

NISTIR 8289

Quantities and Units for
Software Product Measurements

David Flater

This publication is available free of charge from:

https://doi.org/10.6028/NIST.IR.8289

NISTIR 8289

Quantities and Units for
Software Product Measurements

David Flater
Software and Systems Division

Information Technology Laboratory

This publication is available free of charge from:
https://doi.org/10.6028/NIST.IR.8289

March 2020

U.S. Department of Commerce
Wilbur L. Ross, Jr., Secretary

National Institute of Standards and Technology

Walter Copan, NIST Director and Undersecretary of Commerce for Standards and Technology

Certain commercial entities, equipment, or materials may be identified in this

 document in order to describe an experimental procedure or concept adequately.
Such identification is not intended to imply recommendation or endorsement by the
National Institute of Standards and Technology, nor is it intended to imply that the
entities, materials, or equipment are necessarily the best available for the purpose.

National Institute of Standards and Technology Interagency or Internal Report 8289
Natl. Inst. Stand. Technol. Interag. Intern. Rep. 8289, 82 pages (March 2020)

This publication is available free of charge from:
https://doi.org/10.6028/NIST.IR.8289

i

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8289

Abstract

International Organization for Standardization (ISO)/International Electrotechnical
Commission (IEC) 80000, the International System of Quantities, collects and organizes the
most important physical quantities into a coherent system. In a similar fashion, this report
collects and organizes the most important quantities used in software metrics, focusing on
software as a product rather than its development process.

Key words

Measurement; metrics; quantities; software; units.

ii

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8289

Table of Contents

 Measurement concepts .. 1
0.1 Normative references .. 1
0.2 Basic terms .. 1
0.3 Extended units ... 2
0.4 "Amount of data" as a dimension .. 2
0.5 Traceability .. 3
0.6 Scales ... 4

 Guide to the system.. 4
1.1 Scope, goals, and non-goals .. 4
1.2 Criteria for inclusion ... 5
1.3 Guide to tables ... 6
1.4 History and future .. 7

 Countable entities and events ... 8
2.1 Elementary entities .. 8
2.2 Source-level entities .. 9
2.3 Graph entities .. 13
2.4 Dependency and definition/use entities ... 14
2.5 Class diagram entities .. 15
2.6 Units of functionality ... 15
2.7 Units of failure, interruption, and termination .. 18
2.8 Profiling units .. 19
2.9 Testing units .. 20

 Dimensions ... 20
 Basic quantities .. 21
4.1 Physical quantities ... 21
4.2 Resources, processing, and transmission .. 22
4.3 Graph metrics .. 23

 Compatibility metrics .. 24
 Algorithm metrics .. 26
6.1 Performance ... 26
6.2 Hash function metrics .. 26
6.3 Block cipher metrics .. 27
6.4 Cyclomatic complexity .. 28

iii

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8289

6.5 Woodward, Hennell, and Hedley complexity ... 29
 General design and implementation metrics... 29
7.1 Generic quantities .. 29
7.2 Belady and Evangelisti clustering complexity metric ... 30
7.3 Henry and Kafura information flow complexity metric .. 31
7.4 Cruickshank and Gaffney coupling metric .. 32
7.5 Structured Design scales of coupling and cohesion .. 32
7.6 Embley and Woodfield scales of coupling and cohesion .. 34
7.7 Briand, Morasca, and Basili metrics ... 34
7.8 Halstead system ... 36
7.9 Functional size (of a software application) ... 38
7.10 Card and Glass complexity metrics ... 39
7.11 Program Complexity Analysis Methodology (PCAM) metrics 40
7.12 Maintainability index .. 43
7.13 Maturity index ... 44

 Object-oriented design and implementation metrics ... 45
8.1 Eder, Kappel, and Schrefl scales of coupling and cohesion 45
8.2 Martin's package metrics ... 48
8.3 Chidamber and Kemerer class metrics .. 49
8.4 Bieman and Kang cohesion metrics .. 50
8.5 Li and Henry coupling metrics .. 52
8.6 Briand, Devanbu, and Melo coupling metrics ... 52
8.7 Lee et al. coupling and cohesion metrics .. 53
8.8 MOOD2 metrics .. 55
8.9 Lorenz and Kidd metrics ... 57

 Testability (test coverage) metrics .. 60
9.1 Rapps, Frankl, and Weyuker data flow coverage metrics ... 60
9.2 Other coverage metrics .. 61
 Security metrics ... 62
10.1 Common Weakness Scoring System ... 63
10.2 Common Vulnerability Scoring System .. 66
10.3 Vulnerability severity (SP 800-30) .. 69
 Bibliography ... 70
 Copyright notes .. 75

1

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8289

 Measurement concepts

0.1 Normative references

The following referenced documents are taken to be canonical for the established system of
metrology:

• "The SI Brochure:" International Bureau of Weights and Measures (Bureau
International des Poids et Mesures, BIPM). The International System of Units (Le
Système international d’unités, SI), 9th edition, 2019.
http://www.bipm.org/en/publications/si-brochure/

• "The VIM:" Joint Committee for Guides in Metrology (JCGM). International
vocabulary of metrology (Vocabulaire international de métrologie, VIM)—Basic and
general concepts and associated terms, 3rd edition. JCGM 200:2012.
http://www.bipm.org/en/publications/guides/vim.html

• "The GUM:" Joint Committee for Guides in Metrology. Evaluation of measurement
data—Guide to the expression of uncertainty in measurement (GUM). JCGM
100:2008.
http://www.bipm.org/utils/common/documents/jcgm/JCGM_100_2008_E.pdf

• "The International System of Quantities (ISQ):" International Organization for
Standardization (ISO) / International Electrotechnical Commission (IEC) 80000,
Quantities and units.

0.2 Basic terms

The following terms are defined by the 3rd edition of the VIM [VIM]:

quantity: property of a phenomenon, body, or substance, where the property has a
magnitude that can be expressed as a number and a reference.

[The "reference" is typically an expression in terms of SI units.]

quantity value: number and reference together expressing magnitude of a quantity.
Example 1: Length of a given rod: 5.34 m or 534 cm.

measured quantity value: quantity value representing a measurement result.

measurement result: set of quantity values being attributed to a measurand together
with any other available relevant information.

[The "set of quantity values" is intended to accommodate uncertainty, given that a single true
quantity value generally cannot be determined.]

http://www.bipm.org/en/publications/si-brochure/
http://www.bipm.org/en/publications/guides/vim.html
http://www.bipm.org/utils/common/documents/jcgm/JCGM_100_2008_E.pdf

2

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8289

In common software jargon (and thus, within this document), the term "metric" is used in a
broad manner to include not just measurable quantities in the strict sense but calculated
values and assigned classifications of any sort that are treated as measurement results.
Similarly, "measure" used as a noun can mean measurement (as in the idiomatic "unit of
measure"), metric, or unit (as in "measure of X"), depending on context.

0.3 Extended units

A quantity in the SI can be stated as a mathematical expression—the product of a numerical
value and a unit of measurement. The magnitude of a quantity can be expressed in terms of
the seven SI traditional base quantities length (m), mass (kg), time (s), electric current (A),
thermodynamic temperature (K), amount of substance (mol), and luminous intensity (cd),
either individually or in combinations. These quantities correspond to physical dimensions
as used in dimensional analysis.

However, many kinds of quantities have no extent in any of the seven standard dimensions.
For example, a counted quantity is a number of some distinguishable kind of thing, such as
32 bits. Unfortunately for computer science, "amount of data" is not an SI dimension, and
bits and bytes are not SI units. Ratios of two quantities of the same kind, such as mass
fractions (kg/kg), are a similar major category of quantities. The SI Brochure regards both of
these categories of quantities as dimensionless.

In the SI, the unit of measurement for dimensionless quantities is the special unit one.
Depending on context, it may be regarded as the derived unit that algebraically results from
setting the exponents on all seven of the SI traditional base quantities to zero, or it may
instead be regarded as a further base unit that is common to all measurement systems [VIM,
SI]. A suggestion that it would be clearer to refer to dimension number, with Z as its symbol
and 1 as its coherent unit of measurement [Krystek], has become popular.

To avoid user surprise at the canonical SI treatment of amounts of data and other
dimensionless quantities, software libraries and packages that implement quantities and
units functions often apply workarounds such as adding an explicit base unit for 1, adding
many non-SI dimensions, and allowing users to introduce arbitrary irreducible units (effective
extra dimensions). Different software has applied different workarounds, creating subtle
problems for transfer of scientific data.

In this document, we follow a model that extends the interpretation of dimensionless
quantities by subtyping the special unit one with "extended units." For a complete discussion
of this model, related work, and alternative approaches, please see Ref. [Flater].

0.4 "Amount of data" as a dimension

For most counted quantities, there is only one obvious unit to use (the counted entity or
event), and the question of dimension is obviated by the type system for dimensionless
quantities that was mentioned above. However, the coexistence of multiple "natural units"

3

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8289

of data (bits, bytes, and occasionally words) means that often it is less misleading to cite
dimension data than to specify any such unit.

In physical metrology, the National Institute of Standards and Technology (NIST) has
proposed that angle be included as an SI dimension with the radian as its coherent unit of
measure and the cycle as a non-coherent unit that is equal to 2π radians. In parallel fashion,
we sometimes find it convenient to think of data as an added dimension with the bit as its
coherent unit of measure and the byte as a non-coherent unit that is equal to 8 bits. The fact
that amounts of data are counted quantities that cannot be subdivided indefinitely is not
always an important factor; the same is true of amounts of substance in the SI.

Stating that a quantity has the dimension of data, rather than the units of bits or bytes, makes
it clear that the choice of unit is not an essential part of the definition of the quantity. One
can use other counting units, such as data structures of a particular type that can be reduced
to a count of bits, without losing traceability.

Dimensions that proved useful in describing software quantities are provided in Sec. 3. They
are: time, data, information, and work. Other "effective" dimensions corresponding to the
many kinds of nonphysical quantities that are described in this document can easily be
posited; however, in most cases, there is nothing to be gained by doing so. The units and/or
scale of the result provide complete information.

0.5 Traceability

[SI, Sec. 2.3.3] states that counts are traceable to the SI via the special unit one and
"appropriate, validated measurement procedures." However, in general, counting involves
characterizing what is being counted (say, lines of code), and this characterization involves a
standard (definition of line of code) that is not part of the SI. Therefore, the task of defining
most extended units falls on the downstream users of the SI.

Traceability is complicated further when some kind of count is used as a surrogate measure
of another kind of quantity. For example, the durations of some software processes may be
expressed in Central Processing Unit (CPU) cycles rather than in seconds. A given number of
CPU cycles translates to a variable number of seconds because the CPU frequency varies.
Analogously, a program may transfer a fixed number of data entities of a given type, but if
these entities vary in size, then the number of bits transferred will vary.

Practitioners may find it expedient to use the non-traceable units because the resulting
expression apparently is more precise. However, sacrificing traceability means that the actual
duration of the process (in seconds) or the actual amount of data transferred (in bits) has not
been quantified. A process that took more CPU cycles to run may actually have taken less
time. This may or may not be an important consideration, depending on the use of the
measured quantity values, but it is anathema to theories of measurement that seek to relate
all quantities to real, independent, objective properties.

4

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8289

0.6 Scales

Scale theory is a small part of the broad discipline of measurement theory. It was popularized
in 1946 by Stanley S. Stevens [Stevens] and subsequently extended, formalized,
reinterpreted, and criticized by many others.

The following scales suffice for the purposes of this document. N.B., These traditional scale
definitions are incompatible with the formal definitions used in [Zuse].

• A dichotomic scale has only two values, typically named yes/no or true/false, which
have no particular ordering (thus "scale" is a misnomer).

• Nominal is the "scale" of measurements that assign identifiers that have no particular
ordering. A "nominal set," in which the identifiers are not mutually exclusive, is
reducible to a set of independent dichotomic measures.

• Ordinal is the scale of measurements that assign numbers in a fashion that preserves
relative ordering but nothing more. There is no unit of measurement for results on
an ordinal scale because the magnitudes have no meaning beyond relative ordering.

• Interval is the scale of measurements that have a meaningful unit but not a
meaningful zero point. For example, temperature can be measured on either the
Celsius or Fahrenheit scales, but their zero points are different and do not correspond
to a physical minimum.

• Ratio is the scale on which physical measurements of length, mass, time, etc. are
made. Since they have a meaningful zero point, quantities on a ratio scale can be
transformed by a simple multiplicative scaling factor without losing information; e.g.,
5 m is the same quantity as 500 cm.

In this document, a derived number for which no unit or representational structure is obvious
is deemed ordinal, even though the metric may not even preserve a relative ordering by the
measurand. When a unit is derivable but not consistent with how the metric is used, the
scale may also be deemed ordinal.

 Guide to the system

1.1 Scope, goals, and non-goals

The word "software" covers a lot of territory, either directly or indirectly. A notional software
attribute can be different things depending on which artifact or process serves as the object
of measurement. Our objects of measurement include the following:

• Architecture, design
• Requirements
• Specification
• Algorithm
• Implementation (source code or script)

5

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8289

• Executable (binary or bytecode)
• Execution (of binary, bytecode, or script)

The purpose of this document is to provide a systematic reference for metrics that are in use.
Non-goals of this document include:

• Providing a tutorial on computer science, software measurement, or metrology;
• Creating another self-consistent vocabulary for computer science, software

measurement, or metrology, to compete with [ISO-Vocab], [VIM], and similar
standards;

• Creating a complete catalog of every software metric that was ever used;
• Explaining the use or usefulness of individual metrics;
• Evaluating the meaningfulness, validity, or formal properties of individual metrics;
• Explaining or mitigating the deficiencies of individual metrics beyond what is

necessary to integrate them into the system without confusing the reader;
• "Picking winners" among competing candidates for metrics of a given type.

We prioritize practical usability over rigid consistency and eschew organizing principles that
would require commonly associated metrics to be separated from one another in the
document.

1.2 Criteria for inclusion

The determination of which metrics to include was made according to the following criteria:

1. Species: the ostensible metric must actually be a metric and not merely a framework,
model, methodology, method, architecture, paradigm, foundation, or theory.

2. Scope: the metric must apply to a software artifact, i.e., one of the objects listed in
Sec. 1.1, and it must measure some objective property. Metrics that resemble
customer satisfaction surveys are excluded. Edge case: the security metrics in Ch. 10.

3. Clarity: the metric and its result must not depend on models or concepts that are too
abstruse to summarize reasonably in this document.

4. Completeness: the metric must not depend on made-up numbers (e.g., arbitrary
weighting factors, typically denoted by wi), unspecified threshold values, or quantities
for which no reliable measurement method is known (e.g., number of incorrect
requirements, total number of possible use cases). Edge case: the combinatorial
coverage metrics in Sec. 9.2 depend on the selection of a finite set of valid values for
variables.

5. Notability: there must exist references to the metric by sources other than the
originating author or organization. Large, complicated metrics that are difficult to
incorporate need correspondingly stronger evidence of notability. Edge case: some
obscure metrics have been referenced in surveys that are more notable and available
than the original sources. Such references beget more references in later surveys

6

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8289

even if the metrics never had any practical application, as each survey aims for
completeness.

6. Availability: the definition of the metric must be published and obtainable with a web
search or an interlibrary loan, or it must appear in an international standard. Edge
case: [DO-178C] is an important reference but is not widely published.

7. Not a hardware reliability metric: generic systems reliability metrics like mean time
to failure (MTTF) that sometimes are applied to software are adequately covered by
other standards. A sample of such measures is provided in Institute of Electrical and
Electronics Engineers (IEEE) 982.1, IEEE Standard Dictionary of Measures of the
Software Aspects of Dependability (2005).

8. Not a checklist or laundry list: the metric must not depend on a list of disparate rules
or factors that would be unreasonable to quote in its entirety in this document.

9. Not overspecialized: to avoid an infinite proliferation of variations on a theme, a
metric that is an obvious specialization or derivative of something already included
here, need not be included here. For example, given that number of operations is
included, we do not necessarily need entries for the number of illegal operations for
every possible definition of illegal, the mean number of operations per every possible
denominator, or the proportion of operations that are legal, unless the derivative
forms are especially notable in themselves.

The metrological validity and soundness of metrics was not evaluated. The inclusion of a
metric is not a recommendation or endorsement, and the exclusion of a metric is not a
criticism or condemnation.

1.3 Guide to tables

Ch. 2 and later chapters detail the software system of quantities in a series of tables. The
columns of those tables are explained below.

• The Names column gives the intelligible short description or alternative descriptions of
the quantity.

• The Symbols column attempts to provide either the canonical symbol assigned by a
primary reference or the symbols that are most commonly used in practice to identify a
quantity. This document makes no attempt to catalog every symbol ever used for a given
quantity; the proliferation is too great and is not to be encouraged.

• The Definitions column defines the quantity and includes any necessary discussion. In
especially complex cases, a summary is given and readers must consult the cited
references for the complete definition. References to input quantities that are defined
elsewhere in the document may be indicated by bold font. Superscript numbers refer to
the copyright notes listed in Ch. 12.

• The References column contains one or more of the following:

7

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8289

− Supertypes: the References column of the tables in Ch. 2 identifies the immediate
supertypes of dimensionless units within a type system as described in [Flater].

− Unit: an expression in terms of the counting units of Ch. 2 and SI units as applicable.
For ratios of two quantities of the same kind, such as compression ratio, the units are
shown in unsimplified form (bit/bit) for clarity.

− Dimension: when specific units are over-constraining, an expression in terms of the
dimensions of Ch. 3 and SI dimensions may be given instead.

− Scale: if a unit or dimension was specified, a ratio scale is implied; otherwise, an
interval, ordinal, nominal, or dichotomic scale is specified.

− Range: further explanation of the meaning of the output values, when needed.
− Reference: the source of the definition or the document to refer to for details of the

measurement method. In the absence of quotation marks, the definition may be a
paraphrase, summary, reduction, or rewrite of some portion of the cited source. The
source may provide multiple definitions of which only one was selected. When no
reference is given, the definition is a best effort to fill gaps in the canon.

Tables at the beginning of a section that are introduced as "model" or "defined inputs"
provide definitions that the quantities in a subsequent table depend on. These inputs are not
necessarily quantities, but may be sets or other abstractions that have neither units nor scale.
The information provided is a subset of what was described above.

1.4 History and future

This document was started in 2017 by Sumaiyah Sarwat for a Summer Undergraduate
Research Fellowship (SURF) with David Flater as research advisor. It was finished by David
Flater and submitted to the International Electrotechnical Commission (IEC) in 2018 as initial
basis for new work item proposal PNW 25-631 to create 80000-18, Quantities and units—
Part 18: Software product. It received the necessary ⅔ majority of votes for approval, but
only 3 of the approving members nominated experts to participate in development. A
minimum of 4 experts from approving members was required, so the new work item proposal
ultimately was rejected. Subsequently, the document was made a NIST publication with
copyright clearance assistance by Karen Reczek and technical reviews by Paul E. Black and
David B. Newell.

In current practice, many of the elementary quantities of software measurement are
multiply-defined and/or ill-defined. Improving and standardizing the definitions of these
base quantities is within the traditional scope of international standards work. As software
metrology becomes a mature discipline, the document should become less descriptive
(following the practice) and more prescriptive (normative). This transition requires
consensus, and the proper venue for such a consensus to emerge is international standards.

8

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8289

 Countable entities and events

In the following tables, entity and event serve as the most general counting units at the top
of the type system (disregarding unit one), following the pattern that was initiated in [Mohr].

Metrology practice maintains a clear distinction between symbols that denote quantities,
such as l denoting length, and symbols that denote units, such as m denoting the meter (the
unit of length). To express that a length is 5 meters, one would write l = 5 m but not m = 5.
In contrast, the usage of symbols in software practice often is equivocal over whether a
symbol refers to a counted quantity (e.g., LOC = 5) or a type of entity that is used as a counting
unit (5 LOC). In such cases, the counted quantity can be described simply as “Number of
[countable entity],” and a definition of the countable entity would be sufficient to define the
quantity. Indeed, many software metrics are nothing more than these counts, embellished
by description. For example, the number of LOC, the number of classes, or the number of
terms could all be described, in some fashion, as the "size" (more accurately, a size) of a
software artifact. However, certain symbols, such as Halstead's N1 and η1, qualify the method
of counting so that merely cataloging the countable entity types is insufficient.

Many higher-level, derived software metrics define input quantities in-line with expressions
like "...where N is the number of (...)." In a more mature system of quantities, commonly-
used counts might have standard symbols, and n and N might not be so overloaded.

2.1 Elementary entities

Names Symbols Definitions References
Bit b Quantum unit of data.

