Withdrawn Draft

Warning Notice

The attached draft document has been withdrawn and is provided solely for historical purposes. It has been superseded by the document identified below.

Withdrawal Date July 6, 2021
Original Release Date December 14, 2020

Superseding Document

Status 2nd Public Draft (2PD)
Series/Number NIST Interagency or Internal Report 8286A
Title Identifying and Estimating Cybersecurity Risk for Enterprise Risk Management (ERM)
Publication Date July 2021
DOI https://doi.org/10.6028/NIST.IR.8286A-draft2
CSRC URL https://csrc.nist.gov/publications/detail/nistir/8286a/draft

Additional Information
Identifying and Estimating Cybersecurity Risk for Enterprise Risk Management (ERM)

Kevin Stine
Stephen Quinn
Larry Feldman
Greg Witte
R. K. Gardner

This publication is available free of charge from:
https://doi.org/10.6028/NIST.IR.8286A-draft
Identifying and Estimating Cybersecurity Risk for Enterprise Risk Management (ERM)

Kevin Stine
Applied Cybersecurity Division
Information Technology Laboratory

Larry Feldman
Greg Witte
Huntington Ingalls Industries
Annapolis Junction, MD

Stephen Quinn
Computer Security Division
Information Technology Laboratory

R. K. Gardner
New World Technology Partners
Annapolis, MD

This publication is available free of charge from:
https://doi.org/10.6028/NIST.IR.8286A-draft

December 2020
Certain commercial entities, equipment, or materials may be identified in this document in order to describe an experimental procedure or concept adequately. Such identification is not intended to imply recommendation or endorsement by NIST, nor is it intended to imply that the entities, materials, or equipment are necessarily the best available for the purpose.

There may be references in this publication to other publications currently under development by NIST in accordance with its assigned statutory responsibilities. The information in this publication, including concepts and methodologies, may be used by federal agencies even before the completion of such companion publications. Thus, until each publication is completed, current requirements, guidelines, and procedures, where they exist, remain operative. For planning and transition purposes, federal agencies may wish to closely follow the development of these new publications by NIST.

Organizations are encouraged to review all draft publications during public comment periods and provide feedback to NIST. Many NIST cybersecurity publications, other than the ones noted above, are available at https://csrc.nist.gov/publications.

Public comment period: December 14, 2020 through February 1, 2021

National Institute of Standards and Technology
Attn: Applied Cybersecurity Division, Information Technology Laboratory
100 Bureau Drive (Mail Stop 2000) Gaithersburg, MD 20899-2000
Email: nistir8286@nist.gov

All comments are subject to release under the Freedom of Information Act (FOIA).
Reports on Computer Systems Technology

The Information Technology Laboratory (ITL) at the National Institute of Standards and Technology (NIST) promotes the U.S. economy and public welfare by providing technical leadership for the Nation’s measurement and standards infrastructure. ITL develops tests, test methods, reference data, proof of concept implementations, and technical analyses to advance the development and productive use of information technology. ITL’s responsibilities include the development of management, administrative, technical, and physical standards and guidelines for the cost-effective security and privacy of other than national security-related information in federal information systems.

Abstract

This document supplements NIST Interagency/Internal Report 8286, Integrating Cybersecurity and Enterprise Risk Management (ERM), by providing additional detail regarding risk guidance, identification, and analysis. This report offers examples and information to illustrate risk tolerance, risk appetite, and methods for determining risks in that context. To support development of an enterprise risk register, this report describes documentation of various scenarios based on the potential impact of threats and vulnerabilities on enterprise assets. Documenting the likelihood and impact of various threat events through cybersecurity risk registers integrated into an enterprise risk profile, helps to later prioritize and communicate enterprise cybersecurity risk response and monitoring.

Keywords

cybersecurity risk management; cybersecurity risk measurement; cybersecurity risk register; enterprise risk management (ERM); enterprise risk profile.

Acknowledgments

The authors wish to thank those who have contributed to the creation of this draft. A detailed acknowledgement will be included in the final publication.

Audience

The primary audience for this publication includes both federal government and non-federal government cybersecurity professionals at all levels who understand cybersecurity but may be unfamiliar with the details of enterprise risk management (ERM).

The secondary audience includes both federal and non-federal government corporate officers, high-level executives, ERM officers and staff members, and others who understand ERM but may be unfamiliar with the details of cybersecurity.

This document begins with information generated at the enterprise level of the organization and frames the discussion and the response from the risk management practitioners. All readers are expected to gain an improved understanding of how cybersecurity risk management (CSRM) and ERM complement and relate to each other, as well as the benefits of integrating their use.
Document Conventions

For the purposes of this document, the terms “cybersecurity” and “information security” are used interchangeably. While technically different in that information security is generally considered to be all-encompassing—including the cybersecurity domain—the term cybersecurity has expanded in conventional usage to be equivalent to information security. Likewise, the terms Cybersecurity Risk Management (CSRM) and Information Security Risk Management (ISRM) are similarly used interchangeably based on the same reasoning.

Call for Patent Claims

This public review includes a call for information on essential patent claims (claims whose use would be required for compliance with the guidance or requirements in this Information Technology Laboratory (ITL) draft publication). Such guidance and/or requirements may be directly stated in this ITL Publication or by reference to another publication. This call also includes disclosure, where known, of the existence of pending U.S. or foreign patent applications relating to this ITL draft publication and of any relevant unexpired U.S. or foreign patents.

ITL may require from the patent holder, or a party authorized to make assurances on its behalf, in written or electronic form, either:

- assurance in the form of a general disclaimer to the effect that such party does not hold and does not currently intend holding any essential patent claim(s); or
- assurance that a license to such essential patent claim(s) will be made available to applicants desiring to utilize the license for the purpose of complying with the guidance or requirements in this ITL draft publication either:
 - under reasonable terms and conditions that are demonstrably free of any unfair discrimination; or
 - without compensation and under reasonable terms and conditions that are demonstrably free of any unfair discrimination.

Such assurance shall indicate that the patent holder (or third party authorized to make assurances on its behalf) will include in any documents transferring ownership of patents subject to the assurance, provisions sufficient to ensure that the commitments in the assurance are binding on the transforee, and that the transferee will similarly include appropriate provisions in the event of future transfers with the goal of binding each successor-in-interest.

The assurance shall also indicate that it is intended to be binding on successors-in-interest regardless of whether such provisions are included in the relevant transfer documents.

Such statements should be addressed to: nistir8286@nist.gov.
Table of Contents

1 Introduction ... 1
 1.1 Supporting CSRM as an Integrated Component of ERM 1
 1.2 Purpose and Scope ... 3
 1.3 Document Structure ... 3

2 Cybersecurity Risk Considerations Throughout the ERM Process 4
 2.1 Risk Scope, Context, and Criteria ... 5
 2.1.1 Risk Appetite and Risk Tolerance ... 5
 2.1.2 Enterprise Strategy for Cybersecurity Risk Reporting 13
 2.2 Risk Identification ... 14
 2.2.1 Inventory and Valuation of Assets .. 16
 2.2.2 Determination of Potential Threats ... 17
 2.2.3 Vulnerability Identification ... 25
 2.2.4 Determining Potential Impact ... 29
 2.2.5 Recording Identified Risks ... 31
 2.2.6 Risk Categorization .. 32
 2.3 Detailed Risk Analysis .. 33
 2.3.1 Selecting Risk Analysis Methodologies ... 33
 2.3.2 Techniques for Estimating Likelihood and Impact 35
 2.4 Determination and Documentation of Risk Exposure 42

3 Conclusion ... 43

References .. 44

List of Appendices

Appendix A—Acronyms .. 46
Appendix B—NVD/NCP Support for Vulnerability Identification and Analysis 48

List of Figures

Figure 1: Integration of CSRRs into Enterprise Risk Profile 2
Figure 2: Notional Cybersecurity Risk Register Template 4
Figure 3: Illustration of Enterprise Risk Communication and CSRM Coordination 7
Figure 4: Continuous Interaction between ERM and CSRM using the Risk Register.... 10
Figure 5: CSRR highlighting Risk Description Column 14
Figure 6: Inputs to Risk Scenario Identification ... 15
Figure 7: Threats as an Input to Risk Scenario Identification (Part B)............................... 17
Figure 8: Vulnerability Inputs to Risk Scenario Identification (Part C) 26
Figure 9: Adverse Impact Inclusion in Risk Scenario Identification (Part D).................... 29
Figure 10: Example Risk Register with Sample Risk Descriptions 31
Figure 11: CSRR Highlighting Risk Category and Current Assessment Columns 33
Figure 12: Example Three-Point Estimate Graph (Triangle Distribution)......................... 37
Figure 13: Example Three-Point Estimate Graph (Normal Distribution) 38
Figure 14: Example Event Tree Analysis .. 40
Figure 15: Illustration of a Histogram from a Monte Carlo Estimation Simulation......... 41
Figure 16: Example Quantitative Analysis Results ... 42
Figure 17: Example Qualitative Analysis Results ... 42
Figure 18: Use of a Cybersecurity Risk Register Improves Risk Communications 43

List of Tables
Table 1: Inputs and Outputs for ERM Governance and Integrated CSRM 8
Table 2: Examples of Risk Appetite and Risk Tolerance .. 9
Table 3: Example Threat Modeling Analysis .. 18
Table 4: Example Bias Issues to Avoid in Risk Management .. 19
Table 5: Example SWOT Analysis .. 20
Table 6: Cybersecurity Framework Profiles Help Consider Threats 21
Table 7: Example Sources of Threat Information ... 24
Table 8: Example Negative and Positive Impact Scenarios ... 30
Table 9: Example Risk Tolerance Results Assessment ... 36
1 Introduction

This report provides guidance that supplements NIST Interagency/Internal Report (NISTIR) 8286, Integrating Cybersecurity and Enterprise Risk Management (ERM) [1]. This is the first of a series of companion publications that provide guidance for implementing, monitoring, and maintaining an enterprise approach designed to integrate cybersecurity risk management (CSRM) into ERM. This is the first in a series of companion publications that provide guidance for implementing, monitoring, and maintaining an enterprise approach designed to integrate cybersecurity risk management (CSRM) into ERM. Readers of this report will benefit from reviewing the foundation document, NISTIR 8286, since many of the concepts described in this report are based upon practices and definitions established in that NISTIR.

A key point established by NISTIR 8286 is that the terms organization and enterprise are often used interchangeably. That report defines an organization as an entity of any size, complexity, or positioning within a larger organizational structure (e.g., a federal agency or company). It further defines an enterprise as a unique type of organization, one in which individual senior leaders govern at the highest point in the hierarchy and have unique risk management responsibilities such as fiduciary reporting and establishing risk strategy (e.g., risk appetite, methods). Notably, government and private industry cybersecurity risk management (CSRM) and ERM programs have different oversight and reporting requirements (e.g., accountability to Congress versus accountability to shareholders), but the general needs and processes are quite similar.

1.1 Supporting CSRM as an Integrated Component of ERM

There are significant similarities and variances among approaches by public- and private-sector practices for ERM/CSRM coordination and interaction. Notably, many ERM and CSRM practices treat the two as separate stovepipes. This report highlights that CSRM is an integral part of ERM, both taking its direction from ERM and informing it. The universe of risks facing an enterprise includes many factors, and risks to the enterprise’s information and technology often rank high within that list. Therefore, ERM strategy and CSRM strategy are not divergent but rather CSRM strategy should be a subset of ERM strategy with particular objectives, processes, and reporting. Therefore, this report and those in this series provide a starting point for further discussion about improving ERM and CSRM coordination. As the general risk management community continues that discussion, NIST will continue to solicit and publish lessons learned and shared by that community.

Section 2 shows that enterprise governance activities direct the strategy and methods for risk management, including CSRM. Results of those activities are recorded in various risk registers. Cybersecurity risks are documented through cybersecurity risk registers (CSRRs) that are aggregated at appropriate levels and are used to create an enterprise cybersecurity risk register, that, in turn, becomes part of a broader Enterprise Risk Register (ERR) as depicted in Figure 1. The ERR, when prioritized by those with fiduciary responsibilities, represents an Enterprise Risk Profile.

1 For the purposes of this document, the terms “cybersecurity” and “information security” are used interchangeably.
Figure 1 also illustrates the integration of risk register information. The figure demonstrates that ERM and CSRM are not separate processes, but CSRM represents an important subset of risk management under the broader umbrella of enterprise risk management.

The NISTIR 8286x series builds upon existing NIST frameworks by demonstrating methods for applying risk management processes at all enterprise levels and representing how the NIST frameworks are anchored in ERM. A key construct for performing that integration is the cybersecurity risk register (CSRR) described in NISTIR 8286. As shown in Figure 1., the risk register is a key tool to document, communicate, and manage cybersecurity risk at each level of the enterprise.

NISTIR 8286A details methods for completing and maintaining that risk register by identifying threats and analyzing the likelihood of successful exploitation of certain conditions to result in threat events, the estimated impact on enterprise objectives, and whether estimates are within established risk tolerance parameters. This report focuses on the first three elements of the enterprise CSRM process: establishing scope, context, and criteria; identifying the cybersecurity-related risks that may affect an enterprise’s ability to achieve its objectives; and calculating the likelihood and impact of such risks. Subsequent publications will address methods for evaluating risk treatment options, selecting an appropriate treatment, communicating the plans and results of that treatment, and adhering to stakeholders’ risk strategies.

2 Although this report is focused on CSRM as a function of ERM, future iterations of this report and documents in this series will address other risk management disciplines (e.g., Privacy RM, Supply Chain RM) using the risk register model.

