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ABSTRACT 

 

Within a variety of Computational Fluid Dynamics (CFD) applications, maturity levels can vary 

significantly depending upon modeling approach and the user’s knowledge and skills. Recently, application 

of CFD techniques for Computational Wind Engineering (CWE) has generated strong interest among wind 

and structural engineers as a possible substitute for or supplement to wind tunnel experimentation, even 

though CWE is still in a developmental stage. A necessary step toward advancing CWE simulations in wind 

and structural engineering applications credible is the development of reliable verification and validation 

(V&V) procedures. 

Fundamental factors that determine the degree to which CWE simulations are the credible include: (i) 

the quality of the mathematical modeling of the physics of interest; (ii) the depth of understanding by the 

users/analysts of the details of the model and the simulation results; (iii) the quality of the verification and 

validation (V&V) procedures applied to the simulation results, and (iv) the quality of the uncertainty 

quantification procedure applied to those results.  

This report deals in detail with the sources of inaccuracy in CFD simulations, and concepts and 

procedures used in V&V and uncertainty quantification. 
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NOTE. 

NIST definitions and terminology in the Verification, Validation, and Uncertainty Quantification fields 

differ from their counterparts used in current applications to Computational Fluid Dynamics (CFD). 

Applications of those fields to CFD consistent with NIST practice are currently being developed. 
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1. INTRODUCTION 

The US National Research Council identified five phases of the CFD (Computational Fluid Dynamics) 

development cycle with a view to evaluating its maturity and potential impact in scientific computing (NRC 

1986) 

Phase I.  Developing and enabling technology: scientific papers, know-how. 

Phase II.  Demonstration and confidence building: limited pioneering applications, subject to surprise. 

Phase III. Putting it all together: major commitment made, graduate evolution of capacity. 

Phase IV. Learning to use effectively: changes the engineering process, value exceeds expectations, user 

groups acquire new skills. 

Phase V.  Mature capabilities: reliable and cost-effective design applications, most analysis done without 

supporting experimental comparison 

The maturity levels of CFD applications can vary significantly, depending upon the modeling approach and 

the user’s knowledge and skills. In recent years, the application of CFD to wind engineering problems, 

referred to as  Computational Wind Engineering (CWE), has been considered as a potential substitute for 

or supplement to wind tunnel testing. However, CWE is still in a developmental stage, and its credibility 

remains to be established. The fundamental elements for achieving the credibility are: (i) quality of physical 

modeling, (ii) quality of users/analysts performing the simulations and using the results, (iii) verification 

and validation (V&V) activities, and (iv) uncertainty quantification of the simulation results (Oberkampf 

and Roy 2010). The quality of computational simulations is highly dependent upon the degree to which the 

mathematical model for representing the physics of interest is appropriate, and upon the CFD users’ depth 

of understanding of the details in the model and the associated simulation results. Verification and 

validation are independent procedures that work together as the primary processes for assessing the 

accuracy of simulation results. Uncertainty quantification is the process that identifies, characterizes, and 

estimates quantitatively the factors in the analysis affecting the accuracy of simulation results. These are 
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necessary conditions but not sufficient for achieving the credibility of simulations other than those for which 

verification and validation have been performed. 

The following sections deal in some detail with CFD concepts regarding sources of inaccuracy 

(Section 2), V&V procedures (Section 3), uncertainty quantification (Section 4), and the use of the 

validation level concept (Section 5). 

2. SOURCES OF INACCURACY IN CFD SIMULATIONS 

A computational model calculated in a computing machine cannot avoid errors or uncertainties in the 

simulation results due to a wide range of sources of inaccuracy. At this stage, the difference between the 

notions of error and uncertainty will be ignored (but revisited in Section 4) and the term error will be used 

to identify the sources leading to inaccuracy of the CFD results.  

The errors in CFD simulation results can be classified into four types (Oberkampf and Roy 2010; 

Zikanov 2010): 

1) Physical modeling errors 

2) Errors of discretization 

3) Errors of iterative convergence/round off 

4) Programming/user errors. 