The definition of ‘b’ as the symbol for bit was made
in [IEEE-100] (now withdrawn), and thence
indirectly by [IEEE-1541] which makes normative
reference to it, but [IEC] does not use it. In
practice, it appears widely as bandwidths are quoted
in units of "Mbps" (meaning Mb/s) or "Gbps"
(meaning Gb/s).
The ‘b’ symbol is also used for the barn, a non-SI
unit of area.

Entity
[IEEE-100]

Qubit
Quantum bit

 Bit, in the context of quantum computing. Bit
[Schumacher]

9

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8289

Names Symbols Definitions References
Byte B = 8 bit

In many contexts, the byte is practically used as the
quantum unit of data because individual bits cannot
be directly addressed.
The derived unit byte, symbol B, has de facto been
standardized as 8 bits, but may vary in historical
uses. [IEC] suggests the less ambiguous unit octet,
symbol o, but this is seldom seen in practice.
The ‘B’ symbol is also used for the bel, a non-SI
unit of logarithmic ratio quantities.

[IEC]

Word "The normal unit in which information may be
stored, transmitted, or operated on within a given
computer." 10 Like the byte, the word is defined as a
number of bits, but the number is architecture-
dependent.

[IEEE-100]

Character char "A sequence of one or more bytes representing a
single graphic symbol." 10 The number of bytes per
symbol may vary, as it does in the popular encoding
UTF-8 (8-bit Unicode Transformation Format).

Entity
[IEEE-100]
[Fenton, p.
346]

Pixel px Etymologically derived from picture element, pixels
are the elementary constituents of raster graphics
images.

Entity

Instruction,
Operation

op Unit of machine code / assembly language.
Depending on the implementation, instructions may
be indivisible or they may translate into blocks of
microcode.

Entity

Microinstruction,
Micro-operation

µop Quantum unit of microcode. (Caution: while the
name and symbol imply that 1 op = 106 µop,
instructions and microinstructions are not actually
comparable. The use of the micro- prefix here,
established in software jargon, is misleading and
incompatible with the SI.)

Entity

2.2 Source-level entities

Many of the entities given in this section have problematic definitions. Some have standard
definitions that conflict with their meanings within widely-used software metrics, and some
have no standard definitions at all. As was mentioned in Sec. 1.4, gaining consensus on an
adequate set of definitions for these base quantities is a work item for the standardization of
software metrology.

10

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8289

Names Symbols Definitions References
Line of code,
Source line of
code,
Physical line of
code

LOC,
SLOC

Segment of source code that is delimited by the
applicable end-of-line string (usually a single line
feed character or a carriage return-line feed
combination) or by the beginning or end of the file.
See [Park] for a framework of many different yet
equally plausible definitions of this quantity. [Misa]
defines SLOC as LOC minus blank lines and
comment lines (= NCLOC, see below).

Entity
[Park]

Logical line of
code

LLOC Ambiguous. Possible meanings include:
1. NCLOC
2. LOC after concatenating continuation lines
3. NCLOC after concatenating continuation lines
4. Statement

Entity (not
necessarily
LOC)

Comment line
of code

CLOC LOC containing nothing but comments and
whitespace, or that is completely empty (blank).

LOC
[Fenton, pp.
340–341]

Noncommented
line of code,
Effective line
of code

NCLOC LOC that is not a CLOC.
LOC = NCLOC + CLOC

LOC
[Fenton, pp.
340–341]

Line of
comments

CM,
CMT

LOC that contains a comment (and possibly other
content); "a physical line on which there is a
comment." This usage seems rare but is referenced in
Sec. 7.12.

LOC
[Welker, p.
130]

Function,
Procedure,
Subroutine,
Submodule

 "Portion of a computer program that is named and
that performs a specific action." 6

This concrete source code entity should not be
confused with the abstract unit of functionality
function appearing in Sec. 2.6.

Entity
[ISO-Vocab]

Module "Program unit that is discrete and identifiable with
respect to compiling, combining with other units, and
loading."
"Collection of both data and the routines that act on
it." 6

Entity
[ISO-Vocab]

Class "Static programming entity in an object-oriented
program that contains a combination of functionality
and data." 6

Sometimes compared to a module unit of procedural
programming (for larger interpretations of module).

Entity
[ISO-Vocab]

11

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8289

Names Symbols Definitions References
Package,
Subsystem,
Cluster

 "Separately compilable software component
consisting of related data types, data objects, and
subprograms." 6

In object-oriented contexts, a package consists of
related classes.
"A subsystem is a collection of classes that support a
set of end-user functions."

Entity
[ISO-Vocab,
Lorenz]

Data type "Set of values and operations on those values." 6 Entity
[ISO-Vocab]

Abstract data
type

ADT "Data type for which only the properties of the data
and the operations to be performed on the data are
specified, without concern for how the data will be
represented or how the operations will be
implemented." 6 Sometimes synonymous with class.

Data type
[ISO-Vocab]

Block Group of contiguous statements that are treated as a
unit. 6

Entity
[ISO-Vocab]

Method,
Operation

 Source code unit from object-oriented programming;
a function that is scoped by and contained within a
class.
"Operation" is the term used in [UML], but in this
document it is too easily confused with its other
definitions, so herein we prefer "method."

Function

Statement "In a programming language, a meaningful expression
that defines data, specifies program actions, or directs
the assembler or compiler." 6 (The term "expression"
is used in a more general sense in the preceding quote
than the way it is defined below.)
A unit corresponding to a single "command."

Entity
[ISO-Vocab]

Expression "Sequence of constants, variables, and functions
connected by operators to indicate a desired
computation." 10

Entity
[IEEE-100]

Data object,
Data element,
Data item

 Entity that occupies storage or consumes bandwidth. Entity

Variable "Quantity or data item whose value can change." 6 Data object
[ISO-Vocab]

Parameter,
Argument,
In-parameter

 An input to a function or procedure.
In many contexts it is necessary to distinguish the
declared "formal parameter" from the "actual
parameter" provided at invocation.

Operand,
Data object

Result,
Return value,
Out-parameter

 An output of a function or procedure. Operand,
Data object

12

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8289

Names Symbols Definitions References
Operand "Variable, constant, or function upon which an

operation is to be performed." 6

A parameter or result.*

Term
[ISO-Vocab]
[Halstead]

Call,
Invocation,
Operation,
Message send

 Source code entity that causes a call/invocation event
(see profiling units). An operator together with its
operands.

Entity

Exception Source code entity that represents or describes an
exception (event).

Entity

Operator "Mathematical or logical symbol that represents an
action to be performed in an operation." 6
1. Narrowly: the predefined programming language
functions that include mathematical, logical,
grouping, indexing, dereferencing, address-of,
scoping, character string, etc. functions.
2. More broadly: any function or procedure that has
one or more operands.
3. [Halstead] also considers control constructs to be
operators [Halstead p. 7]. See mises en pratique.*

Term
[ISO-Vocab]
[Halstead]

Token Operator or operand.* (This generalization is the
unit of several of Halstead's metrics, but is not given a
name in [Halstead].)

Entity
[Halstead]

Site Source code entity that indicates where a weakness
may exist or does exist, i.e., a code location with
characteristics relevant to bug classes. "A location in
code where a weakness might occur."

Entity
[IR8113]

Branch,
Decision-to-
decision path

DD-path One of the outbound paths from a conditional
statement; e.g., an if-then-else conditional has two
branches, one of which is executed if the expression is
true and the other of which is executed if the
expression is false.

Entity
[ISO-Vocab]

Condition "A Boolean expression containing no Boolean
operators except for the unary operator (NOT)." 11

Expression
[DO-178C]

Decision "A Boolean expression composed of conditions and
zero or more Boolean operators. If a condition
appears more than once in a decision, each occurrence
is a distinct condition." 11

Expression
[DO-178C]

Entry point,
Entry

 "Point in a software module at which execution of the
module can begin." 6

Statement
[ISO-Vocab]

Exit point,
Exit

 "Point in a software module at which execution of the
module can terminate." 6

Statement
[ISO-Vocab]

Data flow,
Information
flow

 Transfer of data from one module to another. (Note
that this refers to the implementation of such transfer
in software, not the event of it occurring at run time.)

Entity
[Henry]

13

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8289

* Halstead's model that "an algorithm consists of operators and operands, and of nothing
else" [Halstead p. 8] is difficult to reconcile with complex programming languages that
implement various declarations, control constructs, pragmas, etc. "The counting rules for the
basic metrics are ill-defined, arbitrary and not applicable to languages with structured and
abstract data types" [Hamer]. Halstead's counting units consequently get defined through
unofficial "mises en pratique"—third-party documents that specify how to count them (or
how they are counted in fact by some tool, for better or worse) for specific programming
languages.

2.3 Graph entities

"The material which follows comes mostly from a larger area of mathematics
known as the theory of graphs. Unfortunately, there is as yet no standard
terminology in this field, and so the author has followed the usual practice of
contemporary books on graph theory, namely to use words that are similar but
not identical to the terms used in any other books on graph theory." [Knuth,
Sec. 2.3.4]

Software metrology depends on graph theory due to the common use of control flow graphs,
data flow graphs, dependency graphs, and other graphs in software measurement.

It is apparently the case that graph-theoretic terms such as walk, trail, circuit, path, chain,
and cycle have not been standardized and are used differently in different sources. See
Mathematics Stack Exchange, "What is difference between cycle, path and circuit in Graph
Theory" and similar discussions. The impacted definitions below are tagged with the
following attributes, which act as constraints:

N = reuse of nodes is prohibited (except special case for initial-final node in a cycle)
E = reuse of edges is prohibited
D = direction of arcs matters
C = closed; end of sequence is required to be the same as the beginning.

Names Symbols Definitions References
Edge,
Arc

e [McCabe],
m [Berge]

A line or arrow in a graph. Entity
[Berge]

Node,
Vertex

n [Berge,
McCabe]

A point in a graph. Entity
[Berge]

Predicate
node

𝜋𝜋 [McCabe],
d [Fenton]

Flowgraph node with out-degree greater than 1.

Using the symbol 𝜋𝜋 for the count of predicate nodes
conflicts with its canonical interpretation as a
mathematical constant.

Node
[McCabe]

Connected
component

p [Berge,
McCabe]

A class of the equivalence relation [x=y, or x≠y and
there exists a chain in G connecting x and y].

Entity
[Berge]

https://math.stackexchange.com/questions/655589/what-is-difference-between-cycle-path-and-circuit-in-graph-theory
https://math.stackexchange.com/questions/655589/what-is-difference-between-cycle-path-and-circuit-in-graph-theory

14

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8289

Names Symbols Definitions References
Chain "A sequence μ = (u1, u2, ..., uq) of arcs of G such

that each arc in the sequence has one endpoint in
common with its predecessor in the sequence and
its other endpoint in common with its successor in
the sequence".

Entity
[Berge]

Elementary
chain

 "Chain that does not encounter the same vertex
twice." N

Chain
[Berge]

Simple chain "Chain that does not use the same arc twice." E Chain
[Berge]

Cycle Simple chain whose endpoints are the same
vertex. EC

Simple chain
[Berge]

Elementary
cycle

 Cycle in which "no vertex is encountered more than
once (except, of course, the initial vertex which is
also the terminal vertex)." NEC
The exception for the initial-final vertex in this
representation of cycles means that elementary
cycle is not a subtype of elementary chain.

Cycle
[Berge]

Path Chain "in which the terminal endpoint of arc ui is
the initial endpoint of arc ui+1 for all i<q." D

Chain
[Berge]

Circuit Cycle "such that for all i<q the terminal endpoint of
ui is the initial endpoint of ui+1." EDC

Cycle
[Berge]

Knot Place where two arrows are forced to cross each
other in some prescribed graph layout.

Entity
[Woodward]

2.4 Dependency and definition/use entities

Uses, interactions, and dependencies have to do with relationships among source code
entities. As such, they may exist only in a model of the software, or they may be ascribed to
one of the involved entities (e.g., the dependency of A on B may be ascribed to A as the point
of use). There are several alternative models and vocabularies.

Names Symbols Definitions References
Definition def Variable occurrence "in which a value is stored

in a memory location."
Entity
[Frankl]

Use use Variable occurrence "in which a value is
fetched from a memory location."

Entity
[Frankl]

Computation use c-use Use that "directly affects the computation
being performed or outputs the result of some
earlier definition."

Use
[Frankl]

Predicate use p-use Use that "directly affects the flow of control
through the subprogram, and thereby may
indirectly affect the computations performed."

Use
[Frankl]

15

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8289

Names Symbols Definitions References
Data declaration-
data declaration
interaction

DD-interaction "A data declaration A DD-interacts with
another data declaration B if a change in A's
declaration or use may cause the need for a
change in B's declaration or use."

Entity
[Briand93]

Data declaration-
subprogram
interaction,
Data declaration-
method
interaction

DS-interaction,
DM-interaction

"A data declaration DS-interacts with a
subprogram if it DD-interacts with at least one
of its data declarations."
"There is a DM-interaction between data
declaration a and method m, if a DD-interacts
with at least one data declaration of m. Data
declarations of methods include their
parameters, return type and local variables."

CI
[Briand93,
Briand98]

Cohesive
interaction

CI "The set of cohesive interactions in a module is
the union of the sets of DS-interactions and
DD-interactions, with the exception of those
DD-interactions between a data declaration and
a subprogram formal parameter."

Entity
[Briand93]

Interaction Reference to a class as the type of an attribute,
parameter, or result, or invocation of one of its
methods.

Entity
[Briand97]

2.5 Class diagram entities

Names Symbols Definitions References
Relationship Edge in a class diagram (e.g., association, generalization,

aggregation).
Edge
[UML]

Attribute "Identifiable association between an object and a
value." 6

Data object
[ISO-Vocab]

2.6 Units of functionality

Although some shared definitions have been placed in a more general context to avoid
duplication, the overlaps between the various standards for functional size measurement
(FSM, c.f. Sec. 7.9) have not been fully sorted out.

Names Symbols Definitions References
Requirement,
Compliance point

 "Condition or capability that must be met or
possessed by" the software "to satisfy an
agreement, standard, specification, or other
formally imposed documents." 6

Entity
[ISO-Vocab]

Use case,
Scenario script

 "Sequence of tasks that a system can perform,
interacting with users of the system and
providing a measurable result of value for the
user." 6

Entity
[ISO-Vocab]

16

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8289

Names Symbols Definitions References
Feature "Distinguishing characteristic of a system

item." 6
Entity
[ISO-Vocab]

Function "Defined objective or characteristic action of a
system or component." 6

This abstract unit of functionality should not be
confused with the concrete source code entity
function appearing in Sec. 2.2.

Entity
[ISO-Vocab]

Function point FP Ostensible unit corresponding to a difference of
1 in the result of one of several functional size
measurement methods. However, most of these
methods yield ordinal values. See Sec. 7.9.

IFPUG function
point

FP "Unit of measure for functional size" 3

ISO nomenclature: FP (IFPUG-IS)
FP
[ISO-IFPUG]

FiSMA function
point

Ffp FP as resulting from the measurement method
defined in [ISO-FiSMA].

FP
[ISO-FiSMA]

COSMIC
function point

CFP "The size of one data movement"
FP as resulting from the measurement method
defined in [COSMIC, ISO-COSMIC].
ISO nomenclature: CFP (ISO/IEC 19761:2011)

FP
[COSMIC,
ISO-COSMIC]

MkII function
point

MkII FP FP as resulting from the measurement method
defined in [ISO-MkII].
ISO nomenclature: MkII FP (ISO/IEC
20968:2002)

FP
[ISO-MkII]

NESMA function
point

FP FP as resulting from the measurement method
defined in [ISO-NESMA].
ISO nomenclature: FP (ISO/IEC 24570:2018)

FP
[ISO-NESMA]

Automated
function point

AFP FP as resulting from the measurement method
defined in [AFP].

FP
[AFP]

Base functional
component

BFC "Elementary unit of Functional User
Requirements defined by and used by an FSM
Method for measurement purposes" 1

Entity
[ISO-FSM]

Data function "Functionality provided to the user to meet
internal or external data storage requirements" 3

BFC
[ISO-IFPUG]

Transactional
function

 "Elementary process that provides functionality
to the user to process data" 3

BFC
[ISO-IFPUG]

External input EI "Elementary process that processes data or
control information sent from outside the
boundary" 3

Transactional
function
[ISO-IFPUG]

External output EO "Elementary process that sends data or control
information outside the boundary and includes
additional processing logic beyond that of an
External Inquiry" 3

Transactional
function
[ISO-IFPUG]

External inquiry EQ "Elementary process that sends data or control
information outside the boundary" 3

Transactional
function
[ISO-IFPUG]

17

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8289

Names Symbols Definitions References
Internal logical
file

ILF "User recognizable group of logically related
data or control information maintained within the
boundary of the application being measured" 3

Data function
[ISO-IFPUG]

External interface
file

EIF "User recognizable group of logically related
data or control information, which is referenced
by the application being measured, but which is
maintained within the boundary of another
application" 3

Data function
[ISO-IFPUG]

Data element
type

DET "Unique, user recognizable, non-repeated
attribute" 3

"Unique, user-recognizable, non-repeated field in
a BFC" 7

Entity
[ISO-IFPUG,
ISO-FiSMA]

Record element
type

RET "User recognizable sub-group of data element
types within a data function" 3

Entity
[ISO-IFPUG]

File type
referenced

FTR "Data function read and/or maintained by a
transactional function" 3

Entity
[ISO-IFPUG]

Data movement "Base Functional Component which moves a
single data group" 2

BFC
[ISO-COSMIC]

Entry "Data movement that moves a data group from a
functional user across the boundary into the
functional process where it is required" 2

Data movement
[ISO-COSMIC]

Exit "Data movement that moves a data group from a
functional process across the boundary to the
functional user that requires it" 2

Data movement
[ISO-COSMIC]

Read "Data movement that moves a data group from
persistent storage [to] within reach of the
functional process which requires it" 2

Data movement
[ISO-COSMIC]

Write "Data movement that moves a data group lying
inside the functional process to persistent
storage" 2

Data movement
[ISO-COSMIC]

Logical
transaction

 "Smallest complete unit of information
processing that is meaningful to the end user in
the business" 4

BFC
[ISO-MkII]

Input data
element type

Ni DET that is an input to a logical transaction. DET
[ISO-MkII]

Data entity type Ne "Fundamental thing of relevance to the user,
about which information is kept." 4

Entity
[ISO-MkII]

Output data
element type

No DET that is an output from a logical transaction. DET
[ISO-MkII]

Interactive end-
user navigation
and query service

q "Interactive end-user navigation and query
services specify all parts of the interactive user
interface where there is no maintenance of
persistent data stored in the system." 7 Seven
subtypes are defined.

BFC
[ISO-FiSMA]

18

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8289

Names Symbols Definitions References
Interactive end-
user input service

i "Interactive end-user input services specify all
parts of the interactive user interface where there
is maintenance of data store(s) of the software." 7
Three subtypes are defined.

BFC
[ISO-FiSMA]

Non-interactive
end-user output
service

o "Non-interactive end-user output services specify
all parts of the user interface which are non-
interactive and do not maintain data store(s) of
the software." 7 Four subtypes are defined.

BFC
[ISO-FiSMA]

Interface service
to other
applications

t "Interface services to other applications specify
all automatic data transfers that move data from
the measured piece of software to another
application or any device." 7 Three subtypes are
defined.

BFC
[ISO-FiSMA]

Interface service
from other
applications

f "Interface services from other applications
specify all automatic data transfers that receive
data groups that are provided and sent by another
application or any device." 7 Three subtypes are
defined.

BFC
[ISO-FiSMA]

Data storage
service

d "Data storage services specify a group or
collection of related and self-contained data in
the real world, about which the user requires the
software to provide one or more data stores." 7
Two subtypes are defined.

BFC
[ISO-FiSMA]

Algorithmic and
manipulation
service

a "Algorithmic and manipulation services are user-
defined, independent data manipulation
functions." 7 Six subtypes are defined.

BFC
[ISO-FiSMA]

Reading
reference

 "Data storage entity or record, or interface record
from another software or system containing data
retrieved in a BFC" 7

Entity
[ISO-FiSMA]

Writing reference "Data storage entity or other record, or interface
record to another software or system to which
data is written in a BFC" 7

Entity
[ISO-FiSMA]

Operation "Arithmetic or logical operation performed in an
algorithmic and manipulation BFC" 7

Entity
[ISO-FiSMA]

2.7 Units of failure, interruption, and termination

Names Symbols Definitions References
Fault "Incorrect step, process, or data definition in a

computer program." 6
Entity
[ISO-Vocab]

Failure "Event in which a system or system component does
not perform a required function within specified
limits." 5

Event
[ISO-Vocab-
2010]

19

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8289

Names Symbols Definitions References
Error An incorrect result; a "difference between a computed,

observed, or measured value or condition and the true,
specified, or theoretically correct value or condition." 6

Entity
[ISO-Vocab]

Bug,
Defect

 Less formal terms that may mean either fault or error
depending on context and viewpoint. The relationship
between errors observed by users and faults
identified by developers is many-to-many.