3 Figure 1 of NISTIR 8286 provides an illustration of the various levels of an entity including the enterprise, organization, and system levels. Activities at these levels are further described in this NISTIR 8286A report.
1.2 Purpose and Scope

This document focuses on improving CSRM understanding and communications between and among cybersecurity professionals, high-level executives, and corporate officers to help ensure the effective integration of cybersecurity considerations as a critical subset of the overarching enterprise risks. The report recognizes that the risk management community has observed an opportunity for increased rigor in the manner in which cybersecurity risk identification, analysis, and reporting are performed at all levels of the enterprise. This publication is designed to provide guidance and to further conversations regarding ways to improve CSRM and the coordination of CSRM with ERM.

The goals of this document are to:

- Help describe governance processes by which senior leaders build strategy and express expectations regarding CSRM as part of ERM and
- Provide guidance for CSRM practitioners in applying the risk direction received from senior leaders, communicating results, coordinating success, and integrating activities.

This document continues the discussion to bridge existing private industry risk management processes with government-mandated federal agency enterprise and cybersecurity risk requirements derived from OMB Circulars A-123 and A-130 [6]. It builds upon concepts introduced in NISTIR 8286 and complements other documents in this series. It references some materials that are specifically intended for use by federal agencies and will be highlighted as such, but the concepts and approaches are intended to be useful for all enterprises.

1.3 Document Structure

This publication helps establish an enterprise risk strategy (Section 2.1) to identify risks to mission objectives (Section 2.2)), and to analyze (Section 2.3) their likelihood and possible impact while considering the enterprise’s risk strategy as expressed through risk appetite and risk tolerance. The remainder of this document is organized into the following major sections:

- Section 2 details CSRM considerations, including enterprise risk strategy for risk identification and risk analysis.
- Section 3 provides a short summary and conclusion.
- The References section provides links to external sites or publications that provide additional information.
- Appendix A contains acronyms used in the document.
- Appendix B describes how the National Vulnerability Database (NVD) and National Checklist Program (NCP) support risk identification activities.

4 An Informative Reference that crosswalks the contents of this document and the NIST Framework for Improving Critical Infrastructure Cybersecurity (the NIST Cybersecurity Framework) will be posted as part of the National Cybersecurity Online Informative References (OLIR) Program. [2] See https://www.nist.gov/cyberframework/informative-references for an overview of OLIR.
2 Cybersecurity Risk Considerations Throughout the ERM Process

Because digital information and technology are valuable enablers for enterprise success and growth, they must be sufficiently protected from various types of risk. Government entities for whom growth may not be a strategic objective are still likely to find value in dynamically adding or changing their services or offerings as their constituents’ needs evolve. Thus, both private and public sector endeavors need to evaluate the role of information and technology in achieving enterprise objectives. This understanding enables a deeper consideration of the various uncertainties that jeopardize those objectives.

In the context of ERM, senior leaders must clearly express expectations regarding how risk should be managed. Those expectations provide CSRM practitioners with objectives for managing cybersecurity risks, including methods for reporting the extent to which risk management activities successfully achieve those objectives. The document for recording and sharing information about those risks is the cybersecurity risk register (CSRR).

NISTIR 8286 describes the use of risk registers, example fields for those registers, and the fact that prioritized risk register contents serve as the basis of a risk profile. That report also states that, while a risk register represents various risks at a single point in time, it is important for the enterprise to ensure that the model is used in a consistent and iterative way. As risks are identified (including calculation of likelihood and impact), the risk register will be populated with relevant information once decisions have been made. As risks are reviewed, the agreed-upon risk response becomes the current state, and the cycle begins anew.

Figure 2 provides an example of a blank risk register. The red box shows fields that are relevant to the processes described in this report. The remaining columns will be described in a subsequent publication. Note that, while prioritization is informed by some of the information recorded in these columns, risk priority will be discussed in that future publication as part of Risk Evaluation and Risk Response activities. While the example illustrates a template for cybersecurity risks, a similar template could be used for any type of risk in the enterprise.

<table>
<thead>
<tr>
<th>ID</th>
<th>Priority</th>
<th>Risk Description</th>
<th>Risk Category</th>
<th>Current Assessment</th>
<th>Risk Response Type</th>
<th>Risk Response Cost</th>
<th>Risk Response Description</th>
<th>Risk Owner</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Continually Communicate, Learn, and Update

Figure 2: Notional Cybersecurity Risk Register Template
2.1 Risk Scope, Context, and Criteria

Effective management of risk throughout the enterprise depends upon cooperation at each level. As enterprise senior leaders provide direction regarding how to manage risks (including cybersecurity risks), stakeholders at other levels use that direction to achieve, report, and monitor outcomes. This management approach helps ensure that CSRM strategy is formulated as a part of (and flows from) ERM strategy.

ISO 31000:2018 points out that there are three prerequisites for supporting a CSRM program as an input to ERM [3]:

- The scope of the CSRM activities should be defined;
- The internal and external context of the CSRM activities should be determined; and
- The criteria from enterprise stakeholders should be declared and documented through a comprehensive CSRM strategy.

Senior leaders define the ERM scope, context, and strategy, which inform enterprise priorities, resource utilization criteria, and responsibilities for various enterprise roles. The ERM strategy helps define how various organizational systems, processes, and activities cooperate to achieve risk management goals, including those for CSRM, in alignment with mission objectives.

2.1.1 Risk Appetite and Risk Tolerance

CSRM, as an important component of ERM, helps assure that cybersecurity risks do not hinder established enterprise mission and objectives. CSRM also helps ensure that exposure from cybersecurity risk remains within the limits assigned by enterprise leadership. Figure 3 illustrates the ongoing communications among ERM and CSRM stakeholders to set, achieve, and report on risk expectations throughout the enterprise. This illustration builds upon the well-known levels of the Organization-Wide Risk Management Approach described in NIST Special Publication (SP) 800-37, Revision 2 [4]. The diagram extends the Notional Information and Decision Flows figure from the NIST Framework for Improving Critical Infrastructure Cybersecurity (Cybersecurity Framework) by indicating risk appetite and risk tolerance definition, interpretation, and achievement [5].

The process described in Figure 3 illustrates that risk appetite is declared at the enterprise level. Risk appetite provides a guidepost to the types and amount of risk, on a broad level, that senior leaders are willing to accept in pursuit of mission objectives and enterprise value. As leaders establish an organizational structure, business processes, and systems to accomplish enterprise mission objectives, the results define the structure and expectations for CSRM at all levels. Based on these expectations, cybersecurity risks are identified, managed, and reported through

5 NISTIR 8286 supports the OMB Circular A-123 definition of risk appetite as “the broad-based amount of risk an organization is willing to accept in pursuit of its mission/vision. It is established by the organization’s most senior level leadership and serves as the guidepost to set strategy and select objectives.” [6]

6 The term “system” throughout this publication pertains to information systems, which are discrete sets of information resources organized for the collection, processing, maintenance, use, sharing, dissemination, or disposition of information, whether such information is in digital or non-digital form.
risk registers and relevant metrics. The register then directly supports the refinement of risk strategy considering mission objectives.

Risk appetite can be interpreted by enterprise- and organization-level leaders to develop specific risk tolerance, which is defined by OMB as “the acceptable level of variance in performance relative to the achievement of objectives” [6]. Risk tolerance represents the specific level of performance risk deemed acceptable within the risk appetite set by senior leadership (while recognizing that such tolerance can be influenced by legal or regulatory requirements).7 Risk tolerance can be defined at the Executive Level (e.g., at the Department level for U.S. federal agencies), but OMB offers a bit of discretion to an organization, stating that risk tolerance is “generally established at the program, objective, or component level.”8

Risk appetite and risk tolerance are related but distinct, in a similar manner to the relationship between governance and management activities. Where risk appetite statements define the overarching risk guidance, risk tolerance statements define the specific application of that direction. Together, these risk appetite and risk tolerance statements represent risk limits, help communicate risk expectations, improve the focus of risk management efforts, and reduce the likelihood of unacceptable loss. Achievement of those expectations is conveyed through risk registers that document and communicate risk decisions. Risk assessment results and risk response actions at the System Level are reflected in CSRRs. As CSRRs from multiple systems are collated and provided to higher level business managers at the Organization level, those managers can evaluate results and refine risk tolerance criteria to optimize value delivery, resource utilization, and risk. The aggregation of all enterprise CSRRs at the Enterprise Level enables senior leaders to monitor risk response considering the expectations set. Figure 2 illustrates the tight coupling of ERM, where senior leaders set enterprise risk strategy and make risk-informed decisions, and CSRM, where cybersecurity practitioners can best identify where cybersecurity risk is likely to occur.

7 OMB Circular A-123 states that “Risk must be analyzed in relation to achievement of the strategic objectives established in the Agency strategic plan (See OMB Circular No. A-11, Section 230), as well as risk in relation to appropriate operational objectives. Specific objectives must be identified and documented to facilitate identification of risks to strategic, operations, reporting, and compliance.” [6]

8 Examples of the Organization Level include Business Units, Company Departments, or Agency Divisions.
Notably, Figure 3 and Figure 4 illustrate general integration and coordination activities but are fairly simplistic representations. For example, risk appetite statements should originate from the most senior leaders, but those leaders may choose to delegate the creation of cybersecurity risk appetite statements to a senior cybersecurity risk official (e.g., CISO or Risk Executive Function). Each enterprise is unique, and the intent of this document is to foster the integration of CSRM as part of ERM. Readers should also note that the processes described are cyclical. Early iterations may include the definition of terms, strategies, and objectives. Subsequent iterations may focus on refining those objectives based on previous results, observations of the risk landscape, and changes within the enterprise.

Table 1 describes the process by which senior leaders express their strategy and expectations for managing cybersecurity risk throughout the enterprise. In general, NISTIR 8286A addresses activity points 1 through 3, and activity points 4 through 6 will be addressed in NISTIR 8286B.

9 Figure 3 on page 8 further decomposes the risk management cycle, information flow, and decision points illustrated in Figure 2, which provides a high-level understanding in the context of the organization structure. Subsequent publications in this series will provide additional information about the activities described in Figure 2 and Table 1.
<table>
<thead>
<tr>
<th>Activity Point</th>
<th>Inputs</th>
<th>Outputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Setting risk expectations and priorities</td>
<td>Internal and external risk context; enterprise roles and responsibilities; governance framework and governance system for managing risk for all types of risks</td>
<td>Documentation of enterprise priorities in light of mission objectives and stakeholder values; direction regarding budget (e.g., authorization for capital and operating expenditures); risk appetite statements germane to each risk management discipline including cybersecurity</td>
</tr>
<tr>
<td>2. Interpreting risk appetite to define risk tolerance statements</td>
<td>Enterprise priorities in light of mission objectives and stakeholder values; direction regarding budget (e.g., authorization for capital and operating expenditures); risk appetite statements</td>
<td>Risk tolerance statements (and metrics) to apply risk appetite direction at the Organization Level; Direction regarding methods to apply CSRM (e.g., centralized services, compliance / auditing methods, shared controls to be inherited and applied at the System Level)</td>
</tr>
<tr>
<td>3. Applying risk tolerance statements to achieve System Level CSRM</td>
<td>Risk tolerance statements; direction regarding shared services and controls; lessons learned from previous CSRM implementation (and those of peers)</td>
<td>Inputs to preparatory activities (e.g., NIST Risk Management Framework, or RMF, Prepare step); System categorization; selection and implementation of system security controls</td>
</tr>
<tr>
<td>4. Assessing CSRM and reporting system-level risk response through CSRRs</td>
<td>Security plans; risk response; system authorization (or denial of authorization with referral back for plan revision)</td>
<td>Risk assessment results; CSRRs describing residual risk and response actions taken; Risk categorization and metrics that support ongoing assessment, authorization, and continuous monitoring</td>
</tr>
<tr>
<td>5. Aggregating Business Level CSRRs</td>
<td>CSRRs showing System Level risk decisions and metrics; Internal reports from compliance / auditing processes to confirm alignment with enterprise risk strategy; Observations regarding CSRM achievement in light of risk strategy</td>
<td>CSRRs aggregated and normalized based on enterprise-defined risk categories and measurement criteria; Refinement of risk tolerance statements, if needed, to ensure balance among value, resources, and risk</td>
</tr>
<tr>
<td>6. Integrating CSRRs into Enterprise CSRR, ERR, and Enterprise Risk Profile</td>
<td>Normalized and harmonized CSRRs from various Organization Level CSRM reports; Internal compliance and auditing reports; Results from other (non-cybersecurity) risk management activities; Observations regarding ERM and CSRM achievement</td>
<td>Aggregated and normalized Enterprise CSRR; integrated Enterprise Risk Register aligning CSRM results with those of other risk categories; Refinement of risk appetite tolerance statements and risk management direction to ensure balance among value, resources, and risk; Enterprise Risk Profile for monitoring and reporting overall risk management activities and results</td>
</tr>
</tbody>
</table>
Table 2 provides examples of actionable, measurable risk tolerance that illustrate the application of risk appetite to specific context within the organization level structure:

Table 2: Examples of Risk Appetite and Risk Tolerance

<table>
<thead>
<tr>
<th>Example Enterprise Type</th>
<th>Example Risk Appetite Statement</th>
<th>Example Risk Tolerance Statement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Global Retail Firm</td>
<td>Our customers associate reliability with our company’s performance, so service disruptions must be minimized for any customer-facing websites.</td>
<td>Regional managers may permit website outages lasting up to 2 hours for no more than 5% of its customers.</td>
</tr>
<tr>
<td>Government Agency</td>
<td>Mission-critical systems must be protected from known cybersecurity vulnerabilities.</td>
<td>Systems designated as High Value Assets (per OMB definition) must be patched against critical software vulnerabilities (severity score of 10) within fourteen days of discovery.</td>
</tr>
<tr>
<td>Internet Service Provider</td>
<td>The company has a LOW risk appetite with regard to failure to meet customer service level agreements including network availability and communication speeds.</td>
<td>Patches must be applied to avoid attack-related outages but also must be well-tested and deployed in a manner that does not reduce availability below agreed-upon service level.</td>
</tr>
<tr>
<td>Academic Institution</td>
<td>The institution understands that mobile computers are a necessary part of the daily life of students and some loss is expected. The leadership, however, has no appetite for loss of any sensitive data (as defined by the Data Classification Policy).</td>
<td>Because the cost of loss prevention for students’ laptop workstations is likely to exceed the cost of the devices, it is acceptable for up to 10% to be misplaced or stolen if, and only if, sensitive institution information is prohibited from being stored on students’ devices.</td>
</tr>
<tr>
<td>Healthcare Provider</td>
<td>The Board of Directors has decided that the enterprise has a low risk appetite for any cybersecurity exposures caused by inadequate access control or authentication processes.</td>
<td>There will always be some devices that do not yet support advanced authentication, but 100% of critical healthcare business applications must use multi-factor authentication.</td>
</tr>
</tbody>
</table>

Figure 4 illustrates a more detailed information flow of inputs and outputs, as described in Figure 2 and Table 1. Senior leaders and business managers define risk tolerance direction that is applied at the System Level. System Level practitioners interpret those risk tolerance statements and apply CSRM activities to achieve risk management objectives. The results are then reviewed to confirm effectiveness, highlight opportunities for improvement, and identify important trends that might require Organization or Enterprise Level action. The specific process activities will be based on the risk management methods applied but will generally include those below.
The activities in Figure 4 are listed below.

