NISTIR 8271

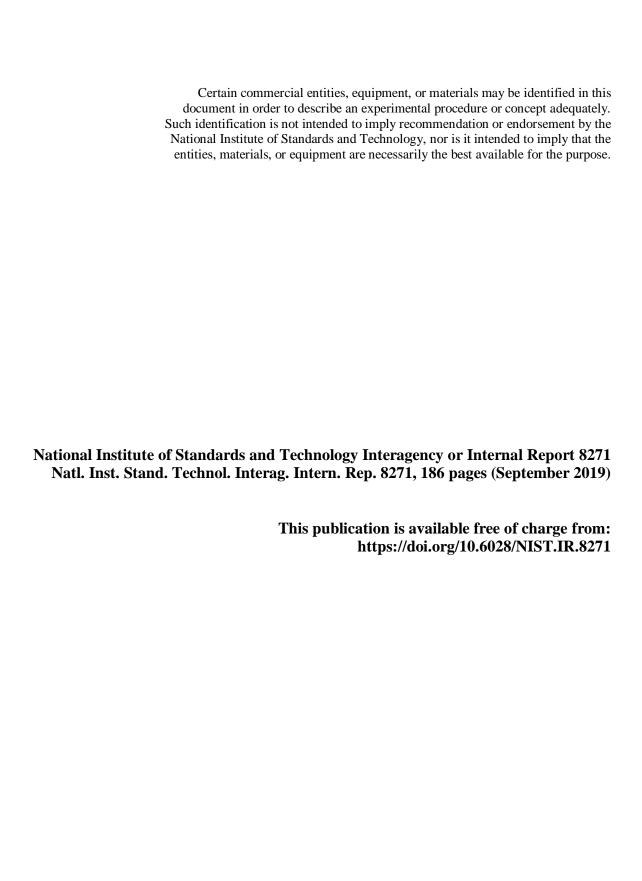
Face Recognition Vendor Test (FRVT) Part 2: Identification

Patrick Grother Mei Ngan Kayee Hanaoka

This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271

NISTIR 8271

Face Recognition Vendor Test (FRVT) Part 2: Identification


Patrick Grother
Mei Ngan
Kayee Hanaoka
Information Access Division
Information Technology Laboratory

This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271

September 2019

U.S. Department of Commerce Wilbur L. Ross, Jr., Secretary

ACKNOWLEDGMENTS

The authors are grateful to Wayne Salamon and Greg Fiumara at NIST for designing robust software infrastructure for image and template storage and parallel execution of algorithms across our computers. Thanks also to Brian Cochran at NIST for providing highly available computers and network-attached storage.

DISCLAIMER

Specific hardware and software products identified in this report were used in order to perform the evaluations described in this document. In no case does identification of any commercial product, trade name, or vendor, imply recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that the products and equipment identified are necessarily the best available for the purpose.

Executive Summary

This report updates and extends NIST Interagency Report 8238, documenting the evaluation of automated face recognition algorithms submitted to NIST in November 2018. The algorithms, which implement one-to-many identification of faces appearing in two-dimensional images, are prototypes from the research and development laboratories of mostly commercial suppliers, and are submitted to NIST as compiled black-box libraries implementing a NIST-specified C++ test interface. The report therefore does not describe how algorithms operate.

The evaluation used four datasets - frontal mugshots, profile views, webcam photos and wild images - and the report lists accuracy results alongside developer names. It will therefore be useful for comparison of face recognition algorithms and assessment of absolute capability. The primary dataset is comprised of 26.6 million reasonably well-controlled live portrait photos of 12.3 million individuals. The three smaller datasets contain more unconstrained photos: 3.2 million webcam images; 200 thousand side-view images; and 2.5 million photojournalism and amateur photographer photos. These datasets are sequestered at NIST, meaning that developers do not have access to them for training or testing. The last dataset, however, consists of images drawn from the internet for testing purposes so while it is not truly sequestered, its composition is unknown to the developers.

The evaluation was run in three phases, starting Feburary, June, and November 2018 respectively, with developers receiving technical feedback between phases. Results for 127 algorithms from 41 developers were published in November 2018 as NIST Interagency Report 8238. This update adds results for an additional 76 algorithms from 42 developers submitted in October 2018. At that time seven developers ceased participation, and nine developers started. The developer totals constitute a substantial majority of the face recognition industry.

The major result given in NIST IR 8238 was that massive gains in accuracy have been achieved in the last five years (2013-2018) and these far exceed improvements made in the prior period (2010-2013). While the industry gains were broad - at least 30 developers' algorithms outperformed the most accurate algorithm from late 2013 - there remains a wide range of capability. While this report shows accuracy gains only over the course of 2018, the most accurate algorithm reported here is substantially more accurate than anything reported in NIST IR 8238. This is evidence that face recognition development continues apace, and that FRVT reports are but a snapshot of contemporary capability.

From discussion with developers, the accuracy gains stem from the adoption of deep convolutional neural networks. As such, face recognition has undergone an industrial revolution, with algorithms increasingly tolerant of poorly illuminated and other low quality images, and poorly posed subjects. One related result is that a few algorithms correctly match side-view photographs to galleries of frontal photos, with search accuracy approaching that of the best c. 2010 algorithms executing frontal-frontal search. The capability to recognize under a 90-degree change in viewpoint - pose invariance - has been a long-sought milestone in face recognition research.

With good quality portrait photos, the most accurate algorithms will find matching entries, when present, in galleries containing 12 million individuals, with rank one miss rates of approaching 0.1%. The remaining errors are in large part attributable to long-run ageing, facial injury and poor image quality. In at least 5% of images identification often succeeds (i.e. the mate is returned at rank 1) but recognition similarity scores are weak such that true and false matches become indistinguishable, and human adjudication becomes necessary.

From Fall 2019 this report will be updated continuously as new algorithms are submitted to FRVT, and run on new datasets. Participation in the one-to-many identification track requires a devloper to first demonstrate high accuracy in the one-to-one verification track of FRVT.

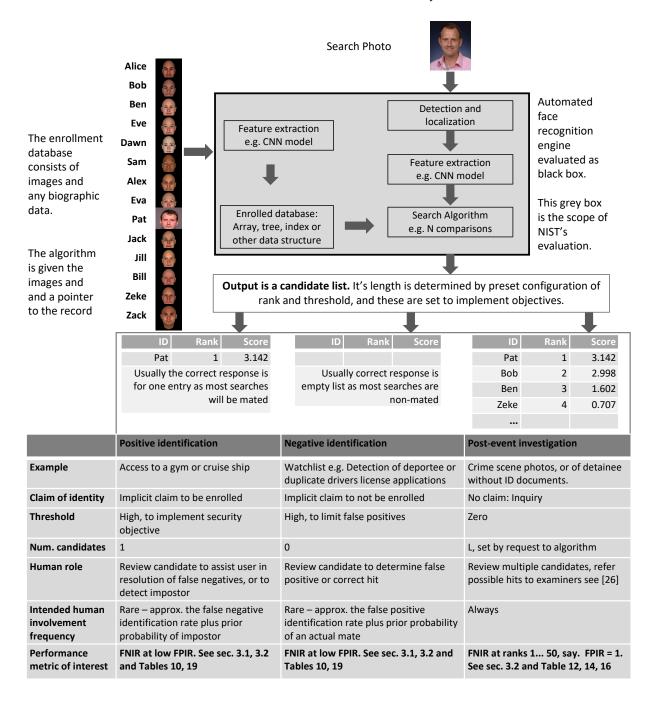
Scope and Context

Audience: This report is intended for developers, integrators, end users, policy makers and others who have some familiarity with biometrics applications. The methods and metrics documented here will be of interest to organizations engaged in tests of face recognition algorithms. Some of these have been incorporated in the ISO/IEC 19795 Part 1 Biometric Testing and Reporting Framework standard, now under revision.

Prior benchmarks: Automated face recognition accuracy has improved massively in the two decades since initial commercialization of the various technologies. NIST has tracked that improvement through its conduct of regular independent, free, open, and public evaluations. These have fostered improvements in the state of the art. This report serves as an update to the NIST Interagency Report 8238 on performance of face identification algorithms, published in November 2018.

Scope: As with NIST IR 8238, this report documents recognition results for four databases containing in excess of 30.2 million still photographs of 14.4 million individuals. This constitutes the largest public and independent evaluation of face recognition ever conducted. It includes results for accuracy, speed, investigative vs. identification applications, scalability to large populations, use of multiple images per person, images of cooperative and non-cooperative subjects.

The report also includes results for ageing, recognition of twins, and recognition of profile-view images against frontal galleries. It otherwise does not address causes of recognition failure, neither image-specific problems nor subject-specific factors including demographics. Separate reports on demographic dependencies in face recognition will be published in the future. Additionally out of scope are: performance of live human-in-the-loop transactional systems like automated border control gates; human recognition accuracy as used in forensic applications; and recognition of persons in video sequences (which NIST evaluated separately [9]). Some of those applications share core matching technologies that *are* tested in this report.


Images: Three kinds of images are employed. The primary dataset is a set of law enforcement mugshot images (Fig. 3) which are enrolled and then searched with three kinds of images: 1) other mugshots (i.e. within-domain); 2) profile-view photographs (90 degree cross-view); 3) lower quality webcam images (Fig. 4) collected in similar detention operations (cross-domain); Additionally wild images (Fig. 6) are searched against other wild images.

Participation and industry coverage: The report includes performance figures for 203 prototype algorithms from the research laboratories of 51 commercial developers and one university. This represents a substantial majority of the face recognition industry, but only a tiny minority of the academic community. Participation was open worldwide. While there is no charge for participation, developers incur some software engineering expense in implementing their algorithms behind the NIST application programming interface (API). The test is a black-box test where the function of the algorithm, and the intellectual property associated with it, is hidden inside pre-compiled libraries.

Recent technology development: Most face recognition research with deep convolutional neural networks (CNNs) has been aimed at achieving invariance to pose, illumination and expression variations that characterize photojournalism and social media images. The initial research [18, 24] employed large numbers of images of relatively few ($\sim 10^4$) individuals to learn invariance. Inevitably much larger populations ($\sim 10^7$) were employed for training [11, 20] but the benchmark, Labeled Faces in the Wild with (essentially) an equal error rate metric [12], represents an easy task, one-to-one verification at very high false match rates. While a larger scale identification benchmark duly followed, Megaface [15], its primary metric, rank one hit rate, contrasts with the high threshold discrimination task required in most large-population applications of face recognition, namely credential de-duplication, and background checks. There, identification in galleries containing up to 10^8 individuals must be performed using a) very few images per individual and b) stringent thresholds to afford very low false positive identification rates. FRVT 2018 was launched to measure the capability of the new technologies, including in these two cases. FRVT has included open-set identification tests since 2002, reporting both false negative and positive identification rates [7].

Performance metrics for applications: This report documents the performance of one-to-many face recognition algorithms. The word "performance" here refers to recognition accuracy and computational resource usage, as measured by executing those algorithms on massive sequestered datasets.

This report includes extensive tabulation of recognition error rates germane to the main use-cases for face search technology. The Figure below, inspired by the Figure 1 in [25] differentiates different applications of the technology. The last row directs readers to the main tables relevant to those applications, respectively threshold-based and rank-based metrics that are special cases of the metrics given in section 3. The terms negative identification and positive identification are taken from the ISO/IEC 2382-37:2017 standardized biometrics vocabulary.

The algorithms are specifically configured for these applications by setting thresholds and candidate list lengths. Both

rank-based metrics and threshold-based metrics include tradeoffs. In investigation, overall accuracy will be reduced if labor is only available to review a few candidates from the automated system. Note that when a fixed number of candidates are returned, the false positive identification rate of the automated face recognition engine will be 100%, because a probe image of anyone not enrolled will still return candidates. In identification applications where false positives must be limited to satisfy reviewer labor availability or a security objective, higher false negative rates are implied. This report includes extensive quantification of this threshold-based tradeoff.

See Sec. 3

Template diversity: The FRVT is designed to evaluate black-box technologies with the consequence that the templates that hold features extracted from face images are entirely proprietary opaque binary data that embed considerable intellectual property of the developer. Despite migration to CNN-based technologies there is no consensus on the optimal feature vector dimension. This is evidenced by template sizes ranging from below 100 bytes to more than four kilobytes. This diversity of approaches, suggests there is no prospect of a standard template something that would require a common feature set to be extracted from faces. Interoperability in automated face recognition remains solidly based on images and documentary standards for those, in particular the ICAO portrait [29] specification deriving from the ISO/IEC 19794-5 Token frontal [26] standard, which are similar to certain ANSI/NIST Type 10 [28] formats.

Training: The algorithms submitted to NIST have been developed using image datasets that developers do not disclose. The development will often include application of machine learning techniques and will additionally involve iterative training and testing cycles. NIST itself does not perform any training and does not refine or alter the algorithm in any way. Thus the model, data files, and libraries that define an algorithm are fixed for the duration of the tests. This reflects typical operational reality where recognition software, once installed, is fixed and constant until upgraded. This situation persists because on-site training of algorithms on customer data is atypical essentially because training is not a turnkey process.

Automated search and human review: Virtually all applications using automated face search require human review of the outputs at some frequency: Always for investigational applications; rarely in positive identification applications, after rejection (false or otherwise); and rarely in negative identification applications, after an alarm (false or otherwise). The human role is usually to compare a reference image with the query image or the live-subject if present, to render either a definitive decision on "exclusion" (different subjects), or "identification" (same subject), or a declaration that one or both images have "no value" and that no decision can be made. Note that automated face recognition algorithms are not built to do exclusion - low scores from a face comparison arise from different faces and poor quality images of the same face.

Human reviewers make recognition errors [5, 19, 27] and are sensitive to image acquisition and quality. Accurate human review is supported by high resolution - as specified in the Type 50, 51 acquisition profiles of the ANSI/NIST Type 10 record [28], and by multiple non-frontal views as specified in the same standard. These often afford views of the ear. Organizations involved in image collection should consider supporting human adjudication by collecting high-resolution frontal and non-frontal views, preparing low resolution versions for automated face recognition [26], and retaining both for any subsequent resolution of candidate matches. Along these lines, the ISO/IEC Joint Technical Committee 1 subcommittee 37 on biometrics has just initiated projects on image quality assessment and face-aware capture.

Next steps: NIST expects to publish a first report on demographic dependencies in face recognition in 2019. This will include the effects of age, sex and race.

Technical Summary

▶ Rank-based accuracy: The inset table shows false negative "miss rates" realized when searching a 12 million person gallery populated with FRVT 2018 mugshots. The two most accurate algorithms fail to return the correct mate somewhere within the top 50 ranks in fewer than 0.1% of searches (Table 1, rows 1,2). This is achieved for galleries populated with multiple images per person. In the case where only the most recent image is present the miss rate is modestly higher (rows 3,4). The mates are almost always at rank 1, so in cases where only very short candidate lists must be used, the rank-1 miss rate is barely higher 0.12% (row 5) which again modestly rises when persons are enrolled with a single image (row 7). All the miss rates are measured over a fixed set of 154549 searches, and the lowest false negative error

rate recorded in this report (0.038%, row 10) corresponds to just 58 misses. Given such low error rates, what misses remain? By inspection they arise in five categories, those due to: a) ageing i.e. longterm time lapse between images; b) images of injured individuals e.g. bruised or bandaged faces; c) the presence of a second face e.g. printed on a T-shirt; d) images of some object that is not a face; e) profile-view images, and f) actual clerical ID label errors. As discussed in section 3.8.2, the first three categories are legitimately part of a test designed to measure accuracy on portrait images collected in law-enforcement settings. The latter three

	Investigation	Num-	Enrolled	Num-	Algorithm]	FNIR
	miss rate at	subjects	image	images		Raw	Corrected
1	Rank-50	12M	Lifetime	26.1M	NEC-2	0.09%	0.09%
2	Rank-50	12M	Lifetime	26.1M	Microsoft-5	0.06%	0.06%
3	Rank-50	12M	Recent	12M	NEC-2	0.25%	0.08%
4	Rank-50	12M	Recent	12M	Microsoft-5	0.21%	0.09%
5	Rank-1	12M	Lifetime	26.1M	NEC-2	0.14%	0.12%
6	Rank-1	12M	Lifetime	26.1M	Microsoft-5	0.25%	0.24%
7	Rank-1	12M	Recent	12M	NEC-2	0.31%	0.13%
8	Rank-1	12M	Recent	12M	Microsoft-5	0.52%	0.37%
9	Rank-50	640K	Lifetime	1.25M	NEC-2	0.08%	0.08%
10	Rank-50	640K	Lifetime	1.25M	Microsoft-5	0.04%	0.04%

Table 1: Rank-based accuracy floor 2018.

categories, however, should not be included in a test that is attempting to measure accuracy on only frontal images. Thus, by removing all known images in those categories, the rightmost column shows error rates that would be attainable in an application where exclusively frontal portrait images were collected without identity labeling errors.

Error rates today are two orders of magnitude below what they were in 2010, a massive reduction that stems from wholesale replacement of the old algorithms with those based on (deep) convolutional neural networks (CNNs). This constitutes a revolution rather than the evolution that defined the period 2010-2013. The rapid innovations around CNN architectures and loss functions including, both proprietary and published in the academic literature¹, may yet produce further gains. Even without that possibility, the results imply that prospective end-users should establish whether installed algorithms pre-date the development of the prototypes evaluated here and inquire with suppliers on availability of the latest versions. The gains mean that searches that had previously failed to yield candidates may now do so, such that unsolved cases could be revisited.

Given this impressive achievement - close to perfect recognition - an advocate might claim that frontal face recognition is a solved problem, a statement that should be refuted with the following context and caveats:

- ▶ **Algorithm accuracy spectrum:** Many algorithms do not achieve the low error rates tabulated above, and while many of those may still be useful and valuable to end-users, only the most accurate excel on poor quality images and those collected long after the initial enrollment sample.
- ▶ **Versioning:** While results for up to seven algorithms from each developer are reported here, the intra-provider accuracy variations are usually smaller than the inter-provider variations. That said different versions give order of magnitude fewer misses. Some developers demonstrate speed-accuracy tradeoffs². See Figs. 17, 18.

¹For example, Resnets [11], Inception [23], very deep networks [18,21] and spatial transformers.

²NEC-0 prepares templates much faster than NEC-2 but gives twenty times more misses. Dermalog-5 executes a template search much more quickly than Dermalog-6 but is also much less accurate.

- ▶ Quality: The low error rates here are attained using mostly excellent cooperative live-capture mugshot images collected with an attendant present. Recognition in other circumstances, particularly those without a dedicated photographic environment and human or automated quality control checks, will lead to declines in accuracy. This is documented here for poorer quality webcam images and unconstrained "wild" images.
- Downsimilarity scores: In thousands of cases the correct gallery image is returned at rank 1 but its similarity score is nevertheless low, below some operationally required score threshold. This does not matter when face recognition is used for "lead generation" in investigational applications because human reviewers are specifically required to review potentially long candidate lists and the threshold is effectively 0. In applications where search volumes are higher and labor is not available to review the results from searches, a higher threshold can be applied. This reduces the length of candidate lists and false positive identification rates at the expense of increased false negative miss rates. The tradeoff between the two error rates is reported extensively later.
- ▶ **Population size:** As the number of enrolled subjects grows, some mates are displaced from rank one, decreasing accuracy. As tabulated later for N up to 12 million, false negative rates generally rise slowly with population size.
- Database integrity: An operational error rate should be added to all false negative rates in this report reflecting the proportion of images in a real database that are un-matchable. Such anomalies arise from images that: do not contain a face; include multiple persons; cannot be decoded; are rotated by 90° or 180°; depict a face on clothing; and others introduced by a long tail of various clerical errors. While the mugshot trials in this report have been constructed to minimize such effects, they are a real problem in actual operations.

Description Threshold-based accuracy: Recognition accuracy is very strongly dependent on the algorithm and, more

generally, on the developer of the algorithm. False negative error rates in a particular scenario range from a few tenths of one percent to beyond fifty percent. This is tabulated exhaustively later: For example Table 22 shows accuracy across datasets. The inset figure here compares algorithms on mugshot searches in a consolidated gallery of 12 million subjects and 26.1 million photos. In positive or negative identification applications, a score threshold is set to limit the rate at which non-mate searches produce false positives. This has the consequence that some mated searches will report the mate below threshold, i.e. a miss, even if it is at rank 1. The utility of this is that many non-mated searches will usually not return any candidate identities at all. As the

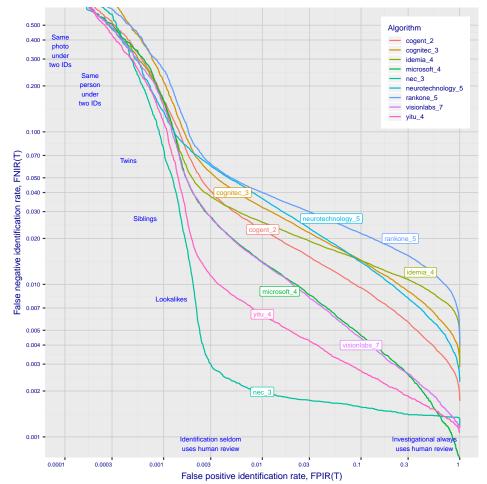


Figure 1: Miss rates across the false positive range

2019/09/11

FNIR(N, R, T) = FPIR(N, T) =

False neg. identification rate False pos. identification rate N = Num. enrolled subjects R = Num. candidates examined T = Threshold

 $T = 0 \rightarrow Investigation$ $T > 0 \rightarrow Identification$ inset error-tradeoff characteristic

shows, investigational miss rates on the right side are very low but then rise steadily (in the center region) as threshold is increased to support "lights-out" applications, and ultimately rise quickly (left side) as discussed below. Thus, if we demand that just one in one thousand non-mate searches produce any false positives, the most accurate algorithm there (NEC-3) would fail on 7.9% of mated searches. Even though the graph shows results for the most accurate algorithms, all but two would fail to find the mate in more than 10% of mated searches. While the NEC algorithm produces a relatively flat error tradeoff until the threshold is raised to limit false positives to about 1 in 400 non-mated searches

Thereafter, as the threshold is raised to further reduce false positives, miss rates rise rapidly. This means that low false positive identification rates are inaccesible with these algorithms, a result that does not apply for ten-finger identification algorithms. The rapid rise occurs because the lower mate scores are mixed with very high non-mate scores, the low scores from poor image quality and ageing, the high non-mates from the presence of lookalikes persons (doppel-gangers), twins (discussed next) and, ultimately, the presence of a few unconsolidated subjects i.e. persons present under multiple IDs.

▶ False positives from twins: By enrolling 640 000 mugshots, adding photos of one twin, and then searching photos of those subjects and their twin the inset figure shows, for one typical algorithm, the similarity is generally greater when searching twins against themselves (A) than when searching twins against their sibling (B) but very

often still above even stringent thresholds i.e. those corresponding to one in one thousand searches producing a false positive. Thus twins will very often produce a high-scoring non-match on a candidate list and a false alarm in an online identification system. The plot shows that some fraternal twins are correctly rejected at those thresholds - these are largely from different sex twins (at center). Figure 21 shows substantially similar behavior for all algorithms tested. In an investigative search, a twin would typically appear at rank 1, or rank 2 if their sibling happened to also be the gallery. Twins (and triplets etc.) constituted 3.3%

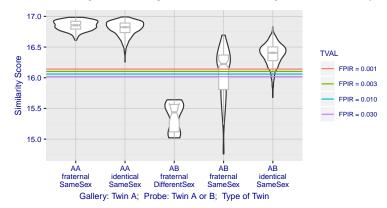


Figure 2: Intra- and inter-twin scores

of all live births [17] in recent years⁴, and because that number is higher today than when the individuals in current adult databases were born, the false positives that arise from twins are now, and will increasingly be, an operational problem. Relative to the United States, twins are born with considerable regional variation. For example they are much less common in East Asia, and much more common in Sub-Saharan Africa [22]. The presence of twins in the mugshot database is inevitable given its size, around 12.3 million people. As this is not an insignificant sample of the domestic United States population, people with other familial ties will be present also. The data was collected over an extended period and because location information is not available, we are unable to estimate the proportion of the domestic population that is present in the dataset. However, if we assume twins are neither more or less disposed to arrest than the general population, we can estimate that hundreds of thousands of individuals in the dataset are twins. This will affect false positive rates because we randomly set aside 331 254 individuals for nonmate searches, and some proportion of those will be twins with siblings in the gallery.

³ The gallery size here is 12 million people, 26.1 million images. Given 331 254 non-mated searches, an exhaustive implementation of one-too-many search would execute 8.6 trillion comparisons. At a false positive identification rate of 0.0025 the number of false positives is, to first order, 828 corresponding to single-comparison false match rate of 828 / 8.6 trillion = 9.6 10⁻¹¹ i.e. about 1 in 10 billion. Strictly this FMRR computation meaningful only for algorithms that implement 1:N search using N 1:1 comparisons, which is not always the case.

⁴See the CDC's National Vital Statistics Report for 2017: https://www.cdc.gov/nchs/data/nvsr/nvsr67/nvsr67_08-508.pdf

▶ **False negatives from ageing:** A large source of error in long-run applications where subjects are not re-enrolled on a schedule is ageing. This is a function of the time elapsed between photographs. Change in facial appearance

causes recognition similarity scores to decline such that over the longer term, accuracy will decline. All faces age and while this usually proceeds in a graceful and progressive manner, drug use can accelerate this [30]. Elective surgery may be effective in delaying it although this has not been formally quantified with face recognition. As ageing is essentially unavoidable, it can only be mitigated by scheduled re-capture, as in passport re-issuance. To quantify ageing effects, we used the more accurate algorithms to enroll the earliest image of 3.1 million adults and then search with 10.3 million newer photos taken up to 18 years after the the initial enrollment photo. In the inset ta-

Algorithm	Metric, FNIR@	(0,2]	(2,4]	(4,6]	(6,8]	(8,10]	(10,12]	(12,14]	(14,18]
nec-2	Rank = 1	0.3	0.4	0.4	0.4	0.4	0.5	0.6	0.4
microsoft-4	Rank = 1	0.3	0.5	0.6	0.7	0.9	1.0	1.3	1.6
yitu-4	Rank = 1	0.6	0.8	0.8	0.8	0.9	1.1	1.5	2.1
everai-3	Rank = 1	0.5	0.7	0.9	1.1	1.3	1.5	1.8	2.2
idemia-4	Rank = 1	1.1	1.5	1.9	2.3	2.8	3.1	3.7	5.1
cogent-3	Rank = 1	0.8	1.1	1.3	1.5	1.7	1.9	2.4	3.1
cognitec-2	Rank = 1	1.0	1.4	1.7	2.0	2.4	2.6	3.1	3.9
nec-2	FPIR = 0.001	0.7	0.9	1.1	1.3	1.5	1.7	2.1	2.7
microsoft-4	FPIR = 0.001	2.7	4.7	7.2	10.1	12.9	16.1	20.5	25.9
yitu-4	FPIR = 0.001	1.2	2.0	3.1	4.7	6.7	9.6	14.2	20.1
everai-3	FPIR = 0.001	3.5	6.2	9.3	12.9	16.2	19.6	24.1	29.2
idemia-4	FPIR = 0.001	3.7	5.9	8.3	11.0	13.4	15.8	19.1	24.8
cogent-3	FPIR = 0.001	5.8	9.7	14.2	19.2	23.8	28.4	34.4	42.1
cognitec-2	FPIR = 0.001	5.2	8.8	12.7	17.1	21.0	24.6	29.2	35.3

Table 2: Impact of ageing on accuracy.

ble, accuracy is seen to degrade progressively with time, as mate scores decline and non-mates displace mates from rank 1 position. More accurate algorithms tend to be less sensitive to ageing. The more accurate algorithms give fewer errors after 18 years of ageing than middle tier algorithms give after four. Note also we do not quantify an ageing rate - more formal methods [2] borrowed from the longitudinal analysis literature have been published for doing so (given suitable repeated measures data).

See Figures 62, 72 and 77.

▶ **Image quality matters:** Poor quality photographs undermine recognition, either because the imaging system is poor

(lighting, camera, etc.) or because the subject mis-presents to the camera (head orientation, facial expression, occlusion, etc.). Imaging problems can be mitigated by design i.e. ensuring adherence to long-standing face image capture standards. Presentation problems, however, must be detected at capture time, either by the photographer, or by an automated system, and recapture performed. The most accurate algorithms in FRVT are highly tolerant of image quality problems. This derives from the invariances afforded by CNN-based algorithms, and this is the fundamental reason why accuracy has improved since 2013. For example, the Microsoft algorithms are can match many profileview images to frontal mugshots - see Figures 100 and 102. As the inset table shows, rank-1 false negative identification rates are much higher with wild images than webcams and, in turn, mugshots. Further, even with the most capable algorithms, comparison scores are lower with unconstrained images, so that when (high) thresholds are necessary to limit false positives, here to 1

Algorithm	Metric, FNIR@	Wild	Mugshot	Webcam
cognitec-3	Rank = 1	5.1	0.9	2.5
everai-3	Rank = 1	3.8	0.5	1.9
idemia-5	Rank = 1	4.4	1.1	3.9
microsoft-5	Rank = 1	3.3	0.3	1.1
nec-3	Rank = 1	8.8	0.3	1.0
ntechlab-6	Rank = 1	3.8	0.6	1.7
visionlabs-5	Rank = 1	4.3	0.4	1.9
yitu-4	Rank = 1	4.4	0.4	0.8
cognitec-3	FPIR = 0.01	32.5	2.8	10.0
everai-3	FPIR = 0.01	35.7	1.8	6.0
idemia-5	FPIR = 0.01	34.0	2.8	10.2
microsoft-5	FPIR = 0.01	34.4	1.2	4.1
nec-3	FPIR = 0.01	38.0	0.4	1.3
ntechlab-6	FPIR = 0.01	38.1	2.1	5.9
visionlabs-5	FPIR = 0.01	34.4	2.2	8.7
yitu-4	FPIR = 0.01	30.6	0.7	1.7

Table 3: Impact of image quality on accuracy.

in 100 searches, error rates are very high. Such figures should guide prospective users of face recognition to consider whether face recognition can meet a formal written accuracy requirement.

▶ **Accuracy in large populations:** This report documents identification accuracy in galleries containining up to 12 million people and 26.1 million images. False negative rates climb very slowly as population size increases. For the most accurate algorithm, NEC-2, when searching a database of size 640 000, about 0.26% of searches fail to produce the

correct mate as its best hypothesized identity. In a database of 12 000 000 this rises to just 0.31%. This benign growth in miss rates is fundamentally the reason for the utility of face recognition in large scale one-to-many search applications. See Table 12 and Figure 22.

The reason for this is that as more identities are enrolled into an database, the possibility of a false positive increases due to lookalike faces that yield extreme values from the right tail of the non-mate score distribution. However, these scores are lower than most mate scores such that when an identification algorithm is configured with a threshold of zero (so human adjudication is always necessary), rank-one identification miss rates scale very favorably with population size, N, growing slowly, approximately as a power law, aN^b with $b \ll 1$. This dependency was first noted in 2010. Depending on the algorithm, the exponent b for mugshot searches is low, around 0.06 for the some of the more accurate algorithms with up to 12 million identities. See Table 12.

In any case, variations in accuracy with increasing population size are small relative to both ageing and algorithm See Figure 20. choice.

▶ **Utility of adjudicating long candidate lists:** In the regime where a system is configured with a threshold of zero, and where human adjudication is always necessary, the reviewer will find some mates quite far down candidate lists. This usually occurs because either the probe image or its corresponding enrolled mate image have poor quality, or large time-lapse. The accuracy benefits of traversing say 50 candidates versus just the first one is broadly a reduction in error by up to a factor of two. See Figure 30 and compare Tables 12 and 13.

However, accuracy from the leading algorithm is now so high - mates that in 2013 were placed at rank > 1, are now at rank 1 - such that reviewers can expect to review substantially fewer candidates. Note, however, for the proportion of searches where there is no mate, reviewers might still examine all candidates, fruitlessly. This report does not address the issue of human error in adjudicating candidates produced in one-to-many searches.

▶ **Utility of enrolling multiple images per subject:** We run three kinds of enrollment: First, by enrolling just the most recent image; second by creating a single template from a person's full lifetime history of images; and third by enrolling multiple images of a person separately, as though under different identities. The overall effect is that the enrollment of multiple images yields as much as a factor of two lower miss rates. This occurs due to higher information content and because the most recent image may sometimes be of poorer quality than historical images. See Table 12.

Gains depend on the number of available images: FNIR drops steadily. Some algorithms reduce FPIR or maintain it the desirable behaviors - but others give higher false positive rates. See Figures leading up to

- ▶ **Reduced template sizes:** There has been a trend toward reduced template sizes, i.e. a smaller feature representation of an image. In 2014, the most accurate algorithm used a template of size 2.5KB; the figure in 2018 is around 1600 bytes. Close competitors produce templates of size 256, 364, 512, and about 2KB bytes. In 2014, the leading competitors had templates of size 4KB to 8KB. Some algorithms, when enrolling more than one image of a person, produce a template whose size is independent of the number of images given to the algorithm. This can be achieved by selecting a "best" image, or by integrating (fusing) information from the images. See Table 16.
- ▶ **Template generation times:** Template generation times, as measured on a single circa-2016 server processor core ⁵, vary from below 20 milliseconds up to nearly 1 second. This wide variation across developers may be relevant to end-users who have high-volume workflows. There has not been a wide downward trend since 2014. Note that speed may be expedited over the figure reported here by exploiting new vector instructions on recent chips. Note that GPUs were not used and, while indispensable for training CNNs, are not necessary for feeding an image forward through a network. See Table 16.
- ⊳ Search duration and scalability: Template search times, as measured on circa-2016 Intel server processor cores,

⁵Intel Xeon CPU E5-2630 v4 running at 2.20GHz.

vary massively across the industry. For a database of size 1 million subjects, and the more accurate implementations, durations range from below 1 to 500 milliseconds, with other less accurate algorithms going much slower still. Several algorithms exhibit sublinear search time i.e. the duration does not double with a doubling of the enrolled population size, N. This was noted also in 2014. This has improved in 2018, however, such that close-to-logarithmic growth is evident for several developers' algorithms and extremely fast search. The consequence of this is that as N increases even the fastest linear algorithm (NEC-3) will quickly become much slower than the strongly sublinear algorithms. For the Dermalog-5 algorithm, search of a template against a database of N = 12 million images takes 850 microseconds on a single core of a contemporary CPU. That number is faster than any other algorithm even with the smallest gallery we tested ($N = 640\,000$).

▶ Accuracy gains June - October 2018 NIST Interagency Report 8238 documented massive gains from 2013 to 2018. This

report shows most developers achieved gains over the four month interval between June and October 2018. For a set of 12 million subjects enrolled with their most recent mugshot image, the inset table shows, for selected algorithms, the proportion of searches where mates are not returned against the given criteria (column 2). The result is that substantial reductions in false negatives - by a factor of two or more - were realized by algorithms submitted by Cogent, Cognitec, Dermalog, Hikvision, Innovatrics, NEC, Rank One, Shaman, Tiger-IT, and Vigilant Solutions. In particular, in this same time period one developer, NEC, which had produced broadly the most accurate algorithms in 2010 and 2013, submitted algorithms that are substantially more accurate than their June 2018 versions, and on many measures are now the most accurate. A number of other developers produced slightly less accurate implementations.

A 1' ('	3.6.1.	A 1	1:1	FNIR	
Application	Metric	Algo	Algorithm		
Mode: Mugshot	Miss rate	Date	Name		
Investigation	at Rank=1	2018-JUN	NEC-0	3.20%	
Investigation	at Rank=1	2018-OCT	NEC-2	0.31%	
Investigation	at Rank=1	2018-JUN	Microsoft-4	0.45%	
Investigation	at Rank=1	2018-OCT	Microsoft-5	0.52%	
Investigation	at Rank=1	2018-JUN	Yitu-2	0.55%	
Investigation	at Rank=1	2018-OCT	Yitu-5	0.55%	
Identification	at FPIR=0.001	2018-JUN	NEC-0	20.0%	
Identification	at FPIR=0.001	2018-OCT	NEC-3	5.8%	
Identification	at FPIR=0.001	2018-JUN	Microsoft-4	15.8%	
Identification	at FPIR=0.001	2018-OCT	Microsoft-6	15.6%	
Identification	at FPIR=0.001	2018-JUN	Yitu-2	12.4%	
Identification	at FPIR=0.001	2018-OCT	Yitu-5	11.1%	

Table 4: Accuracy gains since June - October 2018

See Tables 16 and 19, and Figure 19.

- Non-technical considerations: Recognition accuracy is likely the most important technical indicator for an algorithm. But even among the more accurate developers accuracy, template size, and resource consumption vary widely. This, incidentally, implies that technological diversity remains, that there is no consensus on approach and that algorithms are not commoditized. But beyond the performance statements in this report, face recognition outcomes in complete systems will be influenced by things like code and model size, software maturity, extensibility, reliability, ease of integration and maintenance, cost, availability of monitoring tools, and support for human review of true and false matches using, for example, capable graphical user interfaces.
- ⊳ **Conclusions:** As with other biometrics, accuracy of facial recognition implementations varies greatly across the industry. Absent other performance or economic parameters, users should prefer the most accurate algorithm. Note that accuracy, and algorithm rankings, vary somewhat with the kinds of images used and the mode of operation: investigation with zero threshold; or identification with high threshold.
- ▶ **Supplementary Data:** This document is accompanied by a supplement that includes a three page report for each of the algorithms evaluated. Each report includes various performance plots pertinent to the particular algorithm under test. The supplement, which currently runs to more than 600 pages, is available from the same webpage as this report.

Release Notes

FRVT Activities: NIST restarted FRVT's one-to-many track in February 2018, inviting participants to send up to seven prototype algorithms. Since February 2017, NIST has been evaluating one-to-one verification algorithms on an ongoing basis. This allows developers to submit updated algorithms to NIST at any time but no more frequently than four calendar months. This more closely aligns development and evaluation schedules. Results are posted to the web within a few weeks of submission. Details and full report are linked from the Ongoing FRVT site.

FRVT Reports: The results of the FRVT appear in the series NIST Interagency Reports tabulated below. The reports were developed separately and released on different schedules. In prior years NIST has mostly reported FRVT results as a single report; this had the disadvantage that results from completed sub-studies were not published until all other studies were complete.

Date	Link	Title	No.
2014-03-20	PDF	FRVT Performance of Automated Age Estimation Algorithms	7995
2015-04-20	PDF	Face Recognition Vendor Test (FRVT) Performance of Automated Gender Classification Algorithms	8052
2014-05-21	PDF	FRVT Performance of face identification algorithms	8009
2017-03-07	PDF	Face In Video Evaluation (FIVE) Face Recognition of Non-Cooperative Subjects	8173
2017-11-23	PDF	The 2017 IARPA Face Recognition Prize Challenge (FRPC)	8197
2018-04-13	WWW	Ongoing Face Recognition Vendor Test (FRVT)	Draft

Details appear on pages linked from https://www.nist.gov/programs-projects/face-projects.

Appendices: This report is accompanied by appendices which present exhaustive results on a per-algorithm basis. These are machine-generated and are included because the authors believe that visualization of such data is broadly informative and vital to understanding the context of the report.

Typesetting: Virtually all of the tabulated content in this report was produced automatically. This involved the use of scripting tools to generate directly type-settable LaTeX content. This improves timeliness, flexibility, maintainability, and reduces transcription errors.

Graphics: Many of the Figures in this report were produced using the ggplot2 package running under R, the capabilities of which extend beyond those evident in this document.

Contents

Acknowledgments	1
Disclaimer	1
Executive Summary	2
Scope and Context	3
Technical Summary	6
Release Notes	12
1 Introduction	14
2 Evaluation datasets	14
3 Performance metrics	20
4 Results	36
Appendices	65
A Accuracy on large-population FRVT 2018 mugshots	65
B Effect of time-lapse: Accuracy after face ageing	110
C Effect of enrolling multiple images	138
D Accuracy with poor quality webcam images	145
E Accuracy for profile-view to frontal recognition	155
F Accuracy when identifying wild images	159
G Search duration	170
H. Gallery Insertion Timing	177

1 Introduction

One-to-many identification represents the largest market for face recognition technology. Algorithms are used across the world in a diverse range of biometric applications: detection of duplicates in databases, detection of fraudulent applications for credentials such as passports and driving licenses, token-less access control, surveillance, social media tagging, lookalike discovery, criminal investigation, and forensic clustering.

This report contains a breadth of performance measurements relevant to many applications. Performance here refers to accuracy and resource consumption. In most applications, the core accuracy of a facial recognition algorithm is the most important performance variable. Resource consumption will be important also as it drives the amount of hardware, power, and cooling necessary to accommodate high volume workflows. Algorithms consume processing time, they require computer memory, and their static template data requires storage space. This report documents these variables.

1.1 Open-set searches

FRVT tested open-set identification algorithms. Real-world applications are almost always "open-set", meaning that some searches have an enrolled mate, but some do not. For example, some subjects have truly not been issued a visa or drivers license before; some law enforcement searches are from first-time arrestees⁶. In an "open-set" application, algorithms make no prior assumption about whether or not to return a high-scoring result, and for a mated search, the ideal behaviour is that the search produces the correct mate at high score and first rank. For a non-mate search, the ideal behavior is that the search produces zero high-scoring candidates.

Too many academic benchmarks execute only closed-set searches. The proportion of mates found in the rank one position is the default accuracy metric. This hit rate metric ignores the score with which a mate is found; weak hits count as much as strong hits. This ignores the real-world imperative that in many applications it is necessary to elevate a threshold to reduce the number of false positives.

2 Evaluation datasets

This report documents accuracy for four kinds of images - mugshots, webcam, profiles and wild - as described in the following sections.

2.1 Mugshot images

The main mugshot dataset used is referred to as the FRVT 2018 set. This set was collected over the period 2002 to 2017 in routine United States law enforcement operations. This set has been extracted from a larger operational parent set by excluding non-face images, and setting aside webcam and profile-view images, for use in separate tests.

NIST Interagency Report 8238 includes a comparison of this set of mugshots with the smaller and easier sets of mugshots used in tests run in 2010 and 2014.

⁶Operationally closed-set applications are rare because it is usually not the case that all searches have an enrolled mate. One counter-example, however, is a cruise ship in which all passengers are enrolled and all searches should produce exactly one identity. Another example is forensic identification of dental records from an aircraft crash.

- ▶ Mugshots: Mugshots comprise about 86% of the database. They have reasonable compliance with the ANSI/NIST ITL1-2011 Type 10 standard's subject acquisition profiles levels 10-20 for frontal images [28]. The most common departure from the standard's requirements is the presence of mild pose variations around frontal the images of Figure 3 are typical. The images vary in size, with many being 480x600 pixels with JPEG compression applied to produce filesizes of between 18 and 36KB with many images outside this range, implying that about 0.5 bits are being encoded per pixel.
- ▶ Profile images: Profile-view images have been collected in law enforcement for more than 100 years, as human capability is improved with orthogonal information. The profile images used in this report were collected during the same session as the frontal mugshot photograph, in the same standardized photographic setup. These would not therefore be used with automated face recognition. A small subset, 200 000 images, were set aside for testing.
- ▶ **Webcam images**: The remaining 14% of the images were collected using an inexpensive webcam attached to a flexible operator-directed mount. These images are all of size 240x240 pixels, that are in considerable violation of most quality-related clauses of all face recognition standards. As evident in the figure, the most common defects are non-frontal pose (associated with the rotational degrees of freedom of the camera mount), low contrast (due to varying and intense background lights), and poor spatial resolution (due to inexpensive camera optics) see examples in Fig 4. The images are overly JPEG compressed, to between 4 and 7KB, implying that only 0.5 to 1 bits are being encoded per color pixel.

Example images are shown in Figures 3, 4 and 5 These are drawn from NIST Special Database 32 which may be downloaded here.

These images were partitioned in galleries and probesets for the various experiment listed in Table 5.

Figure 3: Six mated mugshot pairs representative of the FRVT-2014 (LEO) and FRVT-2018 datasets. The images are collected live, i.e. not scanned from paper. Image source: NIST Special Database 32

Figure 5: [Profile views] The three images are a frontal enrollment, subsequent frontal probe, and same-session ninety degree profile view. While collection of both frontal and profile views has been typical in law enforcement for more than a century, the recognition of profile to frontal views has essentially been impossible. However, reasonbly high accuracy results is now possible - see section E.

Figure 4: Twelve webcam images representative of probes against the FRVT-2018 mugshot gallery. The first eight images are four mated pairs. Such images present challenges to recognition including pose, non-uniform illumination, low contrast, compression, cropping, and low spatial sampling rate. Image source: NIST Special Database 32

2.2 Unconstrained "wild" images

In addition to portrait-styled mugshots, algorithms were also evaluated on a "wild" dataset composed of non-cooperative and unconstrained photojournalism and amateur photography imagery. The images are closely cropped from the parent images as shown in Figure 6. A portion of the images are collected by professional photographers and as such are captured, and selected, to not exhibit exposure and focus problems. Some of the photos were downloaded from websites with substantial amateur photographer imagery, which may contain images that do exhibit exposure and focus problems. Resolution varies widely as these images were downloaded from the internet with varying resampling and compression practices. The primary difficulties for face recognition is unconstrained yaw and pitch pose variation, with some images extending to profile view. Additionally faces can be occluded, including by hair and hands.

The images are cropped prior to passing them to the algorithm. The cropping is done per human-annotated rectangular bounding boxes. The algorithm must further localize the face and extract features. In many cases, there were multiple images of the subject provided to the algorithm, and the output was a single template representation of the subject.

 $N_P = 332\,574$ subjects were searched against two galleries, where the number of enrolled subjects in each gallery were $N_{G1} = 1\,106\,777$ and $N_{G2} = 1\,107\,778$. Both gallery and search images were composed of unconstrained wild imagery.

Figure 6: Examples of "in the wild" stills. The top row gives the full original images; the second row gives the manually specified face region that is cropped and passed to the algorithms. The source images in this figure are attributed to, from left, Rita Molnr, Eva Rinaldi, and Gage Skidmore under the [cc-by-sa-2.5], [cc-by-sa-2.0], [cc-by-sa-3.0] creative commons licenses respectively.

2.3 **Enrollment strategies**

Many operational applications include collection and enrollment of biometric data from subjects on more than one occasion. This might be done on a regular basis, as might occur in credential (re-)issuance, or irregularly, as might happen in a criminal recidivist situation [4]. The number of images per person will depend on the application area. In civil identity credentialing (e.g. passports, driver's licenses), the images will be acquired approximately uniformly over time (e.g. ten years for a passport). While the distribution of dates for such images of a person might be assumed uniform, a number of factors might undermine this assumption⁷. In criminal applications, the number of images would depend on the number of arrests. The distribution of dates for arrest records for a person (i.e. the recidivism distribution) has been modeled using the exponential distribution but is recognized to be more complicated.

In any case, the 2010 NIST evaluation of face recognition showed that considerable accuracy benefits accrue with retention and use of all historical images [6].

To this end, the FRVT API document provides $K \ge 1$ images of an individual to the enrollment software. The software is tasked with producing a single proprietary undocumented "black-box" template from the K images. This affords the algorithm an ability to generate a model of the individual, rather than to simply extract features from each image on a sequential basis.

As depicted in Figure 7, the i-th individual in the FRVT 2018 dataset has K_i images. These are labelled as x_k for $k = 1 \dots K_i$ in chronological order of capture date. To measure the utility of having multiple enrollment images, this report evaluates three kinds of enrollment:

 $^{^7}$ For example, a person might skip applying for a passport for one cycle, letting it expire. In addition, a person might submit identical images (from the same photography session) to consecutive passport applications at five year intervals.

⁸A number of distributions have been considered to model recidivism, see for example [3].

⁹There are no formal face template standards. Template standards only exist for fingerprint minutiae - see ISO/IEC 19794-2:2011.

Image		B.		
Encounter	1		$K_i - 1$	K_i
Capture Time	T_1		T_{K_i-1}	T_{K_i}
Role RECENT	Not used	Not used	Enrolled	Search
Role LIFETIME	Enrolled	Enrolled	Enrolled	Search

Figure 7: Depiction of the "recent" and "lifetime" enrollment types. Image source: NIST Special Database 32

- ightharpoonup Recent: Only the second most recent image, x_{K_i-1} is enrolled. This strategy of enrollment mimics the operational policy of retaining the imagery from the most recent encounter. This might be done operationally to ameliorate the effects of face ageing. Obviously retaining only the most recent image should only be done if the identity of the person is trusted to be correct. For example, in an access control situation retention of the most recent successful *authentication* image would be hazardous if it could be a false positive.
- \triangleright **Lifetime-consolidated**: All but the most recent image are enrolled, $x_1 \dots x_{K_i-1}$. This subject-centric strategy might be adopted if quality variations exist where an older image might be more suitable for matching, despite the ageing effect.
- ▶ **Lifetime-unconsolidated**: Again all but the most recent image are enrolled $x_1 \dots x_{K_i-1}$ but now separately, with different identifiers, such that the algorithm is not aware that the images are from the same face. This kind of event- or encounter-centric enrollment is very common when operational constraints preclude reliable consolidation of the historical encounters into a single identity. This aspect also prevents the recognition algorithm from a) building a holistic model of identity (as is common in speaker recognition systems) and b) implementing fusion, for example template-level fusion of feature vectors, or post-search score-level fusion. The result is that searches will typically yield more than one image of a person in the top ranks. This has consequences for appropriate metrics, as detailed in section 3.2.1

NIST first evaluated this kind of enrollment in mid 2018, and the results tables include some comparison of accuracy available from all three enrollment styles.

In all cases, the most recent image, x_{K_i} , is reserved as the search image. For the 1.6 million subject enrollment partition of the FRVT 2018 data, $1 \le K_i \le 33$ with $K_i = 1$ in 80.1% of the individuals, $K_i = 2$ in 13.4%, $K_i = 3$ in 3.7%, $K_i = 4$ in 1.4%, $K_i = 5$ in 0.6%, $K_i = 6$ in 0.3%, and $K_i > 6$ is 0.2% for everyone else. This distribution is substantially dependent on United States recidivism rates.

We did not evaluate the case of retaining only the highest quality image, since automated quality assessment is out of scope for this report. We do not anticipate that such strategies will prove beneficial when the quality assessment apparatus is imperfect and unvalidated.

RECENT

Num. people, N = 6 Num. images, M = 6

For each of N enrollees, the algorithm is given only the most recent photo.

Operational situation:

Typical when old images are not, or cannot be, retained, or (rarely) if prior images are too old to be valuable.

LIFETIME CONSOLIDATED

Num. people, N = 6 Num. images, M = 9

For each enrollee, the algorithm is given all photos from all historical encounters. The algorithm is able to fuse information from all images of a person

Operational situation:

Typical when, say, fingerprints are available and precise deduplication is possible.

The result is a consolidated **person-centric** database.

Accuracy computation: False negative unless the enrolled mate is returned within top R ranks and at or above threshold.

LIFETIME UNCONSOLIDATED

Num. people, N = 6 Num. images, M = 9

For each of N enrollees, the algorithm is given all photos from all historical encounters but as separate images, so that the algorithm is not aware that some images are of the same ID.

Operational situation:

This is typical when ID is not known when an image is collected, or is uncertain.

The result is an unconsolidated **event-based** database.

Accuracy computation: False negative unless any of the enrolled mates are returned within top R ranks and at or above threshold.

Figure 8: Enrollment strategies. The figure shows the three kinds of enrollment databases examined in this report. Image source: NIST Special Database 32

	ENROLLMENT					SEARCH			
	TYPE SEE	POPULATION			M.A	ATE	NON-	MATE	
	SECTION 2.3	FILTER	N-SUBJECTS	N-IMAGES	N-SUBJECTS	N-IMAGES	N-SUBJECTS	N-IMAGES	
Mugshot trials from enrollment of single images									
1	RECENT	NATURAL	640 000	640 000	154 549	154 549	331 254	331 254	
2	RECENT	NATURAL	1 600 000	1 600 000					
3	RECENT	NATURAL	3 000 000	3 000 000					
4	RECENT	NATURAL	6 000 000	6 000 000					
5	RECENT	NATURAL	12 000 000	12 000 000					
Mug	gshot trials from e	nrollment of lifetin	ne images						
6	CONSOL	NATURAL	640 000	1 247 331					
7	CONSOL	NATURAL	1 600 000	3 351 206					
8	CONSOL	NATURAL	3 000 000	6 417 057					
9	CONSOL	NATURAL	6 000 000	12 976 185					
10	CONSOL	NATURAL	12 000 000	26 107 917					
11	UN-CONSOL	NATURAL	640 000	1 247 331					
12	UN-CONSOL	NATURAL	1 600 000	3 351 206					
Cros	ss-domain								
13	MUGSHOTS AS O	n row 2			82 106	82 106	331 254	331 254	
					WEBCAM	WEBCAM	WEBCAM	WEBCAM	
Cross-view									
14	14 MUGSHOTS AS ON ROW 2				100 000	100 000	100 000	100 000	
						PROFILE	PROFILE	PROFILE	
Age	ing				-		-		
17	OLDEST	NATURAL	3 068 801	3 068 801	2 853 221	10 951 064	0	0	

Table 5: Enrollment and search sets. Each row summarizes one identification trial. Unless stated otherwise, all entries refer to mugshot images. The term "natural" means that subjects were selected without heed to demographics, i.e. in the distribution native to this dataset. The probe images were collected in a different calendar year to the enrollment image. Missing values in rows 2-12 are the same as in row 1.

3 Performance metrics

This section gives specific definitions for accuracy and timing metrics. Tests of open-set biometric algorithms must quantify frequency of two error conditions:

- ▶ **False positives**: Type I errors occur when search data from a person who has never been seen before is incorrectly associated with one or more enrollees' data.
- ▶ Misses: Type II errors arise when a search of an enrolled person's biometric does not return the correct identity.

Many practitioners prefer to talk about "hit rates" instead of "miss rates" - the first is simply one minus the other as detailed below. Sections 3.1 and 3.2 define metrics for the Type I and Type II performance variables.

Additionally, because recognition algorithms sometimes fail to produce a template from an image, or fail to execute a one-to-many search, the occurrence of such events must be recorded. Further because algorithms might elect to not produce a template from, for example, a poor quality image, these failure rates must be combined with the recognition error rates to support algorithm comparison. This is addressed in section 3.5.

Finally, section 3.7 discusses measurement of computation duration, and section 3.8 addresses the uncertainty associated with various measurements. Template size measurement is included with the results.

Quantifying false positives 3.1

It is typical for a search to be conducted into an enrolled population of N identities, and for the algorithm to be configured to return the closest L candidate identities. These candidates are ranked by their score, in descending order, with all scores required to be greater than or equal to zero. A human analyst might examine either all L candidates, or just the top $R \leq L$ identities, or only those with score greater than threshold, T. The workload associated with such examination is discussed later, in 3.6.

False alarm performance is quantified in two related ways. These express how many searches produces false positives, and then, how many false positives are produced in a search.

False positive identification rate: The first quantity, FPIR, is the proportion of non-mate searches that produce an adverse outcome:

$$FPIR(N,T) = \frac{\text{Num. non-mate searches where one or more enrolled candidates are returned with score at or above threshold}{\text{Num. non-mate searches attempted.}}$$
(1)

Under this definition, FPIR can be computed from the highest non-mate candidate produced in a search - it is not necessary to consider candidates at rank 2 and above. FPIR is the primary measure of Type I errors in this report.

Selectivity: However, note that in any given search, several non-mate may be returned above threshold. In order to quantify such events, a second quantity, selectivity (SEL), is defined as the number of non-mates returned on a candidate list, averaged over all searches.

$$SEL(N,T) = \frac{\text{Num. non-mate enrolled candidates returned with score at or above threshold}}{\text{Num. non-mate searches attempted.}}$$
 (2)

where $0 \le SEL(N, T) \le L$. Both of these metrics are useful operationally. FPIR is useful for targeting how often an adverse false positive outcome can occur, while SEL as a number is related to workload associated with adjudicating candidate lists. The relationship between the two quantities is complicated - it depends on whether an algorithm concentrates the false alarms in the results of a few searches or whether it disburses them across many. This was detailed in FRVT 2014, NISTIR 8009. It has not yet been detailed in FRVT 2018.

3.2 Quantifying hits and misses

If *L* candidates are returned in a search, a shorter candidate list can be prepared by taking the top $R \le L$ candidates for which the score is above some threshold, $T \ge 0$. This reduction of the candidate list is done because thresholds may be applied, and only short lists might be reviewed (according to policy or labor availability, for example). It is useful then to state accuracy in terms of R and T, so we define a "miss rate" with the general name false negative identification rate (FNIR), as follows:

$$FNIR(N,R,T) = \frac{\text{Num. mate searches with enrolled mate found outside top R ranks or score below threshold}}{\text{Num. mate searches attempted.}} \tag{3}$$

This formulation is simple for evaluation in that it does not distinguish between causes of misses. Thus a mate that is not reported on a candidate list is treated the same as a miss arising from face finding failure, algorithm intolerance of poor quality, or software crashes. Thus if the algorithm fails to produce a candidate list, either because the search failed, or because a search template was not made, the result is regarded as a miss, adding to FNIR.

Hit rates, and true positive identification rates: While FNIR states the "miss rate" as how often the correct candidate is either not above threshold or not at good rank, many communities prefer to talk of "hit rates". This is simply the **true positive identification rate**(TPIR) which is the complement of FNIR giving a positive statement of how often mated searches are successful:

$$TPIR(N, R, T) = 1 - FNIR(N, R, T)$$
(4)

This report does not report true positive "hit" rates, preferring false negative miss rates for two reasons. First, costs rise linearly with error rates. For example, if we double FNIR in an access control system, then we double user inconvenience and delay. If we express that as decrease of TPIR from, say 98.5% to 97%, then we mentally have to invert the scale to see a doubling in costs. More subtly, readers don't perceive differences in numbers near 100% well, becoming inured to the "high nineties" effect where numbers close to 100 are perceived indifferently.

Reliability is a corresponding term, typically being identical to TPIR, and often cited in automated (fingerprint) identification system (AFIS) evaluations.

An important special case is the **cumulative match characteristic**(CMC) which summarizes accuracy of mated-searches only. It ignores similarity scores by relaxing the threshold requirement, and just reports the fraction of mated searches returning the mate at rank R or better.

$$CMC(N,R) = 1 - FNIR(N,R,0)$$
(5)

We primarily cite the complement of this quantity, FNIR(N, R, 0), the fraction of mates *not* in the top R ranks.

The **rank one hit rate** is the fraction of mated searches yielding the correct candidate at best rank, i.e. CMC(N, 1). While this quantity is the most common summary indicator of an algorithm's efficacy, it is not dependent on similarity scores, so it does not distinguish between strong (high scoring) and weak hits. It also ignores that an adjudicating reviewer is often willing to look at many candidates.

3.2.1 False negative rates for unconsolidated galleries

As detailed in section 2.3 a common type of gallery, here referred to as the lifetime unconsolidate type, is populated with all images of an individual without any association between them. That is, the gallery construction algorithm is not provided with any ID labels that would support processing of a person's images jointly. This constrasts with the lifetime consolidate type where an algorithm may explicitly fuse features from multiple images of a person, or select a best image. In such cases, where the number of enrolled images is a random variable, we define two false negative rates as follows.

The first demands that the algorithm place any of the K_i mates in the top $R \ge 1$ ranks. The proportion of searches for which this does not occur forms a false negative identification rate:

$$FNIR_{\mbox{any}}(N,R,T) = 1 - \frac{\mbox{Num. mate searches where any enrolled mate is found in the top R ranks and at-or-above threshold}{\mbox{Num. mate searches attempted.}} \label{eq:fnroll}$$

The second demands that the algorithm place all K_i mates in the top $R \ge K_i$ ranks. The proportion of searches for

which this does not occur forms a false negative identification rate:

 ${
m FNIR}_{
m all}(N,R,T) = 1 - {
m Num. \ mate \ searches \ where \ all \ enrolled \ mates \ are \ found \ in \ the \ top \ R \ ranks \ and \ at-or-above \ threshold \ Num. \ mate \ searches \ attempted.}$

(7)

Placing all mates in the top ranks is a more difficult task than correctly retrieving any image, so it holds that: $FNIR_{all} \ge FNIR_{any}$. This is evident in the results presented for November 2018 algorithms in Tables starting at 25.

The information retrieval community might prefer to compute and plot *precision* and *recall*; this is a valid approach, but we advance the two metrics above because they relate to our normal definition of consolidated FNIR, and they cover the two extreme use-cases of wanting any hit vs. all hits.

3.3 DET interpretation

In biometrics, a false negative occurs when an algorithm fails to match two samples of one person a Type II error. Correspondingly, a false positive occurs when samples from two persons are improperly associated a Type I error.

Matches are declared by a biometric system when the native comparison score from the recognition algorithm meets some threshold. Comparison scores can be either similarity scores, in which case higher values indicate that the samples are more likely to come from the same person, or dissimilarity scores, in which case higher values indicate different people. Similarity scores are traditionally computed by fingerprint and face recognition algorithms, while dissimilarities are used in iris recognition. In some cases, the dissimilarity score is a distance possessing metric properties. In any case, scores can be either mate scores, coming from a comparison of one persons samples, or nonmate scores, coming from comparison of different persons samples.

The words "genuine" or "authentic" are synonyms for mate, and the word "impostor" is used as a synonym for non-mate. The words "mate" and "nonmate" are traditionally used in identification applications (such as law enforcement search, or background checks) while genuine and impostor are used in verification applications (such as access control).

An error tradeoff characteristic represents the tradeoff between Type II and Type I classification errors. For identification this plots false negative vs. false positive identification rates i.e. FNIR vs. FPIR parametrically with T. Such plots are often called detection error tradeoff (DET) characteristics or receiver operating characteristic (ROC). These serve the same function - to show error tradeoff - but differ, for example, in plotting the complement of an error rate (e.g. TPIR = 1 - FNIR) and in transforming the axes, most commonly using logarithms, to show multiple decades of FPIR. More rarely, the function might be the inverse of the Gaussian cumulative distribution function.

The slides of Figures 9 through 15 discuss presentation and interpretation of DETs used in this document for reporting face identification accuracy. Further detail is provided in formal biometrics testing standards, see the various parts of ISO/IEC 19795 Biometrics Testing and Reporting. More terms, including and beyond those to do with accuracy, appear in ISO/IEC 2382-37 Information technology – Vocabulary – Part 37: Harmonized biometric vocabulary.

FMR = False Match Rate

FAR = False Accept Rate

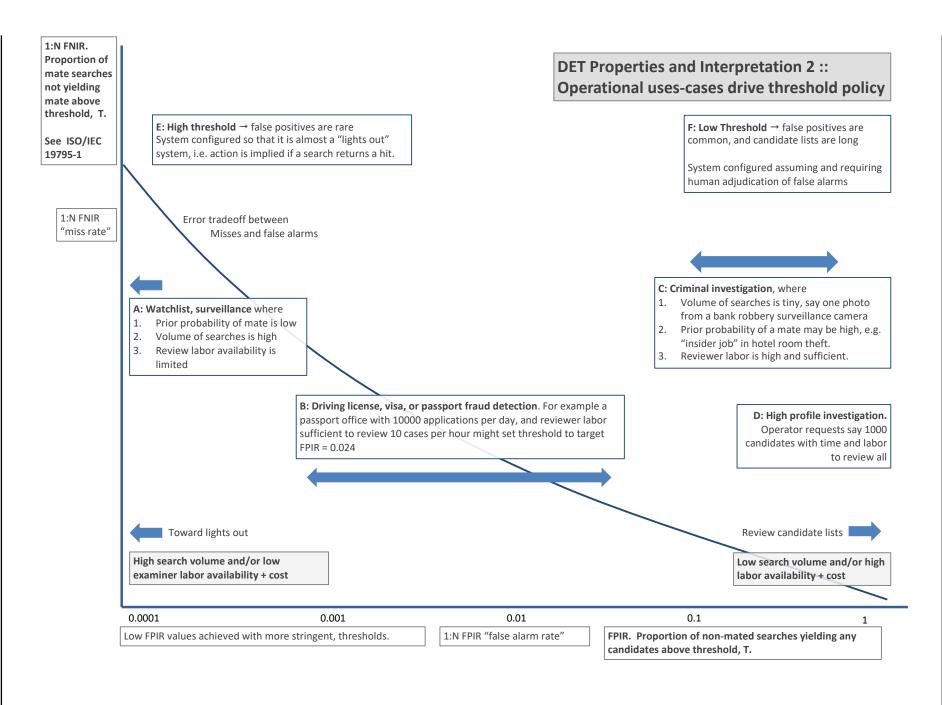
FNMR = False Non-match Rate

FRR = False Rejection Rate

FPIR = False Positive Identification Rate

FNIR = False Negative Identification Rate

Excellent biometric, but only after


fraction, y, of mate transactions

fail due to failure to make template or abject quality.

FPIR. Proportion of non-mated searches

See ISO/IEC 19795-1

yielding any candidates above threshold, T.

FNIR(N, R, T) = FPIR(N, T) =

N = Num. enrolled subjects R = Num. candidates examined

T | |

0 ↓ ↓

Figure 10: DET as the primary performance reporting mechanism.

2019/09/11 17:24:52

FNIR(N, R, T) = FPIR(N, T) =

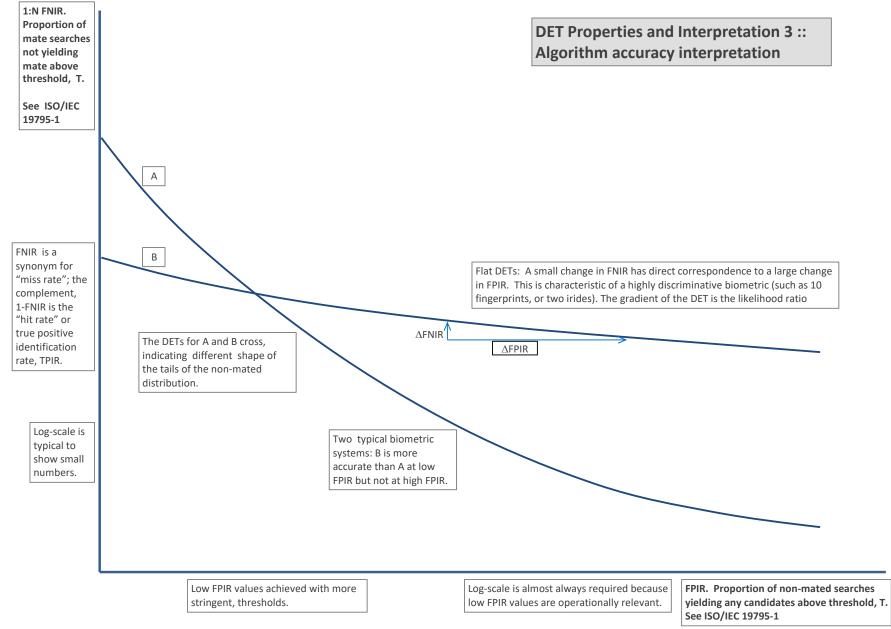


Figure 11: DET as the primary performance reporting mechanism.

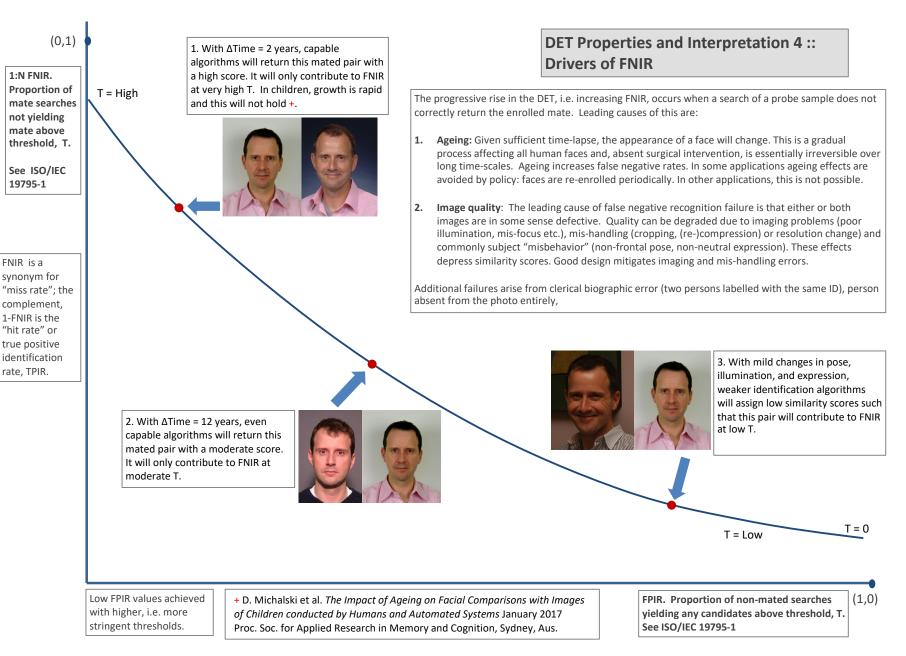


Figure 12: DET as the primary performance reporting mechanism.

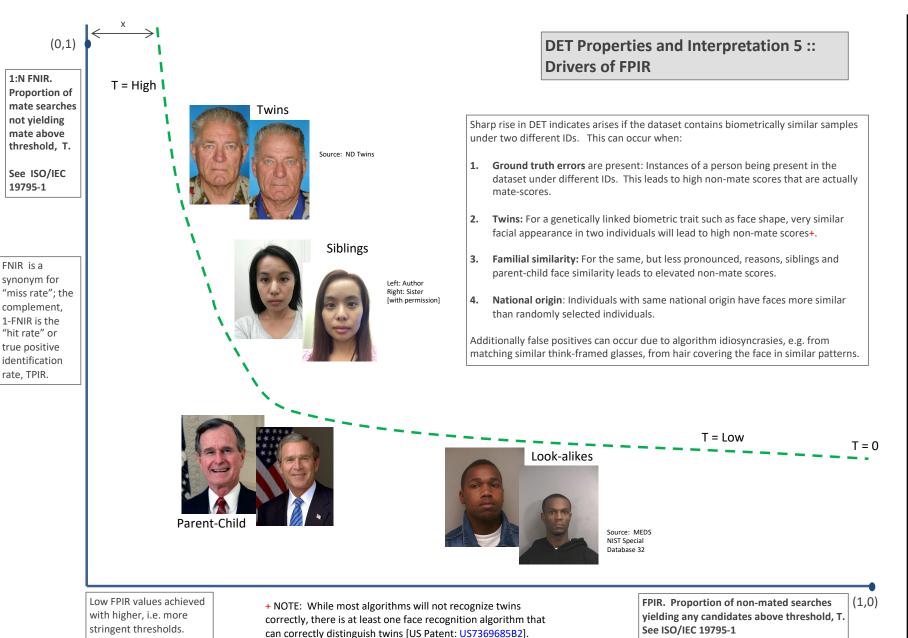


Figure 13: DET as the primary performance reporting mechanism.

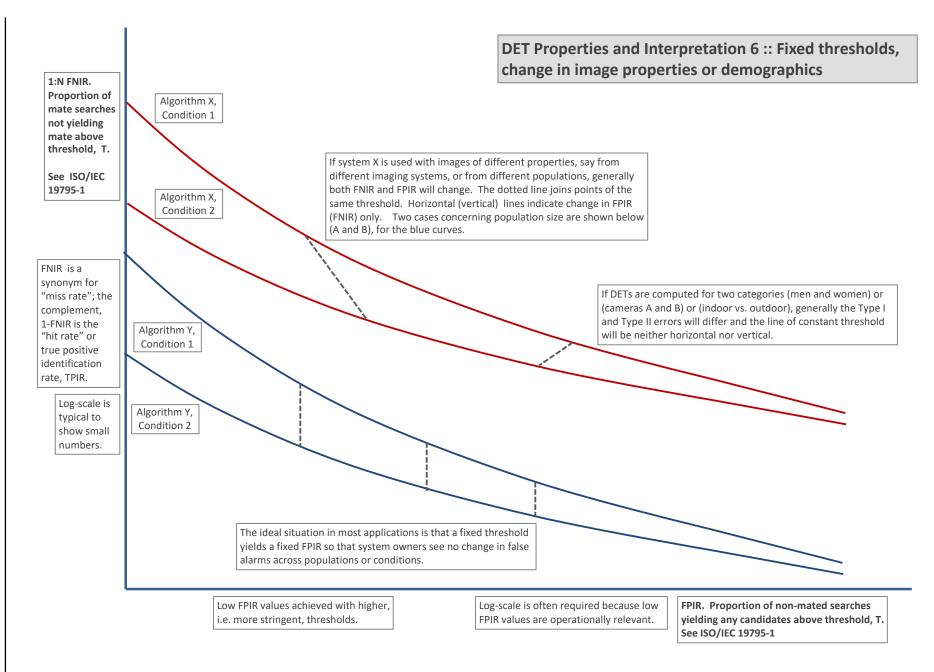


Figure 14: DET as the primary performance reporting mechanism.

