
NISTIR 8304

SATE VI Ockham Sound Analysis
Criteria

Paul E. Black
Kanwardeep Singh Walia

This publication is available free of charge from:
https://doi.org/10.6028/NIST.IR.8304

NISTIR 8304

SATE VI Ockham Sound Analysis
Criteria

Paul E. Black
Software and Systems Division

Information Technology Laboratory

Kanwardeep Singh Walia
California State University

Sacramento, California

This publication is available free of charge from:
https://doi.org/10.6028/NIST.IR.8304

May 2020

U.S. Department of Commerce
Wilbur L. Ross, Jr., Secretary

National Institute of Standards and Technology
Walter Copan, NIST Director and Undersecretary of Commerce for Standards and Technology

Certain commercial entities, equipment, or materials may be identified in this document in order to describe
an experimental procedure or concept adequately. Such identification is not intended to imply

recommendation or endorsement by the National Institute of Standards and Technology, nor is it intended to
imply that the entities, materials, or equipment are necessarily the best available for the purpose.

National Institute of Standards and Technology Interagency or Internal Report 8304
Natl. Inst. Stand. Technol. Interag. Intern. Rep. 8304, 46 pages (May 2020)

This publication is available free of charge from:
https://doi.org/10.6028/NIST.IR.8304

Abstract

Static analyzers examine the source or executable code of programs to find problems. Many
static analyzers use heuristics or approximations to examine programs with millions of lines
of code for hundreds of classes of problems. The Ockham Sound Analysis Criteria recog-
nizes static analyzers that are precise. In brief the criteria are (1) the analyzer’s findings
are claimed to always be correct, (2) it produces findings for most of a program, and (3)
even one incorrect finding disqualifies an analyzer. This document begins by explaining
the background and requirements of the Ockham Criteria and how we determine if a tool
satisfies it.

As part of Static Analysis Tool Exposition (SATE) VI, we examined two tools: Astrée
and Frama-C with the Evolved Value Analysis (Eva) plug-in. Examining the tool outputs
led us to find several systematic mistakes in the Juliet 1.3 test suite and thousands of mis-
takes in its manifest of known errors.

Our conclusion is that Astrée and Frama-C with Eva satisfied the SATE VI Ockham
Sound Analysis Criteria.

Key words

Ockham Criteria; software assurance; software measurement; software testing; sound anal-
ysis; static analysis.

i

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8304

Table of Contents
1 Background 1

1.1 Using Sound Static Analyzers 1
1.2 Differences Between SATE V and SATE VI Ockham Exercises 2

1.2.1 Known Bugs 2
1.2.2 Determining Sites 3
1.2.3 Bug or Weakness Classes 5

2 The Criteria 6
2.1 Criterion 1: “Sound” (and “Complete”) Analysis 6
2.2 Criterion 2: Tools Produce Findings for Most Sites 7
2.3 Criterion 3: Determining That All Findings Are Correct 8
2.4 Ockham Bug Classes 10

2.4.1 ARC—Arithmetic or Conversion Fault Classes 10
2.4.2 ARG/Memcpy—Incorrect Argument for memcpy() 11
2.4.3 BOF/Read and BOF/Write—Read or Write Outside Buffer 11
2.4.4 DEP—Dereference Erroneous Pointer Classes 12
2.4.5 PAR—Pointer Arithmetic 12
2.4.6 ILP—Infinite Loop 12
2.4.7 INI—Initialization Fault 13
2.4.8 MAL—Memory Allocation and Deallocation 13
2.4.9 UCE—Unchecked Error 13

3 SATE VI Evaluation 13
3.1 Astrée 14

3.1.1 Performing the Evaluation 14
3.1.2 Common Considerations 16
3.1.3 ARC/Overflow—Arithmetic Overflow 17
3.1.4 ARC/Underflow—Arithmetic Underflow 18
3.1.5 ARC/Undefined—Divide by Zero 18
3.1.6 ARC/Distort—Result Distortion 19
3.1.7 ARC/Truncate—Result Truncation 19
3.1.8 ARG/Memcpy—Incorrect Argument for memcpy() 19
3.1.9 BOF/Read—Read Outside Buffer 20
3.1.10 BOF/Write—Write Outside Buffer 21
3.1.11 DEP—Dereference Erroneous Pointer 22
3.1.12 DEP/ICP—Incorrect Pointer Arithmetic 23
3.1.13 PAR—Pointer Arithmetic 24
3.1.14 ILP—Infinite Loop 24
3.1.15 INI—Initialization Fault 24
3.1.16 MAL—Memory Deallocation 25
3.1.17 UCE—Unchecked Error 25
3.1.18 Summary of Evaluation 26

ii

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8304

3.2 Frama-C 27
3.2.1 Performing the Evaluation 27
3.2.2 Common Considerations 29
3.2.3 ARC/Overflow—Arithmetic Overflow 29
3.2.4 ARC/Underflow—Arithmetic Underflow 30
3.2.5 ARC/Undefined—Divide by Zero 30
3.2.6 ARC/Distort—Result Distortion 30
3.2.7 ARC/Truncate—Result Truncation 30
3.2.8 ARG/Memcpy—Incorrect Argument for memcpy() 31
3.2.9 BOF/Read—Read Outside Buffer 31
3.2.10 BOF/Write—Write Outside Buffer 31
3.2.11 DEP—Dereference Erroneous Pointer 32
3.2.12 DEP/ICP—Incorrect Pointer Arithmetic 34
3.2.13 PAR—Pointer Arithmetic 34
3.2.14 INI—Initialization Fault 35
3.2.15 MAL—Memory Deallocation 35
3.2.16 Summary of Evaluation 35

4 Observations and Conclusions 36
4.1 New Errors Found in Juliet 1.3 and its Manifest 36
4.2 Weakness Classes 37
4.3 Summary 38

References 38

iii

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8304

Glossary

Term Definition

bad function A function in a Juliet test case that is written to exhibit a weakness.
(Sec. 1.2.1)

good function A function in a Juliet test case that is identical to a bad function, except
that it does not have the weakness. (Sec. 1.2.1)

finding A definitive statement by a tool about a specific place in code, e.g., the
presence or absence of a weakness. (Sec. 2)

site A location in code where a weakness might occur. (Sec. 1.2.2)
buggy site A site that has a bug or weakness.
sound Every finding is correct. (Sec. 2.1)

weakness The property of a piece of code such that execution could lead to a fault.
(Sec. 1.2.2)

Table 1. Glossary of Terms

iv

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8304

1. Background

The Static Analysis Tool Exposition (SATE) is a recurring event at the National Institute
of Standards and Technology (NIST) led by the Software Assurance Metrics And Tool
Evaluation (SAMATE) team [1]. SATE aims to improve research and development of
source code static analyzers, especially security-relevant aspects. To begin each SATE,
the SAMATE team and other organizers select or create programs as test cases. Either
participating tool developers or we run tools on the test cases and submit the results (tool
reports). We then analyze the reports. Results and experiences are reported at the SATE
workshop, and the final analysis is made publicly available.

The goals of SATE are to:
• Enable empirical research based on large test sets,
• Encourage improvement of tools, and
• Speed adoption of tools by objectively demonstrating their use on real software.
The general SATE procedure is:

1. We select test cases,
2. Tool makers run their tools and send the findings to us,
3. We analyze the tool reports, and
4. Parties share experience at a workshop.

See Ref. [2, Sec. 2.2] for details.
In SATE V [3], the SAMATE team introduced the Ockham Sound Analysis Criteria, a

track for static analyzers whose analysis is logically sound. Tools that are not “bug-finders”
can satisfy the Ockham Criteria, too. A tool that reports that pieces of code are certainly
bug free is welcome.

We check that tools satisfy the SATE VI Ockham Sound Analysis Criteria to show that
they are reliable and worth the effort to use. Beyond that, our test material and approach
should help others investigate what assurance a tool provides for their own code in their
own development process.

The rest of this section gives additional background and explains changes between the
previous Ockham Sound Analysis Criteria evaluation and the current one. Section 2 ex-
plains the Criteria in detail. It also presents the general procedure we used to evaluate a
tool by the Criteria. Section 3 explains details of the evaluation for Astrée, Sec. 3.1, and
Frama-C, Sec. 3.2. Section 4 lists what we found and our conclusions.

1.1 Using Sound Static Analyzers

Our evaluation of tools against the Ockham Sound Analysis Criteria only reflects one aspect
of using a sound static analyzer in a production software development process. Adding
almost any tool to a software development process takes work. Even to evaluate as we
have, there is a particular learning curve to effectively use sound and precise static analysis
tools.

In order to be precise, such tools use a detailed description of the actual compilation
and execution environments of the software being analyzed. Is an int 32 or 64 bits on the

1

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8304

target computer? Does the code rely on the compiler laying out memory for a struct in a
certain order with no padding? Do you want warnings of unsigned short integer overflow
if your code does a lot of masking and shifting, e.g., for hashes or encryption? Is the high-
order bit propagated when a signed integer shifted right? How is floating-point addition
rounded? The C11 standard [4] allows different definitions of main() and different behav-
iors of bitwise operators. The term “implementation-defined” occurs almost 200 times in
the C11 standard.

In addition, the tools are elaborate systems with many abilities. As an analogy, consider
that the word “vehicle” includes bicycles, dump trucks, and buses. All have wheels, can
be steered, and transport something, but their design and uses are very different. Similarly,
we evaluate only a small part of the tools’ capabilities for the SATE VI Ockham Crite-
ria. Astrée [5] has sophisticated graphical user interfaces to select hundreds of options,
including checking Motor Industry Software Reliability Association (MISRA) guidelines,
controling software checking, and displaying violations found in context. Frama-C [6] is
an open source suite of tools to analyze software written in C, such as code slicing, depen-
dency analysis, and enabling proofs that code satisfies functional specifications. Another
tool, not in SATE VI Ockham, Kestrel Technology’s CodeHawk-C, exposes the validity
requirements—proof obligations (PO)—of every code fragment reporting that each PO is
satisfied, violated, or cannot be proved.

Consider that Thales defines many levels of using formal verification for software as-
surance [7]. These levels are Stone—adhering to the SPARK [8] programming language—
then Bronze—proving variable initialization and clear data flow—then Silver, Gold, and
finally Platinum—proving that software meets its fully- and formally-specified require-
ments. Similarly, a knowledgeable user will “tune” the use of sophisticated tools, for in-
stance, specify depth of recursion, number of loops to unroll, and analysis options so the
tool produces the most useful result. It took us three or four full days of experimenting,
reading, and guidance from tool makers to get tools reporting the errors that we were inter-
ested in. Even then we do not claim that our choices were optimal for a software production
environment.

