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Abstract

Simulation and optimization must be used together to design and operate large-scale, com-
plex systems. Integrating them presents a number of conceptual and technical problems,
which can be addressed with more expressive, computer-interpretable system models. This
paper presents a model-driven approach to integrating simulation and optimization methods
by exchanging system designs that specialize analysis abstractions, both defined in the Sys-
tems Modeling Language (SysML). The analysis abstractions enable translation of system
models to corresponding analysis models and tool interfaces. This approach (model-driven
system-analysis integration) is demonstrated by developing a multi-fidelity, multi-method
simulation optimization methodology and applying it to a supply chain design case study.

Key words
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1. INTRODUCTION

Increasing system scale and complexity require improved decision-making support in Dis-
crete Event Logistics Systems (DELS), which are networks of interconnected resources
and subsystems that add value by operating on items flowing through them [1, 2]. These
include supply chains, manufacturing systems, transportation networks, warehouses, and
health care delivery systems. Combining simulation and optimization methods leverages
their complementary strengths to provide full lifecycle decision-making support for DELS,
from system design methods to online real-time operational control. Despite evidence that
these methods can be used together, there does not appear to be a widely-adopted, generic
way to integrate existing analysis (simulation, optimization) tools or establish more general
interoperability among seemingly-related methods analyzing the same system.

One challenge to integrating simulation and optimization models, methods, and tools is
that a single simulation model is often used as the complete system model, even though
it often captures only one narrow view of the system, as needed for its kind of sim-
ulation. This limits optimization methodologies to searching only alternatives that can
be expressed from the perspective of a single simulation model. Integrated simulation-
optimization methodologies need access to multiple simulation models to optimize the
entire (all views of) the system. This principle is essential to developing and integrat-
ing specialized, domain-specific (or purpose-specific) simulation and optimization tools
and developing simulation-optimization methodologies that integrate different tools, ab-
stractions, formalisms, etc. Multiple views, each captured as a different analysis model,
assumes that there exists a separate, complete system model that can be accessed readily
and inexpensively when constructing analysis models.

Fig. 1. Simulation and optimization
models are constructed from and
exchange results via a common system
model.

This paper proposes integrating simulation and
optimization methods by exchanging computer-
interpretable system models that are expressed in
standard information formats (syntax) interpreted in
standard ways (semantics), as illustrated in figure
1. For example, DELS simulation and optimiza-
tion models would benefit from standard formats and
interpretations for items flowing through a system
(types and quantities), how they are flowing (paths
and resources), and when they are flowing (con-
trol). System models describe logical relationships
between various aspects of the system and its en-
vironment, as compared to analytic and geometric
models. Standard modeling languages such as the
Systems Modeling Language (SysML) are more ex-
pressive than analysis languages, enabling precise analysis-independent specifications that
are not constrained by any target analysis language. SysML covers structure, behavior, and
control of systems independent of analysis, enabling a single system model to be the source
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for creating many kinds of analysis models, including purpose-specific simulation and op-
timization models. Exchanging system models between simulation and optimization tools
enables analysis models to be generated and updated as needed to reflect required views,
new solutions, etc.

The research reported here shows that system models can be linked to reusable anal-
ysis abstractions via specialization, facilitating construction of analysis models. Analysis
languages, tools, and methods can be adapted to these shared abstractions, including those
for specific applications. This work is an extension to the research reported in [2–4]. The
discussion and examples in this paper primarily focus on discrete event simulation, how-
ever, the methods could apply to other kinds of analyses. The approach could also apply to
platforms other than the one validated here and between those platforms. Further descrip-
tions and reference implementations for these other analyses and platforms are deferred to
a future paper. The SysML model libraries in this paper can be found at [5, 6], along with
documentation [2]. The case study implementation can be found at [7].

The rest of the paper is organized as follows: section 2 shows some benefits of simula-
tion and optimization interoperability via use cases in DELS analysis. Section 3 describes
the (system) model-driven approach to simulation-optimization interoperability, including
definition of analysis abstractions and specialization of system models from them, as well
as methods for adapting existing analysis methods and tools to those abstractions, includ-
ing generating analysis models from them. Section 4 summarizes a case study applying the
methods detailed in the previous sections to a methodology for designing and analyzing a
distribution supply chain.

2. Use Cases for DELS Analysis Interoperability

Research and applications become more specialized and reliant on interoperability of in-
dividual analysis components as systems become larger and more complex. Researchers
(analysis developers) focus on their own particular area of interest (algorithms or domains)
and rely on others to implement complementary analysis components. General approaches
to integrating multiple analysis methods and their associated tools, such as for simulation
and optimization, remains a largely unmet challenge.

Simulation optimization methods are commonly integrated by defining interfaces be-
tween simulation and optimization tools for exchanging input parameter values (input to
simulation) and solution values and other feedback, such as gradient information (output
to optimization), for example, in the SimOpt library [8] or Industrial Strength Compass
[9]. The commercial success of OptQuest™ can be attributed partly to its integration with
several popular simulation tools. However due to semantic differences between OptQuest
and simulation, integrating OptQuest with each simulation platform is an expensive process
that does not scale well to many-solver environments [10].

Improving interoperability between simulation and optimization methods requires stan-
dardized information exchange between the two methods, both in format (syntactic) and
interpretation (semantic) [11]. Integration is currently achieved by two mappings: syntac-
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tic mappings for each pair of tools (one for each pair), and semantic mappings for each
problem instance (analysis model) created using a particular pair of tools. The semantic
mapping is often done by “promoting” (mapping) parameters from a simulation model to
variables in an optimization model. However, this approach relies on the simulation tool to
interpret and implement the optimization solution. Interpreting optimization model output
is often hard-coded into the simulation interface. Implementation might be as simple as
setting simulation parameter values already mapped to the optimization variables, but only
if optimization methods are limited to simply searching over parameter values. In com-
plex cases such as changing system topology, implementation might require the simulation
model to be rebuilt from scratch. Since the simulation tool interprets and translates both
simulation and optimization input/output, simulation optimization methodologies have lim-
ited ability to incorporate multiple simulation methods and tools.

The following sections describe three broad use cases for improved simulation opti-
mization interoperability: specializing simulation optimization for particular DELS do-
mains (section 2.1), generating and evaluating domain-specific simulation models (section
2.2), and integrating multiple analysis methods into a simulation optimization methodology
(section 2.3).

2.1 Domain-Specific Simulation Optimization Specializations for DELS

Domain-specific characteristics can be exploited by simulation optimization methods to
provide narrowly-scoped and well-structured search neighborhoods. In genetic algorithms,
domain-specific structures can be exploited through specialized encoding schemes, initial-
ization procedures, and local search operators; see, for example, [12–17]. In Tabu methods,
domain-specific search neighborhoods can be integrated into local search procedures, such
as swapping orders within the schedule [18], separating routing and scheduling compo-
nents of the job shop problem [19], and setting Kanban levels [20]. Knowledge-based
optimization methods incorporate learning modules that use domain-specific information
to guide the search process, such as selecting priority rules and lot sizes [21]. Specialized
algorithms based on standard system models can guarantee consistent performance com-
parisons between competing algorithms [20, 22]. Domain-specific analysis methodologies
exploit domain characteristics to enable faster, cheaper, or better solution methods than
their generic counterparts. Shared system models (system conceptualizations) enable de-
veloping increasingly specialized tools that can be easily integrated with other tools devel-
oped for the same domain or abstraction, creating an ecosystem (libraries) of plug-and-play
methods.

2.2 Generating and Evaluating Large-Scale Simulations

A major challenge facing simulation optimization is the expense of constructing and eval-
uating large-scale, high-fidelity simulations. It has long been recognized that the cost and
complexity of simulation model development needs to be reduced, including in conceptual
modeling methods, and that one way to do this is through model and component reuse
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[23]. Simulation models can be automatically generated from libraries of reusable simu-
lation components, model templates, and small families of flexible models [24–26]. The
core manufacturing simulation data (CMSD) standard supports exchange of manufacturing
information between simulation and manufacturing applications [27, 28]. Domain ontolo-
gies and domain-specific languages can narrow the gap between simulation specification
model and simulation program [29, 30].