- As described in earlier portions of this section, leaders at Levels 1 and 2 define specific and measurable risk appetite and risk tolerance statements that reinforce enterprise mission objectives and organization goals. Those leaders may also choose to define aggregate metrics (e.g., key risk indicators [KRIs], key performance indicators [KPIs]) to help track and report achievement of risk direction.

- At Level 3, practitioners interpret the risk tolerance statements for the specific systems that operate to provide business (or agency) benefits. Those in various roles (e.g., system owners, security officers) work together to derive system-level requirements for confidentiality, integrity, and availability.

- The value of each asset of a given system (e.g., information type, technical component, personnel, service provider) is appraised to determine how critical or sensitive it is to the operation of the system (see Section 2.2.1). Subsequent risk decisions depend on accurate understanding of the importance of each resource to the system.

10 Figure 3 demonstrates select communications, processes, and decisions germane to the risk appetite, risk tolerance, and risk register interactions among the three levels of an enterprise addressed by this report and is not intended to be exhaustive.

11 For those topics that are addressed in NISTIR 8286A, a pointer to the relevant section is included. Topics without a pointer to sections on this document will be addressed in subsequent publications in this series.
• For each of these components, the practitioner identifies threat sources that might cause a harmful effect (see Section 2.2.2) and the vulnerabilities or conditions that might enable such an effect (see Section 2.2.3). To complete development of the risk scenario, the practitioner determines the adverse effect of the threat source exploiting the vulnerable conditions. The scenario is recorded in the CSRR as the “Risk Description” (see Section 2.2.5). The category for the scenario will be recorded in the “Risk Category” column, based on enterprise criteria, to support risk correlation, aggregation, and reporting.

• The practitioner performs risk analysis (see Section 2.3) to determine the likelihood that the threat events and vulnerable conditions would result in harmful impacts to the system asset. Similarly, the practitioner analyzes the impact value and calculates the risk exposure using the methodology defined in the enterprise risk strategy (e.g., as the product of [risk likelihood] x [risk impact].) The results of these analyses are recorded in the CSRR’s “Current Assessment” column as “Likelihood,” “Impact,” and “Exposure.”

• The determined exposure is compared with the risk tolerance. If exposure is within risk tolerance limits, the risk may be “accepted.” If exposure exceeds tolerable levels of risk, practitioners can consider whether they can achieve risk tolerance through other forms of risk response. In many cases, security controls may be applied to mitigate risk by reducing the likelihood or impact of a risk to a tolerable level. Risk response may also include risk transfer, also known as risk sharing. For example, an organization might hire an external organization to process sensitive transactions (e.g., payment card transactions), thus reducing the likelihood that such sensitive data would be processed by an in-house system. Another common risk transfer method is through cybersecurity insurance policies that can help reduce the economic impact if a risk event occurs.

• In some cases, it might be determined that the exposure exceeds risk tolerance and cannot be brought within limits through any combination of mitigation or risk transfer. In this case, practitioners (e.g., the system owner) may need to work with Level 2 leaders to revisit the risk tolerance itself. This negotiation presents an opportunity for the Level 2 and Level 3 managers to determine the best course of action, in light of mission objectives, to refine the risk direction (e.g., through an exception process, an adjustment to the risk tolerance statement, or increased security requirements for the relevant system). In any case, stakeholders will have applied a proactive approach to balancing risk and value to the benefit of the enterprise.

• If an unacceptable cybersecurity risk cannot be adequately treated in a cost-effective manner, that risk must be avoided. Such a condition may require significant redesign of the system or service. These circumstances should be rare, and they highlight the value of CSRM coordination early in the system engineering process. Notably, risk avoidance is not the same as ignoring a risk.
• Results of risk activities and decisions are recorded in the CSRR and, if applicable, in a documented Plan of Actions & Milestones (POA&M)\(^{12}\) that records future risk activities agreed upon.

• The process continues until all system assets have been evaluated for risk from currently understood threats and vulnerabilities. For some enterprises, the composite set of system risks (as recorded in the CSRR), risk response applied, agreements regarding additional CSRM actions to be taken (e.g., as recorded in the POA&M), and other relevant artifacts will be reviewed by a senior official to confirm that risk decisions and risk response align with risk tolerance and risk appetite directives. For federal government agencies, this represents the system authorization process.

• Subsequently, CSRRs from throughout the Business Level are normalized and aggregated to provide a composite view of the risk posture and decisions for that Organization. As Level 2 managers consider feedback from system CSRM activities, those managers may decide to refine risk tolerance levels. It may be that the aggregate risk across multiple systems represents too great an exposure and needs to be reduced. In other cases, based on successful risk management results, stakeholders may be able to permit a little more risk in some areas if such a decision would support mission objectives and potentially save resources or allow them to be directed to areas that require additional resources in order to meet expected risk tolerances.

• Similar reviews and refinement occur at Level 1 to support enterprise governance and risk management decisions. Some types of enterprises may be required to formally disclose risk factors (e.g., through annual reports), and this aggregate understanding of cybersecurity risks and risk decisions supports that fiduciary responsibility. These activities may also help others, such as Federal Government agencies, to help comply with mandatory requirements such as those established by OMB.

Interpreting risk tolerance at Level 3, practitioners develop requirements and apply security controls to achieve an acceptable level of risk. This process helps to ensure that CSRM occurs in a cost-effective way. As an example, consider the global retail firm described in the first row of Table 2. The system owner of the customer website will select controls that will ensure adherence to availability service levels. In deciding which controls to apply, the system owner collaborates with a security team to consider methods to meet service level objectives. The team can contact the local power utility supplier to determine electrical availability history and gather other information regarding the likelihood of the risk of a loss of power to the important website. This additional information might help the system owner decide whether to invest in a backup generator to ensure sufficient power availability.

\(^{12}\) Federal agencies are required to develop a plan of action and milestones (POA&M) for each system. The plan includes a listing of unaccepted risks and associated plans to mitigate the risks. However, the time horizon to resolve the outstanding risk may exceed the current reporting cycle. Private industry is also required to document this type of risk in similar ways (e.g., quarterly SEC Form Q-10 filings, a prospectus). POA&Ms will be addressed in greater detail later in this series when risk mitigation strategies are discussed.
Results from previous assessments can be useful for estimating the likelihood of achieving risk goals in the future (this topic is described in Section 2.3.2.1.) The team would then move to the next risk scenario (e.g., perhaps an internet service outage) and review the history and reliability of the organization’s telecommunications provider to ascertain the likelihood and impact of a loss of service. Iterating through each potential risk, as described in Figure 4, practitioners can develop a risk-based approach to fulfilling CSRM objectives in light of risk appetite and risk tolerance. This, in turn, helps CSRM practitioners demonstrate how their actions directly support mission objectives and enterprise success.

2.1.2 Enterprise Strategy for Cybersecurity Risk Reporting

The enterprise strategy for cybersecurity risk management and monitoring includes common definitions for how and when assessment, response, and monitoring should take place. Notably, ERM monitoring is for communication and coordination regarding overall risk and should not be confused with system-level monitoring (or continuous monitoring.)

Guidance from senior leaders provides risk guidance—including advice regarding mission priority, risk appetite and tolerance, and capital and operating expenses to manage known risks—to the organizations within their purview. There are some details that need to be defined at the Enterprise Level so that information can be combined and compared effectively, including the ability to communicate about risks through the various types of risk registers.

While many of these details will be delegated to Organizational Level processes, several key factors should be defined at the Enterprise Level, including:

- Criteria regarding risk category selection that enables risk register entries to be consolidated and compared;
- Direction regarding the classification and valuation of enterprise assets, including approved methods for business impact analysis;
- Assessment methodologies, including direction regarding analysis techniques and the appropriate scales to be applied;
- Frequency of assessment, reporting, and potential escalation;
- Methods for tracking, managing, and reporting (i.e., use of the cybersecurity risk register); and,
- Resources available for risk treatment, including common baselines, common controls, and supply chain considerations.

As cybersecurity risks are recorded, tracked, and reassessed throughout the risk life cycle and aggregated within the enterprise cybersecurity risk register, this guidance ensures that risk will be consistently communicated, managed, and potentially escalated. Strategic guidance from enterprise stakeholders should also include:
• Definition of the organizational boundaries to which CSRM activities will apply; documentation that the scope for cybersecurity objectives supports alignment among enterprise, business and mission objectives, and operational achievement.

• Direction regarding specific roles for managing, communicating, and integrating risks throughout the enterprise; defining the types of stakeholders (by role) will support risk communication and timely decision-making.

• Determination of key risk indicators (KRIs) and key performance indicators (KPIs) that will support the management and monitoring of the extent to which risk response remains within acceptable levels.

Through the processes described above, senior leaders express risk limits and expectations as risk appetite statements. That risk appetite is then interpreted through risk tolerance and then applied at the System Level. The subsections below describe how feedback is provided using the risk register to identify and document risk, analysis, and results.

2.2 Risk Identification

This section describes methods for identifying and documenting sources and their potential consequences (recorded in the Risk Description column of the CSRR, as shown by the red border in Figure 5.)

<table>
<thead>
<tr>
<th>Notional Cybersecurity Risk Register</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID</td>
</tr>
<tr>
<td>----</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
</tbody>
</table>

Figure 5: CSRR highlighting Risk Description Column

Risk identification represents a critical activity for determining the uncertainty that can impact mission objectives. The primary focus of NISTIR 8286A is on negative risks (i.e., threats and vulnerabilities that lead to harmful consequences), but it is important to remember that positive risks represent a significant opportunity and should be documented and reviewed as well. Consideration and details regarding positive risks will be addressed in subsequent publications.

Through the activities in the following sections, risk practitioners determine and record those

13 The CSRR template is available in the [Open Risk Register Format (ORRF)](https://example.com) format; an automated JavaScript Object Notation (JSON) notation for organizations maintaining automated applications that provide detailed tracking and reporting. The CSRR template is also available in comma separated value (CSV) format at the same link.
events that could enhance or impede objectives, including the risk of failing to pursue opportunities.

![Figure 6: Inputs to Risk Scenario Identification](image)

As shown in Figure 6, which is derived from the Generic Risk Model in NIST SP 800-30, Revision 1, *Guide for Conducting Risk Assessments*, cybersecurity risk identification is composed of four necessary inputs—parts A through D—in the Risk Description cell of the cybersecurity risk register [7]. Combining these elements into a risk scenario helps to provide the full context of a potential loss event. The use of this scenario-based approach helps ensure comprehensive risk identification by considering many types of physical and logical events that might occur. Notably, the scope of cybersecurity has expanded from its original boundaries of adversarial digital attacks and encompasses all types of uncertainty that can impact any form of information and technology. Accordingly, the risks to be identified and registered are much broader as well.

The completion of the Risk Description column is composed of four activities that are detailed in Subsections 2.2.1 through 2.2.4. The activities include:

- Part A – Identification of the organization’s relevant assets and their valuation
- Part B – Determination of potential threats that might jeopardize the confidentiality, integrity, and availability of those assets
- Part C – Consideration of vulnerabilities or other predisposing conditions of assets that make a threat event possible
- Part D – High-level evaluation of the potential consequences if the threat source (part B) exploited the weakness (part C) against the organizational asset (part A)

The integration of those elements enables the practitioner to record each scenario in the CSRR as a description of cybersecurity risk. The quantity and level of detail of the risks identified should be in accordance with the risk strategy.

Enterprises that are just beginning to integrate the cybersecurity risk register results into broader ERM activities will benefit from focusing on an initial and limited number of top risks. Those creating a risk management program for the first time should not wait until the risk register is completed before addressing extraordinary issues. However, over time, the risk register should become the ordinary means of communicating risk information.

