of the type, which is called by a YACC production.

11.6.2 Choice, Mock Types, and Mock Elements

11.6.2.1 Plain Choice

C++ classes are created for handling an XmlComplexType containing an XmlChoice of
XML elements as follows. Suppose the XML name of the XmlComplexType is XXX.

• A C++ class named XXX is created to represent the XmlComplexType. It has a
C++ field named pairs, which is a std::list of pointers to XXXChoicePairs. It may
have other C++ fields which are pointers to the C++ equivalents of XML
attributes.

• A union named XXXVal is defined. Each line of the union represents one of the
elements of the XmlChoice. The names in the union are the names of the
elements. The types in the union are the C++ equivalents of the types of the
elements.

• A class named XXXChoicePair is defined. It has two fields. One is named XXXType
and its value is a whichOne. The other is named XXXValue and its value is an
XXXVal.

• An enum named whichOne is defined in the XXXChoicePair class. The values of the
enum are made by appending E to the names of the elements.

If the XML type of an XML element is XXX, then the C++ type of the C++ field
representing that element is XXX.

The XXX class has the pairs field defined as a std::list because if maxOccurs for the
XmlChoice is unbounded or greater than 1, a std::list is required. If maxOccurs is 1 or
is not given (which means maxOccurs is 1), the std::list length is 1. If maxOccurs is 0,
the std::list is empty.

If an XML choice and the elements in it both have maxOccurs greater than one,
parsing an instance in YACC may be ambiguous. This has not been handled. If it
occurs, bison will announce that a conflict exists.

11.6.2.2 Mock Types and Mock Elements
Mock types and mock elements are generated to handle:

• a sequence containing a sequence or a choice
• a choice containing a sequence or a choice

Here is an example of a choice in a sequence.

 <xs:complexType name="ShirtType">
 <xs:sequence>
 <xs:choice>
 <xs:element name="number"

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8337

 XML Tools

52

 type="xs:integer"
 minOccurs="0"/>
 <xs:element name="name"
 type="xs:string"
 minOccurs="0"/>
 </xs:choice>
 <xs:element name="size"
 type="SizeType"/>
 </xs:sequence>
 </xs:complexType>

This is handled in the generator's internal model of the complexType (that is built when
the schema is read) by creating a mock type and a mock element for the choice and
replacing the choice with the mock element. After the changes, the internal model of
the example is what it would be if the following had been in the schema.

 <xs:complexType name="ShirtType">
 <xs:sequence>
 <xs:element name="ShirtType_1001"
 type="ShirtType_1001_Type"/>
 <xs:element name="size"
 type="SizeType"/>
 </xs:sequence>
 </xs:complexType>

 <xs:complexType name="ShirtType_1001_Type"
 <xs:choice>
 <xs:element name="number"
 type="xs:integer"
 minOccurs="0"/>
 <xs:element name="name"
 type="xs:string"
 minOccurs="0"/>
 </xs:choice>
 </xs:complexType>

However, both the ShirtType_1001 element and the ShirtType_1001_Type
complexType have been marked with a mock boolean flag set to true. When the C++
code, Lex code, and YACC code are generated for the instance file parser, the mock is
checked and the code is written to do the right thing for reading and writing instance
files conforming to the original schema. The number 1001 in the names above is the
value of a mockCount master counter. The counter starts at 1001 and is incremented
each time its value is used. The mock type and the mock element that uses it both use
the same number.

A sequence inside a choice or another sequence is handled similarly by defining a
type containing the inner sequence and replacing the inner sequence with a mock

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8337

XML Tools

53

element in the outer sequence or choice. The type of the mock element is the new
type. The new type does not need to be marked as being mock.

The creation of mock items occurs in buildElementInfo before anything is printed.
buildElementInfo works by going through the classes std::list from front to back. The class
for each mock type that is created is added at the end of the classes std::list during the
process of going through the std::list. Hence, each of the mock classes is also
processed. The effect is to recursively dig into any nests of choices and sequences.
When buildElementInfo has finished executing, no nesting remains, and mock elements
appear in the places where there were nested sequences and choices.

11.6.3 Handling Optional Elements

Optional elements (those with minOccurs="0") that may occur at most once are
handled in YACC by allowing the optional element instance to be empty and returning
a null pointer in that case. In the C++ class model of a type, since all C++ fields
corresponding to elements are pointers, nothing special needs to be done to handle
an element that occurs 0 or 1 times. If the element instance does not occur, a null
pointer is used.

Optional elements that may occur more than once (maxOccurs="unbounded" or
maxOccurs is a number greater than 1) are handled by making a std::list. The std::list is
never null, even if there is no instance of the element; in that case the std::list is empty.

11.6.4 Handling xsi:type
As mentioned in section 5.2.7, in an XML instance file conforming to an XML schema,
every instance of a complexType or simpleType used as the value of an element
may include an xsi:type declaration, whether it needs it or not. If a type D is derived
from any sort of type P (basic, complex, or simple), then anywhere P may be used as
the type of an element, D may be used as the type of the element as long as there is
an xsi:type declaration.

By default, the generator does not allow using xsi:type. However, by including -x in
the call to the generator, using xsi:type is enabled. The generator has a boolean
xsiTypeAllowed field that is false by default but true if -x is used. The generator tests the
value of xsiTypeAllowed in many (27) places.

Some of the more important things the generator does to implement using xsi:type
are listed below. Starred items happen only if xsiTypeAllowed is set to true.

1. If USEXSITYPE is defined when xmlSchemaInstance.hh,cc is compiled, then every C++
class generated by the generator that represents an XSDL type (basic, complex, or
simple) has a printTypp field. This is implemented by having all C++ classes (other than
std::list classes) representing types be derived directly or indirectly from XmlTypeBase,

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8337

 XML Tools

54

which is defined in xmlSchemaInstance.hh,cc and has the printTypp field if USEXSITYPE
is defined. The basic types are not allowed to use xsi:type in an instance file, but
since restrictions of basic types may use xsi:type, it is convenient to have the
printTypp field in the basic types. Classes for std::lists of basic types are derived from
XmlBasicListBase, which also has the printTypp field if USEXSITYPE is defined.

2*. The xsiTypeNames field of the generator is used to collect the names of all classes for
which a YACC production is needed that looks for an xsi:type declaration. The
documentation of buildXsiTypeNamesAll in xmlInstanceParserGenerator.cc describes how
this is done.

3*. printLexXsiTypes prints a line in the Lex file for each type in xsiTypeNames.

4*. printYaccXsiTypeTokens prints a token line in the YACC file for each type in
xsiTypeNames.

5. buildDescendants builds a std::list of the descendants of every type that has
descendants.

6*. buildYaccElementXsiRules composes a rule that includes xsi:type for each
descendant of each type used as the value of an element.

7. The PRINTSELF functions written into the C++ code file by the generator include
printing an xsi:type declaration if printTypp is set to true.

8*. The constructors written into the C++ header and code files by the generator include
a printTypp field.

11.6.5 Handling Ref

In C++ terms, the ref mechanism in XSDL lets you define one or more named class
fields outside of any class definition. Defining and using refs in XML is a lot like #define
in C or C++. In XML, instead of an explicit indication that something is being #defined,
the definition is simply put at the top level of the schema. Everything defined at the top
level (except for types and the first item if it is an element) is really like a #define. To
use the field(s), you use ref="fieldName".

Ref may be used with elements, element groups, attributes, and
attributeGroups. It is the only way to use element groups and
attributeGroups.

For elements, ref is handled as follows. The handling of ref for XML attributes is
described in section 11.6.6 (next).

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8337

XML Tools

55

1. The XmlElementRefable class is defined. Every top-level element in the XML schema
file is an XmlElementRefable in the C++ code. If the first entry is an element, it is parsed
as an XmlElementRefable but it is replaced in the abstract syntax tree by an equivalent
XmlElementLocal.

2. A std::map named elementRefables of XmlElementRefables for the
entire set of XML schema files being processed is built. The std::map is
accessed by the element name.

3. The elementRefables std::map for a generator is populated in buildClasses or
buildClassesIncluded after all schema files have been parsed. buildClasses and
buildClassesIncluded call enterElementRefable to put XmlElementRefables into the std::map.

4. When buildElementInfoSchema runs, if an elementLocal has a ref,
• findElementRefable is called to find the ref in the elementRefables,
• the ref field of the elementLocal is replaced by a name field whose value is the

name of the ref (and a newName is inserted also), and
• a typ field is inserted whose value is the type of the ref.

After all the refs have been replaced, everything runs as if the refs were never there.
This is analogous to what the preprocessor does in C++.

Example:

Suppose the following XmlElementRefable is defined in the schema:

 <xs:element name="SignificantDigits"
 type="xs:integer"/>

and elsewhere the following XmlElementLocal appears:

 <xs:element ref="SignificantDigits"/>

Then in the generator, the C++ model of the XmlElementLocal is revised to
be the same as if the schema had the following instead:

 <xs:element name="SignificantDigits"
 type="xs:integer"/>

This approach will not work when key/keyref pairs are embedded in refd
elements. Generating code to check key and keyref is not currently implemented.

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8337

 XML Tools

56

11.6.6 Handling XML Attributes
In the xmlInstanceParserGenerator, XML attributes may be included with an
XmlComplexExtension, an XmlSimpleContentExtension, or an XmlOtherContent. To make
the text clearer, in this section "attribute owner" means any of those types.

There are several XML features that make it difficult to deal with XML attributes,
namely:

• There are several ways attributes can be associated with an attribute owner:
o by putting in one or more attribute definitions – An attribute

definition that may be put in is defined in an XmlAttributeLoner.
o by putting in one or more refs to attribute definitions – The reference

is put into an XmlAttributeLoner instead of having a definition in the
XmlAttributeLoner. An attribute definition that may be referenced is
called an XmlAttributeLonerRefable and may occur only at the top level of
the schema. Every top-level attribute is an XmlAttributeLonerRefable.

o by putting in one or more references to an attributeGroup – A
reference to an attributeGroup is called an XmlAttributeGroupRef. The
attributeGroup itself is called an XmlAttributeGroupRefable and may
occur only at the top level of the schema. Every top level
attributeGroup is an XmlAttributeGroupRefable.

• Refs may be nested in both single attributes and attributeGroups (i.e.,

an attribute ref may name an attribute that has an attribute ref).

• In an XML instance file, attributes may be given in any order.

XML attributes are modeled in the C++ classes by having each XML attribute
be a separate C++ field.

The semantics of attributes are the same regardless of how they get into an
attribute owner. That is, attributes mean the same thing as if they were all put in as
individual attribute definitions. The generator uses this fact to make std::lists called
newAttribs consisting of XmlAttributeLoners that have definitions. Each attribute owner
has a newAttribs std::list. To make the process of building those std::lists easier,
XmlAttributeGroupRefable also has a newAttribs std::list. The newAttribs std::lists are kept
in alphabetical order.

To deal with the first two items above, after the XML schema has been parsed, first the
newAttribs of all XmlAttributeGroupRefables are built and any XmlAttributeLonerRefable
that has a ref has the ref replaced by a definition. Then the newAttribs std::lists of all
attribute owners are built. In the newAttribs for an attribute owner, any XmlAttributeLoner
with a ref is represented by an XmlAttributeLoner with a definition, and any
XmlAttributeGroupRef is represented by copying in its newAttribs. C++ generation for an

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8337

XML Tools

57

attribute owner does not take place until its newAttribs std::list has been built. During
C++ generation, the newAttribs std::list is used.

The third bullet above makes it difficult to generate an instance file parser. Fortunately,
all attribute values are strings. This makes it feasible to define the AttributePair class,
which is (1) a std::string that represents the attribute name and (2) a std::string that
represents the value. All attributes are given one after the other in the instance file,
so the instance file parser handles them by first making a std::list of AttributePairs,
second making an instance of the class that has null pointers for all the attributes,
and third calling a badAttributes checking function belonging to the instance. The
checking function checks that the attribute names and values are all legitimate and
inserts the values in the instance.

Printing attributes into instance files is straightforward.

11.6.7 Handling Chains of Simple Restrictions
A simple restriction is a type that is created by restricting a basic data type or
another simple restriction. For example, the NotTooSmallIntegerType might
be created by a restriction on the basic integer type requiring the integer to be
at least 3 and the JustRightIntegerType might then be created by a restriction
on the NotTooSmallIntegerType requiring the value to be not more than 7.

Where the schema has a chain of type restrictions of this sort, the C++ code that is
generated has a matching class inheritance chain. In the example, the
NotTooSmallIntegerType class would be derived from XmlInteger, and the
JustRightIntegerType class would be derived from the NotTooSmallIntegerType class.

Each derived class in the chain inherits two C++ fields from the C++ class for the basic
type: (1) val, which has a built-in C++ type, and (2) a bool bad which will be set to true if
val violates the constraints it is supposed to follow (see section 14.1). The derived class
also has a function that checks that the restriction(s) for its type is met. For each
derived type, the constructor that takes a string argument first passes the string to the
constructor for its parent. If bad is not true when the parent constructor is finished, the
derived type checks its restriction(s) and sets bad to true if it is violated. That way,
all the applicable restrictions get checked. When a derived type is printing itself, it
first checks its restriction(s) and then calls the printer for its parent only if its
restrictions are met. The value is ultimately printed by the printer for the basic type,
after all the restrictions in the chain have been checked and none has been
violated.