Large-scale simulation development shares many challenges with systems and soft-
ware engineering methods and could benefit from their model-driven methodologies [31].
Model-driven architecture (MDA) and model-based systems engineering (MBSE) method-
ologies involve platform-independent models separate from their implementations in spe-
cific optimization or simulation software packages [32, 33]. MDA and MBSE method-
ologies use platform-independent system models to automatically generate analysis mod-
els via computer-interpretable, reusable model-to-model (M2M) translations from a single
system model into target analysis languages [34–37]. Generative methods for constructing
simulation models from validated model library components are effective especially when
a simulation tool requires complex combinations of platform-specific simulation compo-
nents to express even simple concepts [26, 38, 39]. Model-driven generative approaches
use platform-independent reference models to define platform-specific simulation model
library components and patterns (rules) for assembling model library components in the
target language [38]. A generator-based approach is discussed further in section 3.3.

Simulation run-time efficiency challenges are also widely recognized [23, 40, 41]. Spe-
cialized formalisms, abstractions, or tools can reduce simulation execution time compared
to general purpose simulation tools [42–45]. Innovations, such as domain-specific sim-
ulators, could benefit from basing method/tools on a standard system model or analysis
abstraction, which would make it easier to integrate with other models.

2.3 “Multi-X” Analysis Methodologies

Model-driven approaches integrate multiple sources of information, often from heteroge-
neous systems, disparate sources, and incompatible formats, to create an complete, in-
tegrated model of the system. This system model enables generation of many kinds of
analysis models or many instances of the same kind of analysis. Analysis models generated
using specialized formalisms, abstractions, and tools can be combined into “multi”-method
analysis methodologies. Semantic (model) interoperability enables developing simulation-
optimization methodologies that are composed from predefined simulation and optimiza-
tion components.

Multi-fidelity ordinal transformation methods use low-fidelity simulation models to
evaluate more solutions, which then provide guidance for selecting solutions to evaluate
using high-fidelity simulation models [46]. Multi-fidelity simulation methods for produc-
tion and logistics systems have been studied, including when and how to to use system ap-
proximations [47–50]. Similarly, reduced simulation methods decrease overall simulation
effort by reducing the resolution of non-bottleneck systems, see, for example, semiconduc-
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tor wafer fabrication simulation [51].
“Multi”-method simulation optimization methodologies enable selecting and integrat-

ing appropriate simulation tools for the behavior modeling required; see discussion on
cross-paradigm simulation modeling, including system dynamics, discrete event, and agent-
based paradigms [52], discrete event simulation modeling paradigms [53], and a multi-
formalism, multi-solution framework that integrates multiple languages and tools using a
common intermediate abstraction of the domain of interest [42].

Multi-fidelity methods assume that appropriate surrogates (consistent with or derived
from high-fidelity models) can be readily identified, and multiple simulations (views) can
constructed inexpensively, potentially from a single system model. Our methodology pro-
poses using object-oriented modeling and programming methods, specifically generaliza-
tion and composition, to organize and retrieve system abstractions used to generate reduced
or low-fidelity surrogates (section 3.2). Section 3.3 describes organizing and generating
multiple kinds of analysis models from a common representation.

3. A Model-driven Approach to Integrating Simulation and Optimization

Object-oriented modeling and programming methods have been used to develop machine-
readable production and logistics system models (see references in section 3.1). Formal
system models can be exchanged between analysis tools and directly translated into exe-
cutable analysis models. The pitfall so far has been system models and translations that
are too specific to a particular kind of system or target analysis language/tool. It is easier
to manage architecture and complexity this way, but limits reusability beyond the original
system (domain) or selected analysis tool. The challenge is to provide models at a sufficient
level of abstraction to justify developing domain-specific tools and methods (or adapting
existing ones), while also being specific enough to drive productivity enhancements from
these modeling and analysis tools and methods.

This section describes a model-driven approach that bridges between domain-specific
terminology used by practitioners to describe their systems and common abstractions used
to formulate analysis models. Traditionally, mapping and translation between the two is
done using ad-hoc, time-consuming methods reliant on analysis experts. The proposed
method formalizes system models and analysis abstractions separately and formally links
the two by specializing the system models from the abstractions. Section 3.1 describes us-
ing object-oriented system models to define domain-specific interfaces between simulation
and optimization methods and tools. Section 3.2 describes methods to link system mod-
els to the abstractions used to construct analysis models. Section 3.3 describes a system-
analysis integration method that uses system models and abstractions to generate required
analysis models, in this case simulation models. Model-driven integration methods utilize
generation capabilities to adapt existing tools to support common abstractions and ensure
that analysis models are consistent by generating (updating) from the same source.

These methods are applied to the simulation optimization case study on distribution
supply chain design detailed in section 4, illustrating the proposed modeling methods.
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In these systems, customers ship packages (or generic commodities) to other customers
through the network. Examples of this type of supply chain include large-scale distribution
companies such as FedEx or UPS or local courier services that move packages between
customers (or businesses). These models can also be applied to material handling systems
within warehouses or manufacturing plants that shuttle products between departments or
workstations. Parts of the case study are threaded through this section to illustrate these
methods.

3.1 Domain-specific Simulation-Optimization Interfaces Defined by System Models

One strategy to increase interoperability and consistency between domain-specific simula-
tion and optimization algorithms is to develop analysis models from agreed-upon, complete
definitions of the actual system of interest: a system model. Then methods/tools can be im-
plemented to exchange information conforming to the system model or the model itself.

Some simulation-optimization methodologies exchange optimization solutions and sim-
ulation evaluations by posting system state (model) to a global blackboard or storing pa-
rameters and solutions in a common relational database [54, 55], respectively. Several au-
thors describe methodologies where the optimization model and corresponding simulation
model are generated automatically from a System Model Object [17, 56, 57]. McLean et
al. [58] present a conceptual reference architecture for integrating distributed manufactur-
ing simulation models, other software applications, and data repositories. Using network-
based abstractions to bridge between DELS system and analysis models was introduced
in [59] (section 3.1.2). Object-oriented languages/methods provide flexible and reusable
frameworks for capturing supply chain descriptions [60, 61]. Some frameworks exclu-
sively target the simulation analysis domain [26, 62–64]. Several object-oriented reference
models for supply chains are reviewed in [65].

Previous research on generating analysis models from system models relied on system
models and mappings/translations to analysis that are too specialized for one kind of system
or analysis tool (trading reusability for simplicity). Model-driven system-analysis integra-
tion methods based on commonly-used abstractions can be reused for many domains and
extended to support more specialized applications. The integration methods proposed in
this paper exchange platform-independent system and abstraction models specified using
SysML. OMG’s SysML, an extension of UML, provides an object-oriented modeling envi-
ronment used in many system engineering design methods [66]. Modeling languages like
SysML support abstraction, model library construction, and modeling precision and ex-
pressiveness. SysML offers a standards-based, platform-independent approach for creating
system models and integrating them with platform-specific tools, such as simulation tools
[32, 33]. The next two sections describe system models and abstraction models constructed
using SysML.
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Fig. 2. Distribution supply chain system model

3.1.1 Distribution Supply Chain System Model

The distribution supply chain case study includes a system model specified in SysML, de-
rived from a description more general supply chains, shown in figure 2. Supply Chains
are composed of Manufacturing Plants, Transportation Systems, and Depots. Com-
position, a whole-part relationship, is shown in SysML by a black diamond, with the whole
on the diamond end and the part on the other end. These components broadly align with
Make, Move, and Store capabilities. Distribution Supply Chains are defined here as
specialized Supply Chains that do not have manufacturing plants, indicated by the mul-
tiplicity [0] next to that property (role) of Distribution Supply Chain. Generalization
(specialization) is represented by a hollow headed arrow pointing from a specialized class
to a more abstract one.

Supply chains source items (Commodities) from suppliers, transform them, and deliver
them to customers. In object-oriented modeling, suppliers and customers are modeled as
roles (properties) played (typed) by other supply chains. These roles are referenced by the
supply chain allowing interaction between the supply chain and its suppliers and customers,
but denoting these entities are not owned by the supply chain. Role-based modeling allows
the same supply chain (enterprise) to act as both suppliers and customers (roles) at different
times with different responsibilities and interaction patterns. Suppliers and customers are
modeled as Supply Chains to enable modeling multi-tier supply chains and flexibility for
elaborating their internal details. For example, they can either be modeled as black box
entities or decomposed into their respective manufacturing, storage, transportation, and
sub-tier supply systems.

