
NISTIR 8297

Interoperability of Web
Computational Plugins for Large

Microscopy Image Analyses

Peter Bajcsy
Nathan Hotaling

This publication is available free of charge from:
https://doi.org/10.6028/NIST.IR.8297

NISTIR 8297

Interoperability of Web
Computational Plugins for Large

Microscopy Image Analyses

Peter Bajcsy
Software and Systems Division

Information Technology Laboratory
National Institute of Standards and Technology

Nathan Hotaling

National Center for Advancing Translational Sciences
National Institutes of Health

This publication is available free of charge from:
https://doi.org/10.6028/NIST.IR.8297

March 2020

U.S. Department of Commerce
Wilbur L. Ross, Jr., Secretary

National Institute of Standards and Technology

Walter Copan, NIST Director and Undersecretary of Commerce for Standards and Technology

National Institute of Standards and Technology Interagency or Internal Report 8297

33 pages (March 2020)

This publication is available free of charge from:
https://doi.org/10.6028/NIST.IR.8297

Certain commercial entities, equipment, or materials may be identified in this document in order to describe
an experimental procedure or concept adequately. Such identification is not intended to imply
recommendation or endorsement by NIST, nor is it intended to imply that the entities, materials, or equipment
are necessarily the best available for the purpose.

There may be references in this publication to other publications currently under development by NIST in
accordance with its assigned statutory responsibilities. The information in this publication, including concepts
and methodologies, may be used by federal agencies even before the completion of such companion
publications. Thus, until each publication is completed, current requirements, guidelines, and procedures,
where they exist, remain operative. For planning and transition purposes, federal agencies may wish to closely
follow the development of these new publications by NIST.

https://doi.org/10.6028/NIST.IR.8297

i

Reports on Computer Systems Technology

The Information Technology Laboratory (ITL) at the National Institute of Standards and 78 Technology
(NIST) promotes the U.S. economy and public welfare by providing technical leadership for the Nation’s
measurement and standards infrastructure. ITL develops tests, test methods, reference data, proof of concept
implementations, and technical analyses to advance the development and productive use of information
technology. ITL’s responsibilities include the development of management, administrative, technical, and
physical standards and guidelines for the cost-effective security and privacy of other than national security-
related information in federal information systems.

Abstract

This document summarizes conclusions from a workshop focused on Interoperability of Web
Computational Plugins for Large Microscopy Image Analyses. The workshop conclusions are classified as
practical recommendations and agreements on development and future research related to (1)
containerization of execution code, (2) data storage, (3) interoperability requirements of workflow engines
for running containerized plugins, (4) standard packaging of web user interface modules, and (5) security
of container-based distribution.

Key words

Big image analyses; software containers; interoperability of software; microscopy.

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8297

ii

Executive Summary

This NIST internal report provides a summary of the workshop on Interoperability of Web Computational
Plugins for Large Microscopy Image Analyses. The workshop was held at NIST Gaithersburg, MD, on
December 5-6, 2019, and its web page is accessible at this URL0F

1.

The workshop brought together representatives from 21 institutions spanning research, academic, and
industrial communities focusing on big image analyses in computer cloud environments. Such big image
analyses are frequently supported by web client-server systems that enable execution of a wide spectrum
of algorithms to extract image-based measurements, and perform image classification, object detection,
object registration, object tracking, and object recognition. The purpose of this workshop was to discuss the
needs for big image analyses in computer cloud environments in terms of software interoperability.
Specifically, the workshop targeted bio-medical and bio-materials science applications, current open-source
technical solutions for big image analyses, and community-wide research and development (R&D) interests
in defining inter-operable algorithmic plugins for web client-server systems designed for big image
analyses.

The workshop discussions focused on:

1. Containerization of execution code
2. Data storage
3. Interoperability requirements of workflow engines for running containerized plugins
4. Standard packaging of web user interface modules
5. Security of container-based distribution.

Practical workshop recommendations include:

1. Applying best practices for containerization [1], [2]
2. Leveraging on-going efforts contributing to the definition of the metadata manifest files [3], [4]
3. Using GitHub repositories for storing plugin manifest files and leveraging existing tools for storing

execution profile and error log formats [5], [6]
4. Supporting basic central processing unit (CPU) and graphics processing unit (GPU) data types in

user interface (UI) modules
5. Following security guidelines [1].

The workshop attendees agreed that a consensus is possible for (1) developing inter-operable mechanisms
for launching containers and error handling, (2) having a well-defined application programming interfaces
(API) to access a spectrum of file formats, (3) defining inter-operable plugin manifests with parameter and
execution information, (4) supporting basic CPU and GPU data types in reusable UI modules, and (5)
defining a protocol for signing plugin containers. More discussion is needed for research topics (1)
addressing construction of complex user interfaces for collecting parameters, (2) specifying access API for
scalable file formats [7] and capturing computational provenance, (3) defining the methods that would assist
in finding plugins in distributed repositories and analyze execution log profile, (4) supporting complex data
types in UI modules, and (5) scanning containerized software for security purposes in continuous
integration/continuous delivery (CI/CD) workflows. Initial code templates have been provided by NIST1F

2.

1https://www.nist.gov/news-events/events/2019/12/interoperability-web-computational-plugins-large-microscopy-

image
2 https://github.com/usnistgov/WIPP-Plugins-base-templates

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8297

https://www.nist.gov/news-events/events/2019/12/interoperability-web-computational-plugins-large-microscopy-image
https://www.nist.gov/news-events/events/2019/12/interoperability-web-computational-plugins-large-microscopy-image
https://www.zotero.org/google-docs/?R4REnz
https://www.zotero.org/google-docs/?YMKczi
https://www.zotero.org/google-docs/?zR8NKJ
https://www.zotero.org/google-docs/?eJvFO8
https://www.zotero.org/google-docs/?hWSS4h
https://www.nist.gov/news-events/events/2019/12/interoperability-web-computational-plugins-large-microscopy-image
https://www.nist.gov/news-events/events/2019/12/interoperability-web-computational-plugins-large-microscopy-image

iii

Contents
Abstract ... i
Executive Summary ... ii
1. Background .. 1
2. Workshop Description ... 2

Day 1: Focus on Breadth .. 3
Day 2: Focus on Depth .. 3

3. Conclusions .. 4
Containerization of execution code .. 4

Review of existing solutions ... 4
Common characteristics of existing solutions and desired best practices.. 4

Data storage and access interfaces for object-, block- and file-level storage... 4
Review of existing solutions ... 4
Common characteristics of existing solutions and desired best practices.. 4

Interoperability requirements for running containerized plugins ... 5
Review of existing solutions ... 5
Common characteristics of existing solutions and desired best practices.. 5

Standard packaging of Web UI modules .. 6
Review of existing solutions ... 6
Common characteristics of existing solutions and desired best practices.. 6

Security of container-based distribution... 6
Review of existing solutions ... 6
Common characteristics of existing solutions and desired best practices.. 7

4. Summary ... 7
References .. 8
Acknowledgments ... 9
Glossary of Technical Terms .. 10
Appendix A: Pointers to Image Analysis Projects Mentioned During Day 1 ... 11
Appendix B: Working Group 1 - Containerization of execution code .. 12

Session 1: Review of existing solutions ... 12
Session 2: Common characteristics .. 12

Appendix C: Working Group 2 - Data storage and access interfaces ... 15
Sessions 1 and 2: Review of existing solutions and common characteristics .. 15

Appendix D: Working Group 3 - Interoperability requirements .. 18
Session 1: Review of existing solutions ... 18
Session 2: Common characteristics .. 21

Appendix E: Working Group 4 - Standard packaging of web UI modules .. 24
Sessions 1 and 2: Review of existing solutions and common characteristics .. 24

Appendix F: Working Group 5 - Security of container-based distribution ... 26
Session 1: Review of existing solutions ... 26
Session 2: Common characteristics .. 26

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8297

1

1. Background

There is an increasing interest in enabling discoveries from high-throughput and high content microscopy
imaging of biological specimens and bio-material structures under a variety of conditions. As automated
imaging across multiple dimensions increases its throughput to thousands of images per hour, the computational
infrastructure for handling the images has become a major bottleneck. The bottleneck presents challenges that
range from transferring data, storing and archiving, annotating, quantifying, and visualizing, to the mechanisms
for applying the latest machine learning and artificial intelligence models by non-computational experts from a
variety of application domains. These challenges arise due to big image data, complex phenomena to model,
and non-trivial computational scalability that accommodates advanced hardware and cutting-edge algorithms.
Furthermore, the challenges are amplified by the need to engage a broad community of experts in analyzing
complex image content and the need to reproduce discoveries based on image measurements and any decisions
derived from these measurements. Such measurements, discoveries and decisions are critical for biological and
bio-materials science applications, for instance, quality assurance of stem cell therapies, design of cancer
treatments, high throughput screening in drug discovery, and vaccine discoveries from atomic resolution
structures of viruses and protein complexes.