Entity

Bug report,
Problem report

 Event of a user or tester asserting the existence of a
fault in the software.

Event

Weakness Fault that is security-relevant. Fault
Vulnerability Weakness that is exploitable. Weakness

[SP800-30r1]
Panic Self-initiated emergency stop of an operating system

kernel.
Crash

Crash Emergency stop of a running process. Failure
Hang Failure of a process to make progress. Failure
Lockup Hang accompanied by abnormal unresponsiveness to

signals or control inputs.
Hang

Abort Controlled interruption and shutdown of a running
process that has not reached its "normal" termination
point.

Exit

Exit Controlled termination of a running process. Event
Timeout Event of a latency exceeding a threshold value. Event
Exception "Abnormal" event that necessitates the "normal" flow

of control of a running process to be interrupted. (See
also the source code entity.)

Event
[ISO-Vocab]

Interrupt "Suspension of a process to handle an event external
to the process." 6

Event
[ISO-Vocab]

Signal Specific kind of interrupt on Unix-like operating
systems.

Interrupt

2.8 Profiling units

Names Symbols Definitions References
Call,
Invocation,
Message

 Event of pushing the current function onto the stack and
transferring control to another function. Not to be confused
with the source code entity that causes it to occur.
The term "message" is used for Smalltalk and Objective C.

Event

Sample Event of a profiling interrupt being fired. In non-intrusive
profiling, the execution of a program is "sampled" either at
periodic intervals or at aperiodic times when arbitrary,
defined conditions are met.

Event

20

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8289

Names Symbols Definitions References
Cycle A single "tick" of the internal clock source of a processing

unit such as a Central Processing Unit (CPU) or Graphics
Processing Unit (GPU).

Event

Operation Unspecified unit of processing used to parameterize
algorithmic performance and throughput metrics. Not to be
confused with operation as machine code instruction
(elementary entity) or source code entity.

Event

Iteration Single execution of the block inside a looping control
construct.

Event

Run Single execution of a program, from start to exit or crash. Event
Transaction Application-specific unit of processing, usually intended to

execute atomically.
Event

Resource "Any physical or virtual component of limited availability
within a computer system available for a given purpose and
managed by the runtime platform." 6 E.g., CPU cores, GPU
cores, file descriptors, memory.

Entity
[ISO-
Vocab]

2.9 Testing units

Names Symbols Definitions References
Variable-value
configuration

 For a set of t variables, a variable-value configuration is
a set of t valid values, one for each of the variables. For
test coverage purposes, a finite and practically testable
set of values is selected and deemed "valid" for each
variable. In design-of-experiments vocabulary, the
variables are factors, the values are levels, and the
variable-value configurations are treatments.

Entity
[Kuhn]

Combination k distinct elements chosen from a set of cardinality ≥ k
(the standard definition from combinatorics).

Entity
[Kuhn]

Linear code
sequence and
jump,
Jump-to-jump
path

LCSAJ,
JJ-path

An LCSAJ triple "consists of a linear sequence of
code... plus a jump to a particular location." For Fortran
programs, the start point of a LCSAJ "is either the first
line of the program or any line which has a jump to it
from elsewhere in the program, other than the
preceeding line," and the end point "is either the end of
the program or a line which contains a jump to other
than the succeeding line."

Entity
[Hennell]

 Dimensions

See Sec. 0.4 for background. The legitimacy of data and information as dimensions, and of
cycles and samples as units of time, need not be defended here. The purpose of this chapter
is simply to identify the ranges of alternative units that could be used when one of the
following dimensions is referenced in subsequent sections.

21

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8289

Names Symbols Definitions References
Time T All conventional units of time longer than the

second have multiple, competing definitions. E.g.,
the existence of leap seconds confounds the
definition of a minute as 60 s, an hour as 3600 s,
etc.; summer time (daylight savings time) causes
certain days to contain more or fewer than 24
hours; and conflicting definitions of the year
(calendar years and astronomical years) are most
notorious.

second [SI], minute,
hour, day...,
cycle,
sample

Data bit,
byte,
data object

Information shannon (a.k.a. "bit"
of information),
hartley, nat [IEC]

Work The essential product of a processing unit (Central
Processing Unit (CPU), Graphics Processing Unit
(GPU), or suchlike).

transaction,
iteration,
operation (event),
instruction (entity)

 Basic quantities

4.1 Physical quantities

It should be noted that the relative quantities given below are seldom identified as such in
practice; e.g., both self time and relative self time are just called "self time."

Names Symbols Definitions References
Execution time,
Run time,
Wall time,
Wall clock time,
Elapsed time,
Real time,
Real world time

 Time that a process takes to run, or that a
process or system has been monitored.

Dimension: time

Resource time Time that a specified class of resource was
used, possibly by a specified process,
thread, or group thereof. Resource time
may exceed elapsed time if more than one
resource (e.g., multiple CPU cores) was
used.

Dimension: time

22

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8289

Names Symbols Definitions References
Relative resource
time,
Resource
utilization

 = Resource time / real time
This value may exceed unity if more than
one resource (e.g., multiple CPU cores)
was used.
C.f. resource utilization in the next section
(same name, different quantity).

Dimension: time/time

Self time Time that a specified function was
executing (running), i.e., that the
instruction being executed by the CPU was
actually part of that function.

Dimension: time

Relative self time = Self time / CPU time Dimension: time/time
Total time Time that a specified function either was

executing (self time) or was on the stack
(while a called subfunction or event
handler was being executed).

Dimension: time

Relative total
time

 = Total time / CPU time Dimension: time/time

Latency,
Delay,
Lag,
Response time

 Time between the final event that enables
or causes something to occur and the event
of it actually occurring.

Dimension: time

Energy Amount of energy (generally electric) used
to run a process.

Unit: J (joule) [SI] or
the non-SI kWh
(kilowatt hour).

Power Rate of energy use for running a process. Unit: W (watt) = J/s
[SI]

4.2 Resources, processing, and transmission

Names Symbols Definitions References
Size [Of a data object] Dimension: data
Storage capacity,
Storage size

M "Amount of data that can be contained
in a storage device, expressed as a
number of specified data elements" 8

"Storage" here generalizes all kinds of
memory, hard disks (HDD), solid state
devices (SSD), etc., and the "device"
may be either physical or logical.
‘M’ is also used for mass fraction and
as the prefix for 106.

Dimension: data
[IEC]

23

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8289

Names Symbols Definitions References
Resource utilization Proportion of the resources of a

specified class that were used. C.f.
resource utilization = relative resource
time in the previous section (same
name, different quantity).

Unit:
resource/resource

Storage utilization Proportion of storage capacity used;
i.e., resource utilization where the
resource is storage.

Dimension: data/data

Transfer rate r,
ν

"Quotient of the number of specified
data elements transferred in a time
interval by the duration of this
interval" 8

Dimension: data/time
[IEC]

Bandwidth Maximum available transfer rate;
transfer capacity.

Dimension: data/time

Throughput Work performed in a given period of
time. 6

Dimension:
work/time
[ISO-Vocab]

Information content I(x) = log2
1

𝑝𝑝(𝑥𝑥)
 Sh

where p(x) is the probability of event
x. 8

Dimension:
information
[IEC]

Compression ratio
(storage)

 Uncompressed size
Compressed size

Dimension: data/data

Compression ratio
(transmission)

 Uncompressed transfer rate
Compressed transfer rate

Dimension:
(data/time)/(data/time)

4.3 Graph metrics

Many software metrics are derived using a graph model of the software, such as a control
flow graph, data flow graph, call graph, dependency graph, or attack graph. The following
metrics apply to graphs in general (directed, undirected, or both).

24

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8289

Names Symbols Definitions References
Cyclomatic
number,
First Betti
number,
Circuit rank,
Nullity

V(G),
v(G)

The number of independent elementary
cycles in a graph, derived as

𝑒𝑒 − 𝑛𝑛 + 𝑝𝑝

Where:
e is number of edges
n is number of nodes
p is number of connected components

Unit: elementary cycle
Cyclomatic number is
defined for undirected
graphs.
The same number is
indicative of several different
things. See Wikipedia,
"circuit rank," for alternative
uses.
[Berge]
See also, cyclomatic
complexity in Sec. 6.4.

Depth (of
graph)

 "Length of the longest path from the
root node to a leaf node."

Unit: arc
[Fenton, p. 405]

Width "Maximum number of nodes at any one
level."

Unit: node
[Fenton, p. 405]

Edge-to-node
ratio

 Unit: edge/node
[Fenton, p. 405]

[Fenton, p. 405] further notes that graph size may be measured by the counts of nodes and
edges (Sec. 2.3).

In addition, the following metrics apply to a given node within a graph.

Names Symbols Definitions References
Depth (of node) Length of the longest path from the

root node to a given node.
Unit: arc
[Zuse]

Number of ancestors /
ascendents

 Number of nodes that are reachable
from a given node by following edges
toward the root.

Unit: node
[Zuse]

Number of descendants /
successors

 Number of nodes that can reach a
given node by following edges
toward the root.

Unit: node
[Zuse]

Proportion of ancestors /
ascendents

 Number of ancestors divided by the
number of nodes.

Unit: node/node

Proportion of descendants /
successors

 Number of descendants divided by
the number of nodes.

Unit: node/node

 Compatibility metrics

Compatibility metrics indicate the CPU architectures, operating systems, and user
environments with which software is compatible. Note that "fat binaries" may support
multiple, mutually incompatible architectures and operating systems.

25

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8289

The terms in all capital letters in the table below are a mixture of acronyms, former acronyms
that evolved into proper names, and acronym-like names that were invented for branding
purposes. ARM, CP/M, DOS, and MIPS are proper names in current usage; their historical
expansions are irrelevant. The instruction set extensions are commonly expanded as follows:

ADX Multi-precision add-carry instruction extensions
AVX Advanced Vector Extensions
DSP Digital Signal Processing
MMX Multimedia Extensions
MPX Memory Protection Extensions
SGX Software Guard Extensions
SIMD Single Instruction, Multiple Data
SSE Streaming SIMD (Single Instruction, Multiple Data) Extensions
TSX Transactional Synchronization Extensions
TXT Trusted Execution Technology
VFP Vector Floating Point
VT-d Virtualization Technology for directed input/output
VT-x Virtualization Technology extensions

Names Symbols Definitions References
Architecture,
Instruction set
architecture

ISA E.g., x86, ARM, or MIPS.
By convention, x86-64 is often listed separately from
x86, but technically it is x86 with 64-bit extensions.

Nominal set

Word size Historically, "the number of bits in a word." In
current practice, it identifies classes of platforms
with an implied ordering of relative capability:
4-bit = mostly embedded controllers
8-bit = vintage computer
16-bit = DOS, CP/M
32-bit = legacy and low-end, ≤ 4 GiB RAM
64-bit = mainstream, ≥ 4 GiB RAM

Unit: bit
(for
historical
usage) or
ordinal (as a
platform
classifier)

Microarchitecture Name of the oldest and/or simplest processor
microarchitecture that is capable of running the
software. Within a sequence of backward-
compatible microarchitecture iterations, the values
form an ordinal scale. E.g.,
Prescott < Core < Nehalem < Sandy Bridge <
Haswell < Skylake
ARMv1 < ARMv2 < ARMv2a < ARMv3 etc.

Nominal set
or ordinal

26

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8289

Names Symbols Definitions References
Instruction set
extensions

 Names of "additional" or "supplementary" sets of
instructions that are needed to run the software. E.g.,
x86-64, MMX, 3DNow, SSE, SSE2, ..., SSE4.2,
ADX, AVX, AVX2, AVX-512, MPX, TXT, TSX,
SGX, VT-x, VT-d
AArch64, Thumb, Thumb-2, DSP, SIMD, VFPv1,
VFPv2, ..., VFPv5-D16-M, Neon

Nominal set

Operating system Versions of operating systems that are able to run the
software. Within a sequence of backward-
compatible iterations, the values form an ordinal
scale.

Nominal set
or ordinal

Privileges,
Roles

 Security properties that must be granted for the
software to run. E.g., root or administrator, or access
to file system, location, contacts database, camera, or
microphone.

Nominal set

 Algorithm metrics

6.1 Performance

Computational and space complexity are typically quoted for best, average, and worst cases,
using big O notation.

Names Symbols Definitions References
Computational
complexity,
Time complexity

 Number of operations required, expressed
as a function of the number of data objects
in the input.

Unit: operation

Memory
complexity,
Space complexity

 Amount of storage required, expressed as a
function of the number of data objects in
the input.

Dimension: data

Computational
efficiency,
Time efficiency

 Ratio of the theoretical minimum number
of operations required divided by the
computational complexity of the
algorithm.

Unit:
operation/operation

Memory efficiency,
Space efficiency

 Ratio of the theoretical minimum amount
of storage required divided by the space
complexity of the algorithm.

Dimension:
data/data

6.2 Hash function metrics

Attack resistance refers to the amount of work (e.g., number of hash function evaluations)
that is expected to be required for an attack to succeed. Depending on context, the
"expectation" may be an upper bound (i.e., what is required to complete an exhaustive

27

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8289

search), a statistical average, or an order-of-magnitude estimate; the amounts required in a
particular case may be more or less, and there can be tradeoffs.

Names Symbols Definitions References
[Max] message size Maximum allowed size of the input to a hash

function. If length size (see below) = l bits,
then message size = 2l − 1 bits.

Dimension: data

Length size Size of the scalar data item used to record
the length of the message.

Dimension: data

Output size,
Message digest
size,
Hash value size

 Size of the output of a hash function. Dimension: data

Internal state size Size of the intermediate hash result. Dimension: data
Block size Size of the data segments into which the

input is separated for processing.
Dimension: data

Number of rounds Number of iterations of the work within the
hash algorithm.

Unit: iteration

Security bits,
Security strength

 log2 of the value of one of the following four
resistance quantities.

Dimension: work
Logarithmic scale

Collision resistance Expected amount of work required to find
two inputs that produce the same hash value.

Dimension: work

Chosen prefix
collision resistance

 Expected amount of work required to find
two inputs that produce the same hash value
when the beginning of each input has been
predetermined.

Dimension: work

Preimage resistance Expected amount of work required to find an
input that has a specific hash value.

Dimension: work

Second-preimage
resistance

 Expected amount of work required to find a
second input that has the same hash value as
a specified input.

Dimension: work

6.3 Block cipher metrics

In cryptography jargon, the "time/memory/data" triple refers to the amount of work (e.g.,
number of cipher evaluations), the amount of storage (memory), and the amount of input
data (e.g., number of known plaintext-ciphertext pairs) respectively that are expected to be
required for an attack to succeed. Depending on context, the "expectation" may be an upper
bound (i.e., what is required to complete an exhaustive search), a statistical average, or an
order-of-magnitude estimate; the amounts required in a particular case may be more or less,
and there can be tradeoffs. Work may be divided between a "preprocessing" phase and a
"realtime" phase.

28

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8289

Names Symbols Definitions References
Block size,
Block length

Nb Amount of data that comprises each of the input
block, output block, state (intermediate cipher
result), and round key.

Dimension: data
[FIPS 197]

Key size,
Key length

Nk Size of the cipher key that is used by the key
expansion routine to generate a set of round keys.

Dimension: data
[FIPS 197]

Word size,
Word length

 Size of the data objects in each column of the state
array.

Dimension: data
[FIPS 197]

Number of
rounds

Nr Number of iterations of the work within the cipher
algorithm (including the final iteration, which is a
special case).

Unit: iterations
[FIPS 197]

Key recovery
resistance

 Expected amount of work, storage, and/or input
data required to determine the cipher key.

Dimensions:
work, data, data

Plaintext
recovery
resistance

 Expected amount of work, storage, and/or input
data required to determine the plaintext.

Dimensions:
work, data, data

Distinguishing
resistance

 Expected amount of work, storage, and/or input
data required to distinguish encrypted data from
random data.

Dimensions:
work, data, data

6.4 Cyclomatic complexity

Cyclomatic complexity is derived from the control flow graph of a program. It is based on
the more generic cyclomatic number from graph theory (see Sec. 4.3).

As specified in [McCabe, Section V], compound predicates such as "if C1 and C2" and case
statements should be reduced to simple conditionals, "if C1 then if C2 then," before
counting. Failure to note this apparently gave rise to so-called extended cyclomatic
complexity, which in fact merely corrects for a faulty reading of the original quantity.

The only primary source that is cited for extended cyclomatic complexity is [MyersCC]. This
reference is problematic for two reasons. First, it asserts that there is ambiguity about how
compound predicates should be counted, without mentioning the specification in [McCabe,
Section V]. Second, what it proposes is not a scalar metric, as [Welker] and [Oy] assume it
to be, but an interval that covers both the greedy and conservative methods of counting.

29

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8289

Names Symbols Definitions References
Cyclomatic
complexity

V(G),
v(G),
CC

The number of linearly independent
paths in a control flow graph, derived as

𝑒𝑒 − 𝑛𝑛 + 2𝑝𝑝

Where:
e is number of edges
n is number of nodes
p is number of connected components
Alternate derivation:

𝑑𝑑 + 1

Where 𝑑𝑑 is the number of predicate
nodes.

Unit: path
The scale is ratio as long as
V(G) is treated only as a
count of linearly independent
paths. As a measure of
complexity, the scale is
ordinal.
[McCabe]
See also, cyclomatic number
in Sec. 4.3.

"Extended"
cyclomatic
complexity

V(g'),
v(g'),
CC2,
VG2

= V(G) See section comments above.

6.5 Woodward, Hennell, and Hedley complexity

This measure of control flow complexity is most accurately derived from source code or
pseudocode that has been annotated with arrows corresponding to jumps. If it is derived
from a control flow graph instead, only upper and lower bounds can be calculated.

Names Symbols Definitions References
Woodward,
Hennell, and
Hedley complexity

 Number of knots in the graph that results from
drawing arrowed lines on one side of the source
code indicating where a jump occurs from one
line of code to another.

Unit: knot
[Woodward]

 General design and implementation metrics

7.1 Generic quantities

Names Symbols Definitions References
Fanin,
Fan-in

 (1) The number of calls (source code
entity, not event) to a given module.
(2) "Number of local flows into
procedure A plus the number of data
structures from which procedure A
retrieves information."

(1) Unit: call
(2) Unit: data flow
[Henry]

30

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8289

Names Symbols Definitions References
Fanout,
Fan-out

 (1) The number of calls (source code
entity, not event) from a given module.
(2) "Number local flows from procedure
A plus the number of data structures
which procedure A updates."

(1) Unit: call
(2) Unit: data flow
[Henry]

Number of entries ei "Number of entry points for the ith
module." 9

Unit: entry point
[IEEE-982.1-1988]

Number of exits xi "Number of exit points for the ith
module." 9

Unit: exit point
[IEEE-982.1-1988]

Number of entries
and exits

mi = ei + xi 9 Unit: statement
[IEEE-982.1-1988]

Defect density Number of known defects
Product size

Unit: defect/entity,
where entity may be
e.g. LOC, class,
module, function point,
etc.
[Fenton, p. 450]

Depth of nesting Number of loop statements, conditional
statements, and scoping blocks within
which a statement is enclosed.

Unit: statement
[Conte, p. 75]

Span,
Reference span

 "Number of statements between two
textual references to the same identifier."

Unit: statement
[Elshoff]

Locality of data LD Proportion of variables accessed by a
class or module that are local to that class
or module, "excluding all trivial
read/write methods for instance
variables."
Generalized from object-oriented
definition. [Hitz] defines "local" as
"non-public instance variables of class C,
inherited protected instance variables of
its superclasses, and static variables
defined locally" in the methods.

Unit: variable/variable
[Hitz]

7.2 Belady and Evangelisti clustering complexity metric

The first two equations have been rearranged for clarity.

31

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8289

Names Symbols Definitions References
Total
complexity

C
= 𝑁𝑁𝐸𝐸0 + � 𝑛𝑛𝑗𝑗𝑒𝑒𝑗𝑗

𝐾𝐾

𝑗𝑗=1

where
K = number of clusters (packages)
N = number of nodes (modules)
nj = number of nodes in jth cluster
ej = number of intracluster edges
(relationships) in jth cluster
E0 = number of intercluster edges

Unit: module ∙ relationship

[Belady]

Normalized
complexity

𝐶𝐶̅
=

𝐶𝐶
𝑁𝑁𝑁𝑁

=
𝐸𝐸0

𝐸𝐸
+ � �

𝑛𝑛𝑗𝑗

𝑁𝑁
� �

𝑒𝑒𝑗𝑗

𝐸𝐸
�

𝐾𝐾

𝑗𝑗=1

(* Corrected apparent typo in [Belady]
where ej was normalized by N instead
of E.)