1.2 Differences Between SATE V and SATE VI Ockham Exercises

In this subsection, we examine differences between the SATE V Ockham evaluation pro-
cedure and that of SATE VI Ockham. For details of the SATE V evaluation, see Ref. [9].

We only evaluated Frama-C in the SATE V Ockham Sound Analysis Criteria. For this
SATE VI, we evaluated two tools: Astrée [5] and a new version of Frama-C [6] with its
Evolved Value Analysis (Eva) plug-in.

1.2.1 Known Bugs

SATE V Ockham used Juliet Version 1.2 test cases. Juliet cases are small, synthetic pro-
grams with deliberate bugs. Each case has a “bad” function exhibiting the bug and
one or more “good” functions that have the same code as the bad function, but with

2

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8304

the bug fixed. Juliet was originally developed by National Security Agency’s Center for
Assured Software. They are available from the Software Assurance Reference Dataset
(SARD) [10]. Evaluating the tool warnings we got during SATE V Ockham uncovered
previously-unknown systematic errors in Juliet 1.2. We used that information and other
problem reports to fix some two dozen systematic problems in Juliet code. We also added
test cases for integer overflow and underflow using unary increment and decrement opera-
tors. These fixes and additions resulted in Juliet Version 1.3. For details of changes from
Juliet 1.2 to 1.3 and some of the issues remaining in 1.3, see Ref. [11]. We and potential
participants chose the Juliet 1.3 C test suite for this Ockham.

To evaluate warnings, we needed to know the classes and location of bugs designed
into Juliet 1.2. We did not have an independent list. Instead, we used the source code,
which has hints in comments. The hints are inconsistent. For example, the comment may
be two lines or three lines before the bad code and sometimes both the bad and the good
code have exactly the same comment. It took a lot of work to develop a program to locate
comments, then produce consistent classes and locations for bugs. Frequent crosschecking
against warnings drew our attention to some nuance or peculiarity in comment phrasing or
location for certain test case variants. We embodied our final bug list in a manifest for the
Juliet 1.3 C test suite.

1.2.2 Determining Sites

To explain sites, we first define “weakness”. A piece of code has a weakness when some
execution could lead to a fault. In contrast, a vulnerability in a system could be acciden-
tally triggered or intentionally exploited to cause a failure [12]. Every vulnerability is one
or more weaknesses. A weakness is not a vulnerability if it is guarded by code or has other
mitigations anywhere in the broader system. For example, suppose an analyst is consider-
ing a dozen lines of code and sees that that piece of code has no protection from an SQL
Injection attack. The code has an SQL Injection weakness. However, if the broader system
context filters out any possible string with SQL Injection attacks, there is no vulnerability.
We distinguish a weakness from a vulnerability to focus on a manageable context around
pieces of code without constantly facing technically undecidable considerations like, “. . .
if this code is reachable” or “. . . unless this filter is perfect”.

For the first evaluation, that is, during SATE V, we wanted to be very precise about
evaluating tool warnings. To be precise, we used the concept of site. A site “is a location
in code where a weakness might occur.” [9, Sec. 2.2]. In other words, sites of a weakness
are places that must be checked for that weakness. For example, every buffer access in a
C program is a site where buffer overflow might occur if the code is buggy. See Ref. [9,
Sec. 2.2] for further exposition of what constitutes a site.

For each class of weakness, we found all sites then checked that there were no find-
ings at those sites which had bugs [9, Sec. 3.1]. We spent much time and effort precisely
matching our and Frama-C’s definition of each class and the sites for them. For example,
Frama-C only checked for signed arithmetic overflows for types of width int or larger.

3

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8304

Following are details of our approach for SATE V Ockham. We developed a program
to extract all sites of all classes of warnings. This extractor also determined which sites
were buggy by examining the source code and comments in it, as noted above.

For each warning class, we selected the universe, U, of corresponding sites, both those
with bugs and those without bugs. If a warning, w ∈W , was not in U, w 6∈U , we debugged
and corrected our extraction code or changed our classification of warnings so that there
was an exact match between classes reported by Frama-C and our concept of classes. We
then computed the findings, F, as sites without any warning, formally, F =U−W . If a class
had any buggy sites, B, that were not in U, that is B 6⊆U , we also corrected our extraction
code. The final check is that no finding was a buggy site, formally F ∩B = /0. This satisfies
Ockham criteria 3. (Criterion 3 is explained in Sec. 2.3.) The relations between these is
illustrated in Fig. 1.

Fig. 1. Relation between the universe of sites, U, warnings reported, W, known buggy sites, B, and
findings, F, computed as sites without warnings for SATE V Ockham. A crosscheck is that W ⊆U .
Ockham criterion 3 is satisfied if F ∩B is empty.

After review, we decided that determining sites for each warning class was not worth
the effort. In the current Ockham, SATE VI, we skipped the step of defining sites. We
simply checked that all buggy sites were included in warnings, that is, B ⊆W , see Fig. 2.
Analytically, this is exactly the same check as F ∩B = /0, with no need to compute the
universe of sites.

Not determining sites means that we cannot calculate that Ockham criterion 2, ex-
plained in Sec. 2.2, is satisfied.

What risk of incorrect evaluation do we have when we do not determine sites? There
are two possible mistakes: extraneous tools warnings included in a class and buggy sites

4

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8304

Fig. 2. Relation between warnings reported, W, and known buggy sites, B, for SATE VI Ockham.
Ockham criterion 3 is satisfied if B⊆W .

not included in a class.
It is possible that some tool warnings are incorrectly assigned to a class and these ex-

traneous warnings are matched with buggy sites that otherwise would be unmatched. De-
termining sites separately reduces the chance of extraneous warnings.

We minimize this risk by using a single, common program to assign all warnings to
classes. If a warning was included in one class and should have been included in another
class, checking the other class reveals that mistake. Checking different classes often re-
vealed that warnings were assigned to the wrong class.

The other possible mistake is that buggy sites are not included in a class but should
have been. Precisely determining sites reduces the chance of missing buggy sites.

Since we use a manifest of buggy sites that are labeled by CWE and CWEs generally
correspond to the classes we chose, it is unlikely that buggy sites will be overlooked.

1.2.3 Bug or Weakness Classes

The Juliet test cases are grouped by Common Weakness Enumeration (CWE) [13]. For
SATE V Ockham, we generally followed those classes. It was often difficult to assign tool
warnings as one of those classes. We believed the difficulty was due to the lack of precision
and detail in CWE class definitions.

For SATE VI Ockham, we defined our own classes to be orthogonal (no overlaps) and
precise, following the approach of the Bugs Framework [14, 15]. Our classes are listed and
defined in Sec. 2.4.

5

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8304

We still had significant difficulty assigning tool warnings to these new classes. Part of
the problem was understanding exactly what the tool warning covered or what it did not
cover. Part of the problem was that our classes made distinctions that tools did not and
vice versa. Our own classes were easier to use than CWEs, but did not come close to being
reasonable universal classes.

2. The Criteria

This section has the details of the Ockham Criteria itself, and includes explanation and
discussion. Much of this section comes from Sec. 2 of the SATE V Ockham report [9].

The Criteria is named for William of Ockham, best known for Occam’s Razor. Since the
details of the Criteria will likely change in the future, the name includes a time reference:
SATE VI Ockham Sound Analysis Criteria.

The value of a sound analyzer is that every one of its findings can be assumed to be
correct.

We tried to write criteria that communicated our intent, ruled out trivial satisfaction,
and were understandable. We planned to be liberal in interpreting the rules: we anticipated
that tools satisfy the Criteria, so we occasionally assumed proper operation of the tool in
cases requiring human judgment.

The criteria were:
1. The tool is claimed to be sound.
2. For at least one weakness class and one test case the tool produces findings for a

minimum of 75 % of appropriate sites.
3. Even one incorrect finding disqualifies a tool for this SATE.
An implicit criterion is that the tool is useful, not merely a toy.
A finding is a definitive report about a site, which is a specific place in code. In other

words, the tool reports that the site has a specific weakness (is buggy) or that the site does
not have that weakness.

No manual editing of the tool output was allowed. No automated filtering specialized
to a test case or to SATE VI was allowed, either. The tool’s settings and options may
be selected to produce the best result, as alluded to in Sec. 1.1. Such setting should be
reported.

2.1 Criterion 1: “Sound” (and “Complete”) Analysis

Criterion 1 is “The tool is claimed to be sound.”
We use the term sound to mean that every finding is correct. In other words, “Sound

analysis means that the [tool] never asserts a property to be true when it is not true.” [16,
FM.1.6.2]. The tool need not produce a finding for every site; that is completeness.

A tool may have settings that allow unsound analysis. The tool still qualifies if it has
clearly sound settings. For example, it is acceptable for the user to be able to select unsound

6

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8304

(approximate) function signatures for fast analysis. A more inclusive statement of Criterion
1 is, the tool is claimed to be sound or has a mode in which analysis is sound.

A sound analyzer may produce false positives, that is, incorrectly report a problem
when there is none. Consider checking for a divide by zero failure in the following code
fragment:

int x = readInput ();

if (x != 0) {

x = 1776/x;

}

Suppose analysis tracks possible values of a variable as a range of values from a minimum
to a maximum. After the first line, x can have any int value. This can be represented
exactly as a range from the minimum int to the maximum int. Immediately after the con-
ditional test, the possible values of x is all values except zero, which cannot be precisely
represented as a single range. To always report possible bugs, the analyzer must overap-
proximate and continue to represent possible values as the entire range. When analysis
checks the next line, zero is in the range of possible values. Analysis reports a (possible)
divide by zero, even though it cannot actually occur.

For a more detailed exposition of uses of the terms “sound” and “complete” applied to
static analysis, see Ref. [9, Sec. 2.3].

2.2 Criterion 2: Tools Produce Findings for Most Sites

Criterion 2 balances usefulness with theoretical limits: the tool produces findings for a
minimum of 75 % of sites.

A trivial tool could produce no findings at all, which is arguably not incorrect. But a
useful tool must produce findings for many sites in many pieces of software. Then why not
require that a tool reports all buggy sites with no false positives?

This is impossible in theory. This impossibility often arises in practice, too. Rice’s
Theorem states that for any nontrivial property any algorithm either fails to report some
cases when the property is present, or incorrectly reports the property’s presence when it is
absent [17].

A sound tool might report three cases: sites that definitely have a certain weakness,
sites that definitely do not have a certain weakness, and sites for which the tool cannot
determine.