14 Positive risks apply a similar process through which an enterprise asset considers an opportunity that takes advantage of a new or pre-existing condition that results in a positive impact (benefit) to the enterprise.
2.2.1 Inventory and Valuation of Assets

The first prerequisite for risk identification is the determination of enterprise assets that could be affected by risk (part A in Figure 6). Assets are not limited to technology; they include any resource that helps to achieve mission objectives (e.g., people, facilities, critical data, intellectual property, and services).\(^\text{15}\)

Enterprises may benefit from applying a comprehensive method to inventory and monitor enterprise assets, such as the use of a configuration management database (CMDB) or an information technology asset management (ITAM) system. These management tools help to record and track the extent to which various assets contribute to the enterprise’s mission. They can also help track enterprise resources throughout their own life cycle. For example, as the use of mobile devices (including personal devices) expands, there are commercial products that can help maintain inventory to support ongoing risk identification, analysis, and monitoring.

2.2.1.1 Business Impact Analysis

Risk managers can benefit by using a business impact analysis (BIA) process to consistently evaluate, record, and monitor the criticality and sensitivity of enterprise assets. A BIA can help document many aspects of the value of an asset that may extend well beyond replacement costs. For example, while one can calculate the direct cost of research and development underlying a new product offering, the long-term losses of the potential theft of that intellectual property could have more far-reaching impacts, including future revenue, share prices, enterprise reputation, and competitive advantage. That is among the reasons why it is beneficial to gain the guidance of senior leadership regarding the determination of assets that are critical or sensitive.

The relative importance of each enterprise asset will be a necessary input for considering the impact portion of the Risk Description (part D) in the cybersecurity risk register. Considerations include:

- Would loss or theft of the resource compromise customer or enterprise private information?
- Would disclosure of an asset’s information trigger legal or regulatory fines or actions?
- Would a lack of availability of the asset interrupt the enterprise’s ability to fulfill its mission or result in costly downtime?
- Would the lack of confidentiality, integrity, or availability of the asset undermine public or consumer confidence or trust in the enterprise?
- Do internal or external critical resources depend on this asset to operate?

As the organization reviews the results of previous system-level categorization decisions and monitors risk assessment findings, practitioners can use that information to review system prioritization as an input into business impact analysis.

\(^{15}\) NIST SP 800-37 Revision 2 points out that risk could impact “organizational operations (including mission, functions, image, or reputation), organizational assets, or individuals.”
2.2.1.2 Determination of High-Value Assets

An example of asset valuation is the U.S. Government’s designation of “high-value assets,” or HVAs. HVAs, described in OMB Memorandum M-19-03, represent agency resources that have been determined as highly sensitive or critical to achieving the business mission [8]. OMB M-19-03 represents an example of an enterprise approach to valuation since the memorandum defines the specific categories for consistent designation (i.e., information value, role in Mission Essential Function support, and role in support for Federal Civilian Essential Functions) yet leaves permits each agency to determine which assets meet those criteria. Other common industry examples include the use of specific classifications to reflect the sensitivity and criticality of technology and information, including “Company Confidential” or “Business Sensitive.”

2.2.1.3 Automation Support for Inventory Accuracy

Accurate and complete asset inventory is an important element of CSRM, and the measurement of that accuracy is often a key performance measurement for CSRM reporting. To illustrate that importance, federal agencies, as part of their annual reporting metrics, must report how completely their hardware and software asset management inventories reflect what is actually installed on agency networks.

Automated tools can aid in discovering and monitoring various technical components used by the enterprise. For example, a use case described by the NIST Security Content Automation Protocol (SCAP) specification is inventory scanning (see Appendix B for more information). Products that have been successfully reviewed as part of the SCAP Validation Program help maintain a comprehensive and accurate inventory of digital assets [9]. Valuation information recorded in that inventory, in turn, can help maintain a comprehensive view of the enterprise assets for which cybersecurity risks should be identified, analyzed, treated, and monitored. The use of automation helps to ensure that enterprise asset inventory is current, accurate, and complete.

2.2.2 Determination of Potential Threats

The enumeration of potential threat sources and the threat events that those sources could initiate is the second prerequisite for the identification of potential risk scenarios. Figure 7 represents part B of the Risk Description cell of the CSRR. Because information and technology exist in many forms, a broad approach to modeling threats supports comprehensive risk identification.

Figure 7: Threats as an Input to Risk Scenario Identification (Part B)
2.2.2.1 Threat Enumeration

Many public- and private-sector processes are available to help enumerate threats. One example is the OCTAVE Allegro method from Carnegie Mellon University’s Software Engineering Institute [10]. That model includes “identification of Areas of Concern,” a process for determining the “possible conditions or situations that can threaten an organization’s information asset(s).” The OCTAVE Allegro approach describes a process where risk managers create a tree diagram of various threats based on:

- Human actors using technical means;
- Human actors using physical methods;
- Technical problems, such as hardware and software defects, malicious code (e.g., viruses), and other system-related problems; and
- Other problems that are outside of the control of an organization (e.g., natural disasters, unavailability of critical infrastructures).

Enumeration of threats can be performed as a “top-down” analysis that considers important assets that might be threatened or as a “bottom-up” analysis that considers what an unknown threat might attempt to accomplish. Table 3 provides an example excerpt of a threat analysis.

<table>
<thead>
<tr>
<th>Source Type</th>
<th>Motivation</th>
<th>Threat Action</th>
<th>Assets Affected</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insider</td>
<td>Accidental, Intentional</td>
<td>Disclosure</td>
<td>Legal documents related to an upcoming merger, sales records, designs from the research & development division</td>
</tr>
<tr>
<td>Insider</td>
<td>Intentional</td>
<td>Disclosure</td>
<td>Physical files from Personnel Dept., physical design drawings from manufacturing</td>
</tr>
<tr>
<td>External</td>
<td>Accidental</td>
<td>Disclosure</td>
<td>Remote access account info for maintenance service staff</td>
</tr>
<tr>
<td>External</td>
<td>Intentional</td>
<td>Destruction</td>
<td>Student record database</td>
</tr>
<tr>
<td>External</td>
<td>Intentional</td>
<td>Disclosure</td>
<td>Patient medical records database (e.g., ransomware)</td>
</tr>
<tr>
<td>Software Defects</td>
<td>n/a</td>
<td>Modification</td>
<td>Financial transaction database (corruption)</td>
</tr>
<tr>
<td>Software Defects</td>
<td>n/a</td>
<td>Interruption</td>
<td>Financial transaction database (outage)</td>
</tr>
<tr>
<td>System Crashes</td>
<td>n/a</td>
<td>Interruption</td>
<td>Retail e-commerce site, Payroll processing system, manufacturing automation</td>
</tr>
<tr>
<td>Utility Outage</td>
<td>n/a</td>
<td>Disclosure</td>
<td>Enterprise network connections, e-commerce data center</td>
</tr>
<tr>
<td>Natural Disaster</td>
<td>n/a</td>
<td>Interruption</td>
<td>Enterprise network connections, e-commerce data center</td>
</tr>
</tbody>
</table>

Threat enumeration should consider potential motivation or intent. Accidental and intentional threat activity can each have significant impacts, but the evaluation, treatment, and monitoring of each type of activity will vary based on that motivation. Motivation will also have some bearing on the likelihood calculation (as described in subsequent sections).

Note that the list above includes physical security considerations. Numerous physical issues (e.g., theft, mechanical failures) can affect digital and logical devices, so both logical and physical threat sources should be considered.
Practitioners consider various factors for each of these threat sources based on the understanding of valuable enterprise assets, as determined in Section 2.2.1. Example considerations include:

- What might a human actor accidentally disclose, modify, or destroy?
- What information or technology might a person (e.g., a disgruntled employee) intentionally disclose, interrupt, or delete?
- Are there threat conditions that might be introduced by supply chain partners, such as outside service providers?
- What similar considerations might apply to accidents or intentional actions from an outside source using technical means?
- What technical flaws or malicious code might affect valuable systems, leading to adverse impacts on enterprise objectives?
- What natural disasters or utility outages might have harmful effects?

Risk managers should develop a reasonable list of potential threats based on practical and imaginative scenarios, particularly in light of the assets identified in earlier processes. The extent of this list depends on the direction of senior leaders. While some stakeholders may prefer fewer risks in the register, it is important to remember that any risks that are not identified at this stage will not be part of the subsequent risk analysis and may introduce an unforeseen vulnerability.

2.2.2.2 Reducing Unwanted Bias in Threat Considerations

While cybersecurity threat discussions often focus on the intentional and adversarial digital attack, it is important that all risk practitioners consider a broad array of threat sources and events. In addition, while highly unlikely scenarios might not need to be listed (e.g., a meteorite crashing into the data center), risk managers should avoid dismissing threats prematurely. For these reasons, practitioners will benefit from identifying and overcoming potential bias factors in enumerating potential threat sources and the events they might cause. Table 4 describes some of these bias issues as well as methods for addressing those issues.

<table>
<thead>
<tr>
<th>Bias Type</th>
<th>Description</th>
<th>Example</th>
<th>Countermeasure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overconfidence</td>
<td>The tendency to be overly optimistic about either the potential benefits of an opportunity or the ability to handle a threat.</td>
<td>Notion that “our users are too smart to fall for a phishing attack.”</td>
<td>Detailed and realistic risk analysis (see Section 2.4) helps to evaluate the true probability of threats.</td>
</tr>
<tr>
<td>Group Think</td>
<td>A rationalized desire to miscalculate risk factors based on a desire for conformity with other members of a group or team.</td>
<td>A group member may not want to be the only one to express concern about a given threat or opportunity.</td>
<td>Use of individual input and subject matter expert judgement (e.g., Delphi Technique) helps avoid the risk that group-based threat discussions might discourage brainstorming.</td>
</tr>
</tbody>
</table>
Following Trends
Over- or under-valuation of threats due to irrational consideration of recent hype that can result in inappropriate risk response. Assuming that any digital challenge can be addressed and solved through application of “machine learning” and “artificial intelligence.” Staying informed about the details of current threat patterns. Combined with input from subject matter experts, this helps avoid “following the herd” to unreasonable conclusions.

Availability
Tendency to over-focus on opportunities or issues that come readily to mind because one has recently heard or read about them. Concern that VPN confidentiality is insecure because quantum computing will make modern encryption obsolete and unreliable. Detailed and realistic risk analysis (Section 2.3) helps to evaluate the true probability of threats.

2.2.2.3 Threat Enumeration Through SWOT Analysis
While it is critical that enterprises address potential negative impacts on mission and business objectives, it is equally important (and required for federal agencies) that enterprises also plan for success. OMB states in Circular A-123 that “the profile must identify sources of uncertainty, both positive (opportunities) and negative (threats)” [6].

One method for identifying both potential positive and negative risks is through the use of a SWOT (strength, weakness, opportunity, threat) analysis. Because effective risk management is achieved by balancing potential benefits against negative consequences, a SWOT analysis provides a visual method for considering these factors. Table 5 provides an example of an overarching SWOT analysis. A similar exercise could be performed at any level of the enterprise, including for an information system or cyber-physical system.

Table 5: Example SWOT Analysis

<table>
<thead>
<tr>
<th>Strengths</th>
<th>Weaknesses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Effective communication among a small office with co-located staff</td>
<td>Few dedicated IT and Information Security employees</td>
</tr>
<tr>
<td>Online email and financial applications mean no local servers to support and protect</td>
<td>Many endpoints are laptops that could be lost or stolen</td>
</tr>
<tr>
<td>Modernized office desktop equipment with current operating systems and connectivity</td>
<td>Office laptops do not employ full-disk encryption</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Opportunities</th>
<th>Threats</th>
</tr>
</thead>
<tbody>
<tr>
<td>A newly awarded contract will significantly increase revenue and reputation</td>
<td>Visibility from contract announcement may cause adversaries to target the enterprise</td>
</tr>
<tr>
<td>Expansion of services into software development and remote administration services will enable company growth</td>
<td>Information security requirements included in the terms & conditions of the new contract increase the criticality of cybersecurity improvement</td>
</tr>
<tr>
<td>Funds have been allocated to improve cybersecurity improvement</td>
<td>Additional service offerings (e.g., development and remote administration) increase cybersecurity risks</td>
</tr>
<tr>
<td>Third-party partners may be able to help us quickly ramp up new service offerings</td>
<td>Supply chain partners may bring additional security risks to be considered and managed</td>
</tr>
</tbody>
</table>
2.2.2.4 Use of Gap Analysis to Identify Threats

As part of the threat modeling exercise, practitioners can benefit from evaluating a comparison of current conditions to more desirable conditions, then analyzing any gaps between those to identify potential improvements. This process can be iterative in that the organization may not know the current state until after several rounds of risk management activities. Similarly, practitioners may not fully know the desired state until after several iterations of identifying, assessing, analyzing, and responding to risks. Despite this challenge, gap analysis can be a useful tool to include as part of a broad methodology.

NISTIR 8286 provides an example of the process described by the NIST Cybersecurity Framework [5]. This framework describes a set of activities that consider the five functions:

1. Identify what assets are important for achieving enterprise objectives.
2. Protect those assets from known threats and vulnerabilities.
3. Detect risk events on those assets in an efficient and effective manner.
4. Respond to such risk events rapidly and effectively.
5. Recover from any disruptions in accordance with enterprise strategy.

The framework decomposes the functions into categories, each of which is further described in strategic and tactical outcomes (subcategories.) For each subcategory, the framework recommends the creation of profile artifacts that document the current and desired (or target) policies, processes, and practices in each subcategory. By documenting the “as-is” outcomes, organizations can consider potential risk implications, including potential threat events. That information will later help to develop target state profiles. Table 6 provides an example excerpt from a current profile with example threat considerations.