11.6.8 Handling SubstitutionGroups
A substitutionGroup in a schema is a set of elements defined at the top level of
the schema that may be substituted for another element called the head of the
substitutionGroup. The head of the substitutionGroup must also be defined at
the top level and, therefore, can only be used by ref. The types of the members of the

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8337

 XML Tools

58

substitutionGroup must be derived from the type of the head of the
substitutionGroup. For example, using the types from the previous section,
suppose the Chair element of type integer is the head of a substitutionGroup
whose members are NotTooSmallChair of type NotTooSmallIntegerType and
JustRightChair of type JustRightIntegerType. Suppose also that the schema
has a HouseType defined as follows:

<complexType name=”HouseType”>
 <sequence>
 <element ref=”Chair”
 minOccurs=”2” maxOccurs=”6”/>
 </sequence>
</complexType>

Then an instance of HouseType as the value of a House element might be:
<House>
 <NotTooSmallChair>4</NotTooSmallChair>
 <Chair>2</Chair>
 <NotTooSmallChair>10</NotTooSmallChair>
 <JustRightChair>5</JustRightChair>
</House>

Notice that any of the substitute elements can appear and the head of the
substitutionGroup can, too.

In the C++ code, an element defined at the top level of a schema that is not the root
element is modeled as an XmlElementRefable, and one of fields of an
XmlElementRefable is substitutes, which is a pointer to a std::list of the other
XmlElementRefables that can be substituted for it. Where a local element uses ref to
refer to one of the top level elements, the substitutes std::list of the XmlElementRefable
corresponding to the top level element is copied into the XmlElementLocal representing
the local element.

SubstitutionGroups can be nested. For example, suppose the JustRightChair
were in the substitutionGroup of NotTooSmallChair and were not explicitly in
the substitutionGroup of Chair. Then JustRightChair would implicitly be in the
substitutionGroup of Chair, and the House instance above would still be valid. To
deal with nested substitutionGroups, a flattenSubstitutes function adds the implicit
substitutes of every XmlElementRefable to its substitutes std::list.

SubstitutionGroups complicate the YACC rules. Wherever the head of a
substitutionGroup might be used, the YACC rules must look also for all of the
substitutes. To deal with this, a production whose name ends in “substituteType” is
written that contains a subrule for each of the substitutes. For the Chair element, that
name would be y_Chair_substituteType. That production would also contain a subrule
for Chair.

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8337

XML Tools

59

When printing an element that may be any of the substitutes for the head of a
substitutionGroup, it is first necessary to find which substitute is being used. Then
it is checked that the correct type is used and the printSelf function for that type is called.
This is done in the printCppCodePrintElementSubstits function.

11.6.9 Handling Simple Lists

The YACC productions the generator writes that handle simple lists and their
extensions or restrictions (call all such things SListOids) are similar to the
normal YACC productions the generator writes for lists in that:

• one choice is the list followed by a list item. The action for this choice adds the
item to end of the list.

• the other choice is for the first item in the list. The action for this choice calls a list
constructor that takes one list item. However, the rule for this choice always
includes the ">" immediately before the beginning of the first list item. If there are
attributes, the rule also includes the attributes before the ">", and the
action deals with the attributes.

The list items may be either basic types or restrictions of basic types. In order that
appropriate checks are made on the individual items, the production for the SListOid
looks for items of the type named in the SList from which the SListOid is derived (not
the underlying simple type of the items).

The C++ header and code files for SListOids have constructors that take one list item.

11.6.10 Checking Restrictions on XML Simple List Types
The rules for the chain of C++ classes that represent a chain of XML restrictions of
a simple list (sList) of simple XML data type are as follow. These are similar to the rules
for the basic data types.

1. The bottom level of the chain is an sList of [a basic or simple datatype that is not an
sList]. There are no restrictions on this bottom level sList. This sList has a bad field
that is inherited if the element is basic or is assigned by code if the element is simple.
The printSelf function that does the actual printing is at this level.

2. The next level up has one or more restrictions on the list, so it has a checking
function that checks the restrictions of this level. This level inherits the bad field
from the bottom level. The printSelf function calls the checking function and exits if it
returns true (indicating a restriction check failed); then it calls the printSelf function
at the bottom level.

3. The third level up (and higher levels) inherits the bad field from the next level down.
This level will normally have more restrictions (although a restriction that does
not restrict except by documentation is allowed by XSDL). This level has a checking

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8337

 XML Tools

60

function that first calls the checking function from the next level down and then, if bad is
false, checks the restrictions of this level. The printSelf function calls the checking
function at this level and exits if it returns true (indicating a restriction check failed);
then it calls the printSelf function at the bottom level.

During file parsing, every simple list is built one element at a time, regardless of the
level. If the list type is the type of an element, the rule for the element calls the
checking function for the list. The YACC parser calls yyerror (which exits) if bad is true
after the checking function is called.

11.6.11 ComplexType usesEndTag

The usesEndTag field of an XmlComplexType is used to help decide what to put at the
end of an instance of a complexType in an instance file. The value of usesEndTag may
be 0, 1, or 2.

If the value is 2, the instance is printed with an end tag on a new line -- for instance, the
tree in the code snippet below.

 <tree>
 <color saturation="0.5">green</color>
 </tree>

If the value is 1, the instance is printed with an end tag on the same line as the start tag
-- for instance the color in the code snippet above.

If the value is 0, the instance is printed with /> rather than an end tag at the end. For
instance:

 <Gizmo color="blue"/>

The usesEndTag field is initialized to 0 in both of the constructors for an XmlComplexType.
If the type has a sequence or a choice (so that it can have elements), usesEndTag is
changed to 2 early in processing. If the type is descended from an ancestor whose
usesEndTag is 2, its usesEndTag is later reset to 2. Otherwise, if an ancestor is basic or
simple (so that a value is required), usesEndTag is reset to 1.

If a complexType has no elements, an instance of an element of that type must end
in /> (with no end tag) whether or not the complexType has attributes.

If a complexType has elements that are all optional and an instance uses none of
them, the instance may end either with an end tag or with />, even though usesEndTag
has been set to 2. The printer always uses the end tag in this case. The parser requires
an extra production to deal with /> instead of an end tag. The extra production is in the
instance, not in the type and uses ENDWHOLEITEM to represent />.

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8337

XML Tools

61

11.6.12 YACC Names

As may be seen in Annex G, YACC requires names for YACC types, tokens, and
productions. The generator uses the following conventions for these names.

11.6.12.1 YACC Type Names
YACC type names are defined in the union definition near the beginning of the YACC
file and are used in the type declarations that follow the union definition. All YACC type
names end with "Val". Where a YACC type name is for a std::list, the YACC type name
is of the form "LiztXXXVal".

11.6.12.2 YACC Token Names

YACC token names represent constants. There are five subgroups of YACC tokens:

• tokens for key words common to all or most schemas, such as BAD, ENDITEM,
and XMLVERSION

• tokens for attributes in the schema header common to all or most schemas,
such as xmlnsATTR and xsiSchemaLocationATTR

• start and end tokens for each element name, such as LineSTART and LineEND
• a token for each attribute name for attributes not in the schema header,

such as colorATTR
• tokens for xsi:type declarations such as PointTypeXSIDECL, included only if

xsiTypeAllowed is true

11.6.12.3 YACC Production Names

All YACC production names produced by the generator start with "y_".

All YACC production names for elements that may occur more than once start with
"y_Lizt".

Most YACC production names for elements are constructed using either the prodBase
field or the prodListBase field of XmlElementLocal. Those fields are built in the
makeProdBase function. See the documentation of that function for details.

If an element has a minOccurs greater than 1 or a (not unbounded) maxOccurs
greater than 1, a production name ending in "_Check" for a production that checks the
size of the element list against the bounds is generated.

For elements that head substitutionGroups, a production whose name includes
"_substitutesType" is generated.

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8337

 XML Tools

62

11.6.13 Preventing Memory Leaks in Domain Parsers
A system for preventing memory leaks in domain parsers is implemented. How this
system is implemented in the code for the domain parsers is described in section 15.2.
The primary C++ structure used in the implementation is a std::map called the
yyUnrefMap (where the yy prefix may be something else). The generator code that
writes the code for managing the yyUnrefMap is in five printYaccXXX functions and in the
YACC actions written by 26 buildYaccXXX functions.

11.6.14 Ideas not Implemented

11.6.14.1 Abbreviation of Names
The generator has been observed to produce some long YACC names (over 80
characters) for schemas that use long names. C++ and bison can handle the long
names, but they may make it impossible to keep line length under 80 characters. In
some earlier versions of the generator there was an option to abbreviate names. The
user would provide the number of characters to keep and the rest of the name would be
replaced by an underscore and the value of the mockCount (described in section
11.6.2.2). This was removed for two reasons:

• Implementing it fully would have required building and using a std::map between
the short name and the long name.

• The names that resulted made the code hard for a user to understand,
especially the YACC.

11.6.14.2 Access Function Style
Currently, to have the generator generate access functions, the -f option must be used
followed by “getset” (see section 5.2.2). It is planned that a future version of the
generator will allow -f to be followed by "overload". In that case the access functions
would be XXX() for getting the value of the XXX field and XXX(value) for setting the
value. That style of access function is in common use, and users may prefer it.

12 xmlSchemaAttributeConverter Details

Using the xmlSchemaAttributeConverter is described in section 7.

As shown in section 9.3.1, building the xmlSchemaAttributeConverter requires seven
source files:

• xmlSchemaAttributeConverter.cc
• xmlSchemaClasses.cc
• xmlSchemaClasses.hh
• xmlSchema.y
• xmlSchema.lex
• pattern.y
• pattern.lex

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8337

XML Tools

63

The xmlSchemaAttributeConverter is relatively straightforward software. The
xmlSchemaAttributeConverter.cc file, at a little over 1300 lines, is less than a tenth the
size of the xmlInstanceParserGenerator.cc file. There are no thorny issues or subtleties.
The in-line documentation covers details adequately.

13 orphanFinder Details

Using the orphanFinder is described in section 6.

The orphanFinder is the simplest of the XML tools. The orphanFinder.cc file is less than
600 lines long and the executable is built from only that file.

The main function calls readSchema repeatedly to read all the schema files given as
arguments, and then it calls checkNames to produce the output. The readSchema function
is a straightforward state machine. The in-line documentation gives a readily
understandable description of how it works.

14 xmlSchemaInstance Details

As previously noted and shown in the Makefile of section 9.3.2, domain parsers require
linking with xmlSchemaInstance.o. That is compiled from the files xmlSchemaInstance.hh
and xmlSchemaInstance.cc. Those files define and implement C++ classes that represent
XML basic (i.e., built-in) data types.

 C++ Classes
For each basic XML data type (such as positiveInteger) a C++ class is declared
and implemented (in xmlSchemaInstance.hh and xmlSchemaInstance.cc, respectively). The
class has a name starting with Xml (such as XmlPositiveInteger). The value of the data is
stored in a val field. A bad field indicates whether the data violates the restrictions
required by the XML data type. A checking function (whose name ends with IsBad)
checks the restrictions.

On parsing, the YACC parser calls the constructor which calls the checking function and
sets the value of bad. The YACC parser checks the value of bad. On printing, the printer
runs the checking function and stops the process if the value is bad. Inside an executing
program the value of val may be changed to violate the constraints, but it will not be
possible to print a file containing the bad value.

For most basic data types there are two constructors. One constructor takes no
arguments, sets bad to true, and sets val to something innocuous (such as 0 or “”). The
other constructor takes a char * string argument, interprets it as a printed value that
needs to be read, reads it, and sets bad and val. For number types there is a third
constructor that takes a number of the correct type as an argument and sets val to that
number.

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8337

 XML Tools

64

The basic types all have the printTypp field if using xsi:type is allowed, but printTypp
must always be 0 for a basic type, since elements whose value is of basic type may
not use xsi:type. The basic type constructors, therefore, do not take a printTyppIn
argument.

A C++ class for a std::list of each basic XML data type (with a name ending in Lisd such
as XmlPositiveIntegerLisd) is also declared and defined in xmlSchemaInstance.hh and
xmlSchemaInstance.cc.

 Printing Basic Data Types for Element or Attribute
Every XML basic (i.e., built-in) data type may be used as the value of an attribute or
the value of an element. When used as the value of an element, a > precedes the
printed value, but when used as the value of an attribute there is no >. To deal with
this, every basic data type has two print methods: PRINTSELFDECL for elements
(with >) and OPRINTSELFDECL (without >) for attributes. Those are macros as
described in section 11.4.

 Checking ID and IDREF

The ID and IDREF basic XML data types have special rules. Every instance of an ID
must be different than every other instance, and every instance of IDREF (a reference
to an ID) must match an ID.

The restriction on IDs is implemented relatively simply in xmlSchemaInstance.cc. A std::set
named allIDs is maintained. Whenever an ID is read during parsing, it is checked that
the ID is not already in allIDs, and when the constructor for an XmlID runs, it puts the
name into allIDs.

The check for IDREF is a little more complicated since checking IDREFs against IDs
must be postponed until an entire data file has been read and all IDs have been
recorded. A std::set named allIDREFs is maintained. Every time a new XmlIDREF is
created, its val is recorded in allIDREFs. The xmlIDREFIsBad function checks that the
value of an IDREF is found in allIDs. That function runs whenever an IDREF is printed.
The executable domain parsers generated by the xmlInstanceParserGenerator print the
file, so every IDREF is checked. An application using the underlying parser can check
allIDREFs against allIDs without printing by running the idMissing method of XmlIDREF.

