NISTIR 8326

A Model-Driven Approach to
Interoperability Between Simulation and
Optimization for Production and
Logistics Systems

Timothy Sprock

This publication is available free of charge from:
https://doi.org/10.6028/NIST.IR.8326

NIST

National Institute of
Standards and Technology
U.S. Department of Commerce

NISTIR 8326

A Model-Driven Approach to
Interoperability Between Simulation and
Optimization for Production and
Logistics Systems

Timothy Sprock
Systems Integration Division
Engineering Laboratory

This publication is available free of charge from:
https://doi.org/10.6028/NIST.IR.8326

December 2020

U.S. Department of Commerce
Wilbur L. Ross, Jr., Secretary

National Institute of Standards and Technology
Walter Copan, NIST Director and Undersecretary of Commerce for Standards and Technology

Certain commercial entities, equipment, or materials may be identified in this document in order to describe
an experimental procedure or concept adequately. Such identification is not intended to imply
recommendation or endorsement by the National Institute of Standards and Technology, nor is it intended to
imply that the entities, materials, or equipment are necessarily the best available for the purpose.

National Institute of Standards and Technology
Interagency or Internal Report 8326

Natl. Inst. Stand. Technol. Interag. Intern. Rep. 8326, 34 pages (December 2020)

This publication is available free of charge from:
https://doi.org/10.6028/NIST.IR.8326

9z£8 91" 1SIN/8209°01 /B40°10p//:sdNy :woly abieyd Jo aauy s|gejieAe si uonealignd siy|

Abstract

Simulation and optimization must be used together to design and operate large-scale, com-
plex systems. Integrating them presents a number of conceptual and technical problems,
which can be addressed with more expressive, computer-interpretable system models. This
paper presents a model-driven approach to integrating simulation and optimization methods
by exchanging system designs that specialize analysis abstractions, both defined in the Sys-
tems Modeling Language (SysML). The analysis abstractions enable translation of system
models to corresponding analysis models and tool interfaces. This approach (model-driven
system-analysis integration) is demonstrated by developing a multi-fidelity, multi-method
simulation optimization methodology and applying it to a supply chain design case study.

Key words

Analysis Interoperability; Discrete Event Logistics Systems (DELS); Industrial Engineer-
ing; Model-based Systems Engineering; Production and Logistics Systems Modeling; Sim-
ulation Optimization; SysML;

92£8 41" 1 SIN/8209°01/640°10p//:sd)Yy :woJ) sbieyo Jo 8al) a|qejieAe si uolealignd siy |

Table of Contents

1 INTRODUCTION
2 Use Cases for DELS Analysis Interoperability

2.1
2.2
2.3

Domain-Specific Simulation Optimization Specializations for DELS
Generating and Evaluating Large-Scale Simulations
“Multi-X" Analysis Methodologies

3 A Model-driven Approach to Integrating Simulation and Optimization

3.1

3.2
33

34

Domain-specific Simulation-Optimization Interfaces Defined by System Mod-

els
3.1.1 Distribution Supply Chain System Model
3.1.2 Formal Abstract Model: Network-based Abstractions
Abstraction: Formulating Analysis Models from System Abstractions
System-Analysis Integration & Simulation Generation Methods
3.3.1 Analysis Integration: Generative Programming Approaches to De-
veloping
Domain-specific Simulation Adapters
3.3.2 Specialized Builders
3.3.3 Reusable Model Libraries for Simulation Generation
What is the best abstraction: A Formal Domain Model for Discrete Event
Logistics Systems (DELS)

4 Applying Model-Driven Integration Methods to Analysis Methodologies: A

Case Study

4.1 Analysis Method: Multi-fidelity Simulation Optimization

4.2 Distribution Network Design Based on a MCFN Approximation

4.3 Resource Investment via Genetic Algorithm Using Low-Fidelity Discrete
Event Simulation

4.4 Control Policy Selection via Enumeration Using High-Resolution Simulation

4.5 Results

5 Conclusions and Future Work

References

N W W -

—_
N O oo

14
15

16

18
18
20

20
22
22

23
24

92£8 41" 1 SIN/8209°01/640°10p//:sd)Yy :woJ) sbieyo Jo 8al) a|qejieAe si uolealignd siy |

Fig.

Fig.
Fig.

Fig.

Fig.

Fig.

Fig.
Fig.

Fig.