After consultation with the SATE program committee, we chose 75 % as a level that
is useful, yet readily achievable by current tools. In the future, we will likely set a higher
limit.

The phrase, “For at least one weakness class . . . ” welcomes tools that focus on partic-
ular weakness classes, for instance, memory safety, reachability, or concurrency.

Processing different classes of weaknesses may take very different algorithmic machin-
ery. The models, abstractions, data structures, and algorithms to look for one weakness may
be of little help for another weakness.

7

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8304

Instead of trying to determine some required set of weaknesses, we allowed those run-
ning tools to designate the weakness or weaknesses that the tool finds and to choose one or
more test cases.

The phrase, “and [at least] one test case” welcomes tools that require too many re-
sources to analyze millions of lines of code. Juliet cases are so small that at least one whole
CWE category must be handled to satisfy this phrase.

As explained previously, a site “is a location in code where a weakness might occur.” [9,
Sec. 2.2].

A finding may be that a site is buggy or that a site does not have a particular bug.
Either type of statement (or both!) is acceptable. For instance, a tool may use conservative
approximations and sometimes produce warnings about (possible) bugs at sites that are
actually bug free. If it never misses a bug, then any site without a warning is sure to be
correct. The tool makers could declare that sites without warnings are findings, and that all
findings are correct.

Equivocal reports like “this site is likely to have that weakness,” “caution: this function
does not check for a null,” or “this site is almost certainly safe” are at best ignored (not
counted) and may be considered incorrect.

Because we did not determine sites for weakness classes, we cannot calculate the crite-
rion 2 is satisfied.

2.3 Criterion 3: Determining That All Findings Are Correct

Criterion 3 is “Even one incorrect finding disqualifies a tool for this SATE.” This section
describes the general procedure we followed to confirm that a tool satisfied Criterion 3.

Initial comparison between findings and the Juliet manifest almost always produced
thousands of mismatches.

One reason for mismatches is that reasoning is based on models, assumptions, defini-
tions, etc. (collectively, “models”). Mismatches that result from model differences do not
automatically disqualify a tool. In consultation with the tool maker, we decided if an unex-
pected finding resulted from a reasonable model difference or whether it was incorrect. To
satisfy the SATE VI Ockham Criteria, any such differences are publicly reported.

For instance, one tool may assume that file system permissions are set as the test case
requires, while another tool assumes the worst case about permissions. In this case, the
tools could have different findings, yet both satisfy the Criteria. However, if a tool modeled
“+” as subtraction or sometimes incorrectly modeled recursive calls, it was incorrect.

We performed the bulk of the analysis with automated scripts and custom programs.
Automated scripts allowed us to rerun with relative ease as needed. Some exclusions and
special handling were built into the code. These are mentioned in relevant sections. The
steps are listed below and are given in Fig. 3.

1. Distill bugs from the list of known bugs in the test cases.
2. Run the tool on the test cases.
3. Extract findings from the tool results.

8

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8304

4. Check that all bugs are in the findings.
• If so, Criterion 3 is satisfied.

Fig. 3. General flow to confirm that a tool satisfied the SATE VI Ockham Sound Analysis
Criterion 3. Distill bugs from the known-bugs manifest. Run the tool on the test cases. Extract
findings from the tool output. Compare bugs and findings.

We produced the manifest of known bugs in Juliet 1.3 test cases by finding patterns in
the comments and the code, by manual inspection, and by reconciliation with tool findings.

When we distill bugs and extract findings, we encode them as classes that we created
for a common representation. The classes are listed and explained in Sec. 2.4.

We usually examined a tool’s warnings one class at a time.
When a bug from the known list is missing from findings extracted from the tool result,

we generally use the following steps to resolve the discrepancy.
1. Check that the bug is in the source code at the given location and of the indicated

class. A bug not in the source code or of a different class may indicate an error in the
manifest.

2. Check that the bug is in the manifest correctly.
3. Check that the bug is in the distilled bugs correctly. A problem suggests an error in

the manifest extractor.
4. Check that a warning for the bug is produced by the tool. A problem may indicate

• The tool was not run on that test case at all. This may be an error in a run script
or a human oversight.

• The tool should be run with different settings or with supplemental files.
• The tool was not even programmed to detect this bug class.
• The tool does not warn about this bug class because of something in the test

case.
The tool maker may provide insight.

5. Check that the bug is in the extracted findings correctly. A problem suggests an error
in the warning extractor. The error could be that the extractor does not recognize the

9

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8304

warning, does not extract the information correctly, or encodes the warning as the
wrong class.

6. If the bug is in the list of known bugs and in the extracted findings, the problem may
be in the selection or comparison. In addition, one of the files may be out of date and
programs needs to be run again.

Sometimes we examined the extra findings that do not match any of the bugs in the
manifest to minimize our errors. An unmatched finding may indicate valid bugs missing
from the manifest, findings that are incorrectly encoded, or findings that are not extracted
at all. For those, we adapt the steps from above. They may be actual false positives, which
are allowed in the Ockham Criteria.

Some mismatches may be caused by our choice of bug classes. For example, we check
write buffer overflows (BOF/Write) separately from read buffer overflows (BOF/Read). A
tool may only warn that the code is accessing an index out of bounds and not indicate
whether it is a read or write. In these cases, we may use context, like the test case name, to
classify the warning.

2.4 Ockham Bug Classes

We defined our own classes to organize our examination of warnings. We tried to follow
the approach of the Bugs Framework [14] to precisely and rigorously define clear classes.
The classes must not overlap. That is, a bug must be in one class or another.

In many instances, our classes did not correspond well to the tool warnings.
This section explains each class. We treat closely related classes or subclasses in a

single subsection.

2.4.1 ARC—Arithmetic or Conversion Fault Classes

We begin with the Arithmetic or Conversion Fault, or ARC, class. For the SATE VI Ock-
ham Criteria, we define ARC as

Software produces a faulty result due to conversions between primitive types,
range violations, or domain violations.

Range violation comprises truncation, overflow, underflow, or distortion. We categorize
“wrap around” as either overflow or underflow.

Because there are so many ARC test cases of different kinds in Juliet, we subdivided
ARC into several classes: Truncate, Overflow, Underflow, Distort, and Undefined.

ARC/Truncate is when the value to be stored is too big for the destination and is cut
off, e.g.,
int i1 = 12345678901L;

Test cases for this class are under CWE197 Numeric Truncation Error.
ARC/Overflow is when the types match, but the result is too big for the destination,

e.g.,
unsigned int i2 = UINT_MAX + 1;

10

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8304

Most test cases for this class are under CWE190 Integer Overflow and CWE680 In-
teger Overflow to Buffer Overflow. A few are under CWE196 Unsigned to Signed Con-
version Error.

ARC/Underflow is when the types match, but the result is too negative for the destina-
tion, e.g.,
int i3 = INT_MIN - 1;

Test cases for this class are under CWE191 Integer Underflow.
ARC/Distort is when the result is otherwise distorted, e.g.,

unsigned i4 = -5;

Test cases for ARC/Distort are under CWE194 Unexpected Sign Extension and
CWE195 Signed to Unsigned Conversion Error.

To contrast the four preceding subclasses, truncate is when the type of the source is
larger than the type of the destination. Overflow and Underflow are when the destination
is at least as big as the source, but the result of an arithmetic operation won’t fit in the
destination type. Distort is when the destination is at least as big as the source and the
result would fit, but it is changed for another reason.

ARC/Undefined is a domain violation, such as divide by zero or negative shift.
Test cases for this class are under CWE369 Divide by Zero.

2.4.2 ARG/Memcpy—Incorrect Argument for memcpy()

We define ARG as

Software calls a function with incorrect arguments.

Test cases for this class are under CWE475 Undefined Behavior for Input to API. They
copy overlapping memory areas with memcpy(). The following example is from CWE475_

Undefined_Behavior_for_Input_to_API__char_01.c SARD case 104 496

memcpy(data + 6, data + 4, 10* sizeof(char));

In future Ockham evaluations, we may use additional test cases under CWE685 Func-
tion Call With Incorrect Number of Arguments. The test cases call sprintf() with the
wrong number of arguments. The following example is from CWE685_Function_Call_

With_Incorrect_Number_of_Arguments__basic_02.c, SARD case 110 943

sprintf(dest , "%s %s", SOURCE_STRING);

2.4.3 BOF/Read and BOF/Write—Read or Write Outside Buffer

We define BOF as

Software accesses through an array a memory location that is outside the bound-
aries of that array.

11

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8304

This definition is after [14].
Because there are so many BOF bugs in Juliet, we divided this into BOF/Read and

BOF/Write classes. Warnings may not indicate whether it was a read or write; only that
a BOF may occur. In these cases, we use information about which test case yielded the
warning to encode it as BOF/Read or BOF/Write.

Test cases for BOF/Read are under CWE126 Buffer Overread and CWE127 Buffer
Underread. Most test cases for BOF/Write are under CWE121 Stack Based Buffer Over-
flow, CWE122 Heap Based Buffer Overflow, CWE124 Buffer Underwrite, and CWE680
Integer Overflow to Buffer Overflow. A few test cases are under CWE242 Use of In-
herently Dangerous Function, CWE665 Improper Initialization, and CWE685 Function
Call With Incorrect Number of Arguments.

2.4.4 DEP—Dereference Erroneous Pointer Classes

We define DEP as

Software dereferences an invalid pointer.

The invalid pointer may be NULL, refer to memory that was freed (see MAL below), be
produced by incorrect pointer arithmetic (see PAR below), or be completely arbitrary.

Because Juliet has particular cases for incorrect pointer arithmetic, we separate them
into their own class, DEP/Incorrectly Computed Pointer (DEP/ICP). Test cases for this
class are under CWE188 Reliance on Data Memory Layout and CWE588 Attempt to
Access Child of Non Structure Pointer.

Test cases for other DEP faults are under CWE476 NULL Pointer Dereference,
CWE690 NULL Deref From Return, and CWE123 Write What Where Condition.

2.4.5 PAR—Pointer Arithmetic

We define PAR as

Software produces a faulty value because of incorrect pointer arithmetic.

DEP is when an incorrect pointer is dereferenced. PAR is when the result of pointer
arithmetic is used as a number or when pointers are compared incorrectly.

Test cases for this class are under CWE253 Incorrect Check of Function Return Value
(only fgets) and CWE469 Use of Pointer Subtraction to Determine Size.

Test cases under CWE467 Use of sizeof on Pointer Type and CWE468 Incorrect
Pointer Scaling may be useful in the future.