 

Physical modeling errors  

A CFD simulation provides results based on physical modeling that approximates the behavior of the actual 

physics. The difference between the behavior of the model and real behavior can be defined as: 

 model model realp pδ = −   (1) 
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where δmodel is the physical modeling error, and pmodel and preal are the property of interest (e.g., velocity or 

pressure) in the model and the real physics, respectively. 

The numerical modeling errors could arise from the approximation of complex behavior in the 

governing equations (e.g., turbulence modeling), effects of computational domain size and boundary 

conditions, and assumptions on the fluid properties (e.g., constant air density and temperature). 

Discretization errors 

A CFD simulation does not solve the equations of the physical model analytically, but rather the equations 

discretized in space and time. This fact introduces the discretization error, δh, that is, the difference between 

the exact analytical solution pmodel of the model PDE (Partial Differential Equation) and the exact solution 

ph of the discretized equations: 

 h h model .p pδ = −   (2) 

The discretization error depends on not only the numerical schemes in space and time and the 

resolution and quality of the grids used in simulations, but also on the behavior of the solution. The error 

should be estimated whenever a new grid type, a new scheme, or a new application is employed in a 

simulation. Among the sources associated with numerical errors, the discretization errors are usually the 

largest and their estimation is the most challenging (Oberkampf and Roy 2010). 

Iterative errors 

The difference between the exact solution and the computed iterative solution of the discretized equations 

is called iterative error, δit:  

 it comp hp pδ = −   (3) 

where pcomp is the computed solution from a computing machine, which may entail round-off errors and 

iterative convergence errors inherent in iterative methods. The round-off error results from low precision 

in computer calculations and can be reduced by increasing the number of digits associated with the precision 
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of the numerical solution. In simulations with a stable scheme and no round-off error accumulation, the 

round-off error is usually very small in comparison to other type errors (e.g., several orders lower than δh) 

(Zikanov 2010). 

The iterative convergence error exists in CFD solutions because in iterative methods a linear or a 

linearized system of discretized equations is typically solved. The iterative errors commonly accepted are 

at least one order or two of magnitude lower than the discretization errors (Oberkampf and Roy 2010; 

Zikanov 2010). However, when a flow solver uses an implicit time integration method for unsteady 

simulations, a loose iterative convergence criterion at each time step may significantly influence the 

accuracy of the numerical solution (Eça et al. 2017). 

Programming/user errors 

Programming errors, caused by mistakes or bugs in the software, can be classified into two types 

(Oberkampf and Roy 2010). The former is a critical error by which the software cannot execute a simulation 

or generate reasonable results. The latter is related to a less critical, or dormant fault which may not be 

easily identified by code verification. This hidden error could generate non-negligible, incorrect results., 

especially if a simulation is beyond the coverage of the code verification process. 

Another error is related to blunders or mistakes from users in input preparation for simulation and in 

post-processing analysis of output data. The human errors cannot be easily detected, especially when 

simulations of complex systems of large scale are performed. 
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3. VERIFICATION AND VALIDATION 

The objective of verification and validation (V&V) is to establish the credibility of a computational model 

by assessing the degree of accuracy of the simulation results (Oberkampf and Roy 2010). Since Department 

of Defense (DoD) developed the first definition of V&V for numerical modeling and simulations (DoD 

1994), practicing communities, such as American Institute of Aeronautics and Astronautics (AIAA 1998), 

American Society of Mechanical Engineers (ASME 2006; 2009) and U.S. Department of Energy (Pilch et 

al. 2001), have developed their V&V philosophies, definitions, and procedures. The general definitions can 

be introduced as follows: 

Verification: the process of determining that a computational model accurately represents the 

underlying mathematical model and its solution (ASME 2006) 

Validation: the process of determining the degree to which a model is an accurate representation of 

the real world from the perspective of the intended uses of the model. (AIAA 1998). 

Figure 1 illustrates a comprehensive diagram of the verification and validation (V&V) activities and 

outcomes, based on a conceptual model of real physics, its mathematical modeling for simulation, its 

physical modeling for experimentation, and their interaction (ASME 2006). V&V processes start with 

determining the intended uses of the computational model. The relevant physics should be included in the 

model and the experiment for validating the model. Once the responses of interest and the associated 

accuracy requirements for the intended application are determined, the corresponding modeling activities 

and experimental activities should be planned. In the modeling activities, errors in the code are addressed 

(code verification) and numerical errors associated with solutions of discretized equations of the 

mathematical model are estimated (solution verification). The verified simulation results and relevant 

experiment data are used for quantifying their uncertainties, and the predictive capacity of the model in the 

physics of interest is assessed (model validation). If the agreement between model predictions and 

experimental outcomes satisfies the accuracy requirement, the V&V processes end. The success of V&V 
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can claim that the accuracy of the computational model is adequate for the intended use of the model. 