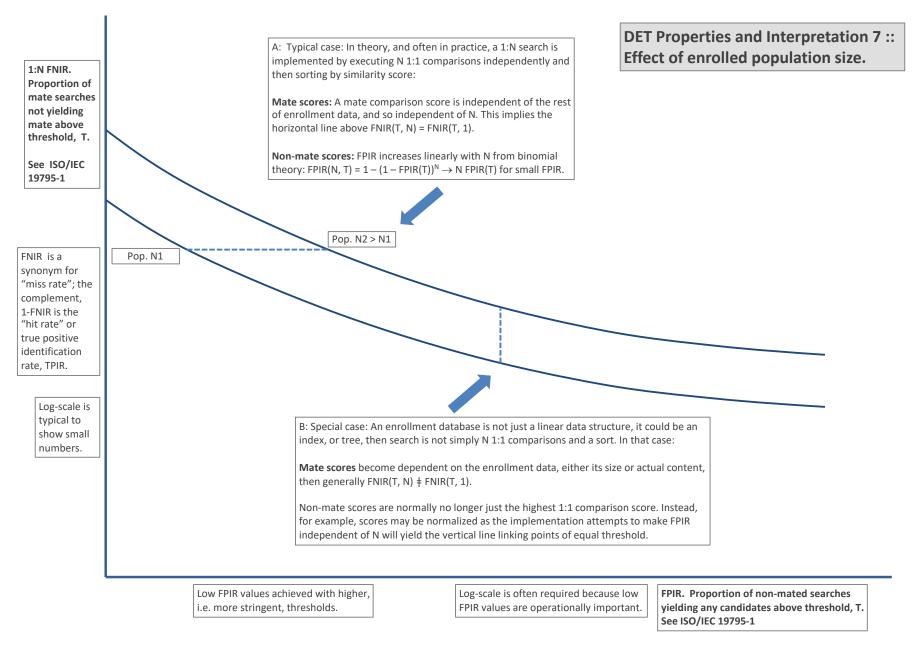


Figure 15: DET as the primary performance reporting mechanism.

3.4 Best practice testing requires execution of searches with and without mates

FRVT embeds 1:N searches of two kinds: Those for which there is an enrolled mate, and those for which there is not. The respective numbers for these types of searches appear in Table 5. However, it is common to conduct only mated searches 10. The cumulative match characteristic is computed from candidate lists produced in mated searches. Even if the CMC is the only metric of interest, the actual trials executed in a test should nevertheless include searches for which no mate exists. As detailed in Table 5 the FRVT reserved disjoint populations of subjects for executing true non-mate searches.

3.5 Failure to extract features

During enrollment some algorithms fail to convert a face image to a template. The proportion of failures is the failure-to-enroll rate, denoted by FTE. Similarly, some search images are not converted to templates. The corresponding proportion is termed failure-to-extract, denoted by FTX.

We do not report FTX because we assume that the same underlying algorithm is used for template generation for enrollment and search.

Failure to extract rates are incorporated into FNIR and FPIR measurements as follows.

- ▶ Enrollment templates: Any failed enrollment is regarded as producing a zero length template. Algorithms are required by the API [10] to transparently process zero length templates. The effect of template generation failure on search accuracy depends on whether subsequent searches are mated, or non-mated: Mated searches will fail giving elevated FNIR; non-mated searches will not produce false positives so, to first order, FPIR will be reduced by a factor of 1–FTE.
- Search templates and 1:N search: In cases where the algorithm fails to produce a search template from input imagery, the result is taken to be a candidate list whose entries have no hypothesized identities and zero score. The effect of template generation failure on search accuracy depends on whether searches are mated, or non-mated: Mated searches will fail giving elevated FNIR; Non-mated searches will not produce false positives, so FPIR will be reduced. Thus given a measurement of false negative and positive rates made over only those where failures-to-extract did not occur, those rates call them FNIR[†] and FPIR[†] could be adjusted by an explicit measurement of FTX as follows

$$FNIR = FTX + (1 - FTX)FNIR^{\dagger}$$
(8)

$$FPIR = (1 - FTX)FPIR^{\dagger}$$
(9)

This approach is the correct treatment for positive-identification applications such as access control where cooperative users are enrolled and make attempts at recognition. This approach is not appropriate to negative identification applications, such as visa fraud detection, in which hostile individuals may attempt to evade detection by submitting poor quality samples. In those cases, template generation failures should be investigated as though a false alarm had occurred.

¹⁰For example, the Megaface benchmark. This is bad practice for several reasons: First, if a developer knows, or can reasonably assume, that a mate always exists, then unrealistic gaming of the test is possible. A second reason is that it does not put FPIR on equal footing with FNIR and that matters because in most applications, not all searches have mates - not everyone has been previously enrolled in a driving license issuance or a criminal justice system - so addressing between-class separation becomes necessary.

3.6 Fixed length candidate lists, threshold independent workload

Suppose an automated face identification algorithm returns L candidates, and a human reviewer is retained to examine up to R candidates, where $R \leq L$ might be set by policy, preference or labor availability. For now, assume also that the reviewer is not provided with, or ignores, similarity scores, and thresholds are not applied. Given the algorithm typically places mates at low (good) ranks, the number of candidates a reviewer can be expected to review can be derived as follows. Note that the reviewer will:

▷ Always inspect the first ranked image

Frac. reviewed = 1

 $\,\vartriangleright\,$ Then inspect those candidates where mate not confirmed at rank 1

Frac. reviewed = 1-CMC(1)

 $\,\,
ightharpoons\,$ Then inspect those candidates where mate not confirmed at rank 1 or 2

Frac. reviewed = 1-CMC(2)

etc. Thus if the reviewer will stop after a maximum of *R* candidates, the expected number of candidate reviews is

$$M(R) = 1 + (1 - CMC(1)) + (1 - CMC(2)) + \dots + (1 - CMC(R - 1))$$
(10)

$$= R - \sum_{r=1}^{R-1} CMC(r) \tag{11}$$

A recognition algorithm that front-loads the cumulative match characteristic will offer reduced workload for the reviewer. This workload is defined only over the searches for which a mate exists. In the cases where there truly is no mate, the reviewer would review all R candidates. Thus, if the proportion of searches for which a mate does exist is β , which in the law enforcement context would be the recidivism rate [3], the full expression for workload becomes:

$$M(R) = \beta \left(R - \sum_{r=1}^{R-1} CMC(r) \right) + (1 - \beta)R$$
 (12)

$$=R-\beta\sum_{r=1}^{R-1}CMC(r)\tag{13}$$

3.7 Timing measurement

Algorithms were submitted to NIST as implementations of the application programming interface(API) specified by NIST in the Evaluation Plan [10]. The API includes functions for initialization, template generation, finalization, search, gallery insert, and gallery delete. Two template generation functions are required, one for the preparation of an enrollment template, and one for a search template.

In NIST's test harness, all functions were wrapped by calls to the C++ std::chrono::high resolution clock which on the dedicated timing machine counts 1ns clock ticks. Precision is somewhat worse than that however.

3.8 Uncertainty estimation

3.8.1 Random error

This study leverages operational datasets for measurement of recognition error rates. This affords several advantages. First, large numbers of searches are conducted (see Table 5) giving precision to the measurements. Moreover, for the two mugshot datasets, these do not involve reuse of individuals so binomial statistics can be expected to apply to recognition error counts. In that case, an observed count of a particular recognition outcome (i.e. a false negative or false positive) in M trials will sustain 95% confidence that the actual error rate is no larger than some value.

As an example, the minimum number of mugshot searches conducted in this report is $M=154\,549$, and for an observed FNIR around 0.002, the measurement supports a conclusion that the actual FNIR is no higher than 0.00228 at 99% confidence level. On the false positive side, we tabulate FNIR at FPIR values as low as 0.001. Given estimates based on 331 254 non-mate trials, the actual FPIR values will be below 0.00115 at 99% confidence. In conclusion, large scale evaluation, without reuse of subjects, supports tight uncertainty bounds on the measured error rates.

3.8.2 Systematic error

The FRVT 2018 dataset includes anomalies discovered as a result of inspecting images involved in recognition failures from the most accurate algorithms. Two kinds of failure occur: False negatives (which, for the purpose here, include failures to make templates) and false positives.

False negative errors: We reviewed 600 false negative pairs for which either or both of the leading two algorithms did not put the correct mate in the top 50 candidates. Given 154549 searches, this number represents 0.39% of the total, resulting in FNIR ~ 0.0039 . Of the 600 pairs:

- ▶ **A: Poor quality**: About 20% of the pairs included images of very low quality, often greyscale, low resolution, blurred, low contrast, partially cropped, interlaced, or noisy scans of paper images. Additionally, in a few cases, the face is injured or occluded by bandages or heavy cosmetics.
- ▶ **B: Ground truth identity label bugs**: About 15% of the pairs are not actually mated. We only assigned this outcome when a pair is clearly not mated.
- ▶ **C: Profile views**: About 35% included an image of a profile (side) view of the face, or, more rarely, an image that was rotated 90 degrees in-plane (roll).
- ▶ **D: Tattoos**: About 30% included an image of a tattoo that contained a face image. These arise from mis-labelling in the parent dataset metadata.
- $\,dash$ **E: Ageing**: There is considerable time-lapse between the two captures.

All these estimates are approximate. Of these, the tattoo and mislabled images can never be matched. These constitute an accuracy floor in the sample implying that FNIR cannot be below 0.0018^{11} . The profile-views, low-quality images, and images with considerable ageing can, in principle, be successfully matched - indeed some algorithms do so - so are not part of the accuracy floor.

 $^{^{11}}$ This value is the sum of two partial false negative rates: FNIR $_B$ = 0.15 * 0.0039 plus FNIR $_D$ = 0.3 * 0.0039

For the microsoft-4 algorithm the lowest miss rate from (recent entry in Table 16) is $FNIR(640\,000, 50, 0) = 0.0018$. This is close to the value estimated from the inspection of misses. It is below the 0.0039 figure because the algorithm does match some profile and poor quality images, that the vitu-2 algorithm does not.

For many tables (e.g. Table 16), the FNIR values obtained for the FRVT-2018 mugshots could be corrected by reducing them by 0.0018. The best values would then be indistinct from zero. The results in this report *were not* adjusted to account for this systematic error.

False positive errors: As depicted in Figure 9 many of the DET characteristics in this report exhibit a pronounced turn upward at low false positive rates. The shape can be caused by identity labelling errors in the ground truth of a dataset, specifically persons present in the database under two IDs such that some proportion of non-mate pairs are actually mated. We merged the highest 1000 non-mate pairs produced by three different algorithms which resulted in 1839 unique pairs. This constitutes 0.56% of all non-mate searches. We assert that it is *very* difficult for human reviewers to assign the pairs into the following three categories: twins; doppelgangers; or ground-truth errors (instances of the same person under two IDs). Given this difficulty we made no attempt to correct any ground truth except by removing 57 pairs in the following categories:

- ▶ A: Profile views: Thirteen pairs included one or two profile-view images. As described in Figure 102, these can cause false positives.
- ▶ B: Same-session photographs: For twelve pairs, the images were identical or trivially altered (e.g. cropped) versions of the same photo. These were present under a different ID likely due to some clerical or procedural mistake.
- ▶ C: Tattoos of faces: There were fourteen instances of tattoo photographs that contained faces causing false matches.
- ▶ D: T-shirt faces: There were six instances of T-shirt photographs (of Bob Marley and Che Guevara) being detected instead of the face and causing false positives.
- ▶ E: Background faces: There were twelve instances of one subject appearing in the background of two otherwise correct portrait photos.

Note we did not remove any images where there was a chance that the pair was actually a different person.

In any case, the results in this report have not been adjusted for this systematic error.

Results

This section gives extensive results for algorithms submitted to FRVT 2018. Three page "report cards" for each algorithm are contained in a separate supplement. Performance metrics were described in section 3. The main results are summarized in tabular form with more exhaustive data included as DET, CMC and related graphs in appendices as follows:

- ▶ The three tables 6-8 list algorithms alongside full developer names, acceptance date, size of the provided configuration data, template size and generation time, and search duration data.
 - The **template generation duration** is most important to applications that require fast response. For example, an eGate taking more than two seconds to produce a template might be unacceptable. Note that GPUs may be of utility in expediting this operation for some algorithms, though at additional expense. Two additional factors should be considered 1213.
 - The **search duration** is the time taken for a search of a search template into a gallery of N enrollment templates. This performance variable, together with the volume of searches, is influential on the amount of hardware needed to sustain an operational deployment. This is measured here with the algorithm running on a single core of a contemporary CPU. Search is most simply implemented as N computations of a distance metric followed by a sort operation to find the closest enrollments. However, considerable optimization of this process is possible, up to and including fast-search algorithms that, by various means, avoid computation of all N distances.
 - The **template size** is the size of the extracted feature vector (or vectors) and any needed header information. Large template sizes may be influential on bus or network bandwidth, storage requirements, and on search duration. While the template itself is an opaque data blob, the feature dimensionality might be estimated by assuming a four-bytes-per-float encoding. There is a wide range of encodings. For the more accurate algorithm, sizes range from 256 bytes to about 2KB bytes, indicating essentially no consensus on face modeling and template design.
 - The **template size multiplier** column shows how, given k input images, the size of the template grows. Most implementations internally extract features from each image and concatenate them, and implement some score-level fusion logic during search. Other implementations, including many of the most accurate algorithms, produce templates whose size does not grow with k. This could be achieved via selection of the best quality image - but this is not optimal in handling ageing where the oldest image could be the best quality. Another mechanism would be feature-level fusion where information is fused from all k inputs. In any case, as a black-box test, the fusion scheme is proprietary and unknown.
 - The size of the **configuration data** is the total size of all files resident in a vendor-provided directory that contains arbitrary read-only files such as parameters, recognition models (e.g caffe). Generally a large value for this quantity may prohibit the use of the algorithm on a resource-constrained device.

¹²The FRVT 2018 API prohibited threading, so some gains from parallelism may be available on multiple-cores or multiple processors, if the feature extraction code could be distributed across them.

¹³Note also that factors of two or more may be realizable by exploiting modern vector processing instructions on CPUs. It is not clear in our measurements whether all developers exploited Intel's AVX2 instructions, for example. Our machine was so equipped, but we insisted that the same compiled library should also run on older machines lacking that instruction. The more sophisticated implementations may have detected AVX2 presence and branched accordingly. The less sophisticated may be defaulted to the reduced instruction set. Readers should see the FRVT 2018 API document for the specific chip details.

- ➤ Tables 16-17 report core rank-based accuracy for mugshot images. The population size is limited to N = 1.6 million identities because this is the largest gallery size on which all algorithms were executed. Notable observations from these tables are as follows:
 - Accuracy gains during 2018: NIST Interagency Report 8238 documented massive gains over those reported in the FRVT 2014 report, NIST Interagency Report 8009.
 - Further gains are documented in this report. Comparing the most accurate algorithm in June 2018, Microsoft-4, with the most accurate in November 2018, NEC-2, the value of FNIR(N, 1, 0) reduced from 0.0031 to 0.0028 with N = 1.6 million recent images. For lifetime enrollments, Microsoft-4 remained the most accurate algorithm as the newer variants from Microsoft did not reduce this error rate.
 - We further note that the revolution is not over: Figure 19 shows that many developers have made great advances in the four months between Phases 1 and 2 of FRVT 2018, Feburary to June. Most developers saw a two-fold reduction in errors, with Neurotechnology seeing a five fold reduction.
 - Wide range in accuracy: The rank-1 miss rates vary from FNIR(N, 1, 0) = 0.001 for nec-3 up to about 0.5 for the very fast but inaccurate microfocus-x algorithms. Among the developers who are superior to NEC in 2013, the range is from 0.002 to 0.035 for camvi-3. This large accuracy range is consistent with the buyer-beware maxim, and indicates that face recognition software is far from being commoditized.
- ► Tables 19-20 report threshold-based error rates, FNIR(N, L, T), for N = 1.6 million for mugshot-mugshot accuracy on FRVT 2014, FRVT 2018, and also (in pink) mugshot-webcam accuracy using FRVT 2018 enrollments. Notable observations from these tables are as follows:
 - Order of magnitude accuracy gains since 2014: As with rank-based results, the gains in accuracy are substantial, though somewhat reduced. At FPIR = 0.01, the best improvement over NEC in 2014 is a nine-fold reduction in FNIR using the Microsoft_4 algorithm. At FPIR = 0.001, the largest gain is a six-fold reduction in FNIR via the Yitu_2 algorithm.
 - **Broad gains across the industry**: About 19 companies realize accuracy better than the NEC benchmark from 2014. This is somewhat lower than the 28 developers who succeeded on the rank-1 metric. This may be due to the ubiquity of, and emphasis on, the rank-1 metric in many published algorithm development papers.
 - Webcam images: Searches of webcam images give FNIR(N, T) values around 2 to 3 times higher than mugshot searches. Notably the leading developers with mugshots are approximately the same with poorer quality webcams. But some developers e.g. Camvi, Megvii, TongYi, and Neurotechnology do improve their relative rankings on webcams, perhaps indicating their algorithms were tailored to less constrained images.
- □ Tables 10, 12, 13 and show, respectively, high-threshold, rank 1, nd rank 50 FNIR values for all algorithms performing searches into five different gallery sizes, N = 640 000, N = 1600 000, N = 3000 000, N = 6000 000 and 12 000 000. The FPIR = 0.001 table is included to inform high-volume duplicate detection applications. The Rank-1 table is included as a primary accuracy indicator. The Rank-50 table is included to inform agencies who routinely produce 50 candidates for human-review. The notable results are:
 - Slow growth in rank-based miss rates: FNIR(N, R) generally grows as a power law, aN^b . From the straight lines of many graphs of Figure 22 this is clearly a reasonable model for most, but not all, algorithms. The coefficient a can be interpreted as FNIR in a gallery of size 1. The more important coefficient b indicates

scalability, and often, $b \ll 1$, implies very benign growth in FNIR. The coefficients of the models appear in the Tables 12 and 13.

- Slow growth in threshold-based miss rates: FNIR(N, T) also generally grows as a power law, aN^b except at the high threshold values corresponding to low FPIR values. This is visible in the plots of Figure 38 which show straight lines except for FPIR = 0.001, which increase more rapidly with N above 3 000 000. Each trace in those figures shows FNIR(N, T) at fixed FPIR with both N and T varying. Thus at large N, it is usually necessary to elevate T to maintain fixed FPIR. This causes increased FNIR. Why that would no-longer obey a power-law is not known. However, if we expect large galleries to contain individuals with familial relations to the non-mate search images in the most extreme case, twins then suppression of false positives becomes more difficult. This is discussed in the Figures starting at Fig. 9
- ▶ Figure 21 shows false positives from twins against their enrolled siblings, broken out by type of twin: fraternal or identical. The Figure is based on the enrollment of 104 single images on one of a pair of twins, and then the search of 2354 second images. Note that the dataset is heavily skewed towards identical twins which is not representative of the true population. There is also a skew towards same sex fraternal twin pairs compared to different sex fraternal twin pairs again not representative of the true population.

The notable results are:

- For all algorithms tested, the 1087 mated searches (Twin A vs. Twin A) produce scores almost always above typical operational thresholds, with (not shown) matches at rank 1. The images are of good quality, so this is the result expected from the rest of this report.
- For the 1066 identical twin searches (AB), almost all produce the twin at rank 1, with a few producing the mate at further down the candidate lists rank and low score.
- For the 169 fraternal searches (AB) from same sex pairs, most algorithms give a large number of very high scores, implying false positives at all thresholds. However, there there are long tails containing lower scores that are correctly below threshold. In general, scores that are higher in this distribution are all rank 1 whereas the lower scores have much higher ranks.
- (Not shown) Of the 169, there are 24 fraternal searches (AB) involving different sex twins. Here most algorithms correctly report scores well below the lowest threshold, and usually not on the candidate list at all.

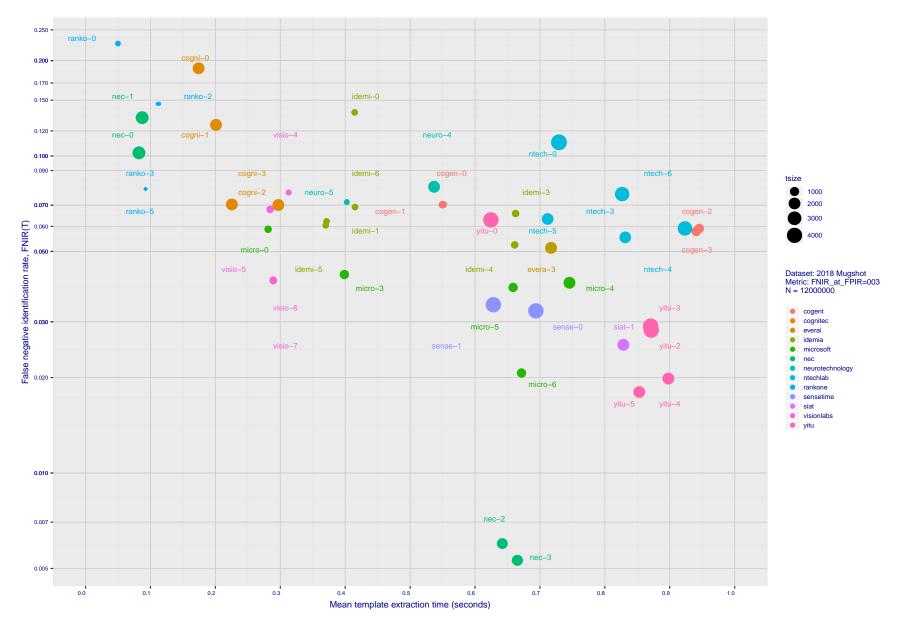


Figure 17: [Mugshot Dataset] Speed-accuracy tradeoff. For developers of the more accurate algorithms the plot shows the tradeoff of high-threshold recognition miss-rates, FNIR(N, N, T) for FPIR(N, T) = 0.003, and template generation time. Developers are coded by color. Template size is encoded by the size of the circle. Some labels are quite distant from the respective point, to avoid superposing text. Without any other influences, the assumption would be that taking time to localize the face, and extract features, would lead to better accuracy. The most notable result, for NEC, is that their slower algorithms are much more accurate than the version that extract features in fewer than 90 milliseconds.

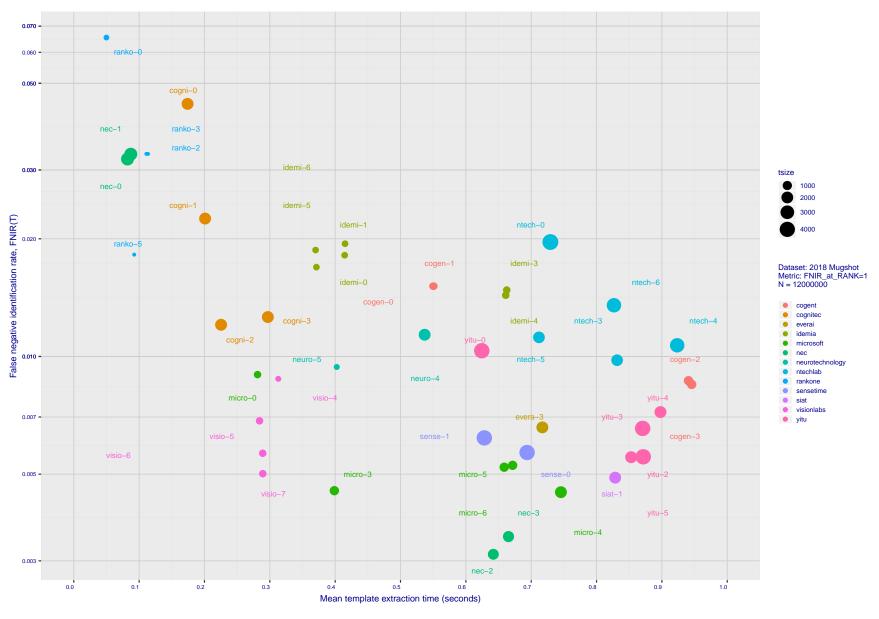


Figure 18: [Mugshot Dataset] Speed-accuracy tradeoff. For developers of the more accurate algorithms the plot shows the tradeoff of rank-one recognition miss-rates, FNIR(N, 1, 0), and template generation time. Developers are coded by color. Template size is encoded by the size of the circle. Some labels are quite distant from the respective point, to avoid superposing text. Without any other influences, the assumption would be that taking time to localize the face, and extract features, would lead to better accuracy. This occurs for NEC with their slower algorithm being much accurate than the version that extract features in fewer than 90 milliseconds.

DEVELOPER	SHORT	SEQ.	VALIDATION	CONFIG ¹	TEM	PLATE GEN	ERATION			SEARCH D	URATION ⁴ M	IILLISEC	
FULL NAME	NAME	NUM.	DATE	DATA (MB)	SIZE (B)	MULT ²	TIME (MS)3	L=1	L=50	L=50	L=50	L=50	POWER LAW
	<u>'</u>		'					N=1.6M	N=1.6M	N=3M	N=6M	N=12M	(μs)
1 3Divi	3divi	0	2018-02-09	186	¹⁸³ 4096	k	⁹⁰ 426	-	¹⁰⁷ 553	-	-	-	
2 3Divi	3divi	1	2018-02-15	187	¹⁹⁵ 4224	k	⁹⁴ 428	-	¹⁹ 37	-	-	-	
3 3Divi	3divi	2	2018-02-15	187	⁴⁷ 528	k	⁹² 428	-	1733	-	-	-	
4 3Divi	3divi	3	2018-06-19	165	⁴¹ 512	k	¹³⁰ 625	¹⁵ 76	²³ 76	-	-	-	
5 3Divi	3divi	4	2018-06-19	186	¹⁸⁰ 4096	k	¹³¹ 628	⁷³ 604	¹²⁶ 801	-	-	-	
6 3Divi	3divi	5	2018-10-26	186	¹⁷⁸ 4096	k	¹³⁸ 653	⁶⁷ 537	¹⁰⁴ 537	⁵¹ 1376	⁴⁸ 2612	⁴¹ 5524	$^{71}0.07 N^{1.1}$
7 3Divi	3divi	6	2018-10-26	187	⁴⁹ 528	k	¹⁴¹ 653	1033	¹⁵ 33	-	-	-	
8 Alchera	alchera	0	2018-06-30	168	1462048	k	⁴² 263	1203296	¹⁹³ 5420	-	-	-	
9 Alchera	alchera	1	2018-06-30	46	124 2048	k	⁸ 66	121 3516	¹⁹⁴ 5489	-	-	-	
10 Alchera	alchera	2	2018-10-30	7	143 2048	k	¹⁶ 115	1182920	¹⁷⁹ 2926	-	-	-	
11 Alchera	alchera	3	2018-10-30	251	113 2048	k	¹¹⁷ 548	119 2952	¹⁸¹ 2953	⁷⁹ 6540	⁷⁴ 14998	⁷⁰ 35227	84 0.10 N 1 · 2
12 Anke Investments	anke	0	2018-10-30	779	¹⁶⁵ 2072	k	⁹⁶ 431	⁷⁴ 675	¹²³ 748	⁵³ 1482	⁵⁰ 2965	⁴³ 6142	58 0.21 N ^{1.1}
13 Anke Investments	anke	1	2018-10-30	779	164 2072	k	97 433	76707	124 769	-	-	- 0142	0.21 1
14 Aware	aware	0	2018-02-16	261	99 1564	k	139 653	707	⁶⁰ 251			-	
15 Aware	aware	1	2018-02-16	232	100 1564	k	136 651	-	61 251	-	-	-	
16 Aware	aware	2	2018-02-16	349	1504 167 2076	k	197 ₉₁₂	+	62 252		-	-	
17 Aware		3	2018-02-16	350	166 2076	k	163 716	1142426	174 2508	⁷⁴ 4495	H -	-	⁴¹ 1.09 N ^{1.0}
	aware	4	2018-06-22	349	² 92	k	160712	89 1232	140 1187	4473	<u> </u>	-	1.07 1V
	aware				173 173 3100	k	182 827	1894	26 ₉₇	13 202	11 370	⁹ 251	$^{11}4.13 N^{0.7}$
	aware	6	2018-10-30 2018-10-30	368	³ 124	k	827 175 818	27 157	³⁹ 162	- 202	3/0	- 251	4.13 IV
	aware	_		368	771036		110	47 283	74 298				
21 Ayonix 22 Ayonix	ayonix	0	2018-06-21	57	81 1036	k	312	44277	⁷⁰ 277	-	-	-	
, , , , , , , , , , , , , , , , , , ,	ayonix	1	2018-10-29	74		k							50044 371.0
23 Ayonix	ayonix	2	2018-10-30	74	⁷⁹ 1036	1	² 11	⁴³ 277	⁶⁹ 274	²⁷ 531	²⁵ 1079	²² 2268	50 0.11 $N^{1.0}$
24 Camvi Technologies	camvitech	1	2018-02-16	94	⁶⁹ 1024	1	²⁴ 177	-	1223	-	-	-	
25 Camvi Technologies	camvitech	2	2018-02-16	442	74 1024 72 1024	1	172 774 158 707	740	¹¹ 20 ⁹ 11	-	-	-	
26 Camvi Technologies	camvitech	3	2018-06-30	233		1		⁷ 10		8	6	4	2
27 Camvi Technologies	camvitech	4	2018-10-30	233	66 1024	1	¹⁶⁵ 718	1133	¹⁴ 32	⁸ 38	⁶ 40	⁴ 48	² 8492.66 N ^{0.1}
28 Camvi Technologies	camvitech	5	2018-10-30	257	⁶¹ 1024	1	¹⁷⁰ 769	931	¹³ 30	-	-	-	1.0
29 Thales	cogent	0	2018-06-20	533	⁴⁶ 525	k	¹¹⁸ 551	⁶³ 494	¹¹⁰ 558	⁴² 1047	⁴¹ 2060	³³ 4141	²¹ 0.46 N ^{1.0}
30 Thales	cogent	1	2018-06-20	533	⁴⁵ 525	k	¹¹⁹ 552	⁶⁴ 498	¹⁰⁸ 556	⁴³ 1048	⁴² 2082	³⁵ 4263	²⁶ 0.39 N ^{1.0}
31 Thales	cogent	2	2018-10-30	681	⁸⁴ 1043	k	²⁰³ 987	¹⁰⁸ 2017	¹⁶⁶ 2144	⁷³ 4298	⁶⁹ 8472	65 16429	$^{37}1.08 N^{1.0}$
32 Thales	cogent	3	2018-10-30	681	⁸³ 1043	k	²⁰² 960	88 1230	146 1311	63 2687	⁶⁰ 5398	⁵⁵ 10184	$^{39}0.62 N^{1.0}$
33 Cognitec Systems GmbH	cognitec	0	2018-06-21	364	155 2052	k	²³ 176	¹⁰⁰ 1748	¹⁵⁴ 1780	⁶⁸ 3672	⁶⁴ 7093	⁶³ 15224	55 0.57 N 1.0
34 Cognitec Systems GmbH	cognitec	1	2018-06-21	412	¹⁴⁹ 2052	k	²⁸ 202	¹⁰³ 1835	156 1805	⁷¹ 3971	⁶⁷ 7484	⁶⁴ 16249	$^{60}0.49 N^{1.1}$
35 Cognitec Systems GmbH	cognitec	2	2018-10-30	463	¹⁵¹ 2052	k	³⁴ 227	⁹⁹ 1733	153 1763	⁶⁷ 3660	⁶⁶ 7279	⁵⁹ 13895	$^{40}0.83~N^{1.0}$
36 Cognitec Systems GmbH	cognitec	3	2018-10-30	465	¹⁵⁷ 2052	k	⁵² 297	⁹⁸ 1719	155 1791	⁶⁶ 3638	⁶⁵ 7277	⁶¹ 14904	520.66 N ^{1.0}
37 Dahua Technology Co. Ltd	dahua	0	2018-10-29	276	131 2048	k	⁷² 378	-	⁶⁵ 256	-	-	-	
38 Dahua Technology Co. Ltd	dahua	1	2018-10-29	276	115 2048	k	⁶⁸ 371	-	⁶⁴ 256	³³ 601	³¹ 1199	³⁰ 3001	⁷⁸ 0.02 N ^{1.2}
39 Dermalog	dermalog	0	2018-02-16	0	⁵ 128	1	65344	-	88 404	- 001	-	-	0.0211
40 Dermalog	dermalog	1	2018-02-16	0	8 128	1	²² 171	-	91 407	-	-	-	
41 Dermalog	dermalog	2	2018-02-16	0	18 256	k	⁶⁴ 344	-	119 ₆₄₀	-	-	-	
42 Dermalog	dermalog	3	2018-06-21	0	7128	1	³¹ 211	1792	²⁴ 92	-	-	-	
43 Dermalog	dermalog	4	2018-06-21	0	⁴ 128	1	²⁹ 208	¹⁶ 91	²⁵ 93	-	-	-	
44 Dermalog	dermalog	5	2018-10-26	0	⁶ 128	1	¹⁰⁹ 532	20	10	10	10	10	466.21 N ^{0.2}
45 Dermalog	dermalog	6	2018-10-26	0	²⁴ 256	1	105 514	²⁵ 141	³⁵ 143	¹⁸ 267	¹⁶ 527	¹⁴ 1285	53 0.05 N 1.0
46 Ever AI	everai	0	2018-06-21	142	140 2048	1	⁹⁹ 438	44	53	² 5	<u> </u>	- 1200	942.41 N ^{0.3}
	<u> </u>	+			111 2048		125 125 129 125	⁵¹ 336	81 356		- -	+	740.03 N ^{1.1}
47 Ever AI	everai	1	2018-06-21	200	132 2048	1	⁷¹ 377	46 278		³⁵ 651	-	-	0.03 IV
48 Ever AI	everai	2	2018-10-30	224		1			⁷² 283	30 ====	291146	23,0070	480.10.371.0
49 Ever AI	everai	3	2018-10-30	438	112 2048	1	¹⁶⁷ 735	⁴⁵ 278	⁷¹ 281	³⁰ 572	²⁹ 1146	²³ 2278	⁴⁸ 0.12 N ^{1.0}
50 Eyedea Recognition	eyedea	0	2018-02-16	644	194 4152	k	⁸⁹ 424	-	120 640	-	-	-	
51 Eyedea Recognition	eyedea	1	2018-02-16	287	82 1036	k	⁵⁶ 311	-	⁷⁶ 307	-	-	-	
52 Eyedea Recognition	eyedea	2	2018-02-16	287	⁷⁸ 1036	k	⁹⁵ 429	-	⁷⁵ 305	-	-	-	

Notes

Table 6: Summary of algorithms and properties included in this report. The blue superscripts give ranking for the quantity in that column. Missing search durations, denoted by "-", are absent because those runs were not executed, usually because we did not run on the larger galleries. Caution: The power-law model is sometimes an incorrect model. It is included here only to show broad sublinear behavior, which is flagged in green. The models should not be used for prediction.

Configuration size does not capture static data present in libraries. Libraries are not counted because most implementations include common ancillary libraries for image processing (e.g. openCV) or numerical computation (e.g. blas).

This multiplier expresses the increase in template size when k images are passed to the template generation function.

All durations are measured on Intel®Xeon®CPU E5-2630 v4 @ 2.20GHz processors. Estimates are made by wrapping the API function call in calls to std::chrono::high.resolution.clock which on the machine in (3) counts 1ns clock ticks. Precision is somewhat worse than that however.

Search durations are measured as in the prior note. The power-law model in the final column mostly fits the empirical results in Figure 111. However in certain cases the model is not correct and should not be used numerically.

	DEVELOPER	SHORT	SEQ.	VALIDATION	CONFIG ¹	TEM	PLATE GEN	IERATION			SEARCH DU	ration ⁴ m	ILLISEC	
	FULL NAME	NAME	NUM.	DATE	DATA (MB)	SIZE (B)	MULT ²	TIME (MS)3	L=1	L=50	L=50	L=50	L=50	POWER LAW
				'					N=1.6M	N=1.6M	N=3M	N=6M	N=12M	(μs)
53	Eyedea Recognition	eyedea	3	2018-06-18	284	⁸⁰ 1036	k	⁷³ 385	⁴⁸ 309	⁷⁸ 311	-	1 -	-	
54	Glory Ltd	glory	0	2018-06-30	0	³³ 418	k	¹⁸ 160	⁷⁰ 575	¹¹² 575	-	-	-	
55	Glory Ltd	glory	1	2018-06-30	0	¹⁰³ 1726	k	81 ₄₀₅	104 1864	159 1978	-	-	-	
56	Gorilla Technology	gorilla	0	2018-02-01	95	²⁰² 8300	k	⁹¹ 427	-	²⁰⁰ 10426	-	-	-	
57	Gorilla Technology	gorilla	1	2018-06-19	91	170 2156	k	²¹ 169	128 5254	¹⁹⁰ 5156	-	l -	-	
58	Gorilla Technology	gorilla	2	2018-10-29	91	87 1132	k	62341	²⁶ 145	³⁷ 146	¹⁹ 293	¹⁷ 612	¹⁷ 1509	66 0.02 N ^{1.1}
59	Gorilla Technology	gorilla	3	2018-10-26	94	169 2156	k	124 563	105 1934	161 2047	- 255	- 012	-	0.02 11
60	loginface Corp	hbinno	0	2018-02-01	88	44520	-	⁴³ 265	- 1,01	⁹⁵ 419		١.	-	
61	Hikvision Research Institute	hikvision	0	2018-02-12	378	105 1808	1	194 875	-	171 2360	-	l -	-	
62	Hikvision Research Institute	hikvision	1	2018-02-12	378	107 1808	1	178 820	-	172 2403	-	-	-	
63	Hikvision Research Institute	hikvision	2	2018-02-12	378	106 1808	1	176 820	-	173 2408	-	 	-	
64		hikvision	3	2018-06-30	408	⁹¹ 1408	1	133 633	84 904	138 1108	⁶⁰ 2377	⁵³ 3785	⁴⁵ 7570	²⁰ 0.91 N ^{1.0}
_	Hikvision Research Institute					88 1152		104 510	7904 79784	1108 134 1024	582094	52 3254	447117	190.86 N 1.0
65	Hikvision Research Institute	hikvision	4	2018-06-30	334		1							
66	Hikvision Research Institute	hikvision	5	2018-10-29	593	90 1408	-	129 619	83 883	132 895	⁵⁵ 1908	⁵⁴ 3792	⁵² 9387	$^{72}0.10 N^{1.1}$
67	Hikvision Research Institute	hikvision	6	2018-10-29	593	⁸⁹ 1408	1	¹²⁶ 610	⁸² 871	131 877	- 14	- 12	-	22 1 0
68	Idemia	idemia	0	2018-02-16	371	³² 364	1	⁸⁶ 416	-	²⁸ 133	¹⁴ 249	¹² 502	-	$^{33}0.08 N^{1.0}$
69	Idemia	idemia	1	2018-02-16	371	³⁰ 364	1	⁸⁷ 417	-	³³ 138	-	-	-	
70	Idemia	idemia	2	2018-02-16	371	³¹ 364	1	⁸⁸ 417	-	³⁴ 138	-	-	-	
71	Idemia	idemia	3	2018-06-21	472	⁴⁸ 528	1	¹⁴⁹ 689	⁵⁰ 318	⁸² 361	³⁴ 631	²⁸ 1104	²⁴ 2332	$^{12}5.03 N^{0.8}$
72	Idemia	idemia	4	2018-06-21	472	⁵⁰ 528	1	¹⁴⁷ 669	²⁹ 168	⁵³ 211	²⁵ 475	²³ 995	²¹ 2225	$^{73}0.02 N^{1.1}$
73	Idemia	idemia	5	2018-10-29	417	²⁸ 352	1	⁷⁰ 374	²⁰ 137	³² 138	²³ 437	¹⁹ 724	¹⁹ 1630	82 0.01 N 1 · 2
74	Idemia	idemia	6	2018-10-29	417	²⁹ 352	1	⁶⁹ 373	²¹ 137	³¹ 138	²⁴ 442	²² 827	²⁰ 1646	$^{83}0.01 N^{1.2}$
75	Imagus Technology Pty Ltd	imagus	0	2018-02-14	35	³⁷ 512	k	543	-	⁴⁸ 202	-	-	-	
76	Imagus Technology Pty Ltd	imagus	2	2018-06-21	35	³⁴ 512	k	⁹ 76	³⁷ 200	⁵² 208	-	-	-	
77	Imagus Technology Pty Ltd	imagus	3	2018-06-21	46	³⁹ 512	k	⁷ 57	³⁸ 201	⁵⁰ 206	-	-	-	
78	Incode Technologies	incode	0	2018-06-29	23	⁷⁵ 1024	k	²⁷ 190	⁹³ 1293	¹⁸⁵ 3510	-	-	-	
79	Incode Technologies	incode	1	2018-06-29	151	144 2048	k	¹⁵¹ 690	94 1542	188 4497	-	-	-	
80	Incode Technologies	incode	2	2018-10-29	71	120 2048	1	⁴⁹ 291	⁵⁹ 411	89 ₄₀₄	-	-	-	
81	Incode Technologies	incode	3	2018-10-29	133	139 2048	1	¹⁵⁶ 704	⁵⁸ 408	94 412	³⁸ 846	³⁵ 1606	³⁶ 4482	690.05 N ^{1.1}
82	Innovatrics	innovatrics	0	2018-02-16	0	⁵³ 530	k	100455	-	118 625	-	-	- 1102	0.00 11
83	Innovatrics	innovatrics	1	2018-02-16	0	⁵¹ 530	k	⁵⁸ 316	-	117 625		+-	-	
84	Innovatrics	innovatrics	2	2018-06-21	0	⁵² 530	k	⁴⁰ 255	³ 1	32	-	-	-	
85	Innovatrics	innovatrics	3	2018-06-21	0	⁵⁴ 530	k	41255	1092020	157 1882	-	-	-	
86	Innovatrics		4	2018-10-30	0	85 1076	k	83406	68	88	⁴ 11	39	² 13	$^{7}668.38 N^{0}$.
		innovatrics			-			33 222		_	11	9		000.36 IV
87	Alivia / Innovation Sys.	isystems	0	2018-02-14	262	134 2048	1		-	85393 55240	-	-	-	
88	Alivia / Innovation Sys.	isystems	1	2018-02-14	263	1262040	1	³² 222		⁵⁵ 240				160 co 370 9
89	Alivia / Innovation Sys.	isystems	2	2018-06-25	268	126 2048	1	⁵⁹ 316	⁵⁵ 385	⁹⁹ 484	50 1275	³⁹ 1770	³¹ 3063	160.68 N ^{0.9}
90	Alivia / Innovation Sys.	isystems	3	2018-10-30	350	¹⁴² 2048	1	¹⁸⁹ 856	⁵⁴ 384	84 387	⁴¹ 976	401817	⁵¹ 9319	$^{86}0.00 N^{1.3}$
91	Lookman Electroplast Industries	lookman	3	2018-10-28	203	²⁶ 292	1	⁶³ 342	77739	¹²² 745	⁵² 1394	⁴⁹ 2817	46 8286	$^{64}0.13 N^{1.1}$
92	Lookman Electroplast Industries	lookman	4	2018-10-28	184	⁵⁵ 548	1	⁶⁰ 325	⁸⁵ 981	¹³³ 998	-	-	-	
93	Megvii	megvii	0	2018-02-15	1327	138 2048	1	¹⁷⁴ 794	-	⁷³ 284	²⁶ 530	²⁴ 1060	-	$^{30}0.18 N^{1.0}$
94	Megvii	megvii	1	2018-10-28	1703	¹⁸⁴ 4096	1	¹³⁷ 652	⁶⁸ 551	¹¹¹ 560	⁴⁹ 1219	⁴⁵ 2316	⁴² 5956	$^{68}0.08 N^{1.1}$
95	Megvii	megvii	2	2018-10-28	1735	¹⁸² 4096	1	¹⁴² 656	⁶⁹ 552	¹⁰⁹ 557	-	-	-	
96	Microfocus	microfocus	0	2018-02-12	101	²¹ 256	k	¹⁰⁶ 525	-	⁴² 184	-	-	-	
97	MicroFocus	microfocus	1	2018-02-16	101	¹³ 256	k	¹⁰⁷ 527	-	²⁰ 39	-	-	-	
98	Microfocus	microfocus	2	2018-02-16	101	²² 256	k	¹⁰⁸ 529	-	4 2	-	-	-	İ
99	Microfocus	microfocus	3	2018-06-22	101	¹⁴ 256	k	⁴⁶ 269	³³ 185	⁴⁵ 188	-	-	-	
100	Microfocus	microfocus	4	2018-06-22	102	²⁰ 256	k	⁴⁷ 270	³⁴ 186	46 189	-	† -	-	
	Microfocus	microfocus	5	2018-10-29	94	²⁵ 256	k	45 266	31 182	44 186	²⁰ 353	¹⁸ 706	¹⁵ 1422	³⁴ 0.11 N ^{1.0}
101		microfocus	6	2018-10-29	94	19 256	k	44265	32 182	43 186	- 555	- 700	- 1422	0.11 11
101	Microfocus				/ T		10	200	102	100	1	1	1	1
102	Microsoft				126	43512	1	48283	1 .	114 503	471102	46230⊏	38 4036	510 22 N/1.0
	Microsoft Microsoft	microsoft microsoft	0	2018-01-30 2018-02-12	126 165	⁴³ 512 ⁶⁸ 1024	1	⁴⁸ 283 ⁶⁶ 349	-	114 ₅₉₃ 130 ₈₆₉	⁴⁷ 1193	⁴⁶ 2395	³⁸ 4936	⁵¹ 0.22 N ¹ .

N	otoc

Configuration size does not capture static data present in libraries. Libraries are not counted because most implementations include common ancillary libraries for image processing (e.g. openCV) or numerical computation (e.g. blas).

Table 7: Summary of algorithms and properties included in this report. The blue superscripts give ranking for the quantity in that column. Missing search durations, denoted by "-", are absent because those runs were not executed, usually because we did not run on the larger galleries. Caution: The power-law model is sometimes an incorrect model. It is included here only to show broad sublinear behavior, which is flagged in green. The models should not be used for prediction.

This multiplier expresses the increase in template size when k images are passed to the template generation function.

All durations are measured on Intel®Xeon®CPU E5-2630 v4 @ 2.20GHz processors. Estimates are made by wrapping the API function call in calls to std::chrono::high_resolution.clock which on the machine in (3) counts 1ns clock ticks. Precision is somewhat worse than that however.

Search durations are measured as in the prior note. The power-law model in the final column mostly fits the empirical results in Figure 111. However in certain cases the model is not correct and should not be used numerically.

	DEVELOPER	SHORT	SEQ.	VALIDATION	CONFIG ¹	TEM	PLATE GEN	ERATION			SEARCH DUI	RATION ⁴ MIL	LISEC	
	FULL NAME	NAME	NUM.	DATE	DATA (MB)	SIZE (B)	MULT ²	TIME (MS)3	L=1	L=50	L=50	L=50	L=50	POWER LAW
									N=1.6M	N=1.6M	N=3M	N=6M	N=12м	(μs)
105	Microsoft	microsoft	2	2018-02-12	228	⁷³ 1024	1	¹²⁰ 555	-	129 869	-	-	-	
106	Microsoft	microsoft	3	2018-06-20	230	⁶⁵ 1024	1	⁸⁰ 404	⁹⁶ 1638	¹⁴⁸ 1603	⁶⁵ 3260	63 6730	⁵⁸ 13833	560.51 N ^{1.1}
107	Microsoft	microsoft	4	2018-06-20	437	127 ₂₀₄₈	1	¹⁷¹ 773	117 2662	¹⁷⁷ 2691	⁷⁵ 5260	⁷¹ 11070	⁶⁷ 22748	$^{57}0.83 N^{1.1}$
108	Microsoft	microsoft	5	2018-10-29	381	⁷⁰ 1024	1	¹⁴⁸ 673	⁹⁵ 1604	150 1671	⁶⁴ 3073	⁶¹ 6296	⁵⁷ 13147	$^{38}0.79 N^{1.0}$
109	Microsoft	microsoft	6	2018-10-29	478	⁶² 1024	1	¹⁵² 695	⁹⁷ 1640	¹⁴⁹ 1617	⁶⁹ 3707	⁶² 6394	⁵⁶ 12879	$^{47}0.68 N^{1.0}$
110	NEC	nec	0	2018-06-21	131	172 2592	k	¹⁰ 82	⁴⁹ 317	⁹⁶ 426	³⁷ 738	³³ 1315	²⁷ 2737	140.73 N ^{0.9}
111	NEC	nec	1	2018-06-29	131	171 2592	k	11 ₈₈	³⁶ 193	⁵¹ 208	²² 388	²⁰ 750	181577	180.21 N ^{1.0}
112	NEC	nec	2	2018-10-30	705	101 1616	k	¹⁴⁰ 653	⁵⁷ 405	93 409	44 1072	³⁷ 1755	³⁴ 4255	70 _{0.06} N ^{1.1}
113	NEC	nec	3	2018-10-30	774	¹⁰² 1712	k	150 ₆₉₀	57	77	514	540	⁶ 82	800.00 N ^{1.2}
114	Neurotechnology	neurotech	0	2018-02-16	331	197 5214	k	154 702	-	¹⁸² 3040	-	-	-	0.00 11
115	Neurotechnology	neurotech	1	2018-02-16	331	198 5214	k	145 ₆₆₁	-	184 3054	-	-	-	
116	Neurotechnology	neurotech	2	2018-02-16	331	199 5214	k	144 658	-	¹⁸³ 3051	-	-	-	
117	Neurotechnology	neurotech	3	2018-06-27	265	116 2048	k	¹¹⁶ 547	87 1084	135 1059	⁵⁹ 2111	⁵⁷ 4779	⁴⁹ 8793	$^{31}0.73 N^{1.0}$
118	Neurotechnology	neurotech	4	2018-06-27	265	145 2048	k	115543	86 1060	136 1061	⁵⁷ 2091	56 4263	47 8736	17 1.22 N 1.0
119	Neurotechnology	neurotech	5	2018-10-30	266	17 256	k	84 412	80 835	127 ₈₃₉	54 1690	⁵¹ 3219	⁵⁰ 8955	62 _{0.19} N ^{1.1}
120	Neurotechnology	neurotech	6	2018-10-30	564	16 256	k	169746	81 839	128 842	1000	3217	- 6933	0.15 14
121	Newland Computer Co. Ltd	newland	2	2018-10-30	96	110 2048	-	¹⁹¹ 868	134 8653	1998765	8617713	8138963	-	⁶⁷ 1.32 N ^{1.1}
122	Noblis	noblis	1	2018-10-30	114	128 2048	1	³⁰ 211	91 1273	143 1272	17713	30703	<u> </u>	1.52.14
123	Noblis	noblis	2	2018-10-30	153	200 200 6144	1	110535	116 2513	175 175 2522	⁷⁶ 5649	⁷² 12432	⁷³ 44262	850.04 N ^{1.3}
														220.27 N ^{1.0}
124 125	N-Tech Lab	ntech	0	2018-02-16	2124	196 4442	k	166730 82405	-	83 38 38 1.61	³⁶ 673	³⁴ 1344	-	0.27 IV
_	N-Tech Lab	ntech	-	2018-02-16	851	104 1736	k			³⁸ 161	31 mo c	304400		240.04.371.0
126	N-Tech Lab	ntech	3	2018-06-21	3664	¹⁷⁴ 3484	k	¹⁸⁴ 831	⁵³ 384	⁸⁰ 326	³¹ 596	³⁰ 1192	²⁵ 2411	²⁴ 0.24 N ^{1.0}
127	N-Tech Lab	ntech	4	2018-06-21	3766	¹⁷⁵ 3484	k	¹⁹⁸ 929	⁵² 378	⁷⁹ 312	³² 597	³² 1204	²⁶ 2416	²⁹ 0.21 N ^{1.0}
128	N-Tech Lab	ntech	5	2018-10-30	1685	¹⁰⁸ 1940	k	¹⁶⁴ 717	⁴² 243	⁵⁷ 246	²⁸ 538	²⁶ 1100	²⁸ 2867	⁷⁵ 0.02 N ^{1.1}
129	N-Tech Lab	ntech	6	2018-10-30	1686	¹⁰⁹ 1940	k	¹⁸⁷ 841	⁴¹ 243	⁵⁶ 246	²⁹ 546	²⁷ 1104	²⁹ 2873	⁷⁷ 0.02 N ^{1.1}
130	Quantasoft	quantasoft	1	2018-10-30	276	117 2048	k	⁷⁶ 396	¹³⁵ 15422	²⁰¹ 14858	85 14717	- 10	⁶⁶ 18323	15 0.0
131	Rank One Computing	rankone	0	2018-02-07	0	¹² 228	k	650	-	²² 75	¹¹ 142	¹⁰ 220	¹⁰ 502	$^{15}0.12 N^{0.9}$
132	Rank One Computing	rankone	1	2018-02-15	0	²⁷ 324	k	¹⁷ 136	-	⁴¹ 169	- 16	-	- 12	25 1.0
133	Rank One Computing	rankone	2	2018-06-19	0	¹⁰ 133	k	¹⁴ 113	²² 138	²⁹ 137	¹⁶ 258	¹⁴ 517	¹² 1029	$^{25}0.10 N^{1.0}$
134	Rank One Computing	rankone	3	2018-06-19	0	11133	k	¹⁵ 114	²³ 138	³⁰ 137	¹⁵ 258	¹³ 515	¹¹ 1027	²⁸ 0.09 N ^{1.0}
135	Rank One Computing	rankone	4	2018-10-09	0	¹ 85	k	⁴ 36	¹⁹ 101	²⁷ 101	¹² 190	-	-	$^{27}0.07 N^{1.0}$
136	Rank One Computing	rankone	5	2018-10-24	0	⁹ 133	k	¹² 94	²⁴ 140	³⁶ 144	¹⁷ 266	¹⁵ 525	13 1049	$^{23}0.11 N^{1.0}$
137	RealNetworks	realnetworks	0	2018-06-21	96	¹⁸⁵ 4100	1	³⁸ 244	123 4257	¹⁷⁸ 2740	-	-	-	
138	RealNetworks	realnetworks	1	2018-06-21	105	¹⁸⁹ 4104	k	³⁷ 243	122 3568	¹⁶⁴ 2107	-	-	-	1.0
139	RealNetworks	realnetworks	2	2018-10-30	105	¹⁸⁷ 4104	k	³⁹ 245	¹⁰⁷ 2006	¹⁶⁰ 2046	⁷² 4190	⁷⁰ 8633	⁶² 15020	$^{36}1.08 N^{1.0}$
140	KanKan Ai	remarkai	0	2018-10-30	187	129 2048	k	¹²⁷ 615	¹³¹ 5685	¹⁹⁵ 5723	-	-	-	
141	KanKan Ai	remarkai	1	2018-10-30	187	1142048	k	⁹⁸ 434	130 5680	¹⁹⁶ 5761	84 12475	80 28726	⁷⁶ 59618	$^{81}0.37 N^{1.2}$
142	Sensetime Group Ltd	sensetime	0	2018-10-30	525	¹⁸⁶ 4104	k	¹⁶² 715	⁶⁵ 498	¹⁰⁰ 501	⁴⁸ 1212	⁴³ 2281	⁴⁰ 5032	$^{65}0.09 N^{1.1}$
143	Sensetime Group Ltd	sensetime	1	2018-10-30	525	¹⁸⁸ 4104	k	¹⁴³ 656	⁶⁶ 516	¹⁰¹ 502	⁴⁵ 1146	⁴⁴ 2301	³⁷ 4765	$^{63}0.09 N^{1.1}$
144	Shaman Software	shaman	0	2018-02-12	0	¹⁸¹ 4096	k	113538	-	¹⁰² 523	-	-	-	
145	Shaman Software	shaman	1	2018-02-12	0	179 4096	k	¹²¹ 557	-	¹⁰³ 524	-	-	-	
146	Shaman Software	shaman	2	2018-02-12	0	²⁰¹ 8192	k	¹²² 557	-	¹²¹ 688	-	-	-	
147	Shaman Software	shaman	3	2018-06-30	0	¹²⁵ 2048	k	¹⁵⁵ 704	⁷⁵ 692	⁷⁷ 310	-	-	-	
148	Shaman Software	shaman	4	2018-06-30	0	136 2048	k	¹³⁵ 642	⁶¹ 434	⁶⁶ 267	-	-	-	
149	Shaman Software	shaman	6	2018-10-26	0	133 2048	k	¹⁵⁷ 706	⁷² 594	¹¹⁵ 603	-	- 47	- 20	1 0
150	Shaman Software	shaman	7	2018-10-26	0	123 2048	k	¹⁵⁹ 709	⁷¹ 593	¹¹⁶ 605	⁴⁶ 1169	⁴⁷ 2411	³⁹ 5007	$^{49}0.25 N^{1.0}$
151	Shenzhen Inst. Adv. Tech. CAS	SIAT	0	2018-02-14	306	861096	k	⁶⁷ 358	-	¹⁴⁷ 1343	-	-	-	
152	Shenzhen Inst. Adv. Tech. CAS	SIAT	1	2018-06-30	521	¹⁴⁷ 2052	1	¹⁸⁸ 842	¹²⁵ 4512	¹⁸⁶ 4402	⁸¹ 9103	⁷⁶ 18391	⁷¹ 38745	$^{44}2.06 N^{1.0}$
153	Shenzhen Inst. Adv. Tech. CAS	SIAT	2	2018-02-30	521	¹⁵³ 2052	1	¹⁹⁵ 906	126 5101	¹⁸⁹ 4884	82 9556	⁷⁷ 18834	⁷² 39717	$^{45}2.08 N^{1.0}$
154	Smilart	smilart	0	2018-02-15	105	⁶⁴ 1024	k	²⁰ 168	-	¹⁴⁴ 1285	-	-	-	
155	Smilart	smilart	1	2018-02-15	120	⁷¹ 1024	k	¹⁴⁶ 662	-	¹³⁹ 1135	-	-	-	
156	Smilart	smilart	2	2018-02-15	109	⁶⁷ 1024	k	¹²³ 560	-	¹⁴⁵ 1302	-	-	-	

Notes

Configuration size does not capture static data present in libraries. Libraries are not counted because most implementations include common ancillary libraries for image processing (e.g. openCV) or numerical computation (e.g. blas).

This multiplier expresses the increase in template size when k images are passed to the template generation function.

³ All durations are measured on Intel® Xeon® CPU E5-2630 v4 @ 2.20GHz processors. Estimates are made by wrapping the API function call in calls to std::chrono::high.resolution.clock which on the machine in (3) counts 1ns clock ticks. Precision is somewhat worse than that however.

⁴ Search durations are measured as in the prior note. The power-law model in the final column mostly fits the empirical results in Figure 111. However in certain cases the model is not correct and should not be used numerically.

	DEVELOPER	SHORT	SEQ.	VALIDATION	CONFIG ¹	TEMI	PLATE GENE	ERATION			SEARCH DU	JRATION ⁴ MI	LLISEC	
	FULL NAME	NAME	NUM.	DATE	DATA (MB)	SIZE (B)	MULT ²	TIME (MS) ³	L=1	L=50	L=50	L=50	L=50	POWER LAW
									N=1.6M	N=1.6M	N=3M	N=6M	N=12M	(μs)
157	Smilart	smilart	4	2018-10-30	65	³⁶ 512	k	¹⁹ 167	136 15879	²⁰² 15382	-	-	-	
158	Smilart	smilart	5	2018-10-30	562	130 2048	k	¹⁰¹ 464	-	-	-	-	-	
159	Synesis	synesis	0	2018-02-15	332	³⁸ 512	k	³⁶ 237	-	⁴⁰ 162	-	-	-	
160	Synesis	synesis	3	2018-10-30	237	¹⁷⁷ 4096	k	¹³ 103	⁷⁸ 784	¹²⁵ 796	⁵⁶ 1928	⁵⁵ 3861	⁴⁸ 8748	⁷⁶ 0.07 N ^{1.1}
161	Tevian	tevian	0	2018-02-16	666	¹²² 2048	1	⁷⁵ 394	-	⁹⁰ 405	-	-	-	
162	Tevian	tevian	1	2018-02-16	666	¹³⁷ 2048	1	⁷⁹ 398	-	87403	-	-	-	
163	Tevian	tevian	2	2018-02-16	666	135 2048	1	77397	-	86402	-	-	-	
164	Tevian	tevian	3	2018-06-20	707	118 2048	1	⁵⁴ 300	⁶² 473	¹⁰⁶ 539	-	-	-	
165	Tevian	tevian	4	2018-06-20	707	¹⁴¹ 2048	1	⁵³ 299	⁶⁰ 434	¹⁰⁵ 537	-	-	-	
166	Tevian	tevian	5	2018-10-30	773	¹²¹ 2048	1	⁸⁵ 416	⁵⁶ 405	⁹² 407	³⁹ 852	³⁶ 1753	³² 3373	540.14 N ^{1.0}
167	TigerIT Americas LLC	tiger	0	2018-06-29	333	152 2052	k	⁹³ 428	¹⁰² 1822	¹⁸⁰ 2942	-	-	-	
168	TigerIT Americas LLC	tiger	1	2018-06-27	333	¹⁴⁸ 2052	k	⁷⁸ 398	10	² 1	-	-	-	
169	TigerIT Americas LLC	tiger	2	2018-10-29	416	¹⁵⁶ 2052	k	103 464	¹⁰¹ 1814	¹⁵⁸ 1919	⁷⁰ 3829	⁶⁸ 7519	⁶⁰ 14805	430.83 N ^{1.0}
170	TigerIT Americas LLC	tiger	3	2018-10-30	416	154 2052	k	¹⁰² 464	³⁵ 191	⁴⁷ 189	-	-	-	0.00 - 1
171	TongYi Transportation Technology	tongyi	0	2018-06-29	1701	¹⁶³ 2070	k	²⁶ 190	113 2256	169 2272	-	_	-	
172	TongYi Transportation Technology	tongyi	1	2018-06-29	1701	¹⁶¹ 2070	1	²⁵ 189	112 2238	168 2257	-	-	-	
173	Toshiba	toshiba	0	2018-10-30	961	⁹⁸ 1548	k	²⁰⁰ 930	133 6147	¹⁹⁷ 6230	83 12209	⁷⁹ 25330	⁷⁵ 49398	⁷⁹ 0.36 N ^{1.2}
174	Toshiba	toshiba	1	2018-10-30	961	159 2060	k	²⁰¹ 931	132 6001	198 6349	12207	25550	4,5,0	0.50 11
175	Visidon	visidon	0	2018-06-20	208	⁷⁶ 1028	k	⁶¹ 337	106 2006	176 2566	_	_		
176	Visidon	visidon	1	2018-10-30	166	150 2052	k	153 695	124 4357	¹⁸⁷ 4458	⁸⁰ 8429	⁷⁵ 17210	⁶⁹ 34185	352.40 N ^{1.0}
177	Vigilant Solutions	visidon	0	2018-02-08	335	95 1544	k	180 823	4557	162 2058	0427	17210	34103	2.40 1V
178	Vigilant Solutions	vigilant	1	2018-02-08	249	158 2056	k	168 739	-	163 2075	-	-	-	
179	Vigilant Solutions	vigilant	2	2018-02-14	335	97 1544	k	177 820	-	165 2121	-	-	-	
180	Vigilant Solutions	vigilant	3	2018-06-21	335	94 1544	k	185 185 183 185	115 2453	170 2307	-	-	-	
181	Vigilant Solutions	vigilant	4	2018-06-21	337	93 1544	k	183 830	110 2050	167 2251	-	-		
182	Vigilant Solutions	vigilant	5	2018-10-30	335	96 1544	k	173 778	- 2000	152 1720	-	_	-	
183	Vigilant Solutions	vigilant	6	2018-10-30	337	92 1544	k	¹⁸⁶ 834	_	151 1713	-	_	-	
184	VisionLabs	visionlabs	3	2018-02-16	624	¹⁵ 256	1	³⁵ 228	_	65	³ 5	² 6	_	6417.37 N ^{0.2}
185	VisionLabs	visionlabs	4	2018-06-22	299	²³ 256	1	⁵⁷ 315	8 ₁₉	¹⁰ 17	620	⁴ 26	³ 29	$^{3}2663.29 N^{0.1}$
186	VisionLabs		5	2018-06-22	305	35 512	1	55300	13 13 54	1633	⁷ 37	*56	⁷ 88	10166.84 N ^{0.4}
		visionlabs	-									⁷ 44		53211.93 N ^{0.2}
187	VisionLabs	visionlabs	6	2018-10-30	360	⁴⁰ 512	1	⁵⁰ 292	1236 14 ca	¹⁸ 36	939		⁵ 53	82075 22 AT 0. 2
188	VisionLabs	visionlabs	7	2018-10-30	360	⁴² 512	1	51293	¹⁴ 63	²¹ 63	¹⁰ 72	980	⁸ 115	⁸ 2076.32 N ^{0.2}
189	Vocord	vocord	0	2018-02-16	872	56 608 57 608	k .	111 536 112 536	-	67268 68268	-	-	-	
190	Vocord	vocord	1	2018-02-16	872	57608 1192048	k	112536 134635	-	⁶⁸ 268 ⁵⁹ 248		-	-	
191 192	Vocord	vocord	2	2018-02-16	924 627	59896	k	161 714	³⁹ 215	58247	-	-	-	
192	Vocord Vocord	vocord	3	2018-06-30 2018-06-30	627	60 896	k k	114 114 538	⁴⁰ 216	63 253	-	-	-	
		vocord				58768		179 179 822	²⁸ 158	⁴⁹ 204	21 21 383	21767	16 1466	$^{32}0.12 N^{1.0}$
194 195	Vocord	vocord	5	2018-10-30	1035	203 10240	k k	181 825	30 170		383	/6/	1466	0.12 IV
	Vocord	vocord		2018-10-30	1035	10240 168 2108		128 128 615	1/0	54216 113587	-	-	-	
196 197	Zhuhai Yishang Electronics Tech.	yisheng	0	2018-02-14	473	1763704	k k	74387	1112228	137 1108	-	-	-	
	Zhuhai Yisheng Electronics Tech.	yisheng		2018-06-19	474				2226			384550	-	590.40.371.1
198	Shanghai Yitu Technology	yitu ••	0	2018-02-12	1774	¹⁹¹ 4136	1	132 633	-	98464 97462	⁴⁰ 868	³⁸ 1769	-	⁵⁹ 0.12 N ^{1.1}
199	Shanghai Yitu Technology	yitu	1	2018-02-12	1944	¹⁹⁰ 4136	1	199 930	129	⁹⁷ 463	77	73	68	13 >-() 0
200	Shanghai Yitu Technology	yitu	2	2018-06-21	2077	¹⁹³ 4138	1	¹⁹² 870	¹²⁹ 5516	¹⁹² 5417	⁷⁷ 6101	⁷³ 13264	⁶⁸ 33047	¹³ 9.25 N ^{0.9}
201	Shanghai Yitu Technology	yitu	3	2018-06-21	2077	¹⁹² 4138	1	¹⁹³ 871	¹²⁷ 5248	¹⁹¹ 5242	⁷⁸ 6286	⁷⁸ 19829	⁷⁴ 45621	61 1.08 N 1.1
202	Shanghai Yitu Technology	yitu	4	2018-10-30	2119	¹⁶² 2070	1	¹⁹⁶ 910	⁹² 1288	¹⁴² 1203	⁶¹ 2440	⁵⁹ 5241	⁵⁴ 9671	460.52 N ^{1.0}
203	Shanghai Yitu Technology	yitu	5	2018-10-30	2043	160 2070	1	¹⁹⁰ 861	90 1235	¹⁴¹ 1197	⁶² 2508	⁵⁸ 5003	⁵³ 9601	$^{42}0.55 N^{1.0}$

Note

- Configuration size does not capture static data present in libraries. Libraries are not counted because most implementations include common ancillary libraries for image processing (e.g. openCV) or numerical computation (e.g. blas).
- This multiplier expresses the increase in template size when k images are passed to the template generation function.
- 3 All durations are measured on Intel® Xeon® CPU E5-2630 v4 @ 2.20GHz processors. Estimates are made by wrapping the API function call in calls to std::chrono::high.resolution.clock which on the machine in (3) counts 1ns clock ticks. Precision is somewhat worse than that however.
- 4 Search durations are measured as in the prior note. The power-law model in the final column mostly fits the empirical results in Figure 111. However in certain cases the model is not correct and should not be used numerically.

Table 9: Summary of algorithms and properties included in this report. The blue superscripts give ranking for the quantity in that column. Missing search durations, denoted by "-", are absent because those runs were not executed, usually because we did not run on the larger galleries. Caution: The power-law model is sometimes an incorrect model. It is included here only to show broad sublinear behavior, which is flagged in green. The models should not be used for prediction.

