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Abstract

“Statistical software” encompasses several distinct classes of software. This report explains
what formal methods, tools, and approaches may be able to increase assurance of results
of using statistical software and implementing differential privacy. To provide context, we
present an exemplary process for assured results. The parts are data assurance, algorithm
design, software production, correctness proofs, postproduction assurance of software, and
result checking. We note a workshop we organized to support this paper and finish with
recommended formal methods, tools, and researchers doing particularly pertinent work.

Key words

correctness proofs; formal methods; software assurance; differential privacy; software
quality; static analysis; static source code analyzers; statistical software.
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1. Introduction

Software may produce outputs that appear reasonable, but are nonetheless incorrect. For
instance, a simplistic pseudorandom number generator may offer sufficient randomness for
a video game, but its use in a Monte Carlo simulation yields invalid results. Such problems
are hard to find through traditional testing. Formal methods can complement testing to gain
greater assurance that critical portions or aspects of programs are correct.

Statistical software has not been well studied by those using formal methods. By “sta-
tistical software,” we include software that has particular features or characteristics that
challenge typical means of software assurance. These features are:

* randomized algorithms, such as Monte Carlo simulations,

« algorithms effecting differential privacy!, where the proper operation depends on the
availability of unbiased and unpredictable random numbers, and

* summarizing algorithms, which compute mathematical properties of large sets of
data, such as sums, averages, and regressions.

To be comprehensive, we also indicate formal methods that may help problems that
statistical software shares with many other kinds of software. These include gaining as-
surance that software faithfully implements algorithms and models. While there have been
significant efforts within the statistical community to examine underlying statistical models
and algorithmic efficiency, there has not been a commensurate study to verify correctness.

We use the term “formal methods” to include analytic approaches relying on mathe-
matical and logical reason to establish the applicability of properties. Testing demonstrates
results only in discrete circumstances. However, like proofs of trigonometric identities,
formal methods employ rules of inference, along with assumptions and models, to argue
for assurance in all cases meeting those assumptions. Formal methods applications range
from basic and automated, like LALR parsing or type checking, to sophisticated and unde-
cidable, like program correctness.

This is a report for improving the quality of statistical software through the use of
formal methods and techniques that are:

* Currently available in tools, in prototypes, or as proofs of concept,
* Cost-effective for the challenges faced, and
* Complementary to current testing approaches.

This report also lists some key research and researchers working in the field of formal
methods for statistical software. We note the current state of the art and recommend re-
search, tools, and techniques for increasing confidence in the results of statistical software.

I'Section 2.1 describes differential privacy.
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Section 4 is a brief summary of the 1 May workshop that we organized to provide input
to this report.

Note: we often discuss software implementations, chances of errors in execution, and
so forth. Detailed discussions of real systems must consider myriad causes of errors: com-
piler bugs, malicious intrusion, transient hardware faults, and human misunderstanding of
results. In general, our discussions ignore such external influences in order to present and
discuss concepts without tedious and repetitive phrases such as “assuming no hardware
faults” or “in the absence of compiler or library bugs”.

2. Scope: What is “Statistical Software”?

We use the term “statistical software” as a short phrase to cover many aspects of statis-
tics, data handling, privacy, data analysis, software, and computation. The scope could be
argued to be a “grab bag” of subjects. We make no pretense that these are somehow a coher-
ent whole, except that they are of interest to those in the U.S. Census Bureau. Nevertheless,
we can name characteristics and attributes that arise.

Projects involving statistical processing of data may include many steps [1]. Some of
the steps are design of experiments or surveys, planning how to collect or generate the
data, collecting or generating it, data cleaning and munging [2], modeling and analyzing
the data, pattern mining and refining algorithms, iterating through these steps, and learning
from results. Although critical for valid results and deserving of further research, these
concerns are outside our scope. Typical approaches to software assurance, such as verifica-
tion and validation, provenance, and proof-carrying code, might be incorporated into such
data science. Algorithms, and the software to implement them, appear in many forms and
at many places in those steps.

Random numbers are not thought of as input data, nor are they strictly part of algo-
rithms. But the quality of the random numbers used for sampling or simulation are vital for
good results. Considerations of random numbers are outside our scope, too.