Unit: (module ∙ relationship)/
(module ∙ relationship)

[Belady]

Approximate
complexity

𝐶̃𝐶 Substituting nj = N/K in 𝐶𝐶̅ produces

𝐶̃𝐶 =
1
𝐾𝐾

𝐸𝐸𝑖𝑖

𝐸𝐸
+

𝐸𝐸0

𝐸𝐸

where Ei = total number (over all
clusters) of intracluster edges

Unit: (module ∙ relationship)/
(module ∙ relationship)

[Belady]

7.3 Henry and Kafura information flow complexity metric

Names Symbols Definitions References
Information flow
complexity

IFC (Of a procedure)
= (fan-in ∙ fan-out)2
"The complexity of a module is defined to be
the sum of the complexities of the procedures
within the module."

Unit: (data flow)4

or ordinal

[Henry]

Weighted
information flow
complexity

Weighted
IFC

(Of a procedure)
= LOC ∙ (fan-in ∙ fan-out)2
"This measure includes imbedded comments
but does not include comments preceding the
procedure statement."

Ordinal
[Henry]

32

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8289

7.4 Cruickshank and Gaffney coupling metric

Names Symbols Definitions References
Coupling

=
∑ 𝑍𝑍𝑖𝑖

𝑛𝑛
𝑖𝑖=1

𝑛𝑛

where

𝑍𝑍𝑖𝑖 =
∑ 𝑀𝑀𝑗𝑗

𝑚𝑚
𝑗𝑗=1

𝑚𝑚

Mj = sum of the number of input and output items shared
between components i and j
Zi = average number of input and output items shared
over m components with component i
n = number of components in the software product

Unit: data item
[IR5459, p. 19]
Less formally, in
[Cruickshank]

7.5 Structured Design scales of coupling and cohesion

The ordinal scale of cohesion that was called binding in [StevensWP] evolved, grew, and was
forked into two different scales for the same measurand. Versions of both resulting scales
are provided in consecutive rows below.

Names Symbols Definitions References
Binding,
Module
cohesion

 From most cohesive (best) to least cohesive (worst), with
"magic," "artificial values" from [Yourdon, p. 136]:

• Functional = 10: "every element of processing is an
integral part of, and is essential to, the performance of a
single function"

• Sequential = 9: "the output data (or results) from one
processing element serve as input data for the next
processing element"

• Communicational = 7: "all of the elements operate upon
the same input data set and/or produce the same output
data"

• Procedural = 5: elements of a module are "elements of a
common procedural unit"

• Temporal = 3: "all occurrences of all elements of
processing in a collection occur within the same limited
period of time during the execution of the system" (such as
a start-up module)

• Logical = 1: elements of a module fall into the same
logical class of similar or related functions

• Coincidental = 0: "little or no constructive relationship
among the elements of a module"

Ordinal
[Yourdon]

33

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8289

Names Symbols Definitions References
Module
strength,
Module
cohesion

 From most cohesive (best) to least cohesive (worst):

• Functional: "performs a single specific function," and/or
Informational: "1. It contains multiple entry points. 2.
Each entry point performs a single specific function. 3. All
of the functions are related by a concept, data structure, or
resource that is hidden within the module. 4. There are no
control-flow connections among the logic for each
function."

• Communicational: "performs multiple sequential
functions, where the sequential relationship among all of
the functions is implied by the problem or application
statement, and where there is a data relationship among all
of the functions"

• Procedural: "performs multiple sequential functions, where
the sequential relationship among all of the functions is
implied by the problem or application statement"

• Classical: "performs multiple sequential functions where
there is a weak, but nonzero, relationship among all of the
functions"

• Logical: "performs a set of related functions, one of which
is explicitly selected by the calling module"

• Coincidental: a module whose function cannot be defined
or that performs multiple, completely unrelated functions

Ordinal
[MyersSD]

Module
coupling

 From least coupling (best) to most coupling (worst):

• No direct coupling: none of the below
• Data: the modules directly communicate and use only

"homogenous data items"* to do so
• Stamp: "reference the same nonglobal data structure"
• Control: "one module explicitly controls the logic of the

other"
• External: reference a "homogenous global data item"*
• Common: reference a global data structure like a Fortran

blank common block
• Content: one directly references the internals of the other

or the normal linkage conventions are bypassed
* Typical modern variables that are consistently,
unambiguously named and typed when referenced in different
modules would be considered "homogenous."

Ordinal
[MyersSD]

34

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8289

7.6 Embley and Woodfield scales of coupling and cohesion

The metrics of [Embley] follow in the footsteps of the previous section, but are applied to
abstract data types (ADTs) rather than modules.

Names Symbols Definitions References
(ADT)
Cohesion,
Strength

 From most cohesive (best) to least cohesive (worst):
• Model: "1. logically exports one and only one domain D,

2. logically exports only operations that apply to D and
should not be delegated to other ADTs, and 3. does not
contain a concealed ADT"

• Concealed: "does not have non-delegation, multifaceted,
or separable strength and it logically contains a hidden
ADT"

• Non-delegation: "does not have multifaceted or separable
strength and it includes an operator that should logically
be delegated to a more-primitive ADT"

• Multifaceted: "does not have separable strength and it
logically exports two or more domains"

• Separable: "if any one of the following conditions holds:
1. There exists a logically-exported operator p of A such
that p does not utilize any logically-exported domain of A.
2. A has two or more logically-exported domains, at least
one of which is not utilized by any operator of A. 3. A
has two or more logically-exported domains D1, D2, ...,
Dn and the operators of A can be partitioned into n blocks
such that the operators in block i, 1 ≤ i ≤ n, utilize Di and
only Di"

Ordinal
[Embley]

(ADT)
Coupling

 From least coupling (best) to most coupling (worst):
• Export: "1. no function of A1 accesses the

implementation of A2 and 2. no function of A1 makes any
assumption about the implementation of A2"

• Surreptitious: "(A1,A2) does not have visible coupling,
but A1 uses knowledge about the implementation of A2"

• Visible: "A1 accesses the implementation of A2"

Ordinal
[Embley]

7.7 Briand, Morasca, and Basili metrics

Model:

Symbols Definitions References
CI(c) For a module or class c, the set of all CIs. [Briand98]
Max(c) The set of all possible or potential CIs (combinatorically). [Briand98]

35

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8289

Symbols Definitions References
K(c) The set of CIs that are known to exist. [Briand98]
U(c) The set of CIs whose existence or non-existence is unknown. [Briand98]
Global(m) "The set of all the external data declarations imported by a

module m."
[Briand93]

Local(m) "The set of all the locally defined data declarations in
module m."

[Briand93]

Scope(m) "The set of all data declarations declared outside the module
for which the internal data declarations of module m are
visible."

[Briand93]

DD-interactions(m,n) Number of DD-interactions between m and n. [Briand93]

Metrics:

Names Symbols Definitions References
Ratio of
cohesive
interactions

RCI
𝑅𝑅𝑅𝑅𝑅𝑅(𝑐𝑐) =

|𝐶𝐶𝐶𝐶(𝑐𝑐)|
|𝑀𝑀𝑀𝑀𝑀𝑀(𝑐𝑐)|

Unit: CI/CI
[Briand98]

Neutral ratio of
cohesive
interactions

NRCI
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(𝑐𝑐) =

|𝐾𝐾(𝑐𝑐)|
|𝑀𝑀𝑀𝑀𝑀𝑀(𝑐𝑐)| − |𝑈𝑈(𝑐𝑐)|

Unit: CI/CI
[Briand98]

Pessimistic
ratio of
cohesive
interactions

PRCI
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑐𝑐) =

|𝐾𝐾(𝑐𝑐)|
|𝑀𝑀𝑀𝑀𝑀𝑀(𝑐𝑐)|

Unit: CI/CI
[Briand98]

Optimistic ratio
of cohesive
interactions

ORCI
𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂(𝑐𝑐) =

|𝐾𝐾(𝑐𝑐)| + |𝑈𝑈(𝑐𝑐)|
|𝑀𝑀𝑀𝑀𝑀𝑀(𝑐𝑐)|

Unit: CI/CI
[Briand98]

Import
coupling

IC IC(m) = DD-interactions(Global(m),
Local(m))
(Including both direct and transitive
interactions.)
For generic modules: "The import coupling
of a generic module is the cardinality of the
union of the sets of DD-interactions between
the data declarations in the software system
and those of each of its instances."
[Briand94, p. 20]

Unit: DD-interaction
[Briand93, Briand94]

36

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8289

Names Symbols Definitions References
Actual export
coupling

EC-
Actual

EC-Actual(m) = DD-interactions(Local(m),
Scope(m))
(Including both direct and transitive
interactions.)
For generic modules: "When calculating
export coupling, we take into account the
DD-interactions between the data
declarations of each of its instances and those
of the software system. Consistent with the
definition of DD-interaction, generic formal
parameters DD-interact with their particular
generic actual parameters (i.e. type, object)
when the generic module is instantiated, since
a change in the former may imply a change in
the latter." [Briand94, p. 20]

Unit: DD-interaction
[Briand93, Briand94]

Potential
export coupling

EC-
Potential

EC-Potential(m) = |Local(m)| ∙ |Scope(m)| Unit: DD-interaction
[Briand93]

Relative
dependency

RD RD(m) = IC(m) / (DD-interactions(Local(m),
Local(m)) + IC(m))

Unit: DD-
interaction/DD-
interaction
[Briand93]

Coupling type CT CT(m) = IC(m)/(EC-Actual(m) + IC(m)) Unit: DD-
interaction/DD-
interaction
Can be reduced to a
dichotomic scale as
follows:
< 0.5 server
≥ 0.5 client

[Briand93]
Visibility
control

VC "The visibility control of a set of modules SM
(VC(SM)) is measured by means of the
Spearman's rank correlation coefficient
between the actual Export Coupling and the
potential Export Coupling."

𝑉𝑉𝑉𝑉(𝑆𝑆𝑆𝑆) = 1 −
∑ (𝐷𝐷(𝑚𝑚))2

𝑚𝑚∈𝑆𝑆𝑆𝑆

|𝑆𝑆𝑆𝑆|(|𝑆𝑆𝑆𝑆|2 − 1)/6

where D(m) = Rank(EC-Actual(m)) −
Rank(EC-Potential(m))

Unit: 1
[Briand93]

7.8 Halstead system

Defined input quantities:

37

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8289

Names Symbols Definitions References
Stroud
number

S 18
Halstead consistently sets S = 18 "elementary
discriminations" per second. This value came from
[Halstead], not [Stroud].

Unit: operation/s
[Halstead]

Unique
operator
count

η1 "Number of unique or distinct operators" appearing
in an implementation. Secondary sources may
replace the Greek η with n [Abran p. 146] or even 𝜇𝜇
[Fenton p. 345].

Unit: operator
[Halstead pp. 2, 6]

Total
operators

N1 "Total usage of all of the operators" appearing in an
implementation.

Unit: operator
[Halstead pp. 2, 6]

Unique
operand
count

η2 "Number of unique or distinct operands" appearing
in an implementation. Secondary sources may
replace the Greek η with n [Abran p. 146] or even 𝜇𝜇
[Fenton p. 345].

Unit: operand
[Halstead pp. 2, 6]

Total
operands

N2 "Total usage of all of the operands" appearing in an
implementation.

Unit: operand
[Halstead pp. 2, 6]

Potential
operand
count

η2* "Number of conceptually unique operands" Unit: operand
[Halstead pp. 20, 28]

The following is not an exhaustive list of Halstead's measures, but includes those that are
used as input quantities by other metrics in this document.

Chapter 8 of [Halstead] reinterpreted several quantities to refer to mental operations instead
of bits. To avoid confusion, these should have been defined as new quantities that were just
numerically equal to the previous ones when expressed in incompatible units.

Names Symbols Definitions References
Vocabulary
size

η η1 + η2 Unit: token
[Halstead p. 2]

Potential
vocabulary

η* 2 + η2* Unit: token
[Halstead p. 2]

Program length N N1 + N2 Unit: token
[Halstead p. 2]

Program
volume

V N log2 η Unit: bit
[Halstead p. 2]
“Mental comparisons”
[Halstead pp. 46–47]

38

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8289

Names Symbols Definitions References
Potential
volume

V* η* log2 η*
Halstead uses "potential" in the sense of
hypothetical ideal or optimal value; e.g.,
"the most succinct form in which an
algorithm could ever be expressed" in any
programming language that one might
construct.

Unit: bit
[Halstead p. 2]

Effort E V/L = V2/V* = D∙V Unit: bit
[Halstead p. 2]
“Elementary mental
discriminations”
[Halstead p. 47]

[Estimated]
implementation
time

T,
𝑇𝑇�

𝐸𝐸
𝑆𝑆

Where S is the Stroud number defined
above.

Unit: s
(Assuming 1
"elementary
discrimination" = 1 bit)
[Halstead pp. 2, 48, 52]

Program level L V*/V
[Halstead p. 47] reinterprets L as a ratio of
“mental comparisons” to “elementary
mental discriminations.” This is difficult to
reconcile.

Unit: bit/bit
[Halstead p. 2]

Difficulty D 1/L Unit: bit/bit
[Halstead p. 2]

Approximated
program level

𝐿𝐿� 2
η1

η2

𝑁𝑁2
 Unit: (token/token)2

[Halstead pp. 2, 27]

7.9 Functional size (of a software application)

Functional size is generically defined in [ISO-FSM] as "size of the software derived by
quantifying the Functional User Requirements." There are multiple standards for how this is
determined. The details of these quantities have been elided; please refer to the relevant
standards.

Names Symbols Definitions References
Application
function
point count

AFP Sum of the functional sizes of all BFCs (see Sec. 2.6).
The functional size of a BFC is a table-driven function
of the numbers of RETs or FTRs (for data and
transactional functions respectively) and DETs, and of
the function type.

FP (ordinal)
[ISO-IFPUG]
[ISO-NESMA]

Automated
function
point size

AFPs Variant of ibid. in which the input quantities are
determined automatically from source code and other
artifacts.

AFP (ordinal)
[AFP]

39

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8289

Names Symbols Definitions References
COSMIC
functional
size

FS Sum of the functional sizes of all BFCs. The
functional size (FS) of a BFC is the number of data
movements (entries, exits, reads, and writes).

CFP
[ISO-COSMIC]

FiSMA
functional
size

S Sum of the functional sizes of all BFCs. The
functional size of a BFC is a function of the numbers of
DETs, reading references, writing references, and
operations, and of the BFC type.

Ffp (ordinal)
[ISO-FiSMA]

MkII
functional
size

FS "The weighted sum over all Logical Transactions, of
the Input Data Element Types (Ni), the Data Entity
Types Referenced (Ne), and the Output Data Element
Types (No)."
= 0.58 Ni + 1.66 Ne + 0.26 No 4

MkII FP
(ordinal)
[ISO-MkII]

7.10 Card and Glass complexity metrics

Defined input quantities:

Names Symbols Definitions References
 n The number of modules in the system. Unit: module

[Card, Ch. 5]
 f(i) The fanout of module i.

"The fanout count defined here does not include calls to
system or standard utility routines, but does include calls to
modules reused from other application programs."

Unit: call
[Card, Ch. 5]

 v(i) The number of input/output (I/O) variables in module i.
I/O variables means "distinct arguments in a calling sequence
(an array counts as one variable) as well as referenced
COMMON variables."

Unit: variable
[Card, Ch. 5]

Metrics:

Names Symbols Definitions References
System
complexity
(overall)

Ct Ct = St + Dt Ordinal
[Card, Eqn. 5-1]

Structural
(intermodule)
complexity

St Inferred from Eqn. 5-2 and 5-3 that 𝑆𝑆𝑆𝑆 = ∑ 𝑓𝑓2(𝑖𝑖) Unit: call2

[Card, Ch. 5]

Data
(intramodule)
complexity

Dt Inferred from Eqn. 5-2 and 5-4 that 𝐷𝐷𝐷𝐷 = ∑ � 𝑣𝑣(𝑖𝑖)
[𝑓𝑓(𝑖𝑖)+1]� Unit:

variable/call
[Card, Ch. 5]

Relative
system
complexity

C 𝐶𝐶 =
𝐶𝐶𝐶𝐶
𝑛𝑛

=
𝑆𝑆𝑆𝑆
𝑛𝑛

+
𝐷𝐷𝐷𝐷
𝑛𝑛

 Ordinal
[Card, Eqn. 5-2]

40

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8289

Names Symbols Definitions References
[Relative]
structural
(intermodule)
complexity

S
𝑆𝑆 =

∑ 𝑓𝑓2(𝑖𝑖)
𝑛𝑛

Unit:
call2/module
[Card, Eqn. 5-3]

Data
complexity
[of a module]

D(i)
𝐷𝐷(𝑖𝑖) =

𝑉𝑉(𝑖𝑖)
𝑓𝑓(𝑖𝑖) + 1

Unit:
variable/call
[Card, Ch. 5]
unnumbered
equation

[Relative]
data
(intramodule)
complexity

D ∑ � 𝑣𝑣(𝑖𝑖)
[𝑓𝑓(𝑖𝑖) + 1]�

𝑛𝑛

Unit:
(variable/call)
/module
[Card, Eqn. 5-4]

7.11 Program Complexity Analysis Methodology (PCAM) metrics

The following tables are based primarily on [McClure1]. The definitions in [McClure2] are
mostly equivalent, just using different symbols. However, there are a few substantive
differences:

• [McClure2] contains a more elaborate definition of module complexity (M) that addresses
abort routines. The input quantity Zm is used only by the [McClure2] definition.

• Both references assert that the complexity of each module should be minimized and that
the complexity among modules in a well-structured program should be evenly
distributed. However, an example in which these criteria are tested using the mean
module complexity and the maximum deviation from that mean appears only in
[McClure2, p. 119]. [McClure1], in contrast, proceeds to define partitioning scheme
complexity (PS) as the sum of module complexities.

Defined inputs:

Names Symbols Definitions References
 P = {p1, ..., pn} is the set of modules defined in the

design of a well-structured program
[McClure1]

 γ The root module [McClure1]
 f f : P → X is the invoking function such that X⊂P [McClure1]
Program control
hierarchical system

PCHS The triple (P, γ, f) [McClure1]

 n Number of unique modules in the PCHS [McClure1]
 s Total number of control variables [McClure1]
Invocation control
variable set

 Set of control variables upon whose values a
particular invocation of a module depends

[McClure1]

Branch control
variable set

 Set of control variables upon whose values a branch
may be made to an abort routine

[McClure2]

 𝐹𝐹𝑝𝑝𝑖𝑖 Set of direct ancestors of module pi [McClure1]

41

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8289

Names Symbols Definitions References
 𝐺𝐺𝑝𝑝𝑖𝑖 Set of direct descendants of module pi [McClure1]
 𝐻𝐻𝑝𝑝𝑖𝑖 Set of ancestors of module pi [McClure1]
 𝐿𝐿𝑝𝑝𝑖𝑖 Set of descendants of module pi [McClure1]
 Av Set of modules in which the value of control

variable v is accessed, = Mv∪Rv
[McClure1]

 Ev Set of modules whose invocation is dependent upon
the value of control variable v

[McClure1]

 Mv Set of modules in which the value of control
variable v is modified

[McClure1]

 Rv Set of modules in which the value of control
variable v is strictly referenced (i.e., referenced but
not modified)

[McClure1]

 Tv = �𝑝𝑝𝑗𝑗|𝑝𝑝𝑗𝑗 ∈ 𝐴𝐴𝑣𝑣 ∧ ∃𝑝𝑝𝑘𝑘 ∈ 𝐹𝐹𝑝𝑝𝑗𝑗 ∋ 𝑝𝑝𝑘𝑘 ∉ 𝐴𝐴𝑣𝑣�
(The symbol ∋ after an existential denotes "such
that.")