	S BELOW THRESHOLD, T			NROL LIFETIM					OL MOST REC		
	IIR(N, T > 0, R > L) ALGORITHM	N=0.64M	DAT N=1.6M	ASET: FRVT 2	018 N=6.0M	N=12.0M	N=0.64M		FASET: FRVT 2	018 N=6.0M	N=12.0M
#				N=3.0M		N=12.0M		N=1.6M	N=3.0M	N=6.0IVI	N=12.0M
1	3DIVI-3	138 0.3000	124 0.3499	⁶² 0.3859	⁵⁹ 0.4344		146 0.3550	¹⁴⁵ 0.4023	720.4020	680 2202	67.0.000
2	3DIVI-5	95 0.1045 85 0.0852	94 0.1339	500 1261	480 1012		101 0.1382	101 0.1691 95 0.1405	⁷² 0.1938	⁶⁸ 0.2392	⁶⁷ 0.3087
3	ALCHERA-0 ALCHERA-3	85 0.0852 92 0.1018	860.1105 920.1296	⁵⁰ 0.1361	⁴⁸ 0.1913		950.1128 960.1205	98 0.1590	⁷⁰ 0.1891	⁶⁹ 0.2467	⁷² 0.3628
5	ANKE-0	79 0.0768	77 0.0989				84 0.0968	83 0.1199	66 0.1432	63 0.1811	60 0.2624
6	AWARE-3	840.0846	78 0.0991	⁴⁷ 0.1148	⁴³ 0.1459		94 _{0.1122}	930.1306	67 0.1452	62 0.1793	53 0.2395
7	AWARE-5	131 0.2628	118 0.2984	0.1140	0.1439		144 0.3459	139 0.3729	80 0.4094	770.4615	630.2637
8	AYONIX-0	171 0.8262	139 0.8490	⁶⁷ 0.8640	⁶² 0.8809		182 0.7795	180 0.8114	0.4074	0.4015	0.2007
9	AYONIX-2	168 _{0.7602}	137 0.8038	0.0040	0.0009		183 0.7867	182 0.8246	85 0.8511	81 0.8708	⁷⁹ 0.8946
10	CAMVI-3	³⁸ 0.0281	⁴⁸ 0.0509	³⁵ 0.0680	⁴⁷ 0.1871		⁴¹ 0.0413	⁵⁶ 0.0736	0.0021	0.0.00	0.00.20
11	CAMVI-4	²⁹ 0.0257	⁴⁷ 0.0505		0.10.1		³⁸ 0.0393	570.0741	⁵¹ 0.1008	⁷⁰ 0.2532	⁶⁴ 0.2731
12	COGENT-0	⁵¹ 0.0387	⁴⁵ 0.0434	²⁹ 0.0523	²⁶ 0.0784	¹³ 0.1559	⁵² 0.0455	⁴⁵ 0.0557	⁴⁰ 0.0734	⁴³ 0.1194	⁴⁰ 0.2029
13	COGENT-1	⁶⁸ 0.0598	⁴⁹ 0.0513				⁵¹ 0.0455	⁴⁴ 0.0557	⁴¹ 0.0734	⁴² 0.1194	³⁹ 0.2029
14	COGENT-2	¹⁹ 0.0220	¹⁸ 0.0299	¹⁵ 0.0390	²⁵ 0.0703	¹⁶ 0.1595	²⁴ 0.0356	³⁰ 0.0475	³¹ 0.0655	⁴¹ 0.1185	46 0.2241
15	COGENT-3	³⁰ 0.0258	²⁷ 0.0341	²⁴ 0.0450	²⁹ 0.0842	²⁵ 0.1864	²⁷ 0.0361	³⁶ 0.0515	42 0.0771	⁵⁰ 0.1374	⁵⁶ 0.2488
16	COGNITEC-0	⁹¹ 0.0989	90 0.1256				103 0.1400	⁹⁹ 0.1628	⁷¹ 0.1892	66 0.2205	⁶⁶ 0.2859
17	COGNITEC-1	⁶⁷ 0.0597	⁶⁸ 0.0777	⁴¹ 0.0946	400.1315	³⁸ 0.2552	770.0832	⁷⁷ 0.1045	⁵⁹ 0.1244	⁵⁵ 0.1561	⁵¹ 0.2338
18	COGNITEC-2	⁴¹ 0.0296	³⁹ 0.0401	²⁸ 0.0523	³¹ 0.0852	³⁴ 0.2298	⁴⁶ 0.0433	⁴⁶ 0.0560	³⁵ 0.0695	³³ 0.0980	³⁶ 0.1967
19	COGNITEC-3	³⁹ 0.0288	³⁸ 0.0397	²⁷ 0.0505	²⁸ 0.0837	³² 0.2140	⁴⁴ 0.0427	⁴³ 0.0555	³² 0.0679	³¹ 0.0938	²⁹ 0.1840
20	DAHUA-1	⁵⁴ 0.0410	⁵⁰ 0.0521		60		⁶⁰ 0.0596	⁵⁹ 0.0755	⁴⁷ 0.0905	40 0.1179	³³ 0.1910
21	DERMALOG-4	142 0.3405	128 0.3892	⁶⁴ 0.4181	⁶⁰ 0.4533		154 _{0.4380}	153 0.4813	55	58 _	50
22	DERMALOG-5	63 0.0490	62 0.0649				⁷⁴ 0.0726	⁷¹ 0.0909	340.007	⁵⁸ 0.1618	590.2516
23	DERMALOG-6	³⁶ 0.0276	³⁷ 0.0383				⁴² 0.0420	41 0.0542	³⁴ 0.0687	³⁷ 0.1004	²⁸ 0.1812
24	EVERAI-0	⁵⁷ 0.0460	650.0676				⁶⁸ 0.0681	73 0.0921	57 0.1223		
25	EVERAI-1	²⁸ 0.0255	340.0360	110 0000	80.0000		³³ 0.0383	³⁷ 0.0518	330.0686	180 0 000	250.4.550
26	EVERAI-3	15 0.0191	15 0.0256	110.0338	80.0389		170.0282	170.0377	¹⁸ 0.0473	¹⁸ 0.0683	²⁵ 0.1653
27	EYEDEA-3	137 0.2911	1100.3283	610.3673	530.2004		145 0.3498	142 0.3893			
28	GLORY-1	123 0.2160	110 0.2447	⁵⁶ 0.2618	⁵³ 0.2884		136 0.2790	133 0.3067	740.2240	710.000	710.0404
29	GORILLA-2	100 0.1088	990.1379	510.1610	490 2001	⁴¹ 0.3067	108 0.1561	¹⁰⁸ 0.1902 ⁸⁸ 0.1212	⁷⁴ 0.2210	⁷¹ 0.2625	⁷¹ 0.3426
30	HIK-2	101 0.1104 86 0.0885	980.1363 850.1097	⁵¹ 0.1610	⁴⁹ 0.2061	0.3067	890.0985 780.0853	78 0.1054	⁵⁸ 0.1228	540 1550	⁵⁷ 0,2500
31	HIK-3	83 0.0839	83 0.1031	⁴⁸ 0.1225	⁴⁶ 0.1518	³⁹ 0.2618	76 _{0.0821}	74 0.1054	56 0.1173	540.1552 530.1498	58 0.2503
33	HIK-4 HIK-5	18 0.0218	22 0.0308	0.1225 18 0.0397	22 0.0661	0.2016	230.0339	27 0.0467	0.1173 260.0593	0.1498 32 0.0967	44 0.2164
34	IDEMIA-0	70 0.0645	69 0.0802	42 0.0986	³⁹ 0.1237	²⁶ 0.1872	81 0.0920	81 0.1135	62 0.1332	590.1628	45 0.2208
35	IDEMIA-0	43 0.0304	36 _{0.0377}	²⁵ 0.0465	18 _{0.0623}	14 0.1578	470.0444	40 0.0540	29 0.0647	²⁶ 0.0856	22 0.1618
36	IDEMIA-2	56 0.0453	⁵⁴ 0.0564	33 0.0668	33 0.0896	²⁰ 0.1706	⁴⁹ 0.0449	42 0.0543	0.0047	0.0050	0.1010
37	IDEMIA-3	230.0238	²¹ 0.0308	0.0000	0.0070	0.17.00	³¹ 0.0373	31 _{0.0497}	⁴⁸ 0.0927	⁷³ 0.2887	⁷⁴ 0.4442
38	IDEMIA-4	200.0223	¹⁶ 0.0276	¹⁰ 0.0338	110.0478	¹¹ 0.1556	¹⁹ 0.0326	¹⁹ 0.0399	17 _{0.0472}	170.0644	²⁶ 0.1659
39	IDEMIA-5	³³ 0.0261	²⁴ 0.0319	170.0395	¹⁵ 0.0588	²² 0.1764	³⁴ 0.0385	²⁶ 0.0465	²⁵ 0.0562	²⁵ 0.0788	³⁵ 0.1951
40	IDEMIA-6	²⁶ 0.0253	²³ 0.0316	¹⁴ 0.0383	¹⁴ 0.0581	²⁹ 0.2046	³² 0.0377	²⁴ 0.0458	²³ 0.0550	²² 0.0760	47 0.2242
41	IMAGUS-2	164 0.6616	135 0.7143	⁶⁶ 0.7503	61 0.7867		177 0.7092	¹⁷⁶ 0.7510			
42	INCODE-1	107 0.1400	104 0.1796	⁵⁴ 0.2159	⁵² 0.2741		1140.1763	114 _{0.2143}			
43	INCODE-3	89 0.0949	890.1227				100 0.1349	¹⁰³ 0.1703	⁷³ 0.1986	670.2378	⁶⁸ 0.3157
44	INNOVATRICS-4	82 0.0837	⁷⁴ 0.0928				⁹³ 0.1106	⁹⁴ 0.1340	⁶⁵ 0.1418	⁵² 0.1418	11 0.1418
45	ISYSTEMS-0	⁶¹ 0.0485	61 0.0633	³⁹ 0.0795	³⁷ 0.1057	³⁰ 0.2072	⁷⁰ 0.0707	⁷² 0.0912			
46	ISYSTEMS-1	⁵⁹ 0.0480	⁶⁰ 0.0627	³⁸ 0.0784	³⁶ 0.1054	³¹ 0.2081	⁶⁹ 0.0702	⁶⁹ 0.0903			
47	ISYSTEMS-2	⁵² 0.0394	⁵³ 0.0545	³⁴ 0.0679			⁶² 0.0612	⁶² 0.0814	⁵⁰ 0.1006	⁵¹ 0.1405	⁵² 0.2374
48	ISYSTEMS-3	⁴² 0.0301	⁴¹ 0.0402	³¹ 0.0557	³² 0.0881	²⁸ 0.1992	⁵³ 0.0464	⁵² 0.0620	⁴⁵ 0.0840	460.1324	⁵⁴ 0.2417
49	LOOKMAN-3	⁴⁶ 0.0335	43 0.0425				³⁰ 0.0372	²⁵ 0.0463	²⁰ 0.0541	²¹ 0.0758	²⁴ 0.1650
50	MEGVII-0	⁸¹ 0.0822	82 0.1023	⁴⁹ 0.1228	⁴⁴ 0.1489	³⁵ 0.2348	⁸⁰ 0.0895	80 0.1086	61 0.1287	⁵⁷ 0.1606	⁴⁹ 0.2288
51	MEGVII-1	170	142	(0			⁵⁸ 0.0586	⁵⁸ 0.0746	⁴⁶ 0.0896	⁴⁷ 0.1338	⁶⁵ 0.2761
52	MICROFOCUS-3	179 0.9002	143 0.9213	⁶⁹ 0.9342			188 _{0.9119}	187 0.9310	860	820	80
53	MICROFOCUS-5	¹⁸² 0.9679	145 0.9835	12	12	10	¹⁹⁵ 0.9733	¹⁸⁴ 0.8361	860.8563	820.8760	80 0.8958
54	MICROSOFT-0	16 0.0208	170.0292	120.0361	120.0536	10 0.1502	200.0329	21 0.0443	²¹ 0.0544	²³ 0.0767	²⁷ 0.1733
55	MICROSOFT-1	17 0.0214	190.0299 290.0245	13 0.0373	13 0.0542	150.1585	²² 0.0339	²³ 0.0449			
56	MICROSOFT-2	25 _{0.0252} 14 _{0.0133}	290.0345 140.0193	¹⁹ 0.0425	¹⁶ 0.0600	¹² 0.1558	35 0.0387	34 0.0503	160 0004	150 0550	200.1600
57	MICROSOFT-4	10.0133 100.0128	110.0193 110.0179	⁸ 0.0241	90.0405	¹⁷ 0.1628	160.0223 130.0209	160.0304 130.0288	160.0384 150.0360	150.0570 130.0550	200.1603 180.1576
58 59	MICROSOFT-4 MICROSOFT-5	90.0128	90.0179	70.0241	70.0387	18 0.1628	120.0209 120.0201	12 0.0288 12 0.0279	120.0360 120.0347	120.0545	150.1576 150.1549
60	MICROSOFT-5 MICROSOFT-6	50.0058	50.0080	50.0110	60.0284	19 0.1664	50.0109	50.0141	50.0183	50.0343	13 0.1544
61	NEC-0	60 0.0483	57 0.0604	37 0.0726	35 _{0.0989}	0.1664 360.2378	64 0.0662	63 0.0815	490.0961	440.1199	37 0.1994
62	NEC-0	73 0.0711	73 0.0899	0.0720	0.0707	0.2376	79 0.0889	79 0.1081	60 0.1276	56 0.1565	50 0.1994 50 0.2311
63	NEC-1	² 0.0018	² 0.0024	² 0.0038	⁴ 0.0211	² 0.0991	10.0040	² 0.0047	² 0.0057	² 0.0190	² 0.0723
64	NEC-2	10.0018	10.0024	10.0026	10.0113	10.0788	² 0.0040	10.0044	1 _{0.0049}	1 _{0.0095}	10.0580
65	NEUROTECHNOLOGY-3	159 0.5809	134 _{0.6390}	0.0020	0.0113	0.0700	172 0.5959	172 0.6649	840.7217	80 0.7852	⁷⁸ 0.8336
66	NEUROTECHNOLOGY-4	55 0.0427	55 0.0575	³⁶ 0.0711	³⁴ 0.0954	²⁴ 0.1845	550.0493	54 0.0656	440.0810	38 _{0.1167}	420.2138
67	NEUROTECHNOLOGY-5	500.0384	51 0.0527	30 0.0546	27 0.0811	70.1366	43 0.0422	48 0.0564	37 _{0.0705}	³⁶ 0.0988	38 0.2014
68	NEWLAND-2	3.0304	0.0027	0.0040	5.0011	3.1500	150 0.4015	150 0.4405	81 0.4719	78 0.5133	0.2014
	NOBLIS-2	¹⁸⁵ 0.9943	¹⁴⁷ 0.9959				199 0.9963	196 0.9974	88 0.9980	83 0.9986	
70	NTECHLAB-0	65 0.0518	630.0666	⁴⁰ 0.0850	³⁸ 0.1158		670.0677	64 0.0830	520.1029	450.1306	³⁴ 0.1948
71	NTECHLAB-1	690.0634	⁷⁰ 0.0818	43 0.1006	42 0.1337	³³ 0.2162	75 _{0.0803}	⁷⁶ 0.1021	5.102/	5.1500	0.1740
72	NTECHLAB-3	45 _{0.0329}	440.0434		5.1007	5.2102	⁴⁸ 0.0445	47 0.0561	³⁶ 0.0699	³⁰ 0.0933	²¹ 0.1609

Table 10: Identification-mode: Effect of N on FNIR at high threshold. Values are threshold-based miss rates i.e. FNIR at FPIR = 0.001 for five enrollment population sizes, N. The left six columns apply for enrollment of a variable number of images per subject. The right six columns apply for enrollment of one image. Missing entries usually apply because another algorithm from the same developer was run instead. Some developers are missing because less accurate algorithms were not run on galleries with $N \geq 3\,000\,000$. Throughout blue superscripts indicate the rank of the algorithm for that column.

MISS	ES BELOW THRESHOLD, T		E	NROL LIFETIM	IE			ENR	OL MOST REC	ENT	
	NIR(N, T > 0, R > L)		DAT	TASET: FRVT 2	018			DAT	ASET: FRVT 2	018	
#	ALGORITHM	N=0.64M	N=1.6M	N=3.0M	N=6.0M	N=12.0M	N=0.64M	N=1.6M	N=3.0M	N=6.0M	N=12.0M
73	NTECHLAB-4	²⁷ 0.0253	²⁶ 0.0337	²⁰ 0.0433	²⁴ 0.0692	²³ 0.1845	²¹ 0.0337	²⁰ 0.0431	²² 0.0545	²⁰ 0.0749	¹² 0.1528
74	NTECHLAB-5	³⁵ 0.0268	³¹ 0.0347				²⁶ 0.0358	²² 0.0448	²⁴ 0.0561	²⁴ 0.0785	¹⁷ 0.1572
75	NTECHLAB-6	²¹ 0.0227	²⁰ 0.0301	¹⁶ 0.0395	²¹ 0.0654	²⁷ 0.1897	¹⁸ 0.0311	¹⁸ 0.0391	¹⁹ 0.0496	¹⁹ 0.0696	¹⁴ 0.1548
76	QUANTASOFT-1	¹⁸⁴ 0.9915	146 0.9915				173 0.6399	170 0.6399	83 0.6399		⁷⁶ 0.6399
77	rankone-0	108 0.1485	103 0.1788	⁵⁵ 0.2210	540.3260	⁴³ 0.4758	116 0.1899	115 0.2192	⁷⁸ 0.2635	⁷⁴ 0.2992	⁷³ 0.4301
78	RANKONE-1	¹⁰² 0.1211	¹⁰¹ 0.1549	⁵³ 0.1804	⁵¹ 0.2371	⁴² 0.3530	¹⁰⁷ 0.1542	100 0.1683			1
79	RANKONE-2	⁷⁷ 0.0744	⁷⁶ 0.0943				920.0998	85 _{0.1200}	⁶⁴ 0.1382	⁶¹ 0.1744	62 0.2636
80	rankone-3	⁷⁶ 0.0744	⁷⁵ 0.0943	46 0.1120	⁴⁵ 0.1490	⁴⁰ 0.2946	⁹¹ 0.0998	84 0.1200	63 0.1382	⁶⁰ 0.1744	61 0.2636
81	RANKONE-4	105 0.1265	100 0.1545				109 0.1631	109 0.1951	⁷⁵ 0.2211		
82	rankone-5	⁴⁸ 0.0347	46 0.0447	³² 0.0571	³⁰ 0.0847	³⁷ 0.2549	⁵⁶ 0.0499	⁵⁰ 0.0617	³⁸ 0.0728	³⁵ 0.0984	⁴¹ 0.2031
83	REALNETWORKS-0	1190.2098	112 0.2476	⁵⁸ 0.2837			120 0.2003	119 0.2362			1
84	REALNETWORKS-2	110 0.1688	106 0.2049				118 0.1974	117 0.2341	⁷⁹ 0.2691	⁷⁵ 0.3186	⁶⁹ 0.3261
85	REMARKAI-2	⁷⁴ 0.0731	⁷⁹ 0.0991				85 _{0.0971}	⁹¹ 0.1264	⁶⁸ 0.1495	⁶⁵ 0.1928	
86	SENSETIME-0	80.0118	80.0165				10 _{0.0184}	90.0234	90.0296	90.0427	80.1287
87	SENSETIME-1	110.0129	10 _{0.0175}				110.0186	110.0245	110.0304	110.0448	90.1344
88	SHAMAN-3	145 _{0.3506}	1290,3921	⁶⁵ 0.4295			¹⁵¹ 0.4179	151 0.4527			
89	SHAMAN-7	88 _{0.0924}	88 0.1112	0.120			⁹⁸ 0.1236	970.1436	⁶⁹ 0,1610	⁶⁴ 0.1901	⁵⁵ 0,2480
90	SIAT-1	132 _{0,2695}	116 _{0.2727}	⁵⁷ 0.2758			70.0160	60.0201	70.0260	60.0380	³ 0.1069
91	SIAT-2	125 _{0.2198}	1080,2239	0.2.00			90.0179	100.0242	10 0.0301	100.0434	100.1377
92	SMILART-4	¹⁷² 0.8381	1440.9569				¹⁹² 0.9260	¹⁹¹ 0.9683	87 0.9913		
93	SYNESIS-3	154 _{0.4748}	132 _{0,5296}				164 _{0,5353}	164 _{0,5832}	82 0.6123	⁷⁹ 0.6489	770.6838
94	TEVIAN-4	⁷² 0.0685	⁷² 0.0878	⁴⁵ 0.1032			830.0952	86 0.1201	0.0120	0.0107	0.0000
95	TEVIAN-5	660.0518	640,0667	0.1032			720.0717	680.0898	⁵⁴ 0.1094	⁴⁸ 0.1338	³⁰ 0.1873
96	TIGER-0	1360.2859	123 0,3361	⁶⁰ 0,3659	⁵⁷ 0.4139		143 _{0.3452}	143 0.3921	0.1071	0.1000	0.1070
97	TIGER-2	64 _{0.0511}	660.0698	0.5057	0.4157		660.0671	660.0888	⁵³ 0.1065	⁴⁹ 0.1361	⁴⁸ 0.2284
98	TONGYITRANS-1	710.0658	71 _{0.0835}	440.1017	⁴¹ 0.1328		57 0.0545	55 0.0693	0.1003	0.1301	0.2204
99	TOSHIBA-0	490.0374	520.0529	0.1017	0.1320		540.0488	53 0.0648	⁴³ 0.0809	³⁹ 0.1170	⁴³ 0.2140
100	VD-0	1760,8686	142 0.9048	⁶⁸ 0.9242	63 0.9381		1860.8892	186 0.9171	0.0809	0.1170	0.2140
100	VD-0	106 106 106 106 106 106 106 107 107 108 108 108 108 108 108 108 108 108 108	102 0.1654	0.9242	0.9361		1100.1664	113 0.2036	⁷⁷ 0.2372	⁷² 0.2759	⁷⁰ 0.3314
101	VIGILANTSOLUTIONS-3	1390,3061	125 0.3568	63 0.3861	⁵⁵ 0.3861		1490,3648	147 0.4097	0.2372	0.2739	0.3314
102	VIGILANTSOLUTIONS-3 VISIONLABS-3	31 _{0.0260}	30 _{0.0347}	230.0444	23 0.0678		39 _{0.0394}	35 _{0.0506}	²⁸ 0.0629	²⁹ 0.0902	
103	VISIONLABS-3 VISIONLABS-4	40 _{0.0294}	400.0402	0.0444	0.0678		500.0452	490.0604	39 0.0733	34 _{0.0982}	³¹ 0.1893
104	VISIONLABS-4 VISIONLABS-5	24 _{0.0250}	32 _{0.0353}	²² 0.0441	¹⁹ 0.0628	²¹ 0.1727	40 _{0.0396}	39 0.0531	30 0.0654	0.0982 280.0878	0.1893 320.1894
105		130.0131	130.0185	0.0441	0.0628	0.1727	150.0211	15 _{0.0289}	140.0359	160.0571	16 _{0.1572}
106	VISIONLABS-6 VISIONLABS-7	120.0131	120.0185	90.0242	100.0412	90.1495	140.0211	140.0289	130.0359	140.0569	19 0.1572
			91 _{0.1295}	52 0.1627	50 0.2361	0.1493			0.0339	0.0369	0.1376
108 109	VOCORD-3 VOCORD-5	90 0.0969 75 0.0735	84 0.1076	0.1627	0.2361		880.0973 990.1261	90 0.1258 102 0.1697	⁷⁶ 0.2327	⁷⁶ 0.3286	⁷⁵ 0.4628
1109		130 0.2539	1190,3002	⁵⁹ 0,3366	⁵⁶ 0.3892		1380,3026	0.1697 136 0.3483	0.2327	0.3266	0.4628
110	YISHENG-1	37 _{0.0279}	33 0.0358	0.3366 260.0468	200.0636	⁸ 0.1389	36 _{0.0388}	33 0.0502	²⁷ 0.0622	270.0003	²³ 0.1621
111	YITU-0	320.0261	28 0.0358	210.0468 210.0434	170.0636	60.1369 60.1361	290,0366	29 0.0472	0.0622	270.0862	0.1621
112	YITU-1	60.0096	60.0133	60.0174	50.0274	50.1361 50.1180		70.0204	⁶ 0.0258	⁷ 0.0382	⁶ 0.1241
	YITU-2			0.01/4	0.02/4	0.1180	60.0156 80.0165	80.0204 80.0213	80.0258 80.0266	*0.0382 *0.0389	70.1241 70.1248
114 115	YITU-3 YITU-4	70.0103 30.0052	70.0139 30.0074	³ 0.0097	² 0.0187	⁴ 0.1153	30.0165 30.0093	30.0213 30.0123	30.0266 30.0159	30.0389 30.0273	40.1107
		40.0052	40.0074		2					40.0273	
116	YITU-5	0.0057	0.0076	40.0100	30.0188	³ 0.1111	40.0101	40.0128	40.0163	0.0294	50.1118

Table 11: Identification-mode: Effect of N on FNIR at high threshold. Values are threshold-based miss rates i.e. FNIR at FPIR = 0.001 for five enrollment population sizes, N. The left six columns apply for enrollment of a variable number of images per subject. The right six columns apply for enrollment of one image. Missing entries usually apply because another algorithm from the same developer was run instead. Some developers are missing because less accurate algorithms were not run on galleries with $N \geq 3\,000\,000$. Throughout blue superscripts indicate the rank of the algorithm for that column.

	ISSES NOT AT RANK 1				ROL LIFETIME	_					L MOST RECEN		
	NIR(N, T=0, R=1)				SET: FRVT 201		3.7h			1	SET: FRVT 201		b
#	ALGORITHM	N=0.64M	N=1.6M	N=3.0M	N=6.0M	N=12.0M	aN^b	N=0.64M	N=1.6M	N=3.0M	N=6.0M	N=12.0M	aN^b
1	3divi-3	140 0.0494	123 0.0645	61 0.0759	⁵⁷ 0.0898		890.0014 N ^{0.267} 64	¹⁵² 0.0680	¹⁵² 0.0857				880.0023 N ^{0.252} 98
2	3divi-5	⁸⁵ 0.0100	860.0133				450.0002 N ^{0.310} 89	⁹⁹ 0.0163	⁹⁷ 0.0202	⁶⁶ 0.0236	⁶⁴ 0.0279	⁶² 0.0327	53 0.0007 N ^{0.239} 89
3	ALCHERA-0	910.0106	820.0121	⁴⁷ 0.0135	⁴⁵ 0.0170		⁷⁶ 0.0006 N ^{0.207} ⁴⁴	100 0.0167	920.0186		-		950.0035 N ^{0.117} 23
4	ALCHERA-3	950.0119	910.0159				500.0002 N ^{0.312 90}	⁶⁶ 0.0101	⁷² 0.0127	⁵⁶ 0.0146	⁵⁶ 0.0171	550.0204	31 0.0004 N ^{0.236} 85
5	ANKE-0	710.0077	⁷² 0.0100	50	50		460.0002 N ^{0.287} 79	870.0128	860.0158	630.0181	610.0214	⁵⁹ 0.0251	46 0.0006 N ^{0.231} 82
6	AWARE-3	108 0.0165	101 0.0209	⁵² 0.0247	0.0297		70 0.0005 N ^{0.263} 63	119 0.0264	1160.0332	750.0387	730.0456	730.0532	690.0011 N ^{0.239} 90
7	AWARE-5	107 0.0163	100 0.0208	680 4060	630 5040		68 0.0004 N ^{0.270} 67	121 0.0271	1170.0337	⁷⁶ 0.0392	⁷⁴ 0.0460	⁶⁶ 0.0338	103 0.0070 N ^{0.109} 21
8	AYONIX-0	179 0.4198	1370.2606	⁶⁸ 0.4969	⁶³ 0.5318		108 0.1021 N ^{0.106} 13 103 0.0176 N ^{0.189} 30	193 0.4095	191 0.4519	860 2552	820 4116	790.4400	113 0.0973 N ^{0.108} 20 111 0.0449 N ^{0.142} 30
9	AYONIX-2	172 0.2192	1120.02606	570.0500	60 0 1 701		30.0000 N ^{1.076} 110	187 0.2954	186 0.3432 140 0.0544	86 0.3753	82 _{0.4116}	⁷⁹ 0.4480	
10 11	CAMVI-3 CAMVI-4	98 0.0144 75 0.0082	112 0.0368 110 0.0326	570.0528	60 0.1791		10.0000 N 10.0000 N ^{1.500} 111	91 0.0145	137 0.0490	81 _{0.0741}	⁸¹ 0.2382	⁷⁸ 0.2386	20.0000 N ^{0.969} 115 10.0000 N ^{1.007} 116
12	CAMVI-4 COGENT-0	88 0.0103	77 0.0106	⁴¹ 0.0109	³⁶ 0.0114	³¹ 0.0122	94 0.0047 N ^{0.057 6}	86 0.0127	74 0.0131	52 0.0136	46 0.0141	440.0151	101 0.0058 N ^{0.058 5}
13	COGENT-0	87 0.0103	⁷⁶ 0.0106	0.0109	0.0114	0.0122	98 0.0074 N ^{0.025} 4	85 _{0.0127}	73 0.0131	510.0136	45 _{0.0141}	430.0151	100 0.0058 N ^{0.058} 4
14	COGENT-2	200.0022	20 0.0027	¹⁴ 0.0032	12 0.0037	110.0043	300.0001 N ^{0.232} 51	270.0054	²⁶ 0.0062	²² 0.0067	20 0.0075	190.0085	550.0007 N ^{0.150} 33
15	COGENT-3	31 _{0.0032}	²⁹ 0.0037	170.0042	16 _{0.0048}	15 _{0.0056}	111 13.4494 N ^{-0.467} 1	²⁹ 0.0057	²⁷ 0.0064	²⁴ 0.0069	22 0.0077	²⁰ 0.0087	60 0.0008 N ^{0.144} 31
16	COGNITEC-0	990.0146	96 0.0189	0.0012	0.0010	0.0000	²⁹ 0.0001 N ^{0.376} 106	112 _{0.0221}	112 _{0.0278}	⁷² 0.0323	⁷¹ 0.0378	⁶⁹ 0.0443	66 0.0010 N ^{0.233} 83
17	COGNITEC-1	630.0069	⁶⁶ 0.0089	⁴⁰ 0.0106	³⁸ 0.0128	³⁵ 0.0154	48 0.0002 N ^{0.275} 70	⁷⁸ 0.0116	83 0.0143	⁶¹ 0.0165	⁵⁹ 0.0192	⁵⁷ 0.0225	450.0006 N ^{0.226} 79
18	COGNITEC-2	³⁵ 0.0035	³⁴ 0.0044	²⁴ 0.0052	²³ 0.0061	²² 0.0075	380.0001 N ^{0.254} 57	⁴⁶ 0.0074	⁴² 0.0083	³⁴ 0.0093	³² 0.0105	³¹ 0.0121	57 0.0008 N ^{0.166} 44
19	COGNITEC-3	⁴² 0.0040	³⁹ 0.0048	²⁶ 0.0055	²⁵ 0.0064	²³ 0.0078	610.0003 N ^{0.190} 31	⁴⁹ 0.0078	⁴⁵ 0.0088	³⁷ 0.0098	³⁵ 0.0111	³⁵ 0.0126	620.0009 N ^{0.164} 41
20	DAHUA-1	⁴⁰ 0.0040	⁴⁰ 0.0049				440.0002 N ^{0.242} 55	⁴⁵ 0.0074	⁴⁷ 0.0089	³⁸ 0.0102	³⁸ 0.0115	³⁷ 0.0135	38 0.0005 N ^{0.203} 62
21	DERMALOG-4	¹⁴³ 0.0759	126 0.0961	⁶⁴ 0.1105	⁵⁹ 0.1260		930.0037 N ^{0.227} 49	157 0.1040	157 0.1274				990.0054 N ^{0.221} 76
22	DERMALOG-5	⁷⁴ 0.0081	⁷⁹ 0.0113				24 0.0001 N ^{0.353} 104	⁹⁰ 0.0135	890.0171	64 0.0223	⁶⁹ 0.0312	⁷¹ 0.0470	300.0004 N ^{0.260} 100
23	DERMALOG-6	⁵⁵ 0.0055	⁴⁸ 0.0060				90 0.0015 N ^{0.095} 9	630.0095	⁵⁶ 0.0102	⁴² 0.0107	³⁷ 0.0115	³³ 0.0125	920.0027 N ^{0.092} 14
24	EVERAI-0	⁶¹ 0.0065	93 0.0166				² 0.0000 N ^{1.029} 109	⁶⁹ 0.0102	990.0209	⁷⁴ 0.0348			30.0000 N ^{0.795} 114
25	EVERAI-1	²¹ 0.0022	²¹ 0.0027				37 0.0001 N ^{0.222 48}	²⁰ 0.0047	²⁰ 0.0056	²⁰ 0.0061			420.0005 N ^{0.166} 42
26	EVERAI-3	¹⁶ 0.0020	160.0023	¹¹ 0.0026	¹¹ 0.0028		690.0004 N ^{0.113} 14	¹⁴ 0.0041	150.0047	¹⁸ 0.0052	¹⁷ 0.0059	¹⁶ 0.0066	360.0005 N ^{0.160} 39
27	EYEDEA-3	139 0.0480	122 0.0613	⁶⁰ 0.0717	56 0.0831		910.0018 N ^{0.246} 56	150 0.0663	¹⁵¹ 0.0824				93 0.0028 N ^{0.238} 87
28	GLORY-1	¹⁴⁹ 0.0818	125 0.0932	62 0.1007	⁵⁸ 0.1091		102 0.0147 N ^{0.129} 16	¹⁶² 0.1154	159 0.1291				109 0.0223 N ^{0.123} 26
29	GORILLA-2	86 0.0102	870.0137				41 0.0001 N ^{0.321 98}	101 0.0170	100 0.0220	⁷⁰ 0.0261	⁶⁸ 0.0311	⁶⁷ 0.0375	350.0005 N ^{0.269} 106
30	нік-2	¹⁰⁴ 0.0155	940.0185	⁵⁰ 0.0208	⁴⁸ 0.0240	⁴² 0.0272	860.0012 N ^{0.193} 34	⁹² 0.0147	⁹⁰ 0.0172				⁷⁸ 0.0015 N ^{0.173} ⁴⁷
31	нік-3	⁷⁷ 0.0085	⁷⁸ 0.0107				⁵⁶ 0.0003 N ^{0.255} ⁵⁹	⁷⁷ 0.0115	82 0.0141	⁶⁰ 0.0164	⁶⁰ 0.0194	⁵⁸ 0.0228	390.0005 N ^{0.235} 84
32	HIK-4	⁷⁶ 0.0083	⁷⁵ 0.0104	⁴⁴ 0.0121	⁴¹ 0.0146	³⁶ 0.0177	540.0003 N ^{0.260} 62	⁷⁶ 0.0112	80 0.0138	⁵⁹ 0.0159	⁵⁸ 0.0188	⁵⁶ 0.0220	41 0.0005 N ^{0.230} 81
33	HIK-5	²⁶ 0.0026	²⁵ 0.0034	160.0040	17 0.0049		510.0002 N ^{0.199} 39	³⁰ 0.0057	²⁹ 0.0067	²⁶ 0.0075	²⁶ 0.0087	²⁶ 0.0103	²⁸ 0.0004 N ^{0.202} 60
34	IDEMIA-0	⁴⁸ 0.0048	⁵² 0.0063	³¹ 0.0076	²⁹ 0.0095	²⁷ 0.0116	270.0001 N ^{0.304} 84	61 0.0093	⁶¹ 0.0113	⁴⁹ 0.0131	⁴⁹ 0.0153	⁴⁹ 0.0182	320.0004 N ^{0.227 80}
35	IDEMIA-1	⁵¹ 0.0049	⁵³ 0.0065	³³ 0.0080	³¹ 0.0100	³³ 0.0124	220.0001 N ^{0.320} 97	⁶⁴ 0.0096	⁶⁵ 0.0116	⁵⁰ 0.0135	⁵³ 0.0162	⁵³ 0.0194	27 0.0004 N ^{0.243} 94
36	IDEMIA-2	⁷⁰ 0.0075	⁷⁰ 0.0099	⁴³ 0.0119	⁴³ 0.0149	³⁹ 0.0183	³⁹ 0.0001 N ^{0.304} ⁸⁶	⁷² 0.0105	⁷¹ 0.0126				58 0.0008 N ^{0.194} 55
37	IDEMIA-3	⁴⁴ 0.0041	⁴⁵ 0.0054				²⁶ 0.0001 N ^{0.294} 82	⁵⁰ 0.0080	⁵⁴ 0.0095	⁴³ 0.0110	⁴³ 0.0127	⁴¹ 0.0148	340.0005 N ^{0.212} 70
38	IDEMIA-4	⁴⁵ 0.0042	⁴³ 0.0052	²⁷ 0.0061	²⁶ 0.0074	²⁵ 0.0088	400.0001 N ^{0.257} 60	⁵¹ 0.0080	⁵⁰ 0.0092	⁴¹ 0.0106	⁴¹ 0.0124	40 0.0143	43 0.0005 N ^{0.202} 61
39	IDEMIA-5	⁴⁷ 0.0047	⁵⁰ 0.0062	²⁹ 0.0073	²⁸ 0.0089	²⁶ 0.0107	³⁶ 0.0001 N ^{0.280} ⁷²	⁵⁹ 0.0090	⁵⁹ 0.0107	⁴⁷ 0.0123	⁴⁷ 0.0144	⁴⁷ 0.0169	³⁷ 0.0005 N ^{0.217} ⁷⁴
40	IDEMIA-6	⁵⁶ 0.0055	⁵⁷ 0.0071	³⁴ 0.0083	³² 0.0100	300.0119	⁴³ 0.0001 N ^{0.270} ⁶⁶	⁶⁸ 0.0102	⁶⁹ 0.0122	550.0139	⁵² 0.0161	⁵² 0.0187	⁴⁹ 0.0006 N ^{0.209} ⁶⁹
41	IMAGUS-2	¹⁶² 0.1470	133 0.1833	650.2086	61 0.2379		990.0083 N ^{0.215} 45	¹⁷⁶ 0.1838	0.2223				106 0.0115 N ^{0.208} 67
42	INCODE-1	83 0.0098	840.0131	⁵⁴ 0.0286	⁵³ 0.0466		⁴ 0.0000 N ^{0.729} 108	⁹⁵ 0.0151	⁹³ 0.0190				440.0005 N ^{0.250} 96
43	INCODE-3	⁶² 0.0067	⁶⁵ 0.0088				350.0001 N ^{0.308 88}	⁸⁰ 0.0121	85 0.0153	⁶² 0.0178	⁶² 0.0215	⁶⁰ 0.0258	²⁹ 0.0004 N ^{0.257} ⁹⁹
44	INNOVATRICS-4	⁶⁵ 0.0070	610.0081	20	25	20	810.0008 N ^{0.162} 21	⁷⁹ 0.0120	840.0149	⁵⁸ 0.0158	⁵⁰ 0.0158	⁴⁵ 0.0158	%0.0040 N ^{0.088} 12
45	ISYSTEMS-0	⁶⁸ 0.0074	640.0085	³⁸ 0.0095	³⁵ 0.0105	²⁹ 0.0118	820.0009 N ^{0.160} 20	82 0.0122	770.0136				90 0.0025 N ^{0.119} 25
46	ISYSTEMS-1	690.0074	630.0085	370.0094	³⁴ 0.0105	²⁸ 0.0118	83 0.0009 N ^{0.158} 19	81 0.0122	⁷⁶ 0.0136	36	34	37	91 0.0025 N ^{0.118} 24
47	ISYSTEMS-2	390.0039	370.0046	230.0052	180 0050	160 0055	660.0004 N ^{0.175} 26	⁴⁸ 0.0076	440.0088	³⁶ 0.0096	³⁴ 0.0108	³² 0.0121	64 0.0009 N ^{0.156} 35
48	ISYSTEMS-3	³³ 0.0035	³² 0.0040	²⁰ 0.0044	¹⁸ 0.0050	¹⁶ 0.0057	650.0004 N ^{0.166} 23	40 0.0069	³⁷ 0.0075	³⁰ 0.0081	²⁷ 0.0090	²⁵ 0.0100	750.0012 N ^{0.129} 28
49	LOOKMAN-3	⁷⁸ 0.0086	670.0089	450.0100	440.0150	380.0100	950.0049 N ^{0.042 5} 320.0001 N ^{0.317 94}	⁷⁴ 0.0109	620.0114 510.0004	450.0117	400.0123	³⁶ 0.0131	97 0.0049 N ^{0.059 8}
50 51	MEGVII-0	670.0072	⁷¹ 0.0099	⁴⁵ 0.0123	⁴⁴ 0.0150	³⁸ 0.0182	0.0001 N	47 0.0075 83 0.0124	⁵¹ 0.0094 ⁷⁸ 0.0137	⁴⁴ 0.0111 ⁵⁷ 0.0148	⁴⁴ 0.0134 ⁵⁴ 0.0163	⁴⁶ 0.0162 ⁵⁰ 0.0182	140.0002 N ^{0.264} 103 870.0021 N ^{0.131} 29
52	MEGVII-1 MICROFOCUS-3	¹⁸¹ 0.4791	¹⁴⁶ 0.5389	⁶⁹ 0.5771			- 1070.0951 N ^{0.121} 15	195 0.5417	194 _{0.5953}	0.0148	0.0103	0.0162	114 0.1370 N ^{0.103} 19
53	MICROFOCUS-5	176 0.3155	0.5389 141 0.3701	0.3//1			104 0.0307 N ^{0.174} 25	190 190 190 190 190 190 190 190 190 190	0.5953 1890.4257	870.4624	83 _{0,5013}	⁸⁰ 0.5404	112 0.0684 N ^{0.127} 27
54	MICROSOFT-0	18 0.0021	190.0026	¹³ 0.0031	¹⁴ 0.0040	¹³ 0.0048	160.0000 N ^{0.280} 73	230.0051	230.0058	21 0.0066	210.0077	220.0090	250.0003 N ^{0.199} 57
55	MICROSOFT-1	17 0.0021	18 _{0.0026}	12 0.0031	13 0.0038	12 0.0048	140.0000 N ^{0.286} 78	21 0.0049	21 0.0056	0.0000	0.0077	0.0090	47 0.0006 N ^{0.158} 38
56	MICROSOFT-2	220.0023	230.0029	15 0.0031	15 0.0042	14 _{0.0051}	190.0001 N ^{0.272} 69	26 0.0052	25 0.0061				40 0.0005 N ^{0.174} 48
57	MICROSOFT-2	² 0.0009	40.0011	0.0000	5.0012	5.0051	120.0000 N ^{0.255} 58	30.0028	40.0032	50.0035	50.0039	⁴ 0.0045	23 0.0003 N ^{0.166} 43
58	MICROSOFT-4	10.0008	10.0010	³ 0.0013	⁴ 0.0015	⁴ 0.0019	90.0000 N ^{0.285} 76	² 0.0027	² 0.0031	³ 0.0034	³0.0038	³ 0.0045	17 0.0003 N ^{0.174} 49
59	MICROSOFT-5	40.0010	50.0013	50.0015	60.0019	70.0025	80.0000 N ^{0.304 85}	40.0028	50.0033	70.0037	80.0044	80.0052	80.0002 N ^{0.215} 72
60	MICROSOFT-6	50.0010	70.0014	70.0016	80.0020	90.0026	60.0000 N ^{0.317} 95	50.0029	80.0033	80.0039	¹⁰ 0.0045	90.0053	120.0002 N ^{0.206} 66
61	NEC-0	820.0097	83 0.0127	⁴⁸ 0.0154	⁴⁶ 0.0185	⁴⁰ 0.0223	53 0.0002 N ^{0.284} 75	⁹⁶ 0.0157	⁹⁴ 0.0196	⁶⁵ 0.0229	63 0.0270	⁶¹ 0.0320	48 0.0006 N ^{0.243} 93
62	NEC-1	⁹⁷ 0.0136	92 0.0164				850.0009 N ^{0.202} 42	108 0.0206	106 0.0235	⁶⁹ 0.0259	670.0292	63 0.0329	890.0024 N ^{0.160} 40
63	NEC-2	60.0010	³ 0.0011	10.0012	10.0012	10.0014	570.0003 N ^{0.096} 11	10.0026	10.0028	10.0029	10.0030	10.0031	74 0.0012 N ^{0.059} 7
64	NEC-3	70.0012	60.0013	⁴ 0.0014	³ 0.0014	² 0.0016	73 0.0005 N ^{0.061 7}	⁸ 0.0030	³ 0.0031	² 0.0032	² 0.0034	² 0.0035	81 0.0016 N ^{0.048 2}
65	NEUROTECHNOLOGY-3	¹⁰⁶ 0.0161	98 0.0199				⁷⁹ 0.0007 N ^{0.234} ⁵²	¹⁰⁷ 0.0204	109 0.0250	⁷¹ 0.0288	⁷⁰ 0.0331	⁶⁸ 0.0386	⁷⁰ 0.0011 N ^{0.216} ⁷³
66	NEUROTECHNOLOGY-4	⁵² 0.0049	⁴⁷ 0.0058	²⁸ 0.0065	²⁷ 0.0075	²⁴ 0.0087	63 0.0004 N ^{0.195} 36	⁴³ 0.0072	⁴⁰ 0.0082	³³ 0.0090	³¹ 0.0100	³⁰ 0.0114	63 0.0009 N ^{0.156} 34
67	NEUROTECHNOLOGY-5	³⁴ 0.0035	³³ 0.0042	¹⁹ 0.0043	²⁰ 0.0053	¹⁷ 0.0061	⁵⁹ 0.0003 N ^{0.184} ²⁸	³⁴ 0.0061	³¹ 0.0068	²⁵ 0.0074	²⁴ 0.0082	²³ 0.0094	610.0008 N ^{0.149} 32
68	NEWLAND-2						-	¹⁵¹ 0.0671	150 0.0811	82 0.0913	⁷⁸ 0.1038		98 0.0050 N ^{0.195} 56
69	NOBLIS-2	¹⁵⁷ 0.1261	132 0.1565				960.0054 N ^{0.236} 53	¹⁶⁷ 0.1509	169 0.1816	84 0.2040	80 0.2377		105 0.0102 N ^{0.201} 59
09			50	36	³⁷ 0.0114	³⁴ 0.0139	25 o ooo 1 x 10.323 99	60 0 0000	63 0.0115	⁵⁴ 0.0137	550.0174	540.0406	190.0003 N ^{0.261} 101
70	NTECHLAB-0	⁵⁷ 0.0056	⁵⁹ 0.0077	³⁶ 0.0094	0.0114	0.0139	²⁵ 0.0001 N ^{0.323} ⁹⁹	⁶⁰ 0.0092	0.0115	0.0137	550.0164	⁵⁴ 0.0196	
-	NTECHLAB-0 NTECHLAB-1	⁵⁷ 0.0056 ⁶⁶ 0.0070 ³⁷ 0.0037	690.0077 690.0097 420.0051	420.0119	40 40 0.0146	37 _{0.0179}	310.0001 N ^{0.317 96} 130.0000 N ^{0.351 103}	73 0.0108 38 0.0065	810.0139 410.0082	35 _{0.0096}	36 _{0.0115}	38 0.0135	180.0003 N 180.0003 N ^{0.278} 108 150.0002 N ^{0.251} 97

Table 12: Investigation-mode: Effect of N on FNIR at rank 1 For five enrollment population sizes, N, with T = 0 and FPIR = 1. The left five columns apply for consolidated enrollment of a variable number of lifetime images from each subject. The right five columns apply for enrollment of one recent image. Missing entries usually apply because another algorithm from the same developer was run instead. Some developers are missing because less accurate algorithms were not run on galleries with $N > 1600\,000$. Throughout blue superscripts indicate the rank of the algorithm for that column, and yellow highlighting indicates the most accurate value. Caution: The Power-low models are mostly intended to draw attention to the kind of behavior, not as a model to be used for prediction.

	IISSES NOT AT RANK 1			ENR	OL LIFETIME					ENRO	L MOST RECEN	NT	
F	FNIR(N, T=0, R=1)			DATAS	SET: FRVT 201	8				DATA	SET: FRVT 201	.8	
#	ALGORITHM	N=0.64M	N=1.6M	N=3.0M	N=6.0M	N=12.0M	aN^b	N=0.64M	N=1.6M	N=3.0M	N=6.0M	N=12.0M	aN^b
73	NTECHLAB-4	³⁰ 0.0030	³¹ 0.0040	²¹ 0.0049	²² 0.0060	²¹ 0.0075	15 0.0000 N ^{0.315} 93	²⁸ 0.0056	³³ 0.0068	²⁹ 0.0078	²⁸ 0.0092	²⁸ 0.0107	²⁰ 0.0003 N ^{0.220} ⁷⁵
74	NTECHLAB-5	²⁹ 0.0028	30 0.0039				100.0000 N ^{0.365} 105	²⁴ 0.0051	²⁸ 0.0064	²⁸ 0.0076	³⁰ 0.0092	²⁹ 0.0112	70.0001 N ^{0.266} 104
75	NTECHLAB-6	²⁴ 0.0024	²⁶ 0.0034	180.0042	¹⁹ 0.0052	18 0.0066	11 0.0000 N ^{0.346} 102	¹⁹ 0.0047	²⁴ 0.0059	²³ 0.0069	²³ 0.0081	²⁴ 0.0098	100.0002 N ^{0.250} 95
76	QUANTASOFT-1	¹⁸⁸ 0.9857	¹⁴⁹ 0.9857				-	¹⁸² 0.2198	176 0.2198	⁸⁵ 0.2198		⁷⁶ 0.2198	1150.2198 N ^{0.000} 1
77	RANKONE-0	122 0.0255	108 0.0319	⁵⁵ 0.0366	⁵² 0.0425	⁴⁴ 0.0486	88 0.0014 N ^{0.220} 47	1370.0375	133 0.0455	⁸⁰ 0.0514	⁷⁶ 0.0564	⁷⁵ 0.0654	940.0032 N ^{0.186} 51
78	RANKONE-1	¹⁰² 0.0152	⁹⁷ 0.0194	⁵¹ 0.0224	⁴⁹ 0.0260	⁴³ 0.0302	77 0.0007 N ^{0.232} 50	1150.0226	108 0.0247				102 0.0062 N ^{0.097} 16
79	RANKONE-2	⁹⁴ 0.0117	89 0.0149				62 0.0003 N ^{0.268} 65	106 0.0181	102 0.0221	⁶⁸ 0.0250	⁶⁶ 0.0288	65 0.0330	72 0.0012 N ^{0.204} 65
80	RANKONE-3	⁹³ 0.0117	88 0.0149	⁴⁹ 0.0172	⁴⁷ 0.0200	⁴¹ 0.0236	71 0.0005 N ^{0.237} 54	¹⁰⁵ 0.0181	101 0.0221	67 0.0250	65 _{0.0288}	⁶⁴ 0.0330	71 0.0012 N ^{0.204} 64
81	RANKONE-4	1190.0246	107 0.0318				74 0.0006 N ^{0.282} 74	132 0.0351	132 0.0441	⁷⁹ 0.0508			77 0.0014 N ^{0.239} 91
82	RANKONE-5	⁵⁹ 0.0058	58 0.0072	³⁵ 0.0086	³³ 0.0103	³² 0.0122	49 0.0002 N ^{0.258} 61	670.0102	⁶⁸ 0.0120	⁵³ 0.0136	⁵¹ 0.0158	⁵¹ 0.0182	540.0007 N ^{0.201} 58
83	REALNETWORKS-0	131 0.0337	115 _{0.0443}	⁵⁶ 0.0527			⁷⁸ 0.0007 N ^{0.290} 80	127 0.0330	131 0.0426				56 0.0008 N ^{0.280} 110
84	REALNETWORKS-2	1170.0240	109 0.0320				64 0.0004 N ^{0.313} 91	125 0.0323	125 0.0418	⁷⁸ 0.0494	77 0.0587	⁷⁴ 0.0604	820.0017 N ^{0.223} 77
85	REMARKAI-2	⁴⁶ 0.0047	⁵¹ 0.0062				230.0001 N ^{0.314} 92	⁵⁶ 0.0085	⁵⁸ 0.0105	460.0122	⁴⁸ 0.0145		260.0004 N ^{0.237} 86
86	SENSETIME-0	130.0016	130.0018				-	¹⁷ 0.0046	¹⁶ 0.0048	¹⁷ 0.0050	¹⁴ 0.0053	13 0.0057	840.0018 N ^{0.071} 9
87	SENSETIME-1	120.0016	110.0018				-	¹⁶ 0.0046	170.0048	¹⁵ 0.0050	¹⁵ 0.0053	¹⁴ 0.0062	⁷⁶ 0.0012 N ^{0.095} 15
88	SHAMAN-3	148 _{0.0808}	127 0.0969	63 0.1091			97 0.0060 N ^{0.195} 37	159 0.1074	155 0.1266				104 0.0097 N ^{0.180} 50
89	SHAMAN-7	125 _{0.0290}	105 0.0310				101 0.0106 N ^{0.075 8}	1390.0397	128 0.0422	⁷⁷ 0.0442	⁷⁵ 0.0468	⁷² 0.0499	107 0.0139 N ^{0.078} 10
90	SIAT-1	174 0.2638	138 0.2639	⁶⁶ 0.2640			110 0.2618 N ^{0.001 3}	110.0037	¹⁰ 0.0039	10 0.0041	90.0044	60.0049	65 0.0010 N ^{0.098} 17
91	SIAT-2	¹⁷¹ 0.2127	136 _{0.2128}				109 0.2115 N ^{0.000 2}	12 _{0.0037}	11 0.0040	110.0042	110.0045	50.0049	67 0.0011 N ^{0.092} 13
92	SMILART-4	186 0.8189	147 0.9531				106 0.0894 N ^{0.166} 22	¹⁹⁹ 0.9176	¹⁹⁸ 0.9649	88 0.9908			116 0.4706 N ^{0.050} 3
93	SYNESIS-3	1540.1133	131 0.1350				100 0.0088 N ^{0.191} 32	166 0.1478	¹⁶⁷ 0.1721	830.1897	⁷⁹ 0.2108	⁷⁷ 0.2338	108 0.0184 N ^{0.156} 36
94	TEVIAN-4	⁵⁸ 0.0058	600.0080	³⁹ 0.0097			180.0001 N ^{0.341} 101	⁷¹ 0.0105	⁷⁵ 0.0134				24 0.0003 N ^{0.264} 102
95	TEVIAN-5	⁴³ 0.0040	⁴⁴ 0.0053				²¹ 0.0001 N ^{0.307} ⁸⁷	440.0074	⁴⁸ 0.0092	³⁹ 0.0104	⁴² 0.0125	⁴² 0.0151	220.0003 N ^{0.240} 92
96	TIGER-0	134 _{0.0364}	117 _{0.0480}	⁵⁸ 0.0565	⁵⁵ 0,0678		840,0009 N ^{0.278} 71	143 _{0.0494}	¹⁴⁴ 0.0638				73 0.0012 N ^{0.279} 109
97	TIGER-2	³² 0.0034	³⁵ 0.0044				²⁰ 0.0001 N ^{0.295} 83	³⁵ 0.0063	³⁹ 0.0075	³² 0.0088	³³ 0.0107	³⁴ 0.0126	160.0003 N ^{0.239} 88
98	TONGYITRANS-1	⁸¹ 0.0096	⁸⁰ 0.0114	⁴⁶ 0.0127	⁴² 0.0148		80 0.0007 N ^{0.193} 33	⁵² 0.0080	⁵² 0.0095				50 0.0006 N ^{0.189} 54
99	TOSHIBA-0	²⁵ 0,0026	²⁴ 0,0033				170,0001 N ^{0.285} 77	³² 0,0058	³² 0,0068	²⁷ 0,0076	²⁵ 0,0085	⁴⁸ 0.0178	50.0001 N ^{0.337} 112
100	VD-0	¹⁷⁸ 0,3583	143 _{0,4303}	⁶⁷ 0.4776	⁶² 0,5281		105 0.0355 N ^{0.174} 24	192 _{0.4073}	¹⁹² 0.4751				110 _{0.0431} N ^{0.168 45}
101	VD-1	113 _{0.0184}	¹⁰² 0.0221	0.2			87 0.0012 N ^{0.201} 41	118 0.0256	115 _{0.0302}	⁷³ 0.0341	⁷² 0.0389	⁷⁰ 0,0443	850.0021 N ^{0.188} 53
102	VIGILANTSOLUTIONS-3	136 _{0.0410}	121 _{0.0549}	⁵⁹ 0.0654	⁵⁴ 0.0654		92 0.0023 N ^{0.219} 46	148 _{0.0561}	¹⁴⁸ 0.0719				79 0.0015 N ^{0.271} 107
103	VISIONLABS-3	³⁶ 0,0037	⁴¹ 0,0050	³⁰ 0.0076	³⁹ 0.0130		50.0000 N ^{0.563} 107	⁴² 0.0070	⁴⁶ 0.0089	⁴⁸ 0.0124	⁵⁷ 0.0185		40.0000 N ^{0.434} 113
104	VISIONLABS-4	¹⁴ 0.0016	¹⁴ 0.0020	0.00.0			340.0001 N ^{0.203} 43	13 _{0.0037}	¹³ 0.0044	¹⁴ 0,0049	¹⁹ 0.0062	²¹ 0,0088	60.0001 N ^{0.282} 111
105	VISIONLABS-5	110,0015	¹² 0,0018	90.0020	10 _{0.0028}	10 _{0.0040}	70.0000 N ^{0.332} 100	90,0035	120,0041	120,0046	¹⁶ 0,0054	¹⁷ 0,0068	110.0002 N ^{0.223} 78
106	VISIONLABS-6	10 _{0.0013}	90,0015	0.00=0	0.000	0.0020	520.0002 N ^{0.142} 18	70,0030	70,0033	60,0037	70,0044	12 _{0,0057}	90.0002 N ^{0.214} 71
107	VISIONLABS-7	80.0013	80.0014	60.0016	50.0018	50.0022	33 0.0001 N ^{0.183} 27	60.0030	60.0033	40.0035	40.0039	70.0050	21 0.0003 N ^{0.169} 46
108	VOCORD-3	⁵⁴ 0,0053	⁵⁵ 0.0067	³² 0.0080	³⁰ 0.0096		42 0.0001 N ^{0.271 68}	⁴¹ 0.0070	⁴³ 0,0085				330.0005 N ^{0.204} 63
109	VOCORD-5	⁴⁹ 0.0048	⁴⁶ 0.0057				67 0.0004 N ^{0.187} 29	⁵⁴ 0.0081	⁴⁹ 0.0092	⁴⁰ 0.0104	³⁹ 0.0120	³⁹ 0.0140	51 0.0006 N ^{0.188} 52
110	YISHENG-1	103 _{0.0155}	990,0208	530.0248	⁵¹ 0.0298		60 0.0003 N ^{0.294 81}	116 _{0.0227}	114 _{0.0290}				52 0.0006 N ^{0.266} 105
111	YITU-0	41 _{0.0040}	38 _{0.0047}	²⁵ 0.0053	24 0.0061	²⁰ 0.0071	55 0.0003 N ^{0.200 40}	³⁹ 0.0066	³⁶ 0.0074	³¹ 0.0082	²⁹ 0,0092	²⁷ 0.0103	⁵⁹ 0.0008 N ^{0.156} ³⁷
112	YITU-1	38 _{0.0039}	³⁶ 0,0046	²² 0.0051	21 _{0.0059}	190,0069	58 0.0003 N ^{0.194} 35	³⁷ 0,0065	35 _{0.0072}	0.0002	0.0072	0.0100	80 0.0015 N ^{0.110} 22
113	YITU-2	90.0013	10 _{0.0015}	80.0017	70.0019	60.0023	28 0.0003 N ^{0.196} 38	150,0041	14 0.0044	13 _{0.0047}	12 _{0.0050}	110,0055	680.0011 N ^{0.099} 18
114	YITU-3	190.0021	170,0023				75 0.0006 N ^{0.098} 12	²⁵ 0,0052	19 0.0054	190,0057	180,0061	15 _{0,0065}	83 0.0017 N ^{0.081} 11
115	YITU-4	³ 0.0010	² 0.0011	² 0.0012	² 0.0014	³ 0.0019	47 0.0002 N ^{0.130} 17	100.0036	90.0037	90.0040	60.0042	18 0.0072	130.0002 N ^{0.208} 68
116	YITU-5	150,0019	150,0020	¹⁰ 0.0021	90.0023	⁸ 0.0025	72 0.0005 N ^{0.096} 10	¹⁸ 0.0047	¹⁸ 0.0048	¹⁶ 0.0050	130.0052	10 _{0.0055}	860.0021 N ^{0.058} 6

Table 13: Investigation-mode: Effect of N on FNIR at rank 1 For five enrollment population sizes, N, with T = 0 and FPIR = 1. The left five columns apply for consolidated enrollment of a variable number of lifetime images from each subject. The right five columns apply for enrollment of one recent image. Missing entries usually apply because another algorithm from the same developer was run instead. Some developers are missing because less accurate algorithms were not run on galleries with $N > 1600\,000$. Throughout blue superscripts indicate the rank of the algorithm for that column, and yellow highlighting indicates the most accurate value. Caution: The Power-low models are mostly intended to draw attention to the kind of behavior, not as a model to be used for prediction.

M	IISSES NOT AT RANK 50			ENF	OL LIFETIME			ENROL MOST RECENT DATASET: FRVT 2018					
F	NIR(N, T = 0, R = 50)		ı	DATA	SET: FRVT 201	18	,		1	DATA	SET: FRVT 201	8	,
#	ALGORITHM	N=0.64M	N=1.6M	N=3.0M	N=6.0M	N=12.0M	aN^b	N=0.64M	N=1.6M	N=3.0M	N=6.0M	N=12.0M	aN^b
1	3divi-3	127 0.0103	116 0.0151	⁵⁹ 0.0192	⁵⁵ 0.0241		30 0.0001 N ^{0.382} 100	136 0.0159	138 0.0217				¹¹ 0.0002 N ^{0.343} ¹⁰⁶
2	3divi-5	⁷⁹ 0.0030	⁷⁷ 0.0037	-	10		520.0001 N ^{0.237} 67	⁹¹ 0.0065	92 0.0074	⁶² 0.0083	⁶² 0.0094	⁶⁰ 0.0107	53 0.0007 N ^{0.169} 71
3	ALCHERA-0	115 0.0073	990.0076	⁵² 0.0079	⁴⁹ 0.0101		90 0.0012 N ^{0.133} 38	¹²⁸ 0.0125	¹²¹ 0.0129	46	40	45	109 0.0079 N ^{0.034} 13
4	ALCHERA-3	⁷⁸ 0.0030	80 0.0040				220.0000 N ^{0.309} 84	57 0.0047 83	640.0052	46 0.0056	490.0063	45 0.0070	62 0.0008 N ^{0.136} 60
5	ANKE-0	650.0024	710.0030	48	47		⁴⁸ 0.0001 N ^{0.234} 65	83 0.0057	810.0065	⁵⁹ 0.0072	570.0081	540.0092	490.0006 N ^{0.164} 68
6	AWARE-3	930.0039	890.0050	480.0061	470.0077		380.0001 N ^{0.299} 81	106 0.0081	1130.0101	710.0118	690.0139	0.0170	27 0.0003 N ^{0.248 94}
7	AWARE-5	940.0041	920.0053	670.2468	630,0000		510.0001 N ^{0.263} 76	112 0.0088	1150.0108	⁷³ 0.0127	⁷² 0.0154	⁶¹ 0.0115	790.0017 N ^{0.128} 54
8	AYONIX-0	177 0.1723 168 0.0646	143 0.2142 135 0.0873	670.2467	⁶³ 0.2850		105 0.0085 N ^{0.225} 62 85 0.0008 N ^{0.329} 90	193 0.1967 186 0.0974	192 0.2402 186 0.1298	86 _{0.1547}	⁸¹ 0.1850	780 2171	910.0026 N ^{0.218} 87
10	AYONIX-2 CAMVI-3	134 0.0142	126 0.0367	63 0.0527	⁶¹ 0.1789		40.0000 N ^{1.080} 108	144 0.0221	160 0.0541	0.1547	0.1850	⁷⁸ 0.2171	30.0000 N ^{0.980} 115
11	CAMVI-4	122 0.0078	124 0.0323	0.0327	0.1769		10.0000 N	133 0.0137	157 0.0485	83 0.0736	82 0.2380	⁷⁹ 0.2383	10.0000 N
12	COGENT-0	550.0021	53 0.0024	³¹ 0.0027	³¹ 0.0031	³³ 0.0045	330.0001 N ^{0.253} 73	⁵⁹ 0.0047	540.0050	41 _{0.0054}	48 0.0062	63 0.0122	100.0001 N ^{0.288} 102
13	COGENT-1	540.0021	520.0024	0.0027	0.0001	0.0040	600.0002 N ^{0.189} 54	58 0.0047	53 0.0050	400.0054	470.0062	62 0.0122	90.0001 N ^{0.288} 101
14	COGENT-2	²⁴ 0.0011	²⁷ 0.0013	¹⁷ 0.0014	¹⁷ 0.0016	¹⁴ 0.0017	630.0002 N ^{0.137} 40	³⁷ 0.0038	³⁶ 0.0041	²⁹ 0.0042	²⁸ 0.0044	²³ 0.0047	750.0016 N ^{0.066} 32
15	COGENT-3	³⁵ 0.0014	³¹ 0.0016	¹⁹ 0.0018	¹⁹ 0.0020	¹⁷ 0.0023	111 35.4798 N ^{-0.578} 1	³⁸ 0.0040	⁴⁰ 0.0042	³² 0.0044	³⁰ 0.0046	²⁶ 0.0048	⁷⁷ 0.0017 N ^{0.065} ³⁰
16	COGNITEC-0	⁹² 0.0039	870.0050				60.0000 N ^{0.599} 106	100 0.0076	103 0.0092	⁶⁹ 0.0104	⁶⁸ 0.0123	⁶⁸ 0.0148	390.0004 N ^{0.218} 86
17	COGNITEC-1	670.0024	⁶⁶ 0.0028	³⁹ 0.0032	³⁷ 0.0037	³² 0.0044	61 0.0002 N ^{0.200} 55	81 0.0056	⁷⁶ 0.0060	⁵⁷ 0.0066	⁵⁵ 0.0072	⁵¹ 0.0081	65 0.0010 N ^{0.128} 55
18	COGNITEC-2	⁴⁹ 0.0020	⁴³ 0.0021	²⁴ 0.0023	²² 0.0025	¹⁹ 0.0027	740.0004 N ^{0.113} 33	⁶⁸ 0.0049	630.0052	42 0.0054	³⁸ 0.0056	³⁵ 0.0060	86 0.0021 N ^{0.063 28}
19	COGNITEC-3	⁶¹ 0.0023	⁵⁴ 0.0025	²⁹ 0.0026	²⁶ 0.0028	²² 0.0031	810.0007 N ^{0.086} 25	⁷⁵ 0.0053	⁷¹ 0.0056	⁴⁹ 0.0057	⁴² 0.0060	⁴⁰ 0.0063	90 0.0025 N ^{0.057} 24
20	dahua-1	⁵³ 0.0021	⁴⁸ 0.0022				⁷⁸ 0.0005 N ^{0.099} ³⁰	⁵⁶ 0.0046	⁵⁰ 0.0049	³⁷ 0.0051	³⁶ 0.0054	³² 0.0058	⁷³ 0.0015 N ^{0.085} ⁴⁰
21	DERMALOG-4	139 0.0186	121 0.0272	⁶¹ 0.0340	⁵⁸ 0.0427		⁵⁵ 0.0001 N ^{0.372} 98	¹⁴⁹ 0.0262	153 0.0365				140.0002 N ^{0.363} 108
22	DERMALOG-5	112 0.0066	107 0.0092				²⁴ 0.0001 N ^{0.362 95}	125 0.0113	125 0.0142	⁷⁸ 0.0192	⁷⁶ 0.0275	⁷⁵ 0.0427	³⁷ 0.0004 N ^{0.248} ⁹⁵
23	DERMALOG-6	100 0.0046	84 0.0047				100 0.0035 N ^{0.020 7}	105 0.0080	⁹⁴ 0.0081	630.0083	⁶⁰ 0.0085	⁵² 0.0087	106 0.0053 N ^{0.030} 10
24	EVERAI-0	¹⁰⁴ 0.0050	115 _{0.0150}				³ 0.0000 N ^{1.185} 109	¹⁰¹ 0.0077	135 _{0.0182}	⁷⁹ 0.0317			² 0.0000 N ^{0.919} 114
25	EVERAI-1	³⁰ 0.0013	²⁹ 0.0014	16-	14 -		69 0.0004 N ^{0.096} 29	²⁵ 0.0031	²⁸ 0.0033	210.0034	15-	12	70 0.0012 N ^{0.070} 35
26	EVERAI-3	²⁸ 0.0012	²⁸ 0.0013	0.0014	140.0014		⁷⁹ 0.0006 N ^{0.057} ¹⁶	²¹ 0.0029	16 0.0030	140.0032	150.0034	¹² 0.0035	69 0.0012 N ^{0.065} 31
27	EYEDEA-3	130 0.0113	117 0.0160	600.0209	0.0252		440.0001 N ^{0.364} 96	140 0.0175	1390.0236				190.0002 N ^{0.326} 104
28	GLORY-1	158 0.0415	129 0.0490	640.0539	⁵⁹ 0.0600		102 0.0047 N ^{0.164} 45	70.0604	770.0698	58 a aama	580 0004	560.0402	108 0.0073 N ^{0.158} 65
29	GORILLA-2	⁵⁹ 0.0023	1060,0029	530 000=	500.0406	430.0440	20 0.0000 N ^{0.289 78}	0.0050	77 0.0061	⁵⁸ 0.0070	⁵⁸ 0.0084	⁵⁶ 0.0102	150.0002 N ^{0.238} 92
30	нік-2	125 0.0084	106 0.0090	⁵³ 0.0097	⁵⁰ 0.0106	⁴³ 0.0118	960.0018 N ^{0.115} 34 470.0001 N ^{0.230} 64	111 0.0087	104 0.0093	50 a aama	510.0066	47 o oom c	980.0035 N ^{0.068} 34 340.0003 N ^{0.189} 78
31	HIK-3	58 0.0023 64 0.0023	680,0028	400,0022	38 0 0020	³⁵ 0.0048	43 0.0001 N ^{0.246} 69	⁴⁸ 0.0044 ⁵³ 0.0045	57 0.0051 58 0.0051	500.0058 510.0058	510.0066 500.0065	470.0076 460.0076	380.0004 N ^{0.175} 73
32	нік-4 нік-5	64 0.0023 13 0.0009	680.0028 170.0011	13 10.0012	38 0.0039 15 0.0014	0.0048	560.0001 N 560.0001 N ^{0.140} 42	230.0029	⁵⁸ 0.0051 ²⁵ 0.0033	22 0.0035	20 0.0065	⁴⁶ 0.0076 ¹⁷ 0.0042	45 0.0006 N ^{0.122} 52
34	IDEMIA-0	39 0.0016	42 0.0011	25 0.0012	24 0.0026	²³ 0.0031	410.0001 N ^{0.226} 63	55 0.0045	55 0.0051	440.0055	44 _{0.0060}	44 0.0067	610.0008 N ^{0.134} 58
35	IDEMIA-0	45 0.0019	51 0.0019	38 0.0029	36 0.0036	34 _{0.0046}	170.0000 N ^{0.307} 83	670.0049	74 0.0058	560.0065	56 0.0076	530.0089	33 0.0003 N ^{0.201} 83
36	IDEMIA-2	820.0031	⁷⁹ 0.0040	430.0048	43 0.0058	400.0074	310.0001 N ^{0.290} 79	900.0061	870.0069	0.0003	0.0070	0.0007	660.0010 N ^{0.135} 59
37	IDEMIA-3	⁴⁶ 0.0019	⁴⁶ 0.0022	0.0020		0.000.1	640.0002 N ^{0.175} 48	⁶⁴ 0.0049	⁶⁵ 0.0053	⁴⁷ 0.0057	⁴⁶ 0.0062	⁴³ 0.0067	670.0011 N ^{0.109} 49
38	IDEMIA-4	³⁷ 0.0015	³⁶ 0.0017	²¹ 0.0020	²¹ 0.0023	²⁰ 0.0028	450.0001 N ^{0.207} 56	⁴⁶ 0.0043	⁴⁵ 0.0046	³⁶ 0.0051	³⁷ 0.0055	³⁹ 0.0062	63 0.0008 N ^{0.121} 51
39	IDEMIA-5	⁴⁴ 0.0018	⁴⁹ 0.0023	²⁸ 0.0026	³⁴ 0.0033	³¹ 0.0042	180.0000 N ^{0.289} 77	⁶¹ 0.0048	⁷⁰ 0.0056	⁵⁴ 0.0062	⁵⁴ 0.0070	⁵⁰ 0.0080	40 0.0005 N ^{0.175} 72
40	IDEMIA-6	570.0022	650.0028	⁴¹ 0.0034	³⁹ 0.0043	³⁶ 0.0055	370.0001 N ^{0.258} 74	⁷⁶ 0.0054	⁷⁸ 0.0062	⁶⁰ 0.0072	⁵⁹ 0.0084	⁵⁷ 0.0102	250.0003 N ^{0.220 88}
41	IMAGUS-2	¹⁵⁵ 0.0348	130 0.0510	65 _{0.0641}	60 0.0804		670.0002 N ^{0.375} 99	166 0.0468	166 0.0657				320.0003 N ^{0.371} 109
42	INCODE-1	⁷¹ 0.0026	⁷⁴ 0.0033	⁵⁸ 0.0167	⁵⁷ 0.0323		² 0.0000 N ^{1.217} 110	⁷⁸ 0.0055	⁷⁹ 0.0063				550.0007 N ^{0.153} 64
43	INCODE-3	⁴² 0.0017	440.0021				²⁸ 0.0001 N ^{0.251} ⁷⁰	⁵⁰ 0.0044	⁶¹ 0.0052	⁴⁸ 0.0057	⁵² 0.0067	⁴⁹ 0.0078	310.0003 N ^{0.194} 82
44	INNOVATRICS-4	⁵⁰ 0.0020	⁴⁷ 0.0022				73 0.0004 N ^{0.118} 35	⁷² 0.0052	⁷³ 0.0058	⁵³ 0.0061	⁴⁵ 0.0061	³⁸ 0.0061	92 0.0026 N ^{0.054} 22
45	ISYSTEMS-0	101 0.0048	88 0.0050	⁴⁵ 0.0053	⁴² 0.0056	³⁹ 0.0060	940.0017 N ^{0.076} 21	108 0.0086	¹⁰² 0.0089				103 0.0048 N ^{0.044} 15
46	ISYSTEMS-1	102 0.0048	⁹⁰ 0.0050	⁴⁴ 0.0053	⁴¹ 0.0056	³⁸ 0.0060	950.0017 N ^{0.075} 20	109 0.0086	¹⁰¹ 0.0089				104 0.0049 N ^{0.041} 14
47	ISYSTEMS-2	⁷⁴ 0.0026	⁶² 0.0027	³⁵ 0.0029			890.0012 N ^{0.061} 17	77 0.0054	⁷² 0.0056	⁵² 0.0058	⁴³ 0.0060	⁴¹ 0.0063	93 0.0027 N ^{0.051} 20
48	ISYSTEMS-3	690.0025	⁶⁰ 0.0026	³⁰ 0.0027	²⁵ 0.0028	²¹ 0.0030	910.0012 N ^{0.053} 13	⁷³ 0.0052	⁶⁶ 0.0054	⁴³ 0.0055	³⁹ 0.0057	³³ 0.0059	940.0028 N ^{0.046} 18
49	LOOKMAN-3	118 0.0075	100 0.0077	260	33 0	300	103 0.0060 N ^{0.017 6}	119 0.0099	112 0.0100	68 0.0101	64 0.0102	58 0.0104	110 0.0079 N ^{0.016 3}
50	MEGVII-0	270.0012	⁴⁰ 0.0019	²⁶ 0.0025	330.0032	300.0041	⁷ 0.0000 N ^{0.422} 103	1160.0026	20 0.0031	20 0.0034	630.0101	²⁴ 0.0048	120.0002 N ^{0.204} 84 1020.0044 N ₁ 0.053 21
51	MEGVII-1	1790 2047	1450 2025	690 2017			- 104 0.0070 N ^{0.252} 71	116 0.0091	106 0.0094	640.0097	630.0101	590.0106	1020.0044 N ^{0.053} 21 1120.0114 N ^{0.232} 91
52 53	MICROFOCUS-3	179 0.2047 174 0.1040	145 _{0.2625} 140 _{0.1422}	⁶⁹ 0.3017			860.0011 N ^{0.341 93}	195 0.2518 190 0.1322	194 0.3113 190 0.1744	870,2066	830,2445	⁸⁰ 0.2829	101 0.0114 N ^{0.232} 91 101 0.0042 N ^{0.260} 96
54	MICROFOCUS-5	80.0008	12 0.0010	¹¹ 0.0011	¹¹ 0.0012	¹⁰ 0.0014	420.0001 N ^{0.174} 47	18 _{0.0028}	190.0031	15 _{0.0032}	170.0035	14 _{0.0037}	58 0.0007 N ^{0.101} 45
55	MICROSOFT-0 MICROSOFT-1	90.0008	100.0010 100.0009	10.0011 100.0011	10.0012 100.0012	110.0014	³⁹ 0.0001 N ^{0.177} ⁵⁰	15 0.0028	15 _{0.0031}	0.0032	0.0035	0.0037	600.0007 N ^{0.098} 43
56	MICROSOFT-1 MICROSOFT-2	110.0008	110.0010	90.0011	12 0.0012	0.0014 12 0.0014	360.0001 N ^{0.186} 52	200.0029	21 0.0030				59 0.0007 N ^{0.101} 46
57	MICROSOFT-2 MICROSOFT-3	20.0004	40.0004	0.0011	0.0012	0.0014	230.0001 N ^{0.153} 43	40.0018	40.0019	40.0021	40.0022	³ 0.0023	520.0006 N ^{0.078} 38
58	MICROSOFT-4	10.0004	10.0004	10.0005	10.0005	10.0006	270.0001 N ^{0.140} 41	³ 0.0018	30.0019	30.0021	² 0.0021	² 0.0022	540.0007 N ^{0.070} 36
59	MICROSOFT-5	³ 0.0004	³ 0.0004	³0.0005	² 0.0005	² 0.0006	340.0001 N ^{0.134} 39	² 0.0018	10.0019	10.0019	10.0020	10.0021	560.0007 N ^{0.067} 33
60	MICROSOFT-6	40.0004	² 0.0004	² 0.0005	³ 0.0006	³ 0.0006	540.0001 N ^{0.085} 23	10.0018	² 0.0019	² 0.0019	³ 0.0021	40.0023	41 0.0005 N ^{0.091} 41
61	NEC-0	60 0.0023	⁷³ 0.0030	⁴² 0.0038	⁴⁰ 0.0047	³⁷ 0.0059	150.0000 N ^{0.324} 87	⁷⁹ 0.0055	80 0.0064	⁶¹ 0.0074	61 _{0.0085}	⁵⁵ 0.0100	350.0003 N ^{0.205} 85
62	NEC-1	119 0.0076	102 0.0080				¹⁰¹ 0.0038 N ^{0.051} 12	¹³¹ 0.0135	122 0.0138	⁷⁴ 0.0142	⁷⁰ 0.0147	⁶⁹ 0.0154	107 0.0073 N ^{0.046} 16
63	NEC-2	¹⁰ 0.0008	80.0008	60.0009	50.0009	⁴ 0.0009	⁷⁵ 0.0004 N ^{0.046} 11	70.0022	50.0023	50.0023	50.0024	50.0025	720.0014 N ^{0.034} 12
64	NEC-3	²² 0.0011	²⁰ 0.0011	¹² 0.0011	90.0011	⁸ 0.0011	820.0008 N ^{0.026} 9	130.0026	12 0.0027	¹⁰ 0.0028	70.0028	60.0029	81 0.0019 N ^{0.026 5}
65	NEUROTECHNOLOGY-3	900.0038	⁹¹ 0.0051				²¹ 0.0000 N ^{0.326} 89	⁹³ 0.0068	⁹⁷ 0.0083	65 0.0097	⁶⁷ 0.0116	⁶⁷ 0.0137	²³ 0.0003 N ^{0.243} ⁹³
66	NEUROTECHNOLOGY-4	⁵¹ 0.0020	⁵⁰ 0.0024	³² 0.0027	³⁰ 0.0031	²⁷ 0.0035	⁵⁹ 0.0002 N ^{0.189} ⁵³	⁶⁰ 0.0048	⁵⁶ 0.0051	³⁹ 0.0054	⁴⁰ 0.0057	³⁷ 0.0060	⁷⁶ 0.0016 N ^{0.081} ³⁹
67	NEUROTECHNOLOGY-5	⁴⁰ 0.0017	³⁹ 0.0018	²⁰ 0.0019	²⁰ 0.0021	¹⁶ 0.0023	72 0.0004 N ^{0.105} 32	⁵¹ 0.0045	⁴⁸ 0.0047	³⁵ 0.0048	³² 0.0050	²⁹ 0.0053	850.0021 N ^{0.055} 23
68	NEWLAND-2						-	¹⁴⁶ 0.0235	¹⁴⁴ 0.0288	80 0.0332	⁷⁸ 0.0391		68 0.0011 N ^{0.227 90}
69	NOBLIS-2	156 0.0366	131 0.0520				66 0.0002 N ^{0.383} 101	¹⁶² 0.0403	¹⁶² 0.0560	82 0.0682	⁷⁹ 0.0940		²⁴ 0.0003 N ^{0.372} 110
70	NTECHLAB-0	³¹ 0.0013	³² 0.0016	²² 0.0021	²³ 0.0026	²⁴ 0.0032	120.0000 N ^{0.320} 85	²⁹ 0.0033	³¹ 0.0039	³⁰ 0.0043	³⁴ 0.0051	³¹ 0.0058	²² 0.0002 N ^{0.193} 81
71	NTECHLAB-1	³² 0.0013	³⁸ 0.0018	²³ 0.0022	²⁷ 0.0029	²⁸ 0.0038	90.0000 N ^{0.366} 97	³¹ 0.0034	³⁵ 0.0040	22	22	20	30 0.0003 N ^{0.177} 74
72	NTECHLAB-3	²¹ 0.0010	²³ 0.0012				²⁵ 0.0001 N ^{0.219} ⁵⁹	¹⁹ 0.0028	²³ 0.0032	²³ 0.0035	²² 0.0039	²⁰ 0.0044	³⁶ 0.0004 N ^{0.149} ⁶³

Table 14: Investigation-mode: Effect of N on FNIR at rank 50 For five enrollment population sizes, N, with T = 0 and FPIR = 1. The left five columns apply for consolidated enrollment of a variable number of lifetime images from each subject. The right five columns apply for enrollment of one recent image. Missing entries usually apply because another algorithm from the same developer was run instead. Some developers are missing because less accurate algorithms were not run on galleries with $N > 1600\,000$. Throughout blue superscripts indicate the rank of the algorithm for that column, and yellow highlighting indicates the most accurate value. Caution: The Power-low models are mostly intended to draw attention to the kind of behavior, not as a model to be used for prediction.