To overcome the aforementioned challenges, several research institutions have prototyped web-based systems
in order to facilitate access to large image databases and to high performance computing (HPC) and cloud
hardware resources. The existing web-based prototype solutions leverage a variety of web technologies on the
client side and a spectrum of databases, scientific computational workflow engines, and communication
protocols on the server side in order to hide the infrastructure complexity from the domain application experts
and make them more productive in conducting research. While the web-based solutions deliver infrastructure
capabilities, their capabilities for processing large images remain limited to the computational tools provided
by each development team because the development of new tools is web solution specific and a definition of
an inter-operable web computational plugin does not exist.

With the increasing popularity of software containers as standardized units for deployment, there is an
opportunity for the communities working with large microscopy images to discuss creating inter-operable web
computational plugins. These web computational plugins consist of software containers and web user interface
(UI) description files to enter parameters needed for the software execution. Each container packages code with
all its dependencies and has an entry point for running the computation in any computing environment. Each
UI description file contains metadata about the plugin container and the computation parameters. This
description file is intended for generating web UI for entering parameters dynamically. Figure 1 illustrates the
workshop focus in the context of users, developers, and system administrators using containerized tools and
applying them to very large images in computer cluster and cloud environments.

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8297

2

Figure 1: Workshop focus is represented by the question mark in this figure. The focus is viewed in the context
of users, developers, and system administrators analyzing very large images in computer cloud environments
using a variety of client-server systems. A client-server system follows representational state transfer (REST)
application programming interface (API) for creating web services that are interoperable on the Internet.

2. Workshop Description

The workshop was divided into two days based on the focus of each day either on breadth or on depth of relevant
topics. During the first day, 15 speakers presented bio-medical microscopy community needs when relying on
microscopy image analysis, and several existing solutions and funding mechanisms that are behind
advancements of imaging science over large image collections. A subset of presentation slides are available
from the workshop web page. The main technologies discussed during the workshop are listed, and links to
their descriptions can be found in Appendix A.

In-depth discussions about inter-operable plugins took place in working groups during the second day of the
workshop. Five working groups were focused on:

1. Containerization of execution code
2. Data storage and access interfaces for object-, block- and file-level storage
3. Interoperability requirements of workflow engines for running containerized plugins
4. Standard packaging of web UI modules
5. Security of container-based distribution.

Each working group summarized the state-of-the-art and then concentrated on common characteristics of
existing solutions and desired best practices. The conclusions of all working groups are provided in this
workshop report. There was widespread agreement from attendees that the premise of the conference was valid
and the workshop conclusions are highly valuable to the community.

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8297

3

Day 1: Focus on Breadth

During the first day, invited speakers presented a spectrum of viewpoints on how to analyze terabytes (TB) of
microscopy images.

1. The speakers represented several funding agencies:
o National Center for Advancing Translational Sciences (NCATS), National Institutes of Health

(NIH)
o National Cancer Institute (NCI), NIH
o National Science Foundation (NSF)
o Center for Devices and Radiological Health (CDRH), United States Food and Drug Administration

(FDA)
o National Institute of Standards and Technology (NIST)
o Chan Zuckerberg Initiative

2. Non-profit academic and research organizations:
o National Center for Supercomputing Applications (NCSA), University of Illinois at Urbana-

Champaign (UIUC)
o University of California at Santa Barbara (UCSB)
o University of Cardiff in Wales
o KTH Royal Institute of Technology in Sweden
o University of Dundee in United Kingdom
o Janelia Research Farm
o Allen Institute for Cell Science

3. For-profit organizations:
o Zeiss (or Carl Zeiss AG)
o PerkinElmer, Inc.

The viewpoints varied across users of microscopes and image analysis software, developers of image analysis
software, system administrators of imaging core facilities (software and hardware), and funders of imaging and
image analysis activities.
The summary of microscopy image analysis projects that were mentioned during the presentations on Day 1
can be found in Appendix A. The summary is a small sample set of funded efforts devoted to the problem “how
to analyze very large microscopy images.” These efforts and the team experiences gained while addressing the
problem became a starting point for the in-depth discussions on Day 2.

Day 2: Focus on Depth

During the second day, the workshop attendees focused on interoperability of web computational plugins for
large microscopy image analyses. The workshop format of Day 2 was based on creating working groups that
would enable discussions of current practices and forward-looking standards. The overall goal of all working
groups was to determine whether the workshop attendees could reach a consensus on creating inter-operable
web computational plugins that can be:

● Chained into scientific workflows/pipelines and
● Executed over large image collections regardless of the cluster/cloud infrastructure components.

Five working groups were formed to understand a variety of technical aspects critical to creating inter-operable
web computational plugins. The five technical aspects are:

1. Containerization of execution code
2. Data storage and access interfaces for object-, block- and file-level storage
3. Interoperability requirements of workflow engines for running containerized plugins

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8297

4

4. Standard packaging of web UI modules
5. Security of container-based distribution.

Each working group (WG) had two sessions. Session 1 was focused on a review of existing solutions addressing
the WG topic (i.e., what is the current state-of-the-art?). Session 2 was focused on discussing common
characteristics of existing solutions and desired best practices to address the WG topic (i.e., how can we work
toward a consensus solution?). The working groups 2 and 3 ran in parallel so that the workshop attendees were
split, while the working groups 1, 4, and 5 were attended by all interested workshop participants.

3. Conclusions

Containerization of execution code

Review of existing solutions

Containerization of execution code is most frequently performed using Docker and Singularity containers [8],
[9] and executed with Kubernetes orchestration middleware [2]. The data access from containers is most
frequently achieved via mounting a volume/folder. The content of packaged execution software varies in
complexity and represents analytical and simulation functionalities for microscopy imaging.

Common characteristics of existing solutions and desired best practices

Workshop attendees recommended using best practices for containerization of software available on the Web
[1]. As a starting point for containerization, the workshop consensus was to recommend using the Alpine Linux
container images as the base images, multi-stage builds [10], and continuous integration tools. A consensus is
possible for launching algorithms with parameters using the container entry points and error handling for the
“run and then destroy”' container scenario. More in-depth discussions are needed for constructing complex user
interfaces collecting parameters to container executions. A registry of container images over private and public
repositories will be useful to search and find functionalities needed for creating complex image analysis
pipelines executed in cloud-based environments [11]. Detailed discussion notes are provided in Appendix B.

Data storage and access interfaces for object-, block- and file-level storage

Review of existing solutions

The most frequently used storage methods for large images are databases and file systems. While file systems
are not changing too much, databases are continually being developed. In addition, several new image file
formats, such as Zarr, N5, and Apache Arrow are being developed to meet the needs of very large image files
(see Glossary). JavaScript Object Notation (JSON) data-interchange format and Extensible Markup Language
(XML) format are used frequently for metadata describing inputs and outputs of computational plugins
currently. The metadata field definitions and the schema for their storage are currently
software/institution/developer dependent.

Common characteristics of existing solutions and desired best practices

The opinions varied when discussing consistent programmatic access to data from containerized computational
plugins. To reach a possible consensus will require additional in-depth discussions. While there is a need to
build standard interfaces in order to expand the current limited support of mounting folders/volumes on a file
system, there is also concern that a standard interface would lock developers into a technology window. The
in-depth discussions should also include computational provenance tracking.