[McClure1]

 Uv = �𝑝𝑝𝑗𝑗|𝑝𝑝𝑗𝑗 ∈ 𝑅𝑅𝑣𝑣 ∧ ∃𝑝𝑝𝑘𝑘 ∈ 𝐿𝐿𝑝𝑝𝑗𝑗 ∋ 𝑝𝑝𝑘𝑘 ∈ 𝑀𝑀𝑣𝑣� [McClure1]

 Wv = �𝑝𝑝𝑖𝑖|𝑝𝑝𝑖𝑖 ∈ 𝐴𝐴𝑣𝑣 ∧ ∃𝑝𝑝𝑗𝑗 ∈ 𝑀𝑀𝑣𝑣 ∋ 𝑝𝑝𝑗𝑗 ∉ 𝐻𝐻𝑝𝑝𝑗𝑗
and 𝑝𝑝𝑗𝑗is listed above 𝑝𝑝𝑖𝑖 in the PCHS structure�

[McClure1]

Owner module αv "Local root of the smallest PCHS subhierarchy
which contains all members of the set Av"

[McClure1]

Degree of
ownership

D(v) = 1 if the value of control variable v is modified
exclusively in αv or never modified
2 if it is modified in αv and in at least one
descendant of αv
3 if it is strictly referenced in αv and modified in at
least one descendant of αv
4 if it is not accessed in αv and is modified in at
least one descendant of αv

[McClure1]

Quantities:

Names Symbols Definitions References
Interaction
complexity

I(v) = qv + uv + wv + tv
where
qv = |Mv ∩ Ev|
uv = |Uv|
wv = |Wv|
tv = |Tv|

Unit: module
[McClure1]

Control
variable
complexity

C(v) C(v) = D(v) ∙ I(v) / n

Ordinal
Range: 0 ≤ C(v) < 8
[McClure1]

42

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8289

Names Symbols Definitions References
 X(p) If x=0, X(p) = 0; else,

𝑋𝑋(𝑝𝑝) = �
𝑏𝑏𝑗𝑗 ∙ ∑ 𝐶𝐶(𝑣𝑣𝑗𝑗𝑗𝑗)𝑒𝑒

𝑖𝑖=1

𝑥𝑥

𝑥𝑥

𝑗𝑗=1

where
x = number of invocation control variable sets
used in the invocation of module p
e = number of control variables in the jth
invocation control variable set where 1 ≤ j ≤ x
vji = the ith control variable in the jth
invocation control variable set where 1 ≤ i ≤ e
bj = 1 if the jth invocation is within a selection
structure or a set of nested selection
structures, or 2 if the jth invocation is within a
repetition structure

Ordinal
[McClure1]

 Y(p) If y=0, Y(p) = 0; else,

𝑌𝑌(𝑝𝑝) = �
𝑏𝑏𝑗𝑗 ∙ ∑ 𝐶𝐶(𝑣𝑣𝑗𝑗𝑗𝑗)𝑘𝑘

𝑖𝑖=1

𝑦𝑦

𝑦𝑦

𝑗𝑗=1

where
y = number of invocation control variable sets
referenced by module p to invoke its direct
descendants
k = number of control variables in the jth
invocation control variable set where 1 ≤ j ≤ y
vji = the ith control variable in the jth
invocation control variable set for 1 ≤ i ≤ k
bj = 1 if the jth invocation is within a selection
structure or a set of nested selection
structures, or 2 if the jth invocation is within a
repetition structure

Ordinal
[McClure1]

 Zm If z=0, Zm = 0; else,

𝑍𝑍𝑚𝑚 =
∑ ∑ 𝐶𝐶(𝑣𝑣𝑗𝑗𝑗𝑗)𝑎𝑎

𝑖𝑖=1
𝑧𝑧
𝑗𝑗=1

𝑧𝑧

where
z = number of branch control variable sets
used to branch from module m to abort
routines
a = number of control variables in the jth
branch control variable set where 1 ≤ j ≤ z
vji = the ith control variable in the jth branch
control variable set where 1 ≤ i ≤ a

Ordinal
[McClure2]

43

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8289

Names Symbols Definitions References
Module
complexity

M(p) 𝑀𝑀(𝑝𝑝) = 𝑓𝑓𝑝𝑝 ∙ 𝑋𝑋(𝑝𝑝) + 𝑔𝑔𝑝𝑝 ∙ 𝑌𝑌(𝑝𝑝)

where fp = |Fp| and gp = |Gp|.

Ordinal
Range: 0 ≤ M(p) < 16 s n
[McClure1]
(See defined inputs
above for s and n)

Module
complexity

M(m) M(m) = T1 + T2 + T3
where T1 and T2 are equivalent to the two
terms of M(p) above and
T3 = Bm × Zm
where Bm is the number of abort routines to
which module m may branch.

Ordinal
Range: 0 ≤ M(m) <
16 s n
[McClure2]

Partitioning
scheme
complexity

PS
= � 𝑀𝑀(𝑝𝑝𝑖𝑖)

𝑛𝑛

𝑖𝑖=1

Ordinal
[McClure1]

7.12 Maintainability index

The maintainability indices referenced by Software Engineering Institute (SEI) and Microsoft
are derived from what has been called the Coleman-Oman model [Liso]. A survey of
publications authored by Don Coleman, Paul Oman, and their associates between 1993 and
1997 (see list in Coleman-Oman maintainability model subsection following the Bibliography)
revealed 13 different candidate definitions for this metric.

Names Symbols Definitions References
Maintainability
index (SEI
version)

MI 171 − 5.2 ∙ ln(aveV) − 0.23 ∙ aveV(g')
− 16.2 ∙ ln(aveLOC)
+ 50 ∙ sin��2.4 ∙ perCM�

where
aveV = average Halstead V per module
aveV(g') = average extended cyclomatic
complexity per module
aveLOC = average LOC per module;
and, optionally,
perCM = average "percent"* of lines of
comments per module (* actually the
proportion aveCMT/aveLOC; see
footnote 2 in [Oman])
In [Coleman], the input quantities were
averaged by submodule, defined as
"function or procedure." In the same
context, [Welker] wrote: "This paper

Ordinal
[SEI]
[Welker, Eqn. 5]

44

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8289

Names Symbols Definitions References
uses the term 'subroutine' or 'module' for
any named lexical component of a
program, which given a specific
programming language might be a
function, a procedure, a subroutine, a
section, a module, etc."

Maintainability
index
(Microsoft
version)

 max �0, (171 − 5.2 ∙ ln(V) − 0.23 ∙ V(G)

− 16.2 ∙ ln(LOC)) ∙
100
171

 �

The metric is calculated for each type or
method instead of using averages as
inputs.

Ordinal
Range: 0 to 100
The scale is further
reduced to a 3-level
ordinal scale as follows:
20 to 100 green/high/

good

10 to 19 yellow/
moderate

0 to 9 red/low/bad
[Microsoft]

7.13 Maturity index

Names Symbols Definitions References
Software
maturity
index

SMI [The available definition is equivocal
over whether the units to be counted are
functions or modules.]

=
𝑀𝑀𝑇𝑇 − (𝐹𝐹𝑎𝑎 + 𝐹𝐹𝑐𝑐 + 𝐹𝐹𝑑𝑑𝑑𝑑𝑑𝑑)

𝑀𝑀𝑇𝑇

where
MT = number of software functions
(modules) in the current delivery
Fc = number of software functions
(modules) in the current delivery that
include internal changes from a previous
delivery
Fa = number of software functions
(modules) in the current delivery that
are additions to the previous delivery
Fdel = number of software functions
(modules) in the previous delivery that
are deleted in the current delivery 9

Unit: function/function or
module/module
Range: −∞ to 1
(Negative values due to large Fdel
may have been unintentional)
[IEEE-982.1-1988]
The origin of this metric is
unknown; no citation was given.

45

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8289

Names Symbols Definitions References
Estimated
software
maturity
index

SMI If Fa and Fdel are unavailable, SMI may
be estimated as

=
𝑀𝑀𝑇𝑇 − 𝐹𝐹𝑐𝑐

𝑀𝑀𝑇𝑇

 9

Unit: function/function or
module/module
Range: 0 to 1
[IEEE-982.1-1988]
The origin of this metric is
unknown; no citation was given.

 Object-oriented design and implementation metrics

8.1 Eder, Kappel, and Schrefl scales of coupling and cohesion

[Eder] adapted the earlier, general, ordinal scales of coupling and cohesion to object-oriented
software, resulting in six ordinal-scaled metrics.

Names Symbols Definitions References
Interaction
coupling

 (Based on module coupling, Sec. 7.5)
From most coupling (worst) to least coupling (best):

• Content: "One method directly accesses parts of the
internal structure, i.e., the implementation of another
method."

• Common: "Methods communicate via an unstructured,
global, shared data space."

• External: Methods communicate via a structured,
global, shared data space.

• Control: Methods "communicate exclusively via
parameter passing... but one method controls the internal
logic of the other method."

• Stamp: "Whole data structures are passed as parameters
although only parts of the data structure would suffice."

• Data: Methods "communicate only by parameters and
these parameters are relevant as a whole."

• No direct coupling: "Two methods do not (directly)
depend on each other."

Ordinal
[Eder]

46

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8289

Names Symbols Definitions References
Component
coupling

 From most coupling (worst) to least coupling (best):

• Hidden: "Cʹ shows up neither in the specification nor in
the implementation of C, although an object of Cʹ is
used in the implementation of a method of C."

• Scattered: "Cʹ is used as domain in the definition of
some local variable or instance variable in the
implementation of C yet Cʹ is not included in the
specification of C."

• Specified: "Cʹ is included in the specification of C
whenever it is a component of C."

• Nil: "No direct component coupling."

Ordinal
[Eder]

Inheritance
coupling

 From most coupling (worst) to least coupling (best):

• Modification: "Inherited information is changed
arbitrarily or is even deleted." Includes signature and
implementation modification.

• Refinement: "Inherited information is only changed due
to predefined rules." Includes signature and
implementation refinement.

• Extension: "The subclass only adds methods and
instance variables but neither modifies nor refines any of
the inherited ones."

• Nil: "No inheritance relationship."

Ordinal
[Eder]

47

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8289

Names Symbols Definitions References
Method
cohesion

 (Based on module cohesion, Sec. 7.5.)
From lowest (worst) to highest (best):

• Coincidental: "The elements of a method have nothing
in common besides being within the same method."

• Logical: "The elements with similar functionality, such
as input/output handling and error handling, are
collected in one method."

• Temporal: "The elements of a method have logical
cohesion and are performed at the same time."

• Procedural: "The elements of a method are connected
by some control flow."

• Communicational: "The elements of a method are
connected by some control flow and operate on the same
set of data."

• Sequential: "The elements of a method have
communicational cohesion and are connected by a
sequential control flow."

• Functional: "The elements of a method have sequential
cohesion, and all elements contribute to a single task of
the problem domain."

Ordinal
[Eder]

Class
cohesion

 (Based on ADT cohesion, Sec. 7.6.)
From lowest (worst) to highest (best):

• Separable: The class represents multiple unrelated
abstractions that could easily be partitioned.

• Multifaceted: The class represents multiple unrelated
abstractions, but "at least one method references
instance variables or invokes methods of the different
semantic concepts, such that the cohesion of the
corresponding class cannot be rated separable."

• Non-delegated: "One method uses instance variables
which describe only a component of the respective
class."

• Concealed: "There exists some useful data abstraction
concealed in the data abstraction represented by the
class."

• Model: "The class represents a single, semantically
meaningful concept without containing methods which
should be delegated to other classes and without
containing concealed classes."

Ordinal
[Eder]

48

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8289

Names Symbols Definitions References
Inheritance
cohesion

 "Inheritance cohesion in strong if this hierarchy is a
generalization hierarchy in the sense of conceptual
modeling, and it is weak if the inheritance hierarchy is
merely used for code sharing among otherwise unrelated
classes." Uses the same ordinal scale as class cohesion.

Ordinal
[Eder]

8.2 Martin's package metrics

Names Symbols Definitions References
Relational
cohesion

H =
𝑅𝑅 + 1

𝑁𝑁

where R is "the number of class relationships
that are internal to the package (i.e., that do not
connect to classes outside the package)" and N
is "the number of classes within the package."

Unit: relationship/class
[Martin, p. 282]

Afferent
couplings

Ca "The number of classes outside this package
that depend on classes within this package."

Unit: class
[Martin, pp. 262, 282]

Efferent
couplings

Ce "The number of classes inside this package
that depend on classes outside this package."

Unit: class
[Martin, pp. 262, 282]

Instability I 𝐼𝐼 =
𝐶𝐶𝑒𝑒

𝐶𝐶𝑎𝑎 + 𝐶𝐶𝑒𝑒

(I.e., the proportion of class dependencies that
are efferent.)

Unit: class/class
Range: 0 (maximally
stable) to 1 (maximally
unstable)
[Martin, pp. 262, 282]

Abstractness A 𝐴𝐴 =
𝑁𝑁𝑎𝑎

𝑁𝑁𝑐𝑐

Where Nc is the number of classes in the
package and Na is the number of abstract
classes in the package.
(I.e., the proportion of classes that are
abstract.)

Unit: class/class
[Martin, pp. 265, 282]

Distance
[from the
main
sequence]

D
𝐷𝐷 =

|𝐴𝐴 + 𝐼𝐼 − 1|

√2

Unit: class/class
Range: 0 (best) to 1/
√2 (worst)
[Martin, pp. 266, 282]

Normalized
distance

D' 𝐷𝐷′ = |𝐴𝐴 + 𝐼𝐼 − 1| Unit: class/class
Range: 0 (best) to 1
(worst)
[Martin, pp. 267, 282]

[Fenton] proposed a redefinition of relational cohesion (which he calls RC(P) instead of H):

49

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8289

Names Symbols Definitions References
Relational
cohesion

RC'(P)
=

𝑅𝑅(𝑃𝑃) + 1
𝑁𝑁𝑁𝑁(𝑃𝑃)

where R(P) is "the number of relations between
classes and interfaces in a package" and NP(P)
is "the number of possible relations between
classes and interfaces in the package." On p.
420, NP(P) is defined to be N(P) ∙ (N(P) − 1) ;
the absence of a factor of 2 in the denominator
suggests that the relations are considered one-
directional.

Unit:
relationship/relationship
[Fenton, pp. 420–421]

8.3 Chidamber and Kemerer class metrics

A suite of six object-oriented class metrics (metrics applied to a given class) is defined in
[Chidamber]. These metrics are defined differently in earlier publications by the same
authors.

The weighted methods per class (WMC) metric is excluded because its definition is
incomplete (see Section 1.2). The authors wrote, "Complexity is deliberately not defined
more specifically here in order to allow for the most general application of this metric"
[Chidamber, footnote 13].

Names Symbols Definitions References
Depth of
inheritance
tree

DIT The length of the longest path from a given class to the
root of the inheritance tree (a.k.a. depth of node, Sec.
4.3).

Unit: arc
(graph entity)
[Chidamber]

Number of
children

NOC "Number of immediate subclasses subordinated to a class
in the class hierarchy."

Unit: class
[Chidamber]

Coupling
between
object
classes

CBO "CBO for a class is a count of the number of other classes
to which it is coupled." "Two classes are coupled when
methods declared in one class use methods or instance
variables defined by the other class."

Unit: class
[Chidamber]

Response
for a class

RFC The cardinality of the response set RS, "the set of
methods that can potentially be executed in response to a
message received by an object of that class," only up to
the first level of nesting of method calls.

𝑅𝑅𝑅𝑅 = {𝑀𝑀} �{𝑅𝑅𝑖𝑖}
all 𝑖𝑖

where {Ri} = set of methods called by method i and {M}
= set of all methods in the class.

Unit: method
[Chidamber]

50

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8289

Names Symbols Definitions References
Lack of
cohesion
in methods

LCOM For a class with n methods M1...Mn, let {Ii} = set of
instance variables used by method Mi.

𝑃𝑃 = ��𝐼𝐼𝑖𝑖 , 𝐼𝐼𝑗𝑗��𝐼𝐼𝑖𝑖 ∩ 𝐼𝐼𝑗𝑗 = ∅�
𝑄𝑄 = ��𝐼𝐼𝑖𝑖, 𝐼𝐼𝑗𝑗��𝐼𝐼𝑖𝑖 ∩ 𝐼𝐼𝑗𝑗 ≠ ∅�
𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = |𝑃𝑃| − |𝑄𝑄|, if |𝑃𝑃| > |𝑄𝑄|
 = 0 otherwise
"The LCOM value provides a measure of the relative
disparate nature of methods in the class. ... Lack of
cohesion implies classes should probably be split into two
or more subclasses."

Unit: method
[Chidamber]

Revised definitions of LCOM proposed by other authors also are in use:

Names Symbols Definitions References
Hitz &
Montazeri
LCOM

LCOM(X) Let X denote a class, IX the set of its instance
variables, and MX the set of its methods.
Consider a simple, undirected graph GX(V,E)
with V=MX and 𝐸𝐸 =

�〈𝑚𝑚, 𝑛𝑛〉 ∈ 𝑉𝑉 × 𝑉𝑉� �∃𝑖𝑖 ∈ 𝐼𝐼𝑋𝑋: (m accesses i)
∧ (n accesses i) �

∨ (m calls n) ∨ (n calls m)
�.

LCOM(X) is then defined as the number of
connected components of GX (1 ≤ LCOM(X) ≤
|𝑀𝑀𝑋𝑋|).

Unit: connected
component (graph
entity)
[Hitz]

First
version of
LCOM*

LCOM* For a set of methods {Mi} (i = 1..m) accessing a
set of attributes {Aj} (j = 1..a), let α(Mi) be the
number of attributes accessed by Mi and let
μ(Aj) be the number of methods that access Aj.
Then LCOM* =

�1
𝑎𝑎 ∑ μ(𝐴𝐴𝑗𝑗)𝑎𝑎

𝑗𝑗=1 � � 1
𝑚𝑚 ∑ α(𝑀𝑀𝑖𝑖)𝑚𝑚

𝑖𝑖=1 � − 𝑎𝑎𝑎𝑎
1 − 𝑎𝑎𝑎𝑎

Unit: (attribute ∙
method) / (attribute ∙
method)
Range: 0 (full
cohesion) to 1 (no
cohesion)
[Henderson-Sellers]

Second
version of
LCOM*

LCOM* Using the same definitions as ibid., LCOM* =

�1
𝑎𝑎 ∑ μ(𝐴𝐴𝑗𝑗)𝑎𝑎

𝑗𝑗=1 � − 𝑚𝑚
1 − 𝑚𝑚

Unit: method/method
Range: 0 (full
cohesion) to 1 (no
cohesion)
[Henderson-Sellers]

8.4 Bieman and Kang cohesion metrics

[Bieman] defines general and local versions of two cohesion metrics, Tight Class Cohesion
(TCC) and Loose Class Cohesion (LCC), which depend on an abstract model and several input
quantities. The items in the abstract model are sets and multisets:

51

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8289

Names Symbols Definitions References
Abstracted
method

AM(M) "A method is represented as a set of instance variables
directly or indirectly used by the method."
For the purposes of defining the metrics to follow, it suffices
that AM(M) is the model's proxy for a method, and that
constructors and destructors are not included in the model.

[Bieman]

 V(C) "V(C) is a set of all visible methods in class C and the
ancestor classes of C."

[Bieman]

 LV(C) "LV(C) are the visible methods defined within class C." [Bieman]
Abstracted
class

AC(C) "A collection of AM's where each AM corresponds to a
visible method in the class."

𝐴𝐴𝐴𝐴(𝐶𝐶) = ⟦𝐴𝐴𝐴𝐴(𝑀𝑀)|𝑀𝑀 ∈ 𝑉𝑉(𝐶𝐶)⟧
The double-bracket notation denotes a multi-set that may
contain duplicate elements, necessary because the AM
representations of different methods can be identical.

[Bieman]

Local
abstracted
class

LAC(C) "A collection of AM's where each AM corresponds to a
visible method defined only within the class:"

𝐿𝐿𝐿𝐿𝐿𝐿(𝐶𝐶) = ⟦𝐴𝐴𝐴𝐴(𝑀𝑀)|𝑀𝑀 ∈ 𝐿𝐿𝐿𝐿(𝐶𝐶)⟧

[Bieman]

Quantities are derived from a graph in which nodes represent methods and edges represent
connections as defined below:

Names Symbols Definitions References
 NP(C) "The total number of pairs of abstracted methods in

AC(C). NP is the maximum possible number of direct or
indirect connections in a class. If there are N methods in a
class C," 𝑁𝑁𝑁𝑁(𝐶𝐶) = 𝑁𝑁 ∙ (𝑁𝑁 − 1)/2.

Unit: edge
(graph entity)
[Bieman]

 NDC(C) "The number of direct connections in AC(C)"
"If there exists one or more common instance variables
between two method abstractions then the two
corresponding methods are directly connected."

Unit: edge
(graph entity)
[Bieman]

 NIC(C) "The number of indirect connections in AC(C)"
"Two methods that are connected through other directly
connected methods are indirectly connected. The indirect
connection relation is the transitive closure of direct
connection relation."

Unit: edge
(graph entity)
[Bieman]

Tight class
cohesion

TCC(C) Described as "the relative number of directly connected
methods," but it is computed as a proportion of possible
connections, not of methods:

𝑇𝑇𝑇𝑇𝑇𝑇(𝐶𝐶) = 𝑁𝑁𝑁𝑁𝑁𝑁(𝐶𝐶)/𝑁𝑁𝑁𝑁(𝐶𝐶)

Unit:
edge/edge
[Bieman]

Loose
class
cohesion

LCC(C) Described as "the relative number of directly or indirectly
connected methods," but it is computed as a proportion of
possible connections, not of methods:

𝐿𝐿𝐿𝐿𝐿𝐿(𝐶𝐶) = (𝑁𝑁𝑁𝑁𝑁𝑁(𝐶𝐶) + 𝑁𝑁𝑁𝑁𝑁𝑁(𝐶𝐶))/𝑁𝑁𝑁𝑁(𝐶𝐶)

Unit:
edge/edge
[Bieman]

52

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8289

Names Symbols Definitions References
Local
class
cohesion

 "Local class cohesion measures are defined by using the
local abstracted class (LAC) rather than the abstracted
class (AC)." Thus there would be "local" versions of both
LCC and TCC, substituting LAC(C) for AC(C) in the
input quantities.