2.1 Differential Privacy to Limit Privacy Loss

A particular challenge at the U.S. Census Bureau is publishing statistics that guarantee lim-
ited loss of individual privacy. Suppose someone examines the published statistics for a
tract that has just a few people. Queries about such small sets should not yield correct in-
formation. Queries about large sets, such as whole states, can yield information that is close
to correct without compromising privacy. One way to accomplish this “is to make sure that
every computation on sensitive data satisfies differential privacy, a very strong guarantee:
if an individual’s data is used in a differentially private computation, the probability of any
given result changes by at most a factor of ¢ (compared to the situation where this indi-
vidual’s data is not used), where € is a parameter controlling the trade-off between privacy
and accuracy.” [3]. Differential privacy includes a mathematical definition of privacy loss.
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Differential privacy can be maintained by adding structured noise—values that are ran-
dom at small scales but have large scale properties. Many algorithms and specific mecha-
nisms have been developed allowing the addition of the smallest amount of noise necessary
for a given privacy outcome and with structure to have minimal impact on large scale statis-
tics. Algorithms in this field typically have good mathematical foundations, and there is
much active research, see for instance Shaikh and Patil [4].

Although there are solid theoretical foundations for computations maintaining differ-
ential privacy, implementations can have subtle bugs. These bugs leak confidential data
into supposedly privatized outputs. This problem is similar to the usual software assurance
question, that is, does the implementation satisfy the specification? Formalized principles
of differential privacy allow confidence when creating a system for applying differential
privacy to the national census, see Sec. 3.4.3.

2.2 Randomized Algorithms

In the class of statistical software, we include randomized algorithms. A randomized al-
gorithm 1s an “algorithm that makes some random (or pseudorandom) choices.” [5] For
our purposes, randomized algorithms fall into three groups: Monte Carlo, Las Vegas, and
probabilistic algorithms.

2.2.1 Monte Carlo Algorithms

Monte Carlo algorithms produce results that differ from the correct results by some small
amount. Often for numeric algorithms, the longer they run, the smaller the expected differ-
ence.

Monte Carlo algorithms may be illustrated by the following problem. Given two unbi-
ased coins, what is the chance of flipping two heads at the same time? We may estimate
the answer by flipping the coins and recording the results. More flips tend to produce a
fraction closer to the correct result, which is 1/4.

2.2.2 Las Vegas Algorithms

Las Vegas algorithms are guaranteed to always produce the correct results, but the run time
may vary.

Las Vegas algorithms may be illustrated by the following. Suppose Alice has a deep
drawer with loose—unpaired—blue socks and brown socks. The drawer is too dark to
see the socks, so Alice picks socks randomly. Alice can get two blue socks eventually by
continuing to pick socks until she has two blue ones. The outcome is guaranteed, but the
procedure is slow if she is unlucky.

2.2.3 Probabilistic Algorithms

Probabilistic algorithms almost always produce the correct results. There is a small chance
that they produce incorrect results, but the chance is vanishingly small (or can be made as

3
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small as desired).

Probabilistic result may be illustrated by the following. Suppose you need to choose
the size of table for a marathon water station. It is impractical to have a table big enough
to have cups of water for all the runners at once. A small table will be emptied by a surge
of runners before it can be refilled. A moderate sized table is big enough for all practical
cases, even though it could theoretically be overwhelmed by a highly unlikely surge.

2.3 Libraries of Functions

Much statistical software uses libraries of standardized mathematical functions, which
come with most programming languages. Although most are generally serviceable, they
may not be adequate for very demanding applications. This is particularly true of random
number generators. In addition, there may be implementation bugs that generate results
appearing to be correct, but which fail in unpredictable ways. An example is the Pentium
FDIV hardware bug [6].

3. An Exemplary Process for Assured Results

To provide a context, this section presents an exemplary process for achieving assured
results. We focus on topics that are especially applicable to the U.S. Census Bureau.
Confidence in the validity of results comes from four sources:

1. confidence in the quality of the data, treated in Sec. 3.1,

2. good algorithm design or selection, Sec. 3.2, and good software production, Sec. 3.3,
both accompanied by proofs of correctness, Sec. 3.4,

3. post-production assurance of software quality, that is, testing and static analysis tech-
niques, Sec. 3.5, and

4. computation or result checking, Sec. 3.6.