Otherwise, the V&V processes are repeated until the agreement is acceptable by updating the model and 

carrying out additional experiments if necessary. Note that the documentation of the results and the rationale 

in all the V&V activities is important not only for tracing the justification of the current intended use, but 

also for providing information/experience for potential future uses.  

 

 

Figure 1 Verification and Validation activities and outcomes (ASME 2006)   
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The objective of verification is to estimate the numerical errors in simulation results and is not 

associated with any accuracy of physical modeling. The verification process can be divided into code 

verification and solution verification, as shown in Fig. 1.  

Code verification 

The code verification addresses the correct implementation of the numerical algorithm in the computer code 

specifically by evaluating the error for a known solution with high accuracy, referred as verification 

benchmark. Code verification in grid-based simulations can be performed by a systematic discretization 

convergence test (e.g., Roache 1994) and its convergence to a benchmark solution. For example, the code 

verification process would demonstrate that a code can produce the expected convergence rate as the 

discretization is refined. 

The best approach to code verification employs exact analytical solutions that can represent problems 

of interest. However, it is impossible to find them in complex problems, such as wind engineering 

applications. Practical approaches have been developed, e.g., the method of manufactured solutions 

(Roache 2002), to generate exact analytical solutions required for code verification.  

The code verification is usually performed by code developers/vendors. However, it is also 

recommended that the users of commercial/open source code independently perform the code verification 

process because the documentation might not be appropriate for the users’ specific applications (ASME 

2009). 

Solution verification 

The solution (or calculation) verification deals with i) correctness of the input and output data for a 

particular solution of a problem of interest and ii) numerical accuracy (error/uncertainty estimation) for the 

simulated solution (Oberkampf and Roy 2010). The code verification is a prerequisite for the solution 

verification. The code and solution verification processes concern mathematical and numerical issues. They 

do not account for the relationship between the simulation results from a mathematical model and the 
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physical data from the real world, which is the subject of validation. However, the solution and its error 

estimation from the solution verification process are employed in the validation process. 

The sources in numerical solution errors include discretization in space and time, iteration-

convergence, and round-off calculations. For nontrivial CFD problems based on nonlinear PDEs, numerical 

errors can be quantitatively estimated in a posteriori technique only, using e.g., multiple simulations with 

different grid resolutions (Roache 1997). 

Solution verification should be performed by CFD users and be required by analysts and decision-

makers who use CFD simulation results. 

Model validation 

Once the code and solution verification processes are completed, the validation process can be performed. 

While verification deals with mathematical issues, validation concerns physical reality issues. The ultimate 

interest of CFD users in V&V lies in the validation results for the intended use. The validation relates the 

computational model to the real physical world and quantifies the degree of accuracy of the model, as 

indicated in Fig. 1.  

Figure 2 shows the three aspects to validation (Oberkampf and Roy 2010; Oberkampf and Trucano 

2008). Aspect 1 (model validation) deals with the quantification of the accuracy of the computational model 

by comparing the computational results of interest and the corresponding experimental counterparts (i.e., 

using the validation metric operation in the figure). Aspect 2 (model prediction) deals with estimation of 

predictive uncertainty in the results of interest due to interpolation or extrapolation of the model to the 

intended use. Aspect 3 (model adequacy assessment) deals with decision-making in the adequacy of the 

model for the intended use by checking whether the simulation results comply with the accuracy 

requirement for the intended use. 

As described above, code verification, solution verification and validation are interactive in the process 

of estimating the accuracy of the computational model in simulated results of the application of interest. 
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The comprehensive and in-depth knowledge on V&V is provided in Oberkampf and Roy (2010) and 

Roache (2009). 