2.4.6 ILP—Infinite Loop

We define ILP as

Software never terminates execution.

Test cases for this class are under CWE835 Infinite Loop.

12

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8304

2.4.7 INI—Initialization Fault

We define INI as

Software uses a faulty value because an entity was not properly initialized.

“Entity” includes a variable, a member of a structure or record, parts of an array, a pointer or
reference, etc. “Not properly” covers both not initialized at all and not correctly initialized.
The entity may not be initialized at all for many reasons: the programmer neglected to
write initialization at all, program execution followed an unexpected path, the initialization
routine was not called, etc. Not initialized correctly includes initialized with a value that
leads to a security concern.

Most test cases for this class are under CWE457 Use of Uninitialized Variable. A few
are under CWE665 Improper Initialization.

2.4.8 MAL—Memory Allocation and Deallocation

We define MAL as

Software improperly allocates or deallocates memory.

Test cases for this class are under CWE415 Double Free, CWE416 Use After Free,
and CWE761 Free Pointer Not at Start of Buffer.

We also include memory leaks in this class. However Juliet does not have explicit test
cases for memory leak, either failure to free or losing any pointer to allocated memory.

2.4.9 UCE—Unchecked Error

We define UCE as

Software does not check, checks incorrectly, or checks but not take action on a
possible error condition.

Test cases for this class are under CWE252 Unchecked Return Value.
Additional test cases for this class are under CWE390 Error Without Action and

CWE391 Unchecked Error Condition.

3. SATE VI Evaluation

We evaluated several tools by the SATE VI Ockham Sound Analysis Criteria. This section
has one subsection for each tool.

All of the scripts and files are available in a tar file with xz compression [18] at DOI
http://dx.doi.org/10.18434/M32187 or https://nist-sate-ockham-sound-analysis-criteria-evaluation-
material.s3.amazonaws.com/ockham-sate-VI-2020/ockhamCriteriaSATEVI
data2020.tar.xz The README is available at https://nist-sate-ockham-sound-analysis-
criteria-evaluation-material.s3.amazonaws.com/ockham-sate-VI-2020/README

13

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8304

3.1 Astrée

“Astrée is a static code analyzer that proves the absence of run-time errors and invalid con-
current behavior in safety-critical software written or generated in C. . . . Astrée is sound for
floating-point computations and handles them precisely and safely. . . . Astrée offers power-
ful annotation mechanisms for supplying external knowledge and fine-tuning the analysis
precision for individual loops or data structures. . . . This allows for analyses with very few
or even zero false alarms.” [5]

AbsInt Angewandte Informatik GmbH granted NIST an evaluation license to run Astrée
for C on a Linux 64-bit platform. In June 2018 we installed a3 for C 18.04 (2819232) and
began analyzing the Juliet test cases.

By its own definition, Astrée claimed to be sound: “Astrée is sound — that is, if no
errors are signaled, the absence of errors has been proved.” [5]. This satisfies Criterion 1.

Since Astrée produced thousands of warnings, we believe it would satisfy Criterion 2.

3.1.1 Performing the Evaluation

What we refer to elsewhere in this report as warnings, Astrée refers to as alarms. We used
the classes listed in Sec. 2.4 to organize our examination of Astrée alarms. We examined
alarms generally class by class.

AbsInt supplied the initial wrappers and stub code, declaration and configuration (.dax)
files, and Astrée Annotation Language (.aal) files. AbsInt notes that the stubs are only
example implementations and should always be checked to determine what enhancements,
if any, are necessary to match the libraries in use and the properties of importance.

We ran Astrée on the following Juliet 1.3 sets of test cases:
• CWE121 Stack Based Buffer Overflow
• CWE122 Heap Based Buffer Overflow
• CWE123 Write What Where Condition
• CWE124 Buffer Underwrite
• CWE126 Buffer Overread
• CWE127 Buffer Underread
• CWE188 Reliance on Data Memory Layout
• CWE190 Integer Overflow
• CWE191 Integer Underflow
• CWE194 Unexpected Sign Extension
• CWE195 Signed to Unsigned Conversion Error
• CWE196 Unsigned to Signed Conversion Error
• CWE197 Numeric Truncation Error
• CWE242 Use of Inherently Dangerous Function
• CWE252 Unchecked Return Value
• CWE253 Incorrect Check of Function Return Value
• CWE364 Signal Handler Race Condition
• CWE366 Race Condition Within Thread

14

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8304

• CWE367 TOC TOU
• CWE369 Divide by Zero
• CWE398 Poor Code Quality
• CWE404 Improper Resource Shutdown
• CWE415 Double Free
• CWE416 Use After Free
• CWE457 Use of Uninitialized Variable
• CWE475 Undefined Behavior for Input to API
• CWE476 NULL Pointer Dereference
• CWE478 Missing Default Case in Switch
• CWE561 Dead Code
• CWE587 Assignment of Fixed Address to Pointer
• CWE588 Attempt to Access Child of Non Structure Pointer
• CWE665 Improper Initialization
• CWE667 Improper Locking
• CWE680 Integer Overflow to Buffer Overflow
• CWE685 Function Call With Incorrect Number of Arguments
• CWE690 NULL Deref From Return
• CWE761 Free Pointer Not at Start of Buffer
• CWE832 Unlock of Resource That is Not Locked
• CWE835 Infinite Loop
We extracted the following alarm names for matching:
• Arithmetics on invalid pointers
• Dereference of null or invalid pointer
• Float division by zero
• Function return unused
• Incorrect field dereference
• Infinite loop
• Integer division by zero
• Integer modulo by zero
• Integer overflow
• Invalid argument in dynamic memory allocation, free or resize
• Invalid pointer comparison
• Memcpy overlapping
• Out-of-bound array access
• Overflow in arithmetic
• Overflow in conversion
• Overflow in conversion (with unpredictable result)
• Possible overflow upon dereference
• Reinterpreting incompatible function return type
• Reinterpreting incompatible parameter type in a function call
• Uninitialized local read

15

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8304

• Use of dangling pointer
• Use of uninitialized variables
• User defined alarm
Astrée allows users to enable or disable rules and checks individually or as groups.

3.1.2 Common Considerations

This section explains some considerations that applied to all the classes. These are details of
Astrée operation or steps we took to match Astrée alarms to our notion of classes, locations,
and warnings.

In many cases the line that Astrée produces and the line in the manifest are different, but
both are reasonable. Consider the following code, which comes from CWE835_Infinite_

Loop__do_01.c SARD case 122 761:

do

{

printIntLine(i);

i = (i + 1) % 256;

} while(i >= 0);

Astrée issues an alarm at the start of the loop. The manifest lists the error at the end of
the loop. In these cases the program that extracts alarms from Astrée output, what we call
the extractor, astreeXML2csv, patches the extracted alarm to correspond with the manifest.
See Sec. 3.1.14.

Another example of different line numbers is illustrated by this code from CWE122_

Heap_Based_Buffer_Overflow__sizeof_struct_01.c SARD case 234 204 is:

typedef struct

{

int intOne;

int intTwo;

} twoIntsStruct;

23 twoIntsStruct * data;

28 data = (twoIntsStruct *) malloc(sizeof(data));

29 if (data == NULL) {exit (-1);}

30 data ->intOne = 1;

31 data ->intTwo = 2;

The problem is that at line 28, only memory for a pointer to the struct is allocated, not
memory for the whole struct. Astrée determines that line 31 is undefined because the
assignment is beyond the amount of memory allocated. It does not issue an alarm for line
30 because it is well defined. The manifest incorrectly lists an error at line 30 and should
be fixed. As above the extractor, astreeXML2csv, patches the extracted alarm to correspond
with the manifest. See Sec. 3.1.10.

16

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8304

Here is yet another case, which comes from CWE690_NULL_Deref_From_Return__

struct_malloc_01.c SARD case 111 650:

data = (twoIntsStruct *) malloc (1* sizeof(twoIntsStruct));

30 data [0]. intOne = 1;

31 data [0]. intTwo = 1;

The manifest lists (possible) NULL pointer dereference at both lines 30 and 31. Astrée
issues an alarm only about the first line. The extractor adds a second alarm to match the
manifest. See Sec. 3.1.11.

Sometimes Astrée reports an alarm as in a utility file, not in the calling function, where
it would be convenient for us. With highly automated processing, we added some context-
sensitive checks.

Other considerations are that Astrée did not support C++, so we excluded all .cpp

cases1. Astrée needs library stubs and type definitions to support Windows-specific code.
Since we did not have them, we excluded _w32_ and _wchar_t_ test cases. Astrée followed
C99, not C11, semantics.

Following is one subsection for each weakness class. We include details about the
evaluation of a class when useful.

3.1.3 ARC/Overflow—Arithmetic Overflow

Anomalies, Observations, and Interpretations:
Analyzing this class showed that the manifest was missing ARC/Overflow bugs for

CWE680 cases. Here is pertinent code from CWE680_Integer_Overflow_to_Buffer_

Overflow__malloc_rand_01.c SARD case 241 054:

33 intPointer = (int*) malloc(data * sizeof(int));

for (i = 0; i < (size_t)data; i++)

{

37 intPointer[i] = 0;

}

At line 33, data * sizeof(int) may exceed an integer and overflow, an ARC/Overflow.
Not enough memory is allocated, causing a BOF at line 37, which the manifest has. It
did not have an ARC/Overflow at line 33. We added the 576 ARC/Overflow bugs to the
manifest.

Results:
3666 buggy sites.
All buggy sites were found.

For ARC/Overflow, Astrée satisfied Ockham Criterion 3.

1C++ support has been added and is scheduled to be available to all users with the 20.04 release.

17

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8304

3.1.4 ARC/Underflow—Arithmetic Underflow

Anomalies, Observations, and Interpretations:
The vast majority of the unmatched findings (4412 of 4792) are uses of the RAND32

macro. The rest (380) are code with something-1, which underflows for some types.
We found poor code in “good” functions in CWE191. Here is an example from CWE191_

Integer_Underflow__unsigned_int_fscanf_postdec_01.c SARD case 237 917

unsigned int data;

...

data = -2;

...

30 data --;

Although the assignment avoids underflow at the decrement, line 30, the “fix” should assign
a positive value, e.g., data = 2;.