15 Domain Instance Parser Details

 Re-running a Domain Parser

To use a domain parser to parse more than once in a program, the lexer needs to be
reset to be run again, regardless of whether or not there is a parse error. To handle that
there is a yyStartAnew (the yy prefix is a variable) global variable shared by the YACC

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8337

XML Tools

65

parser and the Lex lexer. The Lex file has the following code for restarting. The calling
program must set yyStartAnew to a non-zero value in order to restart parsing.

 if (yyStartAnew)
 {
 yyrestart(yyin);
 yyStartAnew = 0;
 yyReadData = 0;
 yyReadDataList = 0;
 }

 Preventing Memory Leaks in Domain Parsers

Most processes that use a parser built by the xmlInstanceParserGenerator will probably
not want to exit if the parser has an error. However, if there is an error during parsing, a
lot of memory will have been used in building the parse tree. Typically, there will be
several branches of various sizes that have been built but are not yet joined into a tree.
That memory would be leaked if it were not deleted while recovering from the failed
parsing attempt. Memory obtained in the lexer by malloc or alloc is released during
parsing using free where appropriate, so only new memory needs to be handled in case
of error.

In the parsers built by the xmlInstanceParserGenerator, the disconnected branches of
the partially built parse tree are saved in a std::map called the yyUnrefMap (the yy prefix
is actually a variable). As disconnected branches of the parse tree are built, they are
added to the yyUnrefMap. As smaller branches are connected together to form a larger
branch they are removed from the yyUnrefMap. Thus, unless there are branches that
are long lists, the yyUnrefMap never gets very big. Consequently, it never takes long to
put a branch in or take one out.

For example, In the following code from a YACC file, the branch $$ is created from the
branch $3. The $3 branch must have previously been disconnected since it is being
connected, so it was in the yyUnrefMap. The newly created branch, $$ is put into the
yyUnrefMap, and the newly connected branch, $3, is removed from the yyUnrefMap.

 {$$ = new XmlHeaderForAShirt($3);
 yyUnrefMap[$$] = $$;
 if ($3) yyUnrefMap.erase($3);
 }

If parsing is completed without error, the parser checks that there is only one element
in the yyUnrefMap, which is the root of the parse tree. As long as the parser runs without
error, another file can be parsed. The only additional step needed to be taken to parse
another file is to empty the yyUnrefMap of that one member. If there is a parse error of
any sort, yyerror is called (after freeing any memory created in the lexer). In yyerror
(which returns 1), all of the branches in the yyUnrefMap are deleted.

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8337

 XML Tools

66

Here are two examples from a YACC file. In the first example, $3 is tested and is freed
whether or not there is an error. In the second example, $1 is freed before $$ is tested.

 if (strcmp($3, "1.0"))
 {
 free($3);
 return yyerror("version number must be 1.0");
 }
 free($3);

 {$$ = new BoxOrientType($1);
 yyUnrefMap[$$] = $$;
 free($1);
 if ($$->bad)
 return yyerror("bad BoxOrientType");
 }

The yyUnrefMap is defined as a global variable that is a std::map. The std::map key type
and value type are both pointer to XmlSchemaInstanceBase. When destructors are called
on objects in the std::map, since all types are polymorphic and are descendants of
XmlSchemaInstanceBase, the correct destructor is called for the actual type. Also, there is
no problem with putting instances into the std::map.

To allow for testing for memory leaks, the parsers that are generated take an optional
final argument, which is a positive integer indicating how many times to parse the file
being parsed. Checking may be done by running the parser inside valgrind with the final
argument set to 2 or more on a file known to contain an error. For example:

 valgrind -v --leak-check=yes ../bin/SkusParser skusError.xml 2

 Lists in Domain Parsers

As noted in section 15.2, to support memory leak prevention, every branch of a parse
tree must be descended from XmlSchemaInstanceBase. Where there are branches of the
parse tree that are lists, std::list cannot be used directly since std::list is not descended
from XmlSchemaInstanceBase. Hence, for every type of list that might occur, a class is
defined that is derived from both the std::list for that type and XmlSchemaInstanceBase.
For the basic XML data types, the special std:list classes are declared in
xmlSchemaInstance.hh and defined in xmlSchemaInstance.cc. The AttributePairList class is
also included in those files.

In the case of restrictions of simple lists there is a minor problem since
a simple list cannot be restricted directly in XML Schema Definition Language.
A simpleType must be declared that is an alias for a simple list, and then the
simpleType can be restricted.

To deal with that:

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8337

XML Tools

67

• Each simple list type in xmlSchemaInstance.hh has a constructor that takes the
simple list type as an argument and copies it.

• In the generated C++ code, each class in a C++ hierarchy that parallels a
derivation hierarchy of XML restriction types of a simple list has a
constructor that takes the simple list type as an argument and passes it to the
constructor for the parent type.

• In the generated YACC code, there is a production S for the simple list, and a

production D for each C++ type in the derivation hierarchy that is the type of an
element. The production D uses S. The actual list is copied from S into D as
a result of the hierarchy of calls to parent type constructors.

• If an intermediate type in the hierarchy is not used as the type of an element, no

production is written for that type.

• If a restricted element type R is defined in an included schema A and a list
of R is defined in an including schema B, when the C++ code for A is being
written, a check is made of whether code should be written for the list type for
R. This is done by having a needList field in XmlSimpleRestriction whose value is
originally false and checking it while writing code for A. This handles the case
where another schema C includes A and also defines a list of R. However, it
requires that the needList field of R be set to true whenever any schema
(including A) defines a list of R.

16 XML and XSDL

This section briefly describes XSDL models in Subsection 16.1 and XML instance files
in Subsection 16.2. Full descriptions may be found for XSDL in [7], [6], [5], and [1], for
XML in [8], and for XML data files conforming to an XML schema in [9].

An XSDL file for a small complete model is shown in Figure 2 and Annex I . An XML file
for a small instance file conforming to the model is shown in Annex J.

 XML Schemas

XSDL is an object-oriented information modeling language. A model written in XSDL is
called an XML schema. Data members may be represented in the model as elements.
The contents of a schema normally include a root element and a number of type
definitions. Objects are modeled as instances of complexTypes that may have
elements. XSDL also includes basic (i.e., built-in) data types such as ID, integer,
and string and supports specializations of basic data types in simpleTypes. The

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8337

 XML Tools

68

line.xsd schema file shown in Figure 3 illustrates how a two-dimensional Line might be
modeled in XSDL using PointType and VectorType.

Figure 7 Structure of the Line Model

A graphical view of the line.xsd XML schema is given in Figure 7. In the figure,
elements are shown as white rectangles. Three of the four complexTypes
(LineType, PointType, and VectorType) are depicted as large shaded rectangles
surrounded by dashed lines. The BaseType is not shown because it is never used as
the value of an element. The irregular octagons are connectors joining a parent
element to the elements in its type. Each type in the figure has two connectors
because each of them is an extension of the BaseType and inherits the Name
element from it. The color attribute is shown in a white box at the top of the figure.
The outline of the box is dashed because the color attribute is optional.

One complexType (child) may be derived from another (parent) by extending or
restricting the parent. Restrictions of complexTypes are verbose in XSDL and are

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8337

XML Tools

69

difficult to model in C++, which does not provide a method of restricting a derived class.
Hence, restrictions of complexTypes are not allowed in schemas used with the
tools. Extensions usually add elements. The child has all the elements of its parent
plus any that are added by the extension. XSDL does not provide any method for a
child type to have two parent types. In modeling terms, that means multiple inheritance
is not possible. In the schema file above, the BaseType, which provides the Name
element, is the parent of the other three types.

The scope of element names in XSDL is local to the type in which the element
appears. In the example above, for instance, both Point and Vector have X and Y
elements.

XSDL attributes are semantically identical to XSDL elements4; both are fields of a
complexType. Attributes and elements differ in several ways, including:

• The value of an attribute in an instance file is given in a string (e.g.,
color=”blue”), while the value of an element is given inside tags (e.g.,
<Name>Jack</Name>)

• An attribute can appear at most once in an instance of a type and is optional
by default, while an element can appear zero to many times as determined by
maxOccurs and MinOccurs of the element; an element is optional if
minOccurs=”0”; if neither is given, the element must appear exactly once.

XSDL provides for using prefixes to implement separate namespaces. XSDL allows
multiple schema files in a single namespace (or no namespace).

 XML Instance Files Conforming to XML Schemas

Under the XML standards, an XML instance file conforming to an XML schema must be
in a different format than the schema and must contain different sorts of statements. An
XML statement naming the XML schema file to which an instance file corresponds is
normally given near the beginning of the instance file. Many different instance files may
correspond to the same schema.

The form of an instance file is a tree in which instances of the elements of each type
are textually inside the instance of the type.

The line1.xml XML instance file shown in Figure 4 conforms to the line.xsd XML schema.
Names of elements in the schema become XML tags in the instance file (e.g.,

4 It is often said that attributes should contain metadata while elements should contain data, but
metadata is pretty much indistinguishable from data.

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8337

 XML Tools

70

<Point>). The line1.xml file models a line that passes through the origin and lies on the
Y axis.

In XSDL, there is a rule that a valid instance of a complexType must have valid
instances of the required elements of the type in the order given in the schema, and
elements are required unless explicitly made optional in the schema. Thus, for
example, the Line_1 instance of LineType shown in Figure 4 is valid since it has a
valid Name element followed by a valid Point element followed by a valid Vector
element. If it did not have those valid elements in that order, it would not be valid.

17 YACC Basics

To get started with YACC, see [3] or [4].

 Arrangement of a YACC file

An example YACC file is shown in Annex G.

The first section of a YACC file is C++ code set off by %{ and %}. It is optional.

The second section of a YACC file is a C++ union definition, starting with %union.

The third section of a YACC file is a set of type declarations, each marked %type.

The fourth section of a YACC file is set of token declarations, each marked %token.

The fifth section of a YACC file is the rules, as described below, set off by %% and %%.

The sixth section of a YACC file is C++ code. It is optional.

 YACC Rules

The next-to-last section of a YACC file, which is usually the largest section of a YACC
file, is a set of rules. For the user’s convenience, the generator arranges the YACC
rules in alphabetical order. Here is an example of a YACC rule. Line numbers have
been added.

1. y_LiztPerson_PersonType_1_u :
2. y_LiztPerson_PersonType_1_u y_Person_PersonType_1_u
3. {$$ = $1;
4. $$->push_back($2);
5. if ($2) yyUnrefMap.erase($2);
6. }
7. | y_Person_PersonType_1_u
8. {$$ = new PersonTypeLisd($1);

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8337

XML Tools

71

9. yyUnrefMap[$$] = $$;
10. if ($1) yyUnrefMap.erase($1);
11. }
12. ;

The "rule" is all twelve lines above. A rule consists of a left-hand side, a colon, and a
right-hand side (everything after the colon). The left-hand side has only one symbol,
called the "production name" of the rule. The right-hand side has a semicolon at the end
and consists of pairs (which we will call "subrules") of sets of lines. In the example
above, there are two subrules. If there is more than one subrule, the subrules are
separated by vertical bars. The first set of lines in a subrule is called the "definition". In
the example above, each definition has only one line, but in general, a definition may
have several lines. The second set of lines is YACCified C++ code starting with a left
curly brace and ending with a right curly brace. The second set is called the "action".
The actions in the example above each take up four lines.

YACC allows the same production name to be used more than once. For example, the
snippet of YACC above could have been written as two rules, each with the same
production name and one subrule. The generator uses each production name only once
and has multiple subrules if necessary.

When a YACC parser runs, it keeps track of what it has read so far. That establishes a
context that tells the parser what might come next (a token, a value (e.g., a number or
string), or a production name). Based on what is read next, the parser changes its
context. Also, whenever a series of items is read that matches the definition part of a
subrule, in addition to changing its context, the parser executes the C++ action part of
the subrule. In the YACC files built by the generator, the action is always (1) add
something to the abstract syntax tree that is being built, and (2) adjust the yyUnrefMap.

18 Use of the Tools

 xmlSchemaParser Use
The xmlSchemaParser has been used extensively at NIST to help develop the Quality
Information Framework (QIF), an American National Standard developed by the Digital
Metrology Standards Consortium. The part of the QIF model written in XSDL consists of
23 XML schema files totaling over 100,000 lines that make up one schema. The
xmlSchemaParser’s ability to remove keys and keyrefs and its ability to reformat or
remove documentation nodes have been important. Commercial XML tools that
produce schema documentation automatically cannot handle QIF’s keys and keyrefs.
Reformatting documentation nodes is not found in commercial tools that handle
schema files.

 xmlInstanceParserGenerator Use
The xmlInstanceParserGenerator was used in the NIST Agility Performance of Robotic
Systems project. It also was used in the Systems Integration for Additive Manufacturing

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8337

 XML Tools

72

(SIAM) project of the NIST Measurement Science for Additive Manufacturing Program
and at the Georgia Tech Research Institute. Most recently it was used to produce C++
classes and a parser for QIF; the code may found at
https://github.com/QualityInformationFramework/qif-community/tree/master/bindings.

 orphanFinder Use
The orphanFinder has been used in QIF development and in SIAM development.

 xmlSchemaAttributeConverter Use
The xmlSchemaAttributeConverter has been used by the authors in connection with
standards work.

19 Testing the Tools

Tests have been built for testing the xmlSchemaParser, the
xmlInstanceParserGenerator, and the domain parsers built from code produced by the
xmlInstanceParserGenerator. These tests are in the testCases directory, which contains
automated regression tests as described in the following subsections.
The testCases directory contains three subdirectories:

• testCasesFile – 30 cases; code is generated without macros, access functions,
or xsi:type; the domain parser that is generated writes to a file

• testCasesFileAcc – 30 cases; code is generated with access functions, but no
macros and no xsi:type; the domain parser that is generated writes to a file

• testCasesMacXsi – 38 cases; code is generated with macros and xsi:type, but
no access functions; the domain parser that is generated writes to a file or a
string according to how it is compiled.