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8297

https://www.zotero.org/google-docs/?HdHc8z
https://www.zotero.org/google-docs/?gNHPey
https://www.zotero.org/google-docs/?lw0iqL
https://www.zotero.org/google-docs/?eUnBjA

5

Scalable input/output file formats must be considered when data access from containers is achieved by
mounting folders/volumes on a file system, Consensus can be reached by specifying access via an application
programming interface (API) to a spectrum of file formats. Among the newer file formats suitable to big image
analyses, Apache Arrow, Zarr, N5, and tiled Tiff formats are suggested as good candidates for specifying the
initial implementations of the access API. There was fairly good consensus/agreement that the API should be
the N5 API currently under development once it is able to encapsulate the Zarr specifications (it might be
updated to be called Z5 at that point). More in-depth discussions are needed to specify the access API for file
formats.
In order to enable chaining of containerized computational plugins, metadata manifest files must be defined.
The workshop consensus was to recommend adopting specification, schema, and file type for the metadata
manifest files that would come from several on-going parallel efforts, such as OMERO (follow OMERO forums
[3]), BisQue (see Appendix A), and Common Workflow Language (CWL) [4]. Detailed discussion notes are
provided in Appendix C.

Interoperability requirements for running containerized plugins

Review of existing solutions

A survey of existing solutions among the workshop attendees is provided in Appendix D. In a summary, the
most frequent technologies are:

• Workflow editors: Argo and custom solutions,
• Job schedulers: K8 and SLURM (see Glossary),
• Workflow orchestration: Kubernetes [2],
• Workflow representation: scripting files (.py, .js) and Argo file (.yml),
• Workflow monitoring: Kibana + ElasticSearch [5] or none,
• Supported hardware: CPU and GPU platforms,
• Passing parameters from Clients to Servers: JSON files and a list of arguments,
• Finding and fetching containerized steps of workflows: private and public registries,
• Finding and accessing image collections: native file systems,
• Logging errors and warnings: language specific logging and none,
• Target hardware: Commercial Cloud, cluster on premises, and multiple CPU/GPU machines.

Furthermore, the survey included two questions about the current practices. The questions and their answers
are provided below:

• What size/volume of data are you expected to process? Giga, Tera, and Peta Bytes, (GB, TB, and PB)
• Is directed acyclic graph (DAG) sufficient to represent workflows? Yes

Common characteristics of existing solutions and desired best practices

As a starting point, the workshop consensus was to recommend using plugin manifest metafiles stored in
GitHub and labeled with a tag (e.g., encoded in a file name). More in-depth discussion is needed to define the
plugin tags and the methods that would assist in finding plugins.
A consensus was reached that the information in plugin descriptors/manifests must include supported
input/output (I/O) file formats and hardware requirements using a predefined schema (JSON or XML). The
plugin descriptors should include not only a list of parameters but also the range of valid parameters. There was
a consensus that a flag for saving intermediate results per plugin would be useful. It is up to the workflow
execution platform to support the flag and trigger saving intermediate results per plugin.

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8297

https://www.zotero.org/google-docs/?s6ccXL
https://www.zotero.org/google-docs/?hrCEKx
https://www.zotero.org/google-docs/?AN8c6K

6

When chaining plugins accessing data from file systems, compatibility must be ensured via consensus on
supported file formats.
Monitoring information is important as collecting metrics on passed runs is a good approximation of execution
profile. More in-depth discussion is needed to define the format and content of an execution profile that could
be analyzed programmatically. It is conceivable that each plugin would contain a test inside of a container that
could provide an approximation of its execution profile. Since there are no standardized execution profile and
error log formats, the workshop consensus was to recommend leveraging existing widely-available tools (e.g.,
Kubernetes and Kibana + ElasticSearch [5], [6]
The streaming style communication and short vs long lived container execution scenarios need to be researched.
More details are provided in Appendix D.

Standard packaging of Web UI modules

Review of existing solutions

Currently, there are no conventions for creating new web user interface (UI) modules that collect information
needed by algorithmic plugin containers. The workshop speakers and attendees create UI modules that leverage
different libraries (e.g., AngularJS, Angular6, Django, etc.). There is an overlap in collecting information about
input image collection and parameters, as well as about output scalar values, vectors, image collections, and
prediction models.

Common characteristics of existing solutions and desired best practices

The workshop consensus was to recommend building UI modules that would support data types found on CPU
and GPU hardware platforms. Due to the fact that UI modules can include code executed on clients, security
certificates for UI modules accompanying a plugin container must be considered.
While a consensus is possible to create reusable UI modules for basic data types (string, int, etc.), the problem
of defining UI modules for arrays needs more research.
The workshop consensus was to recommend building UI modules with data types that would be handled
(interpreted and rendered) consistently by multiple plugin execution platforms and would enable specifying a
valid range of each parameter. “Fancy” custom-made datatypes used in UI modules will have very limited
support, at least initially.
Development of UI modules and examples accessible via GitHub repositories would lead the community toward
reusability of UI modules and consistent interpretation and rendering of UI by all workflow execution platforms.
Detailed discussion notes are provided in Appendix E.

Security of container-based distribution

Review of existing solutions

The workshop consensus was to recommend following best practices to secure containers according to the
“Application Container Security Guide” [8]. The contributors of containerized plugins must avoid the main
risks, such as (1) compromising the content of an image or container and (2) misusing a container to attack
other containers, the host OS, other hosts, etc. The review of [8] included mitigation strategies, such as:

• Tailor the organization’s operational culture and technical processes to support the new way of
developing, running, and supporting applications made possible by containers

• Use container-specific host OSs instead of general-purpose ones to reduce attack surfaces
• Only group containers with the same purpose, sensitivity, and threat posture on a single host OS kernel

to allow for additional defense in depth

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8297

https://www.zotero.org/google-docs/?pdIa84

7

• Adopt container-specific vulnerability management tools and processes for images to prevent
compromises

• Consider using hardware-based countermeasures to provide a basis for trusted computing
• Use container-aware runtime defense tools.

Since the workshop attendees have been applying mostly home-grown containerized algorithms to big image
data, they did not have many inputs about security of downloaded containers from the internet or experiences
with the aforementioned risks of using containers.

Common characteristics of existing solutions and desired best practices

For open source algorithmic plugins, we recommend creating registries for Docker images, uploading all code
to GitHub for informal reviews, having mechanisms for validating plugins, and restricting write access to
registries for Docker images.
More research and in-depth discussions are needed to understand how to design security scanning tools for
Docker images and Docker containers, and how to combine the tools in continuous integration/continuous
delivery (CI/CD) workflow [12]. Commercial vendors are leading this effort to meet Security Technical
Implementation Guides (STIGs) [13] and those efforts can be leveraged in scientific workflows.
Security of workflow execution consisting of chained Docker containers is the responsibility of users selecting
containerized algorithmic plugins and system administrators managing the software and hardware resources
running the workflow. A consensus is possible to address this security aspect by plugin authors signing a Docker
image representing his/her algorithmic plugin. Detailed discussion notes are provided in Appendix F.

4. Summary

This workshop focused on interoperability issues of chained containerized algorithmic plugins running in
cluster/cloud environments. The interoperability issues represent specific technical challenges in the abstract
reference architecture established under the NIST Big Data Interoperability Framework [14], Volume 6, Fig. 3.
In the context of data providers, data consumers, big data application providers, big data framework providers,
and system orchestrators, this workshop addressed containerized software tools and algorithm transfer among
these big data actors.
The main workshop conclusions are presented in Table 1 below. Table 1 columns correspond to workshop
recommendations, possible consensus areas, and future research topics. The rows of Table 1 correspond to
discussions focused on:

1. Containerization of execution code
2. Data storage
3. Interoperability requirements of workflow engines for running containerized plugins
4. Standard packaging of web user interface modules
5. Security of container-based distribution.

In summary, the workshop was an initial step toward building a community consensus on creating inter-
operable containerized computational plugins. The benefit of such plugins for the microscopy community lies
in reusability of algorithmic tools that can be chained into scientific workflows/pipelines and executed in
cluster/cloud environments. This written report summarizes the existing solutions, desired best practices, and
the research and development goals towards (1) prototype plugins following a community consensus and (2)
prototype registries for searchable interoperable plugins. Initial code templates for building containerized
algorithmic plugins are available from GitHub2F

3.

3 https://github.com/usnistgov/WIPP-Plugins-base-templates

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8297

https://www.zotero.org/google-docs/?ecyvu1
https://www.zotero.org/google-docs/?sX3IF2
https://www.zotero.org/google-docs/?dPwzsA

8

Table 1: Workshop conclusions ranging from practical recommendations to achieved consensus on
development and future research and discussions

“Practice:”
Workshop Recommendation

“Development:”
Consensus Possible For

“Research:”
More Discussion Needed to

Use the on-line best practices for
containerization of software [1],

[2].