We also found that “bad” functions in CWE680 had extraneous errors. Pertinent code
from CWE680_Integer_Overflow_to_Buffer_Overflow__malloc_fscanf_01.c SARD case
240 972 is

fscanf(stdin , "%d", &data);

{

...

intPointer = (int*) malloc(data * sizeof(int));

The purpose of this code is that data could be a very large value, leading to integer overflow
because of the multiplication. This is fine. However, data could also be negative. This is
an unintended ARC/Distort. The code could be fixed by adding a guard like this:

if (data > 0) {

...

intPointer = (int*) malloc(data * sizeof(int));

Results:
2622 buggy sites.
All buggy sites were found.

For ARC/Underflow, Astrée satisfied Ockham Criterion 3.

3.1.5 ARC/Undefined—Divide by Zero

Results:
684 buggy sites.
All buggy sites were found.

For ARC/Undefined, Astrée satisfied Ockham Criterion 3.

18

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8304

3.1.6 ARC/Distort—Result Distortion

Results:
1824 buggy sites.
All buggy sites were found.

For ARC/Distort, Astrée satisfied Ockham Criterion 3.

3.1.7 ARC/Truncate—Result Truncation

Anomalies, Observations, and Interpretations:
Initially we had many ARC/Truncate alarms from cases under CWE367 TOC TOU

and CWE404 Improper Resource Shutdown. We posit that open() is modeled as return-
ing signed long long, which would be truncated (ARC/Truncate) to fit in int. However,
Ref. [19] says open() returns int, so the Juliet code is not buggy.

Many alarms for cases under CWE369 Divide by Zero are valid, but not interesting to
us. Here is pertinent code from CWE369_Divide_by_Zero__float_fgets_13.c SARD case
94 734:

data = (float)atof(inputBuffer);

Since atof() returns a double, this is an ARC/Truncate.
We did not have a .dax files for CWE681 Incorrect Conversion Between Numeric

Types, so we did not run Astrée on those cases. Analysis did not select those from the
manifest.

Initial comparison showed 26 buggy sites not in the findings. All of them were flow
variants of CWE197_Numeric_Truncation_Error__short_fscanf_*. For example, in
CWE197_Numeric_Truncation_Error__short_fscanf_01.c SARD case 89 280, the mani-
fest had an ARC/Truncate at line 27. The pertinent code is:

short data;

...

27 fscanf (stdin , "%hd", &data);

This code is does not have a bug. We removed the 26 incorrect entries from the manifest.

Results:
684 buggy sites.
All buggy sites were found.

For ARC/Truncate, Astrée satisfied Ockham Criterion 3.

3.1.8 ARG/Memcpy—Incorrect Argument for memcpy()

Results:

19

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8304

18 buggy sites.
All buggy sites were found.

For ARG/Memcpy, Astrée satisfied Ockham Criterion 3.

3.1.9 BOF/Read—Read Outside Buffer

Anomalies, Observations, and Interpretations:
Reconciling (the lack of) Astrée alarms found 72 “fossil” errors in the manifest. The

Juliet code had been corrected in Juliet 1.3, see [11, Sec. 2.3], but the errors hadn’t been
removed from manifest. These were incidental errors in CWE121 and CWE122 cases
where a source string for a memory copy or move was too short for 64 bit architectures.

All 1450 unmatched alarms are in code calling printLine(), similar to this, which
comes from CWE121_Stack_Based_Buffer_Overflow__CWE135_01.c SARD case 231 402:

37 (void)wcscpy(dest , data);

printLine ((char *)dest);

Preceding code does not allocate enough memory for dest to hold the wide string copied
from data. Therefore, wcscpy() writes a string that goes beyond dest. Since printLine()

prints everything to the end of the string, it reads outside dest. Astrée warns about this read
outside the bounds of dest. This is valid, but we decided not to add these to the manifest
since these are cascading bugs and the out-of-bounds access is already listed for line 37.

Initially we got extraneous alarms about BOF/Read in code like CWE126_Buffer_

Overread__CWE170_char_loop_01.c SARD case 75 886. The pertinent code is:

char src [150], dest [100];

memset(src , ’A’, 149);

for(i=0; i < 99; i++)

{

32 dest[i] = src[i];

}

The alarms were “uninitialized read: reading 1 byte(s) at offset(s) nn in variable src” at
line 32. We learned that Astrée does not, by default, unroll loops sufficiently to notice that
enough is initialized. Increasing the loop unrolling permitted proper analysis.

Initially we were missing 54 BOF/Read alarms. An example is in code from CWE126_

Buffer_Overread__CWE170_char_loop_01.c SARD case 75 886, line 35:

char src [150], dest [100];

memset(src , ’A’, 149);

for(i=0; i < 99; i++)

{

dest[i] = src[i];

}

// FLAW: dest is not null terminated.

35 printLine(dest);

20

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8304

This was because the model of “printf() is treated as an empty stub”. We replaced the
model with the following body suggested by Christoph Mallon:

__ASTREE_unroll ((200))

for (char const* p = line; *p != ’\0’; ++p) {}

This yielded matching alarms.

Results:
1188 buggy sites.
All buggy sites were found.

For BOF/Read, Astrée satisfied Ockham Criterion 3.

3.1.10 BOF/Write—Write Outside Buffer

Anomalies, Observations, and Interpretations:
Astrée produced “invalid dereference” alarms for the call to strlen() in cases like the

following from CWE121_Stack_Based_Buffer_Overflow__CWE135_01.c SARD case 231 402:

#define WIDE_STRING L"AA"

...

data = (void *) WIDE_STRING;

...

size_t dataLen = strlen ((char *)data);

Even though the code incorrectly uses strlen() on a wide string, it is not BOF/Write.
Given more time, we would have considered improving the model of strlen() to match
our library.

The manifest has warnings for the memcpy() in cases such as CWE121_Stack_Based_

Buffer_Overflow__char_type_overrun_memcpy_01.c SARD case 231 444:

typedef struct _charVoid

{

char charFirst [16];

void * voidSecond;

void * voidThird;

} charVoid;

charVoid structCharVoid;

...

memcpy(structCharVoid.charFirst , SRC_STR ,

sizeof(structCharVoid));

The memcpy() writes beyond the charFirst buffer because the size of the entire structure is
used, not the size of the buffer. memcpy() is often used to copy entire structures. We believe
that Astrée gives no alarm for these because the data copied stays within the structure,
although it goes outside the buffer. We filter out these unmatched manifest warnings.

21

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8304

For the previous Ockham Criteria, we added entries to the manifest for the possible null
pointer dereference (DEP) on line 51 below. This example code is from CWE121_Stack_

Based_Buffer_Overflow__CWE805_char_alloca_loop_12.c SARD case 63 843.

char * dataBadBuffer = (char *) ALLOCA (50* sizeof(char));

...

data = dataBadBuffer;

...

for (i = 0; i < 100; i++)

{

49 data[i] = source[i];

}

51 data [100 -1] = ’\0’;

Astrée reports an alarm at line 49 and stops analysis with a ”Definite runtime error”, which
is acceptable. We ignored the second warning, line 51, which was straight-forward since
they were tagged CWE-787 (Out-of-bounds Write).

We found that Astrée models alloca()2 as possibly returning NULL. In cases such
as those in CWE127_Buffer_Underread__char_alloca_cpy_01.c SARD case 77 242, the
pertinent code is

26 char * dataBuffer = (char *) ALLOCA (100* sizeof(char));

27 memset(dataBuffer , ’A’, 100 -1);

30 data = dataBuffer - 8;

...

36 strcpy(dest , data);

The buffer are big enough, and dataBuffer is initialized correctly. But the read from
data (this is BOF/Read, not BOF/Write) at line 36 begins before the beginning of the
buffer. Because of Astrée’s model of alloca(), it gives an alarm of possible NULL pointer
dereference (DEP) at line 27 and stops analysis. We removed these alloca() cases from
the buggy set to match.

Analyzing Astrée alarms led us to discover that the manifest had incorrect locations for
many CWE665 Improper Initialization cases. We corrected those in the manifest.

Results:
5192 buggy sites.
All buggy sites were found.

For BOF/Write, Astrée satisfied Ockham Criterion 3.

3.1.11 DEP—Dereference Erroneous Pointer

Anomalies, Observations, and Interpretations:

2The code uses a macro, ALLOCA, that just becomes alloca.

22

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8304

Some Juliet cases under CWE476 NULL Pointer Dereference are intended to find out
if a tool reports a useless NULL check after a dereference. Here is pertinent code from
CWE476_NULL_Pointer_Dereference__null_check_after_deref_01.c SARD case
104 778:

intPointer = (int *) malloc(sizeof(int));

25 *intPointer = 5;

28 if (intPointer != NULL)

The check for a (non-)NULL pointer at line 28 is wasted at best. If the allocation fails and
intPointer is NULL, the assignment at line 25 is faulty. Astrée produces alarms about
possible NULL pointer dereference there. Since Astrée behaves reasonably, we skip these
cases.

As with BOF/Write, Sec. 3.1.10, the model for alloca() led to many of the unmatched
alarms, which we consider spurious.

Results:
1166 buggy sites.
All buggy sites were found.

For DEP, Astrée satisfied Ockham Criterion 3.

3.1.12 DEP/ICP—Incorrect Pointer Arithmetic

Anomalies, Observations, and Interpretations:
Below is pertinent code from CWE188_Reliance_on_Data_Memory_Layout__union_01.c

SARD case 82 092:

union {

struct {

char charFirst , charSecond , charThird , charFourth;

} structChars;

long longNumber;

} unionStructLong;

unionStructLong.longNumber = 0x10203040;

34 unionStructLong.structChars.charFourth |= 0x80; // set MSB

Line 34 depends on certain byte-order, size, alignment, and packing of struct and union
fields. For our settings, Astrée doesn’t produce any error for that line at all. In checking
the Help manual, it appears that Astrée doesn’t check for this at all. We therefore did not
examine any CWE188 cases.

Results:
52 buggy sites.
All buggy sites were found.

23

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8304

For DEP/ICP, Astrée satisfied Ockham Criterion 3.

3.1.13 PAR—Pointer Arithmetic

Results:
18 buggy sites.
All buggy sites were found.

For PAR, Astrée satisfied Ockham Criterion 3.

3.1.14 ILP—Infinite Loop

Anomalies, Observations, and Interpretations:
We found a difference in reporting locations from code like the following, which comes

from CWE835_Infinite_Loop__do_01.c SARD case 122 761:

do

{

printIntLine(i);

i = (i + 1) % 256;

} while(i >= 0);

Astrée issues an alarm at the start of the loop. The manifest lists the error at the end
of the loop. In these cases the extractor, astreeXML2csv, patches the extracted alarm to
correspond with the manifest.

Results:
6 buggy sites.
All buggy sites were found.

For ILP, Astrée satisfied Ockham Criterion 3.