Supply chain components are associated via Transportation Channels operated on
by the Transportation System. In distribution supply chains, customers (supply chains
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playing the customer role) send items (Commodities) to each other via transportation chan-
nels and depots (used for efficiency). Each customer can be assigned to (serviced by) multi-
ple depots. Assignment is represented by an association (typed by TransportationChannel)
involving one supply chain and one depot (playing the customer and assignedDepot roles
in the channel, respectively). Commodities play several roles in the supply chain. In ad-
dition to sourced and delivered items, items that supply chain produces and consumes are
played by Commodities. As with the supplier and customer roles, these roles (properties)
are also referenced, not parts. Figure 2 omits value properties, for brevity, such as key per-
formance indicators; fixed costs for opening depots and purchasing trucks for each depot;
and variable costs for trucks traversing transportation channels.

In addition to defining the kinds of supply chain components and their relationships,
the system model must also capture behavior of components using behavioral models, such
as activities or state machines. The Transportation System dispatches trucks (trans-
portation resources) from depots to customers to drop off or pick up items (commodity
instances). Trucks are modeled as uncapacitated transportation resources, and in this case
study are based out of (assigned to) a particular depot. Once a truck is assigned to service
a customer, it will drop off all items destined for that customer and pick up items from that
customer to be routed through the depot. The same is true for transportation from depot
to depot. In this case study, each depot is approximated as a cross-dock with no process-
ing requirements and unlimited storage capacity. It simply places each incoming item into
an outbound transportation queue to await a truck. Each item flows through the supply
chain according to route, a pre-defined sequence of transportation channels. This flow path
is constructed during the design process for each kind of commodity. Finally, a control
policy determines which customer to service next when a transportation resource becomes
available. Section 4.4 describes the control policy selection process.

Object-oriented system models, such as those constructed in SysML, can be extended
to refine simplified abstractions, such as those described above, with more detail. For ex-
ample in this case study, depots are approximated initially as cross-docks, a simplification
that requires less effort specifying details that may not be used if a particular location is not
selected, reduces the resolution of each depot’s behavior, and speeds up early design ex-
ploration phases. However, each depot (location) selected during the design (optimization)
process can be refined later with an internal behavior specification. These refinements can
then be translated into more complex simulation models. Model-based systems engineer-
ing methods reuse and refine existing system and analysis components, simplifying and
reducing system design and model development efforts.

3.1.2 Formal Abstract Model: Network-based Abstractions

Developing reusable model-based analysis interfaces to support system-analysis integration
is challenging because system and analysis models are often specified at different levels of
detail (abstraction). Linking the two requires a formal model of system abstractions used to
generate analysis models. Formal abstractions for analysis specify syntax and [execution]
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Fig. 3. Flow Networks are foundational to constructing many kinds of analysis models, including
discrete event simulation.

semantics used by analysis tools.
Networks are common system abstractions used to construct system models and gener-

ate analysis, shown in figure 3. For example, the Facility Location Problem (FLP) uses the
Network definition to formulate an optimization model for selecting storage or manufac-
turing facilities (nodes/locations) and edges linking supplier and customer nodes to facility
nodes. Formalization of network abstractions and application to constructing analysis mod-
els was first described in [59]. The network abstractions described here were further refined
in [2].

Flow Networks, a specialized kind of Network, are foundational to constructing many
kinds of analysis models, including discrete event simulation (figure 3 formalizes [67]).
Each Flow Network is composed of other flow networks playing the role of flowNodes
(parts of a flow network). Composition, a whole-part relationship, is shown in SysML
by part rectangles in graphic compartments of blocks (in addition to black diamond asso-
ciations between blocks). Part-part relationships are expressed in those compartments as
connectors, which are roles played by associations, between the rectangles. In flow net-
works, these are flowEdges roles played by Flow Network Links, between source and
target flow nodes.

Commodities are items that flow across flow edges from source to target. The pro-
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duction and consumption of commodities by a flow network are expressed as properties,
produces / productionRate and consumes / consumptionRate, respectively. Each flowEdge,
typed (played) by FlowNetworkLink, has several flow-related properties, such as the type
of commodities allowed to flow across the edge (flowTypeAllowed), maximum flow rate of
commodity items across the flow edge (flowCapacity), and cost for a commodity to traverse
the edge (flowFixedCost & flowUnitCost).

3.2 Abstraction: Formulating Analysis Models from System Abstractions

Most routine analysis methods and their corresponding tools are applied to analyze ab-
stractions of the system, such as flow networks described in the previous section. While
sufficient interest is focused on analysis algorithm performance, it is mostly assumed that
the model (input data) itself has been validated, or at least could be. However, constructing
the correct analysis model for a system or domain is time consuming and challenging, due
in part to extracting the correct abstraction of the system for the desired analysis and main-
taining consistency across multiple abstractions of the same system for different analyses.

Two abstraction methods described in [68], model boundary and behavior modification,
can be formalized using object-oriented languages. Model boundary modification creates
taxonomies of model elements related by explicitly-stated (modeled) simplifications and
assumptions. Object-oriented languages formalize this with generalization. Model behav-
ior modification methods aggregates components and behavior into systems and aggregate
behaviors, respectively. Object-oriented languages formalize this with composition. This
section focuses on model boundary modification, but the composition relationship (whole-
part) for networks (figure 3) covers model behavior modification methods.

Generalization formalizes the mapping between system models and their abstractions.
It is shown in UML by a hollow headed arrow pointing from a specialized class to a more
abstract one. For example, the generalization from Supply Chain to Flow Network in
figure 4 specifies that every system fitting the description of Supply Chain will also fit
the description of Flow Network. This formal relationship between two model elements
guides construction of translations from the system model (of supply chains) to the ab-
straction (of flow networks). This method produces a ‘correct by construction’ abstraction,
where the correct abstraction of the system model is extracted naturally [4].

Analysis models used when designing supply chains and other DELS commonly re-
quire abstracting the system model to (flow) network abstractions. Facility location prob-
lems (FLP) are formulated from a network definition (abstraction) of the supply chain. FLP
determines the best nodes to optimize network configuration; for example, selecting new
depots (locations). To extract a Network from a Supply Chain definition (figure 4), cus-
tomers and depots (parts of the Supply Chain) are mapped (abstracted via generalization)
to nodes and connectors typed by Transportation Channels are abstracted to edges
(modeling customer-to-depot assignments). Multi-commodity flow network (MCFN) mod-
els are formulated by abstracting the Supply Chain to a Flow Network. Supply chain
customers and depots are abstracted to flowNodes (parts of Flow Network). Transport-
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Fig. 4. Supply Chains are specialized Flow Networks. Generalization enables Flow Networks to be
recovered and used for generating MCFN analyses. The distribution supply chain class is omitted
from the picture for brevity, but remains a part of the model.

ation Channels are mapped to flowEdges (modeling flow between customers and de-
pots).

Network optimization in the case study uses the Flow Network abstraction, solving
the FLP with flow capacity constraints and optimized commodity flow paths derived from
the MCFN model. Only one mapping from supply chains to flow networks is needed
because Flow Network is a kind of Network (linked by generalization), and flowNode and
flowEdge redefine node and edge properties, respectively (figure 3). Redefinition in SysML
links properties of a specialized class to properties in a more abstract class.

The joint FLP and MCFN optimization model is formulated using properties and con-
straints defined by both Network and Flow Network, respectively. For example, formulat-
ing FLP analysis models requires defining the cost of serving each customer from each de-
pot and mapping this value to Flow Network Link’s weight value property. This value is
approximated by the distance from customer to depot. These approximations can be refined
as additional information becomes available. For example, weight can be refined to reflect
the travel distance multiplied by the expected amount of goods that need to be shipped
to/from that customer (expected flow) or incorporate economies of scale with piece-wise
linear edge cost/capacity.