Table 6: Cybersecurity Framework Profiles Help Consider Threats

<table>
<thead>
<tr>
<th>ID</th>
<th>Category</th>
<th>Current State</th>
<th>Threat Consideration</th>
</tr>
</thead>
</table>
| ID.AM | Asset Management | • Hardware and software are tracked, but inventory is not always accurate.
• Network flows are not mapped.
• Asset classification is performed and is effective.
• Internal security roles are defined but not those of supply chain partners. | • Internal user (adds a non-compliant device; because a device is not in inventory, scans may miss it as a host so vulnerabilities may go undetected.)
• External adversary (could gain network access and activities might not be distinguished from unmapped, typical traffic patterns.)
• External partner (may not fulfill responsibilities for protecting, detecting, responding to incidents.) |
| ID.BE | Business Environment | • Priorities and responsibilities based on the Commercial Facilities Sector.
• Dependencies and resilience requirements anecdotally understood but not more formally recorded. | • Power failure (causes customers [e.g., emergency services, hospitals] with critical dependencies to experience an extended loss of internet service due to lack of service level agreements and documented resilience requirements.) |

21
<table>
<thead>
<tr>
<th>PR.AT</th>
<th>Awareness and Training</th>
<th>• All staff have been trained in physical and information security practices during onboarding.</th>
<th>• Internal user (may fall victim to an email phishing attack due to the lack of sufficient training.)</th>
</tr>
</thead>
</table>
| PR.DS | Data Security | • Inbound and outbound remote connections are encrypted.
• Laptops with proprietary facility information do not have full-disk encryption.
• Email systems are configured to provide limited data loss prevention. | • **External adversary** (who has gained network access may quickly recognize and exfiltrate unencrypted, sensitive information in databases or within cleartext network traffic.)
• **Internal user** (may unintentionally send sensitive records without encryption, while data loss prevention tools might impede that error.) |
| DE.CM | Security Continuous Monitoring | • Physical security is monitored through cameras and access log reviews.
• Information security logs are aggregated and stored securely.
• Intrusion Detection products monitor for risks. | • **Internal User** (steals valuable equipment due to lack of diligent video and log monitoring.)
• **External User** (is not quickly detected and thwarted due to ineffective monitoring.) |
| RS.RP | Response Planning | • Response processes and procedures are executed and maintained.
• Supply chain partners have not been included in planning or exercises. | • **Supply Chain Partner** (is not able to provide the Security Operations Center with system log information and is unable to restore data to a known-good recovery point.) |
| RC.RP | Recovery Planning | • Incident recovery processes are included in response plans.
• Lack of recovery objectives and metrics impedes ability to confirm that risks are treated in accordance with risk appetite and risk tolerance. | • **Software failure** (could cause an outage in an essential business application that exceeds organizational directives regarding maximum tolerable downtime.) |

Another source of ideas for threat modeling is NIST SP 800-53, *Security and Privacy Controls for Information Systems and Organizations*, which provides a catalog of security and privacy controls.\(^{16}\) A companion document, SP 800-53A, *Assessing Security and Privacy Controls in Federal Information Systems and Organizations: Building Effective Assessment Plans*, documents methods for assessing the effectiveness and suitability of those controls for various purposes [12]. Through the examination of controls and assessment methods, practitioners can observe conditions that align with enterprise situations, sparking discussions about potential threats. For example:

A practitioner can consider control AC-17, Remote Access, which states, “The use of encrypted VPNs provides sufficient assurance to the organization that it can effectively treat such connections as internal networks if the cryptographic mechanisms used are implemented in accordance with applicable laws, executive orders, directives, regulations, policies, standards, and guidelines.” The practitioner should then consider the

\(^{16}\) NIST provides a set of Online Informative References Validation Tool and Focal Document Templates, including those for SP 800-53, that assist with aligning and comparing various information security models. The templates are available at: https://www.nist.gov/cyberframework/informative-references/validation-tool-templates.
threat conditions that would make encryption necessary (e.g., preventing eavesdropping, ensuring authorization) and perhaps identify regulatory compliance requirements. Considering controls and their assessments can inspire the imagination and support effective threat modeling.

As noted in NISTIR 8286, “organizations should not wait until the risk register is completed before addressing obvious issues,” such as those issues that arise from the threat modeling exercises. CSRM practitioners, in collaboration with ERM stakeholders, will need to continually define and refine the timing of various risk identification processes. An organization that delays risk management until the end of a detailed and exhaustive risk identification activity may find that many risks become realized while the practitioners are still working. At the other extreme, immediately beginning risk management when only a few risks have been catalogued can hamper prioritization or cause a continual recalculation of risk importance as new loss event types are identified and added. Threat identification methods may also discover quick wins (e.g., changing default passwords for devices and applications, enabling cryptography settings, locking file cabinets) that can be efficiently resolved, immediately addressed, and documented in the risk register while other risk identification activities continue.

2.2.2.5 Technical Threat Enumeration

While threat sources include many factors, because cybersecurity risks are so closely associated with information and technology, technical threats are likely to comprise the majority of those enumerated. The complexity and rapid evolution of technical threats make it particularly worthwhile to gain insights from reputable partners regarding how to prepare for, recognize, and respond to these threat sources.

For the enterprise to be successful in protecting information and technology, and for it to rapidly detect, respond, and recover from threat events quickly, the organization may choose to apply an intelligence-driven approach, commonly referenced as Cyber Threat Intelligence (CTI). Using sources of information and data such as those described in Table 7, practitioners will gain insights into adversaries’ tactics, techniques, and procedures (TTPs) as well as other information about how to prepare and for what conditions to monitor.

Industry-based threat intelligence sharing organizations are available for the exchange of CTI among members or subscribers. For example, DoD’s Information Sharing Environment (DISCE) is a government sharing program that facilitates CTI sharing between its Defense Industrial Base (DIB) members and participants. Another example is that of information sharing analysis centers (ISACs) and organizations (ISAOs). Using intelligence provided by such sources, risk practitioners can make threat-informed decisions regarding defensive capabilities, threat detection techniques, and mitigation strategies. By correlating and analyzing cyber threat
information from multiple sources, an organization can also enrich existing information and make it more actionable.\footnote{Cybersecurity information sharing is discussed in detail in NIST SP 800-150, \textit{Guide to Cyber Threat Information Sharing}, https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-150.pdf}

\begin{table}[h]
\centering
\begin{tabular}{|l|p{0.7\textwidth}|}
\hline
\textbf{Commercial Threat Intelligence sources} & Various commercial organizations provide subscription-based services that supply enterprise intelligence regarding potential threat actors and events. Often these intelligence providers maintain an understanding of enterprise asset types; the commercial provider then provides information about what actions specific threat sources have conducted against similar assets elsewhere. \\
 & Gartner Inc. Reviews for Security Threat Intelligence Products and Services
https://www.gartner.com/reviews/market/security-threat-intelligence-services \\
\hline
\textbf{Automated Indicator Sharing (AIS) feeds} & Both public- and private-sector organizations (e.g., DHS, Financial Sector Information Sharing and Analysis Center [FS-ISAC]) provide automated data feeds with information about existing or imminent threats, and vulnerabilities being exploited by those threats. \\
 & Example: DHS Cybersecurity and Infrastructure Security Agency (CISA)
\hline
\textbf{Information Sharing and Analysis Centers and Organizations (ISACs and ISAOs)} & Many industry types, including critical infrastructure sectors, experience sector-specific threat types. Information Sharing and Analysis Centers (ISACs) provide members with support and information to help conduct risk assessment and maintain risk awareness. Some ISACs offer in-house applications for sharing of indicators of compromise (IoC) and other threat-based alerts. \\
 & Example: National Council of ISACs (https://www.nationalisacs.org/) \\
\hline
\textbf{Technical Threat Category Models} & Many industry models are available for performing technical threat modeling, particularly in software development context. Like the threat trees described in Section 2.2.2, such models help guide collaboration and brainstorming activities to consider what-if scenarios including threats, vulnerabilities, and their impact. \\
\hline
\textbf{MITRE ATT&CK®} & Knowledge base of adversary tactics and techniques based on real-world observations. Used as a foundation for development of specific threat models and methods, helping enterprise risk practitioners to consider the threat conditions that an adversary might apply and the events that adversary might seek to cause. Recent addition of pre-attack indicators and methods can help prepare for and detect signs of an impending event. \\
 & https://attack.mitre.org/ \\
\hline
\textbf{NSA/CSS Technical Cyber Threat Framework (NTCTF) v2} & While this model does not help identify sources, it provides a broad listing of the types of events a threat source might attempt to initiate, particularly a motivated human adversary. By defining actions such an adversary might desire to perform, the NTCTF supports an imaginative approach to enterprise threat modeling. \\
\hline
\end{tabular}
\end{table}

By understanding typical attack patterns, enterprises can mount defenses to improve resilience. For example, understanding the methods of various attackers in privilege escalation or lateral movement will help risk managers plan effective preventive and detective controls. Because technical attacks can move rapidly, preparation is paramount. Updated, rapid sharing of indicators...
of compromise (such as those provided through Structured Threat Information Expression [STIX]) helps enterprise practitioners better detect and respond to emerging threats.\footnote{STIX is one of several data exchange specifications for cybersecurity information sharing. More information is available at: \url{https://oasis-open.github.io/cti-documentation}}

Because of the time-critical nature of cybersecurity risks, introducing automation into the threat intelligence analysis enables an enterprise to reduce the potential delays and errors that a human-only approach can introduce. While automated information sharing will not entirely eliminate threats, it can help an organization stay aware of and prepared for new or evolving types of attacks. One example of an AIS is that offered by the U.S. Department of Homeland Security (DHS) in accordance with the U.S. Cybersecurity Information Sharing Act of 2015. The DHS AIS site includes the following information:

The free (DHS) AIS capability enables the exchange of cyber threat indicators between the Federal government and the private sector at machine speed. Threat indicators are pieces of information like malicious IP addresses or the sender address of a phishing email (although they can also be much more complicated).

AIS participants connect to a DHS-managed system in the Department’s National Cybersecurity and Communications Integration Center (NCCIC) that allows bidirectional sharing of cyber threat indicators. A server housed at each participant’s location allows them to exchange indicators with the NCCIC. Participants will not only receive DHS-developed indicators but can share indicators they have observed in their own network defense efforts, which DHS will then share back out to all AIS participants.\footnote{The NCCIC is part of the Cyber Information Sharing and Collaboration Program (CISCP), available at: \url{https://www.cisa.gov/ciscp}}

An analysis of network packet capture data can help identify potential threats based on observed traffic. Armed with understanding from CTI sources regarding TTPs and IoCs, practitioners will be able to observe potential indicators and likely attack paths. In conjunction with past and existing cyber incident information, organizations can use CTI to support internal risk communication and risk analysis and to improve risk scenario development. In addition to the technical advisories, the alerts and analysis reports at the DHS National Cyber Alert System provide information about recent TTPs and how they have affected various enterprises.

\subsection{Vulnerability Identification}

For any of the various threat conditions described above to result in an impactful risk, each needs a vulnerable or predisposing condition that can be exploited. The identification of vulnerabilities or conditions that a threat source would use to cause impact is an important component of risk identification and represents part C (Figure 8) of the CSRM risk scenario.
2.2.3.1 Determination of Vulnerabilities and Predisposing Conditions

While it is necessary to review threats and vulnerabilities as unique elements, they are often considered at the same time. Many organizations will consider a given loss scenario and evaluate both, “What threat sources might initiate which threat events?” and “What vulnerabilities or predisposing conditions might those threat sources exploit to cause a loss event?”20 Much of the information provided through CTI will also inform understanding of vulnerability. For example, analysis of the infamous 2017 WannaCry ransomware attack includes understanding of the threat source and motive (a known and capable cybercrime group seeking financial gain), the intended threat event (deliberate modification, interruption, and potential destruction of key enterprise information assets), and the vulnerability to be exploited by the adversary (CVE-2017-0144).

Practitioners should (within the scope agreed upon in activities described in Section 2.1) systematically consider the potential physical and logical vulnerabilities and predisposing conditions that can be exploited by a threat source. This consideration can be facilitated through many of the methods described in Table 7, including:

- Use of commercial intelligence sources that provide threat and vulnerability information. Many providers will take note of a customer’s enterprise information and technology (e.g., hardware, software, and operating systems in use) to alert the organization to any vulnerabilities in those platforms that are known to be targeted by existing threat sources.

- Integration of AIS feeds that may include automated alerts regarding known vulnerabilities. Many security incident event monitoring (SIEM) products and intrusion detection systems (IDS) are able to help enterprises associate asset inventory information with AIS alerts to support incident reporting and monitoring.

- Use of a threat tree model (e.g., the diagram in the OCTAVE ALLEGRO guidance) to consider various human factors, technical defects, software flaws, physical entry points, utility dependencies, and supply chain vulnerabilities that present vulnerabilities.

- A review of the various threat categorization models (e.g., MITRE ATT&CK®) can inspire internal discussions, such as “What vulnerabilities might enable execution of malicious code?” or “What predisposing conditions foster lateral movement within the enterprise?”

20 There are many similarities among the threat identification and vulnerability identification activities. These may seem redundant, but it is important to understand both the sources of potential harm (threats) and the conditions that those threat sources might exploit (vulnerabilities).
As with threat modeling, practitioners will also benefit from applying known risk management frameworks as a tool for vulnerability discovery. For example, a review of the controls catalog in SP 800-53 may lead to consideration of control MP-3, Media Marking, which can then inspire discussion regarding potential vulnerabilities that might result from unmarked (or improperly marked) system media.