3.1.15 INI—Initialization Fault

Anomalies, Observations, and Interpretations:
We found a difference in reporting locations from code like the following, which comes

from CWE457_Use_of_Uninitialized_Variable__char_pointer_63b.c SARD case
103 357:

26 char * data = *dataPtr;

28 printLine(data);

Astrée warns when (a pointer to) an uninitialized variable is assigned on line 26. However,
the uninitialized variable isn’t used until line 28.

24

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8304

Initially there were about four times more unmatched alarms. We added directives to
unroll much of the code with memset(), giving the number reported below. We believe that
such directives could resolve most or all of them.

Results:
776 buggy sites.
All buggy sites were found.

For INI, Astrée satisfied Ockham Criterion 3.

3.1.16 MAL—Memory Deallocation

Anomalies, Observations, and Interpretations:
Evaluating Astrée lead us to discover that the manifest was wrong for code such as

the following, which is from CWE415_Double_Free__malloc_free_char_01.c SARD case
240 071:

29 data = (char *) malloc (100* sizeof(char));

...

32 free(data);

/* POTENTIAL FLAW: Possibly freeing memory twice */

34 free(data);

The manifest listed the first free(), at line 32, instead of the second one at line 34.
Resolving the discrepancy between lines also showed that the manifest was wrong

for code such as the following, from CWE761_Free_Pointer_Not_at_Start_of_Buffer__

char_environment_01.c SARD case 241 393. Prior to this, data is allocated and initial-
ized.

52 for (; *data != ’\0’; data ++) {

. . .

}

60 free(data);

The manifest listed line 52, while the error is really at line 60.

Results:
536 buggy sites.
All buggy sites were found.

For MAL, Astrée satisfied Ockham Criterion 3.

3.1.17 UCE—Unchecked Error

Anomalies, Observations, and Interpretations:

25

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8304

We did not find that Astrée checked the handling of error returns from functions like
fread(), putchar(), and scanf(), which are under CWE253. We therefore did not check
any CWE253 cases.

We did not run Astrée on any cases under CWE390 or CWE391. Therefore we did not
check any of those cases.

Results:
540 buggy sites.
All buggy sites were found.

For UCE, Astrée satisfied Ockham Criterion 3.

3.1.18 Summary of Evaluation

Alarms from Astrée led us to find and fix thousands of mistakes in what was intended as
the Juliet known-bug list, manifest.xml.

Because Astrée analyzes code very precisely and we checked meticulously, details of
modeling that otherwise would be inconsequential showed up and had to be resolved. For
instance, our evaluation recognized minutia of models of open() (Sec. 3.1.7), printf()
(Sec. 3.1.9), and strlen() and alloca() (Sec. 3.1.10).

In the test cases of the 28 sets used from the Juliet 1.3 C test suite, we considered 18 954
buggy sites for Astrée. Table 2 gives the number of buggy sites considered for each class.
We processed a total of 36 316 Astrée alarms.

Class Bugs
ARC Distort 1824
ARC Oflow 3666
ARC Trunc 684
ARC Uflow 2622
ARC Undef 684
ARG Memcpy 18
BOF Read 1188
BOF Write 5174
DEP 1166
DEP ICP 52
ILP 6
INI 776
MAL 536
PAR 18
UCE 540

Table 2. Number of Buggy Sites Considered for Astrée for Each Weakness Class

Astrée satisfied the SATE VI Ockham Sound Analysis Criteria.

26

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8304

3.2 Frama-C

“Frama-C is a suite of tools dedicated to the analysis of the source code of software written
in C.” [6] “Frama-C allows [you] to verify that the source code complies with a provided
formal specification. Functional specifications can be written in a dedicated language,
ACSL. The specifications can be partial, concentrating on one aspect of the analyzed pro-
gram at a time.” [20] It is free software licensed under the GNU Lesser General Public
License (LGPL) v2.1 license3.

We began evaluation in June 2019 and used Frama-C ‘Argon’ 18.0 Version.
By its own definition, Frama-C claimed to be sound: “it aims at being correct, that

is, never to remain silent for a location in the source code where an error can happen at
run-time” [6]. This satisfies Criterion 1.

Since Frama-C with the Evolved Value Analysis (Eva) plug-in produced thousands of
warnings, we believe it would satisfy Criterion 2.

3.2.1 Performing the Evaluation

To produce all the warnings we were interested in, we eventually ran Frama-C and Eva
on each test case with four different sets of options. The first run only used -eva-print-

callstacks. The second, third, and fourth runs all used this common set of options:
• -eva-print-callstacks

• -eva-msg-key=-initial-state

• -eva-no-show-progress

• -slevel 300

• -warn-special-float none

• -eva-warn-signed-converted-downcast

• -warn-unsigned-overflow

• -eva-warn-copy-indeterminate=-@all

• -eva-equality-domain

• -eva-sign-domain

• -warn-signed-overflow

The second run only used those options. The third run adds -warn-signed-downcast to
the common set of options. The fourth run adds -warn-unsigned-downcast to the common
set.

We checked the union of warnings from all four runs together for convenience. This
decision lost precision. Results would be much clearer had we drawn particular warnings
from runs with particular sets of options. For instance, guarded code that otherwise could
divide by zero is analyzed properly using -eva-sign-domain. Hence, we should only have
examined divide by zero warnings in runs using -eva-sign-domain.

We used the classes listed in Sec. 2.4 to organize our examination of Frama-C/Eva
warnings. We examined warnings generally class by class.

3http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html

27

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8304

We ran Frama-C/Eva on the following Juliet 1.3 sets of test cases:
• CWE121 Stack Based Buffer Overflow
• CWE122 Heap Based Buffer Overflow
• CWE123 Write What Where Condition
• CWE124 Buffer Underwrite
• CWE126 Buffer Overread
• CWE127 Buffer Underread
• CWE190 Integer Overflow
• CWE191 Integer Underflow
• CWE194 Unexpected Sign Extension
• CWE195 Signed to Unsigned Conversion Error
• CWE196 Unsigned to Signed Conversion Error
• CWE197 Numeric Truncation Error
• CWE253 Incorrect Check of Function Return Value
• CWE364 Signal Handler Race Condition
• CWE366 Race Condition Within Thread
• CWE367 TOC TOU
• CWE369 Divide by Zero
• CWE398 Poor Code Quality
• CWE404 Improper Resource Shutdown
• CWE415 Double Free
• CWE416 Use After Free
• CWE457 Use of Uninitialized Variable
• CWE469 Use of Pointer Subtraction to Determine Size
• CWE475 Undefined Behavior for Input to API
• CWE476 NULL Pointer Dereference
• CWE478 Missing Default Case in Switch
• CWE561 Dead Code
• CWE587 Assignment of Fixed Address to Pointer
• CWE588 Attempt to Access Child of Non Structure Pointer
• CWE665 Improper Initialization
• CWE667 Improper Locking
• CWE680 Integer Overflow to Buffer Overflow
• CWE685 Function Call With Incorrect Number of Arguments
• CWE690 NULL Deref From Return
• CWE761 Free Pointer Not at Start of Buffer
• CWE832 Unlock of Resource That is Not Locked
We extracted the following warning texts:
• accessing left-value that contains escaping addresses
• accessing uninitialized left-value
• division by zero
• implicit conversion

28

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8304

• non-finite double value
• accessing out of bounds index
• out of bounds read
• out of bounds write
• pointer subtraction
• (un)?signed downcast
• (un)?signed overflow
• function free: precondition ’freeable’
• function fclose: precondition ’valid stream’
• function (memcpy|memmove): precondition ’valid dest’
• function (memcpy|memmove|printf va 1): precondition (valid src|valid read)
• function memcpy: precondition ’separation’
• function snprintf va 1: precondition \valid
• function str(n)?(cpy|cat): precondition ’room (n)?string’
• function str(n)?cat: precondition ’valid string dest’
• function str(n)?cpy: precondition ’valid string src’

3.2.2 Common Considerations

This section explains some considerations that applied to all the classes.
Frama-C halts analysis when it reaches an invalid state. These are often reported as non-

terminating states. Undefined code leads to a state where anything can happen. Following
that, no sound analysis makes sense, so Frama-C performs no further analysis.

Because of our misunderstanding, we unnecessarily skipped wchar_t cases in many
classes.

Following is one subsection for each weakness class. We include details about the
evaluation of a class when useful.

3.2.3 ARC/Overflow—Arithmetic Overflow

Anomalies, Observations, and Interpretations:
The good functions in 38 test cases named CWE190_Integer_Overflow__unsigned_

int_max_square_ are written wrong. Here’s pertinent code from CWE190_Integer_

Overflow__unsigned_int_max_square_01.c SARD case 235 831

if (abs((long)data) < (long)sqrt((double)UINT_MAX))

The function labs() should be used for the long integer instead of abs(). Frama-C noted
the improper use of abs() and stopped analysis in the good function. Analysis never
reached the bad function. We excused these test cases from analysis.

Results:
3628 buggy sites.

29

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8304

All buggy sites were found.

For ARC/Overflow, Frama-C satisfied Ockham Criterion 3.

3.2.4 ARC/Underflow—Arithmetic Underflow

Results:
2622 buggy sites.
All buggy sites were found.

For ARC/Underflow, Frama-C satisfied Ockham Criterion 3.

3.2.5 ARC/Undefined—Divide by Zero

Anomalies, Observations, and Interpretations:
Many CWE369 Juliet cases guard the division operation by comparison with 0 or with

0.000001 for floats. Frama-C’s default setting does not represent a range with an “omitted
middle”. The option -eva-sign-domain handles this case with much better precision. We
attributed most or all of the superfluous findings to our unrefined use of options and lumping
the results of all runs together.

Results:
684 buggy sites.
All buggy sites were found.

For ARC/Undefined, Frama-C satisfied Ockham Criterion 3.

3.2.6 ARC/Distort—Result Distortion

Results:
1824 buggy sites.
All buggy sites were found.

For ARC/Distort, Frama-C satisfied Ockham Criterion 3.

3.2.7 ARC/Truncate—Result Truncation

Results:
684 buggy sites.
All buggy sites were found.

For ARC/Truncate, Frama-C satisfied Ockham Criterion 3.

30

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8304

3.2.8 ARG/Memcpy—Incorrect Argument for memcpy()

Results:
36 buggy sites.
All buggy sites were found.

For ARG/Memcpy, Frama-C satisfied Ockham Criterion 3.