One advantage of generalization is that abstractions for constructing analysis models
can be extracted automatically from detailed system models. Ideally, generalizations from
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system models to abstractions are inferred automatically by constructing system models
(again by generalization) from existing domain-specific model libraries and reference mod-
els that are already generalized by abstractions for analysis generation. This approach re-
duces errors and inconsistencies resulting from ad-hoc mappings or manual construction
of an auxiliary abstraction model and reduces the time required to verify correctness of
abstractions retrieved from the system model. However, existing system models can be
mapped after construction (via generalization) to domain-specific model libraries and ref-
erence models or abstractions. Mapping existing system models to abstractions (either
by generalization or stereotype application) is time-consuming, error-prone, and does not
leverage inheritance in object-oriented languages.

3.3 System-Analysis Integration & Simulation Generation Methods

Model-driven analysis integration methods that do not rely on the simulation model as the
system model require translating the system model into analysis models. Generating and
updating simulation models, however, has been particularly challenging. Model-driven
methods, including object-oriented system modeling methods and standardized informa-
tion models, are beneficial to developing reusable and modular analysis components (sec-
tion 3.1). However, prior modeling efforts typically lacked formal language implemen-
tations, limiting the extensibility and reusability of reference models and model libraries.
The system-analysis integration and simulation generation methods described here use two
strategies to maximize reusability of methods and tools: separating the system specification
from analysis method (loose coupling) and basing the integration on system abstractions,
such as flow networks, that can be reused for many kinds of systems (section 3.1.2).

The proposed system-analysis integration method uses analysis-independent represen-
tations of the system and abstractions, with platform-specific generators to particular anal-
ysis tools. This approach separates information about the system to be analyzed (data and
semantics) from platform-specific knowledge about modeling in the target analysis tools.
This enables system modeling without knowledge of the kind of analysis that will be per-
formed, creating analysis agnostic, conceptual models of the system. Developing analysis
generators using abstractions that apply to many kinds of systems allows the generator to
reuse a significant portion of the tool-specific generation infrastructure.

This section describes a platform-specific reference implementation that leverages the
abstraction models and methods described in sections 3.1 and 3.2 to allow flexible, reusable,
and extensible analysis generation capabilities. The goal is a methodology for flexibly gen-
erating simulation (analysis) models in available (commercial-strength) tools (COTS) that
improves upon static scripts, generic (parameterized) programming methods, and custom
purpose-built tools. This reference implementation draws heavily on software patterns de-
scribed in [69], automated simulation generation methods surveyed in [26], and generative
programming methods in [70]. These methods enable new classes, including new kinds
of things and multiple implementations of existing things, to be added dynamically by
extending rather than changing the existing code. The result is a platform-specific, flow
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Fig. 5. Platform-specific simulation generators specialize FlowNetworkFactory. Simulation models
output by the generators are all created using the same interface. Each specialized FlowNetwork
has corresponding specialized analysis builders for filling in instance-specific details.

network-based discrete event simulation tool adapter specialized to support supply chains
and other kinds of DELS.

3.3.1 Analysis Integration: Generative Programming Approaches to Developing
Domain-specific Simulation Adapters

The Flow Network Factory class (figure 5) defines an interface for creating flow network-
based analysis model components: flowNodes, flowEdges (connectors), and the analysis
(simulation) model itself. A system model (specialized from Flow Network) is an in-
put (inputFlowNetwork) to the Flow Network Factory. Figure 5 shows the relationship
between platform-independent system and abstraction models (denoted by «block») and
components of the platform-specific analysis generator (denoted without «block»).

Specializations of the Flow Network Factory interface implement its operations with
tool-specific code (methods) that construct the required kind of analysis model. For exam-
ple, SimEvents Flow Network Factory produces simulation models in Matlab’s dis-
crete event simulation software SimEvents® with pseudo-code shown in notes on the right
of figure 5. This factory creates and organizes the generic (abstract) flowNodes of the simu-
lation model and connects them with flowEdges. This step draws on generic programming
techniques that leave types to be specified at a later time, usually supplied through param-
eters (templates). Rather than construct each complex simulation object in one pass, the
implementation of createNodes() first copies (clones) the corresponding object from a user-
supplied modelLibrary (described more in section 3.3.3). Then it customizes the generic
simulation object into an object conforming to the (abstracted) system model.
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System-analysis integration can provide access to multiple analysis methods (possibly
multiple tools) by instantiating specialized factories for each kind of analysis; for example,
optimization, petri nets, or queueing networks. Each factory implements the basic steps de-
scribed above, first constructing a generic flow network and then customizing each object.
However, each factory specialization/customization requires knowledge of the specialized
system objects. In many analysis tools, analysis objects, such as simulation blocks, are not
capable of self-configuration or initialization. One solution is to delegate the customization
process to the system object; that is, the createNodes() method actually asks the input ob-
ject (typed by Flow Network) to finish building its corresponding analysis model object.
The system model has a platform-independent description of what needs to be created and
could be provided with platform-specific implementation details. However, this implemen-
tation approach embeds analysis platform-specific generation code in the system object,
thereby violating platform independence and potentially cluttering the object with code to
support many different implementation platforms.

The solution implemented here adds a lightweight delegation mechanism on each sys-
tem object. The delegation association (figure 5) links the system object (systemElement)
to the analysis object (targetAnalysisObject) via an auxiliary builder (“helper”) (analysis-
Builder typed by Flow Network Builder). Then all requests to modify the simulation
object (targetAnalysisObject) are directed to its assigned builder. For example, finish-
ing construction (customization) of a newly created simulation object is done by flowN-
ode.analysisBuilder.construct( ). These customizations may include setting parameters,
building ports, customizing internal behavior, or creating metrics (data collection). For
example, Depot Builder takes a generic depot simulation object and customizes the in-
ternal behavior by adding and configuring its resources (trucks), flow control of commodi-
ties, and scheduling customer servicing. Delegation enables Simulation Flow Network
Factory to remain flexible by requesting the system object to complete the construction of
its corresponding simulation object, but the code for doing so does not clutter the system
object.

3.3.2 Specialized Builders

Multi-method environments integrate specialized tools and formalisms to provide particu-
lar analysis capabilities (section 2.3), but each analysis tool has a different way to create or
specify analysis models. Specialized builder classes encapsulate code required to modify
each analysis object to support a particular kind of analysis. Each class in the system model
is associated with a library of builder classes that enable it to be translated into any one of
many analysis tools without having to know the platform-specific details of how its behav-
ior will be implemented in those tools. When concrete factories are instantiated, the client
configures each system model object with the delegate appropriate to the kind of analysis
to be created.

Delegation not only enables specialized builders to be created for each kind of analysis,
but also system objects of the same kind, depots for example, to exhibit different analysis
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behaviors such as varying fidelity/resolution. Different builders are required for each level
of fidelity for an object. For example, Flow Network Builder implements low-fidelity
probabilistic flow based on proportion of flow across each edge (flow network semantics).
Specialized Depot Builders may reuse low-fidelity (probabilistic) flow routing. How-
ever, they can also implement high-fidelity control methods, such as decision rules, routing
tables, or dynamic routing. These methods require more sophisticated data collection and
decision-support mechanisms to be constructed in simulation blocks. The construction
method is nearly identical for both the low- and high-fidelity simulation objects, except a
different kind of builder is called to create the routing behavior/actuator. This approach is
implemented in the case study, for example generateLoFiDES() (section 4.3) and generate-
HiFiDES() (section 4.4) methods (figure 7).

Specialized builders support analysis tool-specific translations by encapsulating tool-
specific detail in a class that conforms/linked to the analysis independent representation.
Loose coupling between system models and analysis generators enables information sources,
system definition, and analysis implementation to be changed independently. Well-defined
builder classes replace ad-hoc scripts that use if/else statements to organize specialized
cases. The resulting generator is more flexible and less tied to one kind of analysis. The
code to support a particular variation of an analysis model is encapsulated in the “helper”
(builder) class and can be easily substituted to support different kinds of analyses. For
example, an optimization flow network factory initializes the optimization model, such as
an AMPL file or model object from CPLEX Application Programming Interface (API),
and configures execution parameters. The createNodes() and createEdges() methods then
add variables and constraints capturing production/consumption, flow balance, and flow
capacity. Flow Network specializations, such as Supply Chain, customize the analysis
model’s behavior by adding domain-specific variables or constraints.