Each subdirectory also contains four regression tests for the generator in the form of
bash scripts. For the 30 cases in the testCasesFile and testCasesFileAcc subdirectories,
all three subdirectories use the same schema.

The testCasesMacXsi directory has more cases because five of them will not run
without xsi:type and because a few are for the xmlSchemaParser only (the generator
cannot handle those). The testCasesMacXsi directory has an additional regression test
named regressionTestParse for the xmlSchemaParser. It tests all of the schemas in the
testCasesMacXsi directory.

 Test Case Files

Each test case is in a separate subdirectory. The test case subdirectories for the
generator all have the structure shown below (with occasional text files thrown in):

 bin data Makefile ofiles schema source

For each test case:

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8337

https://github.com/QualityInformationFramework/qif-community/tree/master/bindings

XML Tools

73

The schema directory contains one to many XML schema files, some subset of which
may be connected by includes and (with one exception) form a complete schema.
Some of the schema files were written to test specific capabilities of the generator, and
some are from other projects. Except for test cases for the parser only, the schema files
all have all types defined at schema (top) level since the generator requires that.

The source directory contains C++, YACC, and Lex files generated by the
xmlInstanceParserGenerator from the schema files in the schema directory, plus C++
files generated by bison and Lex from the YACC and Lex files.

The ofiles directory contains C++ object files compiled from the C++ source code files.

The bin directory contains one or more executables built from the ofiles and
xmlSchemaInstance.o. There may be more than one executable because they can read
from either a file or a string, depending on compiler flag settings. Also, in the
testCasesMacXsi directory, some executables are compiled so that they write to a
string.

The data directory contains one to many XML instance files that conform to the
schema. It usually also contains one to a few non-conforming instance files. Non-
conforming instance files serve to test the error detection and the error recovery
capability of the executable.

The subdirectories of testCasesMacXsi for testing only the xmlSchemaParser have only
a schema subdirectory.

 regressionTestGenerate
The regressionTestGenerate test script checks that running the
xmlInstanceParserGenerator on the schema files for all test cases produces source
code identical to the saved source code.

When this test runs, if any generated file differs from the saved file, the test stops and
the difference between the two files is displayed. The person running the test can then
decide what to do about it.

On a Dell XPS laptop computer5 running cygwin (https://www.cygwin.com/), the
complete test for testCasesMacXsi takes about 24 seconds if there are no
discrepancies between generated and saved files.

If a change is made in the xmlInstanceParserGenerator, running regressionTestGenerate
and updating the test files can be very tedious since a single small change might affect
all the test cases.

5 Certain commercial/open source software and tools are identified in this manual in
order to explain our research. Such identification does not imply recommendation or
endorsement by the authors or NIST, nor does it imply that the software tools identified
are necessarily the best available for the purpose

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8337

https://www.cygwin.com/

 XML Tools

74

 regressionTestCompile
The regressionTestCompile script uses the Makefile in each of the test cases to compile
the executable parser from the source code. If the source code has not changed, no
compiling is done.

If compiling fails for any test case, the test stops. The person running the test can then
decide what to do about it.

 regressionTestExecute
The regressionTestExecute script checks that in each test case:

• Running the executable domain parser on conforming XML instance files
produces output identical to the input (or a reformatted version of the input).

• Running the executable domain parser on non-conforming XML instance files
produces the expected error messages.

• Running the executable on conforming XML instance files has no memory
leaks.

• Running the executable on an non-conforming XML instance file has no
memory leaks when two attempts to parse the file are made.

The memory leak tests use valgrind [10], which runs on Linux systems but not Windows
systems, so the Windows version of regressionTestExecute omits the memory testing.

 regressionTest
The regressionTest test script runs the other three regression tests in order.

20 Future Work

There is an enormous amount that could, in principle, be done to improve the XML
tools.

A number of places in the code are labelled “FIX”. It would be useful to fix those places.

It would be useful to attempt to make the generators that run in O(N2) time run in O(N log
N) time. This might be done by using std::maps rather than std::lists. Some effort has
already gone into doing that. More is feasible, but it is not clear that every function
currently requiring O(N2) time can be changed to run in O(N log N) time.

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8337

XML Tools

75

21 Acknowledgements

The work reported in this manual was funded in part by grant number 70NANB12H143
from the National Institute of Standards and Technology to the Catholic University of
America that supported Dr. Kramer’s work.

Dr. Kootbally acknowledges support for this work under grant 70NANB19H009 from the
National Institute of Standards and Technology to the University of Southern California.

Work on timing tests for the tools using python was done in January 2014 by Mr.
Benjamin Marks.

The initial work on changing the xmlInstanceParserGenerator code to provide an option
for access functions as described in section 5.2 was done in the summer of 2014 by Mr.
Chris Lawler.

The initial work on changing the xmlSchemaParserCode so that it generates a type
derivation hierarchy as described in section 4 was done in January 2017 by Mr. David
Zuckerman.

Work on checking the code coverage triggered by the test cases was done in January
2020 by Mr. Jonah Langlieb.

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8337

 XML Tools

76

 XML schema file primitives.xsdecho

This is the XML schema file primitives.xsdecho, generated as described in Section 4.2. It
is a pretty-printed version of primitives.xsd, with all comments removed.

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 elementFormDefault="qualified"
 attributeFormDefault="unqualified">

 <xs:complexType name="BaseType"
 abstract="true">
 <xs:sequence>
 <xs:element name="Name"
 type="xs:ID"/>
 </xs:sequence>
 </xs:complexType>

 <xs:complexType name="PointType">
 <xs:complexContent>
 <xs:extension base="BaseType">
 <xs:sequence>
 <xs:element name="X"
 type="xs:decimal">
 <xs:annotation>
 <xs:documentation>
 The X element is the X coordinate of the point.
 </xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:element name="Y"
 type="xs:decimal"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>

 <xs:complexType name="VectorType">
 <xs:complexContent>
 <xs:extension base="BaseType">
 <xs:sequence>

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8337

XML Tools

77

 <xs:element name="X"
 type="xs:decimal"/>
 <xs:element name="Y"
 type="xs:decimal"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>

</xs:schema>

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8337

 XML Tools

78

 C++ File primitivesClasses.hh

This is the C++ header file primitivesClasses.hh, generated by the
xmlInstanceParserGenerator, as described in Section 5.4.

/* *** */

#ifndef PRIMITIVES_HH
#define PRIMITIVES_HH
#include <stdio.h>
#include <list>
#include <xmlSchemaInstance.hh>

/* *** */

class BaseType;
class PointType;
class VectorType;

/* *** */
/* *** */

class BaseType :
 public XmlTypeBase
{
public:
 BaseType(
 const char * printTyppIn = 0);
 BaseType(
 XmlID * NameIn,
 const char * printTyppIn);
 ~BaseType();
 void printSelf(FILE * outFile);

 XmlID * getName();
 void setName(XmlID * NameIn);

protected:
 XmlID * Name;
};

/* *** */

class PointType :
 public BaseType

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8337

XML Tools

79

{
public:
 PointType(
 const char * printTyppIn = 0);
 PointType(
 XmlID * NameIn,
 XmlDecimal * XIn,
 XmlDecimal * YIn,
 const char * printTyppIn);
 ~PointType();
 void printSelf(FILE * outFile);

 XmlDecimal * getX();
 void setX(XmlDecimal * XIn);
 XmlDecimal * getY();
 void setY(XmlDecimal * YIn);

protected:
 XmlDecimal * X;
 XmlDecimal * Y;
};

/* *** */

class VectorType :
 public BaseType
{
public:
 VectorType(
 const char * printTyppIn = 0);
 VectorType(
 XmlID * NameIn,
 XmlDecimal * XIn,
 XmlDecimal * YIn,
 const char * printTyppIn);
 ~VectorType();
 void printSelf(FILE * outFile);

 XmlDecimal * getX();
 void setX(XmlDecimal * XIn);
 XmlDecimal * getY();
 void setY(XmlDecimal * YIn);

protected:
 XmlDecimal * X;
 XmlDecimal * Y;
};

/* *** */

#endif // PRIMITIVES_HH

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8337

 XML Tools

80

 C++ File lineClasses.hh
This is the C++ header file lineClasses.hh, generated by the
xmlInstanceParserGenerator, as described in Section 5.4.

/* *** */

#ifndef LINE_HH
#define LINE_HH
#include <stdio.h>
#include <list>
#include <xmlSchemaInstance.hh>
#include "primitivesClasses.hh"

/* *** */

class LineFile;
class LineType;
class XmlHeaderForLine;

/* *** */
/* *** */

class LineFile :
 public XmlTypeBase
{
public:
 LineFile();
 LineFile(
 XmlVersion * versionIn,
 XmlHeaderForLine * headerIn,
 LineType * LineIn);
 ~LineFile();
 void printSelf(FILE * outFile);
 XmlVersion * getversion();
 void setversion(XmlVersion * versionIn);
 XmlHeaderForLine * getheader();
 void setheader(XmlHeaderForLine * headerIn);
 LineType * getLine();
 void setLine(LineType * LineIn);

protected:
 XmlVersion * version;
 XmlHeaderForLine * header;
 LineType * Line;
};

/* *** */
 class LineType :
 public BaseType
{
public:

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8337

XML Tools

81

 LineType(
 const char * printTyppIn = 0);
 LineType(
 XmlID * NameIn,
 PointType * PointIn,
 VectorType * VectorIn,
 const char * printTyppIn);
 LineType(
 XmlID * NameIn,
 XmlToken * colorIn,
 PointType * PointIn,
 VectorType * VectorIn,
 const char * printTyppIn);
 ~LineType();
 void printSelf(FILE * outFile);
 bool badAttributes(AttributePairLisd * attributes);

 XmlToken * getcolor();
 void setcolor(XmlToken * colorIn);

 PointType * getPoint();
 void setPoint(PointType * PointIn);
 VectorType * getVector();
 void setVector(VectorType * VectorIn);

protected:
 XmlToken * color;
 PointType * Point;
 VectorType * Vector;
};

/* *** */
 class XmlHeaderForLine :
 public XmlSchemaInstanceBase
{
public:
 XmlHeaderForLine();
 XmlHeaderForLine(
 XmlString * XmlnsNoPrefixIn,
 XmlStringLisd * XmlnsiWithPrefixIn,
 SchemaLocation * locationIn);
 ~XmlHeaderForLine();
 void printSelf(FILE * outFile);
 bool badAttributes(AttributePairLisd * attributes);
 XmlString * getXmlnsNoPrefix();
 void setXmlnsNoPrefix(XmlString * XmlnsNoPrefixIn);
 XmlStringLisd * getXmlnsiWithPrefix();
 void setXmlnsiWithPrefix(XmlStringLisd * XmlnsiWithPrefixIn);
 SchemaLocation * getlocation();
 void setlocation(SchemaLocation * locationIn);

 XmlToken * getcolor();

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8337

 XML Tools

82

 void setcolor(XmlToken * colorIn);

protected:
 XmlString * XmlnsNoPrefix;
 XmlStringLisd * XmlnsiWithPrefix;
 SchemaLocation * location;
 XmlToken * color;
};

/* *** */

#endif // LINE_HH

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8337

XML Tools

83

 C++ File primitivesClasses.cc
This is the C++ code file primitivesClasses.cc, generated by the
xmlInstanceParserGenerator, as described in Section 5.4.