 

 

Figure 2 Three aspects of model validation (Oberkampf and Trucano 2008) 

 

Modeling Complex Systems and its V&V approach 

Typical real-world physical systems in CFD applications are inherently complex. To address the complexity 

efficiently, the concept of hierarchy in the systems has been adopted (AIAA 1998; ASME 2006). In the 

AIAA guide (Fig. 3), a complete system of interest is divided into subsystem cases which commonly show 

reduced coupling between flow phenomena of the complete system. Each subsystem consists of two or 

more benchmark cases which exhibit more restricted geometric or flow features. In this benchmark case 

phase, experimental data covering a wide range of flow features are usually well documented. A benchmark 

case is composed of multiple unit problems representing a flow feature.  

Specification of 
Conditions for 
Intended Use
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Figure 3. Hierarchical structure of physical systems (AIAA 1998) 

 

Such unit problems identified from a top-down decomposition of a real-world physical system play a 

critical role in developing a model of the system. In the V&V procedure, once the hierarchical structures of 

a physical system of interest are established by identifying physical phenomena at each hierarchical level 

as stated above, the V&V procedure of Fig. 1 should be performed at each hierarchical level using a bottom-

up approach. For the unit problems, all numerical issues (e.g., grid sensitivity and iterative convergence) 

are extensively investigated. For benchmark cases, the physical model for a specified flow feature is 

typically assessed. For the subsystems, coupling effects of multiple geometric and flow features are studied. 

For the complete system, the results for predicting real system of interest are simulated by employing the 

most appropriate physical models and grids obtained from the lower-level V&V procedures. Based on 

uncertainty of numerical and experimental results and the difference between the simulation and the 

associated experiment, the accuracy of the computational model is accessed for predictive capacity of the 

physical system of interest, which are defined first at the V&V procedure, as shown in Fig. 1.  

 

Complete System

High-level Subsystem Cases

Unit Problems

Low-level Subsystem Cases
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4. PROCEDURES FOR ERROR AND UNCERTAINTY 

QUANTIFICATION  

Error and uncertainty are often used interchangeably in estimating accuracies of CFD results. The AIAA 

V&V guide for CFD (1998) defines the two terms as follows: 

Error: A recognizable deficiency in any phase or activity of modeling and simulation that is not due to 

lack of knowledge. 

Uncertainty: A potential deficiency in any phase or activity of the modeling process that is due to the 

lack of knowledge. 

The errors can be classified as acknowledged errors and unacknowledged errors. The acknowledged 

errors can be identified and eliminated (e.g., round-off errors, discretization errors, iterative errors). The 

unacknowledged errors cannot be found or removed (e.g., programming errors, improper use of the CFD 

code).  The uncertainties can be classified as aleatory and epistemic. The aleatory uncertainty (irreducible 

uncertainty) is connected to inherent randomness (e.g., input parameters of a model). The epistemic 

uncertainty (reducible uncertainty) is related to a lack of knowledge of (or information on) a physical model. 

For details, see Oberkampf and Roy (2010).  

The ASME V&V approach (2009) provides quantitative evaluation of uncertainties in simulation 

results by their comparison with their counterpart in experiments, and employs concepts and the definitions 

of error and uncertainty from metrology, as follows (JCGM 2012): 

Errors (of measurement), δ: Measured quantity value minus a reference (‘true’) quantity value 

Uncertainty (of measurement), u: Non-negative parameter characterizing the dispersion of the quantity      

                            values being attributed to a measurand, based on the information used. 

These concepts were extended to V&V in CFD simulations, aiming at evaluating quantitatively the errors 

and uncertainty in simulation results to be validated by comparing those results with their experimental 

counterparts.  
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The procedures for the error and uncertainty quantification included in the ASME Standard V&V 20-

2009 (2009) are summarized below. 

An error, δ, is a quantity that has a particular +/- sign and magnitude. Each error whose sign and 

magnitude is known can be eliminated by correction. A specific error δi is defined as the difference caused 

by error source i between the measured or simulated quantity and its true value. For an unknown error, its 

signs and magnitude cannot be removed, thus its uncertainty u is estimated by an interval ± u containing δ. 

A standard uncertainty is an estimate of standard deviation of the parent distribution of δ. 