Fig.

List of Figures

1 Simulation and optimization models are constructed from and exchange re-
sults via a common system model.

2 Distribution supply chain system model

3 Flow Networks are foundational to constructing many kinds of analysis mod-
els, including discrete event simulation.

4 Supply Chains are specialized Flow Networks. Generalization enables Flow
Networks to be recovered and used for generating MCFN analyses. The
distribution supply chain class is omitted from the picture for brevity, but
remains a part of the model.

5 Platform-specific simulation generators specialize FlowNetworkFactory. Sim-
ulation models output by the generators are all created using the same inter-
face. Each specialized FlowNetwork has corresponding specialized analysis
builders for filling in instance-specific details.

6 Generalized supply chain models can be extended from a discrete event lo-
gistics systems (DELS) abstraction.

7 An overview of the simulation optimization analysis methodology

8 Multi-commodity flow network optimization results with candidate depots
highlighted in solid (red) circles

9 (a) Discrete event simulation generated in SimEvents and (b) output of multi-
objective genetic algorithm (Right)

10 Biobjective plots of the set of Pareto efficient solutions produced by the
multi-objective simulation optimization.

11

13

17
19

20

21

22

92£8 41" 1 SIN/8209°01/640°10p//:sd)Yy :woJ) sbieyo Jo 8al) a|qejieAe si uolealignd siy |

1. INTRODUCTION

Increasing system scale and complexity require improved decision-making support in Dis-
crete Event Logistics Systems (DELS), which are networks of interconnected resources
and subsystems that add value by operating on items flowing through them [1, 2]. These
include supply chains, manufacturing systems, transportation networks, warehouses, and
health care delivery systems. Combining simulation and optimization methods leverages
their complementary strengths to provide full lifecycle decision-making support for DELS,
from system design methods to online real-time operational control. Despite evidence that
these methods can be used together, there does not appear to be a widely-adopted, generic
way to integrate existing analysis (simulation, optimization) tools or establish more general
interoperability among seemingly-related methods analyzing the same system.

One challenge to integrating simulation and optimization models, methods, and tools is
that a single simulation model is often used as the complete system model, even though
it often captures only one narrow view of the system, as needed for its kind of sim-
ulation. This limits optimization methodologies to searching only alternatives that can
be expressed from the perspective of a single simulation model. Integrated simulation-
optimization methodologies need access to multiple simulation models to optimize the
entire (all views of) the system. This principle is essential to developing and integrat-
ing specialized, domain-specific (or purpose-specific) simulation and optimization tools
and developing simulation-optimization methodologies that integrate different tools, ab-
stractions, formalisms, etc. Multiple views, each captured as a different analysis model,
assumes that there exists a separate, complete system model that can be accessed readily
and inexpensively when constructing analysis models.

This paper proposes integrating simulation and
optimization methods by exchanging computer-
interpretable system models that are expressed in
standard information formats (syntax) interpreted in
standard ways (semantics), as illustrated in figure

1. For example, DELS simulation and optimiza-
tion models would benefit from standard formats and
interpretations for items flowing through a system b Bl o LAzl /)
(types and quantities), how they are flowing (paths \, w)
and resources), and when they are flowing (con- -
trol). System models describe logical relationships Fig, 1. Simulation and optimization
between various aspects of the system and its en- models are constructed from and
vironment, as compared to analytic and geometric exchange results via a common system
models. Standard modeling languages such as the model.

Systems Modeling Language (SysML) are more ex-

pressive than analysis languages, enabling precise analysis-independent specifications that
are not constrained by any target analysis language. SysML covers structure, behavior, and
control of systems independent of analysis, enabling a single system model to be the source

System of
Interest

92£8 41" 1 SIN/8209°01/640°10p//:sd)Yy :woJ) sbieyo Jo 8al) a|qejieAe si uolealignd siy |

for creating many kinds of analysis models, including purpose-specific simulation and op-
timization models. Exchanging system models between simulation and optimization tools
enables analysis models to be generated and updated as needed to reflect required views,
new solutions, etc.

The research reported here shows that system models can be linked to reusable anal-
ysis abstractions via specialization, facilitating construction of analysis models. Analysis
languages, tools, and methods can be adapted to these shared abstractions, including those
for specific applications. This work is an extension to the research reported in [2—4]. The
discussion and examples in this paper primarily focus on discrete event simulation, how-
ever, the methods could apply to other kinds of analyses. The approach could also apply to
platforms other than the one validated here and between those platforms. Further descrip-
tions and reference implementations for these other analyses and platforms are deferred to
a future paper. The SysML model libraries in this paper can be found at [5, 6], along with
documentation [2]. The case study implementation can be found at [7].