Launching algorithms with
parameters using error

handling for the “run and then
destroy” container scenario.

Construct complex user
interfaces for collecting

parameters passed to container
executions.

Adopt specifications for the
metadata manifest files from
parallel efforts, e.g. [3], [4] .

Application programming
interface (API) to access a
spectrum of file formats.

Specify the access API for file
formats and capture

computational provenance, e.g.,
[7].

Store plugin manifest metadata
files in GitHub and leverage

existing tools for storing execution
profiles and errors e.g., [5], [6].

The information in plugin
manifests to include

parameters and execution
requirements using a
predefined schema.

Define the methods that would
assist in finding plugins and

analyze execution log profiles.

Build UI modules that would
consistently support data types

found on CPU and GPU hardware
platforms.

Creation of reusable UI
modules for basic data types

(string, int, …).

Create reusable UI modules for
complex data types (arrays, …).

Follow the NIST report entitled
“Application Container Security

Guide” [1].

Security of plugin execution
being addressed by plugin
authors signing a Docker

image.

Understand how to design
container security scanning

tools, and how to integrate them
CI/CD workflows.

References

[1] “Docker best practices,” Docker best practices. [Online]. Available:
https://docs.docker.com/develop/develop-images/dockerfile_best-practices/. [Accessed: 10-Jan-2020].

[2] A. Chandrasekaran, “Best Practices for Running Containers and Kubernetes in Production.” Gartner, 25-
Feb-2019.

[3] OME Team, “Next Generation File Formats for BioImaging,” Community Partners, Nov-2019. [Online].
Available: https://forum.image.sc/t/next-generation-file-formats-for-bioimaging/31361.

[4] Amstutz, Peter; Chilton, John, et al., “Common Workflow Language,” Common Workflow Language, 02-
Feb-2020. [Online]. Available: https://www.commonwl.org/.

[5] “Kibana.” [Online]. Available: https://www.elastic.co/products/kibana. [Accessed: 10-Jan-2020].

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8297

https://www.zotero.org/google-docs/?Dv4tiB
https://www.zotero.org/google-docs/?Dv4tiB
https://www.zotero.org/google-docs/?5denmS
https://www.zotero.org/google-docs/?WDJVms
https://www.zotero.org/google-docs/?3FCMWY
https://www.zotero.org/google-docs/?vC4fog
https://www.zotero.org/google-docs/?ONmgtP
https://www.zotero.org/google-docs/?ONmgtP
https://www.zotero.org/google-docs/?ONmgtP
https://www.zotero.org/google-docs/?ONmgtP
https://www.zotero.org/google-docs/?ONmgtP
https://www.zotero.org/google-docs/?ONmgtP
https://www.zotero.org/google-docs/?ONmgtP
https://www.zotero.org/google-docs/?ONmgtP
https://www.zotero.org/google-docs/?ONmgtP
https://www.zotero.org/google-docs/?ONmgtP
https://www.zotero.org/google-docs/?ONmgtP
https://www.zotero.org/google-docs/?ONmgtP
https://www.zotero.org/google-docs/?ONmgtP
https://www.zotero.org/google-docs/?ONmgtP
https://www.zotero.org/google-docs/?ONmgtP

9

[6] “Elastic Search.” [Online]. Available: https://www.elastic.co/. [Accessed: 10-Jan-2020].
[7] “N5 file format,” 02-Feb-2020. [Online]. Available: https://github.com/saalfeldlab/n5.
[8] Murugiah Souppaya, John Morello, Karen Scarfone, “Application Container Security Guide,” NIST

Special Publication,” NIST IR, vol. 800–190, Sep. 2017.
[9] “Hierarchical Definition File Format,” HDF5. [Online]. Available:

https://www.hdfgroup.org/solutions/hdf5/. [Accessed: 02-Feb-2020].
[10] “Docker - Use multistage builds.” [Online]. Available: https://docs.docker.com/develop/develop-

images/multistage-build/. [Accessed: 10-Jan-2020].
[11] “2018 Docker Usage Report.” [Online]. Available: https://sysdig.com/blog/2018-docker-usage-report/.

[Accessed: 10-Jan-2020].
[12] Udi Nachmany and Hayley Denbraver, “Building security into your Azure DevOps Pipeline,” 16-Dec-

2019. [Online]. Available: https://snyk.io/blog/building-security-into-your-azure-devops-pipeline/.
[13] “DoD Security Requirements Guides (SRGs) and DoD Security Technical Implementation Guides

(STIGs).” [Online]. Available: https://public.cyber.mil/stigs/compilations/. [Accessed: 10-Jan-2020].
[14] “NIST Big Data Interoperability Framework (NBDIF).” [Online]. Available:

https://bigdatawg.nist.gov/V3_output_docs.php. [Accessed: 02-Feb-2020].
[15] “LXC is a userspace interface for the Linux kernel containment features.” [Online]. Available:

https://linuxcontainers.org/lxc/introduction/. [Accessed: 10-Jan-2020].

Acknowledgments

The workshop organizers gratefully acknowledge the sponsorship contribution by PerkinElmer.
The authors wish to thank their colleagues who have reviewed drafts of this document and contributed to its
technical content during its development, In particular, Mylene Simon (NIST), Joe Chalfoun (NIST),
Konstantin Taletskiy (NCATS), Michael Majurski (NIST), Mohamed Ouladi (NIST), Nicholas Schaub
(NCATS), Antoine Gerardin (NIST), Sunny Yu (NCATS), Samia Benjida (NIST), Guillaume Sousa Amaral
(NIST), Keats Kirsch (NCATS), Derek Juba (NIST), and Philippe Dessauw (NIST). In addition, we would like
to acknowledge the inputs from the NIST colleagues, Alden Dima, Zachary Traut, John Henry Scott, and Mary
Brady whose comments made the document more readable and complete.
The authors also acknowledge the attendees from the following organizations who participated in the workshop
including Allen Institute for Cell Science, Axle Informatics, Chan Zuckerberg Initiative, Howard Hughes
Medical Institute (Janelia Research Farm), Medical Science and Computing contracting to BCBB/NIAID/NIH,
NCATS NIH, NCI NIH, NIST, NSF, CDRH FDA, National Institute of Technology and Metrology in Paraguay
(INTN Instituto Nacional de Tecnología, Normalización y Metrología), National Center for Supercomputing
Applications - University of Illinois at Urbana-Champaign, Perkin Elmer, University of California - Santa
Barbara, Indiana University, University of Cardiff in Wales, KTH Royal Institute of Technology in Sweden,
University of Dundee in Scotland, and Carl Zeiss Microscopy.

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8297

https://www.zotero.org/google-docs/?ONmgtP
https://www.zotero.org/google-docs/?ONmgtP
https://www.zotero.org/google-docs/?ONmgtP
https://www.zotero.org/google-docs/?ONmgtP
https://www.zotero.org/google-docs/?ONmgtP
https://www.zotero.org/google-docs/?ONmgtP
https://www.zotero.org/google-docs/?ONmgtP
https://www.zotero.org/google-docs/?ONmgtP
https://www.zotero.org/google-docs/?ONmgtP
https://www.zotero.org/google-docs/?ONmgtP
https://www.zotero.org/google-docs/?ONmgtP
https://www.zotero.org/google-docs/?ONmgtP
https://www.zotero.org/google-docs/?ONmgtP
https://www.zotero.org/google-docs/?ONmgtP
https://www.zotero.org/google-docs/?ONmgtP
https://www.zotero.org/google-docs/?ONmgtP
https://www.zotero.org/google-docs/?ONmgtP
https://www.zotero.org/google-docs/?ONmgtP
https://www.zotero.org/google-docs/?ONmgtP
https://www.zotero.org/google-docs/?ONmgtP
https://www.zotero.org/google-docs/?ONmgtP
https://www.zotero.org/google-docs/?ONmgtP

10

Glossary of Technical Terms

Alpine Linux is a Linux distribution built around musl libc (a standard library for Linux-based devices) and
BusyBox (a library combining many UNIX utilities). This Linux image is only 5 MB in size and therefore
suitable for applications in which containers have to be transferred to remote compute nodes. See
https://hub.docker.com/_/alpine/

Android Package (APK) is the package file format used by the Android operating system. It is suitable for
distribution and installation of mobile applications. See URL:
https://en.m.wikipedia.org/wiki/Android_application_package

AngularJS (or Angular 1) is a JavaScript framework for dynamic web applications that extends HTML’s syntax
and injects data bindings and application dependencies. See https://docs.angularjs.org/guide/introduction

Angular v2 and above is a TypeScript (a superset of JavaScript) framework for building dynamic web
applications. Angular provides many built-in features for easier programming. See
https://www.tutorialspoint.com/angular6/index.htm

Apache Arrow is a development platform for handling data in-memory. It consists of libraries for interprocess
communication and zero-copy streaming, and it supports development in 10 different programming
languages. See https://arrow.apache.org/

Application container technologies (or software containers) are a form of operating system virtualization that
are used for packaging software application packaging. Containers simplify managing application
dependencies and software executions in distributed computational environments. See [8].