	ISSES NOT AT RANK 50				OL LIFETIME						L MOST RECEN		
F	NIR(N, T = 0, R = 50)			DATAS	SET: FRVT 201	8				DATAS	SET: FRVT 201	8	,
#	ALGORITHM	N=0.64M	N=1.6M	N=3.0M	N=6.0M	N=12.0M	aN^b	N=0.64M	N=1.6M	N=3.0M	N=6.0M	N=12.0M	aN^b
73	NTECHLAB-4	¹⁵ 0.0009	¹⁵ 0.0010	¹⁴ 0.0012	¹³ 0.0014	¹³ 0.0016	²⁶ 0.0001 N ^{0.208} ⁵⁸	¹⁴ 0.0027	¹³ 0.0030	¹⁶ 0.0032	16 0.0035	¹⁵ 0.0039	⁴³ 0.0005 N ^{0.120} ⁵⁰
74	NTECHLAB-5	60.0007	0.0008	-	7	9	14 0.0000 N ^{0.237} 66	0.0021	0.0025	80.0027	90.0031	110.0035	²⁰ 0.0002 N ^{0.168} ⁶⁹
75	NTECHLAB-6	50.0006	50.0008	50.0008	0.0010	90.0012	¹³ 0.0000 N ^{0.244} 68	50.0021	60.0023	0.0026	80.0028	70.0032	²⁶ 0.0003 N ^{0.147} 62
76	QUANTASOFT-1	¹⁸⁸ 0.9843	¹⁴⁹ 0.9843				-	¹⁸⁸ 0.1140	¹⁸⁴ 0.1140	85 _{0.1140}		⁷⁷ 0.1140	1150.1140 N ^{0.000} 1
77	RANKONE-0	116 _{0.0074}	109 0.0100	⁵⁵ 0.0120	⁵³ 0.0146	440.0176	⁵⁷ 0.0001 N ^{0.297} ⁸⁰	130 0.0127	129 0.0159	⁷⁷ 0.0185	⁷⁵ 0.0206	⁷³ 0.0252	⁴⁸ 0.0006 N ^{0.226} 89
78	RANKONE-1	960.0042	940.0055	510.0067	480.0082	⁴² 0.0100	⁴⁰ 0.0001 N ^{0.300} 82	¹⁰⁴ 0.0078	980.0086				830.0020 N ^{0.103} 48
79	RANKONE-2	890.0037	850.0047				53 0.0001 N ^{0.253} 72	⁹⁸ 0.0075	0.0087	670.0098	66 0.0111	⁶⁶ 0.0128	⁵¹ 0.0006 N ^{0.184} ⁷⁷
80	rankone-3	880.0037	830.0047	46 0.0055	440.0067	⁴¹ 0.0079	⁵⁰ 0.0001 N ^{0.258} ⁷⁵	970.0075	990.0087	66 0.0098	650.0111	65 0.0128	⁵⁰ 0.0006 N ^{0.184} ⁷⁶
81	RANKONE-4	107 0.0058	101 0.0079				³⁵ 0.0001 N ^{0.335} ⁹¹	118 0.0099	120 0.0128	⁷⁵ 0.0153			¹⁸ 0.0002 N ^{0.284} 100
82	rankone-5	⁵⁶ 0.0021	550.0025	*0.0029	³⁵ 0.0034	²⁹ 0.0040	⁴⁹ 0.0001 N ^{0.220} ⁶⁰	⁷⁴ 0.0053	⁷⁵ 0.0058	550.0063	530.0069	48 0.0077	640.0009 N ^{0.129} 56
83	REALNETWORKS-0	¹⁰⁸ 0.0059	¹⁰⁴ 0.0083	⁵⁴ 0.0108			160.0000 N ^{0.393} 102	¹⁰³ 0.0077	110 0.0098				¹⁷ 0.0002 N ^{0.267} 98
84	REALNETWORKS-2	950.0042	⁹⁶ 0.0061				100.0000 N ^{0.423} 104	990.0075	108 0.0098	⁷² 0.0119	⁷¹ 0.0149	⁷⁰ 0.0155	²¹ 0.0002 N ^{0.262} ⁹⁷
85	REMARKAI-2	³⁴ 0.0013	³³ 0.0016				32 0.0001 N ^{0.224} 61	³⁶ 0.0038	³⁹ 0.0042	³³ 0.0046	³³ 0.0050		⁵⁷ 0.0007 N ^{0.125} ⁵³
86	SENSETIME-0	²⁹ 0.0012	²⁶ 0.0013				•	⁴¹ 0.0041	³⁸ 0.0041	²⁸ 0.0042	²⁵ 0.0043	¹⁹ 0.0044	950.0028 N ^{0.026} 4
87	SENSETIME-1	²⁶ 0.0011	²² 0.0012				•	⁴⁰ 0.0040	³⁷ 0.0041	²⁷ 0.0041	²⁴ 0.0042	²⁵ 0.0048	80 0.0018 N ^{0.057} 25
88	SHAMAN-3	1520.0344	1270.0404	62 0.0452			99 0.0032 N ^{0.177} 49	167 0.0468	¹⁶¹ 0.0544				105 0.0053 N ^{0.163} 67
89	SHAMAN-7	¹⁴⁷ 0.0243	120 0.0248				107 0.0183 N ^{0.021 8}	160 0.0334	¹⁴⁹ 0.0339	81 0.0344	⁷⁷ 0.0352	⁷⁴ 0.0362	113 0.0230 N ^{0.028} 7
90	SIAT-1	183 0.2635	¹⁴⁶ 0.2635	⁶⁸ 0.2636			110 0.2626 N ^{0.000 2}	²² 0.0029	¹⁴ 0.0030	¹³ 0.0031	110.0032	90.0033	⁷⁴ 0.0016 N ^{0.046} ¹⁷
91	SIAT-2	¹⁸¹ 0.2124	¹⁴² 0.2124				109 0.2116 N ^{0.000 3}	²⁶ 0.0031	²² 0.0032	170.0032	13 0.0033	10 0.0034	840.0020 N ^{0.032} 11
92	SMILART-4	186 0.8160	¹⁴⁸ 0.9522				108 0.0859 N ^{0.168} 46	²⁰⁰ 0.9159	199 0.9638	88 0.9906			116 0.4632 N ^{0.051} 19
93	SYNESIS-3	1650.0582	1320.0632				106 0.0174 N ^{0.090} 28	1790.0851	175 0.0891	840.0942	80 0.1020	⁷⁶ 0.1126	1140.0231 N ^{0.096} 42
94	TEVIAN-4	⁴⁷ 0.0019	⁴⁵ 0.0022	²⁷ 0.0025			58 0.0002 N ^{0.185} 51	⁴² 0.0041	⁴⁴ 0.0046				470.0006 N ^{0.143} 61
95	TEVIAN-5	³⁶ 0.0014	³⁴ 0.0017				62 0.0002 N ^{0.160} 44	³⁰ 0.0034	³⁰ 0.0037	²⁵ 0.0041	²⁷ 0.0044	²⁸ 0.0050	440.0006 N ^{0.134} 57
96	TIGER-0	109 0.0061	108 0.0097	⁵⁶ 0.0125	⁵⁴ 0.0164		11 0.0000 N ^{0.444} 105	1170.0098	123 0.0139				70.0001 N ^{0.384} 112
97	TIGER-2	180.0010	²¹ 0.0012				²⁹ 0.0001 N ^{0.208} ⁵⁷	17 _{0.0028}	18 0.0030	¹⁹ 0.0034	¹⁹ 0.0038	²² 0.0045	²⁹ 0.0003 N ^{0.161} 66
98	TONGYITRANS-1	1060.0057	⁹⁵ 0.0060	⁴⁹ 0.0062	⁴⁵ 0.0067		97 0.0020 N ^{0.076} 22	⁶⁵ 0.0049	⁵⁹ 0.0052				880.0022 N ^{0.061} 27
99	тоѕніва-0	²³ 0.0011	²⁴ 0.0012				65 0.0002 N ^{0.126} 37	³⁴ 0.0037	³³ 0.0039	²⁶ 0.0041	²⁶ 0.0043	⁶⁴ 0.0127	50.0000 N ^{0.350} 107
100	VD-0	¹⁷³ 0,1006	139 _{0.1421}	⁶⁶ 0.1752	⁶² 0.2147		87 0.0011 N ^{0.340} 92	¹⁸⁹ 0.1248	189 0.1699				⁷¹ 0.0014 N ^{0.336} ¹⁰⁵
101	VD-1	126 _{0.0098}	110 0.0105				98 0.0031 N ^{0.085} 24	134 _{0.0145}	128 0.0155	⁷⁶ 0.0166	⁷⁴ 0.0179	⁷² 0.0196	990.0036 N ^{0.103} 47
102	VIGILANTSOLUTIONS-3	114 _{0.0072}	1110.0110	⁵⁷ 0.0143	⁵² 0.0143		46 0.0001 N ^{0.322 86}	127 _{0.0118}	¹³¹ 0.0166				80.0001 N ^{0.373} 111
103	VISIONLABS-3	800.0030	820.0042	500.0066	⁵¹ 0.0119		50.0000 N ^{0.612} 107	870.0057	⁹⁰ 0.0073	⁷⁰ 0.0106	⁷³ 0.0166		40.0000 N ^{0.481} 113
104	VISIONLABS-4	²⁰ 0.0010	¹⁹ 0.0011				68 0.0002 N ^{0.103} 31	110.0025	110.0027	120.0030	²¹ 0.0039	³⁴ 0.0059	60.0000 N ^{0.290} 103
105	VISIONLABS-5	¹⁷ 0,0009	¹⁴ 0.0010	15 _{0.0012}	¹⁶ 0,0016	¹⁸ 0.0026	80.0000 N ^{0.341} 94	100,0025	100.0026	110,0029	¹⁴ 0,0033	¹⁸ 0.0044	130.0002 N ^{0.192} 80
106	VISIONLABS-6	¹⁹ 0,0010	¹⁶ 0.0010	0.0012	010020	0.000	77 0.0005 N ^{0.056} 15	90,0023	90.0025	90.0027	100.0031	¹⁶ 0.0040	¹⁶ 0.0002 N ^{0.177} ⁷⁵
107	VISIONLABS-7	¹⁶ 0.0009	¹³ 0.0010	80.0010	⁸ 0.0011	70.0011	70 0.0004 N ^{0.070} 19	80.0023	70.0024	60.0025	60.0025	⁸ 0.0032	460.0006 N ^{0.098} 44
108	VOCORD-3	63 _{0,0023}	⁵⁶ 0,0025	³³ 0.0028	²⁸ 0.0031		⁷⁶ 0.0004 N ^{0.123} ³⁶	³⁹ 0,0040	⁴¹ 0.0042				⁷⁸ 0.0017 N ^{0.063} ²⁹
109	VOCORD-5	⁷⁵ 0.0027	690.0029				92 0.0013 N ^{0.056} 14	⁷¹ 0.0051	68 0.0054	⁴⁵ 0.0056	⁴¹ 0,0060	⁴² 0.0064	820.0019 N ^{0.074} 37
110	YISHENG-1	840,0035	860.0047	⁴⁷ 0.0058	460.0072		19 0.0000 N ^{0.325} 88	95 _{0.0069}	95 _{0.0082}				420,0005 N ^{0.191} 79
111	YITU-0	⁷² 0.0026	630.0027	³⁷ 0.0029	32 0.0031	²⁶ 0.0034	84 0.0008 N ^{0.090} 26	630.0048	⁵² 0.0049	³⁸ 0.0052	³⁵ 0.0054	³⁰ 0.0057	87 0.0021 N ^{0.060} 26
112	YITU-1	70 0.0026	61 0.0027	34 _{0.0029}	29 0.0031	25 _{0.0034}	83 0.0008 N ^{0.090} 27	620,0048	51 0.0049	0.0002	0.0034	0.0007	970.0033 N ^{0.029} 9
113	YITU-2	12 0.0020	90.0009	70.0009	60.0011	50.0010	71 0.0004 N ^{0.063} 18	32 _{0.0034}	29 0.0035	²⁴ 0.0036	18 _{0.0036}	13 _{0.0037}	890.0024 N ^{0.027} 6
114	YITU-3	43 0.0018	37 _{0.0018}	0.0009	0.0010	0.0010	88 0.0011 N ^{0.036} 10	540.0045	46 0.0047	34 0.0047	31 0.0048	270.0049	960.0031 N ^{0.029 8}
115	YITU-4	70.0008	60.0008	⁴ 0.0008	40.0008	60.0011	80 0.0006 N ^{0.015} 4	280.0032	24 0.0033	18 0.0033	120.0033	³⁶ 0.0060	280.0003 N ^{0.168} 70
116	YITU-5	410.0017	35 _{0.0017}	180.0017	180.0017	150.0018	930.0014 N ^{0.015} 5	470.0044	420.0044	31 _{0.0044}	29 0.0044	²¹ 0.0045	100 0.0039 N ^{0.008} 2

Table 15: Investigation-mode: Effect of N on FNIR at rank 50 For five enrollment population sizes, N, with T = 0 and FPIR = 1. The left five columns apply for consolidated enrollment of a variable number of lifetime images from each subject. The right five columns apply for enrollment of one recent image. Missing entries usually apply because another algorithm from the same developer was run instead. Some developers are missing because less accurate algorithms were not run on galleries with $N > 1600\,000$. Throughout blue superscripts indicate the rank of the algorithm for that column, and yellow highlighting indicates the most accurate value. Caution: The Power-low models are mostly intended to draw attention to the kind of behavior, not as a model to be used for prediction.

FINIS(N, T=0, R)		ALGORITHM 3DIVI-0 3DIVI-1 3DIVI-2	BYTES		R=1							
SDYLOD		3DIVI-0 3DIVI-1 3DIVI-2		MSEC	R=1							
2 3DIVI-2		3DIVI-1 3DIVI-2	¹⁸⁴ 4096			R=10	R=50				R=50	WORK-10
3 SDW1-2		3DIVI-2									118 0.0344	117 1.190
4 SDIVI-3											119 0.0375	123 1.233
5 SDRVI-4					1230.054=	1230 0645	123 0 0 6 4 5				124 0.0404	129 1.259
6 3DIVI-5 184096 19633 190133 190133 191096 00.0202 00.0202 190.0205 180.0205 1											¹⁵² 0.0857 ⁹⁶ 0.0201	¹⁴⁸ 1.469 ⁹⁴ 1.115
SDIV-6											97 _{0.0201}	95 1.116
8 ALCHERA-0											110 0.0265	1.116 115 1.186
9 ALCHERA-1											92 0.0186	1.136 104 1.138
10											199 0.9869	1.136 199 9.812
11	0										153 0.0973	152 1.567
12											⁷² 0.0127	661.074
13											86 0.0158	⁸⁰ 1.095
14	_										870.0158	821.096
16		AWARE-0	100 1564	140 653				¹⁹² 10.000	¹⁴⁵ 0.0639	145 0.0639	¹⁴⁵ 0.0639	147 1.439
17	5	AWARE-1	⁹⁹ 1564	136 651				¹⁸³ 10.000	141 0.0587	¹⁴¹ 0.0587	¹⁴¹ 0.0587	¹⁴³ 1.382
18	6	AWARE-2	¹⁶⁷ 2076					¹⁸⁴ 10.000			142 0.0600	¹⁴⁵ 1.416
19	7	AWARE-3									1160.0332	¹¹⁶ 1.186
20		AWARE-4									¹⁴⁷ 0.0704	¹⁴¹ 1.378
21		-									1170.0337	¹¹⁸ 1.191
22											149 0.0722	144 1.394
23 AYONIX-2											¹⁹¹ 0.4519	¹⁹² 4.304
24 CAMVI-1											187 0.3432	1863.244 1872.244
25 CAMVI-2					0.2606	0.2606	0.2606				186 0.3432	1873.244 1762.440
26 CAMVI-3											179 0.2267	1762.419
28 CAMVI-5 6 1024 16 718 110 0.0326 110 0.0326 118 1.291 129 0.0490 130 0.0490 28 CAMVI-5 6 1024 17 699 110 0.0458 110 0.0458 110 0.0458 110 0.0458 110 0.0458 110 0.0673 140 0.0674 140 0.0673 140 0.0674 140 0.					1120,0268	1120 0268	1120 0268				160 0.1292 140 0.0544	159 1.781 150 1.488
28 CAMVI-5											137 0.0490	1.466 146 1.438
29 COGENT-0	_										146 0.0673	1.438 153 1.602
30	_										740.0131	91 1.111
31	_										⁷³ 0.0131	90 1.111
32 COGENT-3											²⁶ 0.0062	³⁰ 1.045
33 COGNITEC-1											²⁷ 0.0064	³⁵ 1.047
35 COGNITEC-2 157/2052 34227 340.0044 340.0044 351.027 420.0083 420.0083 36 COGNITEC-3 145/2052 52/297 370.0048 370.0048 471.031 450.0088 450.0088 37 DAHUA-0 144/2048 72/378 560.0070 560.0070 560.0070 621.047 540.0115 640.0115 38 DAHUA-1 135/2048 63/371 470.0049 470.0049 371.030 470.0089 470.0089 39 DERMALOG-0 5128 64/344 100.0049 470.0049 371.030 470.0089 170.0089 40 DERMALOG-1 7128 22/171 10000 165/0.1309 160/0.1309 41 DERMALOG-2 25/256 65/344 100000 165/0.1563 165/0.0060 125/0.0961 125/0											112 _{0.0278}	¹¹¹ 1.160
36 COGNITEC-3											83 0.0143	⁷⁶ 1.086
37 DAHUA-0	5	COGNITEC-2	157 2052	³⁴ 227	³⁴ 0.0044	³⁴ 0.0044	³⁴ 0.0044	³⁵ 1.027	⁴² 0.0083	⁴² 0.0083	⁴² 0.0083	46 1.059
38 DAHUA-1	6	COGNITEC-3	148 2052	⁵² 297	³⁹ 0.0048	³⁹ 0.0048	³⁹ 0.0048	⁴⁰ 1.031	⁴⁵ 0.0088	⁴⁵ 0.0088	⁴⁵ 0.0088	⁵² 1.062
39 DERMALOG-0 5128 6\frac{6}{3}44	7	DAHUA-0	¹⁴⁴ 2048	⁷² 378	⁵⁶ 0.0070	⁵⁶ 0.0070	⁵⁶ 0.0070	⁶² 1.047	⁶⁴ 0.0115		⁶⁴ 0.0115	⁷³ 1.082
40 DERMALOG-1	8	DAHUA-1	¹³⁴ 2048	⁶⁸ 371	⁴⁰ 0.0049	40 0.0049	⁴⁰ 0.0049	³⁹ 1.030		⁴⁷ 0.0089	⁴⁷ 0.0089	⁴⁵ 1.058
41 DERMALOG-2											¹⁶¹ 0.1309	¹⁵⁸ 1.778
42 DERMALOG-3											163 0.1563	¹⁶³ 1.945
43 DERMALOG-4 4128 2°208 1260.0961 1260.0961 1260.0961 1261.561 1570.1274 1570.1274 44 DERMALOG-5 6128 10°532 7°0.0113 7°0.0113 7°0.0113 11.089 8°0.0171 8°0.0171 45 DERMALOG-6 15256 16°514 480.0060 46°0.0060 46°0.0060 60°1.047 560.0102 56°0.0102 46 EVERAI-0 1252048 9°438 9°0.0166 9°0.0166 9°0.0166 10°1.141 9°0.0209 9°0.0209 47 EVERAI-1 1152048 12590 210.0027 210.0027 210.0027 210.0027 210.0027 210.0027 210.0028 48 EVERAI-2 13°2048 12°590 210.0029 22°0.0029 26°1.018 22°0.0056 20°0.056 48 EVERAI-3 110°0.048 16°735 16°0.0023 16°0.0023 15°0.0023 170.105 150.0047 150.0					120	120	120				162 0.1377	¹⁶¹ 1.817
44 DERMALOG-5 6128 19532 79.0113 79.0113 79.0113 91.089 89.0171 89.0171 45 DERMALOG-6 15256 105514 48.0060 48.0060 48.0060 631.047 56.0102 56.0102 56.0102 46 EVERAI-0 124.048 74.38 74.0066 79.0066 7											158 0.1281	157 1.752
45 DERMALOG-6 15256 10514 1480.0060 480.0060 480.0060 631.047 560.0102 560.0102 46											157 0.1274	156 1.748
46 EVERAI-0 124 2048 "94 38 "30.0166 "30.0166 103 1.141 "90.0209 "90.0209 47 EVERAI-1 115 2048 125 590 21 0.0027 21 0.0027 21 0.0027 21 0.0027 21 0.0026 20 0.0058 20 0.0											890.0171 560.0102	103 1.137
47 EVERAI-1 115 2048 125 590 21 0.0027 21 0.0027 21 0.0027 21 0.0027 21 0.0026 20 0.0056 20 0.0056 20 0.0056 20 0.0056 20 0.0056 20 0.0056 20 0.0056 20 0.0056 20 0.0056 20 0.0056 20 0.0056 20 0.0056 20 0.0056 20 0.0056 20 0.0056 20 0.0058 22 0.0058											990.0209	72 1.081 112 1.174
48 EVERAI-2 139 2048 71 377 22 0.0029 22 0.0029 20 0.0029 26 1.018 22 0.0058 22 0.0058 49 EVERAI-3 110 2048 167 735 16 0.0023 16 0.0023 17 1.015 15 0.0047 15 0.0047 50 EVEDEA-0 194 4152 39 424 154 10.000 184 0.3000 184 0.3000 184 0.3000 185 10.000 172 0.1981 172 0.1981 172 0.1981 172 0.019 173 0.2000 17											20 20 0.0056	1.174 191.038
49 EVERAI-3 110 2048 167 735 16 0.0023 16 0.0023 17 1.015 15 0.0047 15 0.0047 15 0.0047 15 0.0047 15 0.0047 15 0.0047 15 0.0047 15 0.0047 15 0.0047 15 0.0047 15 0.0047 15 0.0047 15 0.0047 15 0.0047 15 0.0047 15 0.0047 18 0.3000 18 0.3000 18 0.3000 18 0.3000 18 0.3000 18 0.3000 17 0.1981<	_										22 0.0058	211.039
50 EYEDEA-0 194 4152 8" 424 154 10.000 184 0.3000 184 0.3000 184 0.3000 185 0.	_						0.00=				15 _{0.0047}	1.039 141.034
51 EYEDEA-1 89 1036 59 311 188 10.000 192 0.1981 172 0.1981 172 0.1981 52 EYEDEA-2 78 1036 89 429 102 10.0613 102 10.0613 102 10.0613 102 10.0613 102 10.0613 102 10.0613 102 10.0613 102 10.0613 100 10.0824 150 0.0824 <td>_</td> <td></td> <td></td> <td></td> <td>0.0020</td> <td>5.0025</td> <td>5.0025</td> <td></td> <td></td> <td></td> <td>184 0.3000</td> <td>1.054 184 2.864</td>	_				0.0020	5.0025	5.0025				184 0.3000	1.054 184 2.864
52 EYEDEA-2 78 1036 93 429 162 10.001 173 0.2000 173 0.2000 173 0.2000 53 EYEDEA-3 79 1036 73 385 122 0.0613 122 0.0613 120 0.0613 120 1.343 151 0.0824 151 0.0824 54 GLORY-0 33 418 18 160 130 0.1335 130 0.1335 130 0.1335 131 1.965 168 0.1803 168 0.1803 55 GLORY-1 100 1726 81 405 125 0.0932 125 0.0932 129 0.0932 129 1.656 159 0.1291 159 0.1291											172 0.1981	171 2.226
53 EYEDEA-3 79 1036 73 85 122 0.0613 122 0.0613 122 0.0613 120 1.343 151 0.0824 151 0.0824 54 GLORY-0 33 418 18 160 130 0.1335 130 0.1335 130 0.1335 131 1.965 168 0.1803 168 0.1803 55 GLORY-1 100 1726 81 405 125 0.0932 125 0.0932 129 0.0932 129 1.656 159 0.1291 159 0.1291											173 0.2000	172 2.246
54 GLORY-0 33 418 18 160 130 0.1335 130 0.1335 130 0.1335 131 1.965 168 0.1803 168 0.1803 55 GLORY-1 103 1726 81 405 125 0.0932 125 0.0932 129 0.0932 129 1.656 159 0.1291 159 0.1291					122 0.0613	122 0.0613	122 0.0613				151 0.0824	149 1.470
55 GLORY-1 1031726 81405 1250.0932 1250.0932 1250.0932 1291.656 1590.1291 1590.1291											¹⁶⁸ 0.1803	¹⁷³ 2.318
56 CORILIA-0 2028300 91427 17210.000					125 0.0932					159 0.1291	159 0.1291	¹⁶² 1.925
	6	GORILLA-0	²⁰² 8300	⁹¹ 427				¹⁷² 10.000				²⁰⁰ 10.000
57 GORILLA-1 170 2156 2169 114 0.0414 114 0.0414 114 0.0414 110 1.211 143 0.0627 143 0.0627				²¹ 169	114 _{0.0414}	114 0.0414	114 0.0414		143 0.0627	143 0.0627	143 0.0627	¹³⁶ 1.331
58 GORILLA-2 871132 62341 870.0137 870.0137 801.067 1000.0220 1000.0220		GORILLA-2						80 1.067			100 0.0220	⁹⁶ 1.116
59 GORILLA-3 169 2156 124 563 183 0.0245 103 0.0245 103 0.0245 97 1.110 121 0.0384 121 0.0384	9	GORILLA-3			103 0.0245	103 0.0245	103 0.0245				121 0.0384	114 1.178
60 HBINNO-0 4520 43265 16410.000 1830.2746 1830.2746	_	hbinno-0									183 0.2746	¹⁸³ 2.743
61 HIK-0 105 1808 194 875 151 10.000 107 0.0236 107 0.0236											107 0.0236	113 1.176
62 HIK-1 1071808 178820 19610.000 1910.0173 1910.0173		-			0,						⁹¹ 0.0173	⁹⁷ 1.116
63 HIK-2 106 1808 176 820 94 0.0185 94 0.0185 100 1.119 90 0.0172 90 0.0172											90 0.0172	⁹³ 1.115
64 HIK-3 91408 132633 780.0107 780.0107 771.057 820.0141 820.0141											82 0.0141	⁷⁴ 1.082
65 HIK-4 8 1152 104 510 75 0.0104 75 0.0104 70.0104 71.055 80 0.0138 80 0.0138	_										80 0.0138	⁷⁰ 1.081
66 HIK-5 891408 129619 250.0034 250.0034 250.0034 251.018 290.0067 290.0067											²⁹ 0.0067	271.043 281.042
67 HIK-6 911408 126610 270.0034 270.0034 241.018 300.0067 300.0067 68 IDEMIA-0 31364 83416 520.0063 520.0063 520.0063 471.034 610.0113 610.0113	_										30 0.0067	281.043 611.070
		-									610.0113 650.0116	611.070 631.072
69 IDEMIA-1 32364 8417 330.0065 30.0065 30.0065 91.035 00.0116 00.0116 00.0116 70 IDEMIA-2 30364 87417 70.0099 70.0099 70.0099 71.056 71.056 71.0126 71.0126											71 _{0.0126}	71 1.081
70 IDEMIA-2 364 417 0.0099 0.0099 1.056 0.0126 0.0126 71 IDEMIA-3 50528 149689 450.0054 450.0054 450.0054 450.0054 450.0055 540.0095 540.0095											540.0095	57 1.066
71 IDEMIA-3 328 669 0.0034 0.0034 1.003 0.0093 0.0093 72 IDEMIA-4 47528 147669 430.0052 430.0052 430.0052 381.029 500.0092 500.0092											500.0093	49 1.061

Table 16: Rank-based accuracy for the FRVT 2018 mugshot sets. In columns 3 and 4 are template size and template generation duration. Thereafter values are rank-based FNIR with T = 0 and FPIR = 1. This is appropriate to investigational uses but not those with higher volumes where candidates from all searches would need review. Columns 5 - 9 show FRVT 2018 accuracy for various ranks for galleries unenrolled with all lifetime images. Column 10 is a workload statistic, a small value shows an algorithm front-loads mates into the first 10 candidates. The last four columns gives analogous results for enrollment only of the most recent image - see Figure 8. Throughout, blue superscripts indicate the rank of the algorithm for that column, and the best value is highlighted in yellow.

MI	SSES OUTSIDE RANK R	RESOURC		ENROI	LL LIFETIME C	ONSOLIDATED			NROL MOST RE	CENT, N = 1.6	M
	FNIR(N, T=0, R)	TEMP					FRVT 2018				
#	ALGORITHM	BYTES	MSEC	R=1	R=10	R=50	WORK-10	R=1	R=10	R=50	WORK-10
73	idemia-5	²⁹ 352	⁷⁰ 374	⁵⁰ 0.0062	⁵⁰ 0.0062	⁵⁰ 0.0062	461.034	⁵⁹ 0.0107	⁵⁹ 0.0107	⁵⁹ 0.0107	38 1.068
74	IDEMIA-6	²⁸ 352	⁶⁹ 373	⁵⁷ 0.0071	⁵⁷ 0.0071	⁵⁷ 0.0071	⁵⁵ 1.039	⁶⁹ 0.0122	⁶⁹ 0.0122	⁶⁹ 0.0122	67 1.075
75	IMAGUS-0	⁴³ 512	543				¹⁹⁸ 10.000	185 0.3054	185 0.3054	185 0.3054	¹⁸⁵ 2.977
76	IMAGUS-2	³⁷ 512	⁹ 76	133 0.1833	133 0.1833	133 0.1833	133 2.070	177 0,2223	177 _{0,2223}	1770,2223	¹⁷⁴ 2.329
77	IMAGUS-3	⁴¹ 512	⁷ 57	139 _{0.3008}	139 0.3008	1390.3008	138 2.951	¹⁸⁸ 0.3576	¹⁸⁸ 0.3576	¹⁸⁸ 0.3576	¹⁸⁸ 3.380
78	INCODE-0	67 1024	²⁶ 190	113 _{0.0376}	113 0.0376	113 0.0376	109 1.201	139 0.0515	139 0.0515	139 _{0.0515}	132 1.285
				0.00.0						010010	
79	INCODE-1	127 2048	¹⁵¹ 690	⁸⁴ 0.0131	84 0.0131	840.0131	⁷⁸ 1.066	⁹³ 0.0190	93 0.0190	⁹³ 0.0190	⁸⁸ 1.106
80	INCODE-2	¹²² 2048	⁴⁹ 291	⁸¹ 0.0120	⁸¹ 0.0120	⁸¹ 0.0120	⁷⁵ 1.060	⁹⁸ 0.0203	⁹⁸ 0.0203	⁹⁸ 0.0203	⁹² 1.113
81	INCODE-3	1172048	155 704	650.0088	65 0.0088	⁶⁵ 0.0088	⁶⁰ 1.044	85 0.0153	85 _{0.0153}	85 0.0153	⁷⁵ 1.086
82	INNOVATRICS-0	⁵⁴ 530	100 455				¹⁸⁶ 10.000	127 0.0421	127 0.0421	127 0.0421	125 1.234
83	INNOVATRICS-1	⁵² 530	⁵⁸ 316				¹⁸² 10.000	126 0.0421	1260.0421	1260.0421	124 1.234
84	INNOVATRICS-2	⁵³ 530	⁴¹ 255	118 _{0.0499}	118 _{0.0499}	118 _{0.0499}	122 1,354	136 0.0475	136 _{0.0475}	136 _{0.0475}	¹⁴⁰ 1.343
85	INNOVATRICS-3	⁵¹ 530	40 255	104 0.0301	104 0.0301	104 0.0301	104 1.147	113 0.0287	1130.0287	1130.0287	1.045 1.151
		85 1076	83 406		61 0.0081	61 0.0081	59 1.042	84 0.0149	84 0.0149	84 0.0149	
86	INNOVATRICS-4			61 0.0081							771.087
87	ISYSTEMS-0	¹⁴¹ 2048	³³ 222	⁶⁴ 0.0085	⁶⁴ 0.0085	⁶⁴ 0.0085	⁷⁴ 1.059	77 0.0136	⁷⁷ 0.0136	770.0136	⁸³ 1.098
88	isystems-1	⁶⁴ 1024	³² 222	63 0.0085	63 0.0085	630.0085	⁷³ 1.058	⁷⁶ 0.0136	⁷⁶ 0.0136	⁷⁶ 0.0136	⁸⁴ 1.098
89	ISYSTEMS-2	1372048	⁵⁹ 316	³⁷ 0.0046	³⁷ 0.0046	³⁷ 0.0046	⁴⁴ 1.032	⁴⁴ 0.0088	⁴⁴ 0.0088	⁴⁴ 0.0088	⁵³ 1.062
90	ISYSTEMS-3	1113 2048	¹⁸⁹ 856	³² 0.0040	³² 0.0040	³² 0.0040	³⁷ 1.029	³⁷ 0.0075	³⁷ 0.0075	³⁷ 0.0075	⁴³ 1.057
91	LOOKMAN-3	26 292	63 342	67 0.0089	67 0.0089	67 0.0089	851.074	62 0.0114	62 0.0114	62 0.0114	⁷⁹ 1.095
92	LOOKMAN-4	55 548	60 325	68 0.0091	68 0.0091	68 0.0091	86 1.074	66 0.0117	66 0.0114	66 0.0114	81 1.096
			174 1794								
93	MEGVII-0	118 2048		⁷¹ 0.0099	⁷¹ 0.0099	⁷¹ 0.0099	651.048	51 0.0094	510.0094	510.0094	³⁹ 1.052
94	MEGVII-1	178 4096	137 652				159 10.000	⁷⁸ 0.0137	⁷⁸ 0.0137	⁷⁸ 0.0137	861.102
95	MEGVII-2	¹⁸⁰ 4096	¹⁴³ 656				¹⁷⁶ 10.000	⁷⁹ 0.0137	⁷⁹ 0.0137	⁷⁹ 0.0137	871.102
96	MICROFOCUS-0	¹⁸ 256	106 525				¹⁶⁸ 10.000	¹⁹⁵ 0.5972	¹⁹⁵ 0.5972	¹⁹⁵ 0.5972	¹⁹⁵ 5.397
97	MICROFOCUS-1	²⁴ 256	¹⁰⁷ 527				¹⁸⁰ 10.000	¹⁹⁶ 0.5972	196 0.5972	¹⁹⁶ 0.5972	¹⁹⁶ 5.398
98	MICROFOCUS-2	²² 256	¹⁰⁸ 529				174 10,000	¹⁹⁷ 0.6272	¹⁹⁷ 0,6272	¹⁹⁷ 0.6272	¹⁹⁷ 5.839
99	MICROFOCUS-3	²¹ 256	⁴⁶ 269	¹⁴⁶ 0,5389	¹⁴⁶ 0,5389	¹⁴⁶ 0,5389	¹⁴⁶ 4.849	¹⁹⁴ 0.5953	¹⁹⁴ 0,5953	¹⁹⁴ 0,5953	¹⁹⁴ 5.373
100	MICROFOCUS-4	²⁰ 256	47270	145 _{0.5191}	145 0.5191	145 _{0.5191}	145 4.688	193 0.5775	193 0.5775	193 0.5775	193 5.212
					141 0.3701	141 _{0.3701}	141 3.437				
101	MICROFOCUS-5	¹⁶ 256	⁴⁵ 266	141 0.3701				189 0.4257	189 0.4257	189 0.4257	¹⁸⁹ 3.877
102	MICROFOCUS-6	¹⁷ 256	⁴⁴ 265	¹⁴² 0.3732	¹⁴² 0.3732	¹⁴² 0.3732	¹⁴² 3.453	¹⁹⁰ 0.4283	¹⁹⁰ 0.4283	¹⁹⁰ 0.4283	¹⁹⁰ 3.897
103	MICROSOFT-0	³⁶ 512	⁴⁸ 283	¹⁹ 0.0026	¹⁹ 0.0026	¹⁹ 0.0026	16 1.015	²³ 0.0058	²³ 0.0058	²³ 0.0058	²⁰ 1.038
104	MICROSOFT-1	⁷⁴ 1024	⁶⁶ 349	18 0.0026	18 0.0026	180.0026	15 1.015	²¹ 0.0056	²¹ 0.0056	²¹ 0.0056	¹⁸ 1.038
105	MICROSOFT-2	63 1024	¹²⁰ 555	²³ 0.0029	²³ 0.0029	²³ 0.0029	²⁰ 1.016	²⁵ 0.0061	²⁵ 0.0061	²⁵ 0.0061	²⁵ 1.041
106	MICROSOFT-3	⁷² 1024	80 404	⁴ 0.0011	40.0011	40.0011	² 1.007	40.0032	40.0032	40.0032	³ 1.022
107	MICROSOFT-4	123 2048	¹⁷¹ 773	10.0010	10.0010	10.0010	¹ 1.006	² 0.0031	² 0.0031	² 0.0031	² 1.022
108	MICROSOFT-5	70 1024	148 673	50.0013	50.0013	50.0013	³ 1.007	50.0033	50.0033	50.0033	¹ 1.021
		68 1024	152 695	70.0014	70,0014	70.0014	41.007	80,0033	80.0033	80.0033	41.023
109	MICROSOFT-6										
110	NEC-0	¹⁷² 2592	10 82	83 0.0127	83 0.0127	83 0.0127	⁷⁹ 1.066	94 0.0196	94 0.0196	⁹⁴ 0.0196	⁸⁹ 1.110
111	NEC-1	¹⁷¹ 2592	¹¹ 88	⁹² 0.0164	92 0.0164	⁹² 0.0164	⁹² 1.101	106 0.0235	106 0.0235	106 0.0235	110 1.158
112	NEC-2	101 1616	141 653	30.0011	³ 0.0011	³ 0.0011	61.009	10.0028	10.0028	10.0028	51.023
113	NEC-3	¹⁰² 1712	150 690	60.0013	60.0013	60.0013	91.011	30.0031	30.0031	30.0031	81.026
114	NEUROTECHNOLOGY-0	¹⁹⁷ 5214	154 702				¹⁷¹ 10.000	138 0.0497	138 0.0497	138 0.0497	131 1.278
115	NEUROTECHNOLOGY-1	¹⁹⁹ 5214	145 661				¹⁹⁵ 10.000	135 0.0467	135 0.0467	135 _{0.0467}	128 1.250
116	NEUROTECHNOLOGY-2	198 5214	144 658				¹⁹³ 10.000	134 0.0465	134 0.0465	134 0.0465	127 1.249
117	NEUROTECHNOLOGY-3	136 2048	116 ₅₄₇	⁹⁸ 0.0199	⁹⁸ 0.0199	⁹⁸ 0.0199	95 1.108	109 0.0250	109 0.0250	1090.0250	106 1.148
		142 2048	115 543							40 0.0082	44 1.058
118	NEUROTECHNOLOGY-4			470.0058	47 0.0058	470.0058	521.037 341.026	40 0.0082	400.0082		
119	NEUROTECHNOLOGY-5	19256 13256	84 412	³³ 0.0042	³³ 0.0042	³³ 0.0042	³⁴ 1.026	³¹ 0.0068	³¹ 0.0068	31 _{0.0068}	³⁷ 1.050
120	NEUROTECHNOLOGY-6							950		950	85
121			¹⁶⁹ 746	90.0153	⁹⁰ 0.0153	⁹⁰ 0.0153	83 1.070	⁹⁵ 0.0201	⁹⁵ 0.0201	⁹⁵ 0.0201	⁸⁵ 1.102
122	NEWLAND-2	¹¹⁶ 2048	¹⁹¹ 868				¹⁵⁷ 10.000	¹⁵⁰ 0.0811	¹⁵⁰ 0.0811	150 0.0811	¹⁵¹ 1.491
	NEWLAND-2 NOBLIS-1		¹⁹¹ 868 ³⁰ 211	900.0153 1350.2049	90 0.0153 135 0.2049	900.0153 1350.2049	157 10.000 135 2.390				
123		¹¹⁶ 2048	¹⁹¹ 868				¹⁵⁷ 10.000	¹⁵⁰ 0.0811	¹⁵⁰ 0.0811	150 0.0811	¹⁵¹ 1.491
123	NOBLIS-1 NOBLIS-2	1162048 1402048 2006144	¹⁹¹ 868 ³⁰ 211 ¹¹⁰ 535	135 _{0.2049} 132 _{0.1565}	135 0.2049 132 0.1565	135 0.2049 132 0.1565	157 10.000 135 2.390 132 1.967	150 0.0811 181 0.2512 169 0.1816	150 0.0811 181 0.2512 169 0.1816	150 0.0811 181 0.2512 169 0.1816	151 1.491 181 2.698 166 2.098
123 124	NOBLIS-1 NOBLIS-2 NTECHLAB-0	1162048 1402048 2006144 1964442	¹⁹¹ 868 ³⁰ 211 ¹¹⁰ 535 ¹⁶⁶ 730	135 _{0.2049} 132 _{0.1565} 59 _{0.0077}	135 0.2049 132 0.1565 59 0.0077	135 _{0.2049} 132 _{0.1565} 59 _{0.0077}	157 10.000 135 2.390 132 1.967 53 1.038	150 0.0811 181 0.2512 169 0.1816 63 0.0115	150 0.0811 181 0.2512 169 0.1816 63 0.0115	150 0.0811 181 0.2512 169 0.1816 63 0.0115	151 1.491 181 2.698 166 2.098 55 1.064
123 124 125	NOBLIS-1 NOBLIS-2 NTECHLAB-0 NTECHLAB-1	1162048 1402048 2006144 1964442 1041736	¹⁹¹ 868 ³⁰ 211 ¹¹⁰ 535 ¹⁶⁶ 730 ⁸² 405	135 0.2049 132 0.1565 59 0.0077 69 0.0097	135 0.2049 132 0.1565 59 0.0077 69 0.0097	135 0.2049 132 0.1565 59 0.0077 69 0.0097	157 10.000 135 2.390 132 1.967 53 1.038 61 1.046	150 0.0811 181 0.2512 169 0.1816 63 0.0115 81 0.0139	150 0.0811 181 0.2512 169 0.1816 63 0.0115 81 0.0139	150 0.0811 181 0.2512 169 0.1816 63 0.0115 81 0.0139	151 1.491 181 2.698 166 2.098 55 1.064 65 1.074
123 124 125 126	NOBLIS-1 NOBLIS-2 NTECHLAB-0 NTECHLAB-1 NTECHLAB-3	116 2048 140 2048 200 6144 196 4442 104 1736 174 3484	191 868 30 211 110 535 166 730 82 405 184 831	135 0.2049 132 0.1565 59 0.0077 69 0.0097 42 0.0051	135 0.2049 132 0.1565 59 0.0077 69 0.0097 42 0.0051	135 0.2049 132 0.1565 59 0.0077 69 0.0097 42 0.0051	157 10.000 135 2.390 132 1.967 53 1.038 61 1.046 33 1.024	150 0.0811 181 0.2512 169 0.1816 63 0.0115 81 0.0139 41 0.0082	150 0.0811 181 0.2512 169 0.1816 63 0.0115 81 0.0139 41 0.0082	150 0.0811 181 0.2512 169 0.1816 63 0.0115 81 0.0139 41 0.0082	151 1.491 181 2.698 166 2.098 55 1.064 65 1.074 34 1.047
123 124 125 126 127	NOBLIS-1 NOBLIS-2 NTECHLAB-0 NTECHLAB-1 NTECHLAB-3 NTECHLAB-4	116 2048 140 2048 200 6144 196 4442 104 1736 174 3484 175 3484	191 868 30 211 110 535 166 730 82 405 184 831 198 929	135 0.2049 132 0.1565 59 0.0077 69 0.0097 42 0.0051 31 0.0040	135 0.2049 132 0.1565 59 0.0077 69 0.0097 42 0.0051 31 0.0040	135 0.2049 132 0.1565 59 0.0077 69 0.0097 42 0.0051 31 0.0040	157 10.000 135 2.390 132 1.967 53 1.038 61 1.046 33 1.024 29 1.019	150 0.0811 181 0.2512 169 0.1816 63 0.0115 81 0.0139 41 0.0082 33 0.0068	150 0.0811 181 0.2512 169 0.1816 63 0.0115 81 0.0139 41 0.0082 33 0.0068	150 0.0811 181 0.2512 169 0.1816 63 0.0115 81 0.0139 41 0.0082 33 0.0068	151 1.491 181 2.698 166 2.098 551 1.064 65 1.074 341 1.047 241 1.041
123 124 125 126 127 128	NOBLIS-1 NOBLIS-2 NTECHLAB-0 NTECHLAB-1 NTECHLAB-3 NTECHLAB-4 NTECHLAB-5	116 2048 140 2048 200 6144 196 4442 104 1736 174 3484 175 3484 108 1940	191 868 30 211 110 535 166 730 82 405 184 831 198 929 164 717	135 0.2049 132 0.1565 59 0.0077 69 0.0097 42 0.0051 31 0.0040 30 0.0039	135 0.2049 132 0.1565 59 0.0077 69 0.0097 42 0.0051 31 0.0040 30 0.0039	135 0.2049 132 0.1565 59 0.0077 69 0.0097 42 0.0051 31 0.0040 30 0.0039	157 10.000 135 2.390 132 1.967 53 1.038 61 1.046 33 1.024 29 1.019 27 1.018	150 0.0811 181 0.2512 169 0.1816 63 0.0115 81 0.0139 41 0.0082 33 0.0068 28 0.0064	150 0.0811 181 0.2512 169 0.1816 63 0.0115 81 0.0139 41 0.0082 33 0.0068 28 0.0064	150 0.0811 181 0.2512 169 0.1816 63 0.0115 81 0.0139 41 0.0082 33 0.0068 28 0.0064	151 1.491 181 2.698 166 2.098 551 1.064 651 1.074 341 1.047 241 1.041 171 1.037
123 124 125 126 127 128 129	NOBLIS-1 NOBLIS-2 NTECHLAB-0 NTECHLAB-1 NTECHLAB-3 NTECHLAB-4 NTECHLAB-5 NTECHLAB-5	1162048 1402048 2006144 1964442 1041736 1743484 1753484 1081940 1091940	191 868 30 211 110 535 166 730 82 405 184 831 198 929 164 717 187 841	135 0.2049 132 0.1565 59 0.0077 69 0.0097 42 0.0051 31 0.0040 30 0.0039 26 0.0034	135 0.2049 132 0.1565 59 0.0077 69 0.0097 42 0.0051 31 0.0040 30 0.0039 26 0.0034	135 0.2049 132 0.1565 59 0.0077 69 0.0097 42 0.0051 31 0.0040 30 0.0039 26 0.0034	157 10.000 135 2.390 132 1.967 53 1.038 61 1.046 33 1.024 29 1.019 27 1.018 18 1.015	150 0.0811 181 0.2512 169 0.1816 63 0.0115 81 0.0139 41 0.0082 33 0.0068 28 0.0064 24 0.0059	150 0.0811 181 0.2512 169 0.1816 63 0.0115 81 0.0139 41 0.0082 33 0.0068 28 0.0064 24 0.0059	150 0.0811 181 0.2512 169 0.1816 63 0.0115 81 0.0139 41 0.0082 33 0.0068 28 0.0064 24 0.0059	151 1.491 181 2.698 166 2.098 55 1.064 65 1.074 34 1.047 24 1.041 17 1.037 15 1.034
123 124 125 126 127 128	NOBLIS-1 NOBLIS-2 NTECHLAB-0 NTECHLAB-1 NTECHLAB-3 NTECHLAB-4 NTECHLAB-5	1162048 1402048 2006144 1964442 1041736 1743484 1753484 1081940 1091940 1252048	191 868 30 211 110 535 166 730 82 405 184 831 198 929 164 717	135 0.2049 132 0.1565 59 0.0077 69 0.0097 42 0.0051 31 0.0040 30 0.0039	135 0.2049 132 0.1565 59 0.0077 69 0.0097 42 0.0051 31 0.0040 30 0.0039	135 0.2049 132 0.1565 59 0.0077 69 0.0097 42 0.0051 31 0.0040 30 0.0039	157 10.000 135 2.390 132 1.967 53 1.038 61 1.046 33 1.024 29 1.019 27 1.018	150 0.0811 181 0.2512 169 0.1816 63 0.0115 81 0.0139 41 0.0082 33 0.0068 28 0.0064	150 0.0811 181 0.2512 169 0.1816 63 0.0115 81 0.0139 41 0.0082 33 0.0068 28 0.0064 24 0.0059 176 0.2198	150 0.0811 181 0.2512 169 0.1816 63 0.0115 81 0.0139 41 0.0082 33 0.0068 28 0.0064	151 1.491 181 2.698 166 2.098 55 1.064 65 1.074 34 1.047 24 1.041 17 1.037 15 1.034
123 124 125 126 127 128 129	NOBLIS-1 NOBLIS-2 NTECHLAB-0 NTECHLAB-1 NTECHLAB-3 NTECHLAB-4 NTECHLAB-5 NTECHLAB-5	1162048 1402048 2006144 1964442 1041736 1743484 1753484 1081940 1091940	191 868 30 211 110 535 166 730 82 405 184 831 198 929 164 717 187 841	135 0.2049 132 0.1565 59 0.0077 69 0.0097 42 0.0051 31 0.0040 30 0.0039 26 0.0034	135 0.2049 132 0.1565 59 0.0077 69 0.0097 42 0.0051 31 0.0040 30 0.0039 26 0.0034	135 0.2049 132 0.1565 59 0.0077 69 0.0097 42 0.0051 31 0.0040 30 0.0039 26 0.0034	157 10.000 135 2.390 132 1.967 53 1.038 61 1.046 33 1.024 29 1.019 27 1.018 18 1.015	150 0.0811 181 0.2512 169 0.1816 63 0.0115 81 0.0139 41 0.0082 33 0.0068 28 0.0064 24 0.0059	150 0.0811 181 0.2512 169 0.1816 63 0.0115 81 0.0139 41 0.0082 33 0.0068 28 0.0064 24 0.0059	150 0.0811 181 0.2512 169 0.1816 63 0.0115 81 0.0139 41 0.0082 33 0.0068 28 0.0064 24 0.0059	151 1.491 181 2.698 166 2.098 55 1.064 65 1.074 34 1.047 24 1.041 17 1.037 15 1.034
123 124 125 126 127 128 129 130	NOBLIS-1 NOBLIS-2 NTECHLAB-0 NTECHLAB-1 NTECHLAB-3 NTECHLAB-4 NTECHLAB-5 NTECHLAB-6 QUANTASOFT-1	1162048 1402048 2006144 1964442 1041736 1743484 1753484 1081940 1091940 1252048	191 868 30 211 110 535 166 730 82 405 184 831 198 929 164 717 187 841 76 396 6 50	135 0.2049 132 0.1565 59 0.0077 69 0.0097 42 0.0051 31 0.0040 30 0.0039 26 0.0034 149 0.9857	135 0.2049 132 0.1565 99 0.0077 69 0.0097 42 0.0051 31 0.0040 30 0.0039 25 0.0034 149 0.9857	1350.2049 1320.1565 590.0077 690.0097 420.0051 310.0040 300.0039 260.0034 1490.9857	157 10.000 135 2.390 132 1.967 53 1.038 61 1.046 33 1.024 29 1.019 27 1.018 18 1.015 149 9.866	150 0.0811 181 0.2512 169 0.1816 63 0.0115 81 0.0139 41 0.0082 33 0.0068 28 0.0064 24 0.0059 176 0.2198	150 0.0811 181 0.2512 169 0.1816 63 0.0115 81 0.0139 41 0.0082 33 0.0068 28 0.0064 24 0.0059 176 0.2198	150 0.0811 181 0.2512 169 0.1816 63 0.0115 81 0.0139 41 0.0082 33 0.0068 28 0.0064 24 0.0059 176 0.2198	151 1.491 181 2.698 166 2.098 55 1.064 65 1.074 34 1.047 24 1.041 17 1.037 15 1.034 180 2.559 130 1.275
123 124 125 126 127 128 129 130 131 132	NOBLIS-1 NOBLIS-2 NTECHLAB-0 NTECHLAB-1 NTECHLAB-3 NTECHLAB-4 NTECHLAB-5 NTECHLAB-6 QUANTASOFT-1 RANKONE-0 RANKONE-1	116 2048 140 2048 200 6144 196 4442 104 1736 174 3484 108 1940 109 1940 125 2048 12 228 27 324	191 868 30 211 110 535 166 730 82 405 184 831 198 929 164 717 187 841 76 396 6 50 17 136	135 0.2049 132 0.1565 59 0.0077 42 0.0051 31 0.0040 30 0.0039 26 0.0034 149 0.9857 188 0.0319 97 0.0194	135 0.2049 132 0.1565 59 0.0077 69 0.0097 42 0.0051 31 0.0040 30 0.0039 26 0.0034 149 0.9857 108 0.0319	135 0.2049 132 0.1565 59 0.0077 42 0.0051 31 0.0040 30 0.0039 25 0.0034 149 0.9857 108 0.0319 97 0.0194	157 10.000 135 2.390 132 1.967 53 1.038 61 1.046 33 1.024 29 1.019 27 1.018 18 1.015 149 9.866 108 1.188 96 1.109	150 0.0811 181 0.2512 169 0.1816 63 0.0115 81 0.0139 41 0.0082 33 0.0068 28 0.0064 24 0.0059 176 0.2198 133 0.0455 108 0.0247	150 0.0811 181 0.2512 169 0.1816 63 0.0115 81 0.0139 41 0.0082 33 0.0068 28 0.0064 24 0.0059 176 0.2198 133 0.0455	150 0.0811 181 0.2512 169 0.1816 63 0.0115 81 0.0139 41 0.0082 33 0.0068 24 0.0059 176 0.2198 133 0.0455	151 1.491 181 2.698 165 2.098 551 1.064 651 1.074 341 1.047 241 1.041 171 1.037 151 1.034 180 2.559 130 1.275 1051 1.45
123 124 125 126 127 128 129 130 131 132 133	NOBLIS-1 NOBLIS-2 NTECHLAB-0 NTECHLAB-1 NTECHLAB-3 NTECHLAB-4 NTECHLAB-5 NTECHLAB-6 QUANTASOFT-1 RANKONE-0 RANKONE-1 RANKONE-1	116 2048 140 2048 200 6144 196 4442 104 1736 174 3484 108 1940 109 1940 125 2048 12 228 27 324 11 133	191 868 30 211 110 535 166 730 82 405 184 831 198 929 164 717 187 841 76 396 6 50 17 136 14 113	135 0.2049 132 0.1565 59 0.0077 42 0.0051 31 0.0040 30 0.0039 26 0.0034 149 0.9857 118 0.0319 97 0.0194	135 0.2049 132 0.1565 59 0.0077 42 0.0051 31 0.0040 30 0.0039 25 0.0034 149 0.9857 108 0.0319 97 0.0194	135 0.2049 132 0.1565 59 0.0077 42 0.0051 31 0.0040 30 0.0039 26 0.0034 149 0.9857 108 0.0319 97 0.0194	157 10.000 135 2.390 132 1.967 53 1.038 61 1.046 33 1.024 29 1.019 27 1.018 18 1.015 149 9.866 108 1.188 96 1.109 90 1.086	150 0.0811 181 0.2512 169 0.1816 63 0.0115 81 0.0139 41 0.0082 33 0.0068 25 0.0064 24 0.0059 176 0.2198 133 0.0455 108 0.0247	150 0.0811 181 0.2512 169 0.1816 63 0.0115 81 0.0139 41 0.0082 33 0.0068 28 0.0064 24 0.0059 176 0.2198 133 0.0455 108 0.0247	150 0.0811 181 0.2512 169 0.1816 60 0.0115 81 0.0139 41 0.0082 33 0.0068 25 0.0064 24 0.0059 170 0.2198 133 0.0455 108 0.0247	151 1.491 181 2.698 166 2.098 55 1.064 65 1.074 34 1.047 24 1.041 17 1.037 15 1.034 180 2.559 180 1.275 105 1.145
123 124 125 126 127 128 129 130 131 132 133 134	NOBLIS-1 NOBLIS-2 NTECHLAB-0 NTECHLAB-1 NTECHLAB-3 NTECHLAB-4 NTECHLAB-5 NTECHLAB-6 QUANTASOFT-1 RANKONE-0 RANKONE-1 RANKONE-1 RANKONE-2 RANKONE-3	116 2048 140 2048 200 6144 196 4442 104 1736 174 3484 108 1940 109 1940 125 2048 12 228 27 324 11 133 9133	191 868 30 211 110 535 166 730 82 405 184 831 198 929 164 717 187 841 76 396 650 17 136 14 113 15 114	138 0.2049 132 0.1565 59 0.0077 69 0.0097 42 0.0051 31 0.0040 30 0.0039 26 0.0034 149 0.9857 108 0.0319 97 0.0194 88 0.0149	135 0.2049 132 0.1565 59 0.0077 69 0.0097 42 0.0051 31 0.0040 30 0.0039 25 0.0034 149 0.9857 108 0.0319 97 0.0194 88 0.0149	135 0.2049 132 0.1565 59 0.0077 69 0.0097 42 0.0051 31 0.0040 26 0.0034 149 0.9857 108 0.0319 97 0.0194 88 0.0149	15710.000 1352.390 1321.967 531.038 611.046 331.024 291.019 271.018 181.015 1499.866 1081.188 961.109 901.086	150 0.0811 181 0.2512 169 0.1816 63 0.0115 81 0.0139 41 0.0082 33 0.0068 28 0.0064 24 0.0059 176 0.2198 133 0.0455 108 0.0247 102 0.0221	150 0.0811 181 0.2512 169 0.1816 63 0.0115 81 0.0139 41 0.0082 33 0.0068 28 0.0064 24 0.0059 176 0.2198 133 0.0455 108 0.0247 102 0.0221	150 0.0811 181 0.2512 169 0.1816 63 0.0115 81 0.0139 41 0.0082 33 0.0068 28 0.0064 24 0.0059 176 0.2198 133 0.0455 108 0.0247 102 0.0221	151 1.491 181 2.698 166 2.098 55 1.064 65 1.074 34 1.047 24 1.041 17 1.037 15 1.034 180 2.559 130 1.275 105 1.145 102 1.135
123 124 125 126 127 128 129 130 131 132 133 134 135	NOBLIS-1 NOBLIS-2 NTECHLAB-0 NTECHLAB-1 NTECHLAB-3 NTECHLAB-3 NTECHLAB-5 NTECHLAB-5 NTECHLAB-6 QUANTASOFT-1 RANKONE-0 RANKONE-1 RANKONE-1 RANKONE-2 RANKONE-3 RANKONE-4	116 2048 140 2048 200 6144 196 4442 104 1736 174 3484 105 3484 108 1940 125 2048 12 228 27 324 11 133 9133	191 868 30 211 110 535 166 730 82 405 134 831 198 929 164 717 187 841 76 396 6 50 17 136 14 113 15 114 4 36	135 0.2049 132 0.1565 39 0.0077 69 0.0097 42 0.0051 31 0.0040 30 0.0039 26 0.0034 149 0.9857 108 0.0319 97 0.0194 88 0.0149 107 0.0318	135 0.2049 132 0.1565 90.0077 60.0097 42 0.0051 31 0.0040 30 0.0039 26 0.0034 149 0.9857 108 0.0319 97 0.0194 88 0.0149 107 0.0318	135 0.2049 132 0.1565 59 0.0077 69 0.0097 42 0.0051 31 0.0040 30 0.0039 26 0.0034 149 0.9857 108 0.0319 97 0.0194 88 0.0149 107 0.0318	157 10.000 135 2.390 132 1.967 53 1.038 61 1.046 33 1.024 29 1.019 27 1.018 18 1.015 149 9.866 108 1.188 96 1.109 90 1.086 89 1.086	150 0.0811 181 0.2512 169 0.1816 63 0.0115 181 0.0039 41 0.0082 33 0.0068 28 0.0064 24 0.0059 176 0.2198 133 0.0455 108 0.0247 102 0.0221 103 0.0221 132 0.0441	150 0.0811 181 0.2512 169 0.1816 63 0.0115 81 0.0139 41 0.0082 33 0.0068 25 0.0064 24 0.0059 176 0.2198 133 0.0455 108 0.0247 102 0.0221 101 0.0221 133 0.0441	150 0.0811 181 0.2512 100 0.1816 53 0.0115 81 0.0082 33 0.0068 25 0.0064 24 0.0059 176 0.2198 133 0.0455 108 0.0247 102 0.0221 133 0.0441	151 1.491 181 2.698 166 2.098 551 1.064 651 1.074 341 1.047 241 1.041 171 1.037 151 1.034 180 2.559 130 1.275 105 1.145 102 1.135 104 1.135 126 1.249
123 124 125 126 127 128 129 130 131 132 133 134 135 136	NOBLIS-1 NOBLIS-2 NTECHLAB-0 NTECHLAB-1 NTECHLAB-3 NTECHLAB-4 NTECHLAB-5 NTECHLAB-6 QUANTASOFT-1 RANKONE-0 RANKONE-1 RANKONE-2 RANKONE-2 RANKONE-3 RANKONE-4 RANKONE-5	116 2048 140 2048 200 6144 195 4442 104 1736 174 3484 108 1940 109 1940 12 2048 12 228 27 324 11 133 185 101 133	197 868 30 211 110 535 166 730 82 405 184 831 198 929 167 717 187 841 76 3946 650 17 136 13 113 13 113 14 113 15 114 436 12 94	135 0.2049 132 0.1565 39 0.0077 69 0.0097 42 0.0051 31 0.0040 30 0.0039 20 0.0034 149 0.9857 108 0.0319 97 0.0194 88 0.0149 107 0.0318 88 0.0072	135 0.2049 132 0.1565 39 0.0077 90 0.0097 42 0.0051 31 0.0040 30 0.0039 25 0.0034 149 0.9857 108 0.0319 97 0.0194 88 0.0149 107 0.0318 38 0.0072	1350,2049 1320,1565 590,0077 690,0097 420,0051 310,0040 300,0039 250,0034 1490,9857 1080,0319 970,0194 880,0149 1070,0318 580,0072	187 10.000 135 2.390 132 1.967 53 1.038 61 1.046 33 1.024 29 1.019 27 1.018 18 1.015 149 9.866 108 1.188 96 1.109 90 1.086 107 1.171 58 1.042	150 0.0811 181 0.2512 169 0.1816 53 0.0115 81 0.0139 41 0.0082 28 0.0064 24 0.0059 170 0.2198 133 0.0455 108 0.0247 102 0.0221 101 0.0221 103 0.0441 68 0.0120	150 0.0811 181 0.2512 169 0.1816 65 0.0115 81 0.0139 41 0.0082 28 0.0064 24 0.0059 176 0.2198 133 0.0455 108 0.0247 102 0.0221 101 0.0221 102 0.0221 103 0.0247	150 0.0811 181 0.2512 169 0.1816 63 0.0115 81 0.0139 41 0.0082 28 0.0064 24 0.0059 170 0.2198 133 0.0455 108 0.0247 102 0.0221 101 0.0221 102 0.0221 103 0.0241 104 0.0210	151.491 1812.698 1662.098 1561.064 651.074 341.047 241.041 171.037 151.034 180/2.559 1051.145 1021.135 1011.135 1041.135
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137	NOBLIS-1 NOBLIS-2 NTECHLAB-0 NTECHLAB-1 NTECHLAB-3 NTECHLAB-4 NTECHLAB-5 NTECHLAB-6 QUANTASOFT-1 RANKONE-0 RANKONE-1 RANKONE-2 RANKONE-3 RANKONE-4 RANKONE-4 RANKONE-5 REALNETWORKS-0	116 2048 140 2048 140 2048 150 2148 150 2173 150 2144 150 2173 150 2148 150 21	197 868 30 211 110 535 166 730 182 405 184 831 198 929 164 717 187 841 76 396 6 50 17 136 14 113 15 114 4 36 12 94	1350,2049 1320,1565 390,00077 690,0097 420,0051 310,0040 200,0039 200,0039 1190,9857 1080,0319 970,0194 880,0149 1070,0318 880,0072	135 0.2049 132 0.1565 39 0.0077 69 0.0097 42 0.0051 31 0.0040 30 0.0039 25 0.0034 149 0.9857 108 0.0319 97 0.0149 88 0.0149 107 0.0318 35 0.0072 115 0.0443	1350,2049 1320,1565 590,00077 690,0097 420,0051 310,0040 290,0039 290,0034 1490,9857 1080,0319 970,0194 890,0149 1070,0318 880,0072 1150,0443	15710.000 1352.390 1321.967 1331.038 611.046 331.024 291.019 271.018 181.015 149.9.866 1081.188 961.109 901.086 891.086 1071.171 581.042	150,0.0811 1810,2512 169,0.1816 53,0.0115 81,0.0139 41,0.0082 33,0.0068 28,0.0064 24,0.0059 176,0.2198 133,0.0457 102,0.0247 102,0.0221 101,0.0221 103,0.0426	150 0.0811 181 0.2512 169 0.1816 63 0.0115 81 0.0139 41 0.0082 28 0.0064 24 0.0059 176 0.2198 133 0.0455 108 0.0247 102 0.0221 131 0.0221 132 0.0441 68 0.0120 133 0.0426	150 0.0811 181 0.2512 169 0.1816 63 0.0115 81 0.0139 41 0.0082 25 0.0064 24 0.0059 176 0.2198 133 0.0455 108 0.0247 102 0.0221 131 0.0221 133 0.0441 68 0.0120	151 1.491 181 2.698 166 2.098 55 1.064 65 1.074 34 1.047 24 1.041 17 1.037 15 1.034 180 2.559 130 1.275 101 1.135 102 1.135 104 1.034 107 1.034 108 1.259 109 1.275 109 1.135
123 124 125 126 127 128 129 130 131 132 133 134 135 136	NOBLIS-1 NOBLIS-2 NTECHLAB-0 NTECHLAB-1 NTECHLAB-3 NTECHLAB-4 NTECHLAB-5 NTECHLAB-6 QUANTASOFT-1 RANKONE-0 RANKONE-1 RANKONE-2 RANKONE-2 RANKONE-3 RANKONE-4 RANKONE-5	116 2048 140 2048 140 2048 150 4142 150 17756 174 3484 175 3484 175 2484 175 2484 175 228 175 228 175 234 175 234 175 234 175 234 175 234 175 234 175 234 175 235 175	199 868 30 211 110 535 186 735 187 82 405 184 831 188 929 184 76 396 6 50 17 136 18 131 18 114 4 36 12 94 38 244	138 0.2049 132 0.1565 39 0.0077 42 0.0051 31 0.0040 30 0.0039 25 0.0034 149 0.9857 108 0.0319 97 0.0194 88 0.0149 107 0.0318 88 0.0072 115 0.0443 111 0.0329	135 0.2049 132 0.1565 59 0.0077 69 0.0097 42 0.0051 31 0.0040 30 0.0039 25 0.0034 149 0.9857 108 0.0319 97 0.0194 88 0.0149 107 0.0318 88 0.0072 115 0.0443 111 0.0329	135 0.2049 132 0.1565 59 0.0077 69 0.0097 42 0.0051 31 0.0040 30 0.0039 26 0.0034 149 0.9857 108 0.0319 97 0.0194 88 0.0149 107 0.0318 58 0.0072 115 0.0443 111 0.0329	15710.000 1352.390 1321.967 531.038 611.046 331.024 291.019 271.018 151.015 1499.866 1051.1188 961.109 901.086 891.086 1071.171 581.042 1061.163	150 0.0811 181 0.2512 169 0.1816 63 0.0115 81 0.0139 41 0.0082 33 0.0068 28 0.0064 24 0.0059 170 0.2198 133 0.0455 108 0.0247 102 0.0221 131 0.0426 130 0.0426	150 0.0811 181 0.2512 169 0.1816 63 0.0115 81 0.0139 41 0.0082 33 0.0068 28 0.0064 24 0.0059 176 0.2198 133 0.0455 102 0.0247 102 0.0221 101 0.0221 131 0.0426 130 0.0426	150 0.0811 181 0.2512 169 0.1816 63 0.0115 81 0.0139 41 0.0082 33 0.0068 28 0.0064 24 0.0059 176 0.2198 133 0.0455 108 0.0247 102 0.0221 101 0.0221 131 0.0426 130 0.0426	151 1.491 181 2.698 166 2.098 55 1.064 65 1.074 34 1.047 24 1.041 17 1.037 15 1.034 180 2.559 130 1.275 105 1.145 102 1.135 101 1.135 126 1.249 67 1.078
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137	NOBLIS-1 NOBLIS-2 NTECHLAB-0 NTECHLAB-1 NTECHLAB-3 NTECHLAB-4 NTECHLAB-5 NTECHLAB-6 QUANTASOFT-1 RANKONE-0 RANKONE-1 RANKONE-2 RANKONE-3 RANKONE-4 RANKONE-4 RANKONE-5 REALNETWORKS-0	116 2048 140 2048 140 2048 150 2148 150 2173 150 2144 150 2173 150 2148 150 21	197 868 30 211 110 535 166 730 182 405 184 831 198 929 164 717 187 841 76 396 6 50 17 136 14 113 15 114 4 36 12 94	1350,2049 1320,1565 390,00077 690,0097 420,0051 310,0040 200,0039 200,0039 1190,9857 1080,0319 970,0194 880,0149 1070,0318 880,0072	135 0.2049 132 0.1565 39 0.0077 69 0.0097 42 0.0051 31 0.0040 30 0.0039 25 0.0034 149 0.9857 108 0.0319 97 0.0149 88 0.0149 107 0.0318 35 0.0072 115 0.0443	1350,2049 1320,1565 590,00077 690,0097 420,0051 310,0040 290,0039 290,0034 1490,9857 1080,0319 970,0194 890,0149 1070,0318 880,0072 1150,0443	15710.000 1352.390 1321.967 1331.038 611.046 331.024 291.019 271.018 181.015 149.9.866 1081.188 961.109 901.086 891.086 1071.171 581.042	150,0.0811 1810,2512 169,0.1816 53,0.0115 81,0.0139 41,0.0082 33,0.0068 28,0.0064 24,0.0059 176,0.2198 133,0.0457 102,0.0247 102,0.0221 101,0.0221 103,0.0426	150 0.0811 181 0.2512 169 0.1816 63 0.0115 81 0.0139 41 0.0082 28 0.0064 24 0.0059 176 0.2198 133 0.0455 108 0.0247 102 0.0221 131 0.0221 132 0.0441 68 0.0120 133 0.0426	150 0.0811 181 0.2512 169 0.1816 63 0.0115 81 0.0139 41 0.0082 25 0.0064 24 0.0059 176 0.2198 133 0.0455 108 0.0247 102 0.0221 131 0.0221 133 0.0441 68 0.0120	151 1.491 181 2.698 166 2.098 55 1.064 65 1.074 34 1.047 24 1.041 17 1.037 15 1.034 180 2.559 130 1.275 101 1.135 102 1.135 104 1.034 107 1.034 108 1.259 109 1.275 109 1.135
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138	NOBLIS-1 NOBLIS-2 NTECHLAB-0 NTECHLAB-1 NTECHLAB-3 NTECHLAB-3 NTECHLAB-5 NTECHLAB-5 NTECHLAB-6 QUANTASOFT-1 RANKONE-0 RANKONE-1 RANKONE-1 RANKONE-2 RANKONE-3 RANKONE-5 REALNETWORKS-0 REALNETWORKS-1 REALNETWORKS-1 REALNETWORKS-2	116 2048 140 2048 140 2048 196 4442 105 17736 174 3484 105 3484 108 1940 102 2048 12 228 27 324 11 133 185 10 133 185 10 138 188 4100 188 4104	199 868 30 211 110 535 186 7405 181 831 198 929 161 717 187 841 76 396 650 191 36 14 113 15 114 436 12 94 38 244 37 243	135 0.2049 132 0.1565 39 0.0077 69 0.0097 42 0.0051 31 0.0040 30 0.0039 25 0.0034 149 0.9857 188 0.0319 97 0.0194 88 0.0149 107 0.0318 89 0.0072 115 0.0443 111 0.0329	135 0.2049 132 0.1565 59 0.0077 69 0.0097 42 0.0051 31 0.0040 30 0.0039 25 0.0034 149 0.9857 108 0.0319 97 0.0194 88 0.0149 107 0.0318 58 0.0072 115 0.0443 111 0.0329	135 0.2049 132 0.1565 59 0.0077 69 0.0097 42 0.0051 31 0.0040 30 0.0039 26 0.0034 149 0.9857 108 0.0319 97 0.0194 88 0.0149 107 0.0318 58 0.0072 115 0.0443 111 0.0329	15710.000 1352.390 1321.967 531.038 611.046 331.024 291.019 271.018 181.015 1499.866 1081.188 961.109 901.086 891.086 1071.171 581.042 1111.222 1061.1163 1051.159	150 0.0811 181 0.2512 169 0.1816 63 0.0115 81 0.0139 41 0.0082 33 0.0068 28 0.0064 24 0.0059 176 0.2198 133 0.0455 108 0.0247 102 0.0221 101 0.0221 132 0.0441 68 0.0120 133 0.0426 130 0.0426	150 0.0811 181 0.2512 169 0.1816 63 0.0115 81 0.0139 41 0.0082 33 0.0068 28 0.0064 24 0.0059 176 0.2198 133 0.0455 108 0.0247 102 0.0221 101 0.0221 131 0.0426 135 0.0426 136 0.0426 137 0.0426 125 0.0418	150 0.0811 181 0.2512 169 0.1816 63 0.0115 81 0.0139 41 0.0082 33 0.0068 25 0.0064 24 0.0059 176 0.2198 133 0.0455 108 0.0247 102 0.0221 132 0.0441 68 0.0120 133 0.0426 135 0.0426 125 0.0418	151 1.491 181 2.698 166 2.098 55 1.064 65 1.074 34 1.047 24 1.041 17 1.037 15 1.034 180 2.559 130 1.275 105 1.145 107 1.135 107 1.135 122 1.249 67 1.078
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139	NOBLIS-1 NOBLIS-2 NTECHLAB-0 NTECHLAB-1 NTECHLAB-3 NTECHLAB-3 NTECHLAB-4 NTECHLAB-5 NTECHLAB-6 QUANTASOFT-1 RANKONE-0 RANKONE-1 RANKONE-2 RANKONE-3 RANKONE-4 RANKONE-5 REALNETWORKS-1 REALNETWORKS-1 REALNETWORKS-2 REMARKAI-0	116 2048 147 2048 147 2048 158 4442 161 1736 157 3484 158 1940 159 1940 152 2048 152 2048 153 1940 154 1133 155 11	99 868 30 211 110 535 110 535 110 535 110 535 110 535 110 535 110	135 0.2049 132 0.1565 30 0.0077 60 0.0097 42 0.0051 31 0.0040 30 0.0039 20 0.0034 149 0.9857 108 0.0149 80 0.0149 80 0.0149 107 0.0318 28 0.0072 115 0.0443 111 0.0329 109 0.0320 54 0.0065	135 0.2049 132 0.1565 39 0.0077 90 0.0097 42 0.0051 31 0.0040 30 0.0039 25 0.0034 149 0.9857 108 0.0319 97 0.0194 88 0.0149 107 0.0318 58 0.0072 115 0.0443 111 0.0329 109 0.0320 50 0.0065	1350,2049 1320,1565 590,00077 690,0097 420,0051 310,0040 300,0039 260,0034 1490,9857 1080,0319 970,0194 880,0149 880,0149 1070,0318 580,0072 1150,0443 1111,0329 1190,0320 540,0065	18710.000 1352.390 1321.967 531.038 611.046 331.024 291.019 291.018 181.015 1499.866 1081.188 961.109 901.086 891.086 1071.171 581.042 1111.222 1061.163 1051.159 481.034	150 0.0811 181 0.2512 169 0.1816 53 0.0115 81 0.0139 41 0.0082 28 0.0064 24 0.0059 176 0.2198 133 0.0455 108 0.0247 102 0.0221 101 0.0221 103 0.0426 130 0.0426 130 0.0426 130 0.0426 125 0.0418 60 0.0109	150 0.0811 181 0.2512 169 0.1816 65 0.0115 81 0.0139 41 0.0082 28 0.0064 24 0.0059 176 0.2198 133 0.0455 108 0.0247 102 0.0221 101 0.0221 132 0.0441 65 0.0120 131 0.0426 130 0.0426	150 0.0811 181 0.2512 169 0.1816 53 0.0115 81 0.0139 41 0.0082 28 0.0064 24 0.0059 176 0.2198 133 0.0455 108 0.0247 102 0.0221 101 0.0221 132 0.0441 56 0.0120 139 0.0426 139 0.0426	151.491 1812.698 1662.098 1561.064 651.074 341.047 241.041 171.037 151.034 18012.559 1801.275 1051.145 1021.135 101.135 101.135 1251.249 671.078 1221.222 121.222 121.222
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140	NOBLIS-1 NOBLIS-2 NTECHLAB-0 NTECHLAB-1 NTECHLAB-3 NTECHLAB-4 NTECHLAB-5 NTECHLAB-6 QUANTASOFT-1 RANKONE-0 RANKONE-1 RANKONE-1 RANKONE-2 RANKONE-3 RANKONE-4 RANKONE-5 REALNETWORKS-0 REALNETWORKS-1 REALNETWORKS-1 REALNETWORKS-2 REMARKAI-0 REMARKAI-0	116 2048 140 2048 140 2048 150 4142 151 1736 152 3484 155 3484 155 3484 155 2048 152 228 153 228 153 228 153 248 153 248 153 248 154 228 155 2048 165 218 175 3484 175	197 868 30 211 110 535 156 730 152 405 158 831 158 929 166 771 157 841 17 396 15 113 15 114 18 36 12 94 18 224 18 224 18 224 18 224 18 224 18 224 18 224 18 224 18 224	1350,2049 1320,1565 390,00077 690,0097 420,0051 310,0040 300,0039 290,0034 1490,9857 1080,0319 970,0194 890,0149 1070,0318 80,0072 1150,0443 1110,0329 1090,0320 510,0065 510,0065	135 0.2049 132 0.1565 39 0.0077 69 0.0097 42 0.0051 31 0.0040 20 0.0034 149 0.9857 108 0.0319 79 0.0194 89 0.0149 107 0.0318 88 0.0072 115 0.0443 117 0.0329 109 0.0320 109 0.0320 119 0.0320 119 0.0320 119 0.0320 119 0.0320 119 0.0320 119 0.0320 119 0.0320 119 0.0320	1350,2049 1320,1565 390,00077 690,0097 420,0051 310,0040 300,0039 260,0034 1490,9857 1080,0319 970,01194 880,0149 1070,0318 880,0072 1150,0443 1110,0329 1190,0320 1190,0320 1190,0320 1190,0320 1190,0065	15710.000 1352.390 1321.967 1331.038 611.046 331.024 291.019 271.018 181.015 1499.866 1081.188 961.109 901.086 891.086 1071.171 581.042 1111.222 1061.163 1051.159 481.034 421.031	150 0.0811 181 0.2512 169 0.1816 53 0.0115 81 0.0139 41 0.0082 33 0.0068 28 0.0064 24 0.0059 176 0.2198 133 0.0455 108 0.0247 102 0.0221 101 0.0221 131 0.0426 130 0.0426 130 0.0426 130 0.0426 130 0.0426 130 0.0426 130 0.0426	150 0.0811 181 0.2512 169 0.1816 63 0.0115 81 0.0139 41 0.0082 28 0.0064 24 0.0059 176 0.2198 133 0.0455 108 0.0247 102 0.0221 101 0.0221 132 0.0441 68 0.0120 133 0.0426 125 0.0418 69 0.0109	150 0.0811 181 0.2512 169 0.1816 53 0.0115 81 0.0139 41 0.0082 30 0.0068 28 0.0064 24 0.0059 176 0.2198 133 0.0455 108 0.0247 102 0.0221 101 0.0221 130 0.0426 130 0.0426 130 0.0426 150 0.0426 150 0.0418	151.491 181.2,698 1662.098 1662.098 551.064 651.074 341.047 241.041 171.037 151.034 1802.559 1301.275 1051.145 1021.135 101.135 1221.222 121.222 1201.217 561.065 481.061
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140	NOBLIS-1 NOBLIS-2 NTECHLAB-0 NTECHLAB-1 NTECHLAB-3 NTECHLAB-4 NTECHLAB-5 NTECHLAB-6 QUANTASOFT-1 RANKONE-0 RANKONE-1 RANKONE-2 RANKONE-3 RANKONE-4 RANKONE-5 REALNETWORKS-1 REALNETWORKS-1 REALNETWORKS-2 REMARKAI-0 REMARKAI-2 SENSETIME-0	116 2048 140 2048 140 2048 140 2048 150 4142 151 1736 174 3484 155 3484 155 2484 152 228 153 1940 153 1940 153 1940 155 4100 158 4104 159 4104 158 4104 158 4104	199 868 30 211 110 535 154 631 158 929 154 75 396 6 50 17 136 13 114 4 36 12 94 37 243 37 245 128 615 38 344 162 715	138 0.2049 132 0.1565 39 0.0077 69 0.0097 42 0.0051 31 0.0040 30 0.0039 25 0.0034 149 0.9857 108 0.0149 39 0.0149 30 0.0149 107 0.0318 38 0.0072 115 0.0443 111 0.0329 150 0.0320 150 0.0065 150 0.0062	135 0.2049 132 0.1565 59 0.0077 69 0.0097 42 0.0051 31 0.0040 30 0.0039 25 0.0034 149 0.9857 108 0.0319 97 0.0194 88 0.0149 107 0.0318 88 0.0072 115 0.0443 111 0.0329 150 0.0062 15 0.0062	135 0.2049 132 0.1565 39 0.0077 69 0.0097 42 0.0051 31 0.0040 30 0.0039 26 0.0034 149 0.9857 108 0.0319 97 0.0194 88 0.0149 107 0.0318 58 0.0072 115 0.0443 111 0.0329 159 0.0320 150 0.0065 150 0.0062	15710.000 1352.390 1321.967 531.038 611.046 331.024 2971.019 271.018 181.015 1499.866 1051.1188 961.109 991.086 891.086 1071.171 581.042 1061.163 1051.159 481.034	150 0.0811 181 0.2512 169 0.1816 63 0.0115 81 0.0139 44 0.0082 33 0.0068 24 0.0059 176 0.2198 133 0.0455 108 0.0247 102 0.0221 101 0.0221 131 0.0426 139 0.0426 125 0.0418 60 0.0109 180 0.0109 180 0.0109 180 0.0109 180 0.0109 180 0.0109 180 0.0109 180 0.0109 180 0.0109 180 0.0109 180 0.0109 180 0.0109 180 0.0109 180 0.0109	150 0.0811 181 0.2512 169 0.1816 63 0.0115 81 0.0139 41 0.0082 33 0.0068 228 0.0064 24 0.0059 176 0.2198 133 0.0455 108 0.0247 102 0.0221 101 0.0221 131 0.0426 130 0.0426 125 0.0418 60 0.0109 58 0.0105 16 0.0048	150 0.0811 181 0.2512 169 0.1816 30 0.0115 81 0.0139 41 0.0082 33 0.0068 25 0.0064 24 0.0059 176 0.2198 133 0.0455 108 0.0247 102 0.0221 101 0.0221 131 0.0426 130 0.0426 125 0.0418 60 0.0109 58 0.0105	151 1.491 181 2.698 166 2.098 55 1.064 65 1.074 34 1.047 24 1.041 17 1.037 15 1.034 180 2.559 130 1.275 105 1.145 102 1.135 101 1.135 126 1.249 67 1.078 127 1.222 121 1.222 120 1.217 55 1.065 48 1.061 25 1.040
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140	NOBLIS-1 NOBLIS-2 NTECHLAB-0 NTECHLAB-1 NTECHLAB-3 NTECHLAB-4 NTECHLAB-5 NTECHLAB-6 QUANTASOFT-1 RANKONE-0 RANKONE-1 RANKONE-1 RANKONE-2 RANKONE-3 RANKONE-4 RANKONE-5 REALNETWORKS-0 REALNETWORKS-1 REALNETWORKS-1 REALNETWORKS-2 REMARKAI-0 REMARKAI-0	116 2048 140 2048 140 2048 150 4142 151 1736 152 3484 155 3484 155 3484 155 2048 152 228 153 228 153 228 153 248 153 248 153 248 154 228 155 2048 165 218 175 3484 175	197 868 30 211 110 535 156 730 152 405 158 831 158 929 166 771 157 841 17 396 15 113 15 114 18 36 12 94 18 224 18 224 18 224 18 224 18 224 18 224 18 224 18 224 18 224	1350,2049 1320,1565 390,00077 690,0097 420,0051 310,0040 300,0039 290,0034 1490,9857 1080,0319 970,0194 890,0149 1070,0318 80,0072 1150,0443 1110,0329 1090,0320 510,0065 510,0065	135 0.2049 132 0.1565 39 0.0077 69 0.0097 42 0.0051 31 0.0040 20 0.0034 149 0.9857 108 0.0319 79 0.0194 89 0.0149 107 0.0318 88 0.0072 115 0.0443 117 0.0329 109 0.0320 109 0.0320 119 0.0320 119 0.0320 119 0.0320 119 0.0320 119 0.0320 119 0.0320 119 0.0320 119 0.0320	1350,2049 1320,1565 390,00077 690,0097 420,0051 310,0040 300,0039 260,0034 1490,9857 1080,0319 970,01194 880,0149 1070,0318 880,0072 1150,0443 1110,0329 1190,0320 1190,0320 1190,0320 1190,0320 1190,0065	15710.000 1352.390 1321.967 1331.038 611.046 331.024 291.019 271.018 181.015 1499.866 1081.188 961.109 901.086 891.086 1071.171 581.042 1111.222 1061.163 1051.159 481.034 421.031	150 0.0811 181 0.2512 169 0.1816 53 0.0115 81 0.0139 41 0.0082 33 0.0068 28 0.0064 24 0.0059 176 0.2198 133 0.0455 108 0.0247 102 0.0221 101 0.0221 131 0.0426 130 0.0426 130 0.0426 130 0.0426 130 0.0426 130 0.0426 130 0.0426	150 0.0811 181 0.2512 169 0.1816 63 0.0115 81 0.0139 41 0.0082 28 0.0064 24 0.0059 176 0.2198 133 0.0455 108 0.0247 102 0.0221 101 0.0221 132 0.0441 68 0.0120 133 0.0426 125 0.0418 69 0.0109	150 0.0811 181 0.2512 169 0.1816 53 0.0115 81 0.0139 41 0.0082 30 0.0068 28 0.0064 24 0.0059 176 0.2198 133 0.0455 108 0.0247 102 0.0221 101 0.0221 130 0.0426 130 0.0426 130 0.0426 150 0.0426 150 0.0418	151 1.491 181 2.698 166 2.098 156 1.064 65 1.074 34 1.047 24 1.041 17 1.037 15 1.034 180 2.559 130 1.275 105 1.145 102 1.135 101 1.135 102 1.249 67 1.078 122 1.222 121 1.222 120 1.217 56 1.065 48 1.061