The rest of the paper is organized as follows: section 2 shows some benefits of simula-
tion and optimization interoperability via use cases in DELS analysis. Section 3 describes
the (system) model-driven approach to simulation-optimization interoperability, including
definition of analysis abstractions and specialization of system models from them, as well
as methods for adapting existing analysis methods and tools to those abstractions, includ-
ing generating analysis models from them. Section 4 summarizes a case study applying the
methods detailed in the previous sections to a methodology for designing and analyzing a
distribution supply chain.

2. Use Cases for DELS Analysis Interoperability

Research and applications become more specialized and reliant on interoperability of in-
dividual analysis components as systems become larger and more complex. Researchers
(analysis developers) focus on their own particular area of interest (algorithms or domains)
and rely on others to implement complementary analysis components. General approaches
to integrating multiple analysis methods and their associated tools, such as for simulation
and optimization, remains a largely unmet challenge.

Simulation optimization methods are commonly integrated by defining interfaces be-
tween simulation and optimization tools for exchanging input parameter values (input to
simulation) and solution values and other feedback, such as gradient information (output
to optimization), for example, in the SimOpt library [8] or Industrial Strength Compass
[9]. The commercial success of OptQuest™ can be attributed partly to its integration with
several popular simulation tools. However due to semantic differences between OptQuest
and simulation, integrating OptQuest with each simulation platform is an expensive process
that does not scale well to many-solver environments [10].

Improving interoperability between simulation and optimization methods requires stan-
dardized information exchange between the two methods, both in format (syntactic) and
interpretation (semantic) [11]. Integration is currently achieved by two mappings: syntac-

92£8 41" 1 SIN/8209°01/640°10p//:sd)Yy :woJ) sbieyo Jo 8al) a|qejieAe si uolealignd siy |

tic mappings for each pair of tools (one for each pair), and semantic mappings for each
problem instance (analysis model) created using a particular pair of tools. The semantic
mapping is often done by “promoting” (mapping) parameters from a simulation model to
variables in an optimization model. However, this approach relies on the simulation tool to
interpret and implement the optimization solution. Interpreting optimization model output
is often hard-coded into the simulation interface. Implementation might be as simple as
setting simulation parameter values already mapped to the optimization variables, but only
if optimization methods are limited to simply searching over parameter values. In com-
plex cases such as changing system topology, implementation might require the simulation
model to be rebuilt from scratch. Since the simulation tool interprets and translates both
simulation and optimization input/output, simulation optimization methodologies have lim-
ited ability to incorporate multiple simulation methods and tools.

The following sections describe three broad use cases for improved simulation opti-
mization interoperability: specializing simulation optimization for particular DELS do-
mains (section 2.1), generating and evaluating domain-specific simulation models (section
2.2), and integrating multiple analysis methods into a simulation optimization methodology
(section 2.3).

2.1 Domain-Specific Simulation Optimization Specializations for DELS

Domain-specific characteristics can be exploited by simulation optimization methods to
provide narrowly-scoped and well-structured search neighborhoods. In genetic algorithms,
domain-specific structures can be exploited through specialized encoding schemes, initial-
ization procedures, and local search operators; see, for example, [12—17]. In Tabu methods,
domain-specific search neighborhoods can be integrated into local search procedures, such
as swapping orders within the schedule [18], separating routing and scheduling compo-
nents of the job shop problem [19], and setting Kanban levels [20]. Knowledge-based
optimization methods incorporate learning modules that use domain-specific information
to guide the search process, such as selecting priority rules and lot sizes [21]. Specialized
algorithms based on standard system models can guarantee consistent performance com-
parisons between competing algorithms [20, 22]. Domain-specific analysis methodologies
exploit domain characteristics to enable faster, cheaper, or better solution methods than
their generic counterparts. Shared system models (system conceptualizations) enable de-
veloping increasingly specialized tools that can be easily integrated with other tools devel-
oped for the same domain or abstraction, creating an ecosystem (libraries) of plug-and-play
methods.