Unit:
edge/edge
[Bieman]

8.5 Li and Henry coupling metrics

Names Symbols Definitions References
Message-
passing
coupling

MPC "Number of send statements defined in a class."
[Briand99] interprets [Li] as excluding invocations of the
class' own methods and send statements in inherited
methods.

Unit: call
[Li, Briand99]

Data
abstraction
coupling

DAC "Number of ADTs [abstract data types] defined in a
class."
[Briand99] provides two interpretations.

Unit: ADT
[Li, Briand99]

8.6 Briand, Devanbu, and Melo coupling metrics

[Briand97] defines a suite of 18 object-oriented coupling metrics using a combinatoric
approach. All the metrics "correspond to particular counts of interactions and are of the
generic form:"

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑐𝑐𝑖𝑖) = � 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑐𝑐𝑖𝑖, 𝑐𝑐𝑗𝑗)
𝑐𝑐𝑗𝑗∈𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅ℎ𝑖𝑖𝑖𝑖(𝑐𝑐𝑖𝑖)

The metrics are identified by 5 or 6-letter acronyms constructed from three parts:

1. Relationship type
• IF: inverse friend, Friends−1(c), "the set of classes that have c as a friend"
• F: friend, Friends(c), "the set of classes that are the friends of c"
• D: descendant, Descendants(c), "the set of classes that are the descendants of

c"
• A: ancestor, Ancestors(c), "the set of classes that are the ancestors of c.

Ancestors(c) refers to the base classes of c, and their base classes, and so on
(closure)."

• O: others, Others(c), the set of other classes that have no inheritance or
friendship relationship with c

2. Interaction type (note, "when we discuss attributes and methods of a class C, we only
mean newly defined or overriding methods and attributes of C, not ones inherited")
• CA: Class-Attribute interaction, the type of an attribute of one class refers to

another class

53

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8289

• CM: Class-Method interaction, the signature of a method of one class refers to
another class

• MM: Method-Method interaction, a method of one class invokes a method of
another class

3. Locus of impact
• IC: import coupling, class c is the using class
• EC: export coupling, class c is the used class

Import coupling uses only IF, A, and O relationships, and export coupling uses only F, D, and
O relationships, so the resulting number of metrics is 3 × 3 × 2 = 18.

8.7 Lee et al. coupling and cohesion metrics

Model:

Names Symbols Definitions References
Message tuple mt mt = (fn, na)

where fn is the function name and na is the
"argument number" (number of arguments).

[Lee, Def. 3.1]

Function name fn(mt) Function name element of an mt [Lee, Def. 3.1]
Argument number na(mt) Argument number element of an mt [Lee, Def. 3.1]
Message-count tuple mct mct = (mt, nc)

where nc ≥ 0 is the number of mts
[Lee, Def. 3.2]

Message-count tuple
set

M(f) Set of mcts for f, where f is a basic program
entity.

[Lee, Def. 3.2]

External flow set 𝑀𝑀𝐸𝐸
𝐶𝐶(𝑓𝑓) For member function (method) f of class C, the

set of f's mcts whose mts go to functions
defined in other classes.

[Lee, Def. 3.3]

Internal flow set 𝑀𝑀𝐼𝐼
𝐶𝐶(𝑓𝑓) For member function (method) f of class C, the

set of f's mcts whose mts go to functions
defined in C.

[Lee, Def. 3.3]

Inheritance flow set 𝑀𝑀𝐼𝐼𝐼𝐼
𝐶𝐶 (𝑓𝑓) Subset of 𝑀𝑀𝐸𝐸

𝐶𝐶(𝑓𝑓) where the target functions are
defined in a superclass of C.

[Lee, Def. 3.4]

Non-inheritance
flow set

𝑀𝑀𝑁𝑁𝑁𝑁𝑁𝑁
𝐶𝐶 (𝑓𝑓) Subset of 𝑀𝑀𝐸𝐸

𝐶𝐶(𝑓𝑓) where the target functions are
defined outside the scope of C but not in a
superclass of C.

[Lee, Def. 3.4]

Quantities:

54

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8289

Names Symbols Definitions References
I-based
coupling
contribution
(of f to C)

ICPC(f)
𝐼𝐼𝐼𝐼𝐼𝐼𝐶𝐶(𝑓𝑓) = � [(1 + 𝑛𝑛𝑛𝑛(𝑚𝑚𝑚𝑚𝑖𝑖)) ∗ 𝑛𝑛𝑛𝑛(𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖)]

𝑛𝑛𝑛𝑛(𝑓𝑓)

𝑖𝑖=1

where 𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖 ∈ 𝑀𝑀𝐸𝐸
𝐶𝐶(𝑓𝑓), 𝑛𝑛𝑛𝑛(𝑓𝑓) = |𝑀𝑀𝐸𝐸

𝐶𝐶(𝑓𝑓)|,
and nc(mcti) is the number of mcti's appearances
in f.

Unit: argument ∙
method
[Lee, Def. 3.5]

I-based
cohesion
contribution
(of f to C)

ICHC(f)
𝐼𝐼𝐼𝐼𝐼𝐼𝐶𝐶(𝑓𝑓) = � �(1 + 𝑛𝑛𝑛𝑛(𝑚𝑚𝑚𝑚𝑗𝑗)) ∗ 𝑛𝑛𝑛𝑛(𝑚𝑚𝑚𝑚𝑚𝑚𝑗𝑗)�

𝑛𝑛𝑛𝑛(𝑓𝑓)

𝑗𝑗=1

where 𝑚𝑚𝑚𝑚𝑚𝑚𝑗𝑗 ∈ 𝑀𝑀𝐼𝐼
𝐶𝐶(𝑓𝑓), 𝑛𝑛𝑛𝑛(𝑓𝑓) = |𝑀𝑀𝐼𝐼

𝐶𝐶(𝑓𝑓)|,
and nc(mctj) is the number of mctj's appearances
in f.

Unit: argument ∙
method
[Lee, Def. 3.5]

I-based
inheritance
coupling
contribution

IH-ICPC(f) Like ICPC(f), but substituting 𝑀𝑀𝐼𝐼𝐼𝐼
𝐶𝐶 (𝑓𝑓) for 𝑀𝑀𝐸𝐸

𝐶𝐶(𝑓𝑓). Unit: argument ∙
method
[Lee, Def. 3.5]

I-based
non-
inheritance
coupling
contribution

NIH-ICPC(f) Like ICPC(f), but substituting 𝑀𝑀𝑁𝑁𝑁𝑁𝑁𝑁
𝐶𝐶 (𝑓𝑓) for

𝑀𝑀𝐸𝐸
𝐶𝐶(𝑓𝑓).

Unit: argument ∙
method
[Lee, Def. 3.5]

I-based
coupling
(of class C)

ICP(C)
𝐼𝐼𝐼𝐼𝐼𝐼(𝐶𝐶) = � 𝐼𝐼𝐼𝐼𝐼𝐼𝐶𝐶(𝑓𝑓𝑘𝑘

𝑛𝑛

𝑘𝑘=1

)
Unit: argument ∙
method
[Lee, Def. 3.6]

I-based
inheritance
coupling
(of class C)

IH-ICP(C) Like ICP(C), but substituting IH-ICPC(fk) for
ICPC(fk).

Unit: argument ∙
method
[Lee, Def. 3.6]

I-based
non-
inheritance
coupling
(of class C)

NIH-ICP(C) Like ICP(C), but substituting NIH-ICPC(fk) for
ICPC(fk).

Unit: argument ∙
method
[Lee, Def. 3.6]

I-based
cohesion
(of class C)

ICH(C)
𝐼𝐼𝐼𝐼𝐼𝐼(𝐶𝐶) = � 𝐼𝐼𝐼𝐼𝐼𝐼𝐶𝐶(𝑓𝑓𝑘𝑘

𝑛𝑛

𝑘𝑘=1

)
Unit: argument ∙
method
[Lee, Def. 3.6]

[Lee, Def. 3.7] proceeds to define analogous ICP(H) and ICH(H) for a class hierarchy H using
definitions that are similar to the above except that they are scoped to the class hierarchy
instead of a single class.

55

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8289

8.8 MOOD2 metrics

[Abreu] contains formal definitions of the following, expressed in Object Constraint Language
(OCL). MOOD2 is a superset of the older MOOD (Metrics for Object-Oriented Design) suite
of metrics, with the exception that the coupling factor was redefined. The old definition is
included below for completeness.

Names Symbols Definitions References
Attribute
inheritance factor

AIF "Quotient between the number of
inherited attributes in all classes of the
specification and the number of available
attributes (locally defined plus inherited)
for all classes of the current
specification."

Unit: attribute/attribute
Range: 0 to 1
[Abreu]

Operations
inheritance
factor,
Methods
inheritance factor

OIF,
MIF

"Quotient between the number of
inherited operations in all classes of the
specification and the number of available
operations (locally defined plus
inherited) for all classes of the current
specification."

Unit: method/method
Range: 0 to 1
[Abreu]

Internal
inheritance factor

IIF "Quotient between the number of
inheritance links where both the base and
derived classes belong to the current
specification and the total number of
inheritance links originating in the
current specification."

Unit:
relationship/relationship
Range: 0 to 1
[Abreu]

Attribute hiding
factor

AHF "Quotient between the sum of the
invisibilities of all attributes defined in
all classes in the current specification
and the total number of attributes defined
in the specification." "The invisibility of
an attribute is the percentage
[proportion] of the total classes in the
specification from which this attribute is
not visible"

Unit: attribute/attribute
Range: 0 to 1
[Abreu]

Operations hiding
factor,
Methods hiding
factor

OHF,
MHF

"Quotient between the sum of the
invisibilities of all operations defined in
all classes in the current specification
and the total number of operations
defined in the specification." "The
invisibility of an operation is the
percentage [proportion] of the total
classes in the specification from which
this operation is not visible"

Unit: method/method
Range: 0 to 1
[Abreu]

56

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8289

Names Symbols Definitions References
Attributes hiding
effectiveness
factor

AHEF "Quotient between the cumulative
number of the specification classes that
do access the specification attributes and
the cumulative number of the
specification classes that can access the
specification attributes."

Unit: class/class
Range: 0 to 1
[Abreu]

Operations hiding
effectiveness
factor

OHEF "Quotient between the cumulative
number of the specification classes that
do access the specification operations
and the cumulative number of the
specification classes that can access the
specification operations."

Unit: class/class
Range: 0 to 1
[Abreu]

Behavioral
polymorphism
factor,
Polymorphism
factor

BPF,
POF

"Quotient between the actual number of
possible different polymorphic situations
and the maximum number of possible
distinct polymorphic situations (due to
inheritance)"

Unit: method/method
Range: 0 to 1
[Abreu]

Parametric
polymorphism
factor

PPF "Percentage [proportion] of the
specification classes that are
parameterized"

Unit: class/class
Range: 0 to 1
[Abreu]

Class coupling
factor

CCF Square root of the "Quotient between the
actual number of coupled class-pairs
within the specification and the
maximum possible number of class-pair
couplings in the specification. This
coupling is the one not imputable to
inheritance."

Transformed ratio
Range: 0 to 1
[Abreu]

Coupling factor COF = CCF2
(As defined in the original MOOD set)

Unit:
relationship/relationship
Range: 0 to 1
[Abreu]

Internal coupling
factor

ICF "Quotient between the number of
coupling links where both the client and
supplier classes belong to the current
specification and the total number of
coupling links originating in the current
specification."

Unit:
relationship/relationship
Range: 0 to 1
[Abreu]

External
inheritance factor

EIF(S) "Quotient between the number of
external inheritance links to specification
“s” and the total number of inheritance
links originating in the current
specification.

Unit:
relationship/relationship
Range: 0 to 1
[Abreu]

57

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8289

Names Symbols Definitions References
External coupling
factor

ECF(S) "Quotient between the number of
external coupling links to specification
“s” and the total number of coupling
links originating in the current
specification."

Unit:
relationship/relationship
Range: 0 to 1
[Abreu]

Potential reuse
factor

PRF(S) "Percentage [proportion] of the available
operations in the current specification
that were imported from the “s”
specification."

Unit: method/method
Range: 0 to 1
[Abreu]

Actual reuse
factor

ARF(S) "Percentage [proportion] of the available
operations in the current specification
that corresponds to effectively used
operations imported from the “s”
specification"

Unit: method/method
Range: 0 to 1
[Abreu]

Reuse efficiency
factor

REF(S) "Percentage [proportion] of the imported
operations (from the “s” specification)
that are effectively used"

Unit: method/method
Range: 0 to 1
[Abreu]

8.9 Lorenz and Kidd metrics

Many of the metrics defined in [Lorenz] are simple counts or obvious derivatives (e.g.,
average number of support classes per key class = NSC/NKC), but their rich set of symbols is
used in other works. Those without symbols or with already-defined symbols (LOC) have
been omitted.

Project metrics, application size:

Names Symbols Definitions References
Number of scenario
scripts

NSS Number of use cases. Unit: use case
[Lorenz]

Number of key
classes

NKC Number of classes "that are deemed to be of
central importance to the business."

Unit: class
[Lorenz]

Number of support
classes

NSC Number of classes that are "not central to the
business domain."

Unit: class
[Lorenz]

Number of
subsystems

NOS Number of packages. Unit: package
[Lorenz]

Design metrics, method size:

Names Symbols Definitions References
Number of message
sends

NOM "Number of messages sent in the method" Unit: call
[Lorenz]

Design metrics, method internals:

58

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8289

Names Symbols Definitions References
Method complexity MCX Sum of the following, weighted as shown:

Application Programming Interface (API)
calls: 5.0
Assignments: 0.5
Binary expressions (Smalltalk) or arithmetic
operators (C++): 2.0
Keyword messages (Smalltalk) or messages
with parameters (C++): 3.0
Nested expressions: 0.5
Parameters: 0.3
Primitive calls: 7.0
Temporary variables: 0.5
Unary expressions (Smalltalk) or messages
without parameters (C++): 1.0

Ordinal
[Lorenz]

Strings of message
sends

SMS Number of expressions where
messages/calls are strung together like
self.account().balance().print().

Unit: expression
[Lorenz]

Design metrics, class size:

Names Symbols Definitions References
Number of public instance
methods

PIM Number of instance methods with public
visibility.

Unit: method
[Lorenz]

Number of instance
methods

NIM Number of instance methods (public,
protected, and private).

Unit: method
[Lorenz]

Number of instance
variables

NIV Number of instance variables (public,
protected, and private).

Unit: variable
[Lorenz]

Number of class methods NCM Number of class methods. Unit: method
[Lorenz]

Number of class variables NCV Number of class variables. Unit: variable
[Lorenz]

Design metrics, class inheritance:

Names Symbols Definitions References
Hierarchy nesting
level

HNL = DIT (Sec. 8.3) Unit: arc
[Lorenz]

Multiple inheritance MUI Use of multiple inheritance (yes or no). Dichotomic
[Lorenz]

Design metrics, method inheritance:

Names Symbols Definitions References
Number of methods
overridden

NMO Number of methods overridden by a subclass. Unit: method
[Lorenz]

59

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8289

Names Symbols Definitions References
Number of methods
inherited

NMI Number of methods inherited by a subclass. Unit: method
[Lorenz]

Number of methods
added

NMA Number of methods added by a subclass. Unit: method
[Lorenz]

Specialization index SIX For each class,
= HNL ∙ NMO / methods

Ordinal
[Lorenz]

Design metrics, class internals:

Names Symbols Definitions References
Global usage GUS Number of references to global

variables.
Unit: operand
[Lorenz]

Instance variable
usage

IVU Number of references to instance
variables.

Unit: operand
[Lorenz]

Parameters per
method

PPM = parameters / methods Unit: parameter/method
[Lorenz]

Friend functions FFU Use of friend functions (yes or no). Dichotomic
[Lorenz]

Function-oriented
code

FOC Proportion of functions that are
outside of classes.
As with MUI and FFU, [Lorenz] sets
a threshold of zero, suggesting a
dichotomic metric, but the section
heading is "percentage of function-
oriented code."

Unit: function/function
[Lorenz]

Comment lines per
method

CLM = CMT / methods Unit: CMT/method
[Lorenz]

Percentages of
commented
methods

PCM Proportion of methods that have any
comments in them.

Unit: method/method
[Lorenz]

Problem reports per
class

PRC = bug reports / classes Unit: bug report/class
[Lorenz]

The following metrics with symbols either were not clearly defined or are out of scope:

Names Symbols Category
Class cohesion CCO Class internals
Class coupling CCP Class externals
Class reuse CRE Class externals
Number of classes thrown away NCT Class externals
Number of collaborations NCO Class externals
Intersubsystem relationships ISR Subsystem coupling
Interclass relationships ICR Subsystem coupling
Person-days per class PDC Staffing size

60

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8289

Names Symbols Category
Classes per developer CPD Staffing size
Number of major iterations NMI Scheduling
Number of contracts completed NCC Scheduling

 Testability (test coverage) metrics

The following chapter lists test coverage metrics. Given any test coverage metric, a
corresponding testability metric that is applicable to the software product in isolation can be
produced based on the amount of testing that the metric would require to indicate full
coverage. For example, given the path coverage metric, one can inversely relate testability
to the number of linearly independent paths.

9.1 Rapps, Frankl, and Weyuker data flow coverage metrics

Definitions quoted below from [Frankl] are more formalized versions of ones that appeared
earlier in [Rapps].

Model:

Symbols Definitions References
V The set of variables. [Frankl]
N The set of nodes, which correspond to the blocks of the subprogram. [Frankl]
E The set of edges, which indicate possible flow of control between blocks. [Frankl]
def(i) {x∈V | x has a global definition in block i} [Frankl]
c-use(i) {x∈V | x has a global c-use in block i} [Frankl]
p-use(i,j) {x∈V | x has a p-use in edge (i,j)} [Frankl]
dcu(x,i) {j∈N | x∈c-use(j) and there is a def-clear path wrt x from i to j} [Frankl]
dpu(x,i) {(j,k)∈E | x∈p-use(j,k) and there is a def-clear path wrt x from i to

(j,k)}
[Frankl]

Metrics:

Names Symbols Definitions References
All-paths Coverage of every path in a def/use graph. Dichotomic

[Frankl]

61

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8289

Names Symbols Definitions References
All-du-paths All du-paths from i to j with respect to x for each

j∈dcu(x,i) and all du-paths from i to (j,k) with respect to
x for each (j,k)∈dpu(x,i).

A path (n1, ..., nj, nk) is a du-path with respect to a variable
x if n1 has a global definition of x and either
1) nk has a global c-use of x and (n1, ..., nj, nk) is a def-
clear simple path with respect to x, or
2) (nj, nk) has a p-use of x and (n1, ..., nj, nk) is a def-clear
loop-free path with respect to x.
A simple path is one in which all nodes, except possibly
the first and last, are distinct. A loop-free path is one in
which all nodes are distinct.

Dichotomic
[Frankl]

All-uses For each node i and each x∈def(i), coverage of all (i,j,x)
s.t. j∈dcu(x,i) and all (i,(j,k),x) s.t. (j,k)∈dpu(x,i).

Dichotomic
[Frankl]

All-c-uses /
some-p-uses

 For each node i and each x∈def(i), coverage of all (i,j,x)
s.t. j∈dcu(x,i). In addition, if dcu(x,i) is empty, then
some (i,(j,k),x) s.t. (j,k)∈dpu(x,i).

Dichotomic
[Frankl]

All-p-uses /
some-c-uses

 For each node i and each x∈def(i), coverage of all
(i,(j,k),x) s.t. (j,k)∈dpu(x,i). In addition, if dpu(x,i) is
empty, then some (i,j,x) s.t. j∈dcu(x,i).

Dichotomic
[Frankl]

All-defs For each node i and each x∈def(i), coverage of some
(i,j,x) s.t. j∈dcu(x,i) or some (i,(j,k),x) s.t. (j,k)∈dpu(x,i).

Dichotomic
[Frankl]

All-c-uses For each node i and each x∈def(i), coverage of all (i,j,x)
s.t. j∈dcu(x,i).

Dichotomic
[Frankl]

All-p-uses For each node i and each x∈def(i), coverage of all
(i,(j,k),x) s.t. (j,k)∈dpu(x,i).