/* *** */

#include <stdio.h> // for printf, etc.
#include <string.h> // for strdup
#include <stdlib.h> // for exit
#include <list>
#include <boost/regex.hpp>
#include <xmlSchemaInstance.hh>
#include "primitivesClasses.hh"

#define INDENT 2

/* *** */
/* *** */

/* class BaseType

*/

BaseType::BaseType(
 const char * printTyppIn)
{
 Name = 0;
 printTypp = printTyppIn;
}

BaseType::BaseType(
 XmlID * NameIn,
 const char * printTyppIn)
{
 Name = NameIn;
 printTypp = printTyppIn;
}

BaseType::~BaseType()
{
 #ifndef NODESTRUCT
 delete Name;
 #endif
}

void BaseType::printSelf(FILE * outFile)
{
 fprintf(outFile, ">\n");
 doSpaces(+INDENT, outFile);
 doSpaces(0, outFile);
 fprintf(outFile, "<Name");

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8337

 XML Tools

84

 Name->printSelf(outFile);
 fprintf(outFile, "</Name>\n");
 doSpaces(-INDENT, outFile);
}

XmlID * BaseType::getName()
{return Name;}

void BaseType::setName(XmlID * NameIn)
{Name = NameIn;}

/* *** */

/* class PointType

*/

PointType::PointType(
 const char * printTyppIn) :
 BaseType(printTyppIn)
{
 X = 0;
 Y = 0;
}

PointType::PointType(
 XmlID * NameIn,
 XmlDecimal * XIn,
 XmlDecimal * YIn,
 const char * printTyppIn) :
 BaseType(
 NameIn,
 printTyppIn)
{
 X = XIn;
 Y = YIn;
}

PointType::~PointType()
{
 #ifndef NODESTRUCT
 delete X;
 delete Y;
 #endif
}

void PointType::printSelf(FILE * outFile)
{
 fprintf(outFile, ">\n");
 doSpaces(+INDENT, outFile);
 doSpaces(0, outFile);
 fprintf(outFile, "<Name");

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8337

XML Tools

85

 Name->printSelf(outFile);
 fprintf(outFile, "</Name>\n");
 doSpaces(0, outFile);
 fprintf(outFile, "<X");
 X->printSelf(outFile);
 fprintf(outFile, "</X>\n");
 doSpaces(0, outFile);
 fprintf(outFile, "<Y");
 Y->printSelf(outFile);
 fprintf(outFile, "</Y>\n");
 doSpaces(-INDENT, outFile);
}

XmlDecimal * PointType::getX()
{return X;}

void PointType::setX(XmlDecimal * XIn)
{X = XIn;}

XmlDecimal * PointType::getY()
{return Y;}

void PointType::setY(XmlDecimal * YIn)
{Y = YIn;}

/* *** */

/* class VectorType

*/

VectorType::VectorType(
 const char * printTyppIn) :
 BaseType(printTyppIn)
{
 X = 0;
 Y = 0;
}

VectorType::VectorType(
 XmlID * NameIn,
 XmlDecimal * XIn,
 XmlDecimal * YIn,
 const char * printTyppIn) :
 BaseType(
 NameIn,
 printTyppIn)
{
 X = XIn;
 Y = YIn;
}

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8337

 XML Tools

86

VectorType::~VectorType()
{
 #ifndef NODESTRUCT
 delete X;
 delete Y;
 #endif
}

void VectorType::printSelf(FILE * outFile)
{
 fprintf(outFile, ">\n");
 doSpaces(+INDENT, outFile);
 doSpaces(0, outFile);
 fprintf(outFile, "<Name");
 Name->printSelf(outFile);
 fprintf(outFile, "</Name>\n");
 doSpaces(0, outFile);
 fprintf(outFile, "<X");
 X->printSelf(outFile);
 fprintf(outFile, "</X>\n");
 doSpaces(0, outFile);
 fprintf(outFile, "<Y");
 Y->printSelf(outFile);
 fprintf(outFile, "</Y>\n");
 doSpaces(-INDENT, outFile);
}

XmlDecimal * VectorType::getX()
{return X;}

void VectorType::setX(XmlDecimal * XIn)
{X = XIn;}

XmlDecimal * VectorType::getY()
{return Y;}

void VectorType::setY(XmlDecimal * YIn)
{Y = YIn;}

/* *** */

 C++ File lineClasses.cc
This is the C++ code file lineClasses.cc, generated by the xmlInstanceParserGenerator,
as described in Section 5.4.

/* ***
*/

#include <stdio.h> // for printf, etc.

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8337

XML Tools

87

#include <string.h> // for strdup
#include <stdlib.h> // for exit
#include <list>
#include <boost/regex.hpp>
#include <xmlSchemaInstance.hh>
#include "lineClasses.hh"

#define INDENT 2

/* *** */
/* *** */

/* class LineFile

*/

LineFile::LineFile()
{
 version = 0;
 header = 0;
 Line = 0;
}

LineFile::LineFile(
 XmlVersion * versionIn,
 XmlHeaderForLine * headerIn,
 LineType * LineIn)
{
 version = versionIn;
 header = headerIn;
 Line = LineIn;
}

LineFile::~LineFile()
{
 #ifndef NODESTRUCT
 delete version;
 delete header;
 delete Line;
 #endif
}

void LineFile::printSelf(FILE * outFile)
{
 version->printSelf(outFile);
 fprintf(outFile, "<Line\n");
 header->printSelf(outFile);
 Line->printSelf(outFile);
 fprintf(outFile, "</Line>\n");
}

XmlVersion * LineFile::getversion()

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8337

 XML Tools

88

{return version;}

void LineFile::setversion(XmlVersion * versionIn)
{version = versionIn;}

XmlHeaderForLine * LineFile::getheader()
{return header;}

void LineFile::setheader(XmlHeaderForLine * headerIn)
{header = headerIn;}

LineType * LineFile::getLine()
{return Line;}

void LineFile::setLine(LineType * LineIn)
{Line = LineIn;}

/* *** */

/* class LineType

*/

LineType::LineType(
 const char * printTyppIn) :
 BaseType(printTyppIn)
{
 color = 0;
 Point = 0;
 Vector = 0;
}

LineType::LineType(
 XmlID * NameIn,
 PointType * PointIn,
 VectorType * VectorIn,
 const char * printTyppIn) :
 BaseType(
 NameIn,
 printTyppIn)
{
 color = 0;
 Point = PointIn;
 Vector = VectorIn;
}

LineType::LineType(
 XmlID * NameIn,
 XmlToken * colorIn,
 PointType * PointIn,
 VectorType * VectorIn,
 const char * printTyppIn) :

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8337

XML Tools

89

 BaseType(
 NameIn,
 printTyppIn)
{
 color = colorIn;
 Point = PointIn;
 Vector = VectorIn;
}

LineType::~LineType()
{
 #ifndef NODESTRUCT
 delete color;
 delete Point;
 delete Vector;
 #endif
}

void LineType::printSelf(FILE * outFile)
{
 if (color)
 {
 fprintf(outFile, "\n");
 fprintf(outFile, " color=\"");
 color->oPrintSelf(outFile);
 fprintf(outFile, "\"");
 }
 fprintf(outFile, ">\n");
 doSpaces(+INDENT, outFile);
 doSpaces(0, outFile);
 fprintf(outFile, "<Name");
 Name->printSelf(outFile);
 fprintf(outFile, "</Name>\n");
 doSpaces(0, outFile);
 fprintf(outFile, "<Point");
 if (Point->printTypp)
 {
 fprintf(outFile, " xsi:type=\"%s\"", Point->printTypp);
 }
 Point->printSelf(outFile);
 doSpaces(0, outFile);
 fprintf(outFile, "</Point>\n");
 doSpaces(0, outFile);
 fprintf(outFile, "<Vector");
 if (Vector->printTypp)
 {
 fprintf(outFile, " xsi:type=\"%s\"", Vector->printTypp);
 }
 Vector->printSelf(outFile);
 doSpaces(0, outFile);
 fprintf(outFile, "</Vector>\n");
 doSpaces(-INDENT, outFile);

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8337

 XML Tools

90

}

bool LineType::badAttributes(
 AttributePairLisd * attributes)
{
 std::list<AttributePair *>::iterator iter;
 AttributePair * decl;
 bool returnValue;

 returnValue = false;
 for (iter = attributes->begin(); iter != attributes->end(); iter++)
 {
 decl = *iter;
 if (decl->name == "color")
 {
 XmlToken * colorVal;
 if (color)
 {
 fprintf(stderr, "two values for color in LineType\n");
 returnValue = true;
 break;
 }
 colorVal = new XmlToken(decl->val.c_str());
 if (colorVal->bad)
 {
 delete colorVal;
 fprintf(stderr, "bad value %s for color in LineType\n",
 decl->val.c_str());
 returnValue = true;
 break;
 }
 else
 color = colorVal;
 }
 else
 {
 fprintf(stderr, "bad attribute in LineType\n");
 returnValue = true;
 break;
 }
 }
 for (iter = attributes->begin(); iter != attributes->end(); iter++)
 {
 delete *iter;
 }
 attributes->clear();
 if (returnValue == true)
 {
 delete color;
 color = 0;
 }
 return returnValue;

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8337

XML Tools

91

}

XmlToken * LineType::getcolor()
{return color;}

void LineType::setcolor(XmlToken * colorIn)
{color = colorIn;}

PointType * LineType::getPoint()
{return Point;}

void LineType::setPoint(PointType * PointIn)
{Point = PointIn;}

VectorType * LineType::getVector()
{return Vector;}

void LineType::setVector(VectorType * VectorIn)
{Vector = VectorIn;}

/* *** */

XmlHeaderForLine::XmlHeaderForLine()
{
 XmlnsNoPrefix = 0;
 XmlnsiWithPrefix = 0;
 location = 0;
 color = 0;
}

XmlHeaderForLine::XmlHeaderForLine(
 XmlString * XmlnsNoPrefixIn,
 XmlStringLisd * XmlnsiWithPrefixIn,
 SchemaLocation * locationIn)
{
 XmlnsNoPrefix = XmlnsNoPrefixIn;
 XmlnsiWithPrefix = XmlnsiWithPrefixIn;
 location = locationIn;
 color = 0;
}

XmlHeaderForLine::~XmlHeaderForLine()
{
 #ifndef NODESTRUCT
 std::list<XmlString *>::iterator iter;

 if (XmlnsiWithPrefix)
 {
 for (iter = XmlnsiWithPrefix->begin();
 iter != XmlnsiWithPrefix->end(); iter++)
 {
 delete *iter;

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8337

 XML Tools

92

 }
 delete XmlnsiWithPrefix;
 }
 delete XmlnsNoPrefix;
 delete location;
 delete color;
 #endif
}

// The fields other than XmlnsNoPrefix, XmlnsiWithPrefix, and location
// belong also to the top level type and are printed by its PRINTSELF.

void XmlHeaderForLine::printSelf(FILE * outFile)
{
 std::list<XmlString *>::iterator iter;

 if (XmlnsNoPrefix)
 {
 fprintf(outFile, " xmlns=\"%s\"\n", XmlnsNoPrefix->val.c_str());
 }
 if (XmlnsiWithPrefix)
 {
 for (iter = XmlnsiWithPrefix->begin();
 iter != XmlnsiWithPrefix->end(); iter++)
 {
 fprintf(outFile, " xmlns:%s\"\n", (*iter)->val.c_str());
 }
 }
 if (location)
 {
 fprintf(outFile,
 " xmlns:xsi=\"http://www.w3.org/2001/XMLSchema-
instance\"\n");
 location->printSelf(outFile);
 }
}

bool XmlHeaderForLine::badAttributes(
 AttributePairLisd * attributes)
{
 std::list<AttributePair *>::iterator iter;
 AttributePair * decl;
 bool returnValue;
 bool hasXsi;
 int stop;
 int n;

 returnValue = false;
 hasXsi = false;
 char buffer[NAMESIZE];
 for (iter = attributes->begin(); iter != attributes->end(); iter++)
 {

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8337

XML Tools

93

 decl = *iter;
 if (decl->name == "xmlns")
 {
 if (XmlnsNoPrefix)
 {
 fprintf(stderr,
 "two values for no colon xmlns in XmlHeaderForLine\n");
 returnValue = true;
 break;
 }
 XmlnsNoPrefix = new XmlString(decl->val.c_str());
 }
 else if (decl->name == "xmlns:")
 {
 strncpy(buffer, decl->val.c_str(), NAMESIZE);
 if ((buffer[0] == 'x') &&
 (buffer[1] == 's') &&
 (buffer[2] == 'i') &&
 (isspace(buffer[3]) || (buffer[3] == '=')))
 {
 stop = strlen(buffer);
 if (hasXsi)
 {
 fprintf(stderr, "two values for xmlns:xsi\n");
 returnValue = true;
 break;
 }
 n = 3;
 if (buffer[n] != '=')
 { // find the = if not already there -- must be one
 for (n = 4; ((n < stop) && (buffer[n] != '=')); n++);
 } // next find the "
 for (n++; ((n < stop) && (buffer[n] != '"')); n++);
 if (strcmp(buffer+n+1,
 "http://www.w3.org/2001/XMLSchema-instance"))
 {
 fprintf(stderr, "xmlns:xsi must be "
 "\"http://www.w3.org/2001/XMLSchema-instance\"\n");
 returnValue = true;
 break;
 }
 else
 {
 hasXsi = true;
 }
 }
 else
 {
 if (XmlnsiWithPrefix == 0)
 {
 XmlnsiWithPrefix = new XmlStringLisd;
 }

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8337

 XML Tools

94

 XmlnsiWithPrefix->push_back(new XmlString(buffer));
 }
 }
 else if (decl->name == "xsi:schemaLocation")
 {
 if (location)
 {
 fprintf(stderr,
 "two values for location in XmlHeaderForLine\n");
 returnValue = true;
 break;
 }
 location = new SchemaLocation("xsi", decl->val.c_str(), true);
 }
 else if (decl->name == "xsi:noNamespaceSchemaLocation")
 {
 if (location)
 {
 fprintf(stderr,
 "two values for location in XmlHeaderForLine\n");
 returnValue = true;
 break;
 }
 location = new SchemaLocation("xsi", decl->val.c_str(), false);
 }
 else if (decl->name == "color")
 {
 XmlToken * colorVal;
 if (color)
 {
 fprintf(stderr,
 "two values for color in XmlHeaderForLine\n");
 returnValue = true;
 break;
 }
 colorVal = new XmlToken(decl->val.c_str());
 if (colorVal->bad)
 {
 delete colorVal;
 fprintf(stderr,
 "bad value %s for color in XmlHeaderForLine\n",
 decl->val.c_str());
 returnValue = true;
 break;
 }
 else
 color = colorVal;
 }
 else
 {
 fprintf(stderr, "bad attribute in XmlHeaderForLine\n");
 returnValue = true;

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8337

XML Tools

95

 break;
 }
 }
 for (iter = attributes->begin(); iter != attributes->end(); iter++)
 {
 delete *iter;
 }
 attributes->clear();
 if (returnValue == true)
 {
 delete XmlnsNoPrefix;
 XmlnsNoPrefix = 0;
 delete XmlnsiWithPrefix;
 XmlnsiWithPrefix = 0;
 delete location;
 location = 0;
 delete color;
 color = 0;
 }
 if (location && !hasXsi)
 {
 fprintf(stderr, "xsi namespace used but not declared\n");
 returnValue = true;
 }
 return returnValue;
}

XmlString * XmlHeaderForLine::getXmlnsNoPrefix()
{return XmlnsNoPrefix;}

void XmlHeaderForLine::setXmlnsNoPrefix(XmlString * XmlnsNoPrefixIn)
{XmlnsNoPrefix = XmlnsNoPrefixIn;}

XmlStringLisd * XmlHeaderForLine::getXmlnsiWithPrefix()
{return XmlnsiWithPrefix;}

void XmlHeaderForLine::setXmlnsiWithPrefix
(XmlStringLisd * XmlnsiWithPrefixIn)
{XmlnsiWithPrefix = XmlnsiWithPrefixIn;}

SchemaLocation * XmlHeaderForLine::getlocation()
{return location;}

void XmlHeaderForLine::setlocation(SchemaLocation * locationIn)
{location = locationIn;}

XmlToken * XmlHeaderForLine::getcolor()
{return color;}

void XmlHeaderForLine::setcolor(XmlToken * colorIn)
{color = colorIn;}

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8337

 XML Tools

96

/* *** */

 C++ File lineParser.cc
This is the C++ code file lineParser.cc, generated by the xmlInstanceParserGenerator, as
described in Section 5.4.