3.2.9 BOF/Read—Read Outside Buffer

Anomalies, Observations, and Interpretations:
Some of the warnings referred to utility functions in io.c, where printf() was actually

called. This would have yielded thousands of essentially repeated warnings about the utility
functions. We modified the extractor to produce the location of the function calling a utility
if the warning was in io.c.

Results:
1358 buggy sites.
All buggy sites were found.

For BOF/Read, Frama-C satisfied Ockham Criterion 3.

3.2.10 BOF/Write—Write Outside Buffer

Anomalies, Observations, and Interpretations:
The manifest has extra warnings for 74 CWE665 test cases. Here is pertinent code from

CWE665_Improper_Initialization__char_cat_17.c SARD case 109 768:

char dataBuffer [100];

data = dataBuffer;

char source [100];

memset(source , ’C’, 100 -1); /* fill with ’C’s */

source [100 -1] = ’\0’; /* null terminate */

strcat(data , source);

The buffer referenced by data is not initialized at all. The strcat() at the last line may not
behave as expected. The manifest has an initialization bug for that line. The manifest also
has a BOF/Write for that line, since strcat() could readily write outside dataBuffer.

Frama-C warns about the initialization problem, but doesn’t bother giving any
BOF/Write warning. That is perfectly reasonable behavior. For automated checking,
we have the analysis change all 74 of the warnings from Frama-C for test cases named
CWE665_Improper_Initialization__char_cat_* or CWE665_Improper_
Initialization__char_ncat_* to BOF/Write.

31

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8304

The manifest has different lines for 26 CWE122_Heap_Based_Buffer_Overflow__

sizeof_struct_* test cases. Here is pertinent code from CWE122_Heap_Based_Buffer_

Overflow__sizeof_struct_04.c SARD case 234 207:

typedef struct

{

int intOne;

int intTwo;

} twoIntsStruct;

twoIntsStruct * data;

37 data = (twoIntsStruct *) malloc(sizeof(data));

if (data == NULL) {exit (-1);}

39 data ->intOne = 1;

40 data ->intTwo = 2;

The problem is that at line 37, only memory for a pointer to the struct is allocated, not
memory for the whole struct. Frama-C determines that line 40 is undefined because the
assignment is beyond the amount of memory allocated. It does not issue a warning for line
39 because it is well defined. The manifest incorrectly lists an error at line 39.

For no particular reason, instead of changing the manifest lines or having the Frama-C
extractor patch the warnings, we created a file with the 26 excused warnings. The evalua-
tion script includes this file when checking for mismatches.

Test cases under CWE242 purposely use gets(), even though gets() cannot be used
safely, potentially causing BOF/Write. André Maroneze informed us that the library pro-
vided with Frama-C is missing proper preconditions for gets(). Since the library we used
for Frama-C does not correctly model gets(), we excluded all CWE242 from the analysis.

Frama-C didn’t give BOF/Write warnings in its default mode for the test cases using
wide-character functions. André Maroneze suggested we include wchar.c from the Frama-
C library. With that, Frama-C gave BOF/Write warnings on wide-character test cases.

Results:
5156 buggy sites.
All buggy sites were found.

For BOF/Write, Frama-C satisfied Ockham Criterion 3.

3.2.11 DEP—Dereference Erroneous Pointer

In several cases Frama-C produces the same, perfectly useful warning for classes of bugs
that we distinguish. Warnings that we code as different classes are out of bounds read

and accessing out of bounds index. For example, here is the pertinent code from
CWE476_NULL_Pointer_Dereference__binary_if_03.c SARD case 104 534:

twoIntsStruct *twoIntsStructPointer = NULL;

32

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8304

if ((twoIntsStructPointer != NULL) &

(twoIntsStructPointer ->intOne == 5))

{

The use of & in the condition causes both statements to be evaluated. Frama-C reports
out of bounds read. assert \valid_read(&twoIntsStructPointer->intOne);

Here is pertinent code from CWE680_Integer_Overflow_to_Buffer_Overflow__

malloc_fgets_03.c SARD case 240 892:

intPointer = (int*) malloc(data * sizeof(int));

if (intPointer == NULL) {exit (-1);}

for (i = 0; i < (size_t)data; i++)

{

intPointer[i] = 0;

}

To quote the comment in the code, “if data * sizeof(int) > SIZE MAX, [the multiplication]
overflows to a small value [not allocating enough memory] so that the for loop doing the
initialization causes a buffer overflow”. Frama-C reports out of bounds read. assert

\valid_ read(intPointer + 0);

For analysis, we separate these into two different classes: DEP (NULL pointer derefer-
ence, in this case) and BOF/Write. In these and other situations, we used the names of the
test cases to distinguish them and encode them into our comparison classes.

Anomalies, Observations, and Interpretations:
In 114 cases under CWE690, the manifest lists two flaws. Here is pertinent code from

CWE690_NULL_Deref_From_Return__struct_calloc_01.c SARD case 111 602:

twoIntsStruct * data;

data = (twoIntsStruct *) calloc(1, sizeof(twoIntsStruct));

data [0]. intOne = 1;

data [0]. intTwo = 1;

The manifest has DEP flaws for both the assignment to intOne and the assignment to
intTwo. As explained in 3.2.2, Frama-C warns about the first assignment when data is
NULL, which is undefined behavior, then stops further analysis.

We accommodated this in automated analysis by creating a file of excused warnings
with the second 114 assignments.

Results:
1204 buggy sites.
All buggy sites were found.

For DEP, Frama-C satisfied Ockham Criterion 3.

33

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8304

3.2.12 DEP/ICP—Incorrect Pointer Arithmetic

Anomalies, Observations, and Interpretations:
Frama-C didn’t warn about cases of implementation-dependent code under CWE188.

For example, here is the pertinent code from CWE188_Reliance_on_Data_Memory_Layout__

union_06.c SARD case 82 097:

union

{

struct

{

char charFirst , charSecond , charThird , charFourth;

} structChars;

long longNumber;

} unionStructLong;

unionStructLong.longNumber = 0x10203040;

/* FLAW: this operation depends on the byte -order , size ,

* alignment/packing of struct and union fields */

unionStructLong.structChars.charFourth |= 0x80;

André Maroneze informed us, “The memory representation of C types chosen by the com-
piler, namely size and alignment constraints, but also endianness, is one of the hypotheses
used by Frama-C analyses”.

The operation of this code is not undefined; it depends on the implementation and
hardware. It is reasonable to want automated analysis to point out such implementation-
dependent code, but Frama-C does not fulfill this need currently. Instead of trying different
options, we skipped analysis of CWE188 test cases due to time constraints.

Results:
34 buggy sites.
All buggy sites were found.

For DEP/ICP, Frama-C satisfied Ockham Criterion 3.

3.2.13 PAR—Pointer Arithmetic

Results:
36 buggy sites.
All buggy sites were found.

For PAR, Frama-C satisfied Ockham Criterion 3.

34

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8304

3.2.14 INI—Initialization Fault

Anomalies, Observations, and Interpretations:
In 96 cases under CWE457, the manifest lists two flaws. Here is the pertinent code

from CWE457_Use_of_Uninitialized_Variable__struct_01.c SARD case 103 889:

twoIntsStruct data;

printIntLine(data.intOne);

printIntLine(data.intTwo);

The manifest has INI flaws for uses of both intOne and intTwo. After warning about
the use of intOne, Frama-C enters a “non-terminating state” and stops further analysis, as
explained in 3.2.2.

We accommodated this in automated analysis by creating a file of excused warnings
with the second 96 uses.

Results:
776 buggy sites.
All buggy sites were found.

For INI, Frama-C satisfied Ockham Criterion 3.

3.2.15 MAL—Memory Deallocation

Results:
784 buggy sites.
All buggy sites were found.

For MAL, Frama-C satisfied Ockham Criterion 3.

3.2.16 Summary of Evaluation

Warnings from Frama-C led us to discover 38 test cases with incorrect “good” code in
CWE190 (Sec. 3.2.3).

Warnings are the union of four sets of runs, each with different options (Sec. 3.2.1).
Frama-C terminates analysis when it detects certain failures. Therefore there are no

sites for Ockham purposes after a terminating failure (Sec. 3.2.2).
Frama-C always warns about buggy sites, but may warn about sites without bugs.
In many instances there are minor differences between the location of flaws given in

the manifest and locations reported by Frama-C (Sec. 3.2.10).
Frama-C lacks a sufficiently detailed model for the function gets(). The function

gets() is inherently dangerous and should not be used anyway (Sec. 3.2.10).

35

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8304

In the test cases of the 24 sets used from the Juliet 1.3 C test suite, we considered 18 826
buggy sites for Frama-C. Table 3 gives the number of buggy sites considered for each class.
We processed a total of 42 056 Frama-C warnings.

Class Bugs
ARC Distort 1824
ARC Oflow 3628
ARC Trunc 684
ARC Uflow 2622
ARC Undef 684
ARG Memcpy 36
BOF Read 1358
BOF Write 5156
DEP 1204
DEP ICP 34
INI 776
MAL 784
PAR 36

Table 3. Number of Buggy Sites Considered for Frama-C/Eva for Each Weakness Class

Frama-C with Eva satisfied the SATE VI Ockham Sound Analysis Criteria.

4. Observations and Conclusions

4.1 New Errors Found in Juliet 1.3 and its Manifest

While evaluating Frama-C, Astrée, and another tool, we found several previously-unknown
systematic problems in Juliet 1.3 and thousands of problems in its manifest of known errors.
We previously evaluated Frama-C “Neon” during SATE V Ockham, which led us to find
and correct many errors in the former version, 1.2, of Juliet, see Ref. [9, Sec. 3.6]. This
section summarizes what we found during SATE VI Ockham.

We discovered poor code in “good” functions in CWE191 (Sec. 3.1.4) and incorrect
code in “good” functions in CWE190 (Sec. 3.2.3).

Evaluating Astrée found problems in testcasesupport/io.c. The following code is at
lines 116 and 117, then again at 138 and 139:

swscanf (&hex[2 * numWritten], L"%02x", &byte);

bytes[numWritten] = (unsigned char) byte;

If swscanf() fails, then byte is not initialized. At many locations in io.c, for example line
15, the possible error from printf() is not captured or even explicitly ignored with a cast
to void. This is common with C programmers.

36

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8304

Evaluating the beta version of another tool found that all CWE124_Buffer_Underwrite__
and CWE127_Buffer_Underread__char_(alloca|declare)_loop_ cases have undefined be-
havior. The bad cases have the following line:

data = dataBuffer - 8;

making data point before the beginning of the buffer. This is undefined. The C11 stan-
dard [4], Sec. 6.5.6 Additive operators, paragraph 8 says, talking about the result of sub-
tracting integers from pointers:

If both the pointer operand and the result point to elements of the same array
object, or one past the last element of the array object, the evaluation shall not
produce an overflow; otherwise, the behavior is undefined.