2.2 Generating and Evaluating Large-Scale Simulations

A major challenge facing simulation optimization is the expense of constructing and eval-
uating large-scale, high-fidelity simulations. It has long been recognized that the cost and
complexity of simulation model development needs to be reduced, including in conceptual
modeling methods, and that one way to do this is through model and component reuse

92£8 41" 1 SIN/8209°01/640°10p//:sd)Yy :woJ) sbieyo Jo 8al) a|qejieAe si uolealignd siy |

[23]. Simulation models can be automatically generated from libraries of reusable simu-
lation components, model templates, and small families of flexible models [24-26]. The
core manufacturing simulation data (CMSD) standard supports exchange of manufacturing
information between simulation and manufacturing applications [27, 28]. Domain ontolo-
gies and domain-specific languages can narrow the gap between simulation specification
model and simulation program [29, 30].

Large-scale simulation development shares many challenges with systems and soft-
ware engineering methods and could benefit from their model-driven methodologies [31].
Model-driven architecture (MDA) and model-based systems engineering (MBSE) method-
ologies involve platform-independent models separate from their implementations in spe-
cific optimization or simulation software packages [32, 33]. MDA and MBSE method-
ologies use platform-independent system models to automatically generate analysis mod-
els via computer-interpretable, reusable model-to-model (M2M) translations from a single
system model into target analysis languages [34-37]. Generative methods for constructing
simulation models from validated model library components are effective especially when
a simulation tool requires complex combinations of platform-specific simulation compo-
nents to express even simple concepts [26, 38, 39]. Model-driven generative approaches
use platform-independent reference models to define platform-specific simulation model
library components and patterns (rules) for assembling model library components in the
target language [38]. A generator-based approach is discussed further in section 3.3.

Simulation run-time efficiency challenges are also widely recognized [23, 40, 41]. Spe-
cialized formalisms, abstractions, or tools can reduce simulation execution time compared
to general purpose simulation tools [42—45]. Innovations, such as domain-specific sim-
ulators, could benefit from basing method/tools on a standard system model or analysis
abstraction, which would make it easier to integrate with other models.

2.3 “Multi-X”’ Analysis Methodologies

Model-driven approaches integrate multiple sources of information, often from heteroge-
neous systems, disparate sources, and incompatible formats, to create an complete, in-
tegrated model of the system. This system model enables generation of many kinds of
analysis models or many instances of the same kind of analysis. Analysis models generated
using specialized formalisms, abstractions, and tools can be combined into “multi”-method
analysis methodologies. Semantic (model) interoperability enables developing simulation-
optimization methodologies that are composed from predefined simulation and optimiza-
tion components.

Multi-fidelity ordinal transformation methods use low-fidelity simulation models to
evaluate more solutions, which then provide guidance for selecting solutions to evaluate
using high-fidelity simulation models [46]. Multi-fidelity simulation methods for produc-
tion and logistics systems have been studied, including when and how to to use system ap-
proximations [47-50]. Similarly, reduced simulation methods decrease overall simulation
effort by reducing the resolution of non-bottleneck systems, see, for example, semiconduc-

92£8 41" 1 SIN/8209°01/640°10p//:sd)Yy :woJ) sbieyo Jo 8al) a|qejieAe si uolealignd siy |

tor wafer fabrication simulation [51].

“Multi”’-method simulation optimization methodologies enable selecting and integrat-
ing appropriate simulation tools for the behavior modeling required; see discussion on
cross-paradigm simulation modeling, including system dynamics, discrete event, and agent-
based paradigms [52], discrete event simulation modeling paradigms [53], and a multi-
formalism, multi-solution framework that integrates multiple languages and tools using a
common intermediate abstraction of the domain of interest [42].

Multi-fidelity methods assume that appropriate surrogates (consistent with or derived
from high-fidelity models) can be readily identified, and multiple simulations (views) can
constructed inexpensively, potentially from a single system model. Our methodology pro-
poses using object-oriented modeling and programming methods, specifically generaliza-
tion and composition, to organize and retrieve system abstractions used to generate reduced
or low-fidelity surrogates (section 3.2). Section 3.3 describes organizing and generating
multiple kinds of analysis models from a common representation.