3.1 Data Assurance or Checking

The best software in the world is of little use if the data has not been collected, cleaned,
and prepared properly. This is a vital matter, but is outside the scope of this paper. There
are several introductions and references such as Groves et al. “Survey Methodology” [7]
and Pfaff et al. “Data Validation in the Presence of Stochastic and Set-membership Uncer-
tainties” [8].

For reliable querying after differential privacy operations, raw data often requires ex-
tensive cleaning. This can be a considerable burden on the data provider to ensure that data
is completely clean before adding differential privacy noise. Krishnan et al. propose [9]
a technique for creating private datasets of numerical and discrete-valued attributes, and
answering sum, count, and avg queries after data cleaning.
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3.2 Design or Selection of Algorithm

Good software begins with an overall structure, or architecture, that reflects constraints
such as the structure of problem to be addressed, modularity and abstraction, anticipated
changes, and existing packages or systems. Such high-level concerns are critical, but out-
side the scope of this paper.

The next level of detail is to design, develop, or select acceptable algorithms. Some
analysis algorithms are sensitive to certain patterns or discrepancies in input data. As a
very simple example, consider finding the sum of a large set of real numbered values. The
simplest approach is to add up the values as encountered. However, very large values can
make the running total so large that smaller values are rounded and precision lost. Here are
the first few and last few values of an artificial example with hundreds of thousands of data
values:

12345678912345678912
17310113
16208522
208242 39

99004303
169798 8
21987347
-12345678912345 678912

Between the huge beginning and ending values are values from O to 1. The sum of all
the values is approximately 53 194.907.

Here is a simple algorithm in R to sum the values. The result is far from correct, but
might mistakenly be considered to be reasonable.

> data <- scan("exampl.data")
> sum(data)
[1] 38581

However, if we add up the smallest values first (that is, sort by magnitude), we get a much
more accurate result.

> sum(datal[order (abs (data))])
[1] 53195

In Python 3, the simple approach gives a result that is clearly incorrect.

>>> with open("exampl.data") as f:
e print (sum(list (map(float, £))))
0.0

As above, sorting by magnitude gives a more accurate result.
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>>> with open("exampl.data") as f:
e print (sum(sorted (list (map(float, f)), key = abs)))
53248.0

Another simplistic example is that the arithmetic mean is susceptible to outliers. Me-
dian is much less sensitive and is therefore often better to use as an “average” for a data set.
A realistic example is that the distribution and extremes of latency of a computer service
are as important or more important than any aggregation, such as average [10].

“Robust statistics” is the study of algorithms that are less sensitive to small perturba-
tions. [1]

Methods and approaches for numerical analysis may be crucial to designing acceptable
algorithms. Numerical analysis deals with concerns such as convergence, error estimates
and error budget, managing computations to increase accuracy (or, widen the types of data
sets to which it is applicable).

Yet another general approach is to write, transform, or execute algorithms like the above
in such a way that numerical errors are likely to be avoided or detected. We cite a number
of tools and approaches for elaborating algorithms to achieve this.

Graillat et al. analyze [11] the impact of random rounding mode on compensated algo-
rithms. They show the increase in accuracy of computations when an error-free transfor-
mation is used to “enable the computation of rounding errors”.

CADNA is a library that allows the developer to estimate round-off errors in numerical
simulations [12, 13]. It uses Discrete Stochastic Arithmetic, which runs a computation
several times with random rounding modes then estimates the number of significant digits.
Using CADNA requires only a few modifications to code: essentially declaring variables
differently.

Herbie is “a tool which automatically discovers the rewrites [that] experts perform to
improve accuracy.” Rewrites are “rearranging expressions and understanding the finer de-
tails of floating point arithmetic” “to mitigate rounding error” [14, 15].

Michael Lam has a Floating-Point Analysis Research web page [16], which lists these
and other efforts.

In coming up with the appropriate algorithm, one must ask how the results can ulti-
mately be checked. (We treat this in more detail in Sec. 3.6.) How can one check that
23.121 805 is the standard deviation of a data set? What if the algorithm works well for a
normal or linear distribution of data, but is grossly inaccurate if the data is distributed along
a parabola?