A Docker container image is a software container that includes code, runtime, system tools, system libraries
and settings. Docker containers can be executed using a Docker engine. See
https://www.docker.com/resources/what-container

Containerized algorithmic plugin for cluster/cloud execution is the software container and its manifest file. The
software container can be executed from a command line with a set of arguments. The arguments and
hardware requirements are described in a manifest file. Inter-operable plugins can be chained into a
computational workflow/pipeline.

Kibana is a visualization of cloud-based execution information. It visualizes performance metrics and log files
from Elasticsearch input data. Elasticsearch is an analytics engine designed for monitoring computational
infrastructure and security analytics. See https://www.elastic.co/products/kibana

Kubernetes (K8s) is a management system for automating deployment and execution of containerized
applications. It has many features including horizontal scaling of container-based executions and storage
orchestration which are important for massive data analyses. See https://kubernetes.io/

N5 file format is focused on the application programing interface (API) that is targeting storage of large chunked
n-dimensional tensors, and arbitrary meta-data in a hierarchy of groups similar to HDF5 [9]. See [7].

Slurm workload manager is a computational job scheduling system for Linux clusters. It allocates compute
nodes, starts and monitors the execution, and manages a queue of pending jobs. See
https://slurm.schedmd.com/overview.html

Snyk is one of the tools in the Azure suite of tools that is designed for container security scanning (Snyk Security
Scan Azure Pipelines Task). It is integrated into continuous integration, continuous development (CI/CD)
pipelines in Azure. See https://snyk.io/blog/building-security-into-your-azure-devops-pipeline/

Zarr file format is focused on providing support for chunked, compressed, N-dimensional arrays. It depends on
NumPy and other Python libraries. See https://zarr.readthedocs.io/en/stable/

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8297

https://hub.docker.com/_/alpine/
https://docs.angularjs.org/guide/introduction
https://www.tutorialspoint.com/angular6/index.htm
https://www.zotero.org/google-docs/?oUUU1V
https://www.elastic.co/products/kibana
https://kubernetes.io/
https://www.zotero.org/google-docs/?whPvOx
https://slurm.schedmd.com/overview.html
https://snyk.io/blog/building-security-into-your-azure-devops-pipeline/
https://zarr.readthedocs.io/en/stable/

11

Appendix A: Pointers to Image Analysis Projects Mentioned During Day 1

● Allen Cell Explorer - The Allen Cell Explorer is the data portal for the Allen Institute for Cell Science,
where you can explore publicly available data, tools and models.
o URL: https://www.allencell.org/about.html

● BisQue - is a free, open source web-based platform for the exchange and exploration of large, complex
datasets.
o URL: https://bioimage.ucsb.edu/bisque

● BrownDog - Brown Dog's goal is to prototype a highly distributed and extensible science driven Data
Transformation Service (DTS)
o URL: https://browndog.ncsa.illinois.edu/

● Chan-Zuckerberg Initiative projects - Repositories for Essential Open Source Software for Science.
o URL: https://github.com/chanzuckerberg

● Clowder - Open Source Data Management for Long Tail Data
o URL: https://clowder.ncsa.illinois.edu/

● IDR - The Image Data Resource (IDR) is a public repository of image datasets from published scientific
studies, where the community can submit, search and access high-quality bio-image data.
o URL: https://idr.openmicroscopy.org/

● ImageJ/Fiji and related projects - Fiji is an image processing package—a "batteries-included"
distribution of ImageJ, bundling plugins which facilitate scientific image analysis.
o URL: https://en.wikipedia.org/wiki/ImageJ

● ImJoy - is a plugin powered hybrid computing platform for deploying deep learning applications such
as advanced image analysis tools.
o URL: https://imjoy.io

● LIMPID - NSF funded project focused on a large-scale distributed image-processing infrastructure
o URL: https://www.nsf.gov/awardsearch/showAward?AWD_ID=1664172

● OMERO - is client-server software for managing, visualizing and analyzing microscopy images and
associated metadata.
o URL: https://www.openmicroscopy.org/

● Python-based image processing - refers to scikit-image library that is a collection of algorithms for
image processing.
o URL: https://scikit-image.org/

● PerkinElmer Image Analysis – The PreciScan optional plug-in for Harmony high-content analysis
software uses intelligent image acquisition to enable a fully automated workflow of low magnification
pre-scan, image analysis and higher magnification re-scan
o URL: https://www.perkinelmer.com/product/preciscan-instrument-license-hh17000003

● Scientific Computing Software at Janelia - provides full software life cycle support for Janelia’s project
teams, labs and shared resources.
o URL: https://www.janelia.org/support-team/scientific-computing-software

● WIPP - Web Image Processing Pipeline (WIPP) has been designed for enabling interactive
measurements and discoveries over very large images
o URL: https://isg.nist.gov/deepzoomweb/software/wipp

● Zeiss APEER - Cloud-based Digital Image Processing Platform
o URL: https://www.apeer.com/home/

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8297

https://www.allencell.org/about.html
https://browndog.ncsa.illinois.edu/
https://idr.openmicroscopy.org/
https://en.wikipedia.org/wiki/ImageJ
https://imjoy.io/
https://www.nsf.gov/awardsearch/showAward?AWD_ID=1664172
https://www.openmicroscopy.org/
https://scikit-image.org/
https://www.janelia.org/support-team/scientific-computing-software
https://isg.nist.gov/deepzoomweb/software/wipp
https://www.apeer.com/home/

12

Appendix B: Working Group 1 - Containerization of execution code

Moderator: Mylene Simon (NIST)
Scribe: Joe Chalfoun (NIST)

Best practices for how to build code containers for plugins. This includes both the order of steps and the steps
themselves.

Session 1: Review of existing solutions

This session was driven by a set of questions about containers being used in designing computational plugins
for cloud-based execution.

● Are you using containers? Which technology/engine? [7], [8]
o Docker, CoreOS Rocket (rkt), Apache Mesos Containerizer, Linux Containers (LXC), Singularity,

other. – see references
● What are you containerizing?

o Individual algorithms, Complex programs, Web applications, other.
o Which programming languages? All and any
o Does your container expose any UI?

● Is your container accessing external data? How?
o Volume/folder mounts, database access, download, other.

● Are you disseminating your containers? Where?
o Public repositories (DockerHub, other)
o Private repositories

● Are you using any container orchestration technology? Which one(s)?
o Kubernetes, Docker Swarm, Apache Mesos, other.

The underlined words correspond to the most frequently used solutions.

Session 2: Common characteristics

This session collected information about tools, preferences and challenges in building containers.