In the validation process, a simulation result is assessed by comparison with an experimental result for 

specified variables under restricted conditions (validation point). Figure 4 is a schematic showing the 

nomenclature for a validation process of, as an example, a simulation for the flow past a building in the 

atmospheric boundary layer. The variable of interest is assumed to be the aerodynamic pressure on the 

building. The predicted pressure value from the simulation is denoted by S, the value determined from 

experimental data by D, and the true (but unknown) value by T. Note that the order of the variables shown 

in Fig. 4 can be varied. 

Figure 4. Schematic showing nomenclature for validation approach (ASME 2009). 
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The validation comparison error, E, is defined as 

 
sim exp

E S D
δ δ

≡ −
= −

  (4) 

where the error in the simulation value, δsim, is the difference between the simulated value and the true 

value: 

 sim S Tδ = −   (5) 

and similarly, the error in the experimental value is 

 exp D Tδ = −   (6) 

Thus, the validation comparison error combines all the errors in the simulation result and the experimental 

data. 

Figure 5 illustrates the validation process with sources of error. The experimental “as run” is the reality 

of interest (truth) given the condition called validation point (shown in Fig. 4). The error in simulation 

value, δsim, consists of three errors associated with numerical calculations: 

 sim model num inputδ δ δ δ= + +   (7) 

where δmodel is the error due to modeling assumptions and approximations, δnum is the error due to the 

numerical solution of the discretized equations, and δinput is the error in the simulation result due to errors 

in the simulation input parameters. 

As shown in Fig. 5, the validation comparison error, E, can be determined from Eqs. (4) and (7) as 

 model num input exp .E δ δ δ δ= + + −   (8) 

To estimate δmodel in this validation process example, Eq. (8) needs to be rearranged as 

 ( )model num input exp .Eδ δ δ δ= − + −   (9) 
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Figure 5. Overview of the Validation Process with Sources of Error in Ovals (ASME 2009). 

 

As explained above, once the simulation value (S) and the experimental data (D) are determined, the 

comparison error (E) can be calculated from Eq. (4) (i.e., the sign and magnitude of E can be known). 

However, because the signs and the magnitudes of δnum, δinput, and δexp are unknown, the standard 

uncertainties corresponding to those errors can be estimated by unum, uinput, and uexp, respectively.  

The validation standard uncertainty due to combination of the errors, uval, is defined as  

 2 2 2
val num input exp .u u u u= + +   (10) 

This relationship is valid when the three errors are independent of each other and their uncertainty sources 

are aleatory (i.e., random).  

The validation results can be interpreted in two ways: i) with no assumptions on error distributions 

associated with (δnum + δinput - δexp) and ii) with assumption on the error distributions. In the method with no 

assumption on error distribution, δmodel is inferred approximately by comparing the magnitudes of E with 
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uval. When the magnitude of E is much larger than uval, E may be viewed as approximately equal to δmodel. 

When the magnitude of E is not larger than uval, δmodel can be considered to be of the same order as the error 

contribution (δnum + δinput - δexp). That is:  

 model

m p

v

odel num in ut e pv x

al

al

If ,        

If ,         ( ).

E u E

E u

δ

δ δ δ δ

≈

−≤ +≈



  (11) 

In the method that assumes the probability distribution of δnum + δinput - δexp (e.g., uniform or Gaussian 

distribution) (ISO 1993), an interval can be estimated within which δmodel is positioned at a given degree of 

confidence: 

 % % valU k u=   (12) 

where U% is the overall or expanded validation uncertainty at a specified percentage level of confidence, 

and k% is the coverage factor which depends on the assumed parent distribution of error and the desired 

confidence level. For example, k% = 2 is for the 95% confidence interval of a Gaussian distribution. 

Typically, k% is in the range between 2 and 3 (ASME 2009). A coverage interval can be directly calculated 

by Monte Carlo methods. Thus, the true value of the validation variable will be located within a ± U% band 

around E with a given confidence interval: 

 [ ]mode %l %, .E U E Uδ ∈ − +   (13) 

This is the estimated accuracy of the simulation result. The adequacy of the simulation result depends on 

the accuracy required for the application of interest. 