/*

The parser reads an input file and writes an output file.

The parser is called with one to six arguments as follows
parser <file name> [-n|N <places>] [-f|F <format>] [<times>]
For example (with all optional arguments): parser instances.xml -n 6 -F e 2
In that example
<file name> = instances.xml
[-n|N <places>] = -n 6
[-f|F <format>] = -F e
[<times>] = 2

The [-n|N <places>] and [-f|F <format>] determine how xs:double,
xs:float, and xs:decimal are printed out. In the following text, DFD
means a number of one of those types, and DF means xs:double and
xs:float numbers. <places> is a non-negative integer. <format> is one
of f, e, or E and their meaning is as given for printf in the C++
standard (floating point, exponential with lower case e, exponential
with upper case E).

If -N is used, all DFDs are printed with <places> decimal places.

If -n is used, DFDs are printed out with the same number of decimal
places as they had when they were read in.

If neither -n nor -N is used, DFDs are printed out with the same
number of decimal places as they had when they were read in.

The -f and -F options have no effect on xs:decimal numbers (since
xs:decimal numbers may not use exponential notation).

If -F is used all DFs are printed with the given <format>.

If -f is used, DFs are printed out using exponential notation
(e or E) if they had exponential notation when they were read in,
 but otherwise are printed with the given <format>.

If neither -f nor -F is used, DFs are printed out using exponential
 notation (e or E) if they had exponential notation when they were
 read in, but otherwise are printed with the f format.

The <times> argument gives the number times the file should be parsed.

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8337

XML Tools

97

The argument exists for testing purposes and is not expected to be
useful otherwise.

If this is compiled with STRINGIN defined, it will read the input file
into a string and then parse it from the string. Otherwise it will
parse directly from the file.

If this is compiled with STRINGOUT defined, after the input is parsed,
it will print the parse tree to a string (with line endings but no
other extra whitespace) and then print the string to the output file.
Otherwise, it will pretty print the output file (with extra white space)
directly from the parse tree.

For STRINGOUT, the class file(s) must also be compiled with STRINGOUT
defined, and xmlSchemaInstanceStr.o (xmlSchemaInstance.cc compiled with
STRINGOUT defined) must be linked in.

For STRINGIN, the lex file must also be compiled with STRINGIN defined.

*/

#include <stdio.h> // fprintf
#include <string.h> // strlen
#include <stdlib.h> // exit
#include "lineClasses.hh"
#if defined(STRINGIN) || defined(STRINGOUT)
#define MAX_SIZE 10000000
#endif

extern LineFile * LineTree;
extern FILE * yyin;
extern int yyparse();
extern void yylex_destroy();

#ifdef STRINGIN
extern char * yyStringInputPointer;
extern char * yyStringInputEnd;
#endif

int XmlSchemaInstanceBase::format;
int XmlSchemaInstanceBase::places;
int yyStartAnew;

void usageMessage(char * call) /* NO ARGUMENTS */
{
 fprintf(stderr,
 "Usage: %s <file name> [-n|N <places>] [-f|F <format>]
[<times>]\n",
 call);
 fprintf(stderr,
 "<places> and <times> are integers; format is f, e or E\n");
 fprintf(stderr, "Example 1: %s dFile.xml\n", call);

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8337

 XML Tools

98

 fprintf(stderr, "Example 2: %s dFile.xml 2\n", call);
 fprintf(stderr, "Example 3: %s dFile.xml -n 5 \n", call);
 fprintf(stderr, "Example 4: %s dFile.xml -F e 2\n", call);
 fprintf(stderr, "Example 5: %s dFile.xml -n 6 -F E\n", call);
 exit(1);
}

void readArguments(/* ARGUMENTS */
 int argc, /* one more than the number of command arguments */
 char * argv[], /* array of executable name and command arguments */
 int * times) /* number of times to parse */
{
 int places;

 if (argc % 2 == 1)
 {
 if (!sscanf(argv[argc - 1], "%d", times))
 {
 usageMessage(argv[0]);
 }
 }
 else
 *times = 1;
 if (argc < 2)
 {
 usageMessage(argv[0]);
 }
 else if (argc < 4)
 {
 XmlSchemaInstanceBase::format = 0;
 XmlSchemaInstanceBase::places = 6;
 }
 else if (argc < 6)
 {
 if (strcmp(argv[2], "-n") == 0)
 {
 XmlSchemaInstanceBase::format = 0;
 if (!sscanf(argv[3], "%d", &places))
 usageMessage(argv[0]);
 XmlSchemaInstanceBase::places = places;
 }
 else if (strcmp(argv[2], "-N") == 0)
 {
 XmlSchemaInstanceBase::format = 0;
 XmlSchemaInstanceBase::format = 0;
 if (!sscanf(argv[3], "%d", &places))
 usageMessage(argv[0]);
 XmlSchemaInstanceBase::places = -places;
 }
 else if (strcmp(argv[2], "-f") == 0)
 {
 XmlSchemaInstanceBase::places = 6;

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8337

XML Tools

99

 if (strlen(argv[3]) != 1)
 usageMessage(argv[0]);
 if (argv[3][0] == 'f')
 XmlSchemaInstanceBase::format = 0;
 else if (argv[3][0] == 'e')
 XmlSchemaInstanceBase::format = 1;
 else if (argv[3][0] == 'E')
 XmlSchemaInstanceBase::format = 2;
 else
 usageMessage(argv[0]);
 }
 else if (strcmp(argv[2], "-F") == 0)
 {
 XmlSchemaInstanceBase::places = 6;
 if (strlen(argv[3]) != 1)
 usageMessage(argv[0]);
 if (argv[3][0] == 'f')
 XmlSchemaInstanceBase::format = 3;
 else if (argv[3][0] == 'e')
 XmlSchemaInstanceBase::format = 4;
 else if (argv[3][0] == 'E')
 XmlSchemaInstanceBase::format = 5;
 else
 usageMessage(argv[0]);
 }
 else
 usageMessage(argv[0]);
 }
 else if (argc < 8)
 {
 if (strcmp(argv[2], "-n") == 0)
 {
 XmlSchemaInstanceBase::format = 0;
 if (!sscanf(argv[3], "%d", &places))
 usageMessage(argv[0]);
 XmlSchemaInstanceBase::places = places;
 }
 else if (strcmp(argv[2], "-N") == 0)
 {
 XmlSchemaInstanceBase::format = 0;
 if (!sscanf(argv[3], "%d", &places))
 usageMessage(argv[0]);
 XmlSchemaInstanceBase::places = -places;
 }
 else
 usageMessage(argv[0]);
 if (strcmp(argv[4], "-f") == 0)
 {
 if (strlen(argv[5]) != 1)
 usageMessage(argv[0]);
 if (argv[5][0] == 'f')
 XmlSchemaInstanceBase::format = 0;

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8337

 XML Tools

100

 else if (argv[5][0] == 'e')
 XmlSchemaInstanceBase::format = 1;
 else if (argv[5][0] == 'E')
 XmlSchemaInstanceBase::format = 2;
 else
 usageMessage(argv[0]);
 }
 if (strcmp(argv[4], "-F") == 0)
 {
 if (strlen(argv[5]) != 1)
 usageMessage(argv[0]);
 if (argv[5][0] == 'f')
 XmlSchemaInstanceBase::format = 3;
 else if (argv[5][0] == 'e')
 XmlSchemaInstanceBase::format = 4;
 else if (argv[5][0] == 'E')
 XmlSchemaInstanceBase::format = 5;
 else
 usageMessage(argv[0]);
 }
 }
 else
 {
 usageMessage(argv[0]);
 }
}

int main(/* ARGUMENTS */
 int argc, /* one more than the number of command arguments */
 char * argv[]) /* array of executable name and command arguments */
{
 std::string outFileName;
 FILE * inFile;
 FILE * outFile;
 int times;
 int result;
 char buffer[10];
#if defined(STRINGIN) || defined(STRINGOUT)
 char * inString;
 int inStringSize;
 int n;
#endif
#ifdef STRINGOUT
 char * outString;
 size_t outStringSize;
 size_t k;
#endif

 yyStartAnew = 0;
 readArguments(argc, argv, ×);
#if defined(STRINGIN) || defined(STRINGOUT)
 for (inStringSize = 10000; inStringSize <= MAX_SIZE; inStringSize *= 10)

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8337

XML Tools

101

 {
 inString = new char[inStringSize + 1];
 inFile = fopen(argv[1], "r");
 if (inFile == 0)
 {
 fprintf(stderr, "unable to open file %s for reading\n", argv[1]);
 exit(1);
 }
 for (n = 0; (((inString[n] = getc(inFile)) != EOF) &&
 (n < inStringSize)); n++);
 fclose(inFile);
 if (n < inStringSize)
 break;
 else
 delete [] inString;
 }
 if (inStringSize > MAX_SIZE)
 {
 fprintf(stderr,
 "input file is too large (more than %d bytes), exiting\n",
 MAX_SIZE);
 return 1;
 }
 inString[n] = 0;
#endif
#ifdef STRINGOUT
 outStringSize = (size_t)(inStringSize * 2);
 outString = new char[inStringSize * 2];
#endif
 for (; times > 0; times--)
 {
#ifdef STRINGIN
 yyStringInputPointer = inString;
 yyStringInputEnd = (inString + n);
#else
 inFile = fopen(argv[1], "r");
 if (inFile == 0)
 {
 fprintf(stderr, "unable to open file %s for reading\n", argv[1]);
 exit(1);
 }
 yyin = inFile;
#endif
 yyStartAnew = 1;
 result = yyparse();
#ifndef STRINGIN
 fclose(inFile);
#endif
 if (result == 0)
 {
 outFileName = argv[1];
 sprintf(buffer, "%d", times);

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8337

 XML Tools

102

 outFileName.append(buffer);
 outFile = fopen(outFileName.c_str(), "w");
#ifdef STRINGOUT
 k = 0;
 LineTree->printSelf(outString, &outStringSize, &k);
 outString[k] = 0;
 fprintf(outFile, "%s", outString);
#else
 LineTree->printSelf(outFile);
#endif
 fclose(outFile);
 delete LineTree;
 }
 }
#if defined(STRINGIN) || defined(STRINGOUT)
 delete [] inString;
#endif
#ifdef STRINGOUT
 delete [] outString;
#endif
 yylex_destroy();
 return 0;
}

 YACC File line.y

This is the YACC file line.y, generated by the xmlInstanceParserGenerator, as described
in Section 5.4. See section 17 regarding YACC files.