3. A Model-driven Approach to Integrating Simulation and Optimization

Object-oriented modeling and programming methods have been used to develop machine-
readable production and logistics system models (see references in section 3.1). Formal
system models can be exchanged between analysis tools and directly translated into exe-
cutable analysis models. The pitfall so far has been system models and translations that
are too specific to a particular kind of system or target analysis language/tool. It is easier
to manage architecture and complexity this way, but limits reusability beyond the original
system (domain) or selected analysis tool. The challenge is to provide models at a sufficient
level of abstraction to justify developing domain-specific tools and methods (or adapting
existing ones), while also being specific enough to drive productivity enhancements from
these modeling and analysis tools and methods.

This section describes a model-driven approach that bridges between domain-specific
terminology used by practitioners to describe their systems and common abstractions used
to formulate analysis models. Traditionally, mapping and translation between the two is
done using ad-hoc, time-consuming methods reliant on analysis experts. The proposed
method formalizes system models and analysis abstractions separately and formally links
the two by specializing the system models from the abstractions. Section 3.1 describes us-
ing object-oriented system models to define domain-specific interfaces between simulation
and optimization methods and tools. Section 3.2 describes methods to link system mod-
els to the abstractions used to construct analysis models. Section 3.3 describes a system-
analysis integration method that uses system models and abstractions to generate required
analysis models, in this case simulation models. Model-driven integration methods utilize
generation capabilities to adapt existing tools to support common abstractions and ensure
that analysis models are consistent by generating (updating) from the same source.

These methods are applied to the simulation optimization case study on distribution
supply chain design detailed in section 4, illustrating the proposed modeling methods.

92£8 41" 1 SIN/8209°01/640°10p//:sd)Yy :woJ) sbieyo Jo 8al) a|qejieAe si uolealignd siy |

In these systems, customers ship packages (or generic commodities) to other customers
through the network. Examples of this type of supply chain include large-scale distribution
companies such as FedEx or UPS or local courier services that move packages between
customers (or businesses). These models can also be applied to material handling systems
within warehouses or manufacturing plants that shuttle products between departments or
workstations. Parts of the case study are threaded through this section to illustrate these
methods.

3.1 Domain-specific Simulation-Optimization Interfaces Defined by System Models

One strategy to increase interoperability and consistency between domain-specific simula-
tion and optimization algorithms is to develop analysis models from agreed-upon, complete
definitions of the actual system of interest: a system model. Then methods/tools can be im-
plemented to exchange information conforming to the system model or the model itself.

Some simulation-optimization methodologies exchange optimization solutions and sim-
ulation evaluations by posting system state (model) to a global blackboard or storing pa-
rameters and solutions in a common relational database [54, 55], respectively. Several au-
thors describe methodologies where the optimization model and corresponding simulation
model are generated automatically from a System Model Object [17,56,57]. McLean et
al. [58] present a conceptual reference architecture for integrating distributed manufactur-
ing simulation models, other software applications, and data repositories. Using network-
based abstractions to bridge between DELS system and analysis models was introduced
in [59] (section 3.1.2). Object-oriented languages/methods provide flexible and reusable
frameworks for capturing supply chain descriptions [60, 61]. Some frameworks exclu-
sively target the simulation analysis domain [26, 62—64]. Several object-oriented reference
models for supply chains are reviewed in [65].

Previous research on generating analysis models from system models relied on system
models and mappings/translations to analysis that are too specialized for one kind of system
or analysis tool (trading reusability for simplicity). Model-driven system-analysis integra-
tion methods based on commonly-used abstractions can be reused for many domains and
extended to support more specialized applications. The integration methods proposed in
this paper exchange platform-independent system and abstraction models specified using
SysML. OMG’s SysML, an extension of UML, provides an object-oriented modeling envi-
ronment used in many system engineering design methods [66]. Modeling languages like
SysML support abstraction, model library construction, and modeling precision and ex-
pressiveness. SysML offers a standards-based, platform-independent approach for creating
system models and integrating them with platform-specific tools, such as simulation tools
[32, 33]. The next two sections describe system models and abstraction models constructed
using SysML.