For estimating uval and, ultimately, δmodel, the standard uncertainties (unum, uinput, and uexp) in the RHS 

term of Eq. (10) should be estimated through the solution verification and model validation processes. Their 

quantitative evaluations are briefly explained in the following. 
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4.1 Estimation of numerical error uncertainty (unum) 
The uncertainty due to numerical errors, unum, can consist of the discretization error uncertainty (uh), the 

iterative error uncertainty (uit), and the round-off error uncertainty (uro), associated with the corresponding 

errors described in Section 2, as:  

 num h it .rou u u u= + +   (14) 

The combined error is recommended to be conservatively estimated by simple addition, instead of RMS 

addition (Eq. 10) because the uncertainties cannot be assumed to be uncorrelated (Eça and Hoekstra 2009). 

Thus, the resulting numerical error uncertainty is treated as epistemic. Note that all uncertainty values in 

Eq. (14) are positive.  

The round-off errors can be assessed by comparing CFD/CWE results based on different levels of 

precision in a computing machine and the associated uncertainty can be assumed to be considerably smaller 

than uit (i.e., uro ≈ 0 in Eq. 14) 

Prior to estimation of any discretization error, the iterative error should be estimated first to avoid 

amplifying the uncertainty induced by the incomplete iterative convergence error. The uncertainty due to 

iterative error can be estimated by, e.g., the method of manufactured solutions (Eça and Hoekstra 2009). 

For unsteady flow simulations, iterative convergence at every time step should be monitored to make sure 

that the iterative error is considerably smaller by, e.g., 2 to 3 orders of magnitude than the errors of 

discretization. When the estimated iterative error is assumed to be significantly smaller than the 

discretization error for the contribution to the numerical error uncertainty, the uncertainty in the numerical 

errors, unum, can be  

 num h .u u=   (15) 

and in the case the iterative error uncertainty (uit) needs to be considered,  

 num h it .u u u= +   (16) 
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For the estimation of discretization error, the classical Richardson Extrapolation (RE) (Richardson 

1911; Richardson 1927) has been most widely used and its various versions have been developed (e.g., a 

Least Squares version (Eça and Hoekstra 2014)). Roache’s Grid Convergence Index (GCI) (Roache 1994; 

Roache 1997) can estimate the uncertainty of numerical errors by multiplying the absolute value of the RE 

error estimate by a safety factor, Fs. At least three successive levels of grid refinement are recommended to 

be used for ensuring an acceptable level of accuracy. The CGI method is summarized below: 

Let three grids be h1 (finest) < h2 < h3 (coarsest) where hi (i = 1, 2, 3) is the characteristic grid size of 

grid i for estimating unum using the GCI method. The CGI for grids 2 and 1 is calculated from  

 
21

21

21

GCI
( ) 1

s a
p

F e
r

=
−

  (17) 

where the grid spacing ratio r21 = h2/h1, p is the observed order in convergence of the simulated value of the 

solution variable (S) with respect to mesh size from the three simulations, 21
ae  is the absolute change of S 

over grids 1 and 2, and Fs is the safety factor recommended to be 1.25 for structured grids and 3 for 

unstructured grids (Roache 1994). The GCI for grids 2 and 3 is determined in a similar manner. The standard 

uncertainty uh corresponding to each grid refinement level can be estimated using the GCI value. Because 

the GCI is estimated at 95 % of confidence from empiricism (i.e., GCI = U95%) , the standard uncertainty uh 

required for Eq. (10) is determined by 

 
%

GCI
hu

k
=   (18) 

where k% is the coverage (or expansion) factor, as explained in Eq. (12). The value of k% is recommended 

to be 2 for Gaussian error distribution about the fine grid solution and 1.1 to 1.15 for roughly shifted 

Gaussian error distribution. The non-dimensional standard uncertainty of uh (Eq. (18)) can be converted to 

dimensional form by multiplying it by the representative simulated value of the solution variable S. For the 

detail of the GCI method, see the ASME Standard (2009).  
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The systematic grid refinement study should use sufficiently fine grids to predict the flow physics of 

interest. Appropriate boundary conditions (e.g., inflow/outflow boundaries far enough from the structures 

of interest in the computational domain) should be employed to guarantee zero discretization error when 

the grid sizes approach infinitesimally small values. Such errors, categorized as modeling errors, can be 

addressed by sensitivity tests (Oberkampf and Roy 2010).  