Using a second, independent algorithm as an oracle is not always straight forward. Two
algorithms or two implementations of the same algorithm may give different results. How
can we determine if two computations are consistent?

Even though frequently-used languages such as R, SAS, and Stata are higher level than
C or Python, an even higher level, domain-specific language for statistics and publication
would reduce errors. It could be a non-procedural specification for frequent activities. For

6
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instance, there could be a language to specify plots for publication, from analysis to output
format. The specification is then compiled into R or SAS code. Since it is a specification,
low-level mistakes are far less likely.

Although language design is not typically associated with formal methods, languages
should be designed from the beginning with a formal semantics. Like WebAssembly [17],
such languages could be designed with little or no undefined behavior, making it much
more amenable to formal analysis.

3.3 Good Software Production

Quality cannot be tested into software. Software must be built well from the beginning. A
disciplined team of experienced developers is necessary to the production of good software
and ultimately good results.

A good software development process includes defining requirements and specifica-
tions, allocating sufficient resources, tracking versions, and incorporating good software
test and assurance techniques.

When the development team uses outside software, they must rely much more heavily
on appraising the software for assurance, establishing its suitability, and ensuring that it is
only used in domains for which it is valid. See Sec. 3.5 for more detail.

No single activity, approach, or tool can assure that the final results produced are of
the highest quality. As Jones points out [18], different methodologies are appropriate to
small projects in contrast to large projects, different approaches and tools address different
concerns, and different techniques and paradigms should be applied at each project stage.
Although slightly dated, [18] includes existing and widely-used steps as well as new ideas
that can be adopted and emerging technology. It also identifies gaps and needed research.

There are many other good guides to the software development process, such as Ref. [19]
and the pair of Guidebooks for Software Assurance for the program manager [20] and for
the developer [21]. The Defense Innovation Board’s May 2019 report, “Software is Never
Done: Refactoring the Acquisition Code for Competitive Advantage” [22] has many useful
ideas and suggestions. For instance, one concept paper that it includes, “Is Your Devel-
opment Environment Holding You Back?”, names many useful development practices and
tools. Another concept paper, “Do’s and Don’ts for Software”, advises developers to create
automated test environments to enable rapid, continuous, and assured software updates and
to require source code as a deliverable. A third concept paper “Metrics for Software De-
velopment” gives modern project metrics with target values. Vignette 5 showcases an Air
Force software company as an example of outstanding software development and delivery.

3.4 Proof of Correctness

A mechanically checked proof of correctness of an algorithm or implementation can add
invaluable assurance. Testing is important, but it only checks a minuscule bit of possible
behavior. A correctness proof covers all possible cases, at least in theory. Human code
review is also an excellent complement to software testing, but is subject to unconscious
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assumptions or lapses in concentration. In contrast, a proof in an automated system requires
explicit assumptions and no unwarranted leaps of logic.

In the past, formal methods, such as proofs, had a reputation for taking far too long and
requiring a graduate degree in computer science or mathematics to perform them. This is
no longer the case. Today, formal methods are widely used. See Section 2.1 of [23] for
examples.

A formal proof of correctness may be broken into several steps, see Fig. 1. The verifier
is a tool that produces much of the proof, but may need expert guidance. Witnesses for
correctness are invariants for loops, data structures, or critical program state at particular
locations in the code. Beyer et al. explain [24] what correctness witnesses are, how their
use compares with similar work, and how they may be constructed and validated. The
following is their example code in their Fig. 1a:

unsigned int y = x;
while (x < 1024) {
Xx = x + 1;

y =y * 1

¥

When the loop ends, x and y should be the same. Beyer et al. state, “proving the whole
program correct is easy if the loop invariant x =y is given, but finding such a loop invariant
is in general hard”.

Qf:‘
‘g Q,"cg
Verifier \‘g@
>
@@io&
Proof Proof
Validator Checker

Fig. 1. With human guidance a verifier tool produces witnesses. A proof validator makes sure the
witnesses suffice to prove that the code is correct. An independent (and simple!) proof checker
may double check each step of the validator.