92£8 41" 1 SIN/8209°01/640°10p//:sd)Yy :woJ) sbieyo Jo 8al) a|qejieAe si uolealignd siy |

package [SupplyChain J)

depot]0..* manufacturingPlant|0..* transportationSystem |1..*
«block» «blocks «block» «block»
SupplyChain Depot ManufacturingPlant TransportationSystem
references STORE() MAKE() MOVE()
supplier : SupplyChain [0..*]

customer : SupplyChain [1..*¥]| assignedDepot|1..*
produces : Commodity [0..*]
consumes : Commodity [0..*]

operatesOn|1..*

«block»
SOURCE() customer] -
MAKE() 1 * TransportationChannel
DELIVER() h references
«participant» origin : Depot [1]{end = assignedDepot}
T «participant» destination : SupplyChain [1]{end = customer}
«block»

DistributionSupplyChain

parts
manufacturingPlant : ManufacturingPlant [0]

Fig. 2. Distribution supply chain system model

3.1.1 Distribution Supply Chain System Model

The distribution supply chain case study includes a system model specified in SysML, de-
rived from a description more general supply chains, shown in figure 2. Supply Chains
are composed of Manufacturing Plants, Transportation Systems, and Depots. Com-
position, a whole-part relationship, is shown in SysML by a black diamond, with the whole
on the diamond end and the part on the other end. These components broadly align with
Make, Move, and Store capabilities. Distribution Supply Chains are defined here as
specialized Supply Chains that do not have manufacturing plants, indicated by the mul-
tiplicity [0O] next to that property (role) of Distribution Supply Chain. Generalization
(specialization) is represented by a hollow headed arrow pointing from a specialized class
to a more abstract one.

Supply chains source items (Commodities) from suppliers, transform them, and deliver
them to customers. In object-oriented modeling, suppliers and customers are modeled as
roles (properties) played (typed) by other supply chains. These roles are referenced by the
supply chain allowing interaction between the supply chain and its suppliers and customers,
but denoting these entities are not owned by the supply chain. Role-based modeling allows
the same supply chain (enterprise) to act as both suppliers and customers (roles) at different
times with different responsibilities and interaction patterns. Suppliers and customers are
modeled as Supply Chains to enable modeling multi-tier supply chains and flexibility for
elaborating their internal details. For example, they can either be modeled as black box
entities or decomposed into their respective manufacturing, storage, transportation, and
sub-tier supply systems.

Supply chain components are associated via Transportation Channels operated on
by the Transportation System. In distribution supply chains, customers (supply chains

92£8 41" 1 SIN/8209°01/640°10p//:sd)Yy :woJ) sbieyo Jo 8al) a|qejieAe si uolealignd siy |

playing the customer role) send items (Commodities) to each other via transportation chan-
nels and depots (used for efficiency). Each customer can be assigned to (serviced by) multi-

ple depots. Assignment is represented by an association (typed by TransportationChannel)

involving one supply chain and one depot (playing the customer and assignedDepot roles
in the channel, respectively). Commodities play several roles in the supply chain. In ad-
dition to sourced and delivered items, items that supply chain produces and consumes are
played by Commodities. As with the supplier and customer roles, these roles (properties)
are also referenced, not parts. Figure 2 omits value properties, for brevity, such as key per-
formance indicators; fixed costs for opening depots and purchasing trucks for each depot;
and variable costs for trucks traversing transportation channels.

In addition to defining the kinds of supply chain components and their relationships,
the system model must also capture behavior of components using behavioral models, such
as activities or state machines. The Transportation System dispatches trucks (trans-
portation resources) from depots to customers to drop off or pick up items (commodity
instances). Trucks are modeled as uncapacitated transportation resources, and in this case
study are based out of (assigned to) a particular depot. Once a truck is assigned to service
a customer, it will drop off all items destined for that customer and pick up items from that
customer to be routed through the depot. The same is true for transportation from depot
to depot. In this case study, each depot is approximated as a cross-dock with no process-
ing requirements and unlimited storage capacity. It simply places each incoming item into
an outbound transportation queue to await a truck. Each item flows through the supply
chain according to route, a pre-defined sequence of transportation channels. This flow path
is constructed during the design process for each kind of commodity. Finally, a control
policy determines which customer to service next when a transportation resource becomes
available. Section 4.4 describes the control policy selection process.

Object-oriented system models, such as those constructed in SysML, can be extended
to refine simplified abstractions, such as those described above, with more detail. For ex-
ample in this case study, depots are approximated initially as cross-docks, a simplification
that requires less effort specifying details that may not be used if a particular location is not
selected, reduces the resolution of each depot’s behavior, and speeds up early design ex-
ploration phases. However, each depot (location) selected during the design (optimization)
process can be refined later with an internal behavior specification. These refinements can
then be translated into more complex simulation models. Model-based systems engineer-
ing methods reuse and refine existing system and analysis components, simplifying and
reducing system design and model development efforts.