Table 17: Rank-based accuracy for the FRVT 2018 mugshot sets. In columns 3 and 4 are template size and template generation duration. Thereafter values are rank-based FNIR with T = 0 and FPIR = 1. This is appropriate to investigational uses but not those with higher volumes where candidates from all searches would need review. Columns 5 - 9 show FRVT 2018 accuracy for various ranks for galleries unenrolled with all lifetime images. Column 10 is a workload statistic, a small value shows an algorithm front-loads mates into the first 10 candidates. The last four columns gives analogous results for enrollment only of the most recent image - see Figure 8. Throughout, blue superscripts indicate the rank of the algorithm for that column, and the best value is highlighted in yellow.

MI	SSES OUTSIDE RANK R	RESOURCE		ENRO	LL LIFETIME C	ONSOLIDATED	FRVT 2018		NROL MOST RI	ECENT, N = 1.6	м
ш	FNIR(N, T=0, R)			p. 1	n 10	n F0			R=10	R=50	wony 10
#	ALGORITHM	BYTES	MSEC	R=1	R=10	R=50	WORK-10	R=1 166 0.1718			WORK-10
145	SHAMAN-1	¹⁸³ 4096	121 557				190 10.000		166 0.1718	166 0.1718	164 2.078
146	SHAMAN-2	²⁰¹ 8192	¹²² 557	107	127	127	¹⁹⁴ 10.000	¹⁸² 0.2620	¹⁸² 0.2620	¹⁸² 0.2620	¹⁸² 2.710
147	SHAMAN-3	121 2048	156 704	1270.0969	127 0.0969	127 0.0969	128 1.613	155 0.1266	155 0.1266	¹⁵⁵ 0.1266	¹⁶⁰ 1.811
148	SHAMAN-4	130 2048	135 642	134 0.1867	134 0.1867	134 0.1867	¹³⁴ 2.163	178 0.2242	¹⁷⁸ 0.2242	178 0.2242	177 2.431
149	SHAMAN-6	¹⁴⁵ 2048	¹⁵⁷ 706	¹⁰⁶ 0.0312	106 0.0312	106 0.0312	114 1.249	129 0.0424	129 0.0424	129 0.0424	139 1.339
150	shaman-7	114 2048	¹⁵⁹ 709	¹⁰⁵ 0.0310	105 0.0310	105 0.0310	1131.248	128 0.0422	128 0.0422	128 0.0422	138 1.337
151	SIAT-0	⁸⁶ 1096	⁶⁷ 358				¹⁹⁷ 10.000	⁵⁵ 0.0101	⁵⁵ 0.0101	⁵⁵ 0.0101	⁴⁷ 1.059
152	SIAT-1	¹⁴⁹ 2052	188 842	138 0.2639	138 0.2639	138 0.2639	¹⁴⁰ 3.373	10 0.0039	100.0039	10 0.0039	11 1.031
153	SIAT-2	¹⁵³ 2052	¹⁹⁵ 906	1360.2128	1360.2128	136 0.2128	¹³⁷ 2.913	¹¹ 0.0040	¹¹ 0.0040	¹¹ 0.0040	¹³ 1.032
154	SMILART-0	⁷⁵ 1024	²⁰ 168				¹⁹¹ 10.000	170 0.1931	170 0.1931	170 0.1931	169 2.204
155	SMILART-1	⁶⁵ 1024	146 662				¹⁶⁵ 10.000	¹⁷⁵ 0.2188	¹⁷⁵ 0.2188	¹⁷⁵ 0.2188	178 2.435
156	SMILART-2	⁶¹ 1024	123 560				¹⁵⁵ 10,000	¹⁷¹ 0,1946	¹⁷¹ 0,1946	¹⁷¹ 0,1946	¹⁶⁸ 2,196
157	SMILART-4	³⁸ 512	19 ₁₆₇	1470.9531	¹⁴⁷ 0.9531	¹⁴⁷ 0.9531	¹⁴⁷ 9.573	¹⁹⁸ 0.9649	¹⁹⁸ 0.9649	¹⁹⁸ 0.9649	¹⁹⁸ 9.679
158	SMILART-5	126 2048	103 464	0.5001	0.5001	0.5001	178 10.000	0.5015	0.5015	0.5015	²⁰¹ 10.000
159	SYNESIS-0	35 ₅₁₂	³⁶ 237				152 10.000	164 0.1621	164 0.1621	164 0.1621	175 2,380
160	SYNESIS-3	181 4096	13 103	¹³¹ 0.1350	¹³¹ 0.1350	¹³¹ 0.1350	130 1.868	167 0.1721	167 0.1721	167 0.1721	167 2.140
		112 2048		0.1330	0.1330	0.1550					
161	TEVIAN-0		⁷⁵ 394	1			153 10.000	104 0.0225	104 0.0225	104 0.0225	⁹⁹ 1.122
162	TEVIAN-1	146 2048	⁷⁹ 398				²⁰³ 10.000	105 0.0225	105 0.0225	105 0.0225	100 1.122
163	TEVIAN-2	119 2048	⁷⁷ 397	74 -	74 -	74 -	167 10.000	103 0.0224	103 0.0224	103 0.0224	⁹⁸ 1.121
164	TEVIAN-3	129 2048	⁵⁵ 300	⁷⁴ 0.0102	⁷⁴ 0.0102	⁷⁴ 0.0102	⁶⁷ 1.052	80.0169	880.0169	⁸⁸ 0.0169	⁷⁸ 1.093
165	TEVIAN-4	138 ₂₀₄₈	⁵³ 299	600.0080	⁶⁰ 0.0080	60.0080	⁵⁶ 1.041	⁷⁵ 0.0134	⁷⁵ 0.0134	⁷⁵ 0.0134	⁶⁸ 1.076
166	tevian-5	132 2048	86 416	⁴⁴ 0.0053	⁴⁴ 0.0053	⁴⁴ 0.0053	³⁶ 1.028	⁴⁸ 0.0092	⁴⁸ 0.0092	⁴⁸ 0.0092	⁴¹ 1.054
167	TIGER-0	155 2052	⁹³ 428	1170.0480	1170.0480	1170.0480	112 1.247	144 0.0638	144 0.0638	144 0.0638	137 1.334
168	TIGER-1	156 2052	⁷⁸ 398				¹⁸⁹ 10.000				²⁰² 10.000
169	TIGER-2	152 2052	102 464	³⁵ 0.0044	350.0044	³⁵ 0.0044	³¹ 1.023	³⁹ 0.0075	³⁹ 0.0075	³⁹ 0.0075	³² 1.046
170	TIGER-3	¹⁴⁷ 2052	¹⁰¹ 464				158 10.000	³⁸ 0.0075	³⁸ 0.0075	³⁸ 0.0075	³³ 1.046
171	TONGYITRANS-0	¹⁶² 2070	²⁷ 190	⁴⁹ 0.0060	⁴⁹ 0.0060	⁴⁹ 0.0060	⁵⁰ 1.036	⁵³ 0.0095	⁵³ 0.0095	⁵³ 0.0095	⁵⁰ 1.062
172	TONGYITRANS-1	160 ₂₀₇₀	²⁵ 189	800.0114	800.0114	80 0.0114	841.073	⁵² 0,0095	⁵² 0,0095	⁵² 0,0095	⁵¹ 1.062
173	TOSHIBA-0	⁹⁸ 1548	¹⁹⁹ 930	²⁴ 0.0033	²⁴ 0,0033	²⁴ 0,0033	²⁸ 1.018	³² 0,0068	³² 0,0068	³² 0,0068	³¹ 1.046
174	TOSHIBA-1	159 2060	²⁰¹ 931	²⁸ 0.0035	28 0.0035	28 0.0035	30 1.019	34 _{0.0071}	34 0.0071	34 _{0.0071}	³⁶ 1.047
175	VD-0	⁷⁶ 1028	61 337	143 0.4303	143 0.4303	143 0.4303	1.019 143 3.703	192 0.4751	192 0.4751	192 0.4751	191 191 191 191 191
176	VD-0 VD-1	151 2052	153 153 695	102 0.0221	102 0.0221	102 0.0221	102 1.140	115 0.0302	1150.0302	115 0.0302	119 1.197
		93 1544	180 823	0.0221	0.0221	0.0221	1.140 16610.000	0.0302 154 0.1254	154 0.1254	0.0302 154 0.1254	1.197 154 1.712
177	VIGILANTSOLUTIONS-0										
178	VIGILANTSOLUTIONS-1	1582056	¹⁶⁸ 739				²⁰² 10.000	174 0.2038	174 0.2038	174 0.2038	¹⁷⁰ 2.210
179	VIGILANTSOLUTIONS-2	⁹⁵ 1544	177 820	121	121	121	177 10.000	¹⁸⁰ 0.2387	¹⁸⁰ 0.2387	¹⁸⁰ 0.2387	179 2.555
180	VIGILANTSOLUTIONS-3	⁹⁷ 1544	¹⁸⁵ 832	121 0.0549	121 0.0549	121 0.0549	116 1.280	¹⁴⁸ 0.0719	¹⁴⁸ 0.0719	¹⁴⁸ 0.0719	¹⁴² 1.378
181	VIGILANTSOLUTIONS-4	⁹² 1544	¹⁸³ 830	1290.0993	129 0.0993	129 0.0993	124 1.549	156 0.1272	156 0.1272	¹⁵⁶ 0.1272	¹⁵⁵ 1.721
182	VIGILANTSOLUTIONS-5	⁹⁴ 1544	¹⁷³ 778				¹⁶⁹ 10.000	⁶⁷ 0.0118	⁶⁷ 0.0118	⁶⁷ 0.0118	⁶⁰ 1.069
183	VIGILANTSOLUTIONS-6	96 1544	¹⁸⁶ 834				¹⁸¹ 10.000	⁷⁰ 0.0125	⁷⁰ 0.0125	⁷⁰ 0.0125	⁶⁴ 1.072
184	VISIONLABS-3	¹⁴ 256	³⁵ 228	⁴¹ 0.0050	⁴¹ 0.0050	⁴¹ 0.0050	⁵⁷ 1.041	46 0.0089	460.0089	46 0.0089	62 1.072
185	VISIONLABS-4	²⁵ 256	⁵⁷ 315	¹⁴ 0.0020	¹⁴ 0.0020	¹⁴ 0.0020	¹² 1.013	13 0.0044	¹³ 0.0044	13 0.0044	10 1.031
186	VISIONLABS-5	³⁴ 512	⁵⁴ 300	¹² 0.0018	¹² 0.0018	¹² 0.0018	¹¹ 1.012	12 0.0041	12 0.0041	120.0041	91.029
187	VISIONLABS-6	⁴⁰ 512	⁵⁰ 292	90.0015	90.0015	90.0015	¹⁰ 1.011	70.0033	70.0033	70.0033	71.025
188	VISIONLABS-7	³⁹ 512	⁵¹ 293	80.0014	80.0014	80.0014	⁸ 1.010	60.0033	60.0033	60.0033	⁶ 1.025
189	VOCORD-0	⁵⁷ 608	¹¹² 536				¹⁶⁰ 10.000	123 0.0403	1230.0403	123 0.0403	135 1.301
190	VOCORD-1	⁵⁶ 608	¹¹¹ 536				150 10.000	122 0.0402	122 0.0402	122 0.0402	134 1.299
191	VOCORD-2	133 2048	134 635				187 10.000	120 _{0.0382}	120 0.0382	120 0.0382	133 1,290
192	VOCORD-2 VOCORD-3	60 896	161 714	⁵⁵ 0.0067	⁵⁵ 0.0067	⁵⁵ 0.0067	54 1.038	43 0.0085	43 0.0085	43 0.0085	42 1.054
192	VOCORD-3 VOCORD-4	59896	114 538	62 0.0084	62 _{0.0084}	62 0.0084	66 1.051	57 0.0102	57 0.0102	57 0.0102	59 1.068
193	VOCORD-4 VOCORD-5	58768	179 822	46 0.0057	46 0.0057	46 0.0057	51 1.036	49 0.0092	49 0.0092	49 0.0092	54 1.063
194	VOCORD-5 VOCORD-6	²⁰³ 10240	822 181 825	0.005/	0.0037	0.0057	201 10.000	0.0092 2031.0000	0.0092 2031.0000	0.0092 2031.0000	1.063 203 10.000
			0_0	1							
196	YISHENG-0	¹⁶⁸ 2108	127 ₆₁₅	99	99	99	163 10.000	111 0.0268	111 0.0268	111 0.0268	107 1.149
197	yisheng-1	176 3704	⁷⁴ 387	990.0208	⁹⁹ 0.0208	⁹⁹ 0.0208	94 1.105	114 0.0290	114 _{0.0290}	114 _{0.0290}	109 1.156
198	YITU-0	¹⁹¹ 4136	133 633	³⁸ 0.0047	³⁸ 0.0047	38 0.0047	⁴³ 1.031	³⁶ 0.0074	³⁶ 0.0074	³⁶ 0.0074	40 1.053
199	YITU-1	¹⁹⁰ 4136	²⁰⁰ 930	³⁶ 0.0046	³⁶ 0.0046	³⁶ 0.0046	⁴¹ 1.031	³⁵ 0.0072	³⁵ 0.0072	³⁵ 0.0072	³⁸ 1.052
200	YITU-2	¹⁹³ 4138	¹⁹² 870	¹⁰ 0.0015	100.0015	10 0.0015	⁷ 1.010	¹⁴ 0.0044	¹⁴ 0.0044	¹⁴ 0.0044	¹⁶ 1.035
	YITU-3	¹⁹² 4138	¹⁹³ 871	170.0023	170.0023	170.0023	²³ 1.018	¹⁹ 0.0054	¹⁹ 0.0054	¹⁹ 0.0054	²⁹ 1.044
201	1110 5										
201	YITU-4	¹⁶³ 2070	¹⁹⁶ 910	² 0.0011	² 0.0011	² 0.0011	⁵ 1.008	90.0037	90.0037	90.0037	12 1.031

Table 18: Rank-based accuracy for the FRVT 2018 mugshot sets. In columns 3 and 4 are template size and template generation duration. Thereafter values are rank-based FNIR with T = 0 and FPIR = 1. This is appropriate to investigational uses but not those with higher volumes where candidates from all searches would need review. Columns 5 - 9 show FRVT 2018 accuracy for various ranks for galleries unenrolled with all lifetime images. Column 10 is a workload statistic, a small value shows an algorithm front-loads mates into the first 10 candidates. The last four columns gives analogous results for enrollment only of the most recent image - see Figure 8. Throughout, blue superscripts indicate the rank of the algorithm for that column, and the best value is highlighted in yellow.

	ES BELOW THRESHOLD, T		EDITE 2010 -	COLLOTE	ENROL MOST R				ET. DROTTE	ODEC
	NIR(N, T > 0, R > L)		FRVT 2018 MU			ET: WEBCAM PR			ET: PROFILE PR	
#	ALGORITHM	FPIR=0.001	FPIR=0.01	FPIR=0.1	FPIR=0.001	FPIR=0.01	FPIR=0.1	FPIR=0.001	FPIR=0.01	FPIR=0.1
1	3DIVI-0	126 0.256	134 0.160	135 0.086	115 _{0.425}	117 0.302	115 0.180			
2	3DIVI-1	1250.256	135 0.160	136 137 137 137 137 137 137 137 137 137 137						
3	3DIVI-2	121 0.255	136 0.164	137 0.089	131 0 62 6	1330 407	1290.040			
4	3DIVI-3	145 _{0.402} 105 _{0.171}	152 0.284 107 0.096	152 0.168 101 0.047	131 0.626 108 0.343	133 0.497 108 0.237	129 0.343 109 0.138			
5	3divi-4 3divi-5	101 0.169	106 106 106 106 1095	102 102 0.047	106 0.339	107 0.234	108 108 0.137	²⁰ 0.995	²⁵ 0.987	²⁸ 0.961
6 7	3DIVI-6	104 0.170	110 0.098	107 0.051	107 0.342	109 0.238	0.137 110 0.142	0.995	0.987	0.961
		95 _{0.140}	94 0.073	91 _{0.035}	77 _{0.216}	78 0.146	790.087			
9	ALCHERA-0 ALCHERA-1	1980,999	198 0.999	199 0.995	1691.000	169 1.000	161 1.000			
10	ALCHERA-2	1560.490	155 0.304	154 0.184	1.000 128 0.591	1.000	1.000 126 0.295			
11	ALCHERA-3	98 0.159	95 0.073	84 0.030	84 _{0.239}	82 0.152	74 0.081	²⁸ 0.999	²⁷ 0,993	220.921
12	ANKE-0	830.120	89 0.065	87 0.033	79 _{0.220}	80 0.151	82 0.081	18 _{0.991}	24 _{0.985}	29 0.972
13	ANKE-0	89 0.122	88 0.065	88 0.033	78 _{0.220}	81 0.151	81 0.088	0.551	0.983	0.572
14	AWARE-0	1940.983	126 0.128	133 0.085	143 _{0.817}	111 0.253	114 _{0.178}			
15	AWARE-1	1950.996	125 0.127	132 0.081	0.017	0.200	0.170			
16	AWARE-2	192 _{0.977}	122 0.120	130 0.078						
17	AWARE-3	930.131	100 0.085	108 0.051	⁹⁹ 0.298	100 0.204	¹⁰⁷ 0.132			
18	AWARE-4	127 0.271	139 0.177	1440.107	123 _{0.509}	125 _{0.375}	124 0.253			
19	AWARE-5	1390.373	103 0.088	105 0.050	87 _{0.253}	85 _{0.163}	86 _{0.099}	³⁰ 1.000	³³ 0.999	330,998
20	AWARE-6	128 _{0.278}	140 0.178	146 0.109	112 _{0.398}	115 0.283	116 _{0.188}	1.000	0.555	0.,,0
21	AYONIX-0	180 _{0.811}	187 0.725	190 0.598	152 _{0.939}	154 _{0.892}	155 0.802			
22	AYONIX-1	183 _{0.825}	185 _{0.702}	188 0.526	148 _{0.920}	150 0.845	151 0.703			
23	AYONIX-2	182 _{0.825}	186 0.702	187 0.526	149 _{0.920}	149 _{0.845}	150 0.702			
24	CAMVI-1	173 0.684	178 _{0.549}	178 0.375	140 _{0.770}	144 _{0.648}	144 _{0.488}	1		
25	CAMVI-2	160 0.537	164 0.402	161 0.242	0	0.010	3.100			
26	CAMVI-3	⁵⁶ 0.074	830.060	115 0.055	⁴⁶ 0.132	⁶⁹ 0.108	⁸⁵ 0.094			
27	CAMVI-4	570.074	⁷⁹ 0.056	¹⁰⁴ 0.050	⁴⁸ 0.136	⁵⁸ 0.100	⁷⁵ 0.083	²⁶ 0.999	³⁰ 0.994	¹⁵ 0.816
28	CAMVI-5	⁷⁵ 0.102	⁹⁹ 0.078	123 _{0.069}	⁷³ 0.179	⁷⁵ 0.132	⁹⁴ 0.110			
29	COGENT-0	⁴⁵ 0.056	⁵² 0.032	⁶¹ 0.020	⁵¹ 0.140	⁶² 0.100	⁷¹ 0.069			
30	COGENT-1	⁴⁴ 0.056	⁵¹ 0.032	⁶⁰ 0.020	⁵⁰ 0.140	⁶¹ 0.100	⁷⁰ 0.069			
31	COGENT-2	³⁰ 0.047	¹⁹ 0.020	²¹ 0.010	²⁴ 0.098	²⁵ 0.063	²⁸ 0.036	²² 0.997	²⁶ 0.993	³¹ 0.983
32	COGENT-3	³⁶ 0.051	¹⁸ 0.018	¹⁹ 0.009	²⁰ 0.095	²³ 0.061	²⁹ 0.037			
33	COGNITEC-0	⁹⁹ 0.163	¹⁰⁸ 0.098	1110.053	100 _{0.303}	⁹⁸ 0.200	⁹⁷ 0.115			
34	COGNITEC-1	⁷⁷ 0.105	770.055	⁷⁸ 0.027	820.230	⁷⁷ 0.135	⁷² 0.071			
35	COGNITEC-2	⁴⁶ 0.056	⁴² 0.027	³⁹ 0.014	⁷² 0.178	⁶⁴ 0.101	⁵³ 0.050	³¹ 1.000	¹⁵ 0.947	²³ 0.936
36	COGNITEC-3	⁴³ 0.055	⁴⁴ 0.028	⁴¹ 0.014	⁶⁵ 0.162	⁵⁹ 0.100	⁵¹ 0.050			
37	DAHUA-0	67 0.089	⁷⁰ 0.047	⁶⁸ 0.022	⁴⁷ 0.135	⁴⁷ 0.083	⁴⁵ 0.046			
38	DAHUA-1	⁵⁹ 0.075	⁵⁸ 0.039	⁵⁵ 0.018	⁴¹ 0.122	⁴⁰ 0.075	³⁹ 0.042	10 0.953	100.862	13 0.679
39	DERMALOG-0	155 _{0.488}	159 0.364	¹⁶⁰ 0.233	135 _{0.657}	139 0.528	134 0.362			
40	DERMALOG-1	158 0.528	¹⁶⁵ 0.405	¹⁶⁵ 0.268						
41	DERMALOG-2	157 _{0.503}	¹⁶¹ 0.378	¹⁶² 0.244						
42	DERMALOG-3	154 _{0.484}	158 0.362	158 _{0.231}	133 0.655	138 0.526	133 0.361			
43	DERMALOG-4	153 0.481	157 0.360	157 0.230	134 _{0.657}	136 0.526	132 0.359			
44	DERMALOG-5	⁷¹ 0.091	⁶⁴ 0.045	⁷⁴ 0.024	⁵⁷ 0.154	⁵⁶ 0.096	⁵⁸ 0.057			
45	DERMALOG-6	⁴¹ 0.054	⁴⁵ 0.028	⁴⁴ 0.015	²⁷ 0.105	²⁹ 0.067	³³ 0.039	⁸ 0.948	90.856	10 0.642
46	EVERAI-0	⁷³ 0.092	⁷³ 0.047	80 0.028	⁶⁷ 0.170	⁶⁰ 0.100	61 0.060			
47	EVERAI-1	³⁷ 0.052	²⁷ 0.023	²² 0.010	⁴³ 0.128	³⁶ 0.074	³² 0.039			
48	EVERAI-2	³⁸ 0.053	³⁴ 0.025	²⁷ 0.011	⁴⁰ 0.119	⁴¹ 0.076	³⁶ 0.041			
49	EVERAI-3	¹⁷ 0.038	¹⁷ 0.018	¹⁷ 0.008	²¹ 0.096	²¹ 0.060	²² 0.034	¹⁴ 0.979	⁶ 0.535	⁴ 0.247
50	EYEDEA-0	¹⁸¹ 0.812	¹⁸⁴ 0.679	184 0.484	¹⁴⁷ 0.914	147 0.783	¹⁴⁷ 0.619			
51	EYEDEA-1	¹⁶⁸ 0.632	169 0.480	172 0.335						
52	EYEDEA-2	¹⁷⁸ 0.794	172 0.490	174 0.338	125	126	125 -			
53	EYEDEA-3	142 0.389	150 0.267	150 159 159	125 _{0.543}	126 0.404	125 0.264			
54	GLORY-0	138 0.369	154 0.297	159 0.233	126 0.547	130 0.470	138 0.390			
55	GLORY-1	¹³³ 0.307	¹⁴⁷ 0.238	153 0.179	¹²⁴ 0.537	128 0.448	130 0.352			
56	GORILLA-0	1460 105	148 2 2 4 2	1470 404	1180 455	1190 244	1180 404			
57	GORILLA-1	146 0.408	148 0.248	1060.051	118 _{0.453}	90.314	118 0.191	-		
58	GORILLA-2	108 0.190	114 0.108	106 106 124 100 107 107 107 107 107 107 107 107 107	920.268	900.170	840.093	-	-	-
59	GORILLA-3	1770.766	133 0.160	1830.458	117 0.434	110 0.247	¹⁰⁵ 0.131			
60	HBINNO-0	177 0.766 82 0.114	182 0.632	183 0.458	580 4 ==	600.400	640.000			-
61	HIK-0	820.114 870.120	93 0.070	950.040	⁵⁸ 0.155	660.103	⁶⁴ 0.061	-		
62	HIK-1	870.120	91 0.067	90 0.034 89 0.034	1	-		-	-	
63	HIK-2	88 0.121	92 0.067 82 0.000	890.034 850.030	600 150	670.105	630.001	-	-	-
64	HIK-3	⁷⁸ 0.105	82 0.060	85 0.030 82 0.030	60 0.158 560 152	67 0.105 63 0.101	63 0.061 59 0.050	-	-	-
65	HIK-4	74 _{0.101}	80 0.056 23 0.022	820.029 290.011	⁵⁶ 0.153	63 0.101 11 0.048	⁵⁹ 0.059 ¹⁵ 0.028	²⁷ 0.999	²⁹ 0.994	120.00
66	HIK-5	32 0.050	26 0.022	28 0.011	12 0.077	14 _{0.052}	16 0.028	32 1.000	32 0.997	120.662 110.645
67	HIK-6							1.000	0.99/	0.645
68	IDEMIA-0 IDEMIA-1	810.114 400.054	850.062 500.031	81 0.029 54 0.018	⁸⁵ 0.240	⁸³ 0.156	⁷⁸ 0.085	-	-	-
69		42 0.054	530.032	560.019	-			-		-
70	IDEMIA-2	31 _{0.050}	32 0.024	400.019 400.014	⁶⁶ 0,165	⁴³ 0.079	⁵⁴ 0.050	1		-
71	IDEMIA-3									

Table 19: Threshold-based accuracy. Values are FNIR(N, T, L) with N = 1.6 million with thresholds set to produce FPIR = 0.001, 0.01, and 0.1 in non-mate searches. Columns 3-5 apply to FRVT-2018 mugshots: Columns 6-8 show the corresponding FNIR values for webcam images searched against the FRVT-2018 mugshot gallery. Finally, the three rightmost columns show FNIR for profile view images searched against the FRVT-2018 frontal gallery. Throughout blue superscripts indicate the rank of the algorithm for that column. Caution: The Power-low models are mostly intended to draw attention to the kind of behavior, not as a model to be used for prediction.

MISS	ES BELOW THRESHOLD, T				ENROL MOST R	ECENT MUGSHO	OT, N = 1.6M			
	FNIR(N, T> 0 , R >L)	DATASET:	FRVT 2018 MU	GSHOTS	DATAS	ET: WEBCAM PR		DATASI	ET: PROFILE PRO	OBES
#	ALGORITHM	FPIR=0.001	FPIR=0.01	FPIR=0.1	FPIR=0.001	FPIR=0.01	FPIR=0.1	FPIR=0.001	FPIR=0.01	FPIR=0.1
73	IDEMIA-5	²⁶ 0.047	⁴⁶ 0.028	⁴⁹ 0.017	55 0.150	650.102	⁶⁹ 0.065	¹² 0.974	¹⁹ 0.968	²⁷ 0.960
74	IDEMIA-6	²⁴ 0.046	⁴³ 0.028	⁵¹ 0.018	81 0.226	84 0.161	93 _{0.108}			
75	IMAGUS-0	175 0.734	181 0.608	182 0.453	145 0.872	146 0.779	148 0.635			
76 77	IMAGUS-2	176 0.751 179 0.808	179 0.566 183 0.670	179 0.377 186 0.512	142 0.816 146 0.909	143 0.645 148 0.809	142 0.460 149 0.667			
78	IMAGUS-3 INCODE-0	134 0.313	144 _{0.201}	143 0.107	114 _{0.420}	1180.304	117 _{0.191}			
79	INCODE-0 INCODE-1	0.313 114 0.214	0.201 115 0.114	103 0.050	96 0.296	%0.198	95 0.191			
80	INCODE-1 INCODE-2	107 0.186	112 0.102	100 0.046	93 _{0.269}	91 0.176	87 0.100			
81	INCODE-3	103 0.170	101 101 10.086	94 _{0.037}	90 0.264	87 _{0.164}	80 0.087			
82	INNOVATRICS-0	124 0.255	138 _{0.165}	¹³⁹ 0.089	109 0.361	¹¹² 0.258	113 _{0.159}			
83	INNOVATRICS-1	123 0.255	137 _{0.165}	¹³⁸ 0.089						
84	INNOVATRICS-2	120 0.237	132 0.142	¹³¹ 0.079	¹⁰¹ 0.310	¹⁰² 0.209	¹⁰¹ 0.126			
85	INNOVATRICS-3	116 _{0.224}	128 0.134	¹²² 0.068	⁹⁷ 0.297	990.203	⁹⁸ 0.116			
86	INNOVATRICS-4	⁹⁴ 0.134	98 0.076	⁹³ 0.035	⁸⁰ 0.222	⁷⁹ 0.149	⁷⁷ 0.085	¹³ 0.977	¹⁸ 0.966	²⁴ 0.945
87	ISYSTEMS-0	⁷² 0.091	⁶⁹ 0.047	⁷² 0.023	⁶⁹ 0.173	⁷⁰ 0.110	⁶⁷ 0.065			
88	ISYSTEMS-1	⁶⁹ 0.090	⁶⁷ 0.047	710.023						
89	ISYSTEMS-2	⁶² 0.081	550.035	46 0.015	⁴² 0.126	⁴⁵ 0.080	460.046	20	21	21
90	ISYSTEMS-3	⁵² 0.062	⁴⁰ 0.027	³⁶ 0.012	³⁰ 0.107	³¹ 0.068	³¹ 0.039	²⁹ 1.000	³¹ 0.995	²¹ 0.913
91	LOOKMAN-3	²⁵ 0.046	41 0.027	⁵⁰ 0.017	³³ 0.112	⁴⁶ 0.082	⁵⁷ 0.057	16	22	30
92	LOOKMAN-4	²⁸ 0.047	³⁹ 0.027	47 0.016	²⁹ 0.105	³⁸ 0.075	⁵⁶ 0.052	¹⁶ 0.980	²² 0.978	³⁰ 0.977
93	MEGVII-0	80 0.109 58 0.075	81 0.058	77 0.025	35 0.116	³⁰ 0.067	23 0.034			
94 95	MEGVII-1	⁵⁸ 0.075 ⁶¹ 0.080	57 0.039 59 0.039	67 0.022 65 0.022	²³ 0.097 ²² 0.096	220.061 200.059	210.033 200.033	²³ 0.997	⁸ 0.698	⁷ 0.429
96	MEGVII-2 MICROFOCUS-0	188 0.933	192 0.867	194 0.749	158 0.985	157 0.950	158 0.877	-0.997	0.698	0.429
96	MICROFOCUS-0 MICROFOCUS-1	189 0.933	193 0.867	195 0.749	0.983	0.950	0.877			
98	MICROFOCUS-1 MICROFOCUS-2	190 0.934	194 _{0.870}	196 0.758						
99	MICROFOCUS-3	187 0.931	191 0.866	193 0.748	157 0.979	156 _{0.948}	¹⁵⁷ 0.876			
100	MICROFOCUS-4	197 _{0.999}	199 _{0.999}	198 0.994	155 0.975	155 _{0.940}	156 _{0.862}			
101	MICROFOCUS-5	184 0.836	189 _{0.736}	189 _{0.588}	151 0.928	152 _{0.865}	154 _{0.748}			
102	MICROFOCUS-6	¹⁹³ 0.978	¹⁹⁵ 0.963	¹⁹¹ 0.641	150 0.923	¹⁵¹ 0.858	153 0.739			
103	MICROSOFT-0	²¹ 0.044	²² 0.022	²⁵ 0.010	³⁴ 0.115	³³ 0.071	³⁴ 0.040			
104	MICROSOFT-1	²³ 0.045	²⁴ 0.022	²⁶ 0.011						
105	MICROSOFT-2	³⁴ 0.050	³⁶ 0.026	³⁴ 0.012						
106	MICROSOFT-3	¹⁶ 0.030	¹⁶ 0.014	¹² 0.006	¹⁷ 0.091	¹⁸ 0.056	¹⁴ 0.028			
107	MICROSOFT-4	¹³ 0.029	¹⁵ 0.013	10 0.005	¹³ 0.087	¹⁵ 0.053	¹³ 0.026			
108	MICROSOFT-5	¹² 0.028	¹² 0.012	70.005	¹⁰ 0.070	90.041	⁷ 0.021	² 0.338	² 0.188	² 0.123
109	MICROSOFT-6	50.014	50.008	³ 0.004	50.037	50.024	⁴ 0.016	¹ 0.203	¹ 0.148	¹ 0.109
110	NEC-0	⁶³ 0.082	⁷⁴ 0.049	83 0.029	⁵² 0.140	⁵² 0.093	⁶⁰ 0.059			
111	NEC-1	⁷⁹ 0.108	⁸⁷ 0.063	⁹² 0.035	⁷⁵ 0.197	⁷⁶ 0.133	⁷⁶ 0.083			
112	NEC-2	20.005	10.004	10.003	² 0.020 ¹ 0.017	² 0.013	10.010	50.004	50.470	60.240
113	NEC-3	10.004 129 0.295	² 0.004	² 0.003		10.013	² 0.011	50.664	50.479	60.340
114 115	NEUROTECHNOLOGY-0	131 0.299	143 0.196 142 0.195	145 0.108 142 0.105	119 0.465	120 0.317	120 0.196			
116	NEUROTECHNOLOGY-1 NEUROTECHNOLOGY-2	132 _{0.299}	0.195 141 0.195	141 0.105						
117	NEUROTECHNOLOGY-3	172 0.665	1110.101	110 0.052	⁹¹ 0.266	86 0.164	83 0.088			
118	NEUROTECHNOLOGY-4	54 0.066	48 _{0.030}	43 0.014	36 _{0.117}	34 _{0.073}	35 0.040			
119	NEUROTECHNOLOGY-5	⁴⁸ 0.056	35 _{0.025}	33 0.012	44 _{0.130}	³⁷ 0.074	40 0.042	²¹ 0.996	²³ 0.982	²⁵ 0.948
120	NEUROTECHNOLOGY-6	122 0.255	123 0.124	109 0.051	113 _{0.418}	101 0.206	88 0.103			0.7.20
121	NEWLAND-2	150 0.441	¹⁵³ 0.296	¹⁴⁹ 0.157	120 0.466	¹²² 0.335	¹²² 0.213			
122	NOBLIS-1	¹⁹⁹ 1.000	¹⁹⁷ 0.992	¹⁸⁰ 0.419	¹⁹⁹ 1.000	¹⁹⁹ 1.000	¹⁶⁰ 1.000			
123	NOBLIS-2	196 0.997	173 0.490	¹⁶⁹ 0.309	¹⁶⁶ 1.000	¹⁶⁶ 1.000	¹⁴⁶ 0.565	³³ 1.000	³⁴ 1.000	³⁴ 1.000
124	NTECHLAB-0	⁶⁴ 0.083	⁷² 0.047	⁶⁹ 0.023	⁶⁴ 0.162	⁶⁸ 0.105	62 0.061			
125	NTECHLAB-1	⁷⁶ 0.102	⁷⁸ 0.056	⁷⁹ 0.027						
126	NTECHLAB-3	⁴⁷ 0.056	⁴⁹ 0.030	⁴⁵ 0.015	³⁷ 0.118	³⁹ 0.075	⁴¹ 0.043			
127	NTECHLAB-4	²⁰ 0.043	²⁹ 0.024	³² 0.012	²⁸ 0.105	²⁸ 0.065	²⁷ 0.036			
128	NTECHLAB-5	²² 0.045	³⁰ 0.024	³¹ 0.012	²⁶ 0.102	²⁶ 0.063	²⁵ 0.034			
129	NTECHLAB-6	¹⁸ 0.039	²⁰ 0.021	²³ 0.010	¹⁹ 0.094	¹⁹ 0.059	¹⁸ 0.032	⁴ 0.566	⁴ 0.443	⁵ 0.317
130	QUANTASOFT-1	170 0.640	175 0.494	173 0.335	111	116	110			
131	RANKONE-0	115 _{0.219}	127 0.129	129 0.078	¹¹¹ 0.391	¹¹⁶ 0.291	¹¹⁹ 0.195			
132	RANKONE-1	100 0.168	102 0.087	98 0.043	89 0 0 0	950.400	1000 426			
133	RANKONE-2	85 0.120 84 0.120	970.073	970.042 960.042	89 0.261	950.190 930.197	100 0.126			
134	RANKONE-3	84 0.120 109 0.195	960.073 1240.126	96 0.042 125 0.076	88 0.255 116 0.426	930.187 1210.324	990.122 1230.221			
135	RANKONE-4	50 0.062	56 0.036	62 0.021	70 0.173	72 0.119	73 0.074	²⁴ 0.998	²⁸ 0.994	³² 0.988
136	RANKONE-5 REALNETWORKS-0	119 0.236	131 0.140	128 0.077	104 0.319	104 104 10209	103 0.129	0.998	0.994	0.988
137 138	REALNETWORKS-U REALNETWORKS-1	0.236 118 0.236	130 0.140	127 0.077	103 103 0.319	103 103 0.209	102 102 0.129			
138	REALNETWORKS-1 REALNETWORKS-2	117 0.234	129 0.139	126 0.077	102 102 103 15	105 0.209	104 104 0.129			
140	REMARKAI-0	92 0.234	86 0.062	760.025	76 _{0.203}	740.123	660.064			
141	REMARKAI-2	91 _{0.126}	84 0.061	75 0.023	74 _{0.196}	73 0.122	650.063	¹⁵ 0.980	¹⁶ 0.958	¹⁸ 0.878
142	SENSETIME-0	90.023	10 _{0.012}	14 0.007	80.063	80.040	90.025	124 1.000	20 0.971	16 _{0.844}
143	SENSETIME-0	110.025	110.012	15 0.007	90.064	100.041	110.025	1.000	0.7/1	5.011
144	SHAMAN-0	152 0.474	160 0.370	164 0.259	130 _{0.621}	134 0.507	136 0.375			
		0.17 1	0.070	5.207	0.021	0.007	3.0,0			

Table 20: **Threshold-based accuracy**. Values are FNIR(N, T, L) with N = 1.6 million with thresholds set to produce FPIR = 0.001, 0.01, and 0.1 in non-mate searches. Columns 3-5 apply to FRVT-2018 mugshots: Columns 6-8 show the corresponding FNIR values for webcam images searched against the FRVT-2018 mugshot gallery. Finally, the three rightmost columns show FNIR for profile view images searched against the FRVT-2018 frontal gallery. Throughout blue superscripts indicate the rank of the algorithm for that column. Caution: The Power-low models are mostly intended to draw attention to the kind of behavior, not as a model to be used for prediction.

MISS	ES BELOW THRESHOLD, T				ENROL MOST RI	ECENT MUGSHO	OT, N = 1.6M			
	FNIR(N, T > 0, R > L)	DATASET:	FRVT 2018 MU	GSHOTS		ET: WEBCAM PE		DATAS	ET: PROFILE PR	OBES
#	ALGORITHM	FPIR=0.001	FPIR=0.01	FPIR=0.1	FPIR=0.001	FPIR=0.01	FPIR=0.1	FPIR=0.001	FPIR=0.01	FPIR=0.1
145	SHAMAN-1	159 0.532	166 0.406	¹⁶⁷ 0.274						
146	SHAMAN-2	174 _{0.700}	180 _{0,582}	¹⁸¹ 0.424						
147	SHAMAN-3	151 0.453	156 0.348	156 0.225	1290,597	131 0.472	1270,317			
148	SHAMAN-4	165 _{0.616}	171 0.490	176 _{0.344}	1390.754	142 _{0.639}	143 _{0.480}			
149	SHAMAN-6	96 _{0.143}	105 0.095	119 0.060	83 0.237	88 0.168	92 0.108	90.952	¹⁴ 0.935	²⁰ 0.905
150		97 _{0.144}	104 0.094	118 _{0.060}	86 _{0.240}	89 0.169	90.108 900.107	0.932	0.933	0.903
	SHAMAN-7									
151	SIAT-0	⁷⁰ 0.091	⁶⁸ 0.047	⁶⁴ 0.022	³¹ 0.107	²⁷ 0.064	²⁶ 0.035			
152	SIAT-1	60.020	60.009	60.005	110 0.365	123 0.348	¹²⁸ 0.337			
153	SIAT-2	10 0.024	⁷ 0.009	⁵ 0.005	121 0.478	129 0.460	¹⁴¹ 0.451			
154	SMILART-0	166 0.620	170 0.486	170 0.322						
155	SMILART-1	171 0.641	177 0.505	175 0.342						
156	SMILART-2	¹⁶⁷ 0.629	174 0.492	171 0.325						
157	SMILART-4	¹⁹¹ 0.968	196 0.965	¹⁹⁷ 0.964	1560.976	158 0.973	1590.973			
158	SMILART-5									
159	SYNESIS-0	163 _{0,554}	162 0.378	155 _{0,213}	138 _{0.734}	¹⁴¹ 0,598	140 _{0.431}			
160	SYNESIS-3	164 _{0.583}	168 O.444	168 _{0.294}	1320.646	135 _{0.524}	135 _{0.372}			
161	TEVIAN-0	1110,203	117 0.114	1130.054	105 0.331	106 0.227	106 0.132	1	 	
162	TEVIAN-1	1120,203	0.114 118 0.114	114 _{0.054}	0.551	0.227	0.132	1	 	
163	TEVIAN-1	1100.202	0.114 116 0.114	112 0.054						
163	TEVIAN-2 TEVIAN-3	106 106 0.180	109 0.098	99 0.044	⁹⁸ 0.298	⁹⁷ 0.198	⁹⁶ 0.113		 	
		86 _{0.120}	90.066	86 0.031	710.176	71 0.115	68 0.065			
165	TEVIAN-4							70.010	70.001	80.402
166	tevian-5	⁶⁸ 0.090	71 0.047	66 0.022	⁵³ 0.144	⁴⁹ 0.089	500.049	⁷ 0.910	70.661	80.483
167	TIGER-0	¹⁴³ 0.392	¹⁴⁹ 0.263	148 0.142	122 0.500	124 0.366	¹²¹ 0.211			
168	TIGER-1			-0	127 _{0.580}	132 0.487	139 0.396	25	12	
169	TIGER-2	⁶⁶ 0.089	⁶¹ 0.042	⁵³ 0.018	⁶² 0.158	⁵⁵ 0.095	⁴⁹ 0.048	²⁵ 0.998	¹² 0.927	90.503
170	TIGER-3	⁶⁵ 0.089	⁶² 0.042	⁵² 0.018	⁶¹ 0.158	⁵⁴ 0.095	⁴⁸ 0.048			
171	TONGYITRANS-0	⁶⁰ 0.077	60 0.041	⁵⁷ 0.019	³² 0.112	³² 0.069	³⁰ 0.038			
172	TONGYITRANS-1	⁵⁵ 0.069	⁵⁴ 0.035	⁴⁸ 0.016	²⁵ 0.101	²⁴ 0.062	²⁴ 0.034			
173	TOSHIBA-0	⁵³ 0.065	⁴⁷ 0.029	³⁷ 0.013	³⁸ 0.118	³⁵ 0.074	³⁸ 0.041	¹⁷ 0.988	²¹ 0.971	¹⁹ 0.899
174	TOSHIBA-1	⁵¹ 0.062	²¹ 0.021	²⁴ 0.010	¹⁸ 0.092	16 0.054	¹⁹ 0.032			
175	VD-0	¹⁸⁶ 0.917	¹⁹⁰ 0.828	¹⁹² 0.668	153 _{0.946}	153 0.871	152 0.725			
176	VD-1	1130,204	121 _{0.118}	1170,059	94 _{0.281}	⁹⁴ 0.188	⁸⁹ 0.106			
177	VIGILANTSOLUTIONS-0	¹⁶¹ 0.539	163 0.394	¹⁶³ 0.247	137 0.695	¹⁴⁰ 0.557	1370.389			
178	VIGILANTSOLUTIONS-1	169 0.637	176 0,502	177 0.348	0.070	0.000	0.007			
179	VIGILANTSOLUTIONS-2	¹⁸⁵ 0.876	188 0.731	¹⁸⁵ 0.489						
180	VIGILANTSOLUTIONS-3	147 0.410	151 0.283	151 0.163	136 _{0.660}	137 _{0,526}	131 0.356			
181	VIGILANTSOLUTIONS-4	162 _{0,550}	167 0.424	166 0.268	144 _{0.817}	145 0.709	145 0.523			
182	VIGILANTSOLUTIONS-4 VIGILANTSOLUTIONS-5	149 0.433	630.045	70 0.023	0.017	0.709	0.323			
183	VIGILANTSOLUTIONS-6	148 0.426	65 0.046	73 0.023						
					⁴⁹ 0.137	⁵⁰ 0.091	⁵⁵ 0.051			
184	VISIONLABS-3	³⁵ 0.051	³⁷ 0.026	38 _{0.013}	0	0.07.2	0.002			
185	VISIONLABS-4	⁴⁹ 0.060	³⁸ 0.026	²⁰ 0.010	63 0.159	57 0.097	430.045			
186	VISIONLABS-5	³⁹ 0.053	²⁵ 0.022	¹⁸ 0.008	⁵⁴ 0.147	⁴⁸ 0.087	³⁷ 0.041		ļ	
187	VISIONLABS-6	¹⁵ 0.029	¹⁴ 0.012	110.005	¹⁶ 0.090	13 0.051	12 0.025	2	2	
188	VISIONLABS-7	¹⁴ 0.029	¹³ 0.012	90.005	¹⁵ 0.090	¹² 0.051	10 0.025	³ 0.461	³ 0.322	³ 0.198
189	vocord-0	¹⁴⁴ 0.399	¹²⁰ 0.116	121 0.062	⁹⁵ 0.285	⁹² 0.181	⁹¹ 0.108			
190	VOCORD-1	130 0.299	119 _{0.116}	120 0.062						
191	VOCORD-2	137 0.366	113 0.107	1160.057						
192	VOCORD-3	⁹⁰ 0.126	⁷⁵ 0.050	⁵⁹ 0.020	⁵⁹ 0.155	⁵³ 0.093	⁴⁷ 0.048			
193	VOCORD-4	¹⁴⁰ 0.378	⁷⁶ 0.054	⁶³ 0.021	⁶⁸ 0.173	⁵¹ 0.093	⁴⁴ 0.046			
194	VOCORD-5	¹⁰² 0.170	⁶⁶ 0.046	⁵⁸ 0.019	⁴⁵ 0.130	⁴⁴ 0.080	⁴² 0.043	¹⁹ 0.992	13 0.929	¹⁴ 0.787
195	VOCORD-6	²⁰³ 1.000	²⁰³ 1.000	²⁰³ 1.000	²⁰¹ 1.000	²⁰¹ 1.000	²⁰¹ 1.000			
196	YISHENG-0	¹⁴¹ 0.380	146 0.209	¹³⁴ 0.086	1540.974	114 _{0.275}	¹¹² 0.146			
197	YISHENG-1	136 _{0.348}	¹⁴⁵ 0.208	¹⁴⁰ 0.090	141 0.808	113 0.269	¹¹¹ 0.144		1	
198	YITU-0	³³ 0.050	³³ 0.025	³⁵ 0.012	¹⁴ 0.090	¹⁷ 0.054	17 _{0.030}			
	YITU-1	²⁹ 0.047	28 0.023	30 0.012	0.070	0.004	0.000		 	
199			80.011	13 _{0.006}	60.049	60.028	50.016		 	
199 200	YITU-2	0.070								
200	YITU-2 YITU-3	70.020 80.021								
	YITU-2 YITU-3 YITU-4	80.021 30.012	90.011 30.007	160.007 40.004	70.052 30.027	70.033 30.017	⁸ 0.021 ³ 0.011	60.902	¹¹ 0.875	¹⁷ 0.845

Table 21: Threshold-based accuracy. Values are FNIR(N, T, L) with N = 1.6 million with thresholds set to produce FPIR = 0.001, 0.01, and 0.1 in non-mate searches. Columns 3-5 apply to FRVT-2018 mugshots: Columns 6-8 show the corresponding FNIR values for webcam images searched against the FRVT-2018 mugshot gallery. Finally, the three rightmost columns show FNIR for profile view images searched against the FRVT-2018 frontal gallery. Throughout blue superscripts indicate the rank of the algorithm for that column. Caution: The Power-low models are mostly intended to draw attention to the kind of behavior, not as a model to be used for prediction.