● Best practices for writing Dockerfiles
o Summary: See the best practices URL in the references

● Reducing size of Docker images
o Discussion: Tools for packaging: Ubuntu, Conda (reduce the final size)
o Discussion Preferences: multi-stage builds, Jenkins continuous integration, package a small scope

into each container, design an automatic installation launching system to download the
dependencies needed to run a container

o Discussion Challenges of automated launching system: reproducibility of results vs upgrading the
code in containers

o Additional topics: Granularity of plugins - what should be packaged into a container in terms of
functionality? In terms of container size? In terms of the number of dependencies?

o Summary: Use Alpine images as base images, multi-stage builds, and continuous integration tools
● Container entrypoints

o ENTRYPOINT execution vs shell form, command line interface (CLI)
o Standardization of CLI and parameters handling (keyword arguments/options, positional

arguments, …)
o Best practices for default help menu and parameters sanity checks

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8297

13

o Discussion: Many similarities in between existing Zeiss APEER and WIPP systems
o Summary: a consensus is possible

● Data access
o Mounting folders/volumes
o Standards for mount paths? /data/inputs and /data/outputs for example
o File permissions, define USER in Dockerfile, use “—user” to run as specific user, etc.
o Error handling when data cannot be found or cannot be accessed
o Summary: a consensus is possible

● User Interface (UI)
o EXPOSE ports for web UI
o More problematic with Graphical UI (GUI)
o Summary: More in-depth discussions are needed

● Error handling
o Returning exit codes
o Message logging
o Discussion: There are three scenarios for running a container:
 Run and then destroy
 Run forever until you close the browser
 Run, pause, and restart from an intermediate state

o Discussion: The majority of implementations support only “run and then destroy” scenario.
o Discussion: We need a consistent value for an error value returned by each program (i.e., 0 –

success, 1 – fail) which is not the case in all programming languages. All workflow platforms can
check the status of each container output and stop the executions of plugin containers in the chain.

o Summary: an initial consensus about error handling can be achieved for the “run and then destroy”
scenario.

Additional discussion:

• Dissemination of Docker images
o Tagging images – conventions
o Public Docker registry (DockerHub)
o Private Docker registries
o Discussion: Most of the institutions will host their own private repository and implement their own

tagging system before moving Docker images into public repositories.
o Summary: a registry of Docker images might be useful to search and find functionalities needed

for creating complex image analysis pipelines executed in cloud-based environments
• Orchestration technologies

o Kubernetes, Docker Swarm, Apache Mesos, other.
o Other container solutions
o CoreOS Rocket (rkt) by CoreOS/RedHat
o Mesos Containerizer by Apache
o Linux Containers LXC
o Singularity
o Summary: While Kubernetes is the most frequently used container execution orchestration

middleware among the workshop attendees, the computational plugins can become inter-operable
in platforms based on other orchestration technologies (assessment as of the workshop date)

• Performance
o What is the tradeoff of Docker vs native execution?
o Discussion: Conda containerization is preferred instead of Docker because Docker doesn’t work

well on Windows.

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8297

14

o Summary: Discussions with vendors might be beneficial

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8297

15

Appendix C: Working Group 2 - Data storage and access interfaces

Moderator: Nathan Hotaling (NCATS NIH)
Scribe: Michael Majurski (NIST)

How the inputs/outputs of plugins should be formatted for tabular data and image data. Also, how metadata will
be handled between plugins.

Sessions 1 and 2: Review of existing solutions and common characteristics

This session was driven by a set of questions about accessing data from computational plugins for cloud-based
execution.

• Should we standardize how to access data from computational plugins? (Interfaces: databases, file
systems).
o What type of data? binary, tabular, images, metadata, annotations?
 Discussion: For both databases and file systems/object store, if you need something specific it

is on you to write the driver. The system should not have to support every bespoke database.
o What about institutional databases? Where a set of plugins needs to call and get data from a shared

data resource managed by a specific institution.
 Discussion: You have fewer people developing systems than there are people developing

plugins. Therefore, you want to push the effort of dealing with bespoke formats to the plugin
developers.

o What about provenance tracking?
 Discussion: For both databases and file systems/object store, you need to handle writing data

provenance data and enable two-way transfer to push the results/provenance data back into the
system. For example, if you have tools which are not inside the system: how do you get its
results back into the system?

o Discussion opinions:
 Large binary images make more sense to write to file system. Certain data types make more

sense to write into databases.
 You cannot solve all storage and access problems with one system. For example, large tabular

data, you need Cassandra, with large 10 TB image data you need specific file system tools to
handle. However, we should target the largest number of users, not all use cases.

 Need to standardize how data access from plugins is required in order to support inter-operable
plugins.

 While you can translate between different formats, it is a slow process, and it requires constant
developer time which is not something we should be doing. It is practically difficult to specify
this from a funding and justification perspective.

 Does the container orchestration standard specify what this mount looks like and can be? What
is happening inside the Docker container is different from what is happening outside, what you
mount to the container.

o Summary: The problem of designing interfaces to databases and file systems to enable consistent
programmatic access to data from computational plugins requires additional in-depth discussions.
The discussion opinions varied. While there is a need to build standard interfaces in order to expand
the current limited support of mounting folders/volumes on a file system, there is also concern that
a standard interface would lock developers into a technology window. In-depth discussions are
needed on how to incorporate access to databases (and filesystems) that are continually being
developed. The provenance tracking should be included in those discussions as well.

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8297

16

o Note: In case where a database should be supported, if so which database? This question became a
moot point after discussing question 1.

• What file formats should be universally supported by computational plugins for loading and for writing to
a file system?

o Should we select a set of file formats?
o Discussion inputs:
 Select a subset of file formats based on mime types
 Suggested candidate file formats - Apache Arrow, Zarr, N5, tiled tiff, BigDataViewer (BDV)

format.
o Discussion opinions:
 Currently the most flexible format is something like Zarr or N5, however that places significant

burden on the plugin developers to support that specific format. The reason csv is appealing is
that all languages support reading it. It is tempting to go with a modern format, but that might
exclude certain members of the programming world.

 There is a distinction between what the system accepts, vs what is permissible. If you expect
people to chain plugins, developers must know what to write and how to interpret the input
coming from the previous plugin.

 Plugins must very clearly define the input and output types (image, vector field, point cloud)
in a way that every plugin agrees with to enable plugins to chain together. If the next plugin
needs to load a point-cloud, there cannot be 3 or 4 point-cloud formats that can be loaded
without specifying which one the input is.

 Should the system auto convert the file into a tabular array in memory format like Apache
Arrow?

o Discussion opinions:
 Pick top 5 or 7 languages where you write a middle layer (in each language) enabling lots of in

memory communication between languages used in mini-plugins/files
 Example: python files calling each other, passing around numpy like arrays which can then be

automatically wrapped up into a chain of python files with the self-written converter into a
single web image plugin docker container where all intermediate steps are kept in memory,
within that chain of python code.

o Summary: a consensus is possible to specify an access API to a spectrum of file formats. Among
the newer file formats suitable to big image analyses, Apache Arrow, Zarr, N5, and tiled Tiff
formats have been mentioned frequently as good candidates for specifying the initial
implementations of the access API. More in-depth discussions are needed to specify the access API
for file formats.

• How to handle metadata describing inputs and outputs of computational plugins?
o Do we need an ontology of input and output types? Where should that metadata be stored? Should

the storage options include a database and a file system?
o Discussion inputs:
 Need some standard for plugin metadata in order to create inter-operable plugins.
 The file format can be JSON or it can be XML embedded in the image.

o How do we specify and store the plugin metadata to enable chaining?
o Discussion opinions:
 While specifying the file format for metadata is easier, what to include in the information stored

in that metadata file is a harder question.
 JSON file format for metadata (in filesystem or filestore), N5 or Zarr for specific files on

filesystem since they are very flexible formats.
 What about we write converts to some basic formats, tiled tiff, csv; where we write converters

that might be slow, but you can use the system if you get your file into csv. Writing a converter

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8297

17

to something old which enables lots of backward compatibility, while still pushing the field
toward a modern file format.

 What about defining a middle layer for API access (like N5) which can be backed by many
different modern big data block-based storage systems?

 More modern access APIs should be laid out so there is better separation between the
underlying file formats (most microscope vendors wrap headers onto a tiff and getting to the
underlying tiff is difficult) with better differentiation and separation it might be able to better
disentangle the underlying data and any metadata that the vendor has added on top of the
fundamental data type.