Invariants and related concepts, such as contracts, preconditions, assertions, and post-
conditions, can be embedded as executable statements in the code. “Programmers generally
have a body of information that gives them confidence that software will perform as ex-
pected. A neglected part of formal methods is to unambiguously record such insights.” [23,
Sec. 2.1.3].

The code and the verification may be developed together. For instance, if a piece of
code cannot be proven correct by the verifier, it might be rewritten so that the verifier does
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prove it. For some purposes, it may be desirable for the verification and development of
witnesses to be done by an expert third party.

Why not deliver a proof, instead of witnesses? First, complete mechanical proofs can
be very long and do not help humans understand the properties and invariants of the pro-
gram. Second, provers have very different internal structures (axioms, rules of inference,
representations), so finding a common language is unlikely.

Once the algorithm is verified, implementation can proceed. A proof that the code
satisfies the requirements and implements the algorithm should be developed in parallel
with the code development. Proving, or trying to prove, chunks of code, functions, and
modules tends to inform the coding and test planning about points that may not be clear.
Simultaneous proving may also guide the programmer to choices that make proofs clearer
and easier.

With subtle and demanding requirements for data handling and computations, a pro-
gram can easily produce a result that appears to be reasonable, but is far from accurate?.
There are many resources and tools for software assurance for programs written in widely-
used languages, such as C, Java, and C#. Many statistical and analysis programs of concern
are written in languages that do not have as much support for program analysis and proofs
of correctness, such as SAS, R, Stata, and Python. This is beginning with the R language,
see Bodin, Diaz, and Tanter [25].

3.4.1 Model Checkers and Other Lightweight Formal Methods

In addition to proof systems for higher-order logic, model checkers, SAT solvers and other
“light weight” decision techniques can answer questions about properties of code and the
algorithms they implement. For instance, Katoen provides a survey of model checking
of probabilistic models, in particular Markov decision processes (MDPs). An MDP is
a Kripke structure in which transitions have “probability distributions over states as tar-
gets” [26].

These lightweight formal methods can also analyze higher-level artifacts, such as state
machines from the design, before code is written.

For an overview of formal methods, including suggested techniques and further reading,
we refer the reader to Section 2.1 of [23].

3.4.2 Proofs of Algorithms and Implementations

Before an algorithm is implemented, that is, before code is written, developers should be
confident that the algorithm will satisfy the requirements (if implemented correctly). For
instance, if the algorithm does not converge for some distributions of data or gives the
wrong answer for sparse graphs, it makes little sense to write code for it.

There are many general methods for correctness proofs. Here we only refer to a few
recent resources that may be particularly useful.

Zrecall the examples in Sec. 3.2
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In January 2019 Marco Gaboardi gave a three-hour mini-course on “Formal Methods
and Proofs of Privacy Properties” at Data Privacy: Foundations and Applications Boot
Camp, Simons Institute for the Theory of Computing, University of California, Berkeley.
Videos of the mini-course are on-line [27-29].

Fenske et al. propose [30] “a cryptographic protocol for efficiently aggregating a count
of unique items across a set of data parties privately—that is, without exposing any in-
formation other than the count.” They “also show how the output can satisty differential
privacy.”

Rogers et al. study adaptive composition in differential privacy algorithms [31]. They
define privacy filters, stopping time rules, and privacy odometers, a method to track realized
privacy loss.

Costea et al. propose [32] a differential privacy algorithm that protects sequential data,
such as histories.

Wang et al. present two provably private subspace clustering algorithms that respect
differential privacy [33].

He et al. propose [34] a new privacy model, output constrained differential privacy, that
uses differentially private blocking, “but allows for the truthful release of the output of a
certain function applied to the data”, such as private record linkage.

A different domain of concern is that sampling-based (Monte Carlo) techniques, such
as statistical model checking, are inefficient for estimating the probabilities of rare events.
Zuliani et al. show [35] how to use the cross-entropy method for generating approximately
optimal biasing densities for statistical model checking. They apply the method with im-
portance sampling and statistical model checking to estimate the probabilities of rare events
in stochastic hybrid systems.

Lan et al. show [36] “that while running a Mirror Descent Stochastic Approxima-
tion procedure one can compute, with a small additional effort, lower and upper statistical
bounds ...”. While this applies to very specific computations, the approach may be more
broadly useful.