3.3.3 Reusable Model Libraries for Simulation Generation

Traditional MDA/MBSE approaches define and implement mappings/translations from one
language to another. With the high diversity of analysis formalisms and tools (even among
just discrete event simulators), expressing complex behaviors and systems produces map-
pings/translations that often are not one-to-one and might vary significantly from tool to
tool (or even across versions of the same tool). For example, the concept of worksta-
tion may be expressed using several simulation blocks, such as combining queue, server,
flow/timing/control blocks, and methods expressing different products/processes. These
factors limit reusability of platform-specific translations that are based purely on language
to language mappings.

The model-driven approach proposed here defines reusable mappings based on analysis-
agnostic descriptions of domain-specific concepts, which stay the same even if their imple-
mentation changes across analysis platforms. These concepts form the foundation of an
analysis (simulation) model library for a class of systems. Integrating a particular analy-
sis tool requires constructing analysis library objects corresponding to standard analysis-
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independent model libraries. Construction, testing, and validation of reusable analysis ob-
jects is done in the analysis tool environment. Creating custom analysis library objects that
conform to standard system model libraries mitigates some differences between analysis
tool languages (and their non-standard stock palettes), but requires knowledge of both the
analysis tool and system library. Practically, it’s easier to develop analysis library objects
correctly by leveraging an analysis expert’s ability to determine the best way to express each
system library concept within an analysis tool’s constraints (language, stock palette). This
method creates a transparent, reusable, and extendable way to generate analysis objects
that might only be an approximate the system object (same interface, different internals).
This approach is novel because the mapping and translation from system model to analysis
model is done by focusing on system and analysis concepts, rather than languages.

Flow networks are essential abstractions for constructing both system and analysis mod-
els, which makes them a good foundation for domain-specific system-analysis integration
methods. The implementation described in section 3.3.1 (Flow Network Factory) de-
fines automatic construction of flow network-based simulation models in a particular tool.
Flow Network Factory treats each input as a Flow Network. Then specialized builders
customize each simulation object according to the source DELS by adding resources or
configuring control behaviors. This simulation generator can be extended by defining both
a new simulation model library object and corresponding builder (helper) class responsible
for configuring the generic simulation objects.

3.4 What is the best abstraction: A Formal Domain Model for Discrete Event Lo-
gistics Systems (DELS)

Previous subsections describe methods to 1) formally link (via generalization) system mod-
els to abstractions used to construct analysis models, 2) separate system/abstraction mod-
els from implementations of corresponding analysis model generators, and 3) reuse these
generators for any system conforming to the abstraction, i.e. that can be modeled as a
flow network. The reusability of the analysis generators is based on the reusability of sys-
tem abstractions. Maximizing the applicability of analysis generators requires identifying
additional system abstractions that can be applied broadly to constructing system mod-
els and defining analysis integrations. This section proposes an abstraction for discrete
event logistics systems (DELS) (figure 6), which extends Flow Network (section 3.1.2)
to include commonalities between supply chains, production, storage, and transportation
systems. Then Supply Chain and its components (section 3.1.1) extend the DELS ab-
straction, rather than flow networks (figure 4 in section 3.2). Due to space constraints, this
section only sketches DELS, highlighting elements used in the analysis methodology case
study (section 4). The DELS models are described in more detail in [2].

Additional modeling is needed in DELS to describe what is being transformed (product),
how the product is transformed (process), how the transformation is executed (resource),
and how resources are configured (facility). The product-process-resource-facility (PPRF)
abstraction is common across manufacturing reference models, including OZONE, MA-
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Fig. 6. Generalized supply chain models can be extended from a discrete event logistics systems
(DELS) abstraction.
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SON, MANDATE, and CMSD [27, 71–73]. In addition to modeling the plant’s behavior,
the DELS model also includes an operational control model. Operational control behaviors
determine the flow of resources and tasks through the system and which resources execute
those flows. Operational control is captured as extensions of processes and resources in the
DELS reference model. These map decision variables in a controller’s decision problem
(optimization) to a particular execution mechanism (actuator) in the plant [74].

A multi-layered reference model extracts commonalities among systems and analyses
at a high level of abstraction. A multi-abstraction model library allows system models to
be mapped and transformed to various abstractions used by analysis models. For example,
different abstractions are used to construct MCFN models (Flow Networks) and resource
investment, sizing, and configuration models (DELS resource definitions). The DELS ab-
straction can be further refined into domain-specific libraries, such as production, storage,
and material handling libraries (figure 6).

4. Applying Model-Driven Integration Methods to Analysis Methodologies: A Case
Study

The formal (abstract) system models described in section 3.1 are used to construct and
then connect analysis methods and tools for DELS. When simulation optimization meth-
ods and tools operate and interact with data conforming the system model (information
model/schema), then any conforming system model (that can be mapped or abstracted)
can be input to those methods. One challenge of this approach is designing tools that
specifically pass information defined by the system model, rather than semantics-free data
structures, such as numerical arrays. Existing analysis tools that do not do this can be
adapted with interfaces that do. This case study describes an implementation of this idea.
The implementation can be found at [7] under Use Cases/DistributionNetwork.

The case study illustrates hierarchical design of distribution supply chains where design
decisions are well-structured and made sequentially using multi-stage, multi-criteria sim-
ulation optimization. It provides a rich example to demonstrate potential applications and
benefits of system models mediating between multi-paradigm simulation and optimization
tools (interoperability). The system model is the source for automatically generating sim-
ulation and optimization models at the required level of detail for each stage of the search
process. Generative methods reduce the time and cost of using simulation optimization
methods and enables simulation optimization analysis to consider structural changes to the
system.

4.1 Analysis Method: Multi-fidelity Simulation Optimization

The simulation optimization methodology has three stages (figure 7): 1) Network Design,
based on a deterministic, integer programming model formulated from a multi-commodity
flow network approximation (section 4.2); 2) Resource Investment, a problem solved us-
ing a genetic algorithm operating on a low-fidelity simulation model (section 4.3); and 3)
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Fig. 7. An overview of the simulation optimization analysis methodology

Control Policy Selection, enumerating resource dispatch policies evaluated using higher-
fidelity simulation models (section 4.4). This design process outputs a Pareto portfolio of
candidate solutions (section 4.5).

The analysis stages interact by passing Supply Chain objects described in section 3.1.
At each stage, the associated optimization and simulation models are generated at the de-
sired level of abstraction and fidelity from the Supply Chain system model. The case
study illustrates integrating heterogeneous methods/tools into a methodology, rather than
focusing on the particular solution method implemented or the solution quality. The poten-
tial use cases (section 2) highlight that interoperable analysis methods can be incorporated
to improve solution quality or run-time. This can lead to new analysis steps that further
refine solutions or other aspects of the system not addressed here.

The design case study is defined as follows: the designer must select depots from prede-
termined candidates, specify the truck fleet size for each depot, and provide a control policy
that selects the next customer to be served by an available truck. The specific problem in-
stance in this case study was created by randomly generating 50 customers on a 240x240
grid of locations; 25 candidate depot locations on the central 120x120 grid; customer to
customer annual commodity demands from a UNIFORM(0,1000) distribution. Depot se-
lection costs are 10e4 and transportation resource fixed costs are 10e2. As a side note,
the parameters were selected to produce many candidate design alternatives, as a useful
illustration, rather than a single dominant depot location.
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4.2 Distribution Network Design Based on a MCFN Approximation

The network design stage maps the distribution supply chain model (via abstraction / gener-
alization) to the flow network abstraction, then formulates a combined facility location and
multi-commodity flow network (MCFN) analysis model (section 3.2). This analysis model
outputs depot selection, customer assignment, and flow determination (routes). The first
stage exploits commercial (and open-source) math programming solvers to generate feasi-
ble, diverse, and good solutions to jump-start the local optimization process. This approach
is useful for screening a large set of alternatives to quickly discard inferior solutions. This
produces good-quality candidate network structures for common problems such as supplier
selection or facility location [75].