3.1.2 Formal Abstract Model: Network-based Abstractions

Developing reusable model-based analysis interfaces to support system-analysis integration
is challenging because system and analysis models are often specified at different levels of
detail (abstraction). Linking the two requires a formal model of system abstractions used to
generate analysis models. Formal abstractions for analysis specify syntax and [execution]

92£8 41" 1 SIN/8209°01/640°10p//:sd)Yy :woJ) sbieyo Jo 8al) a|qejieAe si uolealignd siy |

package TokenFlowNetwork [FlowNetwork]J
«block»
Network
Values parentNetwork
label : String [0..1]{id}
node |Measure : Real [0..%]
cost : Real [0..1]{subsets measure} endNetwork1
0.* 0..%
endNetwork2 |0..* «adjunct» |{principal = edge}
” *
parentNetwork (0..1 NetworkLink edge |0..
«block»
___________ NetworkLink
values
weight : Real [0..1]{subsets measure}
measure : Real [0..%]
«block»
FlowNetwork
flow properties
in consumes : Commodity [0..*] parentFlowNetwork
out produces : Commodity [0..*]
values
/productionRate : Integer [0..*]{ordered}
/consumptionRate : Integer [0..*]{ordered} «adjunct» |{principal = flowEdge}
flowEdge |0..*
targetFlowNetwork «block»
flowNode : FlowNetwork [0..*] FlowNetworkLink
references
flow Node sourceFlowNetwork flowTypeAllowed : Commodity [*]{ordered}
0.x) sourceFlowNetwork
- flowEdge : FlowNgtworkLink values
{subsets node} » 0..* flowAmount : Real [*] = 0.0{ordered}
Commodity — —|flowCapacity : Real [*]{ordered}
| grossCapacity : Real [0..1]
targetFlowNetwork [0..* | flowFixedCost : Real [*] = 0.0{ordered}
parentFlowNetwork|0..1 FlowNetwolkLink flowUnitCost : Real [*]{ordered}
|

Fig. 3. Flow Networks are foundational to constructing many kinds of analysis models, including
discrete event simulation.

semantics used by analysis tools.

Networks are common system abstractions used to construct system models and gener-
ate analysis, shown in figure 3. For example, the Facility Location Problem (FLP) uses the
Network definition to formulate an optimization model for selecting storage or manufac-
turing facilities (nodes/locations) and edges linking supplier and customer nodes to facility
nodes. Formalization of network abstractions and application to constructing analysis mod-
els was first described in [59]. The network abstractions described here were further refined
in [2].

Flow Networks, a specialized kind of Network, are foundational to constructing many
kinds of analysis models, including discrete event simulation (figure 3 formalizes [67]).
Each Flow Network is composed of other flow networks playing the role of flowNodes
(parts of a flow network). Composition, a whole-part relationship, is shown in SysML
by part rectangles in graphic compartments of blocks (in addition to black diamond asso-
ciations between blocks). Part-part relationships are expressed in those compartments as
connectors, which are roles played by associations, between the rectangles. In flow net-
works, these are flowEdges roles played by Flow Network Links, between source and
target flow nodes.

Commodities are items that flow across flow edges from source to target. The pro-

9

92£8 41" 1 SIN/8209°01/640°10p//:sd)Yy :woJ) sbieyo Jo 8al) a|qejieAe si uolealignd siy |

duction and consumption of commodities by a flow network are expressed as properties,
produces | productionRate and consumes | consumptionRate, respectively. Each flowEdge,
typed (played) by FlowNetworkLink, has several flow-related properties, such as the type
of commodities allowed to flow across the edge (flowTypeAllowed), maximum flow rate of
commodity items across the flow edge (flowCapacity), and cost for a commodity to traverse
the edge (flowFixedCost & flowUnitCost).

3.2 Abstraction: Formulating Analysis Models from System Abstractions

Most routine analysis methods and their corresponding tools are applied to analyze ab-
stractions of the system, such as flow networks described in the previous section. While
sufficient interest is focused on analysis algorithm performance, it is mostly assumed that
the model (input data) itself has been validated, or at least could be. However, constructing
the correct analysis model for a system or domain is time consuming and challenging, due
in part to extracting the correct abstraction of the system for the desired analysis and main-
taining consistency across multiple abstractions of the same system for different analyses.