 How to avoid a race to the lowest common denominator (pixel size, shape, channels) which
provides enough metadata for a large majority of the applications, but will not support all use
cases?

o Discussion inputs:
 There are large national level efforts in this space (13 at NIH, 1 at NIST). There are efforts in

Japan to do the same thing. They are trying to define what a "Minimal Metadata Specification"
should be. Examples: Bio-formats, Open Microscopy Environment (OME)

 Keep apprised of the national efforts in order to decide what to store in metadata files.
 Example: next gen metadata standard software development effort – see

https://forum.image.sc/t/next-generation-file-formats-for-bioimaging/31361
o Discussion opinions:
 Don't wait for a global standard, do some work around a specific topic which might be

incorporated into a larger standard later.
 Metadata codebases exist that should be vetted and tested
 There is a big change that is happening; the OME tif model has run out of steam because the

world is changing around it as the applications have shifted.
 How the metadata is stored is less of a concern than the fact that I can access that metadata. So

if there are people who do care about how the metadata should be stored, people will follow
those leaders, since they will think deeper about the metadata challenges than the uses who just
want the metadata access.

o Summary: In order to enable chaining of computational plugins, input and output file formats
should become parts of the metadata stored following JSON or XML metadata formats. More in-
depth discussions are needed to specify the metadata fields describing input and output file formats
in each plugin.

Additional questions that were not discussed due to time limits.

• Should we allow plugins to create/store a database or any random file type? Or should we prescribe it
somehow?

• Should containers define data access requirements (e.g. data load time)?
• What are requirements for sensitive data?
• What concerns are there for filesystems that we should include or not include in plugins?
• Quirky file systems not supported?
• What about HPC/singularity systems vs Kubernetes?

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8297

https://forum.image.sc/t/next-generation-file-formats-for-bioimaging/31361

18

Appendix D: Working Group 3 - Interoperability requirements

Moderator: Peter Bajcsy (NIST)
Scribe: Nicholas Schaub (NCATS NIH)

Plugins are chained together to form a workflow. However, how to execute this workflow is not standardized
nor is the format for how to describe this workflow.

Session 1: Review of existing solutions

The cumulative answers to specific questions about existing solutions are provided below in the tables. By
summarizing all table entries, the most frequent answers are:

• Workflow editors: Argo and custom solutions,
• Job schedulers: K8 and SLURM,
• Workflow orchestration: Kubernetes,
• Workflow representation: scripting files (.py, .js) and Argo file (.yml),
• Workflow monitoring: Kibana + ElasticSearch or none,
• Supported hardware: CPU and GPU platforms,
• Passing Parameters from Clients to Servers: JSON files and a list of arguments,
• Finding and Fetching containerized steps of workflows: private and public registries,
• Finding and accessing image collections: native file systems,
• Logging errors and warnings: language specific logging and none,
• Target hardware: Commercial Cloud, cluster on premises, and multiple CPU/GPU machines,
• Size/Volume of Data Expected to Process: GB, TB, and PB,
• Is DAG Sufficient? Yes

Table 2: Workflow Editors

Tool Number of Responses

Argo 6

Custom/In house 3

KNIME 1

Airflow 1

Table 3: Job Schedulers

Tool Number of Responses

K8s/Argo 3

None/Not Applicable 3

Slurm 3

Hedgehog 1

Custom/In House 1

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8297

19

SGE 1

Table 4: Workflow Orchestration

Tool Number of Responses

Kubernetes 9

Terraform 2

Snakemake/KNIME 1

Docker Swarm 1

None/Not Applicable 1

Table 5: Workflow Representation

Format Number of Responses

Argo yml 6

Scripting files (.py, .js) 2

Custom/In House 1

Not Applicable 1

Table 6: Workflow Monitoring

Tool Number of Responses

Kibana + Elasticsearch 4

Not applicable/None 3

ECK 1

Prometheus + Grafana 1

Airflow UI 1

Argo Dashboard 1

Custom/In House 1

Table 7: Supported Hardware

Platform Number of Responses

CPU 8

GPU 8

CPU&GPU cluster 3

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8297

20

Virtual Machines (VMs) 3

HPC 2

Cloud 1

Elastic Compute 1

Table 8: Passing Parameters from Clients to Servers

Format Number of Responses

JSON 7

List of arguments 2

Environment Variables 1

Airflow REST API 1

Yml 1

Nd array 1

Table 9: Finding and Fetching containerized steps of workflows

Containers Number of Responses

Public registries 8

Private registries 2

No containers 1

Custom 1

None 1

Table 10: Finding and accessing image collections

Access mechanism Number of responses

Native File System 6

REST 1

Database 1

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8297

21

Table 11: Logging errors and warnings

Tool Number of responses

None 2

Language specific logging 2

Airflow logs 1

Table 12: Target hardware

Hardware Number of Responses

Commercial Cloud 6

Cluster on premises 5

Multiple CPU/GPU 4

Personal computer 1

HPC 1

Table 13: Size/Volume of Data Expected to Process

Size Number of Responses

TB Scale 7

GB Scale 6

PB Scale 3

Table 14: Is DAG Sufficient?

Response Number of Responses

Yes 6

No. Support dynamic workflows 1

Probably/Maybe 1

Session 2: Common characteristics

This session was driven by a set of questions about interoperability requirements of workflow engines for
running containerized plugins:

• Finding and fetching containerized steps/plugins to form workflows (Access? Curation? Search?
Retrieval?)
o Discussion opinions:
 GitHub could become the repository of plugin manifest metafiles

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8297

22

 Since we are handling binary files as well, we would need to encode package management
environments, such as, npm, conda, docker hub, into plugin manifest files

 How would one filter through those plugins in GitHub repositories? Can we add tags and use
Google text search?
 We need to standardize a taxonomy/ontology for plugin tags
 We can create highly structured fields to assist filtering for plugins

 Visualization using Common Workflow Language (CWL) Viewer
(https://view.commonwl.org/) if we follow CWL

 (super) users will need scripting to create automated search
o Summary: As a starting point, plugin manifest metafiles are recommended to be stored in GitHub

and labeled with a tag (i.e., encoded in a file name). More in-depth discussion is needed to define
the plugin tags and the methods that would assist in finding plugins.

• Workflow configuration using visual programming to specify links, hardware platforms, and
scheduling/orchestration mechanisms (Should there be information embedded in plugins to support
workflow configurations?)
o Discussion opinions:
 While DAG representation is probably enough to capture complexity of workflows, we would

need support for a streaming style communication between plugins during workflow execution
 We would need to add to plugin manifests whether a plugin container is short lived or long

lived
 Note: in reference to three scenarios for running a container:
 Run and then destroy
 Run forever until you close the browser
 Run, pause, and restart from an intermediate state

o Summary: There was a consensus that the information in plugin descriptors/manifests should
include supported I/O file formats and hardware requirements using a predefined schema (e.g.,
JSON or XML). The streaming style communication and short vs long lived container execution
scenarios need to be researched.

• Workflow representations for DAG (Is there any information that should be stored in plugin descriptors
to facilitate I/O compatibility of chained plugins?)
o Discussion inputs:
 It is necessary to pursue a compatibility of inputs / outputs

o Summary: When chaining plugins accessing data from file systems, a compatibility can be
achieved via consensus on supported file formats.

• Passing parameters from clients to servers in order to parametrize workflow DAGs (can we check that
a plugin in a WF has all parameters within a range? Should each parameter come with a range
definition?)
o Discussion inputs:
 For plugin execution, it is needed to define a parameters range for inputs / outputs
 Note: some info will only be accessible at runtime

o Summary: The plugin descriptors should include not only a list of parameters but also the fields
defining the range of valid parameters.

• Passing data from storage to execution locations according to parametrized workflow DAGs (Should
we include the flag in for saving intermediate results per plugin? Access efficiency?)
o Summary: There was a consensus that the flag would be useful. It is up to the workflow execution

platform to support the flag and trigger saving intermediate results per plugin

• Workflow monitoring for purpose

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8297

23

o Performance Stats: utilization of RAM & CPU per plugin, execution time per plugin
o Debug information: error and warning messages per plugin (common notation for auto parsing?
o Summary: Monitoring information is important as collecting metrics on passed runs is a good

approximation of execution profile. More in-depth discussion is needed to define the format and
content of an execution profile that could be analyzed programmatically. It is conceivable that each
plugin would contain a test inside of a container that could provide an approximation of its
execution profile. Since there are no standardized execution profile and error log formats, the
workshop consensus was to recommend leveraging existing widely available tools (e.g.,
Kubernetes and Kibana+ElasticSearch).

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8297

24

Appendix E: Working Group 4 - Standard packaging of web UI modules

Moderator: Sunny Yu (NCATS NIH)
Scribe: Samia Benjida (NIST)

Plugins need a GUI to configure their settings and outputs appropriately for the user. Can we agree on a schema,
format, and scope of what will be universally supported for all UIs?