3.4.3 Proofs of Differential Privacy

There are many approaches to prove the correctness of algorithms for differential privacy.
The following prove correctness via probabilistic couplings [37, 38], by *-lifting [39], via
modeling as labeled Markov Chains [40], and with shadow execution [41].

Barthe et al. review [3] ways to verify differential privacy of programs. The last
way, HOARe?, “combines the advantages of” the other two ways presented: DFuzz and
CertiPriv [42]. Zhang and Kifer propose a simple language to express differential pri-
vacy algorithms and verify “sophisticated algorithms with little manual effort” [43].

Following are two examples of verifying other kinds of algorithms. Boldo et al. gave [44]
a formal correctness proof in Coq of a new renormalization algorithm, which is used in
floating-point expansion (FPE). Hasan and Tahar present [45] the formal verification of
Markov’s and Chebyshev’s inequalities for discrete random variables in HOL. The paper

10
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also gives proofs of mean and variance relations for some of the widely used discrete ran-
dom variables, such as Uniform(m), Bernoulli(p), Geometric(p) and Binomial(m, p) ran-
dom variables. Rand and Zdancewic present [46] a Hoare-style logic, which can handle
full distributions, to prove the correctness of probabilistic programs.

3.5 Postproduction Assurance of Implementations

There are two distinct ways to approach gaining assurance that a piece of code has desired
properties: testing and static analysis. (Hybrid tools combine these two ways.) These
two approaches are complementary. Static analysis considers the software, either source
code or binaries, from an abstract point of view. In theory all possible executions are
covered. Manual static analysis, commonly called code reviews, is the single most effective
measure for finding problems in code. Automated static analyzers can be run (and rerun!)
on millions of lines of code and look for hundreds of different classes of bugs. They can also
follow long, subtle lines of reasoning without getting bored or inadvertently losing track
of small, crucial details. Static analysis can also be done on blocks of code or subsystems,
without waiting for an entire skeletal system to be operational. One limitation is they are
based on assumptions about compilers and hardware. This is important because the recent
Meltdown bug violated assumptions.

In contrast, testing exercises software as installed and run. Of necessity, tests depend on
compilers, libraries, hardware and operating systems, installation environment, and other
concrete options. Test cases run end to end, engaging interfaces between modules and
subsystem. This may expose mismatches that were overlooked earlier. An important lim-
itation is that testing can only run a microscopic fraction of all possible inputs and states.
Another critical limitation is that some kinds of aberrant code cannot feasibly be found
through testing. A backdoor in code that grants full access when the user enters the name,
JoshuaCaleb, cannot possibly be discovered by testing. There are far too many such booby
traps to cover. These can only be found by static examination of the code or executable.

3.5.1 A Model of Automated Testing

A conceptual model of automated testing has three parts: test creation or generation, an or-
acle, and a comparator, see Fig. 2. Thorough or extensive testing may require automated or
semi-automated generation of thousands of test cases. Testing requires some oracle to pro-
duce the correct result for each case. This oracle may be a previous presumed-good version
of the code, a very simple algorithm that is far too slow for production, the code itself run
on a property-preserving variation of the test case, or specially written code implementing
only the most critical computations. A final comparator part reports any difference between
the code’s result and result from the oracle. Comparison may be quite involved if results
are allowed to differ by some € or only part of the result is checked.

Each of the three parts may be trivial, straight forward, or extremely complex, and the
parts may be combined. For example, the generator may produce the correct result as each
case is created, eliminating the need for a separate oracle.

11
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Generate Test Under
Cases Test \1

Compare —

Oracle //‘

Match /
No Match

Fig. 2. Conceptually, automated testing has three parts. A generator creates test cases. An oracle
produces the correct result for each test case. A comparator determines whether the code’s result
matches the comparator’s.

One example of a generator is GENTHAT, which generates unit tests from executions of
R code [47]. The oracle may be known-good references. For instance, Keeling and Pavur
test [48] the accuracy of six spreadsheet packages using the NIST Statistical Reference
Datasets [49] and Wilkinson’s Tests.