%{

#include <stdio.h> // for stderr
#include <string.h> // for strcat
#include <stdlib.h> // for malloc, free
#include <map> // for map
#include "lineClasses.hh"

#define YYERROR_VERBOSE
#define YYDEBUG 1

LineFile * LineTree; // the parse tree

extern int yylex();
int yyReadData = 0;
int yyReadDataList = 0;
std::map<XmlSchemaInstanceBase *, XmlSchemaInstanceBase *> yyUnrefMap;

int yyerror(const char * s);

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8337

XML Tools

103

%}

%union {
 AttributePair * AttributePairVal;
 AttributePairLisd * LiztAttributePairVal;
 XmlHeaderForLine * XmlHeaderForLineVal;
 XmlVersion * XmlVersionVal;
 int * iVal;
 char * sVal;
 LineFile * LineFileVal;

 LineType * LineTypeVal;
 PointType * PointTypeVal;
 VectorType * VectorTypeVal;
 XmlDecimal * XmlDecimalVal;
 XmlID * XmlIDVal;
}

%type <sVal> y_attributeName
%type <AttributePairVal> y_AttributePair
%type <LiztAttributePairVal> y_LiztAttributePair
%type <XmlHeaderForLineVal> y_XmlHeaderForLine
%type <XmlVersionVal> y_XmlVersion
%type <LineFileVal> y_LineFile
%type <XmlDecimalVal> y_XmlDecimal
%type <XmlIDVal> y_XmlID

%type <LineTypeVal> y_LineType
%type <XmlIDVal> y_Name_XmlID
%type <PointTypeVal> y_PointType
%type <PointTypeVal> y_Point_PointType
%type <VectorTypeVal> y_VectorType
%type <VectorTypeVal> y_Vector_VectorType
%type <XmlDecimalVal> y_X_XmlDecimal
%type <XmlDecimalVal> y_Y_XmlDecimal

%token <iVal> BAD
%token <sVal> DATASTRING
%token <iVal> ENCODING
%token <iVal> ENDITEM
%token <iVal> ENDVERSION
%token <iVal> STANDALONE
%token <iVal> STARTVERSION
%token <sVal> TERMINALSTRING
%token <iVal> XMLNSPREFIX
%token <iVal> XMLNSTARGET
%token <iVal> XMLVERSION

%token <iVal> xmlnsATTR
%token <iVal> xmlnsColonATTR
%token <iVal> xsiSchemaLocationATTR
%token <iVal> xsiNoNameLocationATTR

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8337

 XML Tools

104

%token <iVal> LineEND
%token <iVal> LineSTART
%token <iVal> NameEND
%token <iVal> NameSTART
%token <iVal> PointEND
%token <iVal> PointSTART
%token <iVal> VectorEND
%token <iVal> VectorSTART
%token <iVal> XEND
%token <iVal> XSTART
%token <iVal> YEND
%token <iVal> YSTART

%token <iVal> colorATTR

%token <iVal> PointTypeXSIDECL
%token <iVal> VectorTypeXSIDECL

%%

y_LineFile :
 y_XmlVersion LineSTART y_XmlHeaderForLine
 y_LineType LineEND
 {$$ = new LineFile($1, $3, $4);
 LineTree = $$;
 if ($3->getcolor())
 {
 $4->setcolor($3->getcolor());
 $3->setcolor(0);
 }
 if ($1) yyUnrefMap.erase($1);
 if ($3) yyUnrefMap.erase($3);
 if ($4) yyUnrefMap.erase($4);
 if (yyUnrefMap.size())
 {
 delete $$;
 return yyerror("bug: unreferenced memory exists");
 }
 if (XmlIDREF::idMissing())
 {
 delete $$;
 return yyerror("xs:ID missing for xs:IDREF");
 }
 }
 ;

y_XmlHeaderForLine:
 y_LiztAttributePair ENDITEM
 {$$ = new XmlHeaderForLine();
 yyUnrefMap[$$] = $$;
 yyUnrefMap.erase($1);

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8337

XML Tools

105

 if ($$->badAttributes($1))
 {
 delete $1;
 return yyerror("Bad header attributes");
 }
 delete $1;
 }
 ;

y_AttributePair :
 y_attributeName TERMINALSTRING
 {$$ = new AttributePair($1, $2);
 yyUnrefMap[$$] = $$;
 free($1);
 free($2);
 }
 ;

y_LiztAttributePair :
 y_AttributePair
 {$$ = new AttributePairLisd($1);
 yyUnrefMap[$$] = $$;
 yyUnrefMap.erase($1);
 }
 | y_LiztAttributePair y_AttributePair
 {$$ = $1;
 yyUnrefMap.erase($2);
 $$->push_back($2);
 }
 ;

y_XmlDecimal :
 DATASTRING
 {$$ = new XmlDecimal($1);
 yyUnrefMap[$$] = $$;
 free($1);
 if ($$->bad)
 {
 return yyerror("bad XmlDecimal");
 }
 }
 ;

y_XmlID :
 DATASTRING
 {$$ = new XmlID($1);
 yyUnrefMap[$$] = $$;
 free($1);
 if ($$->bad)
 {
 return yyerror("bad XmlID");

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8337

 XML Tools

106

 }
 }
 ;

y_XmlVersion :
 STARTVERSION XMLVERSION TERMINALSTRING ENDVERSION
 {$$ = new XmlVersion();
 yyUnrefMap[$$] = $$;
 if (strcmp($3, "1.0"))
 {
 free($3);
 return yyerror("version number must be 1.0");
 }
 free($3);
 }
 | STARTVERSION XMLVERSION TERMINALSTRING
 ENCODING TERMINALSTRING ENDVERSION
 {$$ = new XmlVersion();
 yyUnrefMap[$$] = $$;
 if (strcmp($3, "1.0"))
 {
 free($3);
 free($5);
 return yyerror("version number must be 1.0");
 }
 else if ((strcmp($5, "UTF-8")) && (strcmp($5, "utf-8")))
 {
 free($3);
 free($5);
 return yyerror("encoding must be UTF-8 or utf-8");
 }
 else
 strncpy($$->encoding, $5, 6);
 free($3);
 free($5);
 }
 | STARTVERSION XMLVERSION TERMINALSTRING
 STANDALONE TERMINALSTRING ENDVERSION
 {$$ = new XmlVersion();
 yyUnrefMap[$$] = $$;
 if (strcmp($3, "1.0"))
 {
 free($3);
 free($5);
 return yyerror("version number must be 1.0");
 }
 else if ((strcmp($5, "yes")) && (strcmp($5, "no")))
 {
 free($3);
 free($5);
 return yyerror("standalone must be yes or no");
 }

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8337

XML Tools

107

 else
 strncpy($$->standalone, $5, 5);
 free($3);
 free($5);
 }
 | STARTVERSION XMLVERSION TERMINALSTRING ENCODING TERMINALSTRING
 STANDALONE TERMINALSTRING ENDVERSION
 {$$ = new XmlVersion();
 yyUnrefMap[$$] = $$;
 if (strcmp($3, "1.0"))
 {
 free($3);
 free($5);
 free($7);
 return yyerror("version number must be 1.0");
 }
 else if ((strcmp($5, "UTF-8")) && (strcmp($5, "utf-8")))
 {
 free($3);
 free($5);
 free($7);
 return yyerror("encoding must be UTF-8 or utf-8");
 }
 else if ((strcmp($7, "yes")) && (strcmp($7, "no")))
 {
 free($3);
 free($5);
 free($7);
 return yyerror("standalone must be yes or no");
 }
 else
 {
 strncpy($$->encoding, $5, 6);
 strncpy($$->standalone, $7, 5);
 free($3);
 free($5);
 free($7);
 }
 }
 ;

y_attributeName :
 xmlnsATTR {$$ = strdup("xmlns");}
 | xmlnsColonATTR {$$ = strdup("xmlns:");}
 | xsiSchemaLocationATTR {$$ = strdup("xsi:schemaLocation");}
 | xsiNoNameLocationATTR {$$ = srtdup("xsi:noNamespaceSchemaLocation");}
 | colorATTR {$$ = strdup("color");}
 ;

y_LineType :
 y_Name_XmlID y_Point_PointType y_Vector_VectorType
 {$$ = new LineType($1, $2, $3, (const char *)0);

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8337

 XML Tools

108

 yyUnrefMap[$$] = $$;
 if ($1) yyUnrefMap.erase($1);
 if ($2) yyUnrefMap.erase($2);
 if ($3) yyUnrefMap.erase($3);
 }
 ;

y_Name_XmlID :
 NameSTART ENDITEM {yyReadData = 1;} y_XmlID NameEND
 {$$ = $4;}
 ;

y_PointType :
 ENDITEM y_Name_XmlID y_X_XmlDecimal y_Y_XmlDecimal
 {$$ = new PointType($2, $3, $4, (const char *)0);
 yyUnrefMap[$$] = $$;
 if ($2) yyUnrefMap.erase($2);
 if ($3) yyUnrefMap.erase($3);
 if ($4) yyUnrefMap.erase($4);
 }
 ;

y_Point_PointType :
 PointSTART PointTypeXSIDECL y_PointType PointEND
 {$$ = $3;
 $$->printElement = "Point";
 $$->printTypp = "PointType";
 }
 | PointSTART y_PointType PointEND
 {$$ = $2;
 $$->printElement = "Point";
 }
 ;

y_VectorType :
 ENDITEM y_Name_XmlID y_X_XmlDecimal y_Y_XmlDecimal
 {$$ = new VectorType($2, $3, $4, (const char *)0);
 yyUnrefMap[$$] = $$;
 if ($2) yyUnrefMap.erase($2);
 if ($3) yyUnrefMap.erase($3);
 if ($4) yyUnrefMap.erase($4);
 }
 ;

y_Vector_VectorType :
 VectorSTART VectorTypeXSIDECL y_VectorType VectorEND
 {$$ = $3;
 $$->printElement = "Vector";
 $$->printTypp = "VectorType";
 }
 | VectorSTART y_VectorType VectorEND

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8337

XML Tools

109

 {$$ = $2;
 $$->printElement = "Vector";
 }
 ;

y_X_XmlDecimal :
 XSTART ENDITEM {yyReadData = 1;} y_XmlDecimal XEND
 {$$ = $4;}
 ;

y_Y_XmlDecimal :
 YSTART ENDITEM {yyReadData = 1;} y_XmlDecimal YEND
 {$$ = $4;}
 ;

%%

/* *** */

/* yyerror

Returned Value: int (1)

Called By: yyparse

This:
1. deletes all entries in the yyUnrefMap.
2. clears the yyUnrefMap.
3. prints whatever string has been provided.
4. returns 1.

*/

int yyerror(/* ARGUMENTS */
 const char * s) /* string to print */
{
 std::map<XmlSchemaInstanceBase *, XmlSchemaInstanceBase *>::iterator iter;

 if (strcmp(s, "bug: unreferenced memory exists"))
 { // get segmentation fault in for loop if unreferenced memory exists
 for (iter = yyUnrefMap.begin(); iter != yyUnrefMap.end(); iter++)
 {
 delete (iter->first);
 }
 yyUnrefMap.clear();
 }
 fflush(stdout);
 fprintf(stderr, "\n%s\n", s);
 return 1;
}

/* *** */

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8337

 XML Tools

110

 Lex File line.lex

This is the Lex file line.lex, generated by the xmlInstanceParserGenerator, as described
in Section 5.4.

To provide an option for echoing or not echoing the input while reading, the ECHO_IT
and ECH macros are used and are controlled by the NO_ECHO compiler macro.
Whenever the lexer reads anything, the ECH command is executed. If compiling is done
with NO_ECHO defined, as shown in the Makefile of section 9.3.2, ECHO_IT is set to 0.
If compiled with NO_ECHO not defined, ECHO_IT is set to 1. In the ECH macro, if
ECHO_IT is set to 1, when ECH is executed, the Lex ECHO command runs and prints
whatever has been read to stdout, which is normally the computer monitor. If ECHO_IT
is not set to 1, ECH does nothing.

%{

/*

This ignores white space outside of meaningful strings of characters.

*/

#ifdef WIN32
#include <io.h>
#define strdup _strdup
#define fileno _fileno
#define isatty _isatty
#define YY_NO_UNISTD_H
#endif
#include <string.h> // for strdup
#include "lineClasses.hh"
#include <lineYACC.hh> // for tokens, yylval, etc.

#ifndef NO_ECHO
#define ECHO_IT 1
#else
#define ECHO_IT 0
#endif
#define ECH if (ECHO_IT) ECHO

extern int yyReadData;
extern int yyReadDataList;
extern int yyStartAnew;

#ifdef STRINGIN
char * yyStringInputPointer;
char * yyStringInputEnd;

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8337

XML Tools

111

#undef YY_INPUT
#define YY_INPUT(b, r, ms) (r = set_yyinput(b, ms))

int set_yyinput(char * buffer, int maxSize)
{
 int n;

 n = (maxSize < (yyStringInputEnd - yyStringInputPointer) ?
 maxSize : (yyStringInputEnd - yyStringInputPointer));
 if (n > 0)
 {
 memcpy(buffer, yyStringInputPointer, n);
 yyStringInputPointer += n;
 }
 return n;
}
#endif

%}

W [\t\n\r]*
%x COMMENT
%x DATA
%x DATALIST
%x XMLVER

%%

 if (yyStartAnew)
 {
 yyrestart(yyin);
 yyStartAnew = 0;
 yyReadData = 0;
 yyReadDataList = 0;
 }
 else if (yyReadDataList)
 {
 BEGIN(DATALIST);
 }
 else if (yyReadData)
 {
 BEGIN(DATA);
 yyReadData = 0;
 }

{W}"<!--" {ECH; BEGIN(COMMENT); /* delete comment start */}
<COMMENT>. {ECH; /* delete comment middle */ }
<COMMENT>\n {ECH; /* delete comment middle */ }
<COMMENT>"-->" {ECH; BEGIN(INITIAL); /* delete comment end */ }

<XMLVER>"xml"[\t]+"version"{W}"=" {ECH; return XMLVERSION;}
<XMLVER>"encoding"{W}"=" {ECH; return ENCODING;}

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8337

 XML Tools

112

<XMLVER>"standalone"{W}"=" {ECH; return STANDALONE;}
<XMLVER>\"[^\"]+\" {ECH;
 int n;
 for (n = 1; yytext[n] != '"'; n++);
 yytext[n] = 0;
 yylval.sVal = strdup(yytext + 1);
 return TERMINALSTRING;
 }
<XMLVER>"?>" {ECH; BEGIN(INITIAL); return ENDVERSION;}

<DATA>"<" {BEGIN(INITIAL);
 unput('<');
 yylval.sVal = strdup("");
 return DATASTRING;
 }
<DATA>[^<]* {ECH; BEGIN(INITIAL);
 yylval.sVal = strdup(yytext);
 return DATASTRING;
 }

<DATALIST>[^<> \t\n\r]* {ECH;
 yylval.sVal = strdup(yytext);
 return DATASTRING;
 }
<DATALIST>{W} {ECH;}
<DATALIST>">" {ECH; return ENDITEM;}
<DATALIST>"<" {yyReadDataList = 0;
 yyReadData = 0;
 unput('<');
 BEGIN(INITIAL);
 }