Notably, the enterprise will benefit from the advice of external specialists with expertise in identifying and categorizing various types of vulnerabilities. Some entities, such as those operating moderate- and high-impact federal information systems, require formal penetration testing to identify potential vulnerabilities and the exploitability of those conditions. In addition to some government and law enforcement agencies that are able to assist enterprises with evaluating physical and technical vulnerabilities, many commercial organizations offer these services.

2.2.3.2 System Complexity as a Vulnerability

NISTIR 8286 states that additional risks can result from the dynamic complexity of enterprise information and technology. In fact, that complexity is itself a vulnerability to be considered and documented. Evaluation of “what-if” scenarios regarding potential vulnerabilities, especially those affecting critical assets, should include the determination of critical dependencies on other resources. Because risk identification and risk analysis are iterative, risk analysis methods (such as the Event Tree Analysis described in Section 2.3.2.2) will help determine those dependencies. Having made that determination, those critical dependencies can be recorded in the BIA (described in Section 2.2.1.1). Risk identification then includes scenario discussions that evaluate complex or cascading events as vulnerabilities to be identified.

For example, the 2003 Northeast Power Grid interruption demonstrated how several moderate risk events cascaded into a national emergency. Another example of systemic risk is that of some financial institutions that were impacted by cascading risk in 2008. In this case, large enterprises experienced catastrophic events because they had interdependencies with other banks, insurance companies, and customers. When identifying and recording risks in the register, such emerging risk conditions created by the interdependence of systems and counterparty risk must also be identified, tracked, and managed using the same methods described for more straightforward scenarios.

As with other CSRM components, vulnerability identification can be considered through either qualitative or quantitative means. An organization might determine it “has a large number of high severity vulnerabilities” based on an internal review. A qualitative review might result from a gap analysis between NIST Cybersecurity Framework Current State and Target State profiles since such an analysis is intended to foster discussion and communication regarding risks but will not likely produce a highly specific quantitative result.

More quantitative vulnerability identification results from a formal testing approach that examines a discrete set of enterprise resources for a specified set of known vulnerabilities. Particular vulnerability assessments (e.g., software code review or simulated phishing attack) can
provide quantitative results. Results of a formal assessment might include a specific number of identified issues, which can be used to help complete the likelihood column of the risk register.

2.2.3.3 Vulnerability Identification Automation

The complexity and interconnection of technology results in many thousands of potential vulnerabilities. Because of this broad scale, combined with a rapidly evolving technical landscape, automation can improve the enterprise’s ability to manage relevant vulnerabilities. Automation also enables a more timely monitoring of risk as well as adaptation to changing risk scenarios.

Hardware and software products are a significant source of vulnerability for any enterprise, whether through inherent flaws in those products or through errors in product implementation or application. To help support the consistent identification and monitoring of these vulnerabilities, security organizations have developed broad clearinghouses of vulnerability information. For example, NIST operates the National Vulnerability Database (NVD) and the National Checklist Program (NCP) to support vulnerability and security configuration management via catalogs of:

- Configuration checklists for securing key information technologies;
- Information about secure configuration settings (with associated SP 800-53 security controls);
- Vulnerabilities (with associated severity scores);
- Standardized security checklists for automated security configuration scanning (e.g., security checklists in Security Content Automation Protocol format21); and
- Products that use standards to identify and report vulnerabilities.

Automated data feeds, such as those described above, enable enterprise monitoring tools to ingest information about known vulnerabilities in near-real-time and compare those with the asset inventory. A key factor in that data feed is information regarding the date that a vulnerability was publicly disclosed. The severity of a given vulnerability increases exponentially after it becomes publicly known, so it is important that practitioners prioritize remediation of flaws. The risk of the vulnerability must be balanced with the risk of implementing a fix for that issue too quickly. Automated tools can help monitor and maintain that balance through specific reports regarding severe vulnerabilities that have not been patched within a reasonable time. An example of this is the DHS AWARE (Agency-Wide Adaptive Risk Enumeration) scoring methodology used by the DHS Continuous Diagnostics and Mitigation (CDM) risk management dashboard. AWARE is not intended to identify all issues, but the scoring methodology helps to highlight and prioritize cybersecurity risks that are likely to exceed allowable risk tolerance (e.g., known software vulnerabilities on critical assets that are not mitigated within a designated grace period).22

21 Information about the NIST SCAP is available at https://csrc.nist.gov/projects/security-content-automation-protocol/
22 More information about the DHS AWARE scoring method is available from: https://www.cisa.gov/cdm-training
2.2.4 Determining Potential Impact

The final prerequisite for creating a practical list of risk scenarios for the risk register is the determination of the potential impact of the threats and vulnerabilities described above. The section below describes the completion of part D of the CSRM Risk Description column (Figure 9).

![Diagram of Adverse Impact Inclusion in Risk Scenario Identification (Part D)]

Discovery activities throughout Section 2.2 may have already highlighted potential adverse impacts to explore. Description of the impact is a key element for enterprise stakeholders and represents the connection between cybersecurity risks and the enterprise objectives that would be affected by those risks. Reviewing the key enterprise objectives, as identified in scoping, and armed with a broad list of potential threats and vulnerabilities, personnel can develop a list of realistic scenarios.

While some types of impact may not be immediately apparent, the long-term effects can be significant. For example, consider a situation where a criminal has gained unauthorized access to an enterprise system and has exfiltrated a large amount of confidential data. If that criminal is cautious, there may not be any disruption of operations. In fact, sometimes cyber criminals actually try to improve the health of a victim’s technology to ensure that it will be available for their malicious activity. In this case, the system may seem to be working fine—even better than ever—and then later, the enterprise realizes that a catastrophic loss has occurred.

Notably, impact scenarios can be considered in light of a continuum rather than as a binary state. Many impacts will cause mission degradation or reduced performance and may not exhibit themselves as a full interruption of service or capability. This consideration should be factored into risk prioritization and analysis.

Risk scenarios should be assessed in terms of both initial impact and downstream consequences. Factors to consider include:

- Primary impact – the initial impact following a negative cybersecurity event, such as the downtime when a website is unavailable to customers
- Secondary impact – A loss event that occurs subsequent to the primary impact as a downstream or cascading impact to the enterprise

For example, consider a large enterprise that experiences a breach of confidential customer data. In this example, an external attacker with criminal intent might attack a highly critical and sensitive customer database through a software vulnerability in the internet-facing website. The initial impact may be minimal since exfiltration is not disruptive, and the company may not even
detect an issue. Once the problem has been discovered, there may be primary impact, such as:

- Cost of a focused investigation into the breach
- Price of restitution for customer losses (e.g., credit monitoring services)
- The expense of third-party specialists to provide forensic expertise and to ensure adequate mitigation of the cybersecurity incident
- Cost of immediate capital investment to address cybersecurity issues that contributed to the breach

Long-term or secondary effects may be more impactful. They can include:

- Loss of market share due to eroded trust in the company’s reputation
- Revenue losses from organizations that choose not to renew contracts
- Fines and penalties from regulators

When considering the impact component of risk scenarios, it is important to consider the frequency of potential consequences. A risk event of moderate impact that occurs weekly may, over time, represent a higher risk than that of a major event that occurs infrequently. Such temporal factors may be valuable for stakeholders’ understanding and reporting of risks. For example, senior leaders may wish to see the impact of a risk expressed as the loss for each occurrence (the single loss expectancy, or SLE), or they might prefer to see the total loss for that risk over an annual period (the annualized loss expectancy, or ALE). Consistent documentation of impact frequency is also important for supporting the integration and aggregation of risk registers.

As with other risk components, impact considerations may be either qualitative or quantitative, as illustrated by the examples in Table 8.

Table 8: Example Negative and Positive Impact Scenarios

<table>
<thead>
<tr>
<th>Description of negative consequences (qualitative)</th>
<th>Description of negative consequences (quantitative)</th>
<th>Description of positive impact (qualitative)</th>
<th>Description of positive impact (quantitative)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A software flaw results in a significant issue with the integrity of enterprise financial systems, necessitating a major outage and extended rework to validate existing records and verify proper operation.</td>
<td>A ransomware attack has performed unauthorized encryption of 112,000 patient records; remediation and repair of the affected health information system are likely to disrupt operations for 48 hours resulting in a $1.14 million primary loss.</td>
<td>New machine learning technology would significantly increase the throughput of the enterprise research team and could lead to expansion into new marketing areas.</td>
<td>The addition of high-availability services for the enterprise web server will improve availability from 93.4% to 99.1% over the next year and will also improve market share by 3% due to improved customer satisfaction and resulting reviews.</td>
</tr>
</tbody>
</table>
2.2.5 Recording Identified Risks

Using the four elements described in earlier subsections (i.e., key assets, threats, vulnerabilities, and impacts), practitioners can record relevant cybersecurity risks in the risk register.

<table>
<thead>
<tr>
<th>ID</th>
<th>Priority</th>
<th>Risk Description</th>
<th>Risk Category</th>
<th>Current Assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>TBD</td>
<td>External criminal attacker exploits a software vulnerability in the internet-facing customer data site, resulting in “significant” customer confidential data exfiltration with revenue, reputation, and regulatory implications.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>TBD</td>
<td>A flood event enters the first-floor data center, causing water damage to several critical servers and interrupting service to more than 10% of customers.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 10: Example Risk Register with Sample Risk Descriptions

The use of detailed risk scenarios helps ensure that all understand the risks being considered and the impacts on organizational objectives. The risk description need not be exhaustive but should include sufficient information to support subsequent analysis, evaluation, treatment, and monitoring. An example risk description based on the data breach illustration above might say:

External criminal attacker exploits a software vulnerability in the internet-facing customer data site, resulting in “significant” customer confidential data exfiltration with revenue, reputation, and regulatory implications.

In support of ERM, practitioners need to continually balance an understanding of what mission objectives can be affected by various threats (a top-down consideration) and how various threats can impact enterprise objectives (a bottom-up consideration). Both sets of conditions are continually changing, so CSRM is an iterative activity of ongoing discovery, communication, response, and monitoring. CSRM itself is conducted as part of a broader ERM life cycle. In addition to the known risks that are already being monitored, there may also be developing or emergent risks that are yet to be fully defined but might disrupt enterprise objectives in the future.

Each of the activities in Section 2.2 is iterative and supports the top-down/bottom-up approach described above. An initial list of scenarios can be developed and used to consider threats and vulnerabilities. As threats and vulnerabilities are explored, those might lead to the discovery of additional risk scenarios to be considered. This iterative process can be adjusted and tailored to develop and maintain a practical and manageable set of risks.

As an example, consider some high-value assets that are important to a local hospital and issues that could jeopardize those assets. Some top-down considerations may include:
• Patient record database – a ransomware attack could encrypt critical records; a network outage could disrupt availability; an authentication issue could hamper the ability to log in; a software upgrade could inadvertently corrupt the data.

• Pharmaceutical system provided by a third party – a malicious (or tricked) insider could alter pharmacy records, resulting in the incorrect medication being given to a patient; the malicious external party could break in and disclose or destroy pharmacy records; a construction incident could sever network communications to the service.

• Point of care (PoC) terminals – authentication system failure could disrupt the ability to provide patient care; user data error could result in inaccurate and potentially unsafe patient conditions; an improperly tested software patch could render terminals unusable.

Bottom-up considerations would start with threats and vulnerabilities and consider where those can lead:

• Ransomware attack through a social engineering attack (e.g., web-based malware drive-by attack, email phishing attack) – Attack could render many systems unreadable, including patient care databases, pharmacy records, billing systems, and payroll.

• Network outage due to a firewall malfunction – An internal failure of a major switch or router could result in localized failures of PoC terminals, patient in-processing, and medical care services (e.g., review of radiology reports). External connectivity failure would disrupt electronic mail, clinical professional services, pharmaceutical processing, some laboratory results.

• Physical hardware malfunction through a failed component – risk technical equipment (e.g., televisions) could be rendered unavailable with few consequences. -risk technology (e.g., patient scanners) malfunctions could fail to provide timely and accurate patient results. Awaiting replacement systems could lead to potential injuries (e.g., through fire or electrical shock) or delays in patient care.

Thorough risk identification in realistic, and mission-oriented scenarios help to communicate the connection between various uncertainties and the mission objectives that might be affected.

2.2.6 Risk Categorization

Each risk in the CSRR should also indicate the relevant risk category (indicated by the yellow dashed box in Figure 11) based on the risk strategy guidance described in Section 2.1. Categories could be any taxonomy that helps aggregate risk information and supports the integration of cybersecurity risk registers for ERM decision support. Example risk categories include:

• Risk framework groupings, such as NIST RMF families (e.g., Access Control, Supply Chain Risk Management)

• Threat types, such as intentional disclosures, unintended modifications, system failures, or natural disasters

• Impact considerations based on business units affected or information systems impacted
Consistent risk categorization supports effective integration of cybersecurity risks throughout the enterprise and aggregation into an enterprise cybersecurity risk register. That information ultimately becomes part of the overall Enterprise Risk Register and the Enterprise Risk Profile.

2.3 Detailed Risk Analysis

<table>
<thead>
<tr>
<th>ID</th>
<th>Priority</th>
<th>Risk Description</th>
<th>Risk Category</th>
<th>Current Assessment</th>
<th>Risk Response Type</th>
<th>Risk Response Cost</th>
<th>Risk Response Description</th>
<th>Risk Owner</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Continually Communicate, Learn, and Update

![Figure 11: CSRR Highlighting Risk Category and Current Assessment Columns](image)

Risk analysis enables to determination of the likelihood of impact and priority of treatment. This section helps to complete the likelihood and impact columns of the cybersecurity risk register and the exposure column that represents the product of those two values. These columns are illustrated by the solid red box in Figure 11.