Instead of repeating or trying to summarize the vast literature on testing, we encourage
the reader to consult publications devoted to it. For instance, Jones [18] Chap. 2 Best
Practice #37 lists many forms of testing and Pressman and Maxim [19] devote chapters 22
through 26 to testing.

3.5.2 Testing Non-Deterministic Programs

Elbaum and Rosenblum point out [50] that statistical software has special challenges for
testing. Checking test results must accept ranges of results in some cases. However, liberal
acceptance may miss correctable bugs, such as an unintended bias. They offer suggestions
about possible ways to perform and analyze tests to detect bugs.

To unit test a randomized algorithm, it may be split into two concerns. First, does it do
the right thing given a specific set of “random” numbers? This tests the function built on
top of the random number generator. Second, any random number generator used to feed
the algorithm must be tested, for example, with NIST’s Statistical Test Suite (STS) [51, 52],
ent [53], dieharder [54], etc.

Simulations and sampling are expected to produce different results every time. Formal
verification, proofs of correctness, and mathematical arguments of expected values and er-
ror limits are the most reliable approaches. To supplement such static analysis, statistical
testing, like that done for random or pseudorandom number generators, may provide ad-
ditional assurance. Rerunning software with the same pseudorandom number generator
seed and test set of data is a weak test. It shows that the software did not get worse, but it
produces little information about what the software does for other sets of data or what bugs
might be revealed by other seeds.

12
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3.5.3 Sound and Heuristic Static Analyzers

“...static analysis has the potential to efficiently preclude several classes of errors in newly-
developed software and to reduce the uncertainty regarding resources needed to reach
higher levels of assurance through testing.” [23, Sect. 2.1.1]

Automated tools use two types of static analysis: heuristic and sound. Heuristic static
analysis checks rules that are usually followed, but not strictly required for a bug-free
program. An example rule is that if a file is opened in a function, it should be closed in that
same function. Perfectly fine software might not follow this rule, but obeying this guideline
greatly reduces the chance of a bug leaking resources.

Sound analysis is based on strict models and formal mathematical reasoning. Sound
analysis can provide far higher levels of assurance. However detailed processing of possi-
ble control flows and variable values may prevent software larger than about one hundred
thousand lines of code from being checked. In addition, some rules, such as “no hard-coded
passwords” or “always store sensitive data encrypted” cannot have rigorous definitions or
depend on external specifications and policies. As such, heuristic static analysis comple-
ments sound static analysis.

There are static analyzers for languages like R. The work of Bodin, Diaz, and Tan-
ter [25] lays a strong foundation for further analyzers that are sound. Several static code
analyzers handle Python, but they generally only detect low-level bugs.

3.6 Result Checking

Verifiable computation requires that a result be accompanied by a proof of correctness. To
be broadly practical, transforming the program to compute the result, preparing the input,
and checking the proof must cost much less than performing the computation. Verifiable
computation is also called “checking computations” or “certified algorithms”. A 2015
survey [55] reports that some approaches return succinct proofs and others can be used
with any computer program. It also notes rapid recent progress and is optimistic about the
future.

The ultimate assurance is achieved if the result can be cross checked in some fashion
or the computation also yields a certificate. Designing programs to check their results is a
classic approach [56] that has not been widely employed. Limited checking, such as Costea
and Tapus’ “differential privacy algorithm that signals the user when relative errors surpass
a predefined threshold” [57], provides some assurance that results have desired properties.

4. Workshop Summary

To provide input to and comment on this report, we organized a one-day workshop. It
was held 1 May 2019. Simson L. Garfinkel, U.S. Census Bureau, Research and Method-
ology Directorate, was a co-chair. The workshop, Formal Methods for Statistical Software
(FMISS), met in Annapolis, Maryland. We thank the High Confidence Software and Sys-
tems Conference, which provided registration support, the meeting space, and breaks. The

13



/28I’ LSIN/8Z09 01 /610°10p//:sdny :woly 861eyd jo oal) o|qe|ieae si uonesdlignd siy |

URL of the workshop page is https://samate.nist.gov/FMSwVRodeo/FM{fSS2019.html
The purpose of the workshop was to identify formal methods, tools, and techniques
that can be used now (or have the potential in the near future) to gain higher assurance of
statistical software and results with reasonable resources.
We called for brief position statements on topics like:

types of errors, bugs, and failures in statistical software or its use.
formal methods that can assure statistical software or its results.
correct-by-construction approaches.

lists or definitions of important properties, such as convergence and differential pri-
vacy.

gaps in current capabilities and specific research needed.

higher-level, non-procedural languages or tools so a statistician can specify the de-
sired analysis instead of how to achieve it.

approaches to gain assurance in statistical software and its use.