Fig. 8. Multi-commodity flow network
optimization results with candidate depots
highlighted in solid (red) circles

By approximating these systems as
flow networks (section 3.1.2), analysis
tools written using Flow Network seman-
tics can be applied to the network design
step. In this use case, we assume the
analysis component accepts a Flow Net-
work (output from the SC2FN step), for-
mulates a MCFN model, and solves it us-
ing a commercial off the shelf math pro-
gramming solver (MathProgSolver). The
Flow Network defines an interface to the
analysis component formulating the MCFN
optimization model. Math programming
solvers will solve “any” math programming
problem, i.e. its interface is defined by an
optimization metamodel. Their APIs define
an optimization problem class, which is in-
stantiated with details of specific optimization models (MCFN model).

The Network Design stage returns a valid Supply Chain instance by mapping opti-
mization analysis results from the Flow Network abstraction into supply chain semantics
(mapFN2SC in figure 7). The optimal solution is displayed in figure 8. To create a pool of
good candidate solutions, the facility location problem is exploited using a ‘leave one out’
heuristic that re-solves the problem iteratively excluding one depot selected from the op-
timal FLP/MCFN solution. In this case study, the initial FLP/MCFN solution selected six
depots. The Network Design stage passes seven candidate Supply Chain configurations
(instances) to the next stage (resource investment).

4.3 Resource Investment via Genetic Algorithm Using Low-Fidelity Discrete Event
Simulation

The next design stage is the resource investment decision. Whereas MCFN analysis is a
deterministic approximation of system behavior, simulation is more adept at probabilistic
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modeling of system behaviors, interactions, and variability.
Because of the approximate nature of the results from the first stage (network design)

and the simplicity of the surrogate control model, it seems reasonable for the next analy-
sis stage to utilize a low-fidelity simulation model that aggregates and routes flow through
the network probabilistically, rather than routing each individual item. Probabilistic flow
models are reasonable approximations of control behaviors in high-fidelity simulations, but
reduce overall computational expense of searching the design space to construct a portfo-
lio of resource investment solutions. The simulation model implements a basic resource
dispatch control policy that continuously allocates trucks to pick-up and drop-off routes
in a round-robin manner. These two control functions will be refined, in both logic and
execution, in the third stage (control policy selection).

Distribution supply chain instances (objects) created in the network design stage are
used to automatically generate discrete event simulation models in SimEvents (figure 9a)
using the method described in section 3.3. For brevity, the simulation model in figure 9a
is a smaller instance generated from the same stock library components as the complete
model used to generate the case study results. Each simulation model is embedded within
a multi-objective genetic algorithm from the MATLAB® Global Optimization Toolbox™.
The multi-objective genetic algorithm in MATLAB uses a controlled elitist GA variant of
NSGA-II [76] to produce a Pareto portfolio of resource investment decisions. The candi-
date solutions are Pareto efficient with respect to resource investment capital costs (how
many trucks to purchase for each depot) and achieved Service Level (defined as percentage
(%) of items delivered in under 24 hours). The result is a Pareto set of 587 solutions that
can be passed to the next design stage. Figure 9b displays the output of the multi-objective
genetic algorithm after it operates on one of the seven system models input to this stage of
analysis.

Fig. 9. (a) Discrete event simulation generated in SimEvents and (b) output of multi-objective
genetic algorithm (Right)
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Fig. 10. Biobjective plots of the set of Pareto efficient solutions produced by the multi-objective
simulation optimization.

4.4 Control Policy Selection via Enumeration Using High-Resolution Simulation

One of the outstanding challenges in design is control mechanisms. The third stage of the
case study generates high-fidelity simulation models capable of evaluating a small collec-
tion of control policies that select the next customer to be serviced and dispatch a truck to
drop-off and pick-up items from that customer. This stage of the analysis enumerates three
control policy options with each candidate system design, though enumeration could be
replaced with ranking and selection methods.

The most basic scenario uses a round-robin policy, which is easy to implement due to
its minimal information requirements, but risks under-utilizing the capacity of each truck.
The second scenario uses a longest queue policy, which requires the controller to gather
and evaluate queue lengths from each customers. For this strategy, trucks are dispatched
to the next customer as soon as they complete their previous task, which still risks under-
utilizing each truck. Finally, the third scenario extends the longest queue policy with a
minimum queue length before dispatching a truck to a particular customer. This improves
the utilization of each truck and reduces overall distance traveled, but may increase the
cycle time for shipments. This stage enumerates the complete set of control policies for
each of the resource investment solutions from the previous stage. The resulting Pareto set
of solutions contains 79 candidate system configurations.

4.5 Results

This multi-stage, multi-criteria simulation optimization method outputs a Pareto set of so-
lutions. These solutions can be refined further using ranking and selection methods. For
this case study, the output is a trade-off curve between transportation resource investment,
total distance traveled to service customers, and the service level (cycle time satisfaction).
The set of 79 Pareto efficient solutions is projected into three biobjective plots in figure 10.
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5. Conclusions and Future Work

To meet analysis requirements for next-generation discrete event logistics systems, simu-
lation optimization methods must handle the scale, complexity, and uncertainty inherent
in these systems. Integration and interoperability between individual simulation and opti-
mization methods is a key enabler to meeting those requirements. We propose integration
methods driven by complete system definitions (models) for defining robust interfaces and
adapters between application-specific simulation and optimization methods. Generating
simulation and optimization models from the same system model improves consistency
between these two complementary stages of system design, which capture different views
of system structure, behavior, and control. Multiple simulations can be generated at appro-
priate levels of detail mirroring the diversity of available optimization methods. Simula-
tion models can be generated in multiple languages and commercial tools, enabling high-
performance simulation and spurring innovative applications of research ideas in DELS
and other kinds of systems (see section 2.2).

As a case study, we construct a distribution supply chain system model by specializing
flow network and DELS models, enabling multiple generic analysis models and tools to be
generated from the same system specification. This suggests that any system conforming to
the (reference) flow network and DELS models can take advantage of any analysis model
that can be mapped to the those reference model. These reference models serve as a bridge
between system and analysis models, reducing the effort of creating new analyses for ex-
isting systems and applying existing analyses to new system instances. This capability is
essential for simulation optimization to be routinely used in DELS analysis.

Implementing the modeling methods for this case study required working-around some
platform-specific aspects of Matlab and SimEvents, and exploiting others, for represent-
ing, storing, and exchanging system models and constructing the adapters. Future work to
achieve cross-platform interoperability between simulation and optimization tools will ad-
dress exchanging system models stored in a platform-independent format, such as OMG’s
XML Metadata Interchange standard [77]. The adapter method in section 3.3.1 demon-
strates that COTS tools can expose a flow network-compliant interface. The method needs
to be validated on other platforms, which may implement it differently depending on their
languages and constraints.

Acknowledgments

The author thanks Conrad Bock at NIST and Leon McGinnis and George Thiers at Georgia
Tech for their helpful conversations and comments.

23

______________________________________________________________________________________________________ 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8326



References

[1] Mönch L, Lendermann P, McGinnis LF, Schirrmann A (2011) A survey of challenges
in modeling and decision-making for discrete event logistics systems. Computers in
Industry 62(6):557–567.

[2] Sprock T, Thiers G, McGinnis LF, Bock C (2020) Theory of Discrete Event Logistics
Systems (DELS) Specification. National Institute of Standards and Technology, NIST
Interagency/Internal Report (NISTIR) 8262. URL https://doi.org/10.6028/NIST.IR.
8262.

[3] Sprock T, McGinnis LF (2015) A simulation optimization framework for discrete
event logistics systems (DELS). Proceedings of the 2015 Winter Simulation Confer-
ence (IEEE), pp 2776–2787.

[4] Sprock T, Bock C (2017) Incorporating abstraction methods into system-analysis in-
tegration methodology for discrete event logistics systems. Proceedings of the 2017
Winter Simulation Conference (IEEE Press), pp 966–976.

[5] Sprock T, Bock C (2020) Model libraries supporting discrete event logistics systems
(dels) models. NIST Journal of Research URL https://doi.org/10.6028/jres.125.023.