RANK ONE MISS RATE, FNIR(N, 0, 1) HIGH T \rightarrow FPIR = 0.01, FNIR(N, T, L) # ALGORITHM FRVT-18 WEBCAM PROFILE WILLD FRVT-18 WEBCAM PROFILE WILLD FRVT-18 WEBCAM PROFILE WILLD 130,014 119,038 62,0074 130,160 117,0302 63,005 64,0074 130,160 117,0302 63,005 64,0074 130,160 117,0302 64,0074 130,160 117,0302 64,0074 130,160 117,0302 64,0074 130,160 117,0302 64,0074 130,160 117,0302 64,0074 130,160 117,0302 64,0074 130,160 117,0302 64,0074 130,160 117,0302 117,0074 117,007	FRVT-18 5 0.003 5 0.003 6 0.003 6 0.002 0.002	N=1.6M WEBCAM 0.007	N=1.6M PROFILE	N=1.1M WILD
# ALGORITHM FRVT-18 WEBCAM PROFILE WILD FRVT-18 WEBCAM PROFILE WILD 1 3DIVI-0	FRVT-18 5 0.003 5 0.003 6 0.003 6 0.002 0.002	WEBCAM		
1 3DIVI-0 1150.034 1110.086 990.071 1340.160 1170.302 630.05 2 3DIVI-1 1190.038 620.074 1350.160 640.07 3 3DIVI-2 1240.040 640.076 1360.164 650.05 4 3DIVI-3 1520.086 1290.206 810.094 1320.284 1330.497 850.15 5 3DIVI-4 900.020 990.062 1190.096 1190.237 66 3DIVI-5 1970.020 990.062 230.894 320.052 1190.095 1190.234 250.987 440.06 7 3DIVI-6 1190.027 1190.074 880.060 1190.098 1190.238 440.06 9 ALCHERA-1 1990.987 1851.000 1190.098 1190.238 1490.00 10 ALCHERA-2 1530.097 1250.166 840.098 1550.304 1220.442 880.15 11 ALCHERA-3 700.013 640.035 150.629 460.064 950.073 80.152 270.993 440.06 11 ALCHERA-1 860.016 660.038 240.897 1120.289 880.065 80.151 240.985 133 ANKE-1 860.016 660.038 1110.284 880.065 810.151 14 AWARE-0 1450.069 1240.059 1250.588 1250.120 1250.588 1250.120 1250.588 1250.120 1250.588 1250.120 1250.588 1250.120 1250.588 1250.120 1250.588 1250.120 1250.588 1250.120 1250.588 1250.120 1250.588 1250.120 1250.588 1250.120 1250.588 1250.120 1250.588 1250.120 1250.588 1150.039 1150.038 1150.039 1220.038 1150.038 1150.039 1220.038 1150.039 1150.0	5 0.003 5 0.003 6 0.003 6 0.002 0.002	-	TROTTLE	
2 3DIVI-1 119,038 620,074 135,0160 640,073 3 3DIVI-2 1230,040 640,076 156,0164 650,005 4 3DIVI-3 152,086 1290,206 810,094 1520,284 133,0497 850,135 5 3DIVI-4 750,020 750,062 230,894 320,052 1050,095 1070,234 250,987 420,06 7 3DIVI-6 11150,027 1050,074 880,060 1150,098 1050,237 250,987 420,06 8 ALCHERA-0 720,019 840,047 770,092 450,073 750,146 550,06 9 ALCHERA-1 1750,987 1551,000 1580,999 1071,000 10 ALCHERA-1 1530,097 1250,166 840,098 1550,304 1220,442 880,151 11 ALCHERA-3 720,013 640,035 150,629 450,064 750,073 850,152 270,993 470,06 11 ALCHERA-1 850,016 670,038 230,897 1120,289 880,065 850,151 240,985 153 ANKE-1 850,016 670,038 1110,284 850,065 850,151 1240,985 155 AWARE-1 1410,059 1230,099 1220,050 1220,120 1120,059 1220,050 122	5 0.003 6 0.003 6 0.002 0.002	0.007	T	
3 3DIVI-2 124 0.040 66 0.076 136 0.164 66 0.076 136 0.164 66 0.076 136 0.164 66 0.076 137 0.164 137 0.084 137 0.084 137 0.084 137 0.084 137 0.084 137 0.084 137 0.084 137 0.084 137 0.084 137 0.084 137 0.084 137 0.084 137 0.084 137 0.084 137 0.084 137 0.084 137 0.085 137 0.084 137 0.085 137	6 0.003 6 0.002 0.002			0.013
4 3DIVI-3 152,0.86 129,0.206 810,0.94 152,0.284 133,0.497 85,0.135 5 3DIVI-4 96,0.202 98,0.062 107,0.96 108,0.237 6 3DIVI-5 97,0.202 95,0.062 220,8.94 32,0.52 106,0.95 107,0.234 25,0.987 42,0.06 7 3DIVI-6 110,0.27 107,0.74 88,0.060 110,0.98 109,0.238 45,0.06 8 ALCHERA-0 92,0.019 84,0.047 77,0.092 94,0.073 78,0.146 55,0.06 9 ALCHERA-1 197,0.987 163,1.000 188,0.999 169,1.000 10 ALCHERA-2 133,0.097 129,0.166 84,0.98 155,0.304 127,0.442 127,0.442 117,0.462 118,0.066 110,0.087 110,0.087 127,0.088 110,0.088 1	6 0.002 0.002	T .		0.013
6 3DIVI-5 "70.020 "50.062 220.894 320.052 1080.095 1070.234 250.987 420.06 7 3DIVI-6 1110,027 1070.074 \$80.060 1100,098 1070.234 250.987 420.06 8 ALCHERA-0 "20.019 840.047 770.092 940.073 780.146 550.08 9 ALCHERA-1 1970.987 1651.000 180.099 1971.000 1971.000 10 ALCHERA-2 133.0097 1250.166 840.098 1550.304 1220.442 840.15 11 ALCHERA-3 70.013 640.035 150.629 460.064 50.073 820.152 270.993 490.06 12 ANKE-0 860.016 670.038 240.897 1120.284 860.055 80.151 240.985 13 ANKE-1 870.016 670.038 1110.284 860.055 810.151 1 14 AWARE-0 1430.064 1220.138 1250.588 1250.127 110.253 1230.58<		0.005		0.009
7 3DIVI-6 110.027 105.0.74 880.060 110.0.098 109.0.238 450.07 8 ALCHERA-0 92.0.19 840.047 770.092 940.073 780.146 550.08 9 ALCHERA-1 1990.987 1891.000 1880.999 1091.000 100 ALCHERA-2 1830.097 1250.166 840.098 150.304 1270.442 840.15 11 ALCHERA-3 72.0.13 640.035 150.629 460.064 950.073 820.152 270.993 490.06 12 ANKE-0 860.016 670.038 240.897 1120.289 870.065 800.151 240.985 13 ANKE-1 870.016 660.038 1110.284 880.065 810.151 14 AWARE-0 1450.064 1220.138 1250.588 1260.128 1110.253 1230.58 15 AWARE-1 1410.059 1240.059 1240.580 1250.127 1210.58 16 AWARE-2 1420.060 1220.120 1220.120 1180.59	9 0.002	0.005		
8 ALCHERA-0		0.005	0.442	0.004
9 ALCHERA-1 1990.987 1631.000 1980.999 1691.000 1691.000 1791.000		0.005		0.004
10		0.014		0.030
11 ALCHERA-3 72 0.013 64 0.035 15 0.629 46 0.064 97 0.073 82 0.152 27 0.993 40 0.061 12 ANKE-0 86 0.016 67 0.038 24 0.897 112 0.289 89 0.065 80 0.151 24 0.885 13 ANKE-1 87 0.016 66 0.038 111 0.284 88 0.065 81 0.151 14 AWARE-0 145 0.064 122 0.138 125 0.588 125 0.128 111 0.253 123 0.58 15 AWARE-1 141 0.059 124 0.580 125 0.128 120 0.58 16 AWARE-2 142 0.060 122 0.120 122 0.120 17 AWARE-3 116 0.033 112 0.090 122 0.503 100 0.085 100 0.204 118 0.56 18 0.064 126 0.064 127 0.068 100 0.0085 100 0.204 118 0.56 18 0.065 100 0.085 100 0.204 118 0.56 18 0.065 100 0.085 100 0.204 118 0.56 18 0.065 100 0.085 100 0.204 118 0.56 19 0.065 100 0.085 100 0.204 118 0.56 10 0.065 100 0.204 118 0.56 10 0.065 100 0.204 118 0.56 10 0.065 100 0.204 118 0.56 10 0.065 100 0.204 118 0.56 10 0.065 100 0.204 118 0.56 10 0.065 100 0.204 118 0.56 10 0.065 100 0.204 118 0.56 10 0.065 100 0.204 118 0.56 10 0.065 100 0.204 118 0.56 10 0.065 100 0.204 118 0.56 10 0.065 100 0.204 118 0.56 10 0.065 100 0.204 118 0.56 10 0.065 100 0.204 118 0.56 10 0.065 100 0.204 118 0.56 10 0.065 100 0.204 118 0.56 10 0.065 100 0.204 118 0.56 10 0.065 100 0.205 100 0.205 10 0.065 100 0.205 100 0.205 10 0.065 100 0.205 100 0.205 10 0.065 100 0.205 100 0.205 10 0.065 100 0.205 100 0.205 10 0.065 100 0.205 100 0.205 10 0.065 100 0.205 100 0.205 10 0.065 100 0.205 100 0.205 10 0.065 100 0.205 100 0.205 10 0.065 100 0.205 100 0.205 10 0.065 100 0.205 100 0.205 10 0.065 100 0.205 100 0.205 10 0.065 100 0.205 100 0.205 10 0.065 100 0.205 100 0.205 10 0.065 100 0.205 100 0.205 10 0.065	0.006 5 0.001	0.013		0.012
12 ANKE-0 \$60.016 \$6''0.038 \$2^40.897 \$12'0.289 \$8''0.065 \$80.151 \$2^40.985 \$13 ANKE-1 \$8''0.016 \$6''0.038 \$111'0.284 \$8''0.065 \$81'0.151 \$14 AWARE-0 \$148''0.064 \$122'0.138 \$125'0.588 \$126'0.128 \$111'0.253 \$123'0.58 \$15''0.127 \$121'0.58 \$128''0.580 \$12''0.127 \$121'0.58 \$128''0.580 \$12''0.127 \$121''0.58 \$128''0.580 \$120''0.127 \$121''0.58 \$128''0.580 \$120''0.127 \$121''0.58 \$120''0.127 \$120''0.127 \$120''0.127 \$120''0.127 \$120''0.127 \$120''0.127		0.002	0.106	0.012
13 ANKE-1 870.016 660.038 1110.284 880.065 810.151 14 AWARE-0 1450.064 1220.138 1250.588 1260.128 1110.253 1230.58 15 AWARE-1 1410.059 1240.580 1250.127 120.127 120.58 16 AWARE-2 1420.060 1220.120 120.120 120.120 17 AWARE-3 1150.033 1120.090 1220.503 100.085 100.204 1180.56	0.000	0.002	0.080	0.012
14 AWARE-0 148 0.064 122 0.138 125 0.588 126 0.128 111 0.253 123 0.56 15 AWARE-1 141 0.059 124 0.580 125 0.127 127 0.58 16 AWARE-2 142 0.060 120 0.20 120 0.20 17 AWARE-3 116 0.033 112 0.090 122 0.503 109 0.085 109 0.204 118 0.56	0.000	0.001	0.000	0.001
15 AWARE-1 141 0.059 124 0.580 125 0.127 121 0.58 16 AWARE-2 142 0.060 122 0.120 122 0.120 17 AWARE-3 116 0.033 112 0.090 122 0.503 100 0.085 100 0.204 118 0.56		0.054		0.143
17 AWARE-3 116 0.033 112 0.090 122 0.503 100 0.085 100 0.204 118 0.50	0.006			0.143
	0.006			0.143
		0.003		0.014
18 AWARE-4 1470.070 1280.176 1390.177 1250.375	0.003	0.003	0.100	0.002
19 AWARE-5 1170.034 980.067 330.979 1230.509 1180.088 850.163 330.999 1190.50 20 AWARE-6 1490.072 1210.128 1400.178 1150.283	8 0.001 0.001	0.002	0.189	0.002
20 AWARE-6 0.072 0.128 0.178 0.283 21 AYONIX-0 1910.452 1570.685 1200.400 1870.725 1540.892 1220.58		0.002	 	0.068
22 AYONIX-1 1870.343 1520.527 1170.334 1850.702 1500.845 1200.55		0.031		0.066
23 AYONIX-2 1860.343 1530.527 1860.702 1490.845	0.010	0.031		5.000
24 CAMVI-1 1790.227 1430.337 960.148 1780.549 1440.648 950.19		0.009		0.058
25 CAMVI-2 160 0.129 91 0.130 164 0.402 90 0.15	7 0.005			0.058
26 CAMVI-3 140 0.054 113 0.090 94 0.139 83 0.060 69 0.108 77 0.13		0.013		0.074
27 CAMVI-4 137 0.049 107 0.077 16 0.640 136 1.000 79 0.056 58 0.100 30 0.994 134 1.00		0.000	0.000	0.000
28 CAMVI-5 1460.067 1170.103 1571.000 990.078 750.132 1561.00		0.000		0.001
29 COGENT-0 74 0.013 82 0.046 78 0.093 52 0.032 62 0.100 72 0.11 30 COGENT-1 73 0.013 81 0.046 51 0.032 61 0.100		0.000		0.000
30 COGENT-1	0.000	0.000	0.000	0.000
32 COGENT-3 270.006 330.021 330.053 180.018 230.061 320.06		0.000	0.000	0.000
33 COGNITEC-0 112 0.028 92 0.059 108 0.098 98 0.200	0.003	0.002		0.000
34 COGNITEC-1 83 0.014 62 0.034 61 0.074 77 0.055 77 0.135 46 0.07		0.002		0.025
35 COGNITEC-2 420.008 490.025 290.941 500.065 420.027 640.101 150.947 280.06	1 0.003	0.002	0.924	0.021
36 COGNITEC-3 450.009 480.025 290.051 440.028 590.100 190.04	9 0.004	0.002		0.012
37 DAHUA-0 640.012 510.026 700.047 470.083	0.004	0.003		
38 DAHUA-1 470.009 440.024 140.590 40.038 580.039 400.075 100.862 80.04		0.002	0.346	0.001
39 DERMALOG-0 1610.131 1330.218 630.075 1590.364 1390.528 690.10 40 DERMALOG-1 1630.156 750.089 1650.405 810.13		0.002		0.020
40 DERMALOG-1 0.136 0.089 0.405 0.13 41 DERMALOG-2 1620.138 660.076 1610.378 70.10				0.020
42 DERMALOG-3 158 0.128 132 0.217 158 0.362 138 0.526	0.003	0.002		0.020
43 DERMALOG-4 157 0.127 131 0.215 53 0.066 157 0.360 136 0.526 61 0.09		0.002		0.013
44 DERMALOG-5 890.017 650.037 520.066 640.045 560.096 380.06	6 0.001	0.002		0.013
45 DERMALOG-6 560.010 470.024 130.517 350.056 450.028 290.067 90.856 260.05		0.006	0.181	0.014
46 EVERAI-0 990.021 690.038 730.047 600.100	0.000	0.000		
47 EVERAI-1 20.006 280.020 1290.928 270.023 360.074 1270.92		0.000		0.000
48 EVERAI-2 220.006 350.022 1130.302 340.025 410.076 1080.30 49 EVERAI-3 150.005 240.019 40.154 50.038 170.018 210.060 60.535 110.04		0.000	0.032	0.001
50 EYEDEA-0 184 0.300 147 0.443 92 0.131 184 0.679 147 0.783 103 0.24		0.000	0.032	0.001
51 EYEDEA-1 1720.198 600.072 1690.480 800.13		0.003		0.008
52 EYEDEA-2 173 0.200 57 0.070 172 0.490 780.13				0.005
53 EYEDEA-3 151 0.082 124 0.148 48 0.064 150 0.267 126 0.404 56 0.09		0.003		0.008
54 GLORY-0 168 0.180 140 0.320 154 0.297 130 0.470	0.011	0.013		
55 GLORY-1 1590.129 1370.267 1140.315 1470.238 1280.448 1100.35		0.013		0.114
56 GORILLA-0 1330,994 130,095 1310,995 130,994 140,005 130,994 140,005 130,994 140,005 130,005 140,005		2.22		0.008
57 GORILLA-1 1430.063 1140.095 370.057 1480.248 1190.314 480.07 58 GORILLA-2 1000.022 790.044 190.045 1140.108 900.170 200.04		0.001		0.007
58 GORILLA-2 0.022 0.044 0.045 0.108 0.170 0.05 59 GORILLA-3 121 0.038 101 0.070 56 0.069 133 0.160 110 0.247 51 0.08		0.001		0.006
60 HBINNO-0 183 0.275 118 0.335 182 0.632 112 0.41		0.001		0.007
61 HIK-0 1070.024 600.033 970.153 930.070 660.103 890.15		0.004		0.027
62 HIK-1 910.017 1010.162 910.067 920.16				0.013
63 HIK-2 90.017 830.094 920.067 680.10	3 0.001			0.008
64 HIK-3 82 0.014 53 0.027 82 0.060 67 0.105	0.000	0.000		
65 HIK-4 80 0.014 52 0.027 42 0.062 80 0.056 63 0.101 47 0.07		0.000	0.005	0.008
66 HIK-5 290.007 160.017 100.371 230.022 110.048 290.994 67 HIK-6 300.007 150.017 110.371 1351.000 260.022 140.052 320.997 1331.00	0.000	0.000	0.000	0.001
67 HIK-6 30.007 150.017 110.371 1351.000 260.022 140.052 520.997 1551.00 68 IDEMIA-0 610.011 630.034 1040.166 850.062 830.156 1070.26		0.000	0.000	0.001
69 IDEMIA-1 650.012 990.157 500.031 970.20		0.000		0.002
70 IDEMIA-2 710.013 1070.198 530.032 1000.24				0.002
71 IDEMIA-3 540.010 610.034 320.024 430.079	0.000	0.000		1
72 IDEMIA-4 500.009 590.032 270.934 270.051 310.024 420.079 170.962 350.06		0.000	0.041	0.003

Table 22: Miss rates by dataset: At left, rank 1 miss rates relevant to investigations; at right, with threshold set to target FPIR = 0.01 for higher volume, low prior, uses. *For the WILD set, FPIR = 0.1 Yellow indicates most accurate algorithm. Throughout blue superscripts indicate the rank of the algorithm for that column.

	INVESTIGATION MODE						IDENTIFICAT	TION MODE		FAILURE TO EXTRACT			
		RANK	ONE MISS R.		, 0, 1)	HIGH	$T \rightarrow FPIR = 0$		N, T, L)		FEAT		
		N=1.6M	N=1.6M	N=1.6M	N=1.1M	N=1.6M	N=1.6M	N=1.6M	N=1.1M	N=1.6M	N=1.6M	N=1.6M	N=1.1M
#	ALGORITHM	FRVT-18	WEBCAM	PROFILE	WILD	FRVT-18	WEBCAM	PROFILE	WILD ⁺	FRVT-18	WEBCAM	PROFILE	WILD
73	IDEMIA-5	590.011	⁷² 0.039	³⁰ 0.943	16 _{0.044}	⁴⁶ 0.028	65 0.102	¹⁹ 0.968	²⁷ 0.055	0.000	0.000	0.041	0.000
74	IDEMIA-6	⁶⁹ 0.012	103 0.072		³¹ 0.052	⁴³ 0.028	84 0.161		³⁹ 0.067	0.000	0.000		0.000
75	IMAGUS-0	¹⁸⁵ 0.305	149 0.482		109 0.222	¹⁸¹ 0.608	146 0.779		109 0.311	0.009	0.013		0.049
76	IMAGUS-2	177 0.222	138 _{0.301}		⁹⁸ 0.154	179 0.566	143 0.645		1050.252	0.004	0.008		0.023
77	IMAGUS-3	188 0.358	150 0.513			¹⁸³ 0.670	148 0.809			0.004	0.008		
78	INCODE-0	139 0.051	1160.100		300.050	144 0.201	118 _{0.304}		300.000	0.001	0.004		0.000
79	INCODE-1	930.019	830.046 850.048		30 0.052	115 0.114	90.198		30 0.062	0.001	0.004		0.009
80	INCODE-2	98 0.020 85 0.015			80.039	1010.102	91 0.176		130.045 120.044	0.000	0.001		0.001
81	INCODE-3	850.015	740.040			101 0.086	87 0.164 112 0.258			0.000	0.001		0.001
82	INNOVATRICS-0	127 0.042 126 0.042	106 0.076		105 0.188 106 0.193	138 0.165 137 0.165	0.258		990.221	0.002	0.008		0.093
83 84	INNOVATRICS-1	1360.048	¹⁰⁴ 0.074		0.193	132 0.142	¹⁰² 0.209		0.221	0.002	0.001		0.093
85	INNOVATRICS-2 INNOVATRICS-3	113 0.029	88 0.055		⁵⁸ 0.071	128 0.134	990.203		⁵² 0.081	0.000	0.001		0.007
86	INNOVATRICS-4	84 0.015	75 0.040	²⁸ 0.940	55 0.067	98 0.076	79 0.149	¹⁸ 0.966	43 0.071	0.000	0.001	0.046	0.007
87	ISYSTEMS-0	770.014	710.038	0.940	103 0.163	69 0.047	70 0.110	0.900	94 0.169	0.003	0.001	0.040	0.065
88	ISYSTEMS-0	76 0.014	0.036		102 0.162	67 0.047	0.110		93 0.169	0.003	0.013		0.065
89	ISYSTEMS-2	440.009	⁵⁰ 0.026		24 0.049	55 0.035	⁴⁵ 0.080		22 0.051	0.003	0.002		0.009
90	ISYSTEMS-3	37 _{0.007}	420.023	¹⁹ 0.718	15 _{0.043}	40 0.027	31 0.068	³¹ 0.995	100.044	0.002	0.002	0.142	0.003
91	LOOKMAN-3	62 0.007	70 _{0.038}	5.710	181 1.000	41 _{0.027}	46 0.082	0.770	0.011	0.002	0.002	V.172	0.000
92	LOOKMAN-3 LOOKMAN-4	660.012	730.039	³² 0.978	1.000 183 1.000	39 0.027	38 0.075	²² 0.978		0.000	0.000	0.000	0.000
93	MEGVII-0	510.009	18 _{0.039}	0.770	410.061	81 0.058	30 0.067	0.270	⁶⁰ 0.094	0.000	0.000	0.000	0.005
93	MEGVII-1	78 0.014	190.017		0.001	570.039	22 0.061		0.074	0.000	0.000		0.003
95	MEGVII-2	790.014	20 0.017	70.275		590.039	200.059	⁸ 0.698		0.002	0.000	0.033	
96	MICROFOCUS-0	195 _{0.597}	161 0.782	0.273	¹¹⁵ 0.316	192 0.867	157 0.950	0.090	¹¹⁵ 0.434	0.002	0.000	0.033	0.065
97	MICROFOCUS-1	196 _{0.597}	0.762		116 _{0.316}	193 0.867	0.930		1160.434	0.005	0.030		0.065
98	MICROFOCUS-2	197 0.627			1190.342	194 0.870			117 0.447	0.005			0.065
99	MICROFOCUS-2	194 0.595	160 0.781		110 0.279	191 0.866	156 _{0,948}		113 0.412	0.003	0.005		0.003
100	MICROFOCUS-4	193 0.577	159 0.758		0.279	199 0.999	155 0.940		0.412	0.001	0.005		0.014
101	MICROFOCUS-5	189 0.426	156 0.601		100 0.158	189 0.736	152 _{0.865}		106 0.261	0.001	0.005		0.011
102	MICROFOCUS-6	190 0.428	155 0.583		95 0.146	195 _{0,963}	151 0.858		102 0.246	0.001	0.005		0.011
103	MICROSOFT-0	²³ 0.006	30 _{0.021}		⁴⁹ 0.065	220.022	33 0.071		³⁷ 0.065	0.000	0.001		0.019
104	MICROSOFT-1	210.006	0.021		44 _{0.062}	24 0.022	0.071		²⁹ 0.061	0.000	0.001		0.019
105	MICROSOFT-2	²⁵ 0.006			45 0.063	36 0.026			³⁴ 0.063	0.000			0.019
106	MICROSOFT-3	40.003	80.012		0.000	16 _{0.014}	¹⁸ 0.056		0.000	0.000	0.001		0.017
107	MICROSOFT-4	² 0.003	70.012		90.039	150.013	15 _{0.053}		90.043	0.000	0.001		0.004
108	MICROSOFT-5	50.003	50.011	10.087	² 0.033	120.012	90.041	² 0.188	⁴ 0.041	0.000	0.001	0.049	0.000
109	MICROSOFT-6	80.003	60.011	² 0.089		50.008	50.024	10.148		0.000	0.001	0.049	
110	NEC-0	⁹⁴ 0.020	⁷⁷ 0.041		134 0.999	⁷⁴ 0.049	⁵² 0.093		132 _{0,999}	0.001	0.002		0.064
111	NEC-1	106 0.024	89 0.056			87 _{0,063}	⁷⁶ 0.133			0.005	0.003		
112	NEC-2	10.003	² 0.009		80 0.093	10.004	² 0.013		⁷¹ 0.107	0.000	0.001		0.025
113	NEC-3	30.003	³ 0.010	60.272	⁷⁴ 0.088	² 0.004	10.013	⁵ 0.479	58 0.092	0.000	0.001	0.041	0.025
114	NEUROTECHNOLOGY-0	138 _{0.050}	¹¹⁸ 0.104		137 1.000	¹⁴³ 0.196	120 0.317		135 1.000	0.004	0.022		0.091
115	NEUROTECHNOLOGY-1	135 _{0.047}			130 0.954	142 0.195			128 0.953	0.001			0.028
116	NEUROTECHNOLOGY-2	134 0.047			131 0.983	141 0.195			129 0.983	0.001			0.028
117	NEUROTECHNOLOGY-3	109 0.025	⁷⁸ 0.042			111 0.101	86 0.164			0.000	0.001		
118	NEUROTECHNOLOGY-4	⁴⁰ 0.008	²⁶ 0.020		⁷⁶ 0.090	⁴⁸ 0.030	³⁴ 0.073		⁷⁴ 0.122	0.000	0.001		0.007
119	NEUROTECHNOLOGY-5	³¹ 0.007	46 0.024	²² 0.854	121 0.408	³⁵ 0.025	³⁷ 0.074	²³ 0.982	114 0.415	0.000	0.000	0.030	0.000
120	NEUROTECHNOLOGY-6	⁹⁵ 0.020	80 0.045		²⁵ 0.050	123 0.124	¹⁰¹ 0.206		³⁶ 0.065	0.000	0.000		0.001
121	NEWLAND-2	150 0.081	119 0.117			153 0.296	122 0.335			0.007	0.012		
122	NOBLIS-1	¹⁸¹ 0.251	¹⁵¹ 0.522		127 0.734	¹⁹⁷ 0.992	¹⁹⁹ 1.000		124 0.744	0.000	0.000		0.000
123	NOBLIS-2	169 0.182	146 0.392	³¹ 0.971		173 0.490	166 1.000	³⁴ 1.000		0.000	0.000	0.000	
124	NTECHLAB-0	⁶³ 0.012	⁵⁸ 0.031		12 0.041	⁷² 0.047	⁶⁸ 0.105		70.043	0.000	0.001		0.005
125	NTECHLAB-1	⁸¹ 0.014			²⁰ 0.045	⁷⁸ 0.056			²¹ 0.049	0.000			0.005
126	NTECHLAB-3	⁴¹ 0.008	³⁹ 0.023			⁴⁹ 0.030	³⁹ 0.075			0.000	0.000		
127	NTECHLAB-4	³³ 0.007	²³ 0.019		¹⁴ 0.043	²⁹ 0.024	²⁸ 0.065		¹⁸ 0.048	0.000	0.000		0.003
128	NTECHLAB-5	²⁸ 0.006	²¹ 0.018		70.038	³⁰ 0.024	²⁶ 0.063		60.042	0.000	0.000		0.000
129	NTECHLAB-6	²⁴ 0.006	¹⁷ 0.017	50.208	⁶ 0.038	²⁰ 0.021	¹⁹ 0.059	⁴ 0.443	50.042	0.000	0.000	0.040	0.000
130	QUANTASOFT-1	176 0.220	158 0.727		126 0.620	175 0.494			125 0.760	0.000	0.000		0.000
131	rankone-0	133 0.045	120 0.117		⁸⁹ 0.114	127 0.129	116 0.291		⁹¹ 0.161	0.000	0.000		0.000
132	RANKONE-1	¹⁰⁸ 0.025			⁶⁸ 0.077	¹⁰² 0.087			⁶⁷ 0.102	0.000			0.000
133	RANKONE-2	¹⁰² 0.022	102 0.071			⁹⁷ 0.073	⁹⁵ 0.190			0.000	0.000		
134	rankone-3	¹⁰¹ 0.022	⁹⁹ 0.068		⁶⁹ 0.078	⁹⁶ 0.073	⁹³ 0.187		⁶² 0.095	0.000	0.000		0.000
135	RANKONE-4	132 0.044	123 0.141		82 0.094	124 0.126	121 0.324		⁷⁵ 0.126	0.000	0.000		0.000
136	RANKONE-5	⁶⁸ 0.012	⁷⁶ 0.041	³⁴ 0.981	³⁹ 0.061	⁵⁶ 0.036	⁷² 0.119	²⁸ 0.994	⁴¹ 0.068	0.000	0.000	0.489	0.000
137	REALNETWORKS-0	131 0.043	110 0.078		65 0.076	131 0.140	¹⁰⁴ 0.209		⁵³ 0.084	0.001	0.000		0.004
138	REALNETWORKS-1	130 0.043	¹⁰⁹ 0.078			130 0.140	¹⁰³ 0.209			0.001	0.000		
139	REALNETWORKS-2	125 0.042	¹⁰⁸ 0.078		132 0.992	129 0.139	¹⁰⁵ 0.209		130 0.992	0.001	0.000		0.000
140	REMARKAI-0	⁶⁰ 0.011	⁵⁷ 0.030			86 0.062	⁷⁴ 0.123			0.000	0.001		
141	REMARKAI-2	⁵⁸ 0.010	⁵⁵ 0.029	¹⁸ 0.708	²³ 0.046	84 0.061	⁷³ 0.122	¹⁶ 0.958	²⁵ 0.052	0.000	0.001	0.017	0.000
142	SENSETIME-0	¹⁶ 0.005	¹³ 0.016	12 0.446		10 0.012	⁸ 0.040	²⁰ 0.971		0.004	0.000	0.042	0.000
142			1 19		30.000	1 11	10		0.704		0.000		0.000
143	SENSETIME-1	170.005 1650.171	120.016 1360.262		³ 0.038 ⁹⁰ 0.115	11 0.012 160 0.370	100.041 1340.507		¹ -0.796 ⁸⁶ 0.146	0.004	0.000		0.000

Table 23: Miss rates by dataset: At left, rank 1 miss rates relevant to investigations; at right, with threshold set to target FPIR = 0.01 for higher volume, low prior, uses. *For the WILD set, FPIR = 0.1 Yellow indicates most accurate algorithm. Throughout blue superscripts indicate the rank of the algorithm for that column.

			INVESTIGAT	TON MODE			IDENTIFICA	TION MODE			FAILURE TO	FXTRACT	
		RANK	ONE MISS R		, 0, 1)	HIGH	$\Gamma \rightarrow FPIR = 0$		N, T, L)		FEAT		
		N=1.6M	N=1.6M	N=1.6M	N=1.1M	N=1.6M	N=1.6M	N=1.6M	N=1.1M	N=1.6M	N=1.6M	N=1.6M	N=1.1M
#	ALGORITHM	FRVT-18	WEBCAM	PROFILE	WILD	FRVT-18	WEBCAM	PROFILE	WILD+	FRVT-18	WEBCAM	PROFILE	WILD
145	SHAMAN-1	166 0.172			88 0.113	166 0.406			88 0.153	0.020			0.043
146	SHAMAN-2	¹⁸² 0.262			93 0.132	180 0.582			96 0.201	0.020			0.043
147	SHAMAN-3	155 _{0.127}	127 0.172		86 0.109	156 _{0,348}	131 0.472		82 0.132	0.020	0.011		0.043
148	SHAMAN-4	178 _{0.224}	139 0.319			171 _{0.490}	¹⁴² 0.639			0.020	0.011		
149	SHAMAN-6	129 0.042	⁹¹ 0.058	²⁶ 0.910		¹⁰⁵ 0.095	88 0.168	140.935		0.020	0.011	0.869	
150	SHAMAN-7	128 0.042	90.057		⁷⁰ 0.078	104 0.094	89 0.169		⁵⁰ 0.079	0.020	0.010		0.029
151	SIAT-0	55 0.010	32 0.021		⁷¹ 0.078	68 0.047	27 0.064		104 0.250	0.000	0.000		0.008
152	SIAT-1	100.004	1420,333		110.040	60,009	123 0.348		30.041	0.000	0.000		0.003
153	SIAT-2	110,004	148 _{0,446}		0.040	70,009	129 0.460		0.041	0.000	0.000		0.003
154	SMILART-0	170 0.193	141 0.325		¹⁹⁶ 1.000	170 0.486	0.400		¹⁹⁶ 1.000	0.008	0.000		0.121
155	SMILART-1	175 0.219	0.323		1.000 154 1.000	177 0.505			1.000 153 1.000	0.008			0.121
		171 0.195			1.000 145 1.000	174 0.492			1.000 144 1.000	0.000			
156	SMILART-2	0.195 198 0.965	¹⁶² 0.974		1.000 128 0.834	0.492 196 0.965	158 0.973		1.000 126 0.833	0.000	0.013		0.048
157 158	SMILART-4 SMILART-5	0.965	0.974		0.834	0.965	0.973		0.833	0.011	0.013		0.039
159	SYNESIS-0	¹⁶⁴ 0.162	¹⁴⁵ 0,361			¹⁶² 0,378	¹⁴¹ 0,598			0.001	0.013		0.081
160	SYNESIS-3	167 0.172	134 _{0.235}		340.05	1170.444	1060.007		44 0 0777	0.006	0.015		0.042
161	TEVIAN-0	104 0.022	⁹⁷ 0.066		340.054	117 0.114	¹⁰⁶ 0.227		44 0.072	0.002	0.005		0.007
162	TEVIAN-1	105 0.022			43 0.062	118 0.114			⁴⁹ 0.078	0.002			0.007
163	TEVIAN-2	103 0.022	8/		⁷⁹ 0.093	116 0.114	07		⁷³ 0.118	0.002			0.008
164	TEVIAN-3	88 0.017	86 0.052		26	¹⁰⁹ 0.098	97 0.198		22	0.001	0.002		
165	TEVIAN-4	⁷⁵ 0.013	⁶⁸ 0.038		²⁶ 0.050	90.066	⁷¹ 0.115		³³ 0.063	0.001	0.002		0.005
166	tevian-5	⁴⁸ 0.009	⁵⁴ 0.028	⁸ 0.329		⁷¹ 0.047	⁴⁹ 0.089	70.661		0.001	0.002	0.116	
167	TIGER-0	144 0.064	115 0.095		¹⁸⁶ 1.000	149 0.263	124 0.366		¹⁸⁵ 1.000	0.000	0.000		0.005
168	TIGER-1		144 0.351				132 0.487			0.000	0.000		
169	TIGER-2	³⁹ 0.008	⁴¹ 0.023	90.355		610.042	⁵⁵ 0.095	120.927		0.000	0.000	0.056	
170	TIGER-3	³⁸ 0.008	⁴⁰ 0.023			62 0.042	⁵⁴ 0.095			0.000	0.000		
171	TONGYITRANS-0	⁵³ 0.010	³⁸ 0.022			⁶⁰ 0.041	³² 0.069			0.003	0.001		
172	TONGYITRANS-1	⁵² 0.010	³⁷ 0.022		87 0.112	⁵⁴ 0.035	²⁴ 0.062		83 0.134	0.003	0.001		0.009
173	TOSHIBA-0	³² 0.007	³⁴ 0.022	¹⁷ 0.689		47 _{0.029}	³⁵ 0.074	²¹ 0.971		0.000	0.000	0.070	0.002
174	TOSHIBA-1	³⁴ 0.007	³⁶ 0.022			²¹ 0.021	¹⁶ 0.054			0.000	0.000		
175	VD-0	192 0.475	154 0.551		108 0.217	¹⁹⁰ 0.828	153 0.871		111 0.362	0.011	0.013		0.026
176	VD-1	115 _{0.030}	87 _{0.053}			121 0.118	940.188			0.005	0.001		0.017
177	VIGILANTSOLUTIONS-0	154 0.125	130 _{0.212}		⁶⁷ 0.076	163 _{0,394}	140 _{0.557}		87 0.152	0.000	0.001		0.003
178	VIGILANTSOLUTIONS-1	174 0.204	0.212		85 0.103	176 _{0,502}	0.007		98 0.209	0.000	0.001		0.003
179	VIGILANTSOLUTIONS-2	180 0.239			47 _{0.064}	188 0.731			76 0.129	0.000			0.003
180	VIGILANTSOLUTIONS-3	148 0.072	125 0.151		51 0.065	151 0.283	137 0,526		⁷⁹ 0.131	0.000	0.001		0.003
181	VIGILANTSOLUTIONS-4	156 0.127	135 0.244		0.003	167 0.424	145 0.709		0.131	0.000	0.001		0.003
182	VIGILANTSOLUTIONS-5	67 0.012	0.244			630.045	0.709			0.000	0.001		
183	VIGILANTSOLUTIONS-6	700.013				650.046				0.000	0.001		
184		46 0.009	⁵⁶ 0.030		²⁸ 0.051	37 _{0.026}	⁵⁰ 0.091		150.046	0.000	0.001		0.014
184	VISIONLABS-3 VISIONLABS-4	130.004	²⁵ 0.020		0.031	38 _{0.026}	57 0.091		0.046	0.002	0.003		0.014
		120.004	²² 0.019		¹³ 0.043	25 _{0.022}	48 0.087		¹⁶ 0.046	0.001	0.001		0.006
186	VISIONLABS-5	70.004	110.019		0.043	14 _{0.012}	13 0.051		0.046				0.006
187	VISIONLABS-6			30 100	10.000			³ 0.322	20.005	0.001	0.001	0.051	0.00*
188	VISIONLABS-7	60.003	1000.015	³ 0.130	10.033	130.012	12 0.051	0.322	² 0.035	0.001	0.001	0.051	0.001
189	VOCORD-0	123 0.040	100 0.068			120 0.116	⁹² 0.181			0.015	0.025		0.019
190	VOCORD-1	122 0.040				119 0.116				0.015			0.018
191	VOCORD-2	120 0.038	45		26	¹¹³ 0.107	52		21	0.015			0.015
192	VOCORD-3	⁴³ 0.008	⁴⁵ 0.024		³⁶ 0.057	⁷⁵ 0.050	⁵³ 0.093		³¹ 0.062	0.001	0.011		0.006
193	VOCORD-4	⁵⁷ 0.010	³¹ 0.021	20	17	⁷⁶ 0.054	⁵¹ 0.093	1.2		0.000	0.000		
194	VOCORD-5	⁴⁹ 0.009	⁴³ 0.023	²⁰ 0.739	¹⁷ 0.044	⁶⁶ 0.046	⁴⁴ 0.080	¹³ 0.929	¹⁴ 0.045	0.001	0.009	0.554	0.003
195	VOCORD-6	²⁰³ 1.000	²⁰¹ 1.000			²⁰³ 1.000	²⁰¹ 1.000			0.001	0.009		
196	yisheng-0	111 0.027	⁹³ 0.060		⁵⁴ 0.067	¹⁴⁶ 0.209	114 0.275		⁶⁶ 0.100	0.002	0.005		0.014
197	YISHENG-1	114 0.029	⁹⁴ 0.060		40 0.061	¹⁴⁵ 0.208	113 0.269		⁵⁴ 0.087	0.002	0.005		0.014
198	YITU-0	³⁶ 0.007	²⁹ 0.020		⁷³ 0.086	³³ 0.025	17 0.054		⁵⁹ 0.094	0.003	0.001		0.026
199	YITU-1	³⁵ 0.007			⁷² 0.086	²⁸ 0.023			⁵⁷ 0.092	0.003			0.026
200	YITU-2	¹⁴ 0.004	⁴ 0.010		²² 0.046	⁸ 0.011	60.028		²⁴ 0.051	0.000	0.000		0.000
201	YITU-3	¹⁹ 0.005	¹⁴ 0.016			90.011	70.033			0.003	0.001		
202	YITU-4	90,004	10,008	²¹ 0.831	¹⁸ 0.044	³ 0.007	³ 0.017	110,875	17 _{0.047}	0.000	0.000	0.000	0.006
203	YITU-5	18 _{0.005}	90.014		0.011	40.007	40.023	0.0.0	0.027	0.003	0.001	5.550	5.550
_50		3.000	3.011			3.007	5.025			5.005	5.001		

Table 24: Miss rates by dataset: At left, rank 1 miss rates relevant to investigations; at right, with threshold set to target FPIR = 0.01 for higher volume, low prior, uses. ⁺For the WILD set, FPIR = 0.1 Yellow indicates most accurate algorithm. Throughout blue superscripts indicate the rank of the algorithm for that column.

N	IISSES OUTSIDE RANK R				MUGSHOT SEAR	CHES, N = 1.61			
	ENID(N. T. D)			ATION MODE, $T = 0$				ON MODE, T > 0 FOR FPIR	= 0.001
	FNIR(N, T, R)	WITH	PROPORTIC OUT THE MATE	ON MATED SEARCHES WITH NO MATE	WITH K-TH MATE	WIT	РКОРО Н ТНЕ МАТЕ	ORTION MATED SEARCHES WITHOUT ANY MATE	WITHOUT ALL MATES
	GALLERY	A	t rank 1	at rank 1	NOT IN TOP K	BELOV	V THRESHOLD	ABOVE THRESH	ABOVE THRESH
		RECENT	CONSOLIDATED		OLIDATED	RECENT	CONSOLIDATED		OLIDATED
1	3DIVI-5	⁴⁹ 0.0202	⁴³ 0.0133	⁴⁶ 0.0133	⁴⁸ 0.0449	⁴⁸ 0.1691	⁴⁶ 0.1339	⁴⁸ 0.1339	⁴⁹ 0.3186
2	3DIVI-6	⁵² 0.0265	⁴⁶ 0.0186	⁵¹ 0.0172	⁴⁷ 0.0410	⁵¹ 0.1705	⁴⁷ 0.1345	⁴⁹ 0.1350	⁴⁸ 0.3160
3	ALCHERA-2	640.0973	⁵⁷ 0.0914	63 0.0734	63 0.1876	⁶⁴ 0.4899	⁵⁷ 0.3736	630.4418	63 0.6820
5	ANKE-0 ANKE-1	450.0158 460.0158	³⁹ 0.0100 ⁴⁰ 0.0101	⁴³ 0.0100 ⁴⁴ 0.0101	⁴⁵ 0.0338 ⁴⁴ 0.0337	⁴¹ 0.1199 ⁴² 0.1218	³⁸ 0.0989 ⁴⁰ 0.1001	⁴² 0.0989 ⁴⁴ 0.1001	⁴² 0.2558 ⁴³ 0.2581
6	AWARE-5	54 0.0337	47 _{0.0208}	530.0230	57 _{0.0740}	60 0.3729	⁵⁶ 0.2984	600.3777	61 0.6534
7	AWARE 5	62 0.0722	⁵⁶ 0.0538	60 0.0538	61 _{0.1551}	58 0.2779	53 0.2419	⁵⁸ 0.2465	⁵⁸ 0.5140
8	AYONIX-1	700.3432	⁶² 0.3364	⁶⁷ 0.2841	⁶⁸ 0.4764	⁶⁸ 0.8247	⁶¹ 0.8533	⁶⁶ 0.7935	⁶⁶ 0.9037
9	AYONIX-2	⁶⁹ 0.3432	⁶¹ 0.2606	⁶⁸ 0.2841	⁶⁷ 0.4763	67 0.8246	⁵⁹ 0.8038	⁶⁵ 0.7933	⁶⁵ 0.9036
10	CAMVI-4	⁶⁰ 0.0490	⁵⁴ 0.0326	⁵⁹ 0.0469	⁴⁹ 0.0475	³¹ 0.0741	²⁷ 0.0505	³⁴ 0.0661	¹⁶ 0.1105
11	CAMVI-5	610.0673	⁵⁵ 0.0458	⁶² 0.0633	⁵⁶ 0.0638	40 0.1020	³⁶ 0.0727	⁴⁰ 0.0922	²⁹ 0.1513
12	COGENT-2	140.0062	12 0.0027	120.0027	120.0086	190.0475	120.0299 170.0241	¹⁹ 0.0391	²⁰ 0.1275
13	COGENT-3	¹⁵ 0.0064 ²⁵ 0.0083	18 0.0037 22 0.0044	130.0029 230.0043	¹³ 0.0091 ²⁴ 0.0145	²¹ 0.0515 ²⁵ 0.0560	17 0.0341 22 0.0401	²⁷ 0.0450 ²² 0.0400	²⁸ 0.1448 ²⁵ 0.1342
14 15	COGNITEC-2 COGNITEC-3	26 _{0.0088}	0.0044 24 0.0048	26 _{0.0048}	0.0145 250.0148	24 0.0555	21 0.0397	0.0400 21 _{0.0397}	0.1342 240.1322
16	DAHUA-0	35 _{0.0115}	32 _{0.0070}	36 _{0.0072}	34 _{0.0204}	37 _{0.0891}	32 _{0.0624}	35 _{0.0691}	³⁶ 0.1967
17	DAHUA-1	270.0089	²⁵ 0.0049	270.0052	²⁷ 0.0173	³³ 0.0755	²⁸ 0.0521	³⁰ 0.0577	³³ 0.1738
18	DERMALOG-5	⁴⁷ 0.0171	⁴¹ 0.0113	⁴⁸ 0.0139	⁴¹ 0.0254	³⁹ 0.0909	³³ 0.0649	³⁸ 0.0767	³⁹ 0.2072
19	DERMALOG-6	³⁰ 0.0102	²⁸ 0.0060	³⁰ 0.0061	¹⁹ 0.0119	²³ 0.0542	²⁰ 0.0383	²⁴ 0.0416	²¹ 0.1280
20	EVERAI-2	¹² 0.0058	¹³ 0.0029	¹⁵ 0.0032	¹⁵ 0.0099	²² 0.0526	¹⁹ 0.0370	²³ 0.0410	²³ 0.1312
21	EVERAI-3	80.0047	110.0023	110.0024	¹¹ 0.0073	110.0377	¹¹ 0.0256	¹¹ 0.0285	¹¹ 0.0978
22	GORILLA-2	510.0220 550.0284	44 0.0137 49 0.0245	⁵⁰ 0.0153 ⁵⁵ 0.0283	⁵⁵ 0.0570 ⁶⁰ 0.1032	⁵³ 0.1902 ⁵⁹ 0.3260	⁴⁹ 0.1379 ⁵⁵ 0.2730	⁵² 0.1537 ⁵⁹ 0.3043	⁵² 0.3589 ⁵⁹ 0.5786
23	GORILLA-3 HIK-5	⁵⁵ 0.0384	0.0245	20 0.0283 20 0.0037	23 0.0140	17 _{0.0467}	0.2730	18 _{0.0364}	18 0.1228
25	HIK-5	180.0067	¹⁶ 0.0034	190.0037	220.0140	20 20 0.0500	¹⁶ 0.0324	200.0392	22 0.1310
26	IDEMIA-5	32 0.0107	²⁹ 0.0062	³² 0.0064	³³ 0.0192	16 0.0465	15 _{0.0319}	17 _{0.0348}	17 _{0.1125}
27	IDEMIA-6	³⁹ 0.0122	³³ 0.0071	³⁸ 0.0076	³² 0.0188	14 _{0.0458}	¹⁴ 0.0316	¹⁴ 0.0342	¹³ 0.1032
28	INCODE-2	500.0203	⁴² 0.0120	⁴⁷ 0.0137	⁵⁰ 0.0480	⁵² 0.1861	⁴⁸ 0.1360	⁵¹ 0.1507	⁵¹ 0.3500
29	INCODE-3	⁴⁴ 0.0153	³⁶ 0.0088	⁴⁵ 0.0103	⁴⁶ 0.0368	⁵⁰ 0.1703	⁴⁵ 0.1227	⁵⁰ 0.1388	⁵⁰ 0.3290
30	INNOVATRICS-4	⁴³ 0.0149	³⁵ 0.0081	⁴⁰ 0.0081	⁴³ 0.0293	⁴⁵ 0.1340	³⁷ 0.0928	⁴¹ 0.0927	⁴¹ 0.2479
31	ISYSTEMS-3	²² 0.0075	²⁰ 0.0040	²² 0.0041	¹⁶ 0.0106	²⁹ 0.0620	²³ 0.0402	²⁸ 0.0500	³⁰ 0.1519
32	LOOKMAN-3	340.0114	³⁷ 0.0089	340.0067	¹⁷ 0.0109	150.0463	²⁵ 0.0425	¹³ 0.0338	¹² 0.1015
33	LOOKMAN-4 MEGVII-1	³⁶ 0.0117 ⁴¹ 0.0137	³⁸ 0.0091	³⁵ 0.0072 ⁴¹ 0.0096	²¹ 0.0134 ³⁶ 0.0231	¹⁸ 0.0472 ³² 0.0746	²⁴ 0.0417	¹⁵ 0.0346 ³¹ 0.0577	¹⁴ 0.1086 ³² 0.1688
35	MEGVII-1 MEGVII-2	420.0137		420.0097	380.0236	340.0796		330.0623	³⁴ 0.1810
36	MICROFOCUS-5	710.4257	630,3701	690.3701	690,5522	690.8361	⁶³ 0.9835	67 _{0.8139}	67 0.9189
37	MICROFOCUS-6	⁷² 0.4283	⁶⁴ 0.3732	⁷⁰ 0.3732	⁷⁰ 0.5566	⁷¹ 0.9780	⁶⁰ 0.8195	⁶⁸ 0.8195	⁶⁸ 0.9215
38	MICROSOFT-5	³ 0.0033	³ 0.0013	60.0015	¹⁰ 0.0062	80.0279	⁷ 0.0171	⁷ 0.0193	90.0755
39	MICROSOFT-6	60.0033	50.0014	⁷ 0.0015	90.0060	50.0141	⁵ 0.0080	¹⁰ 0.0213	¹⁰ 0.0772
40	NEC-2	10.0028	² 0.0011	10.0008	¹ 0.0019	20.0047	20.0024	10.0021	² 0.0086
41	NEC-3	² 0.0031	40.0013	² 0.0010	² 0.0019	10.0044	10.0021	² 0.0022	10.0080
42	NEUROTECHNOLOGY-5	190.0068 480.0201	²¹ 0.0042 ⁴⁵ 0.0153	140.0032 490.0142	¹⁴ 0.0094 ⁵² 0.0534	²⁶ 0.0564 ⁵⁷ 0.2555	²⁹ 0.0527 ⁵⁴ 0.2695	²⁵ 0.0438 ⁵⁷ 0.2125	²⁶ 0.1364 ⁵⁷ 0.4458
44	NEUROTECHNOLOGY-6 NEWLAND-2	630.0811	0.0133	61 _{0.0599}	62 _{0.1562}	630.4405	0.2093	61 _{0.3790}	60 0.6252
45	NOBLIS-1	680.2512	⁶⁰ 0.2049	65 _{0,2032}	65 _{0.3631}	730,9996	⁶⁶ 0.9998	72 _{0.9994}	72 _{0.9997}
46	NOBLIS-2	660.1816	⁵⁹ 0.1565	⁶⁶ 0.2517	⁶⁶ 0.3944	⁷² 0.9974	⁶⁵ 0.9959	⁷¹ 0.9967	⁷¹ 0.9987
47	NTECHLAB-5	¹⁶ 0.0064	¹⁹ 0.0039	²¹ 0.0039	³⁰ 0.0179	130.0448	¹⁸ 0.0347	¹⁶ 0.0347	¹⁹ 0.1235
48	NTECHLAB-6	¹³ 0.0059	¹⁵ 0.0034	¹⁷ 0.0034	²⁶ 0.0154	120.0391	¹³ 0.0301	¹² 0.0301	¹⁵ 0.1088
49	QUANTASOFT-1	67 0.2198	⁶⁶ 0.9857	⁷¹ 0.9426	⁷¹ 0.9502	⁶⁶ 0.6399	⁶⁴ 0.9915	⁶⁹ 0.9640	⁷⁰ 0.9801
50	RANKONE-4	⁵⁹ 0.0441	52 0.0318	⁵⁸ 0.0318	⁵⁹ 0.0945	540.1951	⁵⁰ 0.1545	⁵³ 0.1545	⁵³ 0.3590
51	RANKONE-5	³⁸ 0.0120	³⁴ 0.0072	³⁷ 0.0072	³⁹ 0.0237	27 0.0617 560 2241	²⁶ 0.0447	²⁶ 0.0447	²⁷ 0.1404
52	REALNETWORKS-2	³³ 0.0109	31 0.0065	33 0.0065	400.0238	³⁶ 0.2341 ⁴⁴ 0.1301	⁵² 0.2049 ⁴¹ 0.1020	³⁶ 0.1775 ⁴⁵ 0.1020	³⁶ 0.3949 ⁴⁷ 0.2671
53	REMARKAI-0 REMARKAI-2	31 _{0.0105}	30 0.0062	31 _{0.0062}	37 _{0.0235}	0.1301 430.1264	³⁹ 0.0991	43 0.0991	0.26/1 440.2615
55	SENSETIME-0	90.0048	90.0018	90.0018	40.0037	60.0234	60.0165	⁵ 0.0168	50.0603
56	SENSETIME-1	100.0048	80.0018	80.0018	⁷ 0.0041	70.0245	80.0175	60.0177	⁶ 0.0628
57	SHAMAN-6	⁵⁸ 0.0424	⁵¹ 0.0312	⁵⁷ 0.0312	⁵³ 0.0542	⁴⁶ 0.1432	⁴³ 0.1109	⁴⁶ 0.1109	⁴⁶ 0.2629
58	shaman-7	⁵⁷ 0.0422	⁵⁰ 0.0310	⁵⁶ 0.0310	⁵¹ 0.0529	⁴⁷ 0.1436	⁴⁴ 0.1112	⁴⁷ 0.1112	⁴⁵ 0.2624
59	SMILART-4	⁷³ 0.9649	⁶⁵ 0.9531	⁷² 0.9722	⁷² 0.9738	⁷⁰ 0.9683	⁶² 0.9569	⁷⁰ 0.9740	⁶⁹ 0.9781
60	SYNESIS-3	65 _{0.1721}	⁵⁸ 0.1350	64 _{0.1350}	⁶⁴ 0.2571	⁶⁵ 0.5832	⁵⁸ 0.5296	⁶⁴ 0.5295	⁶⁴ 0.7459
61	TEVIAN-5	280.0092	²⁶ 0.0053	²⁹ 0.0058	³⁵ 0.0213	³⁸ 0.0898	³⁴ 0.0667	³⁹ 0.0770	⁴⁰ 0.2079
62	TIGER-2	24 0.0075	230.0044	²⁵ 0.0044	²⁹ 0.0177 ²⁸ 0.0177	³⁶ 0.0888	³⁵ 0.0698	³⁶ 0.0698	³⁸ 0.2016
63	TIGER-3 TOSHIBA-0	²³ 0.0075 ²⁰ 0.0068	¹⁴ 0.0033	240.0044 160.0033	180.0110	³⁵ 0.0888 ³⁰ 0.0648	³⁰ 0.0529	³⁷ 0.0698 ²⁹ 0.0529	³⁷ 0.2015 ³¹ 0.1599
65	TOSHIBA-0 TOSHIBA-1	210.0068 210.0071	17 0.0035	18 _{0.0035}	²⁰ 0.0110	28 0.0648	31 0.0596	³² 0.0585	³⁵ 0.1819
66	VD-1	530.0302	48 _{0.0221}	520.0221	54 _{0.0560}	55 0.2036	51 0.1654	54 _{0.1658}	54 _{0.3657}
67	VIGILANTSOLUTIONS-5	37 _{0.0118}	0.0221	0.0221	0.0000	62 0.4327	0.1004	0.1000	0.0007
68	VIGILANTSOLUTIONS-6	40 0.0125		³⁹ 0.0077	⁴² 0.0258	61 0.4260		⁶² 0.4155	⁶² 0.6577
69	VISIONLABS-6	50.0033	⁷ 0.0015	⁵ 0.0015	⁶ 0.0040	¹⁰ 0.0289	¹⁰ 0.0185	⁹ 0.0201	⁸ 0.0737
70	VISIONLABS-7	40.0033	⁶ 0.0014	⁴ 0.0014	50.0039	90.0289	90.0185	⁸ 0.0201	⁷ 0.0737
71	VOCORD-5	²⁹ 0.0092	²⁷ 0.0057	²⁸ 0.0054	³¹ 0.0182	⁴⁹ 0.1697	⁴² 0.1076	⁵⁵ 0.1717	⁵⁵ 0.3775
72	YITU-4	0.0037	10.0011	³ 0.0012	30.0033	30.0123	³ 0.0074	³ 0.0080	³ 0.0337
73	YITU-5	110.0048	10 0.0020	¹⁰ 0.0020	80.0041	40.0128	⁴ 0.0076	40.0088	⁴ 0.0350

Table 25: Comparing enrollment styles for the FRVT 2018 mugshot sets. Consolidated refers to enrollment of all lifetime images in one template Unconsolidated refers to enrollment of those images separately under different identifiers. Columns 3 - 6 values are FNIR at rank 1 and with T = 0. Columns 7 - 10 values are high threshold FNIR. Throughout, blue superscripts indicate the rank of the algorithm for that column, and the best three values are highlighted in yellow and green.

61

2019/09/11 17:24:52 FNIR(N, R, T) = FPIR(N, T) = False neg. identification rate False pos. identification rate N = Num. enrolled subjects R = Num. candidates examined T = Threshold

$$\begin{split} T &= 0 \rightarrow Investigation \\ T &> 0 \rightarrow Identification \end{split}$$

Figure 19: [Mugshot Dataset] Error rate reductions in 2018. For each FRVT2018 participant, the plot shows accuracy gains between Phase 1 (Feb 2018), Phase 2 (Jun 2018) and Phase 3 (Nov 2018) according to two metrics: rank one miss rate, FNIR(N, 1, 0), and high threshold, FNIR(N, L, T), with T set to achieve FPIR = 0.003. The text "Red=" gives the best reduction multiplier for the given metric on the recent enrollment strategy - a smaller value is better.

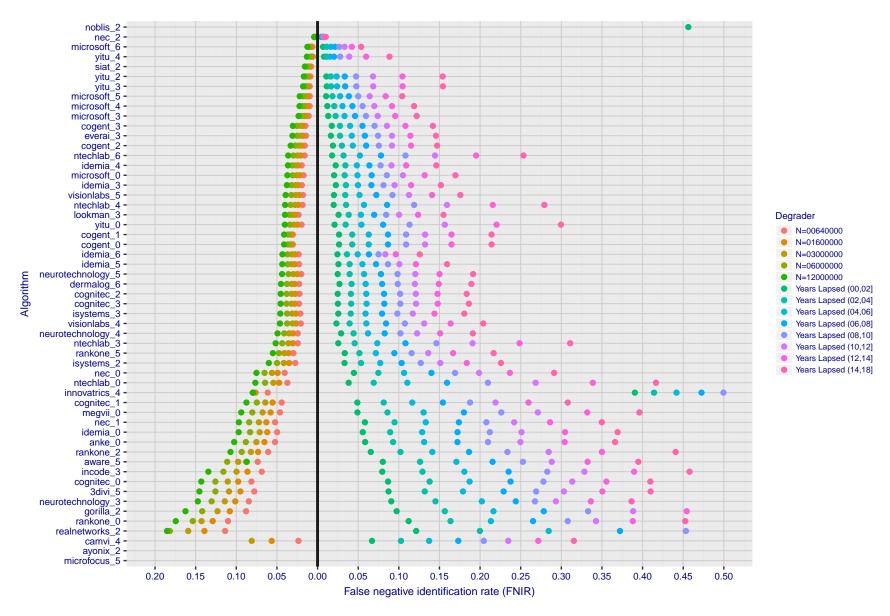


Figure 20: **[FRVT-2018 Mugshot Ageing Dataset] Contrast of ageing and population size dependency.** The Figure shows, at left, the dependence FNIR(N) for the FRVT-2018, as tabulated in Table 12. At right, is FNIR(N = $3\,000\,000$, ΔT) from Figure 62. Ageing miss rates are computed over all searches binned by number of years between search and initial enrollment. In all cases, FPIR = 0.01.

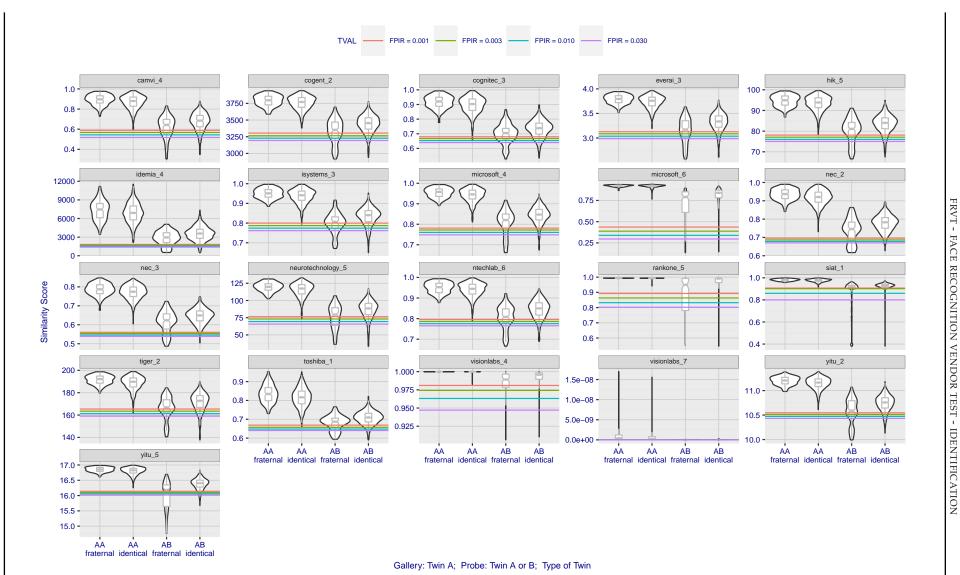


Figure 21: [Twins Dataset] High scores from twins. The Figure shows native similarity scores from searches into a dataset of $N = 640\,000$ background mugshot images plus 104 portrait images, one from each of one of a pair of twins. Two distributions of scores are plotted for each of monozygotic (identical) and dizygotic (fraternal) twins. The first distribution ("AA") shows the mate score from Twin A against their own enrollment. The second ("AB") shows scores from searches of Twin B against the Twin A enrollment: As these are non-mate scores they should be below the various thresholds shown as horizontal lines. That they usually are not is an indication that twins produce very high non-mate scores. Note in theory half of dizygotic (fraternal) twins are different sex. In the sample used here some fraternal twins are correctly rejected.

Appendices

Appendix A Accuracy on large-population FRVT 2018 mugshots

 $\begin{aligned} FNIR(N,R,T) = & False \ neg. \ identification \ rate & N=Num. \ enrolled \ subjects \\ FPIR(N,T) = & False \ pos. \ identification \ rate & R=Num. \ candidates \ examined \end{aligned}$

2019/09/11 17:24:52

T = Threshold

$$\begin{split} T &= 0 \rightarrow \text{Investigation} \\ T &> 0 \rightarrow \text{Identification} \end{split}$$

2019/09/11 17:24:52

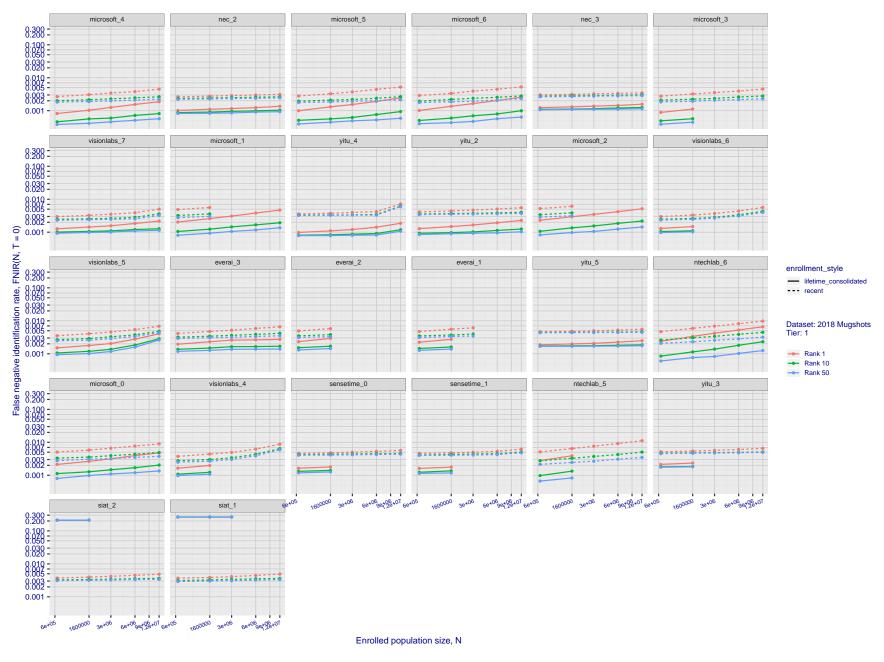


Figure 22: **[FRVT-2018 Mugshot Dataset] Rank-based identification miss rates vs. number of enrolled subjects**. The figure shows false negative identification rates, FNIR(N, R), across various gallery sizes and ranks 1, 10 and 50. The threshold is set to zero, so this metric rewards even weak scoring rank 1 mates. This also means FPIR = 1, so any search without an enrolled mate will return non-mated candidates. For clarity, results are sorted and reported into tiers spanning multiple pages, the tiering criteria being rank 1 hit rate on a gallery size of 640 000.

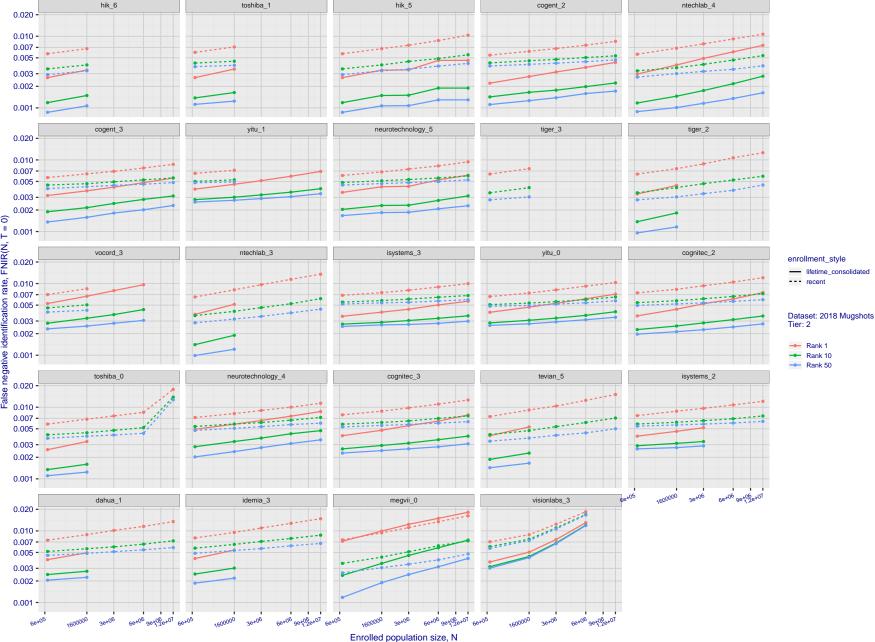


Figure 23: [FRVT-2018 Mugshot Dataset] Rank-based identification miss rates vs. number of enrolled subjects. The figure shows false negative identification rates, FNIR(N, R), across various gallery sizes and ranks 1, 10 and 50. The threshold is set to zero, so this metric rewards even weak scoring rank 1 mates. This also means FPIR = 1, so any search without an enrolled mate will return non-mated candidates. For clarity, results are sorted and reported into tiers spanning multiple pages, the tiering criteria being rank 1 hit rate on a gallery size of 640 000.

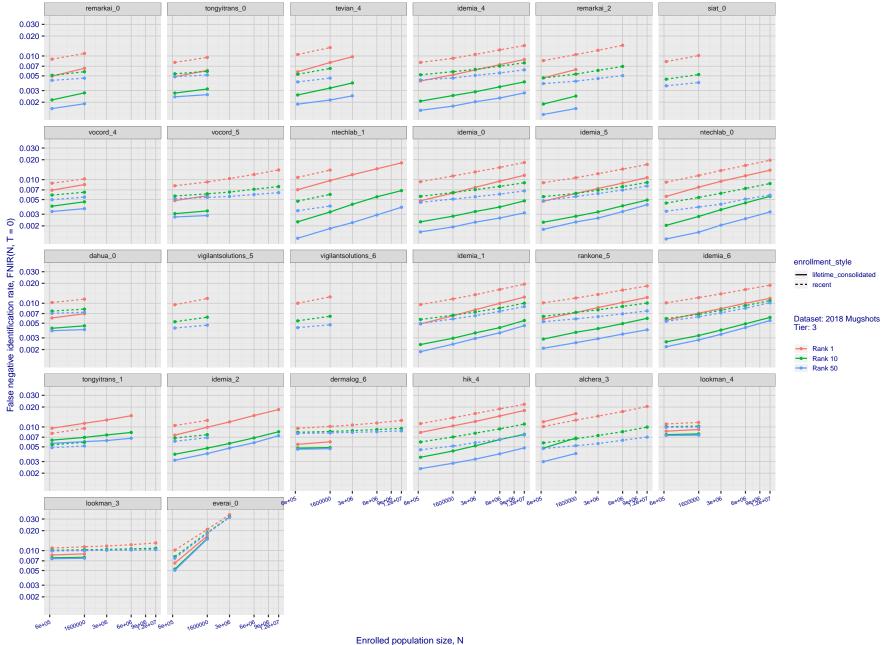


Figure 24: **[FRVT-2018 Mugshot Dataset] Rank-based identification miss rates vs. number of enrolled subjects**. The figure shows false negative identification rates, FNIR(N, R), across various gallery sizes and ranks 1, 10 and 50. The threshold is set to zero, so this metric rewards even weak scoring rank 1 mates. This also means FPIR = 1, so any search without an enrolled mate will return non-mated candidates. For clarity, results are sorted and reported into tiers spanning multiple pages, the tiering criteria being rank 1 hit rate on a gallery size of 640 000.

FNIR(N, R, T) = FPIR(N, T) =

2019/09/11 17:24:52

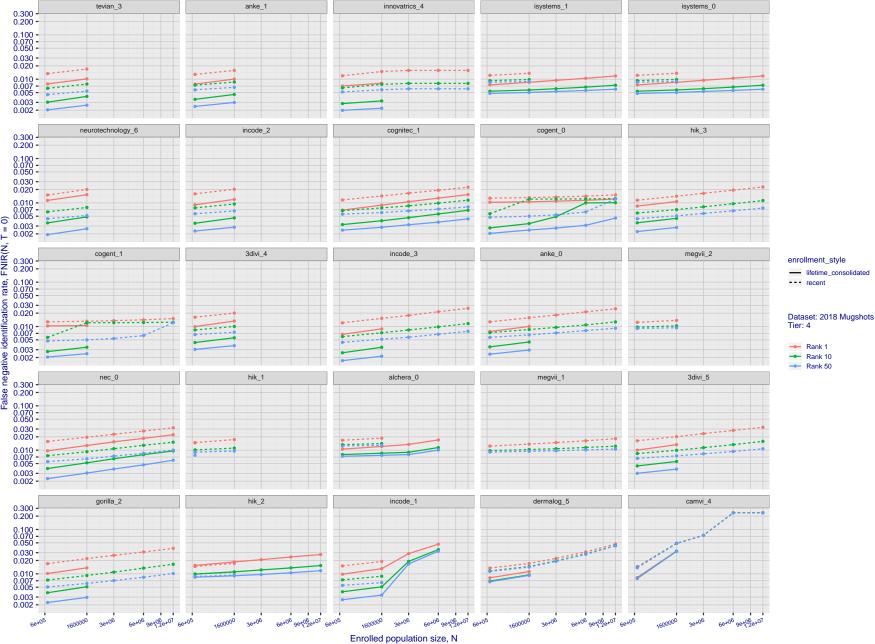


Figure 25: **[FRVT-2018 Mugshot Dataset] Rank-based identification miss rates vs. number of enrolled subjects**. The figure shows false negative identification rates, FNIR(N, R), across various gallery sizes and ranks 1, 10 and 50. The threshold is set to zero, so this metric rewards even weak scoring rank 1 mates. This also means FPIR = 1, so any search without an enrolled mate will return non-mated candidates. For clarity, results are sorted and reported into tiers spanning multiple pages, the tiering criteria being rank 1 hit rate on a gallery size of 640 000.

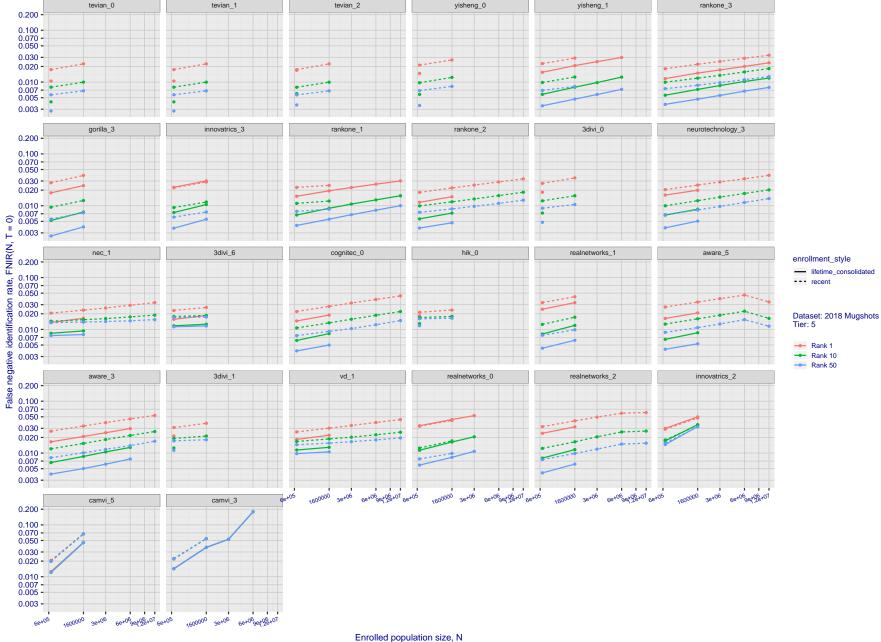


Figure 26: [FRVT-2018 Mugshot Dataset] Rank-based identification miss rates vs. number of enrolled subjects. The figure shows false negative identification rates, FNIR(N, R), across various gallery sizes and ranks 1, 10 and 50. The threshold is set to zero, so this metric rewards even weak scoring rank 1 mates. This also means FPIR = 1, so any search without an enrolled mate will return non-mated candidates. For clarity, results are sorted and reported into tiers spanning multiple pages, the tiering criteria being rank 1 hit rate on a gallery size of 640 000.