The program committee reviewed submitted statements. On the basis of those state-
ments, we invited some submitters to make a presentation. The program consisted of those
who accepted, discussion, and additional invited presentations. About 50 people from
academia, industry, and government attended.

Here is the final agenda.

0900

1005
1030
1100

1120
1140

1200
1330

Welcome and definitions; Individual introductions and expectations (all participants),
and a presentation of Keeling and Pavur, Statistical Accuracy of Spreadsheet Soft-
ware.

A Trustworthy Mechanized Formalization of R, Martin Bodin, Imperial College
break

Formalizing Statistical Computation in HOL4, Jared Yeager, University of Mas-
sachusetts Ambherst

Trustworthy Data Wrangling and Analysis, Eric Davis

The Challenges of Using SAST for Validation and Verification, Arthur Hicken, Para-
soft

lunch

Intro to Differential Privacy, Simson L. Garfinkel

14
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1340 Assuring Real-World Differential Privacy, José Calder6n, Galois

1405 Detecting Violations of Differential Privacy, Zeyu Ding, Penn State

1430 Discussion: Future of Formal Methods in Differential Privacy, Simson L. Garfinkel
1500 brief break

1515 A Formal Methods Tools Rodeo, Paul E. Black

1530 Static Analysis Challenges: Code Coverage, Warning Classes, and Types of Check-
ers, Arthur Hicken, Parasoft

1555 Formal Methods in Statistical Work, Paul E. Black

The workshop ended at 1600.
There were many good discussions and exchanges of information between participants.
Many of the comments, questions, and suggestions improved this report.

5. Recommendations and Conclusions

The following formal methods should particularly contribute to U.S. Census Bureau work.
We recommend that they be adopted and research be funded and otherwise encouraged.

Sound static analysis of software, Sec. 3.5.3. It has the potential to automatically find
many classes of bugs.

Higher-level, domain-specific languages designed from the beginning with a formal
semantic, Sec. 3.2. Model-based software development uses such languages. They could
completely eliminate the possibility of low-level bugs.

Correctness proofs, Sec. 3.4. Developing proofs along with code exposes assumptions
and can yield very low bug rates.

Collaborate with other federal agencies to characterize formal methods tools and their
use in software development and acceptance. Part of this collaboration is to use and extend
existing test sets, such as those for SV-COMP and RERS.

The following researchers are doing work particularly pertinent to applications in the
U.S. Census Bureau. We list them in the groups in which they collaborate. We recommend
maintaining close contact with them and establishing future collaborations.

Gilles Barthe and Pierre-Yves Strub, Institutos Madrilefios de Estudios Avanzados
(IMDEA) Software Institute, Marco Gaboardi, University at Buffalo, State University of
New York (SUNY), Benjamin Grégoire, Inria Sophia Antipolis, Justin Hsu, University of
Pennsylvania, and Tetsuya Sato, Research Institute for Mathematical Sciences, Kyoto Uni-
versity.

Sergiu Costea and Nicolae Tapus, University POLITEHNICA of Bucharest.

Ryan Rogers and Aaron Roth, University of Pennsylvania, Jonathan Ullman, North-
eastern University, and Salil Vadhan, Harvard University.
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Sebastian Elbaum, University of Nebraska - Lincoln, and David S. Rosenblum, Na-
tional University of Singapore.
Michael Lam, James Madison University.

Formal methods for software development are based on mathematics and logic. They
have the potential to reduce bugs and errors and increase assurance of statistical and database
products. Considering the time needed to test software and the schedule uncertainties re-
sulting from bugs, adoption of formal methods may actually reduce the time and resources
needed to develop high-quality software and results worthy of the U.S. Census Bureau.
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