"<?" {ECH; BEGIN(XMLVER); return
STARTVERSION;}

"</"{W}"Line"{W}">" {ECH; return LineEND;}
"<"{W}"Line" {ECH; return LineSTART;}
"</"{W}"Name"{W}">" {ECH; return NameEND;}
"<"{W}"Name" {ECH; return NameSTART;}
"</"{W}"Point"{W}">" {ECH; return PointEND;}
"<"{W}"Point" {ECH; return PointSTART;}
"</"{W}"Vector"{W}">" {ECH; return VectorEND;}
"<"{W}"Vector" {ECH; return VectorSTART;}
"</"{W}"X"{W}">" {ECH; return XEND;}
"<"{W}"X" {ECH; return XSTART;}
"</"{W}"Y"{W}">" {ECH; return YEND;}
"<"{W}"Y" {ECH; return YSTART;}

{W}"color"{W}"=" {ECH; return colorATTR;}
{W}"xmlns"{W}"=" {ECH; return xmlnsATTR;}
{W}"xmlns:" {ECH; return xmlnsColonATTR;}
{W}"xsi:schemaLocation"{W}"=" {ECH; return xsiSchemaLocationATTR;}

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8337

XML Tools

113

{W}"xsi:noNamespaceSchemaLocation"{W}"=" {ECH; return
xsiNoNameLocationATTR;}

{W}"xsi:type"{W}"="{W}"\"PointType\"" {ECH; return PointTypeXSIDECL;
}
{W}"xsi:type"{W}"="{W}"\"VectorType\"" {ECH; return
VectorTypeXSIDECL; }

">" {ECH; return ENDITEM;}

[a-zA-Z]+{W}"="{W}\"[^\"]+\" {ECH;
 int n;
 for (n = 0; yytext[n] != '"'; n++);
 for (n++; yytext[n] != '"'; n++);
 yytext[n] = 0;
 yylval.sVal = strdup(yytext);
 return TERMINALSTRING;
 }

\"[^\"]+\" {ECH;
 int n;
 for (n = 1; yytext[n] != '"'; n++);
 yytext[n] = 0;
 yylval.sVal = strdup(yytext + 1);
 return TERMINALSTRING;
 }

{W} {ECH;}

. {ECH; return BAD;}

%%

int yywrap()
{
 return 1;
}

 XML Schema File lineNoAtt.xsd

This schema file, lineNoAtt.xsd, was generated by the xmlSchemaAttributeConverter as
described in Section 7.3. Note that the LineType has a “color” element and no “color”
attribute.

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema
 xmlns:xs="http://www.w3.org/2001/XMLSchema"

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8337

 XML Tools

114

 elementFormDefault="qualified"
 attributeFormDefault="unqualified">
 <xs:include schemaLocation="primitivesNoAtt.xsd"/>

 <xs:element name="Line"
 type="LineType">
 <xs:annotation>
 <xs:documentation>
 Root element
 </xs:documentation>
 </xs:annotation>
 </xs:element>

 <xs:complexType name="LineType">
 <xs:complexContent>
 <xs:extension base="BaseType">
 <xs:sequence>
 <xs:element name="Point"
 type="PointType"/>
 <xs:element name="Vector"
 type="VectorType"/>
 <xs:element name="color"
 type="xs:token"
 minOccurs="0"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>

</xs:schema>

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8337

XML Tools

115

 XML Instance File lineNoAtt1.xml

This XML instance file was written by hand.

<?xml version="1.0" encoding="UTF-8"?>
<Line
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="../schema/lineNoAtt.xsd">
 <Name>Line_1</Name>
 <Point>
 <Name>Point_1</Name>
 <X>0</X>
 <Y>0</Y>
 </Point>
 <Vector>
 <Name>Vector_1</Name>
 <X>0</X>
 <Y>1</Y>
 </Vector>
 <color>
 green
 </color>
</Line>

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8337

 XML Tools

116

Bibliography

[1] P. Walmsley, Definitive XML Schema, Upper Saddle River, NJ, USA: Prentice Hall, 2002.

[2] "boost C++ Libraries," [Online]. Available: https://www.boost.org/. [Accessed 17 May 2020].

[3] D. Brown, J. Levine and T. Mason, lex & yacc, O'Reilly Media, 1992.

[4] C. Donnelly and R. Stallman, Bison, the YACC-compatible Parser Generator,
http://dinosaur.compilertools.net/bison, 2006.

[5] World Wide Web Consortium, XML Schema Part 2: Datatypes Second Edition - W3C
Recommendation 28 October 2004, World Wide Web Consortium, 2004.

[6] World Wide Web Consortium, XMLSchema Part 1: Structures Second Edition - W3C
Recommendation 28 October 2004, World Wide Web Consortium, 2004.

[7] World Wide Web Consortium, XML Schema Part 0: Primer Second Edition - W3C
Recommendation 28 October 2004, World Wide Web Consortium, 2004.

[8] World Wide Web Consortium, Extensible Markup Language (XML) 1.0 (Fifth Edition), World
Wide Web Consortium, 2008.

[9] World Wide Web Consortium, XML Information Set (Second Edition), World Wide Web
Consortium, 2004.

[10] "Valgrind Documentation," 9 October 2018. [Online]. Available:
valgrind.org/docs/manual/manual.html. [Accessed 7 2 2019].

[11] ISO, ISO. 10303-11: 2004: Industrial automation systems and integration— Product data
representation and exchange — Part 11 : Description method: The EXPRESS language
reference manual, ISO, 2003.

[12] B. Stroustrup, C++ Programming Language, Addison-Wesley, 2000.

[13] M. Horridge, A Practical Guide To Building OWL Ontologies Using Prot´eg´e 4 and CO-
ODE Tools, The University Of Manchester, 2011.

[14] World Wide Web Consortium, OWL 2 Web Ontology Language Primer (Second Edition) —

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8337

XML Tools

117

W3C Recommendation 11 December 2012, World Wide Web Consortium, 2012.

[15] World Wide Web Consortium, OWL 2 Web Ontology Language Structural Specification and
Functional–Style Syntax (Second Edition) — W3C Recommendation 11 December 2012,
World Wide Web Consortium, 2012.

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8337

	1 Introduction
	1.1 Overview
	1.2 Typographical Conventions
	1.3 Previous Report
	1.4 Organization of This Manual

	2 How the Tools Work Together
	3 An Example
	4 Using the xmlSchemaParser
	4.1 What the xmlSchemaParser Does
	4.2 Invoking the xmlSchemaParser
	4.3 Warnings Issued
	4.4 Limitations of the xmlSchemaParser
	4.4.1 One schema file
	4.4.2 Comment Location Limited
	4.4.3 Constraints Not Checked for Validity
	4.4.4 Prefix Required for XML Schema Namespace
	4.4.5 Only One User-defined Namespace
	4.4.6 Not All Qnames
	4.4.7 Not All XSDL
	4.4.8 Limited Regular Expressions
	4.4.9 Final Not Enforced
	4.4.10 Data Types Not Checked

	5 Using the xmlInstanceParserGenerator
	5.1 What the xmlInstanceParserGenerator Does
	5.1.1 Parse Schema
	5.1.2 Generate Code Files
	5.1.2.1 Constructors
	5.1.2.2 Destructor

	5.1.3 Save User Changes to C++ Header
	5.1.4 Pattern Restrictions

	5.2 Invoking the xmlInstanceParserGenerator
	5.2.1 App Include Prefix (-a)
	5.2.2 Get and Set (-f)
	5.2.3 Header Update (-h)
	5.2.4 Include Prefix (-i)
	5.2.5 Output (-o)
	5.2.6 Prefix (-p)
	5.2.7 Xsi:type (-x)

	5.3 Processing Generated Files
	5.3.1 Processing by Flex and Bison
	5.3.2 Compiling
	5.3.2.1 Echo While Parsing – or Not
	5.3.2.2 Taking Input from a File or a String
	5.3.2.3 Printing Output to a File or a String
	5.3.2.3.1 Always to a File
	5.3.2.3.2 Always to a String
	5.3.2.3.3 To Either String or File

	5.3.2.4 Destructors and Clearing Memory
	5.3.2.4.1 First Method
	5.3.2.4.2 Second Method
	5.3.2.4.3 Recommendation

	5.4 Example – Generating from Line.xsd
	5.5 Saving Header File Changes Made Manually
	5.6 Limitations of the xmlInstanceParserGenerator
	5.6.1 Limitations Inherited from xmlSchemaParser
	5.6.2 Type Definitions Must Be At Schema Level
	5.6.3 No Code to Check Some Constraints
	5.6.4 Several Constructs Not Handled
	5.6.5 Some Basic Data Types Not Handled
	5.6.6 Names Not Guaranteed to be Unique
	5.6.7 Prefixes ignored
	5.6.8 Not All Patterns Handled

	6 Using the orphanFinder
	6.1 What the orphanFinder Does
	6.2 Invoking the orphanFinder
	6.3 Examples of Using the orphanFinder
	6.4 Limitations of the orphanFinder

	7 Using the xmlSchemaAttributeConverter
	7.1 What the xmlSchemaAttributeConverter Does
	7.2 Invoking the xmlSchemaAttributeConverter
	7.3 Example of Using the xmlSchemaAttributeConverter
	7.4 Limitations of the xmlSchemaAttributeConverter

	8 Using Domain Instance XML Parsers
	8.1 What a Domain Parser Does
	8.2 Invoking a Domain Parser
	8.2.1 Numbers with Decimal Points
	8.2.2 The Times Argument

	8.3 Example of Running a Domain Parser
	8.4 Limitations of Domain Parsers

	9 Software Overview
	9.1 Code
	9.1.1 Code Documentation
	9.1.2 Code Formatting

	9.2 Differences in Approach Among Tools
	9.2.1 xmlInstanceParserGenerator
	9.2.2 xmlSchemaParser
	9.2.3 xmlSchemaAttributeConverter
	9.2.4 orphanFinder

	9.3 Makefiles
	9.3.1 Makefile for Purely XML Tools
	9.3.2 Makefile for Example lineParser

	10 xmlSchemaParser Details
	10.1 xmlSchemaParser.cc
	10.2 xmlSchemaClasses.cc and xmlSchemaClasses.hh
	10.3 xmlSchema.y
	10.3.1 Comments
	10.3.2 Checking Pattern Regular Expressions
	10.3.3 doXmlXXXAttributes functions
	10.3.4 YACC Types and Rules
	10.3.5 Bison Conflicts

	11 xmlInstanceParserGenerator Details
	11.1 How the xmlInstanceParserGenerator Runs
	11.1.1 Initialize
	11.1.2 Process Included Schema files
	11.1.3 Build Classes
	11.1.4 Build Information
	11.1.5 Print Everything
	11.1.6 Finish

	11.2 Code Coordination
	11.3 xmlInstanceParserGenerator Methods
	11.3.1 Build YACC
	11.3.2 Print YACC
	11.3.3 Print C++ Header Files
	11.3.4 Print C++ Code Files
	11.3.5 Print Lex
	11.3.6 Other Data Builders
	11.3.7 Data Finders

	11.4 Printing to a File or a String
	11.5 Lists, Maps, and Sets
	11.5.1 Uses of Lists, Maps, and Sets
	11.5.2 List Terminology

	11.6 Issues Handled in the xmlInstanceParserGenerator
	11.6.1 Keeping Track of Which Elements and Defined Types Are Used
	11.6.2 Choice, Mock Types, and Mock Elements
	11.6.2.1 Plain Choice
	11.6.2.2 Mock Types and Mock Elements

	11.6.3 Handling Optional Elements
	11.6.4 Handling xsi:type
	11.6.5 Handling Ref
	11.6.6 Handling XML Attributes
	11.6.7 Handling Chains of Simple Restrictions
	11.6.8 Handling SubstitutionGroups
	11.6.9 Handling Simple Lists
	11.6.10 Checking Restrictions on XML Simple List Types
	11.6.11 ComplexType usesEndTag
	11.6.12 YACC Names
	11.6.12.1 YACC Type Names
	11.6.12.2 YACC Token Names
	11.6.12.3 YACC Production Names

	11.6.13 Preventing Memory Leaks in Domain Parsers
	11.6.14 Ideas not Implemented
	11.6.14.1 Abbreviation of Names
	11.6.14.2 Access Function Style

	12 xmlSchemaAttributeConverter Details
	13 orphanFinder Details
	14 xmlSchemaInstance Details
	14.1 C++ Classes
	14.2 Printing Basic Data Types for Element or Attribute
	14.3 Checking ID and IDREF

	15 Domain Instance Parser Details
	15.1 Re-running a Domain Parser
	15.2 Preventing Memory Leaks in Domain Parsers
	15.3 Lists in Domain Parsers

	16 XML and XSDL
	16.1 XML Schemas
	16.2 XML Instance Files Conforming to XML Schemas

	17 YACC Basics
	17.1 Arrangement of a YACC file
	17.2 YACC Rules

	18 Use of the Tools
	18.1 xmlSchemaParser Use
	18.2 xmlInstanceParserGenerator Use
	18.3 orphanFinder Use
	18.4 xmlSchemaAttributeConverter Use

	19 Testing the Tools
	19.1 Test Case Files
	19.2 regressionTestGenerate
	19.3 regressionTestCompile
	19.4 regressionTestExecute
	19.5 regressionTest

	20 Future Work
	21 Acknowledgements
	Annex A XML schema file primitives.xsdecho
	Annex B C++ File primitivesClasses.hh
	Annex C C++ File lineClasses.hh
	Annex D C++ File primitivesClasses.cc
	Annex E C++ File lineClasses.cc
	Annex F C++ File lineParser.cc
	Annex G YACC File line.y
	Annex H Lex File line.lex
	Annex I XML Schema File lineNoAtt.xsd
	Annex J XML Instance File lineNoAtt1.xml
	Bibliography