[6] Sprock T GitHub\USNISTGov\discrete event logistics systems, . URL https://doi.org/
10.18434/M32203.

[7] Sprock T GitHub\USNISTGov\DELS Analysis Integration, . URL https://github.com/
usnistgov/dels-analysis-integration.

[8] Pasupathy R, Henderson SG (2011) SimOpt: A library of simulation optimization
problems. Proceedings of the 2011 Winter Simulation Conference (IEEE), pp 4075–
4085.

[9] Xu J, Nelson BL, Hong J (2010) Industrial strength COMPASS: A comprehensive
algorithm and software for optimization via simulation. ACM Transactions on Mod-
eling and Computer Simulation (TOMACS) 20(1):1–29.

[10] Fu MC, et al. (2014) Simulation Optimization: A Panel on the State of the Art in
Research and Practice. Proceedings of the 2014 Winter Simulation Conference (IEEE
Press, Piscataway, NJ, USA), pp 3696–3706.

[11] Tolk A, Muguira JA (2003) The levels of conceptual interoperability model. Proceed-
ings of the 2003 Fall Simulation Interoperability Workshop, Vol. 7 Vol. 7, pp 1–11.

[12] Dengiz B, Altiparmak F, Smith AE (1997) Local search genetic algorithm for op-
timal design of reliable networks. IEEE Transactions on Evolutionary Computation
1(3):179–188.

[13] Azadivar F (1999) Simulation optimization methodologies. Proceedings of the 1999
Winter Simulation Conference, eds Farrington PA, Nembhard HB, Sturrock DT, Evans
GW (ACM, New York, NY, USA), pp 93–100.

[14] Zhou G, Min H, Gen M (2002) The balanced allocation of customers to multiple
distribution centers in the supply chain network: A genetic algorithm approach. Com-
puters & Industrial Engineering 43(1):251–261.

[15] Syarif A, Yun Y, Gen M (2002) Study on multi-stage logistic chain network: A span-

24

______________________________________________________________________________________________________ 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8326

https://doi.org/10.6028/NIST.IR.8262
https://doi.org/10.6028/NIST.IR.8262
https://doi.org/10.6028/jres.125.023
https://doi.org/10.18434/M32203
https://doi.org/10.18434/M32203
https://github.com/usnistgov/dels-analysis-integration
https://github.com/usnistgov/dels-analysis-integration


ning tree-based genetic algorithm approach. Computers & Industrial Engineering
43(1):299–314.

[16] Ding H, Benyoucef L, Xie X (2009) Stochastic multi-objective production-
distribution network design using simulation-based optimization. International Jour-
nal of Production Research 47(2):479–505.

[17] Costa A, Celano G, Fichera S, Trovato E (2010) A new efficient encoding/decoding
procedure for the design of a supply chain network with genetic algorithms. Comput-
ers & Industrial Engineering 59(4):986–999.

[18] Yang T, Kuo Y, Chang I (2004) Tabu-search simulation optimization approach for
flow-shop scheduling with multiple processors - a case study. International Journal
of Production Research 42(19):4015–4030.

[19] Brandimarte P (1993) Routing and scheduling in a flexible job shop by tabu search.
Annals of Operations research 41(3):157–183.

[20] Alabas C, Altiparmak F, Dengiz B (2002) A comparison of the performance of ar-
tificial intelligence techniques for optimizing the number of kanbans. Journal of the
Operational Research Society :907–914.

[21] Huyet A, Paris J (2004) Synergy between evolutionary optimization and induction
graphs learning for simulated manufacturing systems. International Journal of Pro-
duction Research 42(20):4295–4313.

[22] Dengiz B, Alabas C (2000) Simulation optimization using tabu search. Proceedings
of the 2000 Winter Simulation Conference (Society for Computer Simulation Interna-
tional), pp 805–810.

[23] Robinson S (2005) Discrete-event simulation: From the pioneers to the present, what
next? Journal of the Operational Research Society 56(6):619–629.

[24] Mackulak GT, Lawrence FP, Colvin T (1998) Effective simulation model reuse: a
case study for amhs modeling. Proceedings of the 1998 Winter Simulation Conference
(IEEE Computer Society Press), pp 979–984.

[25] Son YJ, Jones AT, Wysk RA (2000) Automatic generation of simulation models from
neutral libraries: an example. Proceedings of the 2000 Winter Simulation Conference,
Vol. 2 (IEEE) Vol. 2, pp 1558–1567.

[26] Cope D, Fayez MS, Mollaghasemi M, Kaylani A (2007) Supply chain simulation
modeling made easy: an innovative approach. Proceedings of the 2007 Winter Simu-
lation Conference (IEEE), pp 1887–1896.

[27] Lee YTT, Riddick FH, Johansson BJI (2011) Core Manufacturing Simulation Data -
a manufacturing simulation integration standard: Overview and case studies. Interna-
tional Journal of Computer Integrated Manufacturing 24(8):689–709.

[28] Bergmann S, Stelzer S, Straßburger S (2011) Initialization of simulation models using
cmsd. Proceedings of the 2011 Winter Simulation Conference (IEEE), pp 2228–2239.

[29] Silver GA, Hassan OAH, Miller JA (2007) From domain ontologies to modeling on-
tologies to executable simulation models. Proceedings of the 39th conference on Win-
ter simulation: 40 years! The best is yet to come (IEEE Press), pp 1108–1117.

[30] Miller J, Han J, Hybinette M, et al. (2010) Using domain specific language for mod-

25

______________________________________________________________________________________________________ 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8326



eling and simulation: Scalation as a case study. Proceedings of the 2010 Winter Sim-
ulation Conference (IEEE), pp 741–752.

[31] Gianni D, D’Ambrogio A, Tolk A (2014) Modeling and Simulation-Based Systems
Engineering Handbook (CRC Press), .

[32] Mellor SJ, Scott K, Uhl A, Weise D (2004) MDA distilled: principles of model-driven
architecture (Addison-Wesley Professional), .

[33] Estefan JA (2007) Survey of model-based systems engineering (mbse) methodologies.
Incose MBSE Focus Group 25:8.

[34] Schönherr O, Pappert FS, Rose O (2013) Domain specific simulation modeling with
sysml and model-to-model transformation for discrete processes. Formal Languages
for Computer Simulation: Transdisciplinary Models and Applications :267–304.

[35] Kapos GD, Dalakas V, Nikolaidou M, Anagnostopoulos D (2014) An integrated
framework for automated simulation of sysml models using devs. Simulation
90(6):717–744.

[36] Batarseh O, Huang E, McGinnis LF (2015) Capturing simulation tool and application
domain knowledge for automating simulation model creation. Journal of Simulation
9(1):1–15.

[37] Thiers G, Sprock T, McGinnis L, Graunke A, Christian M (2016) Automated produc-
tion system simulations using commercial off-the-shelf simulation tools. Proceedings
of the 2016 Winter Simulation Conference (IEEE Press), pp 1036–1047.

[38] Sprock T, McGinnis LF (2014) Simulation Model Generation of Discrete Event Lo-
gistics Systems (DELS) Using Software Patterns. Proceedings of the 2014 Winter
Simulation Conference (IEEE Press), pp 2714–2725.

[39] Huang Y, Verbraeck A, Seck M (2016) Graph transformation based simulation model
generation. Journal of Simulation 10(4):283–309.

[40] Fowler JW, Rose O (2004) Grand challenges in modeling and simulation of complex
manufacturing systems. Simulation 80(9):469–476.

[41] Taylor SJ, et al. (2012) Panel on grand challenges for modeling and simulation. Pro-
ceedings of the 2012 Winter Simulation Conference (Winter Simulation Conference),
p 232.

[42] Deavours DD, et al. (2002) The mobius framework and its implementation. IEEE
Transactions on Software Engineering 28(10):956–969.

[43] Schruben LW, Roeder TM (2003) Fast simulations of large-scale highly congested
systems. Simulation 79(3):115–125.

[44] Angelidis E, Bohn D, Rose O (2013) A simulation tool for complex assembly lines
with multi-skilled resources. Proceedings of the 2013 Winter Simulation Conference
(WSC) (IEEE), pp 2577–2586.