Because cybersecurity risk reflects the effect of uncertainty on or within a digital component that supports enterprise objectives, risk analysis helps to measure both the level of uncertainty entailed by the risk scenario and the extent of the uncertain effect upon enterprise objectives. Deterministic models can provide a detailed analysis of likelihood and impact where sufficient information is available for such a determination. In other cases, the randomness of uncertainty and the many factors involved in complex information and technology better support a probabilistic (or stochastic) methodology.

2.3.1 Selecting Risk Analysis Methodologies

International Electrotechnical Commission (IEC) standard 31010:2019, *Risk management — Risk assessment techniques*, states, “In deciding whether a qualitative or quantitative technique is more appropriate, the main criteria to consider are the form of output of most use to stakeholders and the availability and reliability of data. Quantitative techniques generally require high quality data if they are to provide meaningful results. However, in some cases where data is not sufficient, the rigor needed to apply a quantitative technique can provide an improved understanding of the risk, even though the result of the calculation might be uncertain” [13]. Note that multiple methodologies can be used, based on enterprise strategy, organization preference, and data availability.
Regardless of the methodologies being applied, it is important to consider as many data points as needed to render a judgement regarding likelihood and impact values. Unfortunately, without supporting data, well-intentioned but misguided methods of risk analysis amount to little more than a guess. In many cases, the application of even a moderate amount of deductive reasoning, combined with various analysis techniques, can render a more accurate and reliable risk analysis. Quantitatively informed qualitative decision-making should be the objective in the absence of purely quantitative-driven decisions.

Analysis considerations are often provided in a qualitative way, such as, “The patient database is at high risk of unauthorized disclosure because we have learned that hackers are targeting health information systems with ransomware, and we have determined that there are numerous vulnerabilities in our health information system.”

In other cases, the analysis can be quantitative, such as in the example below:

The health information system contains about 12,000 records. A successful ransomware breach could cost approximately $1.3M if the data is destroyed or $2.5M dollars if the breach results in a disclosure. We know that the Arctic Zebra APT team has been targeting similar databases; through our understanding of their techniques and those of others, we believe that there is a 70% chance they will target us and a 30% chance (based on internal testing and network scans) that it would be successful. Based on that data, we believe that there is a 21% chance of single loss exposure, or between $273,000 and $525,000. This exposure calculation does not consider additional secondary losses, such as lost revenue due to customer erosion from loss of trust or personal lawsuits against the firm.

Each of these methodologies provides value for the enterprise, and the technique selection should be tailored based on the context and the strategic guidance provided by governance stakeholders. The choice is often driven by the intended outcome and the amount of detailed information available.

When selecting a risk assessment technique, organizations should consider the costs of analysis in light of the desired outcome to help determine the most cost-effective technique. An inexpensive but accurate qualitative analysis that identifies the most risks and leads to mitigating those risks to the best possible degree may be the right move for a particular organization. For others, a highly detailed quantitative risk assessment may require more resources than a qualitative approach but may also provide specific and actionable information that helps to focus attention on important threat scenarios.
2.3.2 Techniques for Estimating Likelihood and Impact

NISTIR 8286 highlights the need for improved risk analysis when estimating and recording the likelihood and impact of cybersecurity events and monitoring to assure that risks remain within acceptable parameters. To improve enterprise risk estimation accuracy and consistency, CSRM practitioners are encouraged to explore the use of tools and processes that support measurable and meaningful risk analysis and reporting.

Some analysis techniques are based on estimates from subject matter experts’ (SMEs) experience and knowledge. Some methods, such as this SME estimation, can be subjective. Other methods are more objective and based on analytical considerations, statistical analysis, and scenario modeling, as well as potentially drawing on knowledge of previous events.

Understanding the intended purpose of the analysis can help one decide which techniques to use. For example, a detailed and quantified approach may be valuable as a basis for a comprehensive review or update of the enterprise cybersecurity approach. Detailed evaluation helps to reinforce defense measures and increase resilience, as in the following example:

Enterprises leaders have learned through an InfraGard alert that there is a high probability that companies in its sector will be targeted by a particular APT group. Because internal cybersecurity risk managers have performed threat modeling based on the MITRE Adversarial Tactics, Techniques, and Common Knowledge (ATT&CK®) and Pre-ATT&CK frameworks, the company was able to quickly consider high-value assets that would most likely be at risk.

A key tactic, technique, or procedure (TTP) of this attack is through “password spraying” brute force login attempts. It is known that several critical systems have not yet been updated to support multi-factor authentication and would be vulnerable to such an attack. A poll of the security leaders in the organization (using a Delphi exercise) determined that there is a 50-70% chance that the payroll system will be attacked (the mean value was 60%). A successful attack on that system would have a direct and indirect financial impact of between $1.7M and $2.4M US with the most likely impact being $2.0M. Therefore, the risk exposure value for this row of the risk register was established at $1.2M (based on .6 x $2M).

Notably, the example above provides several ranges of estimates. Some industry specialists have indicated that a range of possible values is more helpful and likely more accurate than a single “point estimate.” Additionally, while this example uses the mean values of those ranges to identify the likelihood and the potential impact, the ranges themselves are often recorded in the risk register. In this instance, given a possible impact of “between $1.7M and $2.4M,” the exposure may have been presented as “$1.02M to $1.44M.”

23 It is the intention of this document to introduce the reader to commonly used estimation techniques. The authors defer to other industry resources for comprehensive details regarding how to perform such analyses.
2.3.2.1 Improving Estimation Based on Knowledge of Prior Events

In many cases, information about previous risk events may be helpful when estimating the likelihood and impact of those in the future. For example, practitioners should consult industry literature, their current power companies, or ISPs for descriptions of loss events within a given sector or over a particular time frame. To determine the likelihood of a utility outage, the utility provider can be asked to provide details regarding previous disruptions and their duration.

As an example, consider the example organization in the first row in Table 2: Examples of Risk Appetite and Risk Tolerance. It describes a global retail firm at which a senior leader has expressed the risk tolerance statement that “any outage that exceeds four hours for any customer requires significant corrective action.” Risk practitioners can review the actual availability of that website for the previous year (using a table similar to Table 9.)

<table>
<thead>
<tr>
<th>Month</th>
<th>Total Hours in the Month</th>
<th># of Hours Unavailable</th>
<th>Outage Customer %</th>
<th>Available Hrs (Total hrs-Outage)</th>
<th>Appetite Limit (99.95% of Total)</th>
<th>Tolerance Limit (Total -4 hrs)</th>
<th>Available % (Avail. hrs + Total hrs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jan</td>
<td>744</td>
<td>1</td>
<td>2.4</td>
<td>743</td>
<td>743.628</td>
<td>739</td>
<td>99.87%</td>
</tr>
<tr>
<td>Feb</td>
<td>672</td>
<td></td>
<td></td>
<td>672</td>
<td>671.664</td>
<td>668</td>
<td>100.00%</td>
</tr>
<tr>
<td>Mar</td>
<td>744</td>
<td></td>
<td></td>
<td>744</td>
<td>743.628</td>
<td>740</td>
<td>100.00%</td>
</tr>
<tr>
<td>Apr</td>
<td>720</td>
<td>1.5</td>
<td>4.5</td>
<td>718.5</td>
<td>719.64</td>
<td>714.5</td>
<td>99.79%</td>
</tr>
<tr>
<td>May</td>
<td>744</td>
<td></td>
<td></td>
<td>744</td>
<td>743.628</td>
<td>740</td>
<td>100.00%</td>
</tr>
<tr>
<td>Jun</td>
<td>720</td>
<td></td>
<td></td>
<td>720</td>
<td>719.64</td>
<td>716</td>
<td>100.00%</td>
</tr>
<tr>
<td>Jul</td>
<td>744</td>
<td></td>
<td></td>
<td>744</td>
<td>743.628</td>
<td>740</td>
<td>100.00%</td>
</tr>
<tr>
<td>Aug</td>
<td>744</td>
<td></td>
<td></td>
<td>744</td>
<td>743.628</td>
<td>740</td>
<td>100.00%</td>
</tr>
<tr>
<td>Sep</td>
<td>720</td>
<td>2</td>
<td>0.5</td>
<td>718</td>
<td>719.64</td>
<td>714</td>
<td>99.72%</td>
</tr>
<tr>
<td>Oct</td>
<td>744</td>
<td></td>
<td></td>
<td>744</td>
<td>743.628</td>
<td>740</td>
<td>100.00%</td>
</tr>
<tr>
<td>Nov</td>
<td>720</td>
<td>3</td>
<td>1.5</td>
<td>717</td>
<td>719.64</td>
<td>713</td>
<td>99.58%</td>
</tr>
<tr>
<td>Dec</td>
<td>744</td>
<td></td>
<td></td>
<td>744</td>
<td>743.628</td>
<td>740</td>
<td>100.00%</td>
</tr>
<tr>
<td>Yearly</td>
<td>8760</td>
<td></td>
<td></td>
<td>8752.5</td>
<td>8755.62</td>
<td>8704.5</td>
<td>99.91%</td>
</tr>
</tbody>
</table>

In this case, the system did not exceed the risk tolerance since no single outage exceeded four hours, nor did any outage impact more than 5% of customers. While past performance is not a guarantee of future probability, it provides some information that helps inform likelihood estimates. The impact of an outage is likely similar to that in previous iterations; understanding of the probability of an outage, given what is known about prior disruption, helps consider the likely exposure in the future.

When considering each risk in the risk register, practitioners will analyze the likelihood that any risk would result in an impact that would exceed the risk tolerance. That consideration provides a
basis for risk treatment decisions, either to ensure sufficient security controls or to review risk tolerance statements to ensure that they represent reasonable and practical expectations.

2.3.2.2 Three-Point Estimation

One method for considering the likelihood or impact of a risk event is three-point estimation. This method, illustrated in Figure 12, is useful because it considers the judgement of available subject matter experts (SMEs). For example, to determine the impact of a successful phishing attack, the risk estimator could poll an SME regarding:

- The most optimistic (or Best Case) estimate (O),
- A most likely estimate (M), and
- A pessimistic (or worst case) estimate (P).

Figure 12 illustrates the result of an SME estimating a $80K revenue loss due to an attack that would be successful if employees are not properly trained. This first estimate represents a worst-case scenario (pessimistic). The same estimator may suggest that, if the attack were successful but limited in spread, only a $35K impact is likely (optimistic). Finally, the SME may suggest that the most likely impact of recovering from such as successful phishing attack would be $50K.

![Figure 12: Example Three-Point Estimate Graph (Triangle Distribution)](image)

The three datapoints can be categorized as Optimistic ($35K), Pessimistic ($80K), and Most likely ($50K). A simple average of the three numbers (called a Triangular Distribution) is:

24 For better estimates of O, M, and P and to eliminate bias, the estimator should poll multiple SMEs and determine the average of individual O values, M Values, and P values before proceeding with the three-point estimate.

25 Although impact was used in this example, three-point estimating can also be used in determining likelihood.
In this phishing attack scenario, perhaps the estimator believes that the pessimistic and optimistic values are too different and the estimator believes that the “most likely” estimate is a better predictor. The estimator can give greater weight (perhaps 4 times as much) to the “most likely” value using the following standard formula (called the Average for a Beta Distribution):

\[EV = \frac{P + 4M + O}{6} = $52.5K \] in this example where O=$35K, P=$80K, and M=$50K

The next question is, “How confident is the estimator regarding this estimated impact of a successful phishing attack?” In three-point estimating, confidence (referred to as sigma, or \(\sigma \)) in the estimated value can be predicted by calculating the standard deviations from the mean. A useful model for determining sigma is \(\sigma = \frac{P - O}{6} \).

Figure 13 illustrates these values graphically. Statistical models have demonstrated that, given the mean (EV) and standard deviation, one can determine the level of confidence (or confidence interval \([CI]\))\(^{26}\) in the financial estimates. For the example above, the estimator will have a 68.27% confidence that the financial impact of a successful phishing attack will result in a loss between $39K and $66K. The estimator will have approximately a 95% confidence that the loss will be between $25.5K and $79.5K, and a nearly 100% confidence in the $12K to $93K estimate. This application of CI is useful for each of the analysis methods in this section and helps to represent the level of uncertainty in each of the estimates.

\(^{26}\) The NIST Engineering Statistics Handbook points out that a confidence interval generates a lower and upper limit for the mean instead of a single estimate. The interval gives an indication of how much uncertainty there is in the estimate of the true mean. The narrower the interval, the more precise the estimate. (See https://itl.nist.gov/div898/handbook.)
Confidence requirements and standardized methods of calculation should be included in senior leaders’ ERM strategy as part of enterprise risk management policy. This directive helps all risk practitioners in the enterprise to consider risk in a similar manner and may help to improve the reliability of likelihood and impact estimates. Additionally, as more information becomes available regarding previous risk results and those of external organizations, this information can be included in the estimation models and used to reduce uncertainty.

Notably, the level of effort for estimating risk factors increases with the required level of rigor. An estimate with very low CI might be simple to develop (perhaps as simple as flipping a coin) but likely offers little value. A CI of 99% may be important in some situations, but the work to develop a more precise estimate can cost significantly more than that required for a 90% CI.