Sessions 1 and 2: Review of existing solutions and common characteristics

This working group combined the two sessions by posing and discussing the following questions during the
allocated time:

• What type of data to support?
o Discussion Inputs:
 Basic types must be supported (string, int …). The case of arrays is more complicated since it

can represent an image, a polygon, or annotations.
 We must take into account that the shape of the data does not define the data.

o Discussion about open questions:
 How to define arrays?
 How to define multidimensional data?
 Should we implement an Android Services Library (android package or APK file like a

library)?
o Summary: While a consensus is possible to create reusable UI modules for basic data types (string,

int, ...), the problem of defining UI modules for arrays needs more research.

• How do we provide flexibility and standardization in data types?
o Discussion Inputs:
 We need to support both GPU and CPU
 It is not necessary to have a security certificate to privatize the plugins.

o Summary: The consensus of the workshop is to recommend building UI modules that would
support data types found on CPU and GPU hardware platforms. Due to the fact that UI modules
can include code executed on clients, security certificates for UI modules accompanying a plugin
container are an option.

• What is standard for how to create new UI modules?
o Discussion Inputs:
 A datatype that corresponds to a UI module for an algorithmic plugin can range from a simple

layout to custom-made. The custom-made datatypes should be used only for optional
parameters and should not be handled by the developer of the platform.

 It should be possible to specify parameter ranges of values.
 There is still a question about consistency of interpreting and rendering UI modules on different

plugin execution platforms.
o Summary: The workshop consensus was to recommend user build UI modules with datatypes that

would be handled (interpreted and rendered) consistently by multiple plugin execution platforms
and would enable specifying a valid range of each parameter.

• How do we support extensibility in the user interface?
o Summary: “Fancy” custom-made datatypes used in UI modules will have initially very limited

support.

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8297

25

• How should we handle the migration to the new solution?
o Discussion Inputs:
 The future plugins developed by the interested companies should be compatible.
 A GitHub repository should be set up so that people can check how the standards are being

implemented and adapt their plugins.
o Summary: Since there has been very little work in standardizing reusable UI modules for

algorithmic plugin containers, examples in GitHub repositories would lead the community toward
reusability of UI modules and consistent interpretation and rendering of UI by all workflow
execution platforms.

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8297

26

Appendix F: Working Group 5 - Security of container-based distribution

Moderator: Keats Kirsch (NCATS NIH)
Scribe: Derek Juba (NIST)

How do we monitor, enforce, and encourage good security practices for plugins and their executions?

Session 1: Review of existing solutions

Review NIST report as a container security reference:
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-190.pdf

Risks

• Compromise of an image or container.
• Misuse of a container to attack other containers, the host OS, other hosts, etc.
• Other?

Mitigation Strategies

• Tailor the organization’s operational culture and technical processes to support the new way of
developing, running, and supporting applications made possible by containers.

• Use container-specific host OSs instead of general-purpose ones to reduce attack surfaces.
• Only group containers with the same purpose, sensitivity, and threat posture on a single host OS kernel

to allow for additional defense in depth.
• Adopt container-specific vulnerability management tools and processes for images to prevent

compromises.
• Consider using hardware-based countermeasures to provide a basis for trusted computing.
• Use container-aware runtime defense tools.

Session 2: Common characteristics

This session evolved into discussing the following questions during the allocated time:

1. How to address security of container-based distribution via registries for Docker images representing
algorithmic plugins?

2. How hard is it to scan containerized algorithmic plugins? What tools exist?
3. Who should be responsible for security of Docker container execution? Plugin author? Plugin

repository manager? User? How to deliver secure plugins?

1. Security of registries for Docker images representing algorithmic plugins
o Discussion inputs:
 Nobody is signing plugin containers right now
 GitHub can be turned into a plugin registry by adding JSON file (plugin manifest file). Plugin

manifest files can be downloaded from different GitHub repositories. If source code packaged
into plugin Docker images is hosted in GitHub, then informal review can be done, and Docker
images can be built by the users. There is a need for plugin validation (i.e., tests) and for testing
security of Docker containers.

 Security can be provided through a list of authorized users with varying permissions to run
algorithmic plugins.

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8297

https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-190.pdf

27

o Summary: For open source algorithmic plugins, registries for Docker images can become “trusted”
by putting all code to GitHub for informal reviews, having mechanisms for validating plugins, and
by restricting access to registries for Docker images.

2. How hard is it to scan plugins? What tools exist?
o Discussion Inputs:
 Docker has some tools for container scanning.
 Even non-malicious code can cause problems by unintentionally misbehaving.
 Services such as "the Snyk Security Scan " could be useful. “The Snyk Security Scan Azure

Pipelines Task scans your application dependencies and container images for open source
security vulnerabilities.”

 Awareness of security is important. May require a cultural change.
o Discussion Opinions:
 Can you trust certifications? Can you identify who certified it?
 Will security updates break reproducibility?
 Do plugins have network access? May need to access large external datasets.
 Open-source containers are more trustworthy. Closed-source containers require trusting the

author.
 Many organizations feel they do not have resources to guarantee security. In this case:
 Make "best effort".
 Rely on the threat of punishment to prevent malicious behavior.

o Summary: More research and in-depth discussions are needed to understand how to design security
scanning tools for Docker images and Docker containers, and how to combine the tools in
continuous integration/continuous delivery (CI/CD) workflow. Commercial vendors are leading
this effort to meet Security Technical Implementation Guides (STIGs) [13] and those efforts can
be leveraged in scientific workflows.

3. Who should be responsible for security of Docker container execution? Plugin author? Plugin
repository manager? User? How to deliver secure plugins?
o Discussion Opinions:
 Users don't want to spend the time and effort to scan, but they are the group who are ultimately

responsible for security, since they are the ones who will be impacted by vulnerabilities.
 Security requirements depend on the identity and resources of those who you expect would

want to attack you (your threat model).
 Plugin author should sanitize inputs.
 Would ranking/reviews for plugins become an incentive to make plugins secure?
 Plugin authors should sign containers. Signatures need to be checked.
 How do you determine what signatures to accept? Manually validate identities by directly

contacting the signers?
 Should communication between plugins be required to be encrypted? HTTPS should generally

be required.
 Security is a lot of work. One should use Docker security features, best-practices, and

namespaces (filesystems and privileges) [15]

o Summary: Security of workflow execution consisting of chained Docker containers is the
responsibility of users selecting containerized algorithmic plugins and system administrators
managing the software and hardware resources running the workflow. A consensus is possible to
address this security aspect by plugin authors signing a Docker image representing his/her
algorithmic plugin.

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8297

https://www.zotero.org/google-docs/?sX3IF2
https://www.zotero.org/google-docs/?zmybJT

	Abstract
	Executive Summary
	1. Background
	2. Workshop Description
	Day 1: Focus on Breadth
	Day 2: Focus on Depth

	3. Conclusions
	1
	Containerization of execution code
	Review of existing solutions
	Common characteristics of existing solutions and desired best practices

	Data storage and access interfaces for object-, block- and file-level storage
	Review of existing solutions
	Common characteristics of existing solutions and desired best practices

	Interoperability requirements for running containerized plugins
	Review of existing solutions
	Common characteristics of existing solutions and desired best practices

	Standard packaging of Web UI modules
	Review of existing solutions
	Common characteristics of existing solutions and desired best practices

	Security of container-based distribution
	Review of existing solutions
	Common characteristics of existing solutions and desired best practices

	4. Summary
	References
	Acknowledgments
	Glossary of Technical Terms
	Appendix A: Pointers to Image Analysis Projects Mentioned During Day 1
	Appendix B: Working Group 1 - Containerization of execution code
	Session 1: Review of existing solutions
	Session 2: Common characteristics

	Appendix C: Working Group 2 - Data storage and access interfaces
	Sessions 1 and 2: Review of existing solutions and common characteristics

	Appendix D: Working Group 3 - Interoperability requirements
	Session 1: Review of existing solutions
	Session 2: Common characteristics

	Appendix E: Working Group 4 - Standard packaging of web UI modules
	Sessions 1 and 2: Review of existing solutions and common characteristics

	Appendix F: Working Group 5 - Security of container-based distribution
	Session 1: Review of existing solutions
	Session 2: Common characteristics