4.2 Estimation of input parameter uncertainty (uinput) 
One part of uncertainty in simulation results comes from the uncertainty of simulation input parameters, 

uinput in Eq. (10). Since experiments typically use the input parameters that have their own uncertainties, so 

do the numerical simulations based on the values of input parameters determined by the experiments. For 

example, in the case of simulations for pressures on a structure, the input parameters for their uncertainty 

estimation could include air density, wind speed, and terrain exposure condition. The contribution of each 

input parameter Xi to uinput is estimated by using a local or a global approach. As a local method, the 

sensitivity coefficient method1 describes the input uncertainty propagation equation for a simulation result 

S caused by n uncorrelated random input parameters, as described below (Coleman and Steele 2009): 

 
22

input
1 1

i

i

n n
X

X i
i ii i i

uS Su u X
X X X= =

  ∂ ∂
= =   ∂ ∂   
∑ ∑   (19) 

where the partial derivative iS X∂ ∂  is the sensitivity coefficient of the validation variable S with respect 

to input Xi, iX  is the nominal (e.g., mean) value of Xi, and the 
iX iu X  is the relative standard uncertainty 

(i.e., coefficient of variation). The input parameter uncertainty 
iXu  can be determined from measurements 

of parameters in experiments, database, or expert’s opinion. The sensitivity coefficients can be computed 

by local techniques, such as finite difference method. The detail of the computing techniques is provided 

 
1 The sensitivity coefficient method was used for estimating the uncertainty in the wind load in Ellingwood et al. 

(1980). 
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in ASME (2009). This local method evaluates the input uncertainty propagation equation (Eq. (19)) within 

a small (local) neighborhood around the nominal values of the input parameters. When the result S has a 

high non-linear behavior in the parameter space, the local method cannot estimate properly the uncertainty 

inherent in input parameters. 

A more reliable approach to estimating uinput is to employ global samples in the parameter space by 

e.g., Monte Carlo methods. The samples are randomly collected from the distribution functions of input 

parameters. If the input parameters are not independent, the correlation should be addressed in an 

appropriate method. Since the full Monte Carlo method is known to be computationally expensive, a less 

computer-intensive method (e.g., Latin hypercube sampling method (McKay et al. 1979)) is preferred for 

practical applications. 

4.3 Estimation of experimental result uncertainty (uexp) 
In the experimental uncertainty analysis, the uncertainties are estimated for individual variables. Among 

many error sources of a measured variable Xi, known errors should be eliminated by a calibration process. 

The unknown errors are represented by standard uncertainty ui.  

As shown in Fig. 6, the total error in an experimental result, defined as the difference between the 

measured value and the true value (δexp in Fig. 4), consists of random error (precision) and systematic error 

(bias). The random error varies randomly in repeated measurements during the test, mainly caused by 

uncontrolled or non-repeatable test conditions. The systematic error remains constant in repeated 

measurements during the test, largely caused by imperfect calibration corrections and measurement 

methods. The “total” uncertainty in an experimental measurement can be described as the combination of 

uncertainties contributed by the random and systematic errors (ASME 2013). 
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Figure 6. Measurement errors (ASME 2013). 

 

 

The standard uncertainty of an experimental result r determined from j measured variables (X1, X2,…, 

Xj), denoted by uexp, is defined in ASME (2009) as 

 2 2
exp r ru b s= +   (20) 

where br is the systematic standard uncertainty of the experimental result r: 
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and sr is the random standard uncertainty of the experimental result r: 
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−

= = = +

   ∂ ∂ ∂
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∑ ∑ ∑   (22) 

In Eqs. (21-22), bi and si are the elemental systematic and random standard uncertainties, respectively; 

bik and sik are the covariance of the systematic and random standard uncertainties, respectively. The random 
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contribution to the measurement uncertainty (sD) can also be estimated as the standard deviation in the 

measurements of r from multiple (say, 10) experiments. As explained for the uinput estimation, alternative 

methods of the uexp estimation to the local sensitivity coefficient propagation approach (Eqs. 21-22) are 

global sampling (Monte Carlo) methods. 

For validation purposes, the uncertainty of experimental result is fixed as a systematic standard 

uncertainty and the experimental result has a single value with a fixed (but unknown) error (ASME 2009). 