Because the appropriate levels of accuracy and precision for cybersecurity risk analysis will vary based on enterprise needs, the techniques and expectations should be clearly defined as part of the enterprise’s risk management guidance.

It is critical that the risk practitioner consider the accuracy of the SME estimates overtime to determine who or what source is more accurate and then consider that expert judgement more prominently in calculations for the ongoing risk management cycles. Experts who are overly optimistic or pessimistic create a broad range. However, when accuracy is required, especially when calculating likelihood, knowing who the best estimators are in the organization is vitally important.

2.3.2.3 Event Tree Analysis

Event Tree Analysis (ETA) is a graphical technique that helps practitioners evaluate the downstream impact of a given scenario (as determined in Section 2.2.4.) The exercise helps document a sequence of outcomes that could arise following an initiating threat event (e.g., a particular TTP, as described in Section 2.2.2). By iterating through a series of what-if scenarios, the practitioner can analyze each set of circumstances and determine the likelihood that the results would occur. The below example demonstrates the layered defense that an organization employs to prevent malicious code from being used to exfiltrate data. For each condition, the analyst considers a Boolean (i.e., true or false) answer. The analyst then follows through each iterative outcome until an end result is reached.

This analysis can be performed in a qualitative way (using the yes or no conditions), or a probability could be calculated for each scenario.

In Figure 11, the probability is calculated based on whether the attack was prevented (Yes) or if the attack was successful (No). Since each branch of the tree represents a binary option, the sum of the two probabilities is always equal to 100% (or 1.00 in decimal format). In this example, the calculated probabilities provide information about the potential success (or failure) of risk response. The resulting probability (Pr values in the example below) is multiplied by the anticipated financial loss of the scenario. In the tree below, if the anticipated loss of sensitive data being exfiltrated is $1.4M, then there is a $205,100 risk exposure ($1.4M x .1463).
In the above example, the event tree analysis of the cascading events illustrates the various countermeasures available and the calculated percentage of the success of each defense. A qualitative approach would still describe the Yes/No conditions and outcomes but would not include specific probabilities of each branch. While such an analysis might be less helpful than a quantitative approach, it would still provide meaningful information about potential harmful impacts to the organization and the sequence of events leading to those consequences.

2.3.2.4 Monte Carlo Simulation

While expert judgement is valuable in estimating risk parameters, one way to reduce subjectivity in the above methods is to supplement that judgement using simulation models. For example, using the Monte Carlo method, the above parameters could be modeled repeatedly (perhaps several hundred thousand cycles) to help account for the many random variables inherent in cybersecurity risks. Simulation is not always necessary, but with the variables for considering likelihood and impact values (based on the factors described in Section 2.2), randomly sampled probabilities can help identify a range of possible values. The results of such a simulation can be plotted on a graph or distribution to facilitate a visual understanding.

An example implementation of a Monte Carlo analysis is available from NIST’s Engineering Lab at: https://www.nist.gov/services-resources/software/monte-carlo-tool
For example, when calculating the financial impact of the attack on the payroll system (from the example above), practitioners can use a simulation model to consider the most likely range between the low value ($1.7M) and the high value ($2.4M). The result of this simulation could be recorded as a histogram recording the frequency in which certain random values occurred, in this case resulting in a simulated estimated impact of $2M.

\[\text{Figure 15: Illustration of a Histogram from a Monte Carlo Estimation Simulation}\]

2.3.2.5 Bayesian Analysis

While there is value in using expert judgement to help estimate risk parameters, it might be improved based on information known from prior events, and the results may represent a more objective determination. For example, if the organization has identified that several critical software vulnerabilities have remained uncorrected, there is an increased likelihood that a threat actor will be able to exploit a software vulnerability to successfully gain access to the enterprise and exfiltrate valuable data. Bayesian analysis describes methods for considering conditional probability, applying a distribution model and a set of known prior data to help estimate the probability of a future (posterior) outcome.

While an SME might render an opinion regarding how likely a breach might be, that opinion can be improved by what the enterprise risk managers already know about the success of previous attempts by others or about the success of adversaries in similar enterprises. Prior knowledge, drawn from internal observations and events at similar organizations can be of significant value for improving the accuracy and reliability of estimates, such as those for determining the likelihood of an impactful event or for estimating the impact of that uncertainty on the enterprise objectives. Similar methods can be used to estimate whether several conditions might occur (joint probability) or that certain conditions would occur given other external variables (marginal probability).
2.4 Determination and Documentation of Risk Exposure

Once the probability that an impactful event will occur has been determined and the most probable impact of such an occurrence has been calculated, the information is recorded in the risk register. Figure 16 shows how an organization can record this information.

![Figure 16: Example Quantitative Analysis Results](image)

Figure 16 provides an illustration of similar information in a qualitative manner.

![Figure 17: Example Qualitative Analysis Results](image)

In this example, internal SMEs feel that the likelihood of an attack on the organization’s mobile banking application is High. A survey of the SMEs reflects their decision that the impact to the organization if customers experience such an event would be High, based on customers’ perception that the application lacked sufficient security protections. In this case, the practitioner would use the enterprise assessment scale for determining qualitative risk, such as the application of Table I-2, *Assessment Scale – Level of Risk (Combination of Likelihood and Impact)*, from SP 800-30, Revision 1. Based on that table, an event with High likelihood and High impact would be ranked as a High exposure. As an example, this decision would help inform the selection of strong user authentication and encryption controls.

Risk priority is described in NISTIR 8286B and will be determined based on mission objectives, enterprise strategy, and the results of comprehensive risk identification and analysis activities.
3 Conclusion

The use of the methods and templates described in this report supports effective communication and coordination of ERM and CSRM activities. As described in NISTIR 8286, understanding the expectations of senior leaders and business managers regarding risk is a key input for managing cybersecurity risk at the Business and System levels. This is reflected by including the determination of enterprise risk appetite and organizational risk tolerance among the first tasks in both the Cybersecurity Framework and the NIST Risk Management Framework.

<table>
<thead>
<tr>
<th>ID</th>
<th>Priority</th>
<th>Risk Description</th>
<th>Risk Category</th>
<th>Current Assessment</th>
<th>Risk Response</th>
<th>Risk Response Cost</th>
<th>Risk Response Description</th>
<th>Risk Owner</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Continually Communicate, Learn, and Update

Figure 18: Use of a Cybersecurity Risk Register Improves Risk Communications

Once these expectations have been defined and communicated, practitioners can use various methods to ensure that risk is managed to stay within the limits articulated. They do this by identifying potential risks (as described in Section 2.2), estimating the probability that an impactful event will occur, calculating the potential harm to the enterprise after such an event, and analyzing the actual risk exposure (the product of likelihood and impact).

Industry practitioners have demonstrated that applying risk analysis techniques like those described in Section 2.3 can be helpful for identifying, responding to, and monitoring enterprise cybersecurity risk. While statistical analysis has been available for hundreds of years, many within the CSRM community are only recently recognizing the value of applying a more quantitative approach to risk estimation. It seems likely that those in the CSRM domain will continue to develop and improve statistical methods to estimate risk and include guidance regarding the application of various statistical distribution models.

Responses to previous requests for information have indicated that enterprise risk managers desire increased rigor in the manner in which risk identification, analysis, and reporting are performed. This publication is designed to provide guidance and to further conversations regarding ways to improve CSRM and the coordination of CSRM with ERM. Subsequent publications in this series will describe improvements to the manner in which risk scenarios are prioritized, treated, and reported. Through the 8286 series publications, NIST will continue to collaborate with public- and private-sector communities to address methods for improving integration and coordination of ERM and CSRM.
References

Appendix A—Acronyms

Selected acronyms and abbreviations used in this paper are defined below.

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIS</td>
<td>Automated Indicator Sharing</td>
</tr>
<tr>
<td>APT</td>
<td>Advanced Persistent Threat</td>
</tr>
<tr>
<td>BIA</td>
<td>Business Impact Analysis</td>
</tr>
<tr>
<td>CCE</td>
<td>Common Configuration Enumeration</td>
</tr>
<tr>
<td>CDM</td>
<td>Continuous Diagnostics and Mitigation</td>
</tr>
<tr>
<td>CI</td>
<td>Confidence Interval</td>
</tr>
<tr>
<td>CISA</td>
<td>Cybersecurity and Infrastructure Security Agency</td>
</tr>
<tr>
<td>CMDB</td>
<td>Configuration Management Database</td>
</tr>
<tr>
<td>CPE</td>
<td>Common Platform Enumeration</td>
</tr>
<tr>
<td>CSRM</td>
<td>Cybersecurity risk management</td>
</tr>
<tr>
<td>CTI</td>
<td>Cyber Threat Intelligence</td>
</tr>
<tr>
<td>CVE</td>
<td>Common Vulnerabilities and Exposures</td>
</tr>
<tr>
<td>CVSS</td>
<td>Common Vulnerability Scoring System</td>
</tr>
<tr>
<td>DHS</td>
<td>Department of Homeland Security</td>
</tr>
<tr>
<td>DIB</td>
<td>Defense Industrial Base</td>
</tr>
<tr>
<td>DISCE</td>
<td>U.S. Department of Defense Information Sharing Environment</td>
</tr>
<tr>
<td>ERM</td>
<td>Enterprise Risk Management</td>
</tr>
<tr>
<td>ETA</td>
<td>Event Tree Analysis</td>
</tr>
<tr>
<td>FOIA</td>
<td>Freedom of Information Act</td>
</tr>
<tr>
<td>HVA</td>
<td>High-Value Asset</td>
</tr>
<tr>
<td>IDS</td>
<td>Intrusion Detection Systems</td>
</tr>
<tr>
<td>IEC</td>
<td>International Electrotechnical Commission</td>
</tr>
<tr>
<td>Code</td>
<td>Acronym</td>
</tr>
<tr>
<td>------</td>
<td>---------</td>
</tr>
<tr>
<td>1369</td>
<td>IoC</td>
</tr>
<tr>
<td>1370</td>
<td>ISAC</td>
</tr>
<tr>
<td>1371</td>
<td>ISAO</td>
</tr>
<tr>
<td>1372</td>
<td>ITAM</td>
</tr>
<tr>
<td>1373</td>
<td>ITL</td>
</tr>
<tr>
<td>1374</td>
<td>NCCIC</td>
</tr>
<tr>
<td>1375</td>
<td>NISTIR</td>
</tr>
<tr>
<td>1376</td>
<td>NTCTF</td>
</tr>
<tr>
<td>1377</td>
<td>NVD</td>
</tr>
<tr>
<td>1378</td>
<td>OLIR</td>
</tr>
<tr>
<td>1379</td>
<td>OMB</td>
</tr>
<tr>
<td>1380</td>
<td>OVAL</td>
</tr>
<tr>
<td>1381</td>
<td>RMF</td>
</tr>
<tr>
<td>1382</td>
<td>SCAP</td>
</tr>
<tr>
<td>1383</td>
<td>SIEM</td>
</tr>
<tr>
<td>1384</td>
<td>SME</td>
</tr>
<tr>
<td>1385</td>
<td>SWOT</td>
</tr>
<tr>
<td>1386</td>
<td>TTP</td>
</tr>
<tr>
<td>1387</td>
<td>VPN</td>
</tr>
</tbody>
</table>
The Computer Security Division of NIST’s Information Technology Laboratory, in collaboration with the DHS Cybersecurity & Infrastructure Security Agency (CISA), provide the National Vulnerability Database (NVD) and the National Checklist Program (NCP) as two key resources for identifying, evaluating, and responding to cybersecurity risks. These sites are available at https://nvd.nist.gov and https://checklists.nist.gov, respectively.

These resources, originally created in 2000 as the Internet – Categorization of Attacks Toolkit (ICAT), are available without cost to all public- and private-sector organizations to help improve CSRM. The data that these sites provide enable the automation of vulnerability management, security measurement, and compliance. The sites include databases of security checklist references, security-related software flaws, misconfigurations, product names, and impact metrics. These sites act as the U.S. Government repository of standards-based vulnerability management data represented using the Security Content Automation Protocol (SCAP), including the following data exchange specifications: [9]

- The Common Vulnerabilities and Exposures (CVE) specification helps products and personnel track known vulnerabilities and their characteristics. Each vulnerability is assigned a unique identifier that enables common reference and information sharing.
- The Common Vulnerability Scoring System (CVSS) provides a severity score and other severity factors for each CVE. This severity data helps enterprise automation tools support risk analysis and prioritization.
- The Common Configuration Enumeration (CCE) provides unique identifiers to system configuration issues in order to facilitate the fast and accurate correlation of configuration data across multiple information sources and tools. A recent NVD offering provides a correlation between a CCE (that might represent a vulnerability through misconfiguration) and one or more security controls as described in NIST SP 800-53, Security and Privacy Controls for Information Systems and Organizations. This feature supports the improved automation of documentation and the mitigation of vulnerabilities (available at https://nvd.nist.gov/config/cce).
- The Common Platform Enumeration (CPE) uniquely identifies asset types to help automate the association of vulnerabilities with enterprise asset types.
- Checking languages, such as Open Vulnerability Assessment Language (OVAL), enables automated assessments to identify and report resources that may be vulnerable.

While the specifications above support data exchange regarding vulnerabilities on various platforms, the methods for identification on endpoints themselves can vary greatly from product to product. Many product vendors have developed highly sophisticated methods for detecting and reporting those flaws. Because practitioners need to ensure that those detection and reporting processes are reliable and interoperable, NIST provides the SCAP Validation Program. Products on the SCAP Validated Products List have demonstrated that they are able to perform against a set of derived test requirements to ensure that they can fulfill the CSRM purpose.