[45] Mayer T, Uhlig T, Rose O (2016) An open-source discrete event simulator for rich
vehicle routing problems. Intelligent Transportation Systems (ITSC), 2016 IEEE 19th
International Conference on (IEEE), pp 1305–1310.

[46] Xu J, et al. (2016) MO2TOS: Multi-fidelity optimization with ordinal transformation
and optimal sampling. Asia-Pacific Journal of Operational Research 33.

26

______________________________________________________________________________________________________ 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8326



[47] Zülch G, Fischer J, Jonsson U (2000) An integrated object model for activity network
based simulation. Proceedings of the 32nd conference on Winter simulation (Society
for Computer Simulation International), pp 371–380.

[48] Madan M, Son YJ, Cho H, Kulvatunyou B (2005) Determination of efficient sim-
ulation model fidelity for flexible manufacturing systems. International Journal of
Computer Integrated Manufacturing 18(2-3):236–250.

[49] Celik N, Lee S, Vasudevan K, Son YJ (2010) Dddas-based multi-fidelity simulation
framework for supply chain systems. IIE Transactions 42(5):325–341.

[50] Chan F, Chaube A, Mohan V, Arora V, Tiwari M (2010) Operation allocation in au-
tomated manufacturing system using ga-based approach with multifidelity models.
Robotics and Computer-Integrated Manufacturing 26(5):526–534.

[51] Hung YF, Leachman R (1999) Reduced simulation models of wafer fabrication facil-
ities. International Journal of Production Research 37(12):2685–2701.

[52] Heath SK, Buss A, Brailsford SC, Macal CM (2011) Cross-paradigm simulation mod-
eling: challenges and successes. Proceedings of the 2011 Winter Simulation Confer-
ence (IEEE), pp 2788–2802.

[53] Miller J, Baramidze GT, Sheth AP, Fishwick P (2004) Investigating ontologies
for simulation modeling. Proceedings of the 37th Annual Simulation Symposium
(ANSS’04) (IEEE), pp 55–63.

[54] Almeder C, Preusser M, Hartl RF (2008) Simulation and optimization of supply
chains: Alternative or complementary approaches? OR Spectrum 31(1):95–119.

[55] Duvivier D, Dhaevers V, Bachelet V, Artiba A (2003) Integrating simulation and op-
timization of manufacturing systems. Systems, Man, and Cybernetics, Part C: Appli-
cations and Reviews, IEEE Transactions on 33(2):186–192.

[56] Azadivar F, Tompkins G (1999) Simulation optimization with qualitative variables
and structural model changes: A genetic algorithm approach. European Journal of
Operational Research 113(1):169–182.

[57] Hamm M, Szczesny K, Nguyen V, König M (2011) Optimization of construction
schedules with discrete-event simulation using an optimization framework. Proc. of
the 2011 ASCE International Workshop on Computing in Civil Engineering, Miami,
FL, USA, pp 682–689.

[58] McLean C, Riddick F (2000) Simulation in the international IMS MISSION project:
The IMS MISSION architecture for distributed manufacturing simulation. Proceed-
ings of the 2000 Winter Simulation Conference (Society for Computer Simulation
International), pp 1539–1548.

[59] Thiers G (2014) A Model-Based Systems Engineering Methodology to Make Engi-
neering Analysis of Discrete-Event Logistics Systems More Cost-Accessible. Ph.D.
thesis. Georgia Institute of Technology, Atlanta, GA.

[60] Biswas S, Narahari Y (2004) Object oriented modeling and decision support for sup-
ply chains. European Journal of Operational Research 153(3):704–726.

[61] Kim J, Rogers K (2005) An object-oriented approach for building a flexible supply
chain model. International Journal of Physical Distribution & Logistics Management

27

______________________________________________________________________________________________________ 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8326



35(7):481–502.
[62] Jain S, Workman RW, Collins LM, Ervin EC, Lathrop AP (2001) Supply chain appli-

cations II: Development of a high-level supply chain simulation model. Proceedings
of the 2001 Winter Simulation Conference, eds Peters BA, Smith JS, Medeiros DJ,
Rohrer MW (IEEE Computer Society, Washington, DC, USA), pp 1129–1137.

[63] Chatfield DC, Harrison TP, Hayya JC (2006) Sisco: An object-oriented supply chain
simulation system. Decision Support Systems 42(1):422–434.

[64] Rossetti M, Miman M, Varghese V (2008) An object-oriented framework for simulat-
ing supply systems. Journal of Simulation 2(2):103–116.

[65] Grubic T, Fan IS (2009) Integrating Process and Ontology for Supply Chain Model-
ing. Interoperability for Enterprise Software and Applications China, 2009. IESA’09.
International Conference on, pp 228–235.

[66] OMG (2017) Omg systems modeling language (omg sysml) version 1.5, . URL http:
//www.omg.org/spec/SysML/1.5/.

[67] Ahuja RK, Magnanti TL, Orlin JB (1993) Network flows: theory, algorithms, and
applications (Prentice Hall), .

[68] Frantz FK (1995) A taxonomy of model abstraction techniques. Proceedings of the
27th Winter Simulation Conference (IEEE Computer Society), pp 1413–1420.

[69] Gamma E, Helm R, Johnson R, Vlissides J (1994) Design patterns: elements of
reusable object-oriented software (Pearson Education), .

[70] Czarnecki K, Eisenecker UW, Czarnecki K (2000) Generative programming: meth-
ods, tools, and applications. Vol. 16 (Addison Wesley Reading), .

[71] Smith SF, Becker MA (1997) An ontology for constructing scheduling systems. Work-
ing Notes of 1997 AAAI Symposium on Ontological Engineering, pp 120–127.

[72] Lemaignan S, Siadat A, Dantan JY, Semenenko A (2006) Mason: A proposal for an
ontology of manufacturing domain. IEEE Workshop on Distributed Intelligent Sys-
tems: Collective Intelligence and Its Applications (IEEE), pp 195–200.

[73] Cutting-Decelle AF, et al. (2007) ISO 15531 MANDATE: a product-process-resource
based approach for managing modularity in production management. Concurrent En-
gineering 15(2):217–235.

[74] Sprock T (2018) Patterns for modeling operational control of discrete event lo-
gistics systems (dels). Disciplinary Convergence in Systems Engineering Research
(Springer), pp 875–884.

[75] Osman IH (1995) Heuristics for the generalised assignment problem: Simulated an-
nealing and tabu search approaches. Operations-Research-Spektrum 17(4):211–225.

[76] Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjec-
tive genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation
6(2):182–197.

[77] OMG (2005) Omg xml metadata interchange (omg xmi) version 2.1, . URL https:
//www.omg.org/spec/XMI/2.1/.

28

______________________________________________________________________________________________________ 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8326

http://www.omg.org/spec/SysML/1.5/
http://www.omg.org/spec/SysML/1.5/
https://www.omg.org/spec/XMI/2.1/
https://www.omg.org/spec/XMI/2.1/

	INTRODUCTION
	Use Cases for DELS Analysis Interoperability
	Domain-Specific Simulation Optimization Specializations for DELS
	Generating and Evaluating Large-Scale Simulations
	``Multi-X'' Analysis Methodologies

	A Model-driven Approach to Integrating Simulation and Optimization
	Domain-specific Simulation-Optimization Interfaces Defined by System Models
	Distribution Supply Chain System Model
	Formal Abstract Model: Network-based Abstractions

	Abstraction: Formulating Analysis Models from System Abstractions
	System-Analysis Integration & Simulation Generation Methods
	Analysis Integration: Generative Programming Approaches to Developing  Domain-specific Simulation Adapters
	Specialized Builders
	Reusable Model Libraries for Simulation Generation

	What is the best abstraction: A Formal Domain Model for Discrete Event Logistics Systems (DELS)

	Applying Model-Driven Integration Methods to Analysis Methodologies: A Case Study
	Analysis Method: Multi-fidelity Simulation Optimization
	Distribution Network Design Based on a MCFN Approximation
	Resource Investment via Genetic Algorithm Using Low-Fidelity Discrete Event Simulation
	Control Policy Selection via Enumeration Using High-Resolution Simulation
	Results

	Conclusions and Future Work
	References