Dichotomic
[Frankl]

All-edges Coverage of every edge in a def/use graph. Dichotomic
[Frankl]

All-nodes Coverage of every node in a def/use graph. Dichotomic
[Frankl]

9.2 Other coverage metrics

Names Symbols Definitions References
e coverage Generic: for any specification or source

code entity type e (e.g., requirement,
statement, LOC, module, function, class,
branch), the proportion of e that are
covered.

Unit: e/e

62

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8289

Names Symbols Definitions References
Path coverage "Test a basis set of paths through the

control flow graph of each module." The
linearly independent paths form a basis
set.
McCabe does not refer to this as path
coverage, but rather "the structured
testing criterion."

Dichotomic
[SP 500-235]

Modified
condition/decision
coverage

MC/DC "Every point of entry and exit in the
program has been invoked at least once,
every condition in a decision in the
program has taken all possible outcomes
at least once, every decision in the
program has taken all possible outcomes
at least once, and each condition in a
decision has been shown to
independently affect that decision's
outcome." 11

Dichotomic
[DO-178C]

Total variable-value
configuration coverage,
Total t-way coverage

 For a given combination of t variables,
the proportion of variable-value
configurations that are covered by at
least one test case in a test set.
This metric depends on the sets of values
that are deemed "valid." Results based
on different sets of valid values are not
mutually comparable.

Unit:
configuration/
configuration
[Kuhn]

Simple t-way
combination coverage

 For a given test set for n variables, the
proportion of t-way combinations of n
variables for which all valid variable-
value configurations are fully covered.
This metric depends on the sets of values
that are deemed "valid." Results based
on different sets of valid values are not
mutually comparable.

Unit:
combination/
combination
[Kuhn]

Linear code sequence
and jump coverage,
Jump-to-jump path
coverage,
Test effectiveness ratio 3

TER3 The proportion of LCSAJ triples that are
covered.

Unit:
LCSAJ/LCSAJ
[Hennell]

 Security metrics

The metrics covered in this section are Likert-type scales as used in psychometrics. While
arguments have been made that these can be interval scales in Stevens' taxonomy instead of

https://en.wikipedia.org/wiki/Likert_scale

63

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8289

merely ordinal, the greater concern is that they may indicate a subjective assessment of a
system rather than a measurement of an objective property of a software artifact.

Hash function and cipher metrics are in Sec. 6.2 and 6.3.

10.1 Common Weakness Scoring System

The Common Weakness Scoring System (CWSS) defines a number of ordinal quantities where
lower values are better. For detailed descriptions of the levels, please refer to [CWSS].

Names Symbols Definitions References
Technical
impact

TI "Potential result that can be produced by the
weakness, assuming that the weakness can be
successfully reached and exploited."
Critical (C) / Not applicable (NA) = 1.0
High (H) = 0.9
Medium (M) / Default (D) = 0.6
Unknown (UK) = 0.5
Low (L) = 0.3
None (N) = 0.0

Ordinal
[CWSS]

Acquired
privilege

AP "Type of privileges that are obtained by an attacker
who can successfully exploit the weakness."
Administrator (A) / Not applicable (NA) = 1.0
Partially-privileged user (P) = 0.9
Regular user (RU) / Default (D) = 0.7
Limited / guest (L) = 0.6
Unknown (UK) = 0.5
None (N) = 0.1

Ordinal
[CWSS]

Acquired
privilege layer

AL "Operational layer to which the attacker gains
privileges by successfully exploiting the
weakness."
Application (A) / Enterprise infrastructure (E) / Not
applicable (NA) = 1.0
System (S) / Default (D) = 0.9
Network (N) = 0.7
Unknown (UK) = 0.5

Ordinal
[CWSS]

Internal
control
effectiveness

IC "Ability of the control to render the weakness
unable to be exploited by an attacker."
None (N) / Not applicable (NA) = 1.0
Limited (L) = 0.9
Moderate (M) = 0.7
Default (D) = 0.6
Indirect (I) / Unknown (UK) = 0.5
Best-available (B) = 0.3
Complete (C) = 0.0

Ordinal
[CWSS]

64

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8289

Names Symbols Definitions References
Finding
confidence

FC "Confidence that the reported issue is a weakness
that can be utilized by an attacker."
Proven true (T) / Not applicable (NA) = 1.0
Proven locally true (LT) / Default (D) = 0.8
Unknown (UK) = 0.5
Proven false (F) = 0.0

Ordinal
[CWSS]

Required
privilege

RP "Type of privileges that an attacker must already
have in order to reach the code/functionality that
contains the weakness."
None (N) / Not applicable (NA) = 1.0
Limited / guest (L) = 0.9
Regular user (RU) / Default (D) = 0.7
Partially-privileged user (P) = 0.6
Unknown (UK) = 0.5
Administrator (A) = 0.1

Ordinal
[CWSS]

Required
privilege layer

RL "Operational layer to which the attacker must have
privileges in order to attempt to attack the
weakness."
Application (A) / Enterprise infrastructure (E) / Not
applicable (NA) = 1.0
System (S) / Default (D) = 0.9
Network (N) = 0.7
Unknown (UK) = 0.5

Ordinal
[CWSS]

Access vector AV "Channel through which an attacker must
communicate to reach the code or functionality that
contains the weakness."
Internet (I) / Not applicable (NA) = 1.0
Intranet (R) / Private network (V) = 0.8
Default (D) = 0.75
Adjacent network (A) = 0.7
Local (L) / Unknown (U) = 0.5
Physical (P) = 0.2

Ordinal
[CWSS]

Authentication
strength

AS "Strength of the authentication routine that protects
the code/functionality that contains the weakness."
None (N) / Not applicable (NA) = 1.0
Weak (W) = 0.9
Default (D) = 0.85
Moderate (M) = 0.8
Strong (S) = 0.7
Unknown (UK) = 0.5

Ordinal
[CWSS]

65

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8289

Names Symbols Definitions References
Level of
interaction

IN "Actions that are required by the human victim(s)
to enable a successful attack to take place."
Automated (A) / Not applicable (NA) = 1.0
Typical/limited (T) = 0.9
Moderate (M) = 0.8
Default (D) = 0.55
Unknown (UK) = 0.5
Opportunistic (O) = 0.3
High (H) = 0.1
No interaction (NI) = 0.0

Ordinal
[CWSS]

Deployment
scope

SC "Whether the weakness is present in all deployable
instances of the software, or if it is limited to a
subset of platforms and/or configurations."
All (A) / Not applicable (NA) = 1.0
Moderate (M) = 0.9
Default (D) = 0.7
Rare (R) / Unknown (UK) = 0.5
Potentially reachable (P) = 0.1

Ordinal
[CWSS]

Business
impact

BI "Potential impact to the business or mission if the
weakness can be successfully exploited."
Critical (C) / Not applicable (NA) = 1.0
High (H) = 0.9
Medium (M) / Default (D) = 0.6
Unknown (UK) = 0.5
Low (L) = 0.3
None (N) = 0.0

Ordinal
[CWSS]

Likelihood of
discovery

DI "Likelihood that an attacker can discover the
weakness."
High (H) / Not applicable (NA) = 1.0
Medium (M) / Default (D) = 0.6
Unknown (UK) = 0.5
Low (L) = 0.2

Ordinal
[CWSS]

Likelihood of
exploit

EX "Likelihood that, if the weakness is discovered, an
attacker with the required
privileges/authentication/access would be able to
successfully exploit it."
High (H) / Not applicable (NA) = 1.0
Medium (M) / Default (D) = 0.6
Unknown (UK) = 0.5
Low (L) = 0.2
None (N) = 0.0

Ordinal
[CWSS]

66

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8289

Names Symbols Definitions References
External
control
effectiveness

EC "Capability of controls or mitigations outside of the
software that may render the weakness more
difficult for an attacker to reach and/or trigger."
None (N) / Not applicable (NA) = 1.0
Limited (L) = 0.9
Moderate (M) = 0.7
Default (D) = 0.6
Indirect (I) / Unknown (UK) = 0.5
Best-available (B) = 0.3
Complete (C) = 0.1

Ordinal
[CWSS]

Prevalence P "How frequently this type of weakness appears in
software."
Widespread (W) / Not applicable (NA) = 1.0
High (H) = 0.9
Common (C) = 0.8
Default (D) = 0.85
Limited (L) = 0.7
Unknown (UK) = 0.5

Ordinal
[CWSS]

Base finding
subscore

 = [(10∙TI + 5∙(AP+AL) + 5∙FC) ∙ f(TI) ∙ IC] ∙ 4.0
f(TI) = 0 if TI = 0; otherwise f(TI) = 1

Ordinal
Range: 0 to 100
[CWSS]

Attack surface
subscore

 [20∙(RP+RL+AV) + 20∙SC + 15∙IN + 5∙AS] / 100.0 Ordinal
Range: 0 to 1
[CWSS]

Environmental
subscore

 [(10∙BI + 3∙DI + 4∙EX + 3∙P) ∙ f(BI) ∙ EC] / 20.0
f(BI) = 0 if BI = 0; otherwise f(BI) = 1

Ordinal
Range: 0 to 1
[CWSS]

CWSS 1.0
score

 = BaseFindingSubscore ∙ AttackSurfaceSubscore ∙
EnvironmentalSubscore

Ordinal
Range: 0 to 100
[CWSS]

10.2 Common Vulnerability Scoring System

The Common Vulnerability Scoring System (CVSS)12 defines a number of ordinal quantities
where lower values are better. For detailed descriptions of the levels, please refer to [CVSS].

[CVSS] also defines modified base metrics and an environmental score to characterize the
impact of "modifications that exist within the analyst's environment." These have been
omitted for brevity.

67

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8289

Names Symbols Definitions References
Attack vector AV "Context by which vulnerability exploitation

is possible."
Network (N) = 0.85
Adjacent (A) = 0.62
Local (L) = 0.55
Physical (P) = 0.2

Ordinal
[CVSS]

Attack
complexity

AC "Conditions beyond the attacker's control
that must exist in order to exploit the
vulnerability."
Low (L) = 0.77
High (H) = 0.44

Ordinal
[CVSS]

Privileges
required

PR "Level of privileges an attacker must possess
before successfully exploiting the
vulnerability."
None (N) = 0.85
Low (L) = 0.62 (if scope = U) or 0.68 (if
scope = C)
High (H) = 0.27 (if scope = U) or 0.50 (if
scope = C)

Ordinal
[CVSS]

User
interaction

UI "Requirement for a user, other than the
attacker, to participate in the successful
compromise of the vulnerable component."
None (N) = 0.85
Required (R) = 0.62

Ordinal
[CVSS]

Scope S "Ability for a vulnerability in one software
component to impact resources beyond its
means, or privileges."
Unchanged (U)
Changed (C)
See PR for numerical effect.

Ordinal
[CVSS]

Confidentiality
impact

C "Impact to the confidentiality of the
information resources managed by a
software component due to a successfully
exploited vulnerability."
High (H) = 0.56
Low (L) = 0.22
None (N) = 0

Ordinal
[CVSS]

Integrity
impact

I "Impact to integrity of a successfully
exploited vulnerability."
High (H) = 0.56
Low (L) = 0.22
None (N) = 0

Ordinal
[CVSS]

68

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8289

Names Symbols Definitions References
Availability
impact

A "Impact to the availability of the impacted
component resulting from a successfully
exploited vulnerability."
High (H) = 0.56
Low (L) = 0.22
None (N) = 0

Ordinal
[CVSS]

Exploit code
maturity

E "Likelihood of the vulnerability being
attacked"
High (H) / Not defined (X) = 1
Functional (F) = 0.97
Proof-of-concept (P) = 0.94
Unproven (U) = 0.91

Ordinal
[CVSS]

Remediation
level

RL Unavailable (U) / Not defined (X) = 1
Workaround (W) = 0.97
Temporary fix (F) = 0.96
Official fix (O) = 0.95

Ordinal
[CVSS]

Report
confidence

RC "Degree of confidence in the existence of
the vulnerability and the credibility of the
known technical details."
Confirmed (C) / Not defined (X) = 1
Reasonable (R) = 0.96
Unknown (U) = 0.92

Ordinal
[CVSS]

Confidentiality
requirement

CR Importance of confidentiality to the
organization.
High (H) = 1.5
Medium (M) / Not defined (X) = 1
Low (L) = 0.5

Ordinal
[CVSS]

Integrity
requirement

IR Importance of integrity to the organization.
High (H) = 1.5
Medium (M) / Not defined (X) = 1
Low (L) = 0.5

Ordinal
[CVSS]

Availability
requirement

AR Importance of availability to the
organization.
High (H) = 1.5
Medium (M) / Not defined (X) = 1
Low (L) = 0.5

Ordinal
[CVSS]

Impact sub
score

ISC If scope = U: 6.42 ∙ ISCBASE
If scope = C: 7.52 ∙ (ISCBASE − 0.029) −
3.25 ∙ (ISCBASE − 0.02)15
where ISCBASE = 1−[(1−C)∙(1−I)∙(1−A)]

Ordinal
[CVSS]

Exploitability
sub score

ESC* 8.22 ∙ AV ∙ AC ∙ PR ∙ UI
* [CVSS] does not assign a symbol. ESC
was introduced here to parallel ISC.

Ordinal
[CVSS]

69

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8289

Names Symbols Definitions References
Base score = 0 if ISC ≤ 0. Otherwise,

If scope = U: round up(min(ISC+ESC,10))
If scope = C: round
up(min(1.08∙(ISC+ESC),10))
where "round up" is defined as the smallest
number, specified to one decimal place, that
is equal to or higher than its input. For
example, round up (4.02) is 4.1; and round
up (4.00) is 4.0.

Ordinal
Range: 0 to 10
The scale is further
reduced to a 5-level
ordinal scale as
follows:
0.0 None
0.1 to 3.9 Low
4.0 to 6.9 Medium
7.0 to 8.9 High
9.0 to 10.0 Critical

[CVSS]
Temporal
score

 Round up(Base score ∙ E ∙ RL ∙ RC)
See definition of "round up" under base
score.

Ordinal
Range: 0 to 10
Reduction to 5-level
scale same as base
score.
[CVSS]

10.3 Vulnerability severity (SP 800-30)

Names Symbols Definitions References
Vulnerability
severity

 Very high = 96 to 100 (/100) or 10 (/10)
"The vulnerability is exposed and exploitable, and its
exploitation could result in severe impacts. Relevant
security control or other remediation is not implemented
and not planned; or no security measure can be
identified to remediate the vulnerability."
High = 80 to 95 (/100) or 8 (/10)
"The vulnerability is of high concern, based on the
exposure of the vulnerability and ease of exploitation
and/or on the severity of impacts that could result from
its exploitation. Relevant security control or other
remediation is planned but not implemented;
compensating controls are in place and at least
minimally effective."
Moderate = 21 to 79 (/100) or 5 (/10)
"The vulnerability is of moderate concern, based on the
exposure of the vulnerability and ease of exploitation
and/or on the severity of impacts that could result from
its exploitation. Relevant security control or other

Ordinal
[SP800-30r1,
Table F-2]

70

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8289

Names Symbols Definitions References
remediation is partially implemented and somewhat
effective."
Low = 5 to 20 (/100) or 2 (/10)
"The vulnerability is of minor concern, but effectiveness
of remediation could be improved. Relevant security
control or other remediation is fully implemented and
somewhat effective."
Very low = 0 to 4 (/100) or 0 (/10)
"The vulnerability is not of concern. Relevant security
control or other remediation is fully implemented,
assessed, and effective."

 Bibliography

[Abran] Abran, A. Software Metrics and Software Metrology. Hoboken: John Wiley &
Sons, Inc., 2010.
[Abreu] Fernando Brito e Abreu. "Using OCL to formalize object oriented metrics
definitions." Technical Report ES007/2001, version 1.0, June 2001.
https://pdfs.semanticscholar.org/53fb/564942459946ef08ad2b40625a07b0b9187b.pdf.
[AFP] Automated Function Points (AFP), version 1.0. Document formal/2014-01-03,
Object Management Group, January 2014. https://www.omg.org/cgi-bin/doc?formal/2014-
01-03.
[Belady] L. A. Belady and C. J. Evangelisti. "System Partitioning and Its Measure."
Journal of Systems and Software, 2, pp. 23–29, 1981.
[Berge] Claude Berge. Graphs. North-Holland, second revised edition, 1985.
[Bieman] James M. Bieman and Byung-Kyoo Kang. "Cohesion and Reuse in an Object-
Oriented System." In Proceedings of the 1995 Symposium on Software Reusability
(SSR'95), pp. 259–262. https://doi.org/10.1145/223427.211856.
[Briand93] Lionel C. Briand, Sandro Morasca, and Victor R. Basili. "Measuring and
Assessing Maintainability at the End of High Level Design." In Proceedings of the
Conference on Software Maintenance (CSM), pp. 88–97, September 1993.
https://doi.org/10.1109/ICSM.1993.366952.
[Briand94] Lionel Briand, Sandro Morasca, and Victor R. Basili. "Defining and validating
high-level design metrics." University of Maryland technical report CS-TR 3301, 1994.
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.31.4744&rep=rep1&type=ps
[Briand97] Lionel Briand, Prem Devanbu, and Walcelio Melo. "An Investigation into
Coupling Measures for C++." In Proceedings of the 19th International Conference on
Software Engineering (ICSE), pp. 412–421, May 1997.
https://doi.org/10.1145/253228.253367.
[Briand98] Lionel C. Briand, John. W. Daly, and Jürgen Wüst. "A Unified Framework for
Cohesion Measurement in Object-Oriented Systems." Empirical Software Engineering, 3,
pp. 65–117, 1998.

https://pdfs.semanticscholar.org/53fb/564942459946ef08ad2b40625a07b0b9187b.pdf
https://www.omg.org/cgi-bin/doc?formal/2014-01-03
https://www.omg.org/cgi-bin/doc?formal/2014-01-03
https://doi.org/10.1145/223427.211856
https://doi.org/10.1109/ICSM.1993.366952
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.31.4744&rep=rep1&type=ps
https://doi.org/10.1145/253228.253367

71

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8289

[Briand99] Lionel C. Briand, John. W. Daly, and Jürgen Wüst. "A Unified Framework for
Coupling Measurement in Object-Oriented Systems." IEEE Transactions on Software
Engineering, 25(1), pp. 91–121, Jan/Feb 1999.
[Card] David N. Card and Robert L. Glass. Measuring Software Design Quality. Prentice-
Hall, 1990.
[Chidamber] Shyam R. Chidamber and Chris F. Kemerer. A metric suite for object oriented
design. IEEE Transactions on Software Engineering, 20(6), pp. 476-493, June 1994.
https://doi.org/10.1109/32.295895.
[Coleman] Don Coleman, Dan Ash, Bruce Lowther, and Paul Oman. Using metrics to
evaluate software system maintainability. Computer, 27(8):44–49, August 1994.
https://doi.org/10.1109/2.303623.
[Conte] S. D. Conte, H. E. Dunsmore, and V. Y. Shen. Software Engineering Metrics and
Models. Benjamin/Cummings, 1986.
[COSMIC] Common Software Measurement International Consortium. The COSMIC
Functional Size Measurement Method Version 4.0.1 Measurement Manual, April 2015.
https://cosmic-sizing.org/publications/measurement-manual-401/.
[Cruickshank] R. D. Cruickshank and J. E. Gaffney, Jr. "Measuring the Development
Process: Software Design Coupling and Strength Metrics." In Proceedings from the Fifth
Annual Software Engineering Workshop, NASA Goddard Space Flight Center, November
1980. https://ntrs.nasa.gov/search.jsp?R=19820016124.
[CVSS] Common Vulnerability Scoring System v3.0: Specification Document (version 1.8).
https://www.first.org/cvss/v3.0/specification-document.
[CWSS] Steve Christey Coley, ed. Common Weakness Scoring System (CWSS) version
1.0.1. MITRE, 2014-09-05. https://cwe.mitre.org/cwss/cwss_v1.0.1.html.
[DO-178C] "Software Considerations in Airborne Systems and Equipment Certification,"
RTCA DO-178C, December 13, 2011.
[Eder] Johann Eder, Gerti Kappel, and Michael Schrefl. Coupling and cohesion in object-
oriented systems. Technical report, University of Klagenfurt, 1994.
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.55.5819.
[Elshoff] James L. Elshoff. "An Analysis of Some Commercial PL/I Programs." IEEE
Transactions on Software Engineering, SE-2(2), June 1976, pp. 113–120.
[Embley] D. W. Embley and S. N. Woodfield, "Cohesion and Coupling for Abstract Data
Types," in 6th International Phoenix Conference on Computers and Communications
(IPCCC), IEEE Computer Society Press, Arizona, 1987, pp. 229–234.
[Fenton] Norman Fenton and James Bieman. Software Metrics: A rigorous and practical
approach. CRC Press, 2015.
[Flater] David Flater, "Redressing grievances with the treatment of dimensionless quantities
in SI," Measurement v. 109, October 2017, pp. 105–110.
https://doi.org/10.1016/j.measurement.2017.05.043.
[Frankl] Phyllis G. Frankl and Elaine J. Weyuker. "An Applicable Family of Data Flow
Testing Criteria." IEEE Transactions on Software Engineering, 14(10), pp. 1483–1498,
October 1988. https://doi.org/10.1109/32.6194.
[Halstead] Maurice H. Halstead. Elements of Software Science. Elsevier, 1977.
[Hamer] Peter G. Hamer and Gillian D. Frewin. M. H. Halstead's Software Science—A
Critical Examination. In Proceedings of the 6th International Conference on Software
Engineering (ICSE'82), September 1982, pp. 197–206.