Thus, the experimental uncertainty uexp in Eq. (20) becomes 

 exp exp 0
.

r
rb

u u s
=

= =   (23) 
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5. USAGE OF VALIDATION LEVEL 

The word “validation” has been used at various levels of interpretation as an indicator of acceptable 

tolerance for agreement between simulation and experiment results (ASME 2009). In a loose usage, a model 

is deemed “validated” once the simulation results are compared with experimental counterparts, regardless 

of the agreement level. The validation in this case refers to the process and is not related to the quality of 

the model and its simulated results. As a moderate usage, the model is considered validated when the 

validation uncertainty of E ± uval is quantified through the procedure described in Sect. 4. This level of 

validation provides a quantitative assessment without judgement of pass or fail validation. In a strict usage, 

the validation can be used as pass or fail evaluation to check whether or not the accuracy level of results is 

within the error tolerance specified in standards for a particular application. In CWE applications, most 

studies to date have employed the loose usage of validation. There is no clear consensus on validation usage 

and acceptance level in CWE results for structural design.   
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6. SUMMARY 

Recently, applications of CFD techniques for CWE has generated strong interest among wind and structural 

engineers as a possible substitute for or supplement to wind tunnel experimentation. However, at present 

CWE is still in a developmental stage. A necessary step toward advancing CWE simulations in wind and 

structural engineering applications credible is the development of reliable verification and validation 

(V&V) procedures. The fundamental elements for building the credibility of CWE simulations are (i) 

quality of physical modeling, (ii) quality of users/analysts conducting the simulations, (iii) verification and 

validation (V&V) activities, and (iv) uncertainty quantification of the simulation results. This report 

summarizes (i) the sources of inaccuracy in CFD simulations and (ii) concepts and procedures of 

verification and validation (V&V) and uncertainty quantification, and (iii) the usage of validation levels. 

The sources leading to the inaccuracy of CFD results can be classified into four types: (i) physical 

modeling, (ii) discretization, (iii) iteration, and (iv) programming/user. The physical modeling errors could 

arise from the approximation of complex behavior in the governing equations, effects of computational 

domain size and boundary conditions, and assumptions on fluid properties. The discretization error depends 

on the numerical schemes in space and time, the resolution and quality of the grids used in simulations, and 

solution behaviors. Among the sources associated with numerical inaccuracy, the discretization errors are 

usually the largest and their estimation is the most challenging. The iterative errors could result from round-

off errors and iterative convergence errors inherent in iterative methods. The latter should be carefully 

monitored for unsteady flow simulations. The programming/user errors are associated with mistakes in 

coding and in pre-/post-processing of data, respectively. 

The verification process can consist of code verification and solution verification. The former 

addresses the correct implementation of the numerical algorithm in the computer code and is usually 

performed by code developers/vendors. The latter deals with (i) correctness of the input and output data for 

a particular solution of a problem of interest and (ii) numerical accuracy (error/uncertainty estimation) for 

the simulated solution. Solution verification should be performed by CFD users and be required by analysts 
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and decision-makers who use CFD simulation results structural engineers. Once the code and solution 

verification processes are completed, the validation process can be performed. The ultimate interest of CFD 

users in V&V lies in the validation results for the intended use. The validation relates the computational 

model to the real physical world and quantifies the degree of accuracy of the model. 

The procedures for the error and uncertainty quantification based on the ASME V&V 20 Standards 

provide quantitative evaluation of uncertainties in simulation results by their comparison with their 

counterparts in experiments, and employs concepts and definitions of error and uncertainty taken from 

metrology. To estimate the validation uncertainty and, ultimately, the modeling error in the simulation 

results, the standard uncertainties of numerical errors, input parameters, experimental results should be 

estimated. 

The word “validation” has been used at various levels of interpretation (e.g., loose, moderate, and strict 

usages) as an indicator of acceptable tolerance for agreement between simulation and experiment results. 

In CWE applications, most of studies to date have employed the loose usage of validation. There is no clear 

consensus on validation usage and acceptance level in CWE results for structural design. Such research 

should be performed for assuring appropriate safety margins in structural design for wind when CWE-based 

wind loads are used in practical applications. 
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