Evaluating another tool also found that all CWE253 cases involving fgets() have un-
defined behavior. For instance the following pertinent code is at line 34 of CWE253_
Incorrect_Check_of_Function_Return_Value__char_fgets_01.c SARD case 92 718:

if (fgets(data , 100, stdin) < 0)

The C11 standard [4], Sec. 6.5.8 Relational operators says “both operands [must be] point-
ers”. We believe the omission of NULL is not an oversight since Sec. 6.5.9 Equality operators
refers to “null pointer constant” explicitly.

The manifest had many problems: missing 19 BOF/Write errors in CWE122 and loca-
tions of additional BOF/Write errors in CWE122 are incorrect (Sec. 3.1.2 and Sec. 3.2.10),
missing 576 ARC/Overflow errors in CWE680 (Sec. 3.1.3), extraneous ARC/Distort errors
in CWE680 (Sec. 3.1.4), spurious ARC/Truncate errors in CWE197 (Sec. 3.1.7), miss-
ing ARC/Truncate errors in CWE369 (Sec. 3.1.7), missing thousands of BOF/Read errors
(Sec. 3.1.9), “fossil” BOF/Read errors in CWE121 and CWE122 (Sec. 3.1.9), missing a to-
tal of 552 BOF/Write errors in CWE121, CWE122, and CWE124 (Sec. 3.1.10), incorrect
location of INI errors and also missing BOF/Write errors in CWE665 (Sec. 3.1.10), and
incorrect location of MAL/Double Free errors in CWE415 and CWE761 (Sec. 3.1.16).

4.2 Weakness Classes

Although the SATE VI Ockham Sound Analysis Criteria used the term “weakness classes,”
no classes are specified. For evaluation we defined our own classes, see Sec. 2.4. We tried
to be clear and logical in our choice of classes, but they still did not always correspond well
to the warnings that the tools used.

It may have been easier to evaluate the warnings as produced by the tools. Several
times, we communicated with the tool developers to better understand exactly what the
tool was reporting.

Without understanding the exact definition of the class of weakness the tool was consid-
ering, we could not decide whether a known bug corresponded to a tool warning: perhaps
there was just a difference in choice of which line number to report. If the tool was intended
to report that class, then a missing warning indicated an error. If the tool in actuality is not

37

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8304

considering a particular class of warning, such as integer overflow of types smaller than
int, then a known bug should be ignored.

In retrospect, there is little need to have DEP/Incorrectly Computed faults as a separate
class. It has less than 5% of all DEP cases.

4.3 Summary

We processed a total of 78 372 warnings over 29 sets from the Juliet 1.3 C test suite.
Both Astrée and Frama-C with Eva satisfied the SATE VI Ockham Sound Analysis

Criteria.

Acknowledgments

We thank AbsInt Angewandte Informatik GmbH for an evaluation license to run Astrée
and Dr.-Ing. Jörg Herter, Christoph Mallon, and Dominik Erb for answering our many
questions about it. We thank the List Institute, Commissariat à l’énergie atomique et aux
énergies alternatives (CEA) for making Frama-C and Eva available and André Maroneze,
Florent Kirchner, and David Bühler for answering our many questions about it.

References

[1] (2016) Software Assurance Metrics And Tool Evaluation. Available at https://samate.
nist.gov/.

[2] Delaitre A, Stivalet B, Black PE, Okun V, Ribeiro A, Cohen TS (2018) SATE V
report: Ten years of static analysis tool expositions (National Institute of Standards
and Technology), SP 500-326. https://doi.org/10.6028/NIST.SP.500-326

[3] (2014) Static Analysis Tool Exposition (SATE) V. Available at https://samate.nist.
gov/SATE5.html.

[4] (2011) ISO/IEC 9899:2011 programming languages - C, Committee Draft — April
12, 2011 N1570 (The International Organization for Standardization and the Inter-
national Electrotechnical Commission (ISO/IEC) Joint Technical Committee JTC 1,
Information technology, Subcommittee SC 22, Programming languages, their envi-
ronments and system software interfaces, Working Group WG 14 - C), Available at
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1570.pdf.

[5] (2019) Fast and sound runtime error analysis. Accessed 26 August 2019. Available at
https://www.absint.com/astree/.

[6] (2019) What is Frama-C. Available at http://frama-c.com/what is.html.
[7] AdaCore and Thales (2018) Implementation guidance for the adop-

tion of SPARK. Available at https://www.adacore.com/uploads/books/pdf/
ePDF-ImplementationGuidanceSPARK.pdf.

[8] AdaCore, Ltd AU (2019) SPARK 2014 user’s guide. Accessed 21 February 2020.
Available at http://docs.adacore.com/spark2014-docs/html/ug/.

38

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8304

https://samate.nist.gov/
https://samate.nist.gov/
https://doi.org/10.6028/NIST.SP.500-326
https://samate.nist.gov/SATE5.html
https://samate.nist.gov/SATE5.html
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1570.pdf
https://www.absint.com/astree/
http://frama-c.com/what_is.html
https://www.adacore.com/uploads/books/pdf/ePDF-ImplementationGuidanceSPARK.pdf
https://www.adacore.com/uploads/books/pdf/ePDF-ImplementationGuidanceSPARK.pdf
http://docs.adacore.com/spark2014-docs/html/ug/

[9] Black PE, Ribeiro A (2017) SATE V Ockham sound analysis criteria (National Insti-
tute of Standards and Technology), IR 8113. https://doi.org/10.6028/NIST.IR.8113

[10] (2016) Software Assurance Reference Dataset (SARD). Available at https://samate.
nist.gov/SARD/.

[11] Black PE (2018) Juliet 1.3 test suite: Changes from 1.2 (National Institute of Stan-
dards and Technology), TN 1995. https://doi.org/10.6028/NIST.TN.1995

[12] Stoneburner G, Hayden C, Feringa A (2004) Engineering principles for information
technology security (a baseline for achieving security), revision a (National Institute
of Standards and Technology), SP 800-27 Rev. A. https://doi.org/10.6028/NIST.SP.
800-27rA. Withdrawn on 15 November 2017. Superseded by NIST SP 800-160.

[13] Common weakness enumeration. Accessed 23 August 2019. Available at https://cwe.
mitre.org/.

[14] Bojanova I, Black PE, Yesha Y, Wu Y (2016) The bugs framework (BF): A structured
approach to express bugs. 2016 IEEE International Conference on Software Quality,
Reliability, and Security (QRS), pp 175–182. https://doi.org/10.1109/QRS.2016.29.
Vienna, Austria

[15] (2019) The Bugs Framework (BF). Available at https://samate.nist.gov/BF/.
[16] RTCA (2011) Formal Methods Supplement to DO-178C and DO-178A. DO-333.
[17] (2015) Rice’s theorem. Available at http://en.wikipedia.org/wiki/Rice’s theorem.
[18] (2018) XZ Utils. Available at http://tukaani.org/xz/.
[19] (2018) Open(2). Accessed 30 August 2019. Available at http://man7.org/linux/

man-pages/man2/open.2.html.
[20] (2019) Proving formal properties for critical software. Available at http://frama-c.

com/features.html.

39

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8304

https://doi.org/10.6028/NIST.IR.8113
https://samate.nist.gov/SARD/
https://samate.nist.gov/SARD/
https://doi.org/10.6028/NIST.TN.1995
https://doi.org/10.6028/NIST.SP.800-27rA
https://doi.org/10.6028/NIST.SP.800-27rA
https://cwe.mitre.org/
https://cwe.mitre.org/
https://doi.org/10.1109/QRS.2016.29
https://samate.nist.gov/BF/
http://en.wikipedia.org/wiki/Rice's_theorem
http://tukaani.org/xz/
http://man7.org/linux/man-pages/man2/open.2.html
http://man7.org/linux/man-pages/man2/open.2.html
http://frama-c.com/features.html
http://frama-c.com/features.html

	Background
	Using Sound Static Analyzers
	Differences Between SATE V and SATE VI Ockham Exercises
	Known Bugs
	Determining Sites
	Bug or Weakness Classes

	The Criteria
	Criterion 1: ``Sound'' (and ``Complete'') Analysis
	Criterion 2: Tools Produce Findings for Most Sites
	Criterion 3: Determining That All Findings Are Correct
	Ockham Bug Classes
	ARC—Arithmetic or Conversion Fault Classes
	ARG/Memcpy—Incorrect Argument for |memcpy()|
	BOF/Read and BOF/Write—Read or Write Outside Buffer
	DEP—Dereference Erroneous Pointer Classes
	PAR—Pointer Arithmetic
	ILP—Infinite Loop
	INI—Initialization Fault
	MAL—Memory Allocation and Deallocation
	UCE—Unchecked Error

	SATE VI Evaluation
	Astrée
	Performing the Evaluation
	Common Considerations
	ARC/Overflow—Arithmetic Overflow
	ARC/Underflow—Arithmetic Underflow
	ARC/Undefined—Divide by Zero
	ARC/Distort—Result Distortion
	ARC/Truncate—Result Truncation
	ARG/Memcpy—Incorrect Argument for |memcpy()|
	BOF/Read—Read Outside Buffer
	BOF/Write—Write Outside Buffer
	DEP—Dereference Erroneous Pointer
	DEP/ICP—Incorrect Pointer Arithmetic
	PAR—Pointer Arithmetic
	ILP—Infinite Loop
	INI—Initialization Fault
	MAL—Memory Deallocation
	UCE—Unchecked Error
	Summary of Evaluation

	Frama-C
	Performing the Evaluation
	Common Considerations
	ARC/Overflow—Arithmetic Overflow
	ARC/Underflow—Arithmetic Underflow
	ARC/Undefined—Divide by Zero
	ARC/Distort—Result Distortion
	ARC/Truncate—Result Truncation
	ARG/Memcpy—Incorrect Argument for |memcpy()|
	BOF/Read—Read Outside Buffer
	BOF/Write—Write Outside Buffer
	DEP—Dereference Erroneous Pointer
	DEP/ICP—Incorrect Pointer Arithmetic
	PAR—Pointer Arithmetic
	INI—Initialization Fault
	MAL—Memory Deallocation
	Summary of Evaluation

	Observations and Conclusions
	New Errors Found in Juliet 1.3 and its Manifest
	Weakness Classes
	Summary

	References