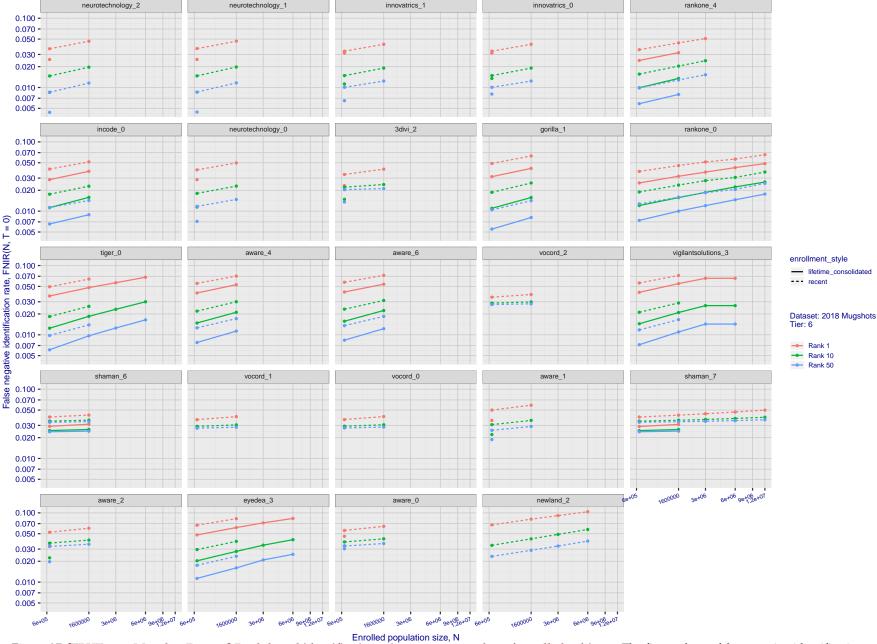


Figure 27: [FRVT-2018 Mugshot Dataset] Rank-based identification miss rates vs. number of enrolled subjects. The figure shows false negative identification rates, FNIR(N, R), across various gallery sizes and ranks 1, 10 and 50. The threshold is set to zero, so this metric rewards even weak scoring rank 1 mates. This also means FPIR = 1, so any search without an enrolled mate will return non-mated candidates. For clarity, results are sorted and reported into tiers spanning multiple pages, the tiering criteria being rank 1 hit rate on a gallery size of 640 000.

FNIR(N, R, FPIR(N,

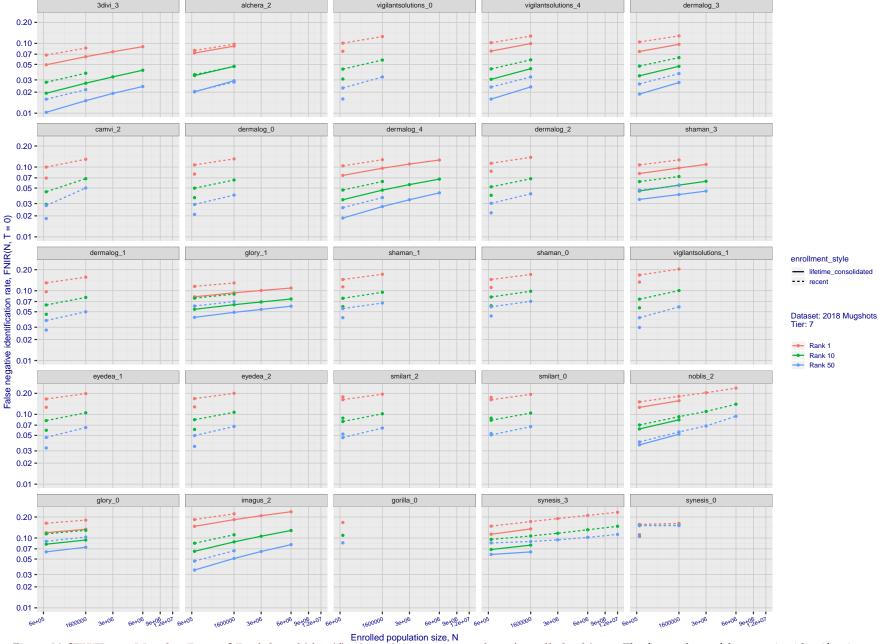


Figure 28: [FRVT-2018 Mugshot Dataset] Rank-based identification miss rates vs. number of enrolled subjects. The figure shows false negative identification rates, FNIR(N, R), across various gallery sizes and ranks 1, 10 and 50. The threshold is set to zero, so this metric rewards even weak scoring rank 1 mates. This also means FPIR = 1, so any search without an enrolled mate will return non-mated candidates. For clarity, results are sorted and reported into tiers spanning multiple pages, the tiering criteria being rank 1 hit rate on a gallery size of 640 000.

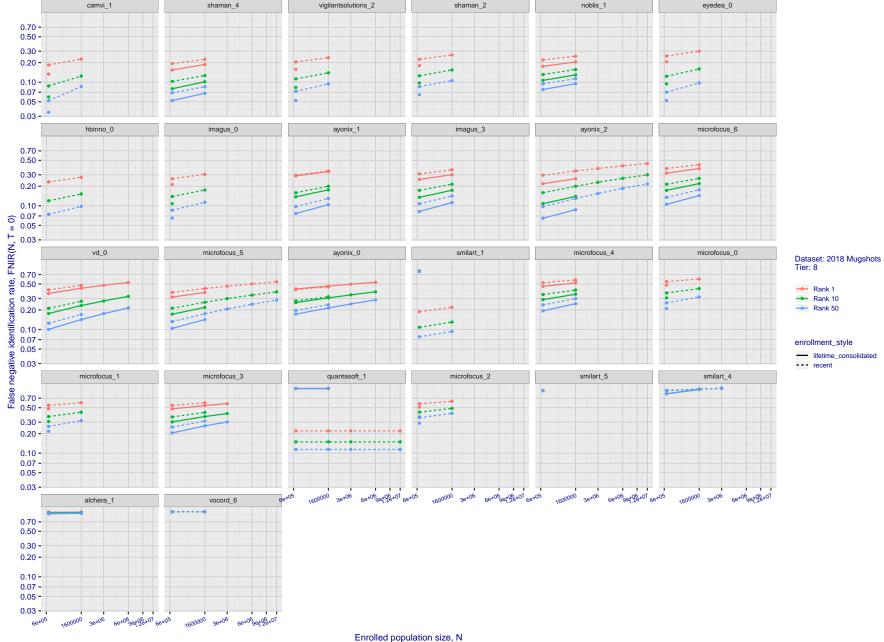


Figure 29: [FRVT-2018 Mugshot Dataset] Rank-based identification miss rates vs. number of enrolled subjects. The figure shows false negative identification rates, FNIR(N, R), across various gallery sizes and ranks 1, 10 and 50. The threshold is set to zero, so this metric rewards even weak scoring rank 1 mates. This also means FPIR = 1, so any search without an enrolled mate will return non-mated candidates. For clarity, results are sorted and reported into tiers spanning multiple pages, the tiering criteria being rank 1 hit rate on a gallery size of 640 000.

17:24:52	2019/09/11
FPIR(N, T) =	FNIR(N, R, T) =
False pos. identification rate	False neg. identification rate
R = Num. candidates examined	N = Num. enrolled subjects
	T = Threshold
$T > 0 \rightarrow Identification$	$T = 0 \rightarrow Investigation$

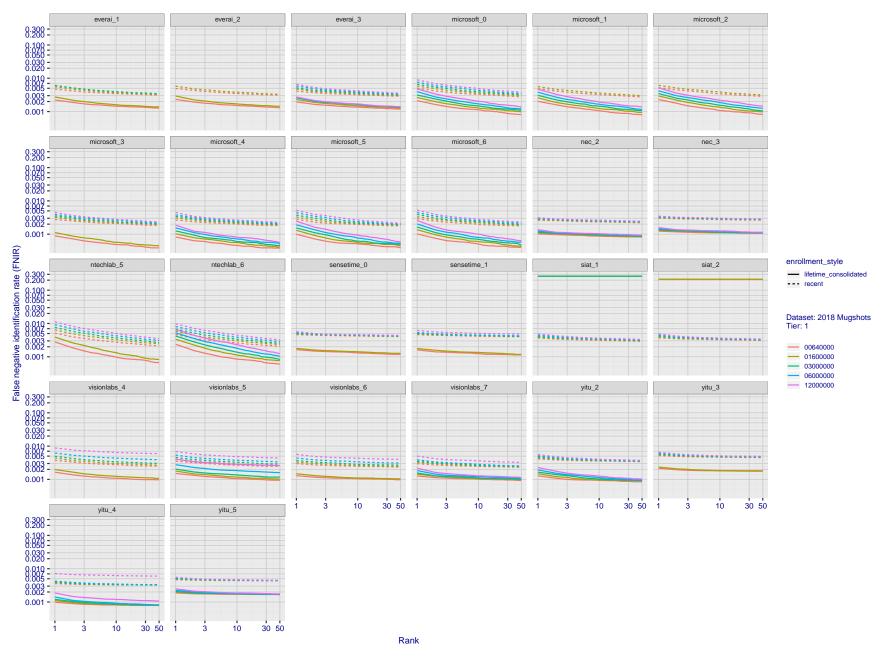


Figure 30: **[FRVT-2018 Mugshot Dataset] Rank-based identification miss rates vs. rank**. The figure shows false negative identification rates (FNIR) for ranks up to 50. This metric is appropriate to investigational applications where human reviewers will adjudicate sorted candidate lists. Note that with threshold set to zero, FPIR = 1, i.e. any search without an enrolled mate will return non-mated candidates. Results are sorted and reported into tiers for clarity, with the tiering criteria being rank 1 hit rate on a gallery size of $N = 640\,000$ subjects.

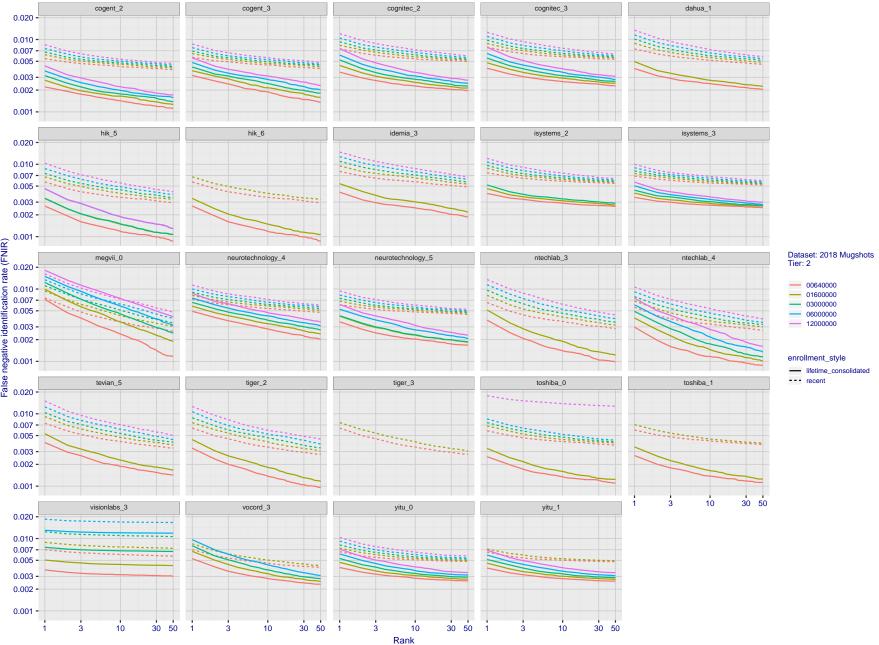


Figure 31: **[FRVT-2018 Mugshot Dataset] Rank-based identification miss rates vs. rank**. The figure shows false negative identification rates (FNIR) for ranks up to 50. This metric is appropriate to investigational applications where human reviewers will adjudicate sorted candidate lists. Note that with threshold set to zero, FPIR = 1, i.e. any search without an enrolled mate will return non-mated candidates. Results are sorted and reported into tiers for clarity, with the tiering criteria being rank 1 hit rate on a gallery size of $N = 640\,000$ subjects.

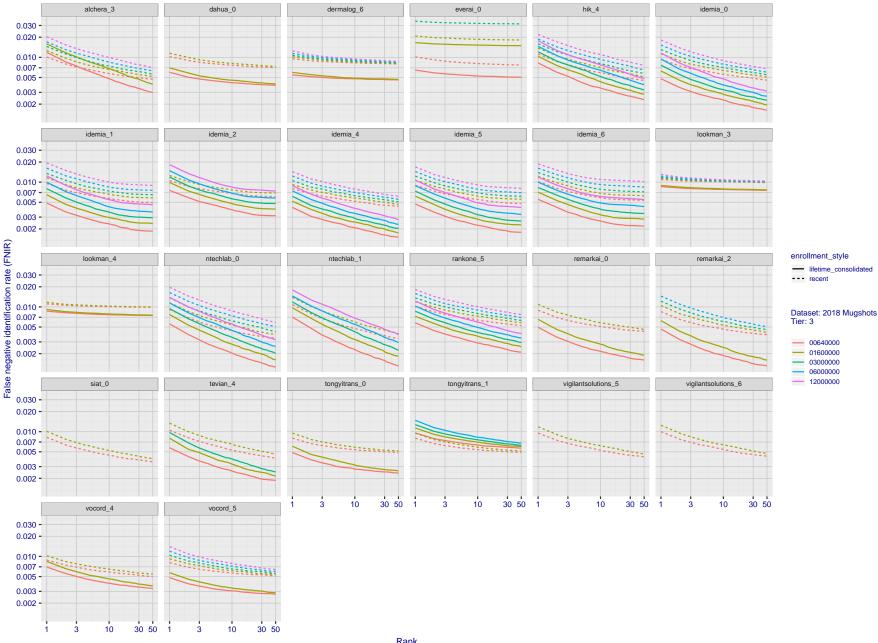


Figure 32: **[FRVT-2018 Mugshot Dataset] Rank-based identification miss rates vs. rank**. The figure shows false negative identification rates (FNIR) for ranks up to 50. This metric is appropriate to investigational applications where human reviewers will adjudicate sorted candidate lists. Note that with threshold set to zero, FPIR = 1, i.e. any search without an enrolled mate will return non-mated candidates. Results are sorted and reported into tiers for clarity, with the tiering criteria being rank 1 hit rate on a gallery size of $N = 640\,000$ subjects.

2019/09/11 17:24:52

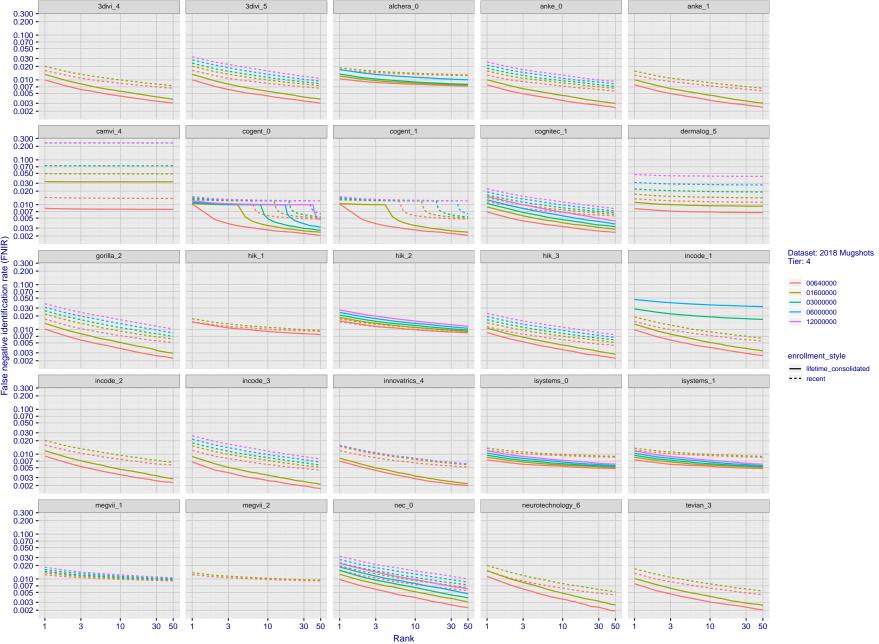


Figure 33: **[FRVT-2018 Mugshot Dataset] Rank-based identification miss rates vs. rank**. The figure shows false negative identification rates (FNIR) for ranks up to 50. This metric is appropriate to investigational applications where human reviewers will adjudicate sorted candidate lists. Note that with threshold set to zero, FPIR = 1, i.e. any search without an enrolled mate will return non-mated candidates. Results are sorted and reported into tiers for clarity, with the tiering criteria being rank 1 hit rate on a gallery size of $N = 640\,000$ subjects.

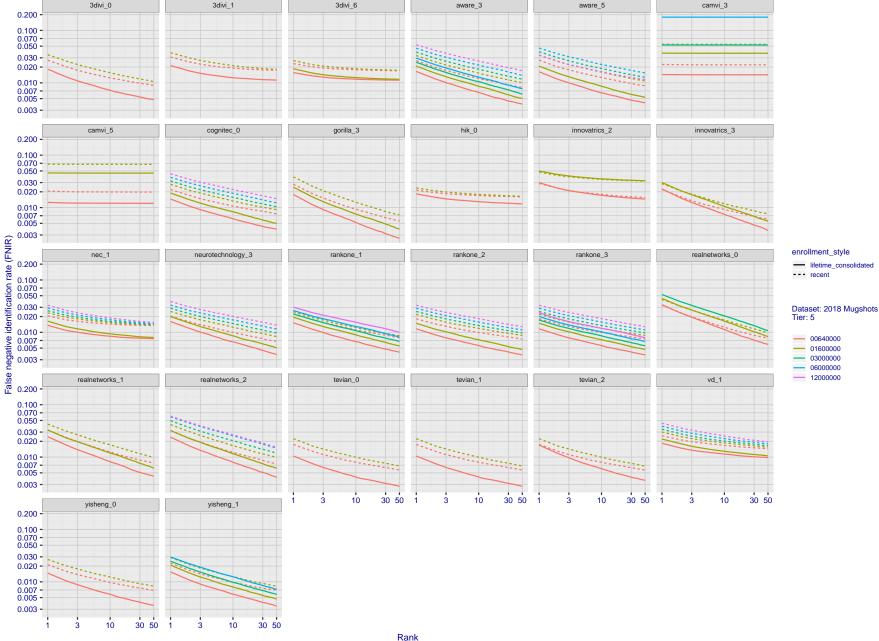


Figure 34: **[FRVT-2018 Mugshot Dataset] Rank-based identification miss rates vs. rank**. The figure shows false negative identification rates (FNIR) for ranks up to 50. This metric is appropriate to investigational applications where human reviewers will adjudicate sorted candidate lists. Note that with threshold set to zero, FPIR = 1, i.e. any search without an enrolled mate will return non-mated candidates. Results are sorted and reported into tiers for clarity, with the tiering criteria being rank 1 hit rate on a gallery size of $N = 640\,000$ subjects.

FNIR(N, R, T) = FPIR(N, T) =

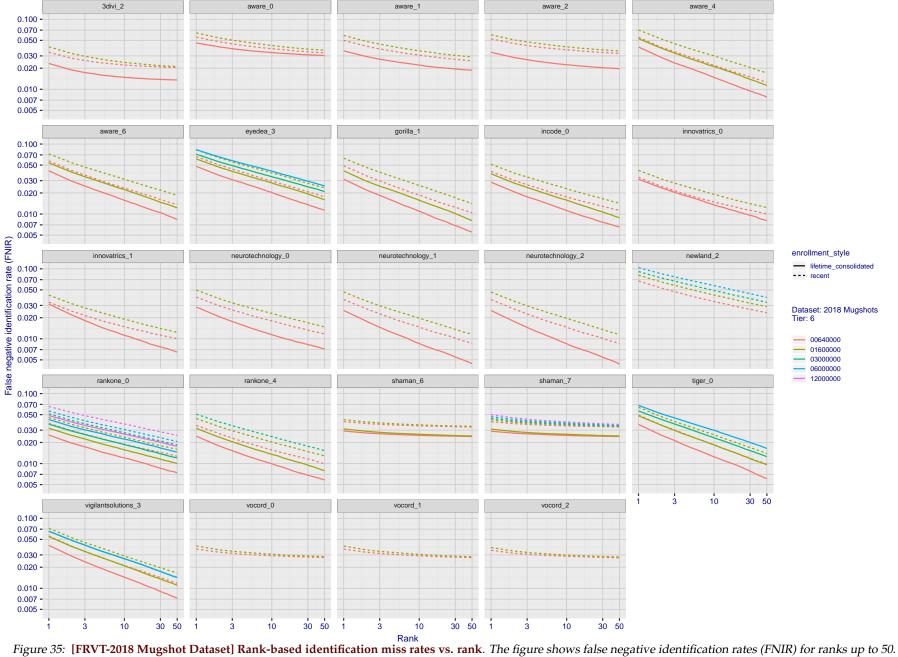
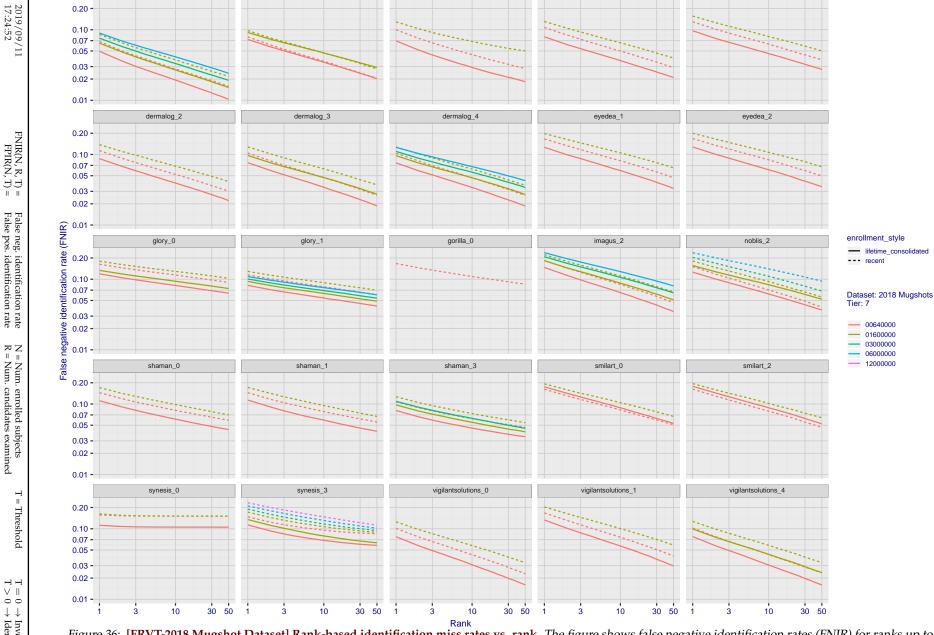



Figure 35: [FRVT-2018 Mugshot Dataset] Rank-based identification miss rates vs. rank. The figure shows false negative identification rates (FNIR) for ranks up to 50. This metric is appropriate to investigational applications where human reviewers will adjudicate sorted candidate lists. Note that with threshold set to zero, FPIR = 1, i.e. any search without an enrolled mate will return non-mated candidates. Results are sorted and reported into tiers for clarity, with the tiering criteria being rank 1 hit rate on a gallery size of $N = 640\,000$ subjects.

dermalog_0

dermalog_1

3divi_3

alchera_2

Figure 36: [FRVT-2018 Mugshot Dataset] Rank-based identification miss rates vs. rank. The figure shows false negative identification rates (FNIR) for ranks up to 50. This metric is appropriate to investigational applications where human reviewers will adjudicate sorted candidate lists. Note that with threshold set to zero, FPIR = 1, i.e. any search without an enrolled mate will return non-mated candidates. Results are sorted and reported into tiers for clarity, with the tiering criteria being rank 1 hit rate on a gallery size of $N = 640\,000$ subjects.

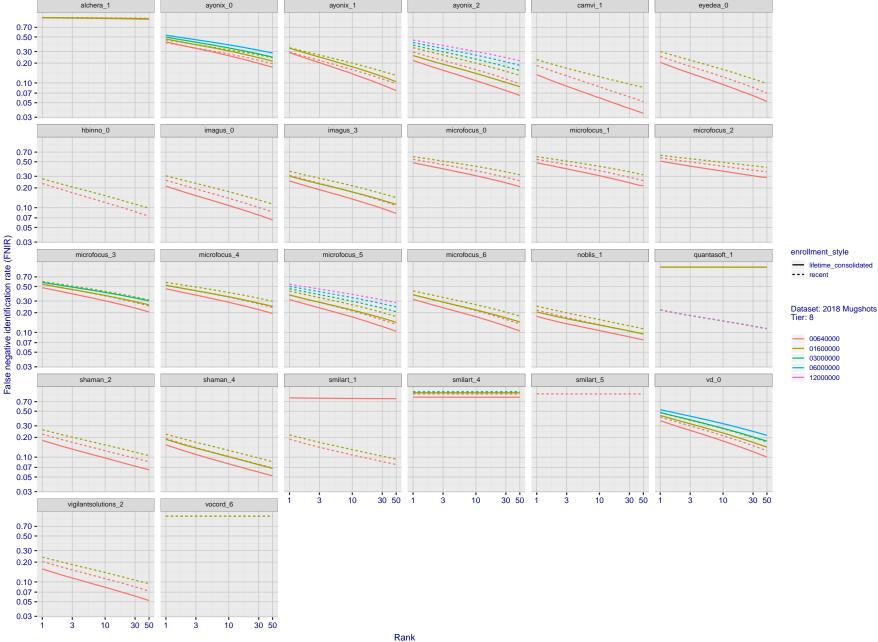


Figure 37: [FRVT-2018 Mugshot Dataset] Rank-based identification miss rates vs. rank. The figure shows false negative identification rates (FNIR) for ranks up to 50. This metric is appropriate to investigational applications where human reviewers will adjudicate sorted candidate lists. Note that with threshold set to zero, FPIR = 1, i.e. any search without an enrolled mate will return non-mated candidates. Results are sorted and reported into tiers for clarity, with the tiering criteria being rank 1 hit rate on a gallery size of $N = 640\,000$ subjects.

84

 $FNIR(N,R,T) = \quad \mbox{False neg, identification rate} \qquad N = Num. \mbox{ enrolled subjects} \\ FPIR(N,T) = \quad \mbox{False pos. identification rate} \qquad R = Num. \mbox{ candidates examined} \\$

2019/09/11 17:24:52

 $T = 0 \rightarrow Investigation$ $T > 0 \rightarrow Identification$

T = Threshold

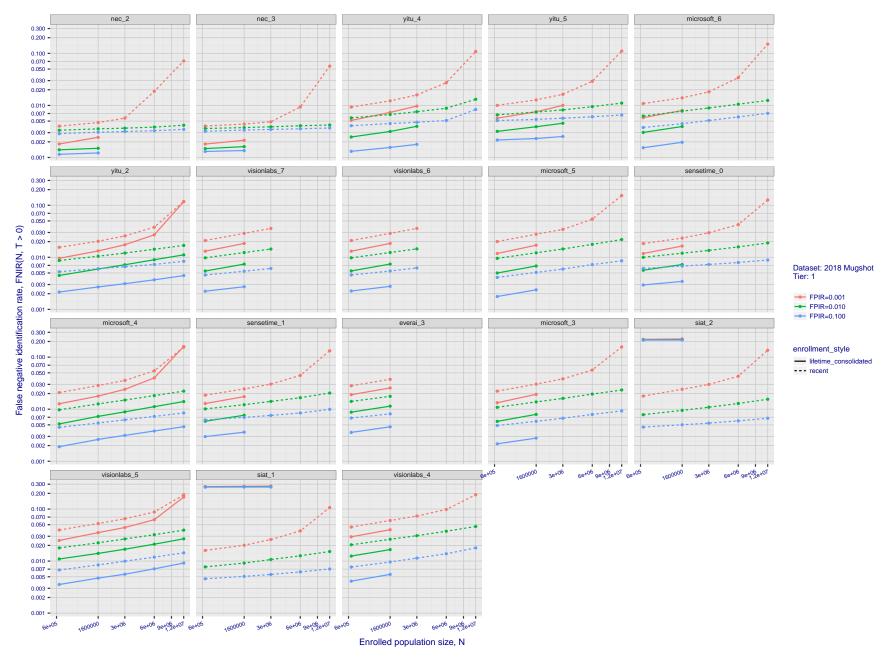


Figure 38: [FRVT-2018 Mugshot Dataset] Threshold-based identification miss rates vs. number of enrolled subjects. The figure shows FNIR(N, T) across various gallery sizes when the threshold is set to achieve the given FPIRs. The rank criterion is irrelevant at high thresholds as mates are always at rank 1. The results are computed from the trials listed in rows 1-10 of Table 5. Less accurate algorithms were not run on large N, so results are missing. For clarity, results are sorted and reported into tiers spanning multiple pages. The tiering criteria is complicated: First paging by $FNIR(N_b, 1, 0)$, then sorting by median $FNIR(N_b, T)$, $N_b = 640\,000$.

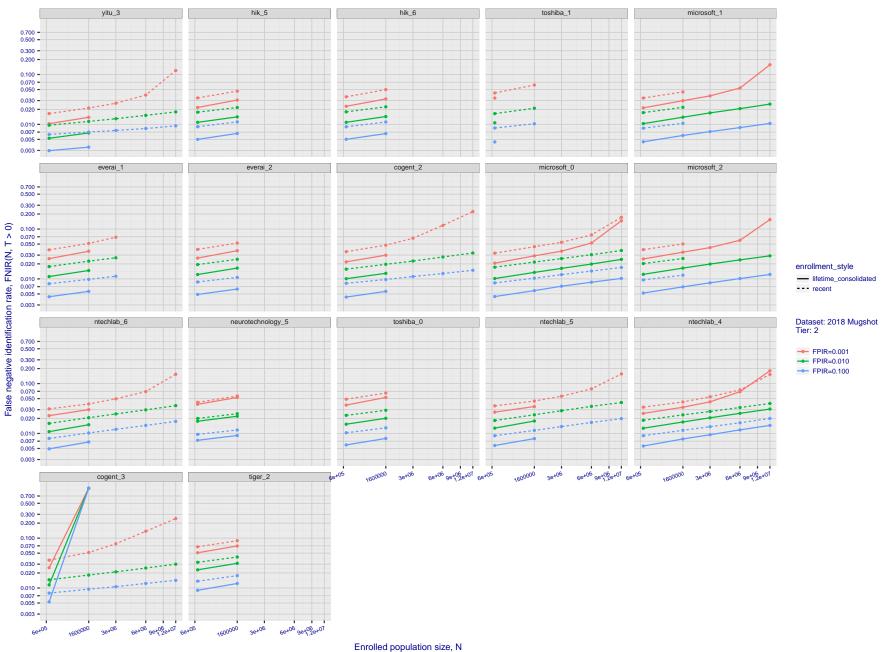


Figure 39: **[FRVT-2018 Mugshot Dataset] Threshold-based identification miss rates vs. number of enrolled subjects.** The figure shows FNIR(N, T) across various gallery sizes when the threshold is set to achieve the given FPIRs. The rank criterion is irrelevant at high thresholds as mates are always at rank 1. The results are computed from the trials listed in rows 1-10 of Table 5. Less accurate algorithms were not run on large N, so results are missing. For clarity, results are sorted and reported into tiers spanning multiple pages. The tiering criteria is complicated: First paging by $FNIR(N_b, 1, 0)$, then sorting by median $FNIR(N_b, T)$, $N_b = 640\,000$.

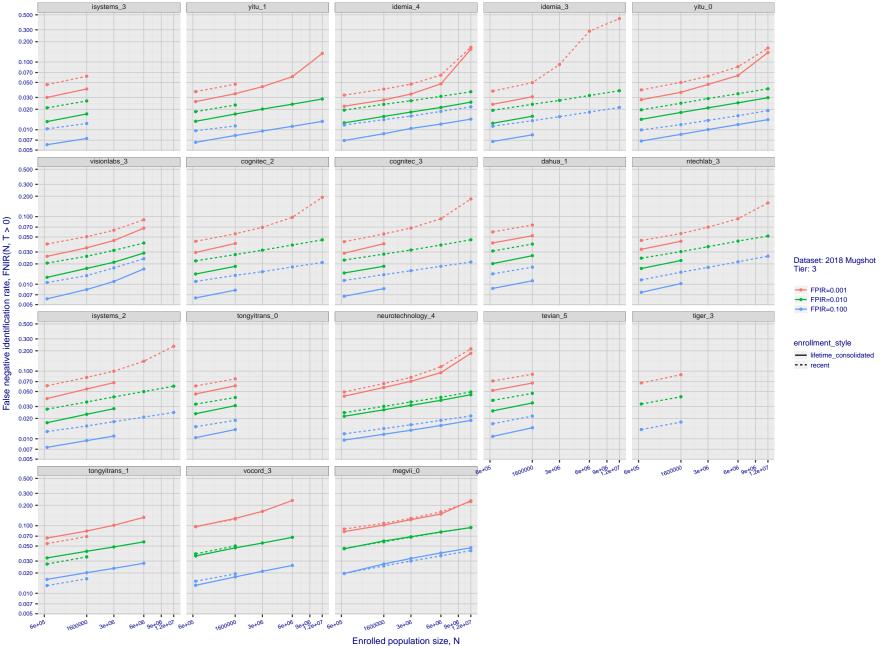


Figure 40: [FRVT-2018 Mugshot Dataset] Threshold-based identification miss rates vs. number of enrolled subjects. The figure shows FNIR(N, T) across various gallery sizes when the threshold is set to achieve the given FPIRs. The rank criterion is irrelevant at high thresholds as mates are always at rank 1. The results are computed from the trials listed in rows 1-10 of Table 5. Less accurate algorithms were not run on large N, so results are missing. For clarity, results are sorted and reported into tiers spanning multiple pages. The tiering criteria is complicated: First paging by $FNIR(N_b, 1, 0)$, then sorting by median $FNIR(N_b, T)$, $N_b = 640\,000$.

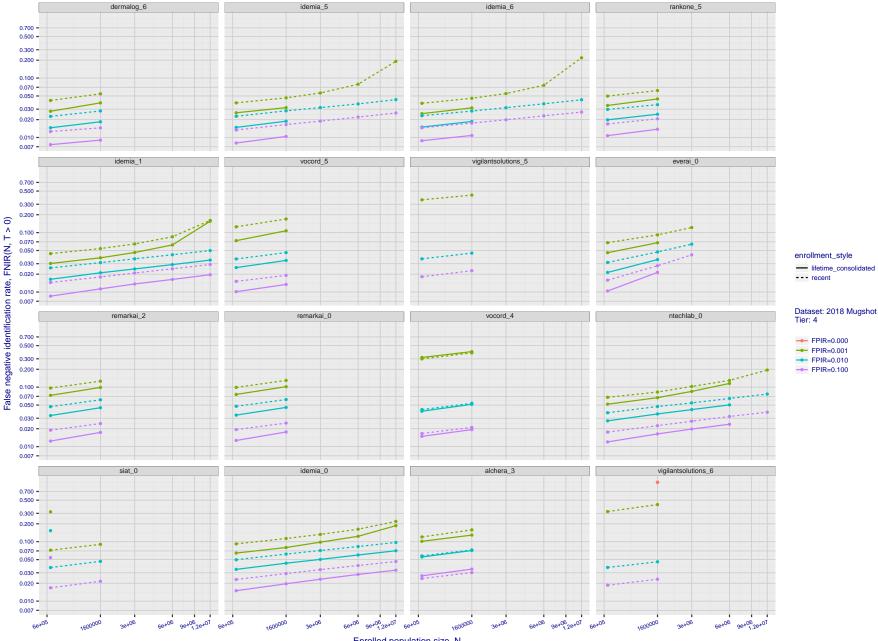


Figure 41: **[FRVT-2018 Mugshot Dataset] Threshold-based identification miss rates vs. number of enrolled subjects**. The figure shows FNIR(N, T) across various gallery sizes when the threshold is set to achieve the given FPIRs. The rank criterion is irrelevant at high thresholds as mates are always at rank 1. The results are computed from the trials listed in rows 1-10 of Table 5. Less accurate algorithms were not run on large N, so results are missing. For clarity, results are sorted and reported into tiers spanning multiple pages. The tiering criteria is complicated: First paging by $FNIR(N_b, 1, 0)$, then sorting by median $FNIR(N_b, T)$, $N_b = 640\,000$.

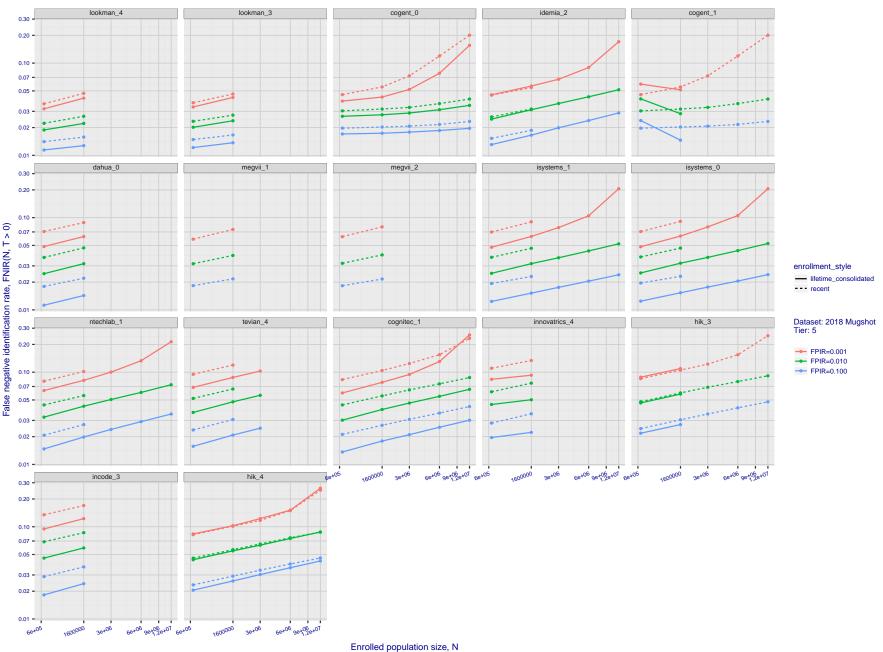


Figure 42: **[FRVT-2018 Mugshot Dataset] Threshold-based identification miss rates vs. number of enrolled subjects.** The figure shows FNIR(N, T) across various gallery sizes when the threshold is set to achieve the given FPIRs. The rank criterion is irrelevant at high thresholds as mates are always at rank 1. The results are computed from the trials listed in rows 1-10 of Table 5. Less accurate algorithms were not run on large N, so results are missing. For clarity, results are sorted and reported into tiers spanning multiple pages. The tiering criteria is complicated: First paging by $FNIR(N_b, 1, 0)$, then sorting by median $FNIR(N_b, T)$, $N_b = 640\,000$.

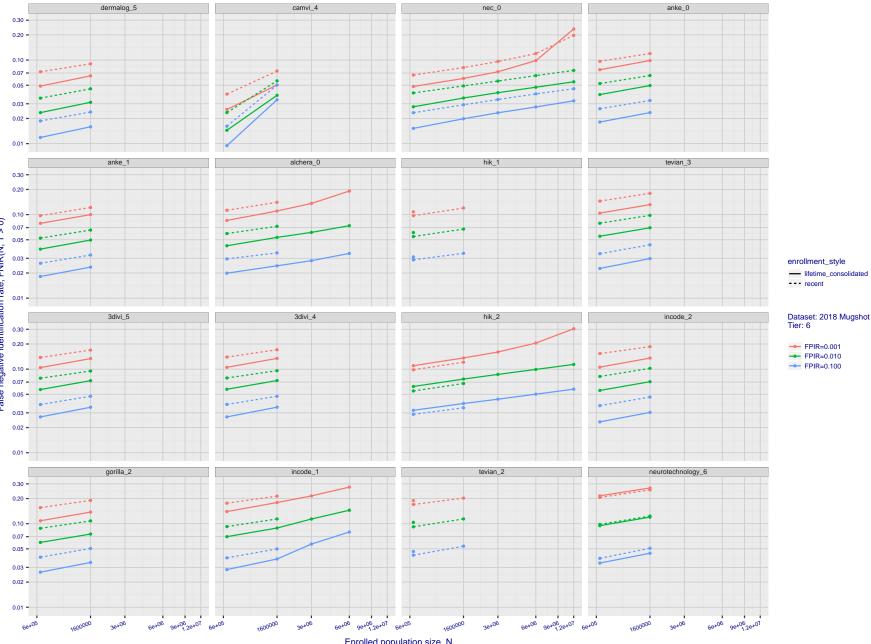


Figure 43: **[FRVT-2018 Mugshot Dataset] Threshold-based identification miss rates vs. number of enrolled subjects**. The figure shows FNIR(N, T) across various gallery sizes when the threshold is set to achieve the given FPIRs. The rank criterion is irrelevant at high thresholds as mates are always at rank 1. The results are computed from the trials listed in rows 1-10 of Table 5. Less accurate algorithms were not run on large N, so results are missing. For clarity, results are sorted and reported into tiers spanning multiple pages. The tiering criteria is complicated: First paging by $FNIR(N_b, 1, 0)$, then sorting by median $FNIR(N_b, T)$, $N_b = 640\,000$.

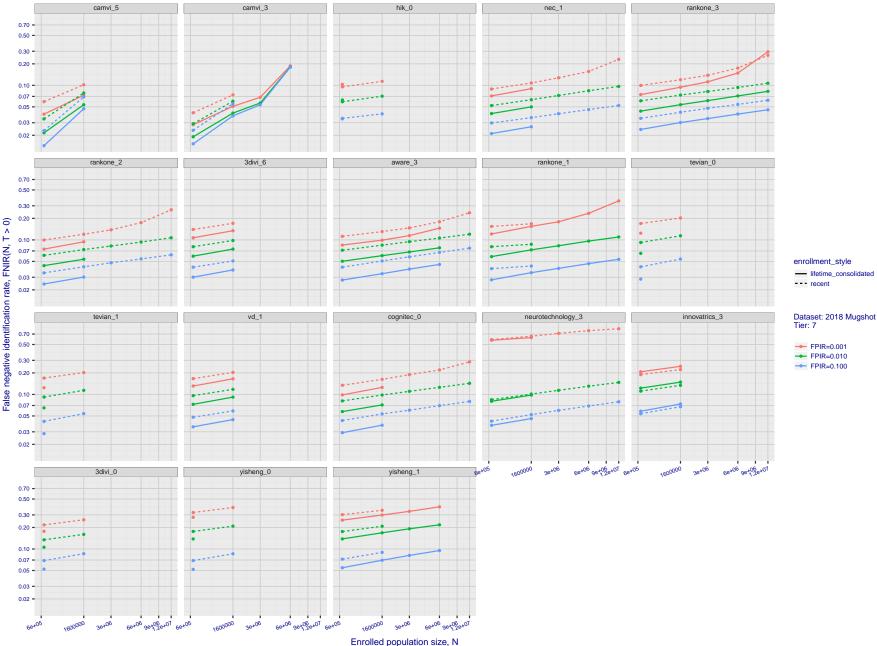


Figure 44: [FRVT-2018 Mugshot Dataset] Threshold-based identification miss rates vs. number of enrolled subjects. The figure shows FNIR(N, T) across various gallery sizes when the threshold is set to achieve the given FPIRs. The rank criterion is irrelevant at high thresholds as mates are always at rank 1. The results are computed from the trials listed in rows 1-10 of Table 5. Less accurate algorithms were not run on large N, so results are missing. For clarity, results are sorted and reported into tiers spanning multiple pages. The tiering criteria is complicated: First paging by FNIR(N_b , 1, 0), then sorting by median FNIR(N_b , T), N_b = 640 000.

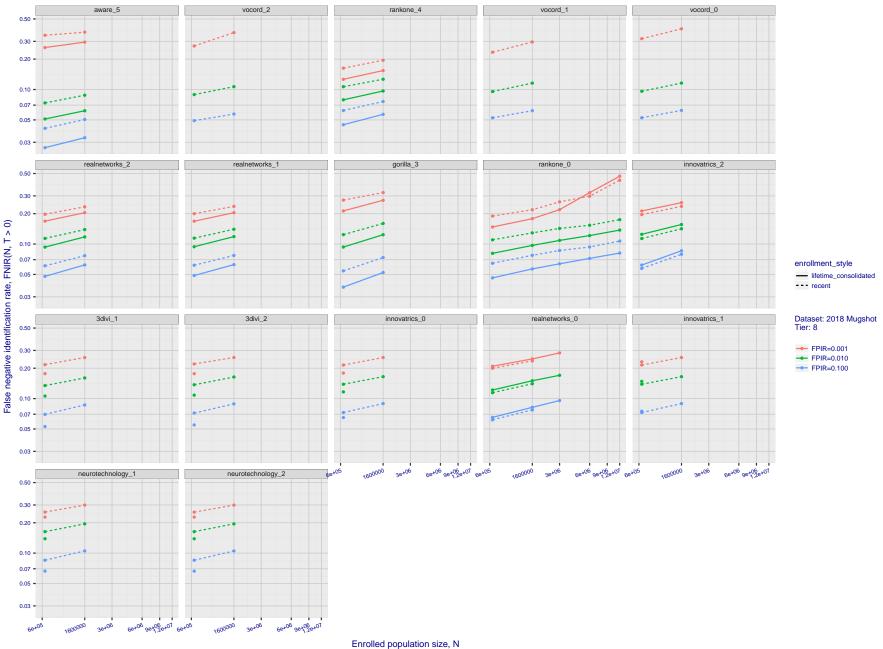


Figure 45: **[FRVT-2018 Mugshot Dataset] Threshold-based identification miss rates vs. number of enrolled subjects**. The figure shows FNIR(N, T) across various gallery sizes when the threshold is set to achieve the given FPIRs. The rank criterion is irrelevant at high thresholds as mates are always at rank 1. The results are computed from the trials listed in rows 1-10 of Table 5. Less accurate algorithms were not run on large N, so results are missing. For clarity, results are sorted and reported into tiers spanning multiple pages. The tiering criteria is complicated: First paging by $FNIR(N_b, 1, 0)$, then sorting by median $FNIR(N_b, T)$, $N_b = 640\,000$.

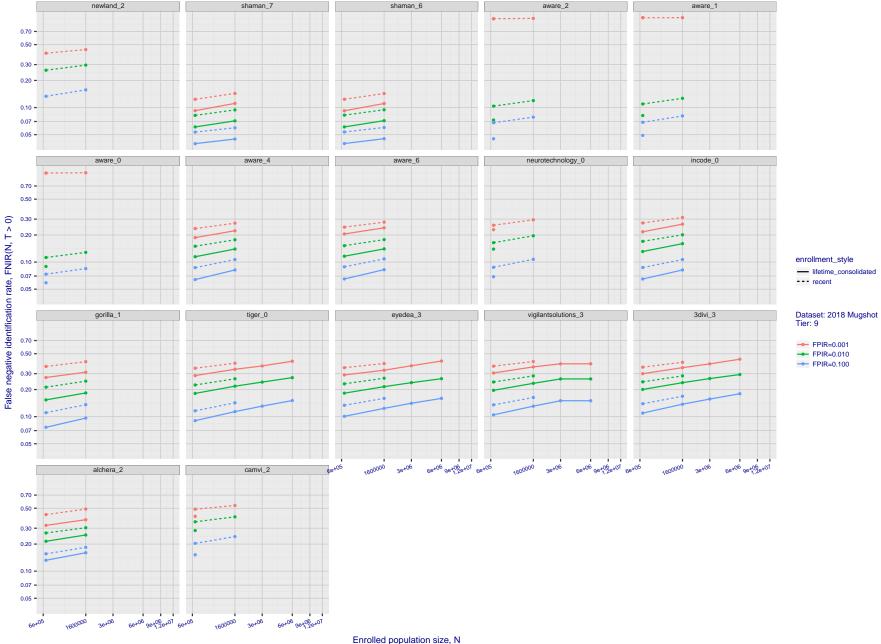


Figure 46: [FRVT-2018 Mugshot Dataset] Threshold-based identification miss rates vs. number of enrolled subjects. The figure shows FNIR(N, T) across various gallery sizes when the threshold is set to achieve the given FPIRs. The rank criterion is irrelevant at high thresholds as mates are always at rank 1. The results are computed from the trials listed in rows 1-10 of Table 5. Less accurate algorithms were not run on large N, so results are missing. For clarity, results are sorted and reported into tiers spanning multiple pages. The tiering criteria is complicated: First paging by $FNIR(N_b, 1, 0)$, then sorting by median $FNIR(N_b, T)$, $N_b = 640\,000$.

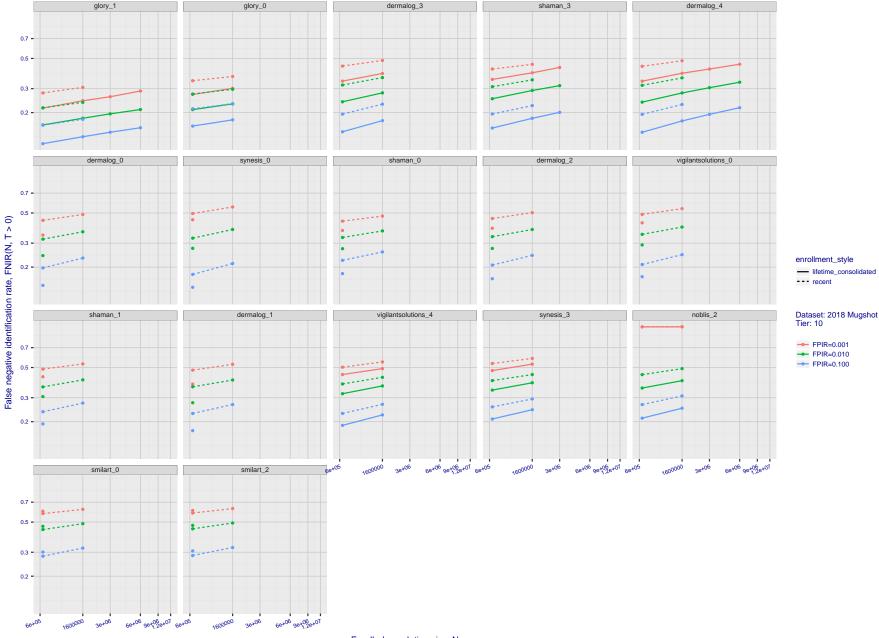


Figure 47: **[FRVT-2018 Mugshot Dataset] Threshold-based identification miss rates vs. number of enrolled subjects**. The figure shows FNIR(N, T) across various gallery sizes when the threshold is set to achieve the given FPIRs. The rank criterion is irrelevant at high thresholds as mates are always at rank 1. The results are computed from the trials listed in rows 1-10 of Table 5. Less accurate algorithms were not run on large N, so results are missing. For clarity, results are sorted and reported into tiers spanning multiple pages. The tiering criteria is complicated: First paging by $FNIR(N_b, 1, 0)$, then sorting by median $FNIR(N_b, T)$, $N_b = 640\,000$.

2019/09/11 17:24:52

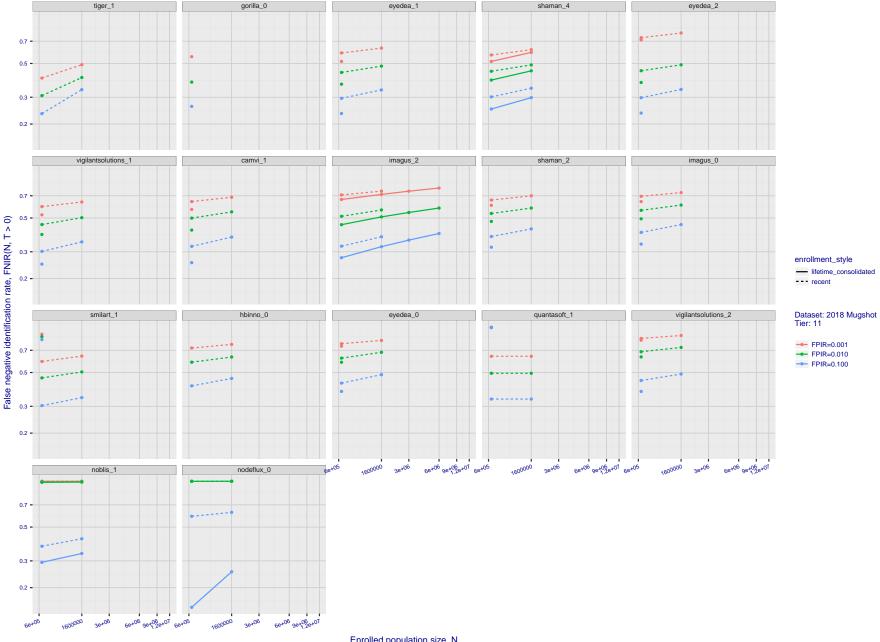


Figure 48: **[FRVT-2018 Mugshot Dataset] Threshold-based identification miss rates vs. number of enrolled subjects**. The figure shows FNIR(N, T) across various gallery sizes when the threshold is set to achieve the given FPIRs. The rank criterion is irrelevant at high thresholds as mates are always at rank 1. The results are computed from the trials listed in rows 1-10 of Table 5. Less accurate algorithms were not run on large N, so results are missing. For clarity, results are sorted and reported into tiers spanning multiple pages. The tiering criteria is complicated: First paging by $FNIR(N_b, 1, 0)$, then sorting by median $FNIR(N_b, T)$, $N_b = 640\,000$.

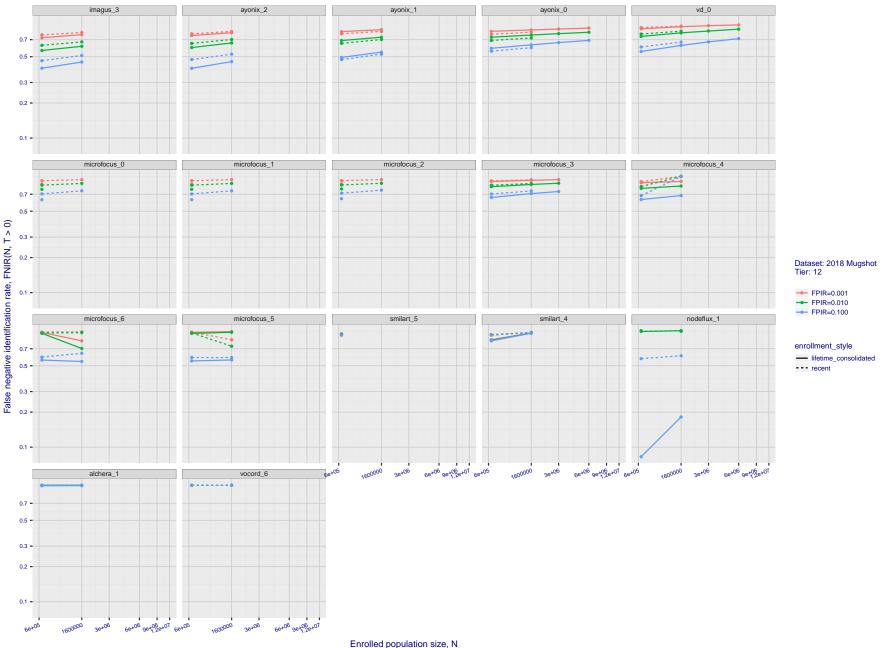


Figure 49: **[FRVT-2018 Mugshot Dataset] Threshold-based identification miss rates vs. number of enrolled subjects**. The figure shows FNIR(N, T) across various gallery sizes when the threshold is set to achieve the given FPIRs. The rank criterion is irrelevant at high thresholds as mates are always at rank 1. The results are computed from the trials listed in rows 1-10 of Table 5. Less accurate algorithms were not run on large N, so results are missing. For clarity, results are sorted and reported into tiers spanning multiple pages. The tiering criteria is complicated: First paging by $FNIR(N_b, 1, 0)$, then sorting by median $FNIR(N_b, T)$, $N_b = 640\,000$.

FNIR(N, R, T) = FPIR(N, T) =

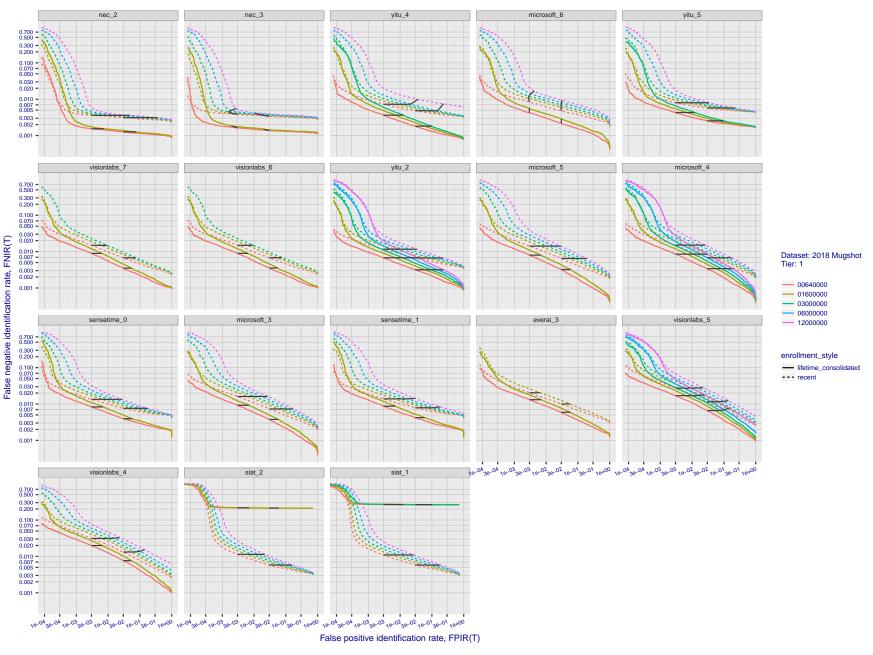
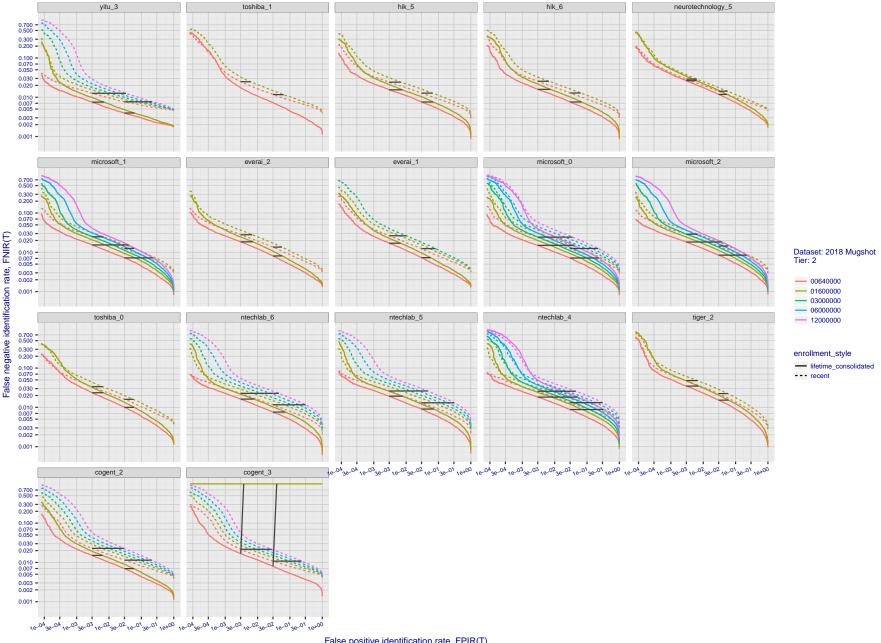
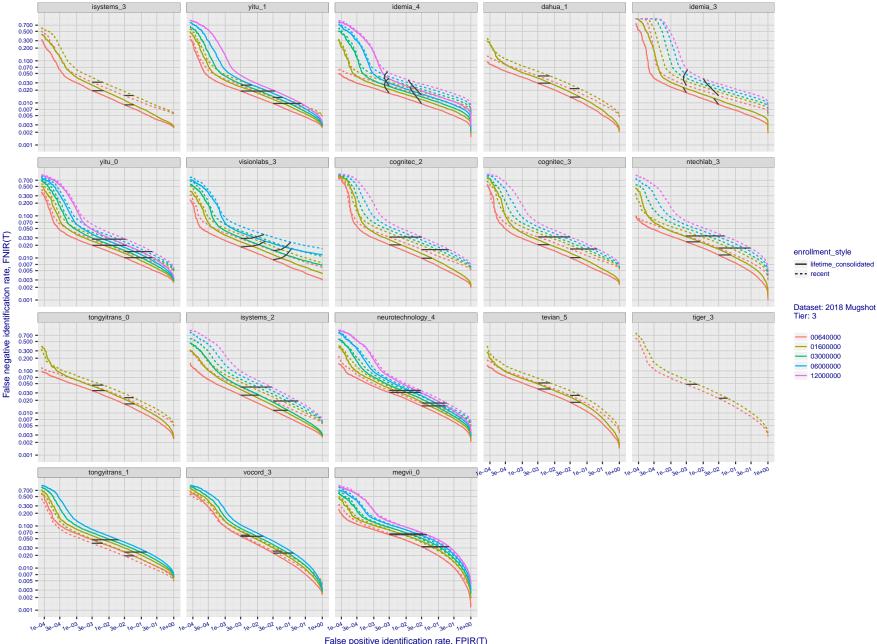
2019/09/11 17:24:52

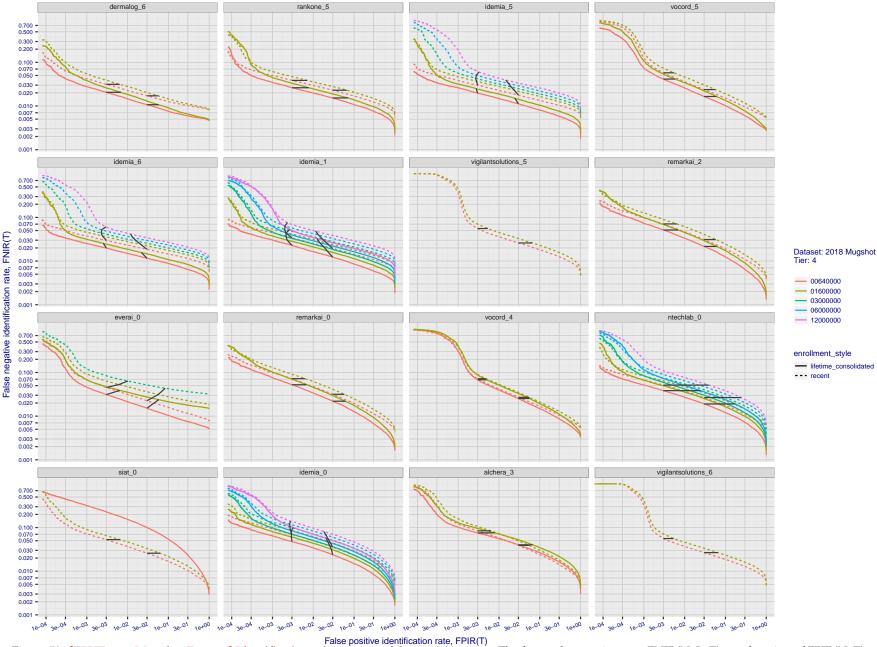
False neg. identification rate False pos. identification rate

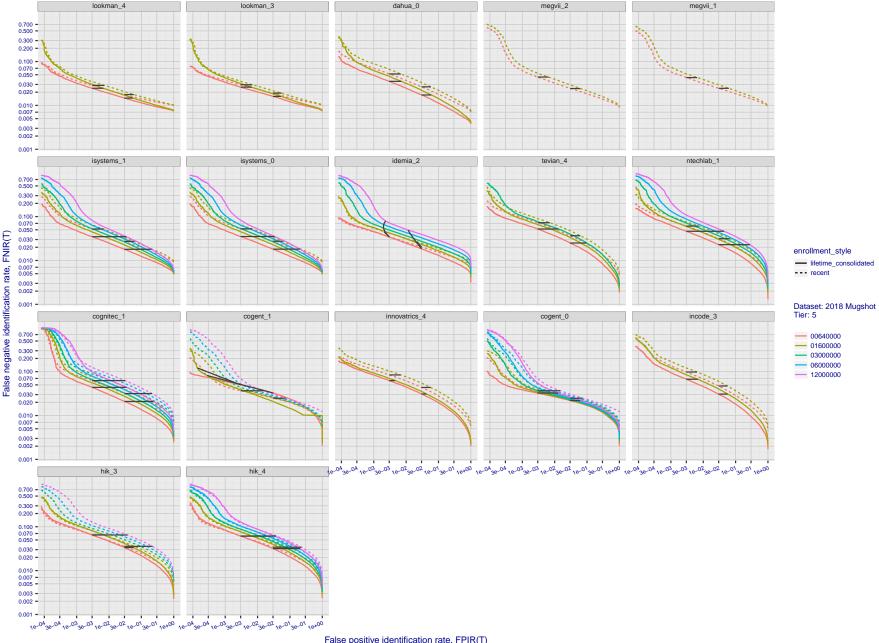
N = Num. enrolled subjects R = Num. candidates examined

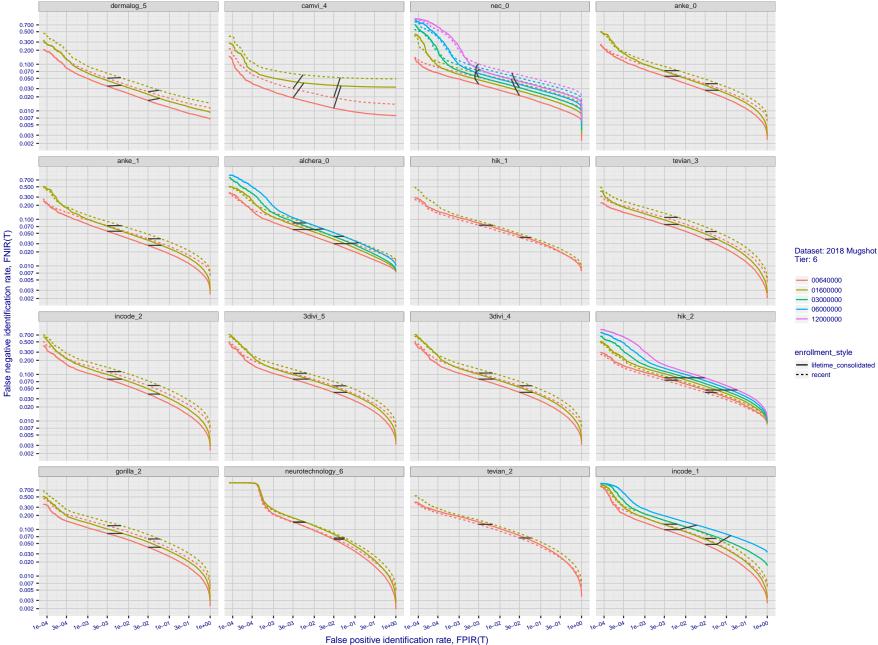
T = Threshold

$$\begin{split} T &= 0 \rightarrow \text{Investigation} \\ T &> 0 \rightarrow \text{Identification} \end{split}$$

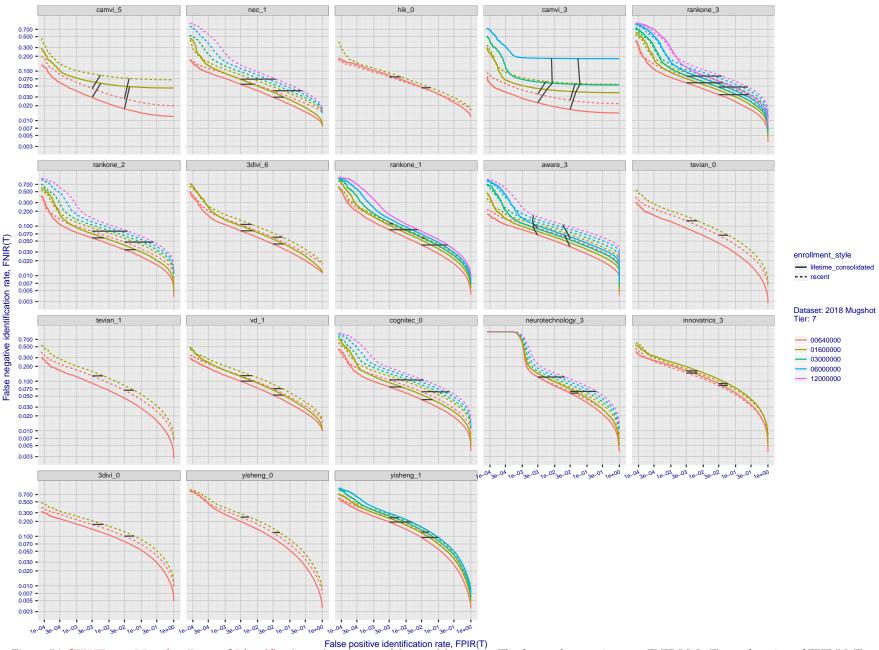

Figure 50: **[FRVT-2018 Mugshot Dataset] Identification miss rates vs. false positive rates**. The figure shows miss rates FNIR(N, L, T) as a function of FPIR(N, T), with N ranging from 640 000 to 12 000 000 as noted in rows 1-10 of Table 5. These error tradeoff characteristics are useful for applications where a threshold must be elevated to limit false positives, such as when human reviewer labor is not matched to the volume of searches. Dark lines join points of equal threshold: If horizontal, FPIR(T) rises with N, and mate scores are independent of N. Other algorithms adjust scores in an attempt to make FPIR independent of N.


False positive identification rate, FPIR(T)
Figure 51: [FRVT-2018 Mugshot Dataset] Identification miss rates vs. false positive rates. The figure shows miss rates FNIR(N, L, T) as a function of FPIR(N, T), with N ranging from 640 000 to 12 000 000 as noted in rows 1-10 of Table 5. These error tradeoff characteristics are useful for applications where a threshold must be elevated to limit false positives, such as when human reviewer labor is not matched to the volume of searches. Dark lines join points of equal threshold: If horizontal, FPIR(T) rises with N, and mate scores are independent of N. Other algorithms adjust scores in an attempt to make FPIR independent of N.


False positive identification rate, FPIR(T)
Figure 52: **[FRVT-2018 Mugshot Dataset] Identification miss rates vs. false positive rates**. The figure shows miss rates FNIR(N, L, T) as a function of FPIR(N, T), with N ranging from 640 000 to 12 000 000 as noted in rows 1-10 of Table 5. These error tradeoff characteristics are useful for applications where a threshold must be elevated to limit false positives, such as when human reviewer labor is not matched to the volume of searches. Dark lines join points of equal threshold: If horizontal, FPIR(T) rises with N, and mate scores are independent of N. Other algorithms adjust scores in an attempt to make FPIR independent of N.

False positive identification rate, FPIR(T)
Figure 53: **[FRVT-2018 Mugshot Dataset] Identification miss rates vs. false positive rates**. The figure shows miss rates FNIR(N, L, T) as a function of FPIR(N, T), with N ranging from 640 000 to 12 000 000 as noted in rows 1-10 of Table 5. These error tradeoff characteristics are useful for applications where a threshold must be elevated to limit false positives, such as when human reviewer labor is not matched to the volume of searches. Dark lines join points of equal threshold: If horizontal, FPIR(T) rises with N, and mate scores are independent of N. Other algorithms adjust scores in an attempt to make FPIR independent of N.