Two abstraction methods described in [68], model boundary and behavior modification,
can be formalized using object-oriented languages. Model boundary modification creates
taxonomies of model elements related by explicitly-stated (modeled) simplifications and
assumptions. Object-oriented languages formalize this with generalization. Model behav-
ior modification methods aggregates components and behavior into systems and aggregate
behaviors, respectively. Object-oriented languages formalize this with composition. This
section focuses on model boundary modification, but the composition relationship (whole-
part) for networks (figure 3) covers model behavior modification methods.

Generalization formalizes the mapping between system models and their abstractions.
It is shown in UML by a hollow headed arrow pointing from a specialized class to a more
abstract one. For example, the generalization from Supply Chain to Flow Network in
figure 4 specifies that every system fitting the description of Supply Chain will also fit
the description of Flow Network. This formal relationship between two model elements
guides construction of translations from the system model (of supply chains) to the ab-
straction (of flow networks). This method produces a ‘correct by construction’ abstraction,
where the correct abstraction of the system model is extracted naturally [4].

Analysis models used when designing supply chains and other DELS commonly re-
quire abstracting the system model to (flow) network abstractions. Facility location prob-
lems (FLP) are formulated from a network definition (abstraction) of the supply chain. FLP
determines the best nodes to optimize network configuration; for example, selecting new
depots (locations). To extract a Network from a Supply Chain definition (figure 4), cus-
tomers and depots (parts of the Supply Chain) are mapped (abstracted via generalization)
to nodes and connectors typed by Transportation Channels are abstracted to edges
(modeling customer-to-depot assignments). Multi-commodity flow network (MCFN) mod-
els are formulated by abstracting the Supply Chain to a Flow Network. Supply chain
customers and depots are abstracted to flowNodes (parts of Flow Network). Transport-

10

92£8 41" 1 SIN/8209°01/640°10p//:sd)Yy :woJ) sbieyo Jo 8al) a|qejieAe si uolealignd siy |

package AbstractionExample[SupplyChain2FlowNetwork]J

«block»
FlowNetwork

sourceFlowNetwork
«block» 0..%
FlowNetworkLink

T
T —————— targetFlowNetwork |0..*
«block»
TransportationChannel
A
|
[=
«block» «block» «block» «block»
SupplyChain Depot ManufacturingPlant TransportationSystem
) references STORE() MAKE() MOVE()
supplier : SupplyChain [0..*]
customer : SupplyChain [1..*] depot|0..* manufacturingPlant|0..* transportationSystem |1..*
SOURCE()
MAKE()
DELIVER()
RETURN()

Fig. 4. Supply Chains are specialized Flow Networks. Generalization enables Flow Networks to be
recovered and used for generating MCFN analyses. The distribution supply chain class is omitted
from the picture for brevity, but remains a part of the model.

ation Channels are mapped to flowEdges (modeling flow between customers and de-
pots).

Network optimization in the case study uses the Flow Network abstraction, solving
the FLP with flow capacity constraints and optimized commodity flow paths derived from
the MCFN model. Only one mapping from supply chains to flow networks is needed
because Flow Network is a kind of Network (linked by generalization), and flowNode and
flowEdge redefine node and edge properties, respectively (figure 3). Redefinition in SysML
links properties of a specialized class to properties in a more abstract class.

The joint FLP and MCFN optimization model is formulated using properties and con-
straints defined by both Network and Flow Network, respectively. For example, formulat-
ing FLP analysis models requires defining the cost of serving each customer from each de-
pot and mapping this value to Flow Network Link’s weight value property. This value is
approximated by the distance from customer to depot. These approximations can be refined
as additional information becomes available. For example, weight can be refined to reflect
the travel distance multiplied by the expected amount of goods that need to be shipped
to/from that customer (expected flow) or incorporate economies of scale with piece-wise
linear edge cost/capacity.

One advantage of generalization is that abstractions for constructing analysis models
can be extracted automatically from detailed system models. Ideally, generalizations from

11

92£8 41" 1 SIN/8209°01/640°10p//:sd)Yy :woJ) sbieyo Jo 8al) a|qejieAe si uolealignd siy |

system models to abstractions are inferred automatically by constructing system models
(again by generalization) from existing domain-specific model libraries and reference mod-
els that ar