https://doi.org/10.1109/32.295895
https://doi.org/10.1109/2.303623
https://cosmic-sizing.org/publications/measurement-manual-401/
https://ntrs.nasa.gov/search.jsp?R=19820016124
https://www.first.org/cvss/v3.0/specification-document
https://cwe.mitre.org/cwss/cwss_v1.0.1.html
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.55.5819
https://doi.org/10.1016/j.measurement.2017.05.043
https://doi.org/10.1109/32.6194

72

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8289

[Henderson-Sellers] B. Henderson-Sellers, L. L. Constantine, and I. M. Graham.
"Coupling and cohesion (towards a valid metrics suite for object-oriented analysis and
design," Object-Oriented Systems, 3(3), 1996, pp. 143–158.
[Hennell] M. A. Hennell, M. R. Woodward, and D. Hedley. "On program analysis."
Information Processing Letters, 5(5), November 1976, pp. 136–140.
[Henry] Sallie Henry and Dennis Kafura. "Software Structure Metrics Based on
Information Flow." IEEE Transactions on Software Engineering, SE-7(5), pp. 510–518,
September 1981. https://doi.org/10.1109/TSE.1981.231113.
[Hitz] Martin Hitz and Behzad Montazeri. "Measuring Coupling and Cohesion In Object-
Oriented Systems." In Proceedings of the International Symposium on Applied Corporate
Computing (ISAAC'95), October 1995. http://www.isys.uni-klu.ac.at/PDF/1995-0043-
MHBM.pdf.
[IEC] IEC. Quantities and units—Part 13: Information science and technology, 1.0 edition.
IEC 80000-13:2008, http://www.iec.ch/.
[IEEE-100] IEEE 100-2000. The Authoritative Dictionary of IEEE Standards Terms, 7th
edition. https://doi.org/10.1109/IEEESTD.2000.322233. Standard withdrawn, DOI broken;
use http://ieeexplore.ieee.org/servlet/opac?punumber=4116785.
[IEEE-982.1-1988] IEEE 982.1-1988. IEEE Standard Dictionary of Measures to Produce
Reliable Software. https://doi.org/10.1109/IEEESTD.1989.86055. (Superseded)
[IEEE-1541] IEEE 1541-2002. IEEE Standard for Prefixes for Binary Multiples.
https://doi.org/10. 1109/IEEESTD.2009.5254933. DOI broken; use
http://ieeexplore.ieee.org/servlet/opac?punumber=5254929.
[IR5459] W. J. Salamon and D. R. Wallace. NIST IR 5459. Quality Characteristics and
Metrics for Reusable Software (Preliminary Report). May 1994.
[IR8113] Paul E. Black and Athos Ribeiro. NIST IR 8113. SATE V Ockham Sound
Analysis Criteria. March 2016 (updated May 2019). https://doi.org/10.6028/NIST.IR.8113.
[ISO-Vocab-2010] ISO/IEC/IEEE 24765-2010. Systems and software engineering—
Vocabulary. https://doi.org/10.1109/IEEESTD.2010.5733835. (Superseded)
[ISO-Vocab] ISO/IEC/IEEE 24765:2017. Systems and software engineering—Vocabulary.
https://doi.org/10.1109/IEEESTD.2017.8016712.
[ISO-COSMIC] ISO/IEC 19761:2011. Software engineering—COSMIC: a functional size
measurement method.
[ISO-FiSMA] ISO/IEC 29881:2010. Information technology—Systems and software
engineering—FiSMA 1.1 functional size measurement method.
[ISO-FSM] ISO/IEC 14143-1:2007. Information technology— Software measurement—
Functional size measurement, Part 1: Definition of concepts. Second edition, 2007-02-15.
[ISO-IFPUG] ISO/IEC 20926:2009. Software and systems engineering—Software
measurement—IFPUG functional size measurement method 2009.
[ISO-MkII] ISO/IEC 20968:2002. Software engineering—Mk II Function Point
Analysis—Counting Practices Manual.
[ISO-NESMA] ISO/IEC 24570:2018. Software engineering—NESMA functional size
measurement method—Definitions and counting guidelines for the application of function
point analysis. 2nd ed., 2018-02.
[Knuth] Donald E. Knuth. The Art of Computer Programming, Volume 1: Fundamental
Algorithms. 2nd ed. Addison-Wesley, 1973.

https://doi.org/10.1109/TSE.1981.231113
http://www.isys.uni-klu.ac.at/PDF/1995-0043-MHBM.pdf
http://www.isys.uni-klu.ac.at/PDF/1995-0043-MHBM.pdf
http://www.iec.ch/
https://doi.org/10.1109/IEEESTD.2000.322233
http://ieeexplore.ieee.org/servlet/opac?punumber=4116785
https://doi.org/10.1109/IEEESTD.1989.86055
https://doi.org/10.%201109/IEEESTD.2009.5254933
http://ieeexplore.ieee.org/servlet/opac?punumber=5254929
https://doi.org/10.6028/NIST.IR.8113
https://doi.org/10.1109/IEEESTD.2010.5733835
https://doi.org/10.1109/IEEESTD.2017.8016712

73

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8289

[Krystek] M. P. Krystek. The term 'dimension' in the international system of units.
Metrologia 52(2), pp. 297–300, 2015. https://doi.org/10.1088/0026-1394/52/2/297.
[Kuhn] D. Richard Kuhn, Itzel Dominguez Mendoza, Raghu N. Kacker, and Yu Lei.
Combinatorial coverage measurement concepts and applications. In Second International
Workshop on Combinatorial Testing, Sixth International Conference on Software Testing,
Verification and Validation, pp. 352–361, March 2013.
https://doi.org/10.1109/ICSTW.2013.77.
[Lee] Yen-Sung Lee, Bin-Shiang Liang, Shu-Fen Wu, and Feng-Jian Wang. "Measuring the
coupling and cohesion of an object-oriented program based on information flow."
Proceedings of the International Conference on Software Quality, Maribor, Slovenia, pp. 81-
90, 1995.
[Li] Wei Li and Sallie Henry. "Object-oriented metrics that predict maintainability."
Journal of Systems and Software, 23(2), pp. 111–122, Nov. 1993.
https://doi.org/10.1016/0164-1212(93)90077-B.
[Liso] Aldo Liso. Software maintainability metrics model: An improvement in the
Coleman-Oman model. CrossTalk (Journal of Defense Software Engineering), pp. 15–17,
August 2001.
http://static1.1.sqspcdn.com/static/f/702523/9456986/1290003183740/200108-Liso.pdf.
[Lorenz] Mark Lorenz and Jeff Kidd. Object-Oriented Software Metrics: A Practical
Guide. Prentice Hall, 1994.
[Martin] Robert Cecil Martin. Agile software development: principles, patterns, and
practices. Prentice Hall, 2003.
[McCabe] Thomas J. McCabe. A complexity measure. IEEE Transactions on Software
Engineering, SE-2(4):308–320, December 1976. https://doi.org/10.1109/TSE.1976.233837.
[McClure1] Carma L. McClure. "A model for program complexity analysis." Proceedings
of the 3rd International Conference on Software Engineering (ICSE), May 1978, pp. 149–
157. https://dl.acm.org/citation.cfm?id=803205.
[McClure2] Carma L. McClure. Reducing COBOL Complexity through Structured
Programming. Van Nostrand Reinhold, 1978.
[Microsoft] Maintainability Index Range and Meaning. In Microsoft Code Analysis Team
Blog, 2007-11-20.
https://blogs.msdn.microsoft.com/codeanalysis/2007/11/20/maintainability-index-range-and-
meaning/.
[Misa] Subhas Chandra Misra. Modeling design/coding factors that drive maintainability of
software systems. Software Quality Journal, 13(3):297–320, September 2005.
https://doi.org/10.1007/s11219-005-1754-7.
[Mohr] Peter J. Mohr and William D. Phillips. "Dimensionless units in the SI."
Metrologia, 52(1):40–47, 2015. https://doi.org/10.1088/0026-1394/52/1/40.
[MyersCC] Glenford J. Myers. "An extension to the cyclomatic measure of program
complexity." ACM SIGPLAN Notices, 12(10):61–64, October 1977.
https://doi.org/10.1145/954627.954633.
[MyersSD] Glenford J. Myers. Composite/Structured Design. Van Nostrand Reinhold,
1978.
[Oman] Paul Oman and Jack Hagemeister. Construction and testing of polynomials
predicting software maintainability. Journal of Systems and Software, 24(3):251–266, March
1994. https://doi.org/10.1016/0164-1212(94)90067-1.

https://doi.org/10.1088/0026-1394/52/2/297
https://doi.org/10.1109/ICSTW.2013.77
https://doi.org/10.1016/0164-1212(93)90077-B
http://static1.1.sqspcdn.com/static/f/702523/9456986/1290003183740/200108-Liso.pdf
https://doi.org/10.1109/TSE.1976.233837
https://dl.acm.org/citation.cfm?id=803205
https://blogs.msdn.microsoft.com/codeanalysis/2007/11/20/maintainability-index-range-and-meaning/
https://blogs.msdn.microsoft.com/codeanalysis/2007/11/20/maintainability-index-range-and-meaning/
https://doi.org/10.1007/s11219-005-1754-7
https://doi.org/10.1088/0026-1394/52/1/40
https://doi.org/10.1145/954627.954633
https://doi.org/10.1016/0164-1212(94)90067-1

74

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8289

[Oy] Aivosto Oy. Complexity metrics, Project Analyzer v10.2 help, 2017.
http://www.aivosto.com/project/help/pm-complexity.html.
[Park] Robert E. Park. Software size measurement: A framework for counting source
statements. CMU/SEI-92-TR-020, Software Engineering Institute, September 1992.
https://www.sei.cmu.edu/reports/92tr020.pdf.
[Rapps] Sandra Rapps and Elaine J. Weyuker. "Selecting Software Test Data Using Data
Flow Information." IEEE Transactions on Software Engineering, SE-11(4), pp. 367–375,
April 1985. https://doi.org/10.1109/TSE.1985.232226.
[Schumacher] Benjamin Schumacher. "Quantum coding." Physical Review A, 51(4), April
1995. https://doi.org/10.1103/PhysRevA.51.2738.
[SEI] Software Engineering Institute. Maintainability index technique for measuring
program maintainability, in Software Technology Roadmap, May 2008.
https://goo.gl/k2SG1N.
[SI] BIPM. The International System of Units (SI), 9th edition, 2019.
https://www.bipm.org/en/publications/si-brochure/.
[SP500-235] Arthur H. Watson and Thomas J. McCabe. NIST Special Publication 500-235.
Structured testing: A testing methodology using the cyclomatic complexity metric.
September 1996.
[SP800-30r1] NIST Special Publication 800-30 Revision 1. Guide for Conducting Risk
Assessments. September 2012.
[StevensSS] Stanley S. Stevens. On the theory of scales of measurement. Science,
103(2684):677–680, June 1946. https://doi.org/10.1126/science.103.2684.677.
[StevensWP] W. P. Stevens, G. J. Myers, and L. L. Constantine, "Structured Design," IBM
Systems Journal, 13(2):115–139, 1974. https://doi.org/10.1147/sj.132.0115.
[Stroud] John M. Stroud. The Fine Structure of Psychological Time. Annals of New York
Academy of Sciences, 1966, pp. 623–631.
[UML] Unified Modeling Language version 2.5. OMG document formal/2015-03-01,
March 2015. https://www.omg.org/spec/UML/2.5/.
[VIM] Joint Committee for Guides in Metrology. International vocabulary of metrology—
Basic and general concepts and associated terms (VIM), 3rd edition. JCGM 200:2012,
https://www.bipm.org/en/publications/guides/vim.html.
[Welker] Kurt D. Welker, Paul W. Oman, and Gerald G. Atkinson. Development and
application of an automated source code maintainability index. Journal of Software
Maintenance: Research and Practice, 9(3):127–159, May 1997. https://goo.gl/pXF5Yd.
[Woodward] Martin R. Woodward, Michael A. Hennell, and David Hedley. "A Measure of
Control Flow Complexity in Program Text." IEEE Transactions on Software Engineering,
SE-5(1), January 1979, pp. 45–50.
[Yourdon] Edward Yourdon and Larry L. Constantine. Structured Design: Fundamentals
of a Discipline of Computer Program and Systems Design. Prentice-Hall, 1979.
[Zuse] Horst Zuse. A Framework of Software Measurement. Walter de Gruyter, 1998.

Coleman-Oman maintainability model references
Fang Zhuo, Bruce Lowther, Paul Oman, and Jack Hagemeister. Constructing and testing
software maintainability assessment models. In Proceedings, 1st International Software
Metrics Symposium, pages 61–70. IEEE, May 1993.
https://doi.org/10.1109/METRIC.1993.263800.

http://www.aivosto.com/project/help/pm-complexity.html
https://www.sei.cmu.edu/reports/92tr020.pdf
https://doi.org/10.1109/TSE.1985.232226
https://doi.org/10.1103/PhysRevA.51.2738
https://goo.gl/k2SG1N
https://www.bipm.org/en/publications/si-brochure/
https://doi.org/10.1126/science.103.2684.677
https://doi.org/10.1147/sj.132.0115
https://www.omg.org/spec/UML/2.5/
https://www.bipm.org/en/publications/guides/vim.html
https://goo.gl/pXF5Yd
https://doi.org/10.1109/METRIC.1993.263800

75

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8289

[Coleman] Don Coleman, Dan Ash, Bruce Lowther, and Paul Oman. Using metrics to
evaluate software system maintainability. Computer, 27(8):44–49, August 1994.
https://doi.org/10.1109/2.303623.
[Oman] Paul Oman and Jack Hagemeister. Construction and testing of polynomials
predicting software maintainability. Journal of Systems and Software, 24(3):251–266, March
1994. https://doi.org/10.1016/0164-1212(94)90067-1.
Don Coleman, Bruce Lowther, and Paul Oman. The application of software maintainability
models in industrial software systems. Journal of Systems and Software, 29(1):3–16, April
1995. https://doi.org/10.1016/0164-1212(94)00125-7.
Troy Pearse and Paul Oman. Maintainability measurements on industrial source code
maintenance activities. In Proceedings, International Conference on Software Maintenance,
pages 295–303. IEEE, October 1995. https://doi.org/10.1109/ICSM.1995.526551.
Kurt D. Welker and Dr. Paul W. Oman. Software maintainability metrics models in practice.
CrossTalk (Journal of Defense Software Engineering), pages 19–23, 32,
November/December 1995.
[Welker] Kurt D. Welker, Paul W. Oman, and Gerald G. Atkinson. Development and
application of an automated source code maintainability index. Journal of Software
Maintenance: Research and Practice, 9(3):127–159, May 1997. https://goo.gl/pXF5Yd.

 Copyright notes
1 © ISO. This material is reproduced from ISO/IEC 14143-1:2007, with permission of the American National
Standards Institute (ANSI) on behalf of the International Organization for Standardization. All rights reserved.

2 © ISO. This material is reproduced from ISO/IEC 19761:2011, with permission of the American National
Standards Institute (ANSI) on behalf of the International Organization for Standardization. All rights reserved.

3 © ISO. This material is reproduced from ISO/IEC 20926:2009, with permission of the American National
Standards Institute (ANSI) on behalf of the International Organization for Standardization. All rights reserved.

4 © ISO. This material is reproduced from ISO/IEC 20968:2002, with permission of the American National
Standards Institute (ANSI) on behalf of the International Organization for Standardization. All rights reserved.

5 © ISO. This material is reproduced from ISO/IEC/IEEEE 24765:2010, with permission of the American
National Standards Institute (ANSI) on behalf of the International Organization for Standardization. All rights
reserved.

6 © ISO. This material is reproduced from ISO/IEC/IEEE 24765:2017, with permission of the American
National Standards Institute (ANSI) on behalf of the International Organization for Standardization. All rights
reserved.

7 © ISO. This material is reproduced from ISO/IEC 29881:2010, with permission of the American National
Standards Institute (ANSI) on behalf of the International Organization for Standardization. All rights reserved.

8 © IEC. This material is reproduced from IEC 80000-13:2008, with permission of the American National
Standards Institute (ANSI) on behalf of the International Electrotechnical Commission. All rights reserved.

9 Reprinted with permission from IEEE. Copyright IEEE 1988. All rights reserved.

10 Reprinted with permission from IEEE. Copyright IEEE 2000. All rights reserved.

https://doi.org/10.1109/2.303623
https://doi.org/10.1016/0164-1212(94)90067-1
https://doi.org/10.1016/0164-1212(94)00125-7
https://doi.org/10.1109/ICSM.1995.526551
https://goo.gl/pXF5Yd

76

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8289

11 Copyright RTCA, Inc. Used with permission. The complete document may be purchased from RTCA, Inc.,
1150 18th Street NW Suite 910, Washington, DC 20036; (202) 833-9339; www.rtca.org.

12 CVSS is owned and managed by FIRST.Org, Inc. (FIRST), a US-based non-profit organization. While
FIRST owns all right and interest in CVSS, it licenses it to the public freely for use, subject to the conditions
below. Membership in FIRST is not required to use or implement CVSS. FIRST does, however, require that
any individual or entity using CVSS give proper attribution, where applicable, that CVSS is owned by FIRST
and used by permission. Further, FIRST requires as a condition of use that any individual or entity which
publishes scores conforms to the guidelines described in the original specification and provides both the score
and the scoring vector so others can understand how the score was derived.

	0 Measurement concepts
	0.1 Normative references
	0.2 Basic terms
	0.3 Extended units
	0.4 "Amount of data" as a dimension
	0.5 Traceability
	0.6 Scales

	1 Guide to the system
	1.1 Scope, goals, and non-goals
	1.2 Criteria for inclusion
	1.3 Guide to tables
	1.4 History and future

	2 Countable entities and events
	2.1 Elementary entities
	2.2 Source-level entities
	2.3 Graph entities
	2.4 Dependency and definition/use entities
	2.5 Class diagram entities
	2.6 Units of functionality
	2.7 Units of failure, interruption, and termination
	2.8 Profiling units
	2.9 Testing units

	3 Dimensions
	4 Basic quantities
	4.1 Physical quantities
	4.2 Resources, processing, and transmission
	4.3 Graph metrics

	5 Compatibility metrics
	6 Algorithm metrics
	6.1 Performance
	6.2 Hash function metrics
	6.3 Block cipher metrics
	6.4 Cyclomatic complexity
	6.5 Woodward, Hennell, and Hedley complexity

	7 General design and implementation metrics
	7.1 Generic quantities
	7.2 Belady and Evangelisti clustering complexity metric
	7.3 Henry and Kafura information flow complexity metric
	7.4 Cruickshank and Gaffney coupling metric
	7.5 Structured Design scales of coupling and cohesion
	7.6 Embley and Woodfield scales of coupling and cohesion
	7.7 Briand, Morasca, and Basili metrics
	7.8 Halstead system
	7.9 Functional size (of a software application)
	7.10 Card and Glass complexity metrics
	7.11 Program Complexity Analysis Methodology (PCAM) metrics
	7.12 Maintainability index
	7.13 Maturity index

	8 Object-oriented design and implementation metrics
	8.1 Eder, Kappel, and Schrefl scales of coupling and cohesion
	8.2 Martin's package metrics
	8.3 Chidamber and Kemerer class metrics
	8.4 Bieman and Kang cohesion metrics
	8.5 Li and Henry coupling metrics
	8.6 Briand, Devanbu, and Melo coupling metrics
	8.7 Lee et al. coupling and cohesion metrics
	8.8 MOOD2 metrics
	8.9 Lorenz and Kidd metrics

	9 Testability (test coverage) metrics
	9.1 Rapps, Frankl, and Weyuker data flow coverage metrics
	9.2 Other coverage metrics

	10 Security metrics
	10.1 Common Weakness Scoring System
	10.2 Common Vulnerability Scoring System
	10.3 Vulnerability severity (SP 800-30)

	11 Bibliography
	12 Copyright notes