False positive identification rate, FPIR(T)
Figure 54: **[FRVT-2018 Mugshot Dataset] Identification miss rates vs. false positive rates**. The figure shows miss rates FNIR(N, L, T) as a function of FPIR(N, T), with N ranging from 640 000 to 12 000 000 as noted in rows 1-10 of Table 5. These error tradeoff characteristics are useful for applications where a threshold must be elevated to limit false positives, such as when human reviewer labor is not matched to the volume of searches. Dark lines join points of equal threshold: If horizontal, FPIR(T) rises with N, and mate scores are independent of N. Other algorithms adjust scores in an attempt to make FPIR independent of N.



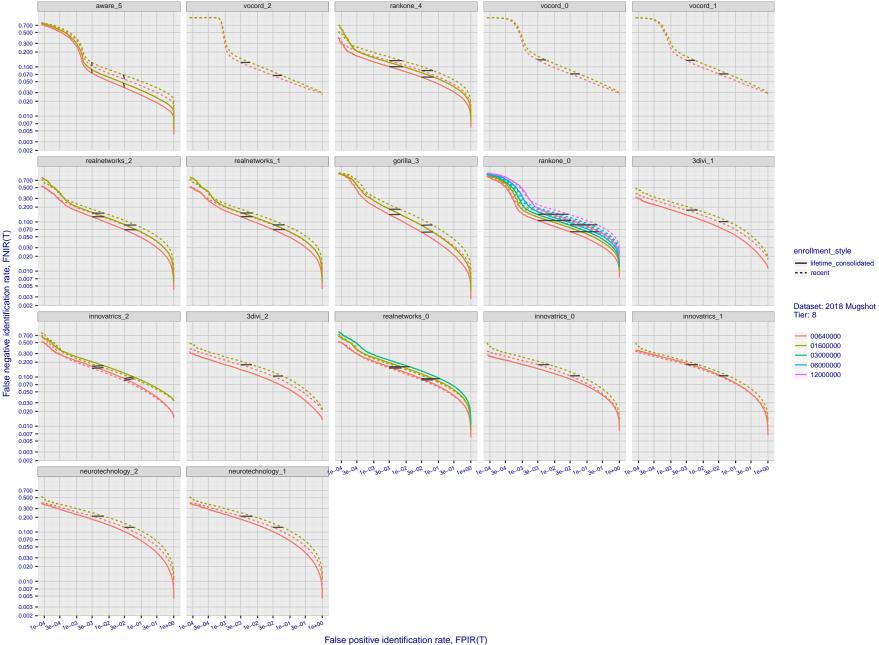
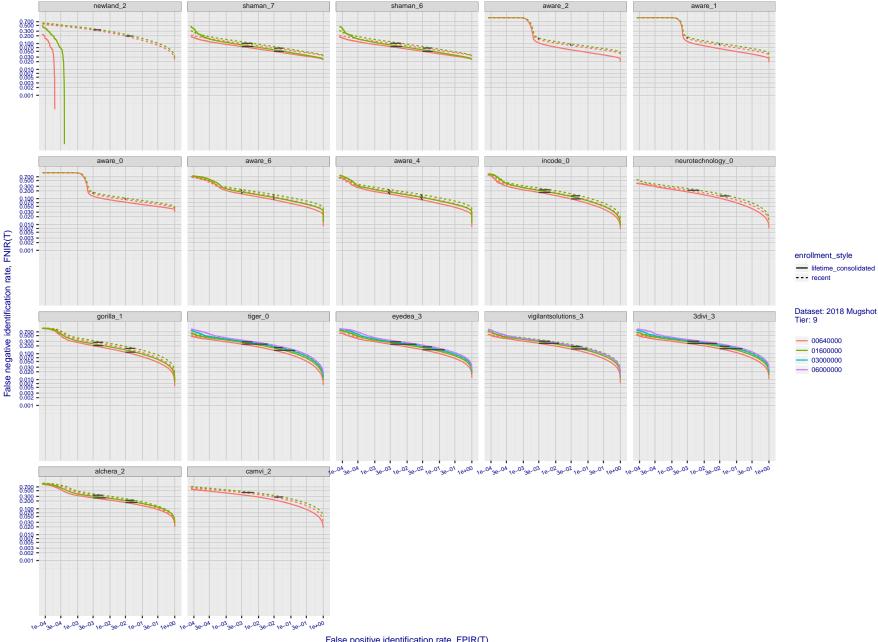
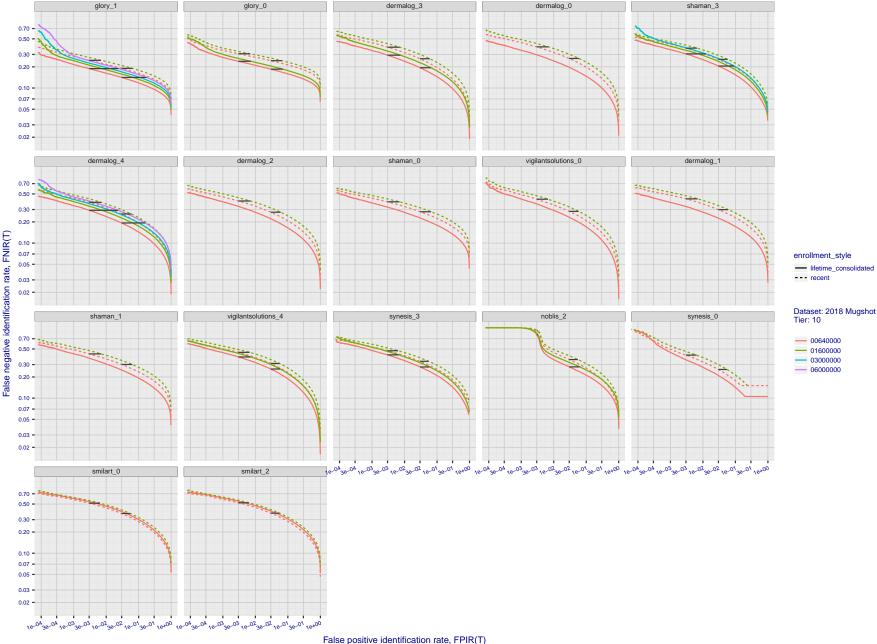
False positive identification rate, FPIR(T)
Figure 55: **[FRVT-2018 Mugshot Dataset] Identification miss rates vs. false positive rates**. The figure shows miss rates FNIR(N, L, T) as a function of FPIR(N, T), with N ranging from 640 000 to 12 000 000 as noted in rows 1-10 of Table 5. These error tradeoff characteristics are useful for applications where a threshold must be elevated to limit false positives, such as when human reviewer labor is not matched to the volume of searches. Dark lines join points of equal threshold: If horizontal, FPIR(T) rises with N, and mate scores are independent of N. Other algorithms adjust scores in an attempt to make FPIR independent of N.

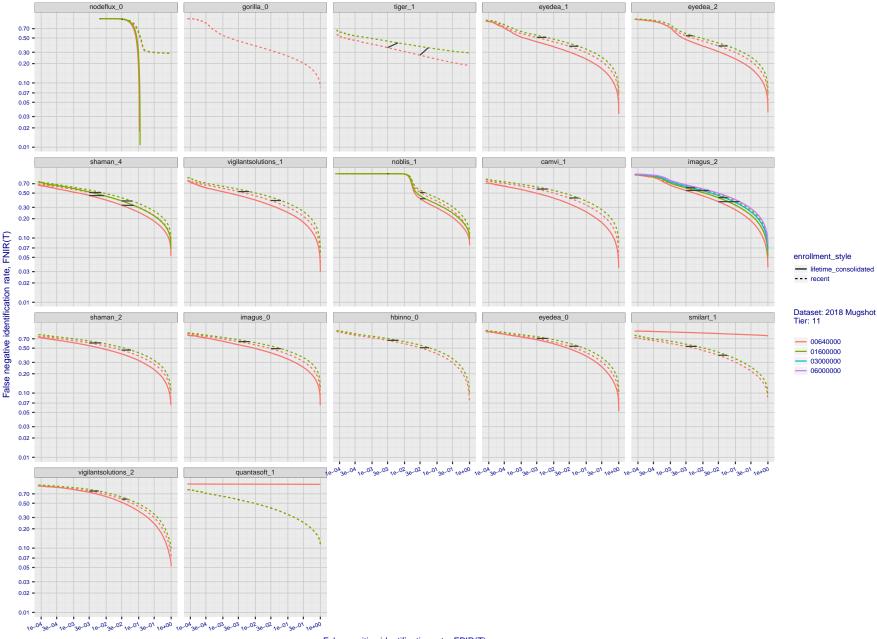
2019/09/11 17:24:52

FNIR(N, R, T) = FPIR(N, T) =

False pos. identification rate

False positive identification rate, FPIR(T)
Figure 56: **[FRVT-2018 Mugshot Dataset] Identification miss rates vs. false positive rates**. The figure shows miss rates FNIR(N, L, T) as a function of FPIR(N, T), with N ranging from 640 000 to 12 000 000 as noted in rows 1-10 of Table 5. These error tradeoff characteristics are useful for applications where a threshold must be elevated to limit false positives, such as when human reviewer labor is not matched to the volume of searches. Dark lines join points of equal threshold: If horizontal, FPIR(T) rises with N, and mate scores are independent of N. Other algorithms adjust scores in an attempt to make FPIR independent of N.


Figure 57: **[FRVT-2018 Mugshot Dataset] Identification miss rates vs. false positive rates**. The figure shows miss rates FNIR(N, L, T) as a function of FPIR(N, T), with N ranging from 640 000 to 12 000 000 as noted in rows 1-10 of Table 5. These error tradeoff characteristics are useful for applications where a threshold must be elevated to limit false positives, such as when human reviewer labor is not matched to the volume of searches. Dark lines join points of equal threshold: If horizontal, FPIR(T) rises with N, and mate scores are independent of N. Other algorithms adjust scores in an attempt to make FPIR independent of N.

False positive identification rate, FPIR(T)
Figure 58: **[FRVT-2018 Mugshot Dataset] Identification miss rates vs. false positive rates**. The figure shows miss rates FNIR(N, L, T) as a function of FPIR(N, T), with N ranging from 640 000 to 12 000 000 as noted in rows 1-10 of Table 5. These error tradeoff characteristics are useful for applications where a threshold must be elevated to limit false positives, such as when human reviewer labor is not matched to the volume of searches. Dark lines join points of equal threshold: If horizontal, FPIR(T) rises with N, and mate scores are independent of N. Other algorithms adjust scores in an attempt to make FPIR independent of N.

False positive identification rate, FPIR(T)
Figure 59: **[FRVT-2018 Mugshot Dataset] Identification miss rates vs. false positive rates**. The figure shows miss rates FNIR(N, L, T) as a function of FPIR(N, T), with N ranging from 640 000 to 12 000 000 as noted in rows 1-10 of Table 5. These error tradeoff characteristics are useful for applications where a threshold must be elevated to limit false positives, such as when human reviewer labor is not matched to the volume of searches. Dark lines join points of equal threshold: If horizontal, FPIR(T) rises with N, and mate scores are independent of N. Other algorithms adjust scores in an attempt to make FPIR independent of N.

False positive identification rate, FPIR(T)
Figure 60: **[FRVT-2018 Mugshot Dataset] Identification miss rates vs. false positive rates.** The figure shows miss rates FNIR(N, L, T) as a function of FPIR(N, T), with N ranging from 640 000 to 12 000 000 as noted in rows 1-10 of Table 5. These error tradeoff characteristics are useful for applications where a threshold must be elevated to limit false positives, such as when human reviewer labor is not matched to the volume of searches. Dark lines join points of equal threshold: If horizontal, FPIR(T) rises with N, and mate scores are independent of N. Other algorithms adjust scores in an attempt to make FPIR independent of N.

ayonix_1

ayonix_0

ayonix_2

imagus_3

FNIR(N, R, T) = FPIR(N, T) =

False pos. identification

0.700 -0.300 -0.200 - nodeflux_1

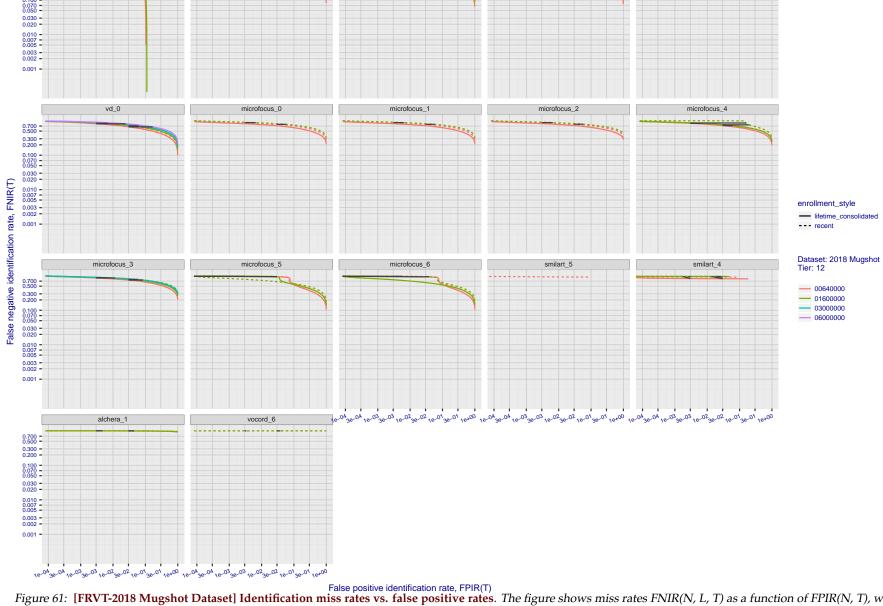


Figure 61: [FRVT-2018 Mugshot Dataset] Identification miss rates vs. false positive rates. The figure shows miss rates FNIR(N, L, T) as a function of FPIR(N, T), with N ranging from 640 000 to 12 000 000 as noted in rows 1-10 of Table 5. These error tradeoff characteristics are useful for applications where a threshold must be elevated to limit false positives, such as when human reviewer labor is not matched to the volume of searches. Dark lines join points of equal threshold: If horizontal, FPIR(T) rises with N, and mate scores are independent of N. Other algorithms adjust scores in an attempt to make FPIR independent of N.

Appendix B Effect of time-lapse: Accuracy after face ageing

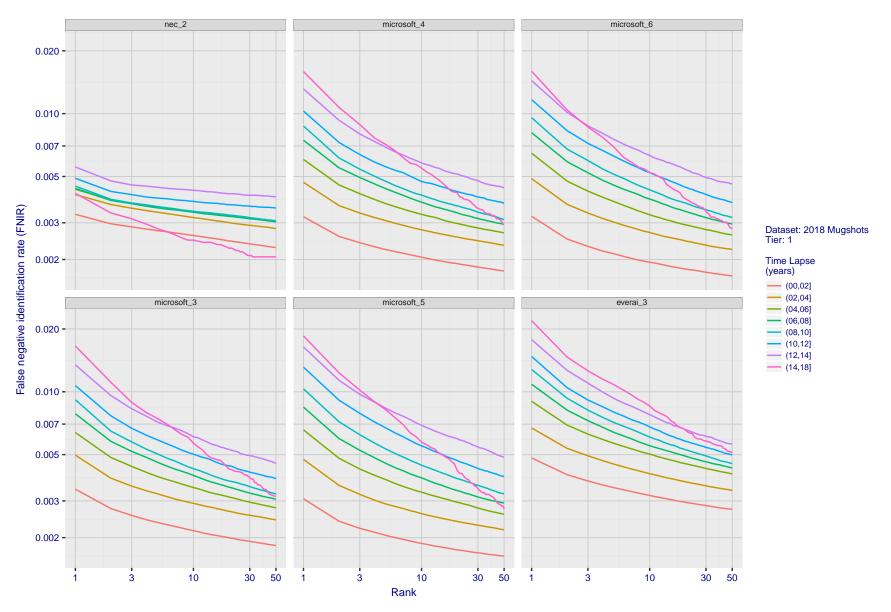


Figure 62: [FRVT-2018 Mugshot Ageing Dataset] Identification miss rates vs. rank by time-elapsed. The oldest image of each individual is enrolled. Thereafter, all more recent images are searched. Miss rates are computed over all searches noted in row 17 of Table 5 and binned by number of years between search and initial enrollment.

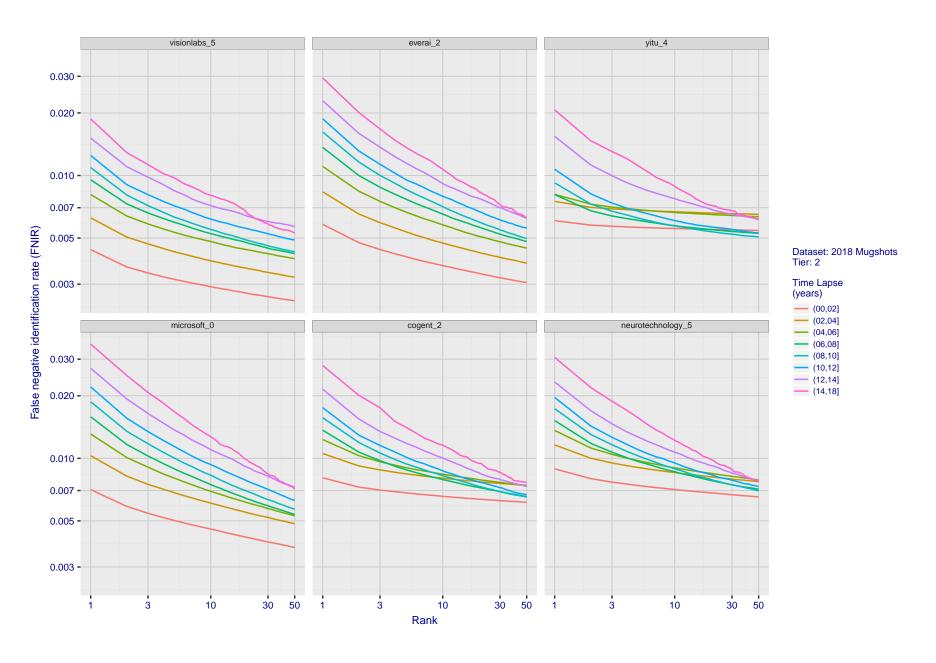


Figure 63: **[FRVT-2018 Mugshot Ageing Dataset] Identification miss rates vs. rank by time-elapsed**. The oldest image of each individual is enrolled. Thereafter, all more recent images are searched. Miss rates are computed over all searches noted in row 17 of Table 5 and binned by number of years between search and initial enrollment.

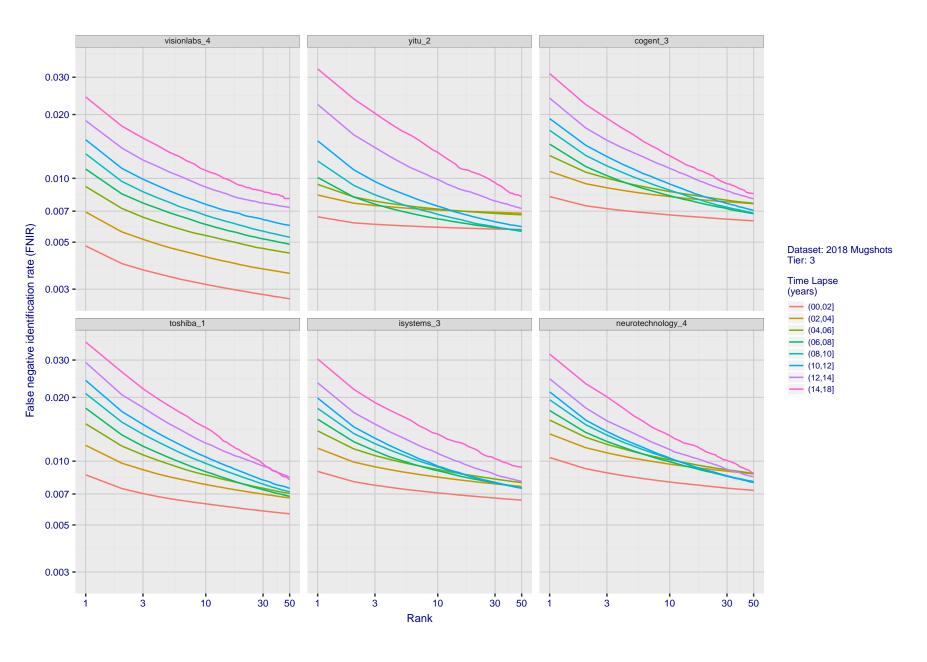


Figure 64: **[FRVT-2018 Mugshot Ageing Dataset] Identification miss rates vs. rank by time-elapsed**. The oldest image of each individual is enrolled. Thereafter, all more recent images are searched. Miss rates are computed over all searches noted in row 17 of Table 5 and binned by number of years between search and initial enrollment.

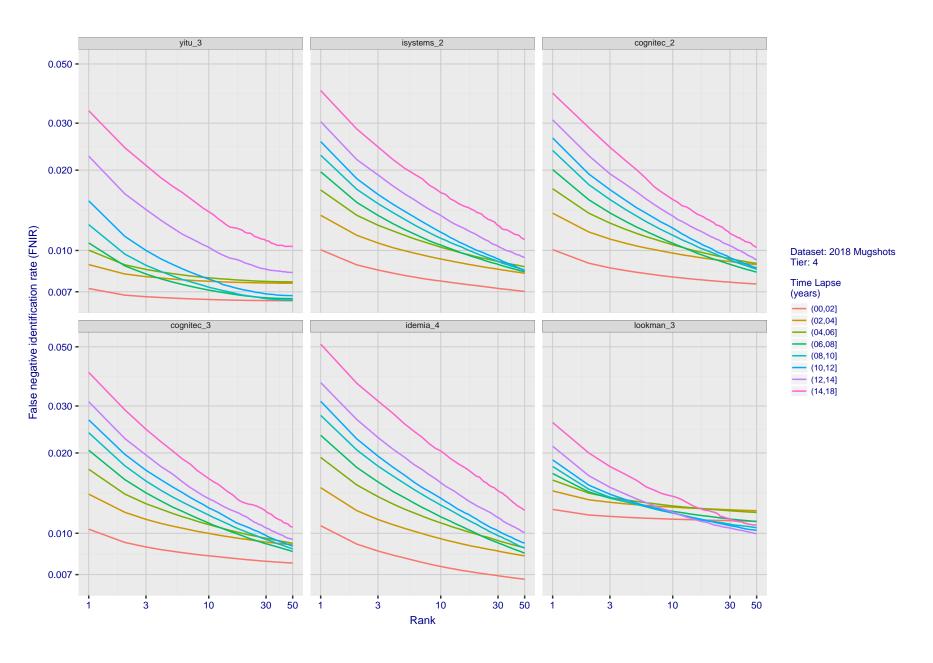


Figure 65: **[FRVT-2018 Mugshot Ageing Dataset] Identification miss rates vs. rank by time-elapsed**. The oldest image of each individual is enrolled. Thereafter, all more recent images are searched. Miss rates are computed over all searches noted in row 17 of Table 5 and binned by number of years between search and initial enrollment.

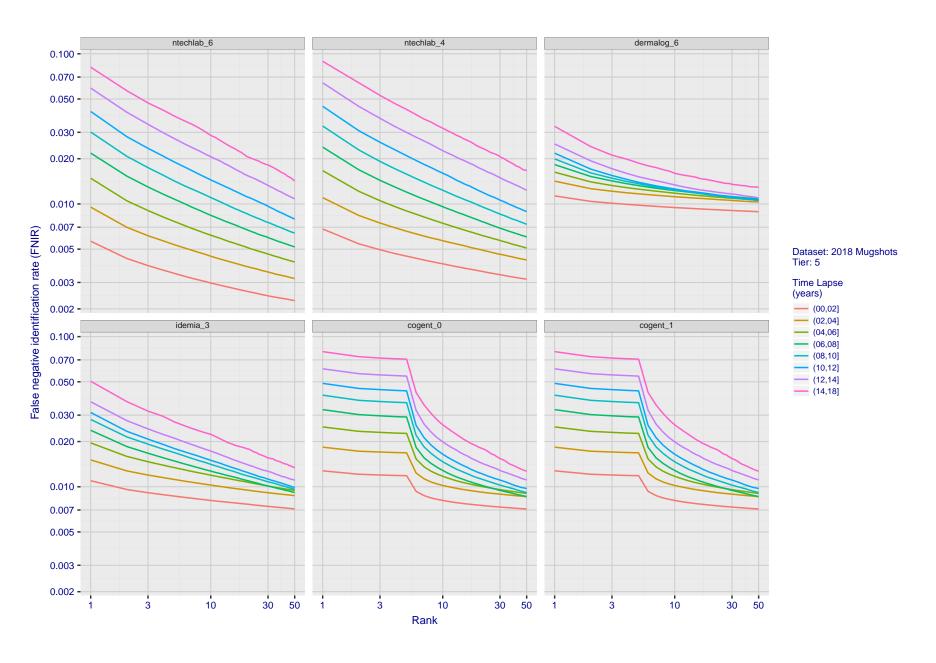


Figure 66: **[FRVT-2018 Mugshot Ageing Dataset] Identification miss rates vs. rank by time-elapsed**. The oldest image of each individual is enrolled. Thereafter, all more recent images are searched. Miss rates are computed over all searches noted in row 17 of Table 5 and binned by number of years between search and initial enrollment.

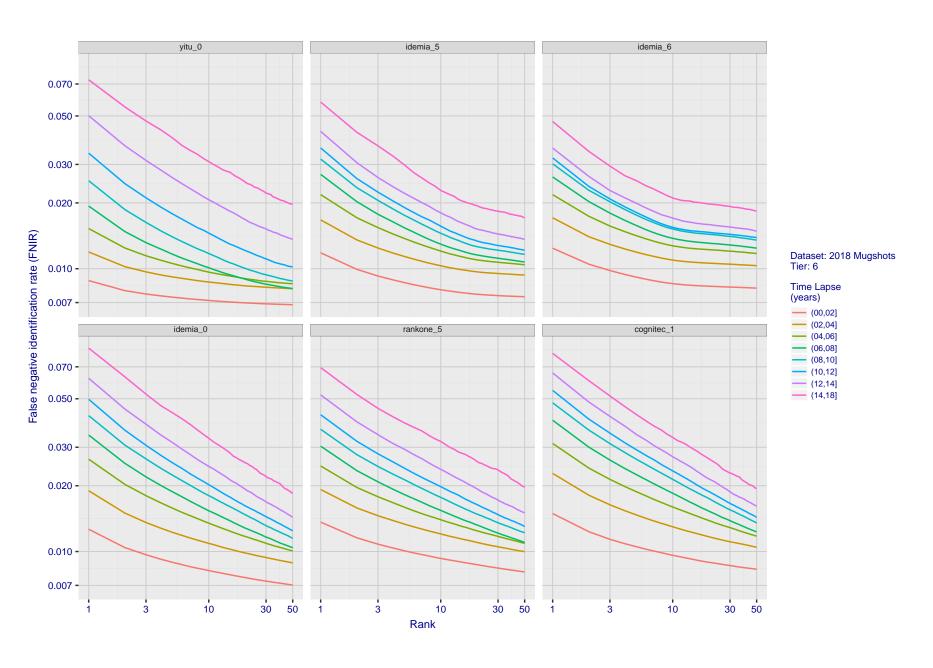


Figure 67: **[FRVT-2018 Mugshot Ageing Dataset] Identification miss rates vs. rank by time-elapsed**. The oldest image of each individual is enrolled. Thereafter, all more recent images are searched. Miss rates are computed over all searches noted in row 17 of Table 5 and binned by number of years between search and initial enrollment.

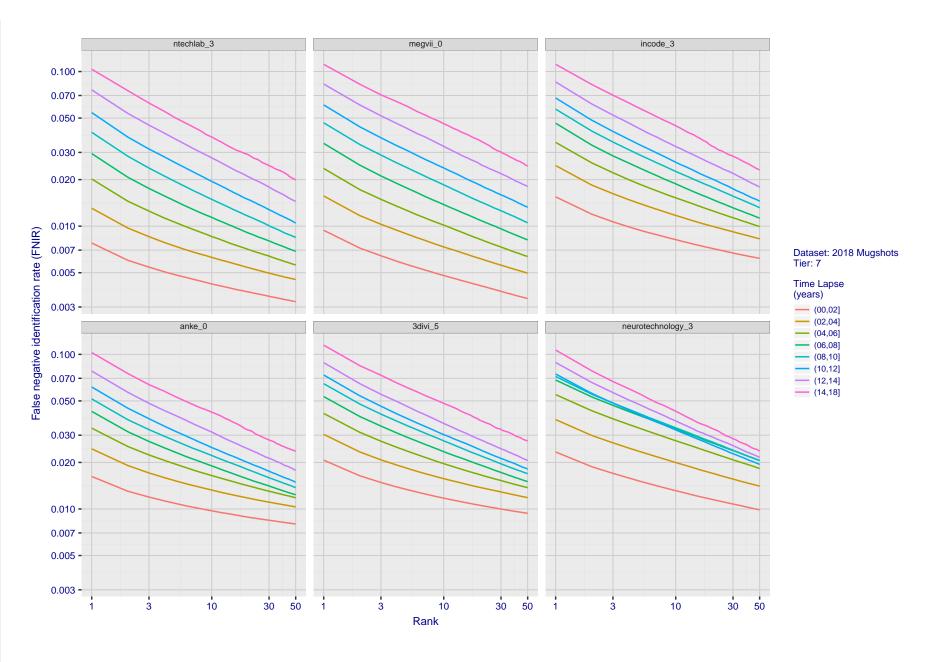


Figure 68: **[FRVT-2018 Mugshot Ageing Dataset] Identification miss rates vs. rank by time-elapsed**. The oldest image of each individual is enrolled. Thereafter, all more recent images are searched. Miss rates are computed over all searches noted in row 17 of Table 5 and binned by number of years between search and initial enrollment.

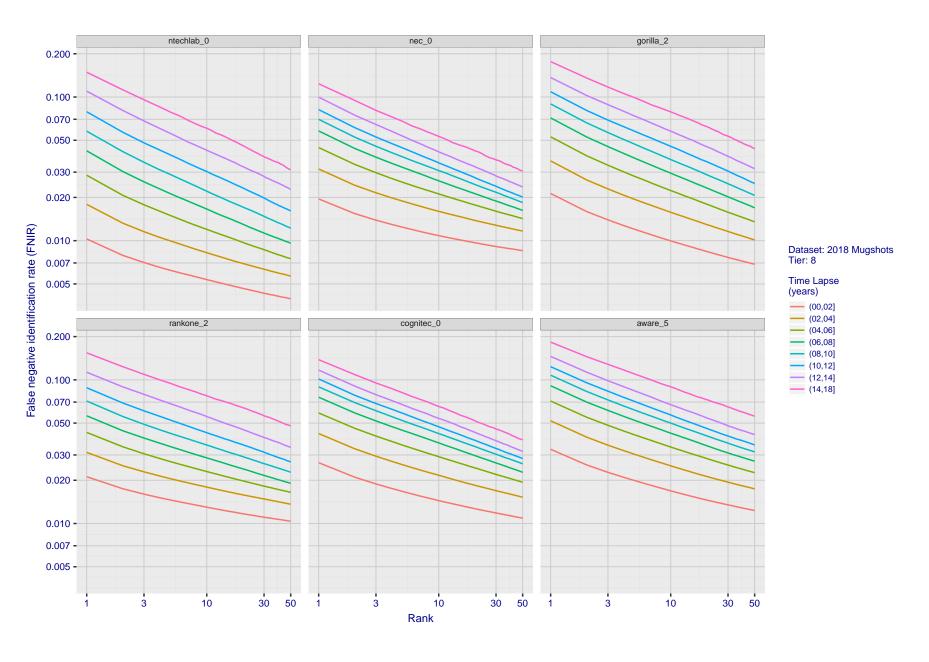


Figure 69: **[FRVT-2018 Mugshot Ageing Dataset] Identification miss rates vs. rank by time-elapsed**. The oldest image of each individual is enrolled. Thereafter, all more recent images are searched. Miss rates are computed over all searches noted in row 17 of Table 5 and binned by number of years between search and initial enrollment.

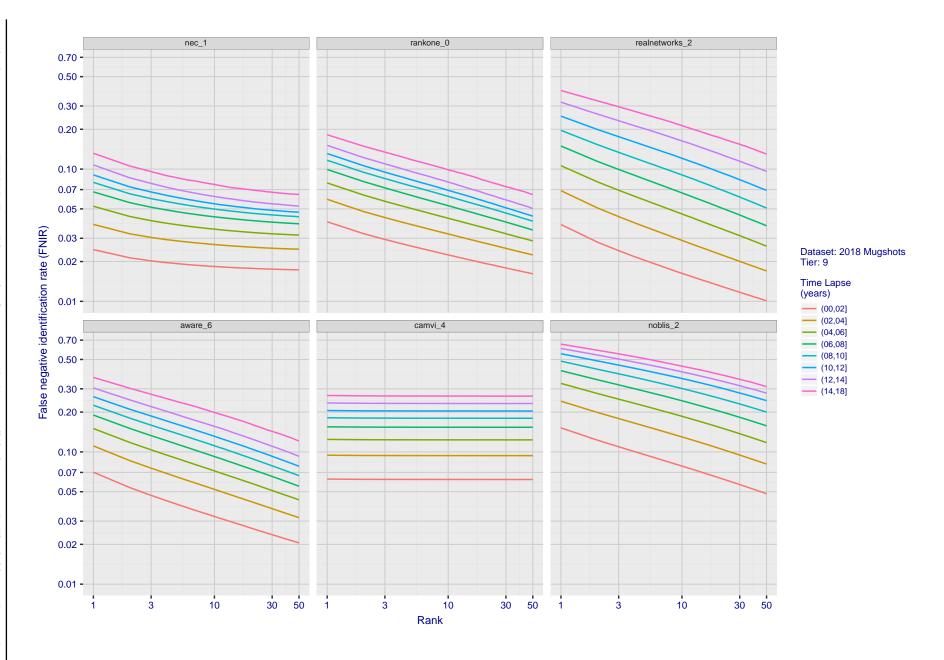


Figure 70: **[FRVT-2018 Mugshot Ageing Dataset] Identification miss rates vs. rank by time-elapsed**. The oldest image of each individual is enrolled. Thereafter, all more recent images are searched. Miss rates are computed over all searches noted in row 17 of Table 5 and binned by number of years between search and initial enrollment.

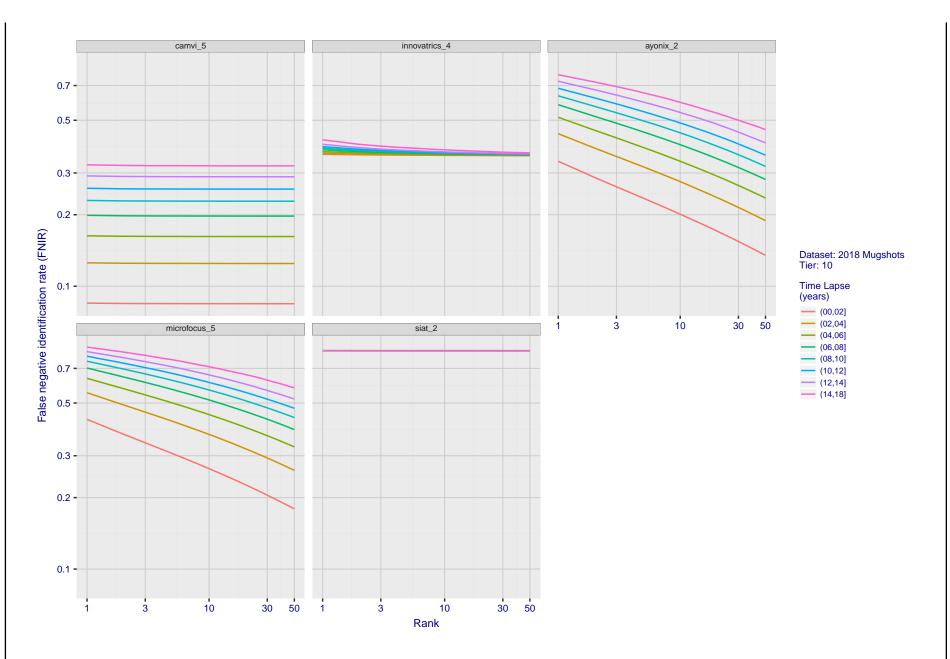


Figure 71: **[FRVT-2018 Mugshot Ageing Dataset] Identification miss rates vs. rank by time-elapsed**. The oldest image of each individual is enrolled. Thereafter, all more recent images are searched. Miss rates are computed over all searches noted in row 17 of Table 5 and binned by number of years between search and initial enrollment.

2019/09/11 17:24:52
FNIR(N, R, T) = FPIR(N, T) =
False neg. identification rate False pos. identification rate
N = Num. enrolled subjects $R = Num.$ candidates examined
T = Threshold
$T = 0 \rightarrow Investigation$ $T > 0 \rightarrow Identification$

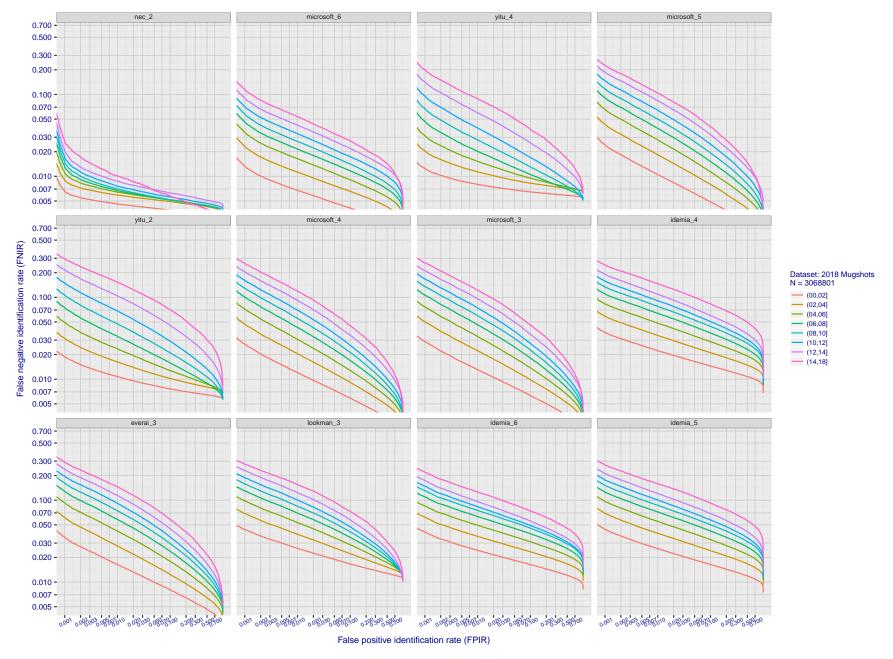


Figure 72: [FRVT-2018 Mugshot Ageing Dataset] Identification miss rates vs. FPIR by time-elapsed. The oldest image of each individual is enrolled. Thereafter, all more recent images are searched. Miss rates are computed over all searches noted in row 17 of Table 5 and binned by number of years between search and initial enrollment. FPIR is computed from the same FRVT 2018 non-mates noted in row 3 of Table 5 with N = 3000 000.

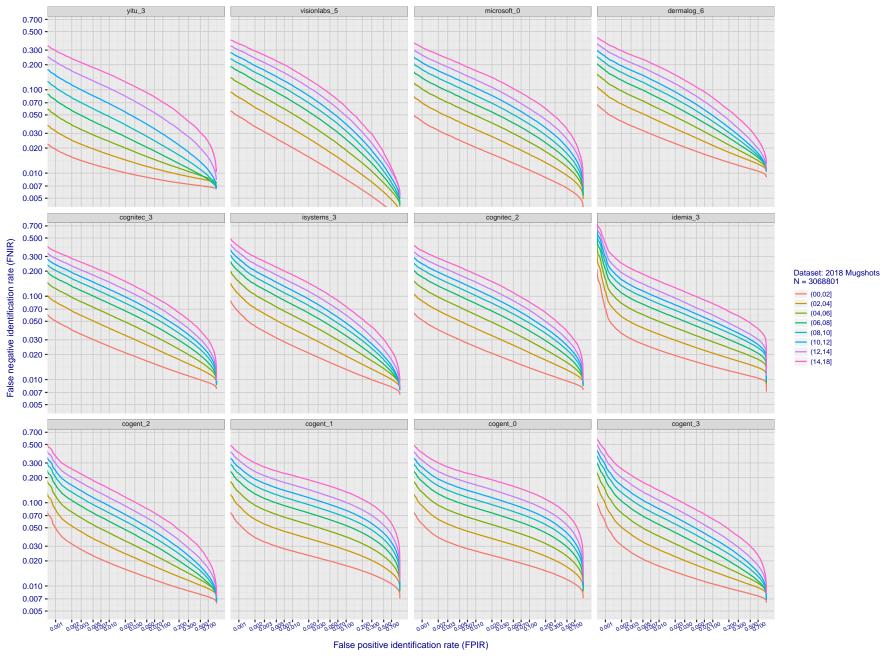


Figure 73: **[FRVT-2018 Mugshot Ageing Dataset] Identification miss rates vs. FPIR by time-elapsed**. The oldest image of each individual is enrolled. Thereafter, all more recent images are searched. Miss rates are computed over all searches noted in row 17 of Table 5 and binned by number of years between search and initial enrollment. FPIR is computed from the same FRVT 2018 non-mates noted in row 3 of Table 5 with N = 3 000 000.

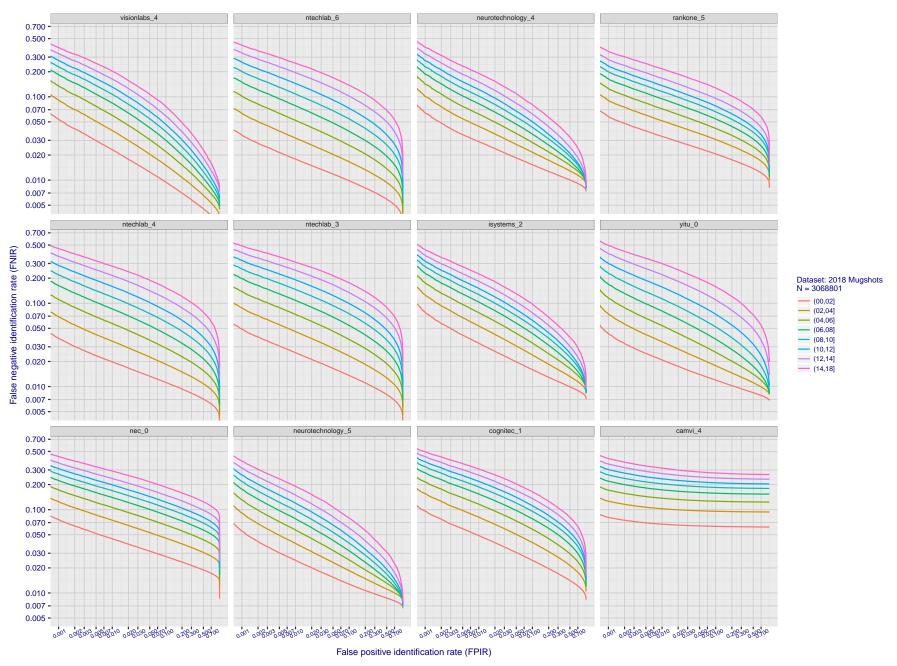


Figure 74: **[FRVT-2018 Mugshot Ageing Dataset] Identification miss rates vs. FPIR by time-elapsed**. The oldest image of each individual is enrolled. Thereafter, all more recent images are searched. Miss rates are computed over all searches noted in row 17 of Table 5 and binned by number of years between search and initial enrollment. FPIR is computed from the same FRVT 2018 non-mates noted in row 3 of Table 5 with N = 3 000 000.

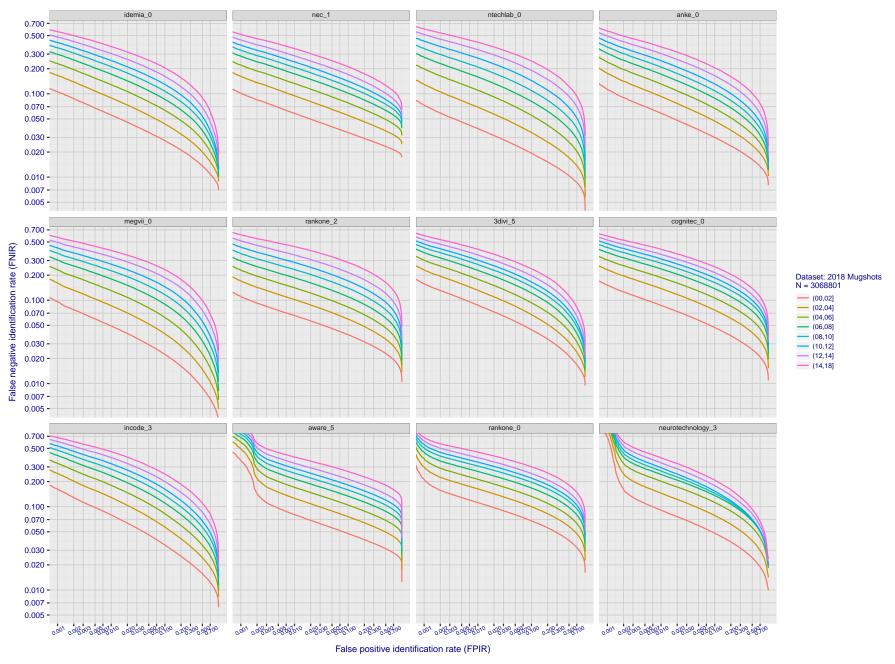


Figure 75: [FRVT-2018 Mugshot Ageing Dataset] Identification miss rates vs. FPIR by time-elapsed. The oldest image of each individual is enrolled. Thereafter, all more recent images are searched. Miss rates are computed over all searches noted in row 17 of Table 5 and binned by number of years between search and initial enrollment. FPIR is computed from the same FRVT 2018 non-mates noted in row 3 of Table 5 with N = 3 000 000.

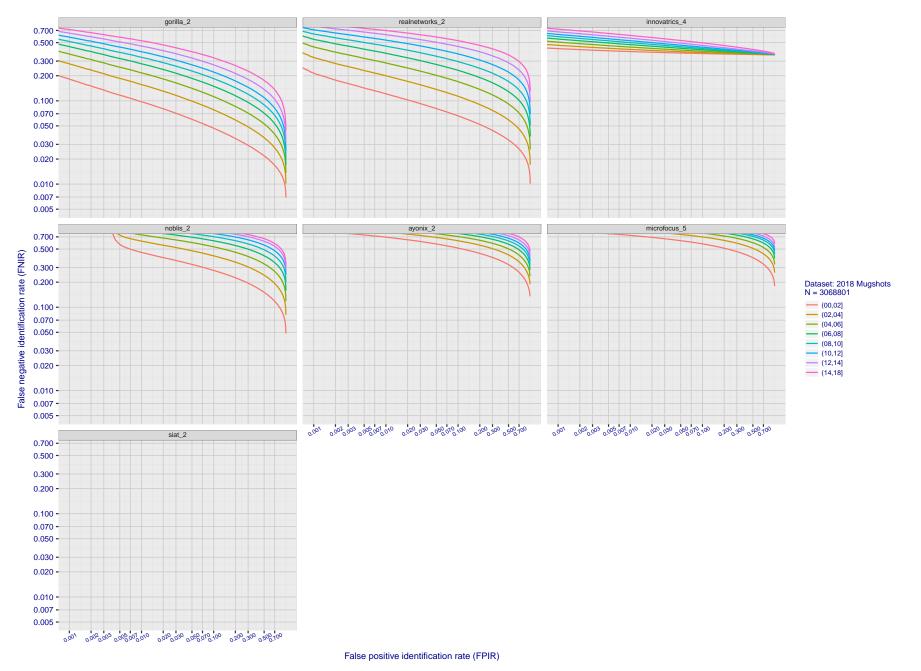


Figure 76: **[FRVT-2018 Mugshot Ageing Dataset] Identification miss rates vs. FPIR by time-elapsed**. The oldest image of each individual is enrolled. Thereafter, all more recent images are searched. Miss rates are computed over all searches noted in row 17 of Table 5 and binned by number of years between search and initial enrollment. FPIR is computed from the same FRVT 2018 non-mates noted in row 3 of Table 5 with N = 3000 000.

2019/09/11 17:24:52 FNIR(N, R, T) = FPIR(N, T) = False neg. identification rate False pos. identification rate N = Num. enrolled subjects R = Num. candidates examined T = Threshold
$$\begin{split} T &= 0 \rightarrow Investigation \\ T &> 0 \rightarrow Identification \end{split}$$

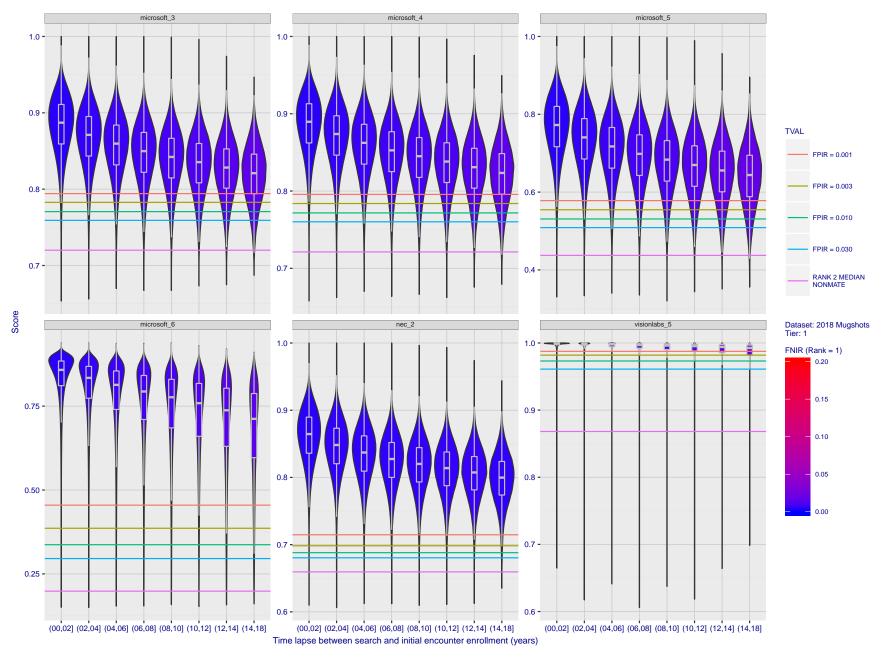


Figure 77: [FRVT-2018 Mugshot Ageing Dataset] Native mate scores vs. time-elapsed. The oldest image of each individual is enrolled. Thereafter, all more recent images are searched. Mated score distributions are computed over all searches noted in row 17 of Table 5 binned by number of years between search and initial enrollment.

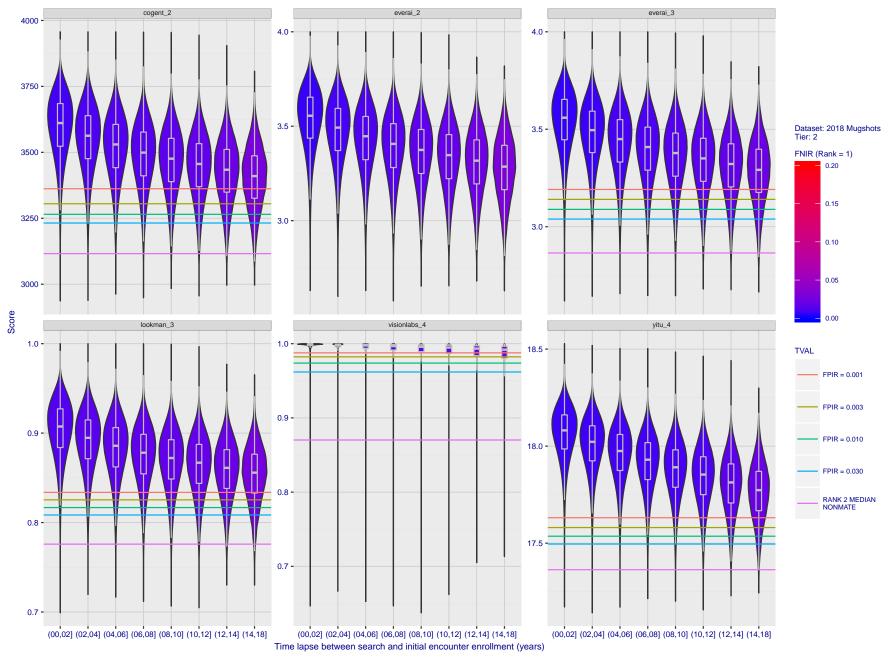


Figure 78: [FRVT-2018 Mugshot Ageing Dataset] Native mate scores vs. time-elapsed. The oldest image of each individual is enrolled. Thereafter, all more recent images are searched. Mated score distributions are computed over all searches noted in row 17 of Table 5 binned by number of years between search and initial enrollment.

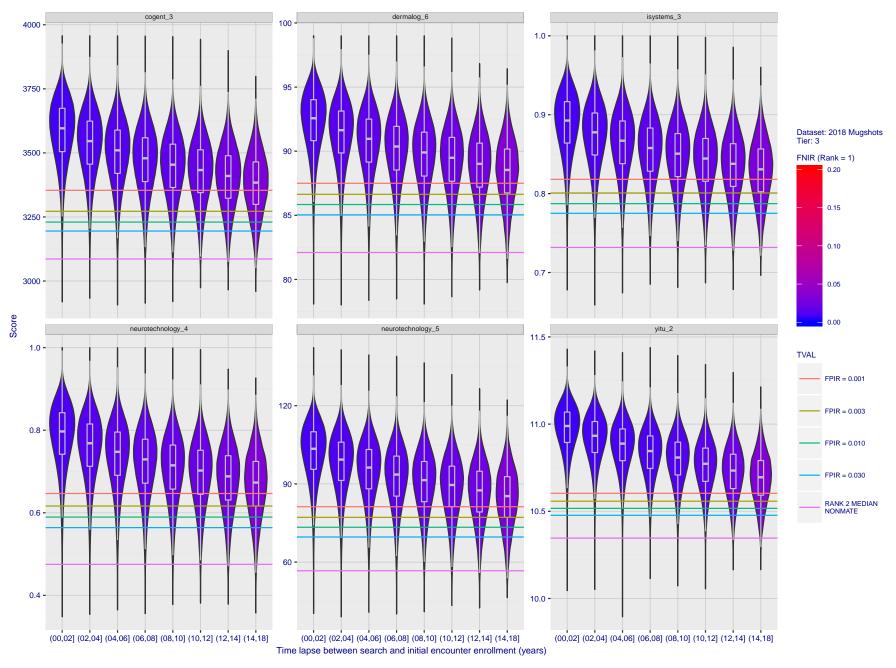


Figure 79: **[FRVT-2018 Mugshot Ageing Dataset] Native mate scores vs. time-elapsed**. The oldest image of each individual is enrolled. Thereafter, all more recent images are searched. Mated score distributions are computed over all searches noted in row 17 of Table 5 binned by number of years between search and initial enrollment.

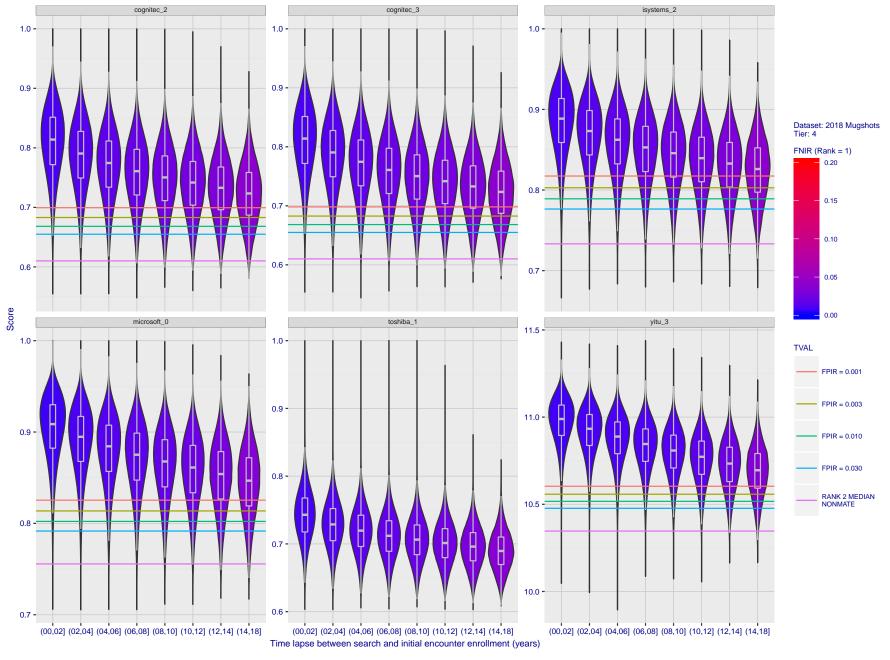


Figure 80: **[FRVT-2018 Mugshot Ageing Dataset] Native mate scores vs. time-elapsed**. The oldest image of each individual is enrolled. Thereafter, all more recent images are searched. Mated score distributions are computed over all searches noted in row 17 of Table 5 binned by number of years between search and initial enrollment.

False neg. identification rate False pos. identification rate

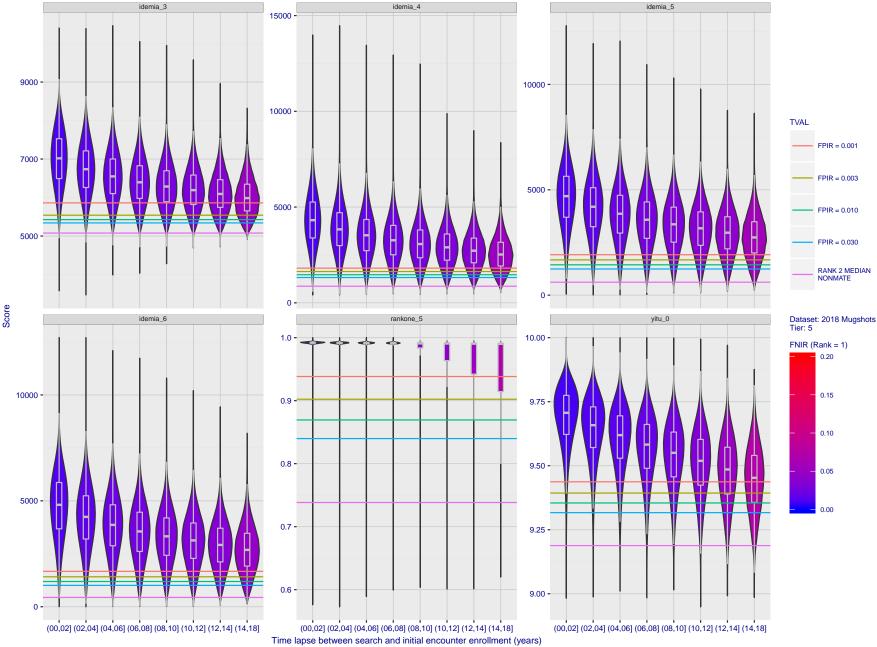


Figure 81: [FRVT-2018 Mugshot Ageing Dataset] Native mate scores vs. time-elapsed. The oldest image of each individual is enrolled. Thereafter, all more recent images are searched. Mated score distributions are computed over all searches noted in row 17 of Table 5 binned by number of years between search and initial enrollment.

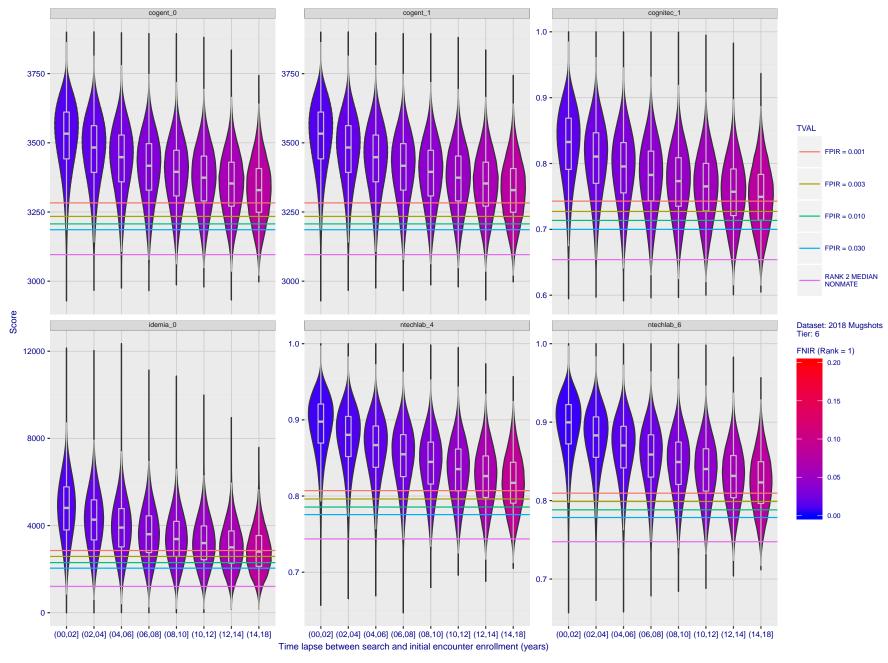


Figure 82: **[FRVT-2018 Mugshot Ageing Dataset] Native mate scores vs. time-elapsed**. The oldest image of each individual is enrolled. Thereafter, all more recent images are searched. Mated score distributions are computed over all searches noted in row 17 of Table 5 binned by number of years between search and initial enrollment.

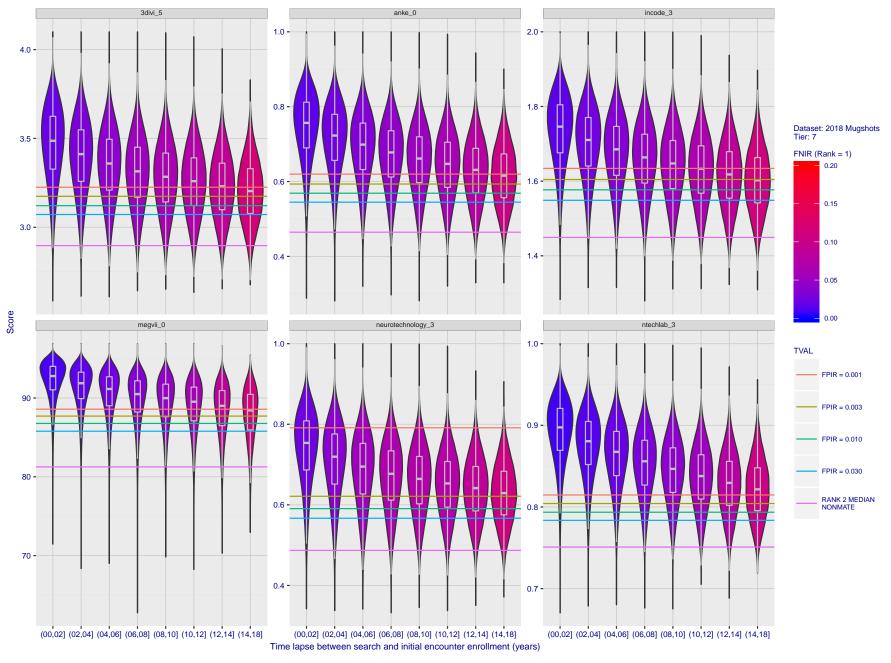


Figure 83: [FRVT-2018 Mugshot Ageing Dataset] Native mate scores vs. time-elapsed. The oldest image of each individual is enrolled. Thereafter, all more recent images are searched. Mated score distributions are computed over all searches noted in row 17 of Table 5 binned by number of years between search and initial enrollment.

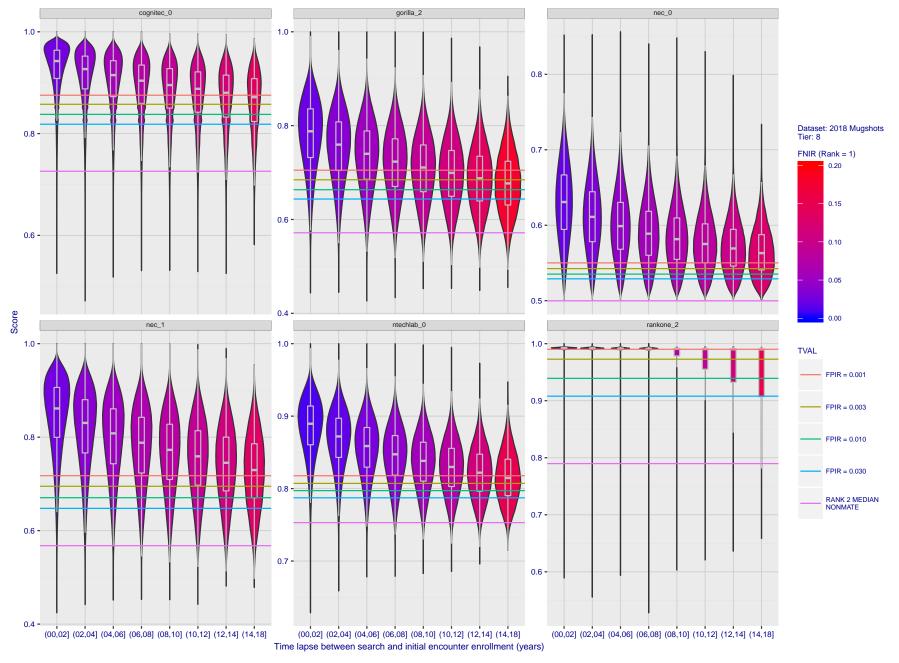


Figure 84: **[FRVT-2018 Mugshot Ageing Dataset] Native mate scores vs. time-elapsed**. The oldest image of each individual is enrolled. Thereafter, all more recent images are searched. Mated score distributions are computed over all searches noted in row 17 of Table 5 binned by number of years between search and initial enrollment.

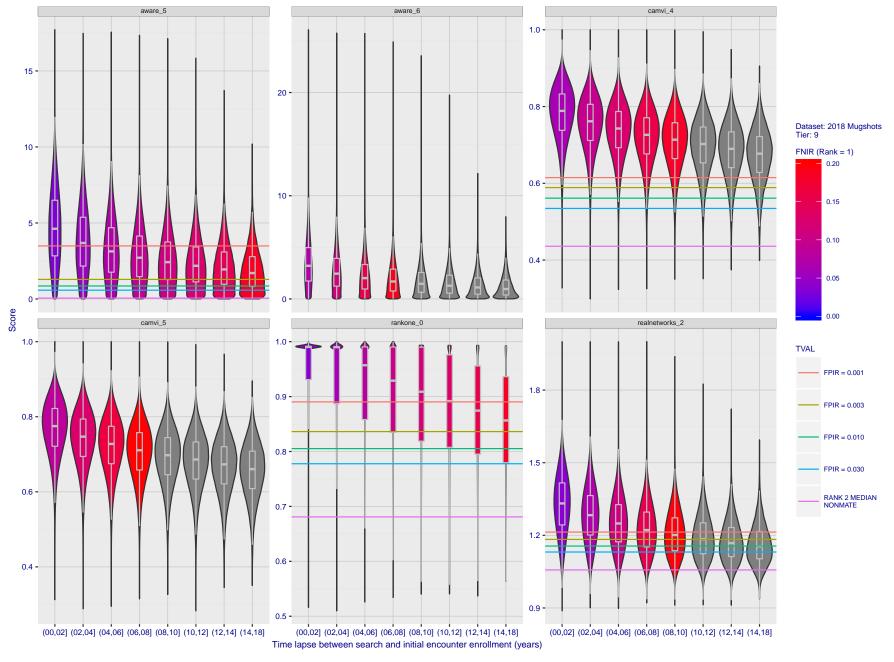


Figure 85: **[FRVT-2018 Mugshot Ageing Dataset] Native mate scores vs. time-elapsed**. The oldest image of each individual is enrolled. Thereafter, all more recent images are searched. Mated score distributions are computed over all searches noted in row 17 of Table 5 binned by number of years between search and initial enrollment.

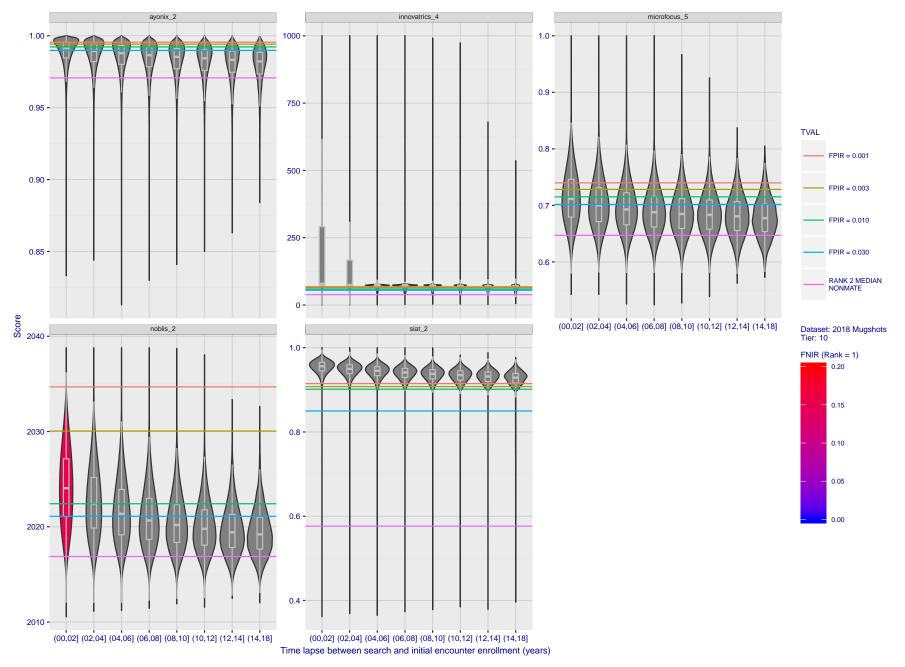


Figure 86: **[FRVT-2018 Mugshot Ageing Dataset] Native mate scores vs. time-elapsed**. The oldest image of each individual is enrolled. Thereafter, all more recent images are searched. Mated score distributions are computed over all searches noted in row 17 of Table 5 binned by number of years between search and initial enrollment.

Appendix C Effect of enrolling multiple images

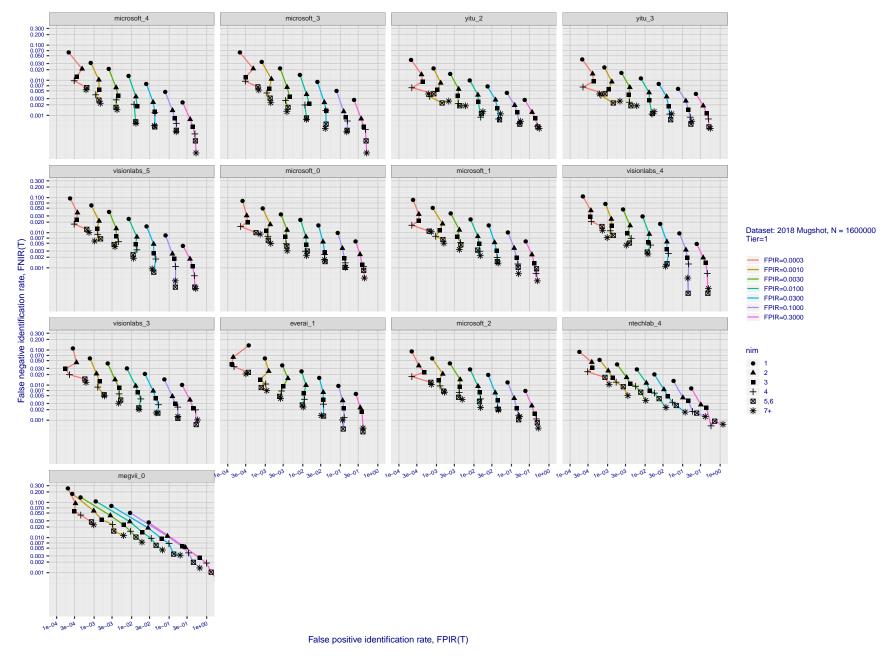


Figure 87: [FRVT-2018 Mugshot Dataset] Effect of enrolling multiple images for each identity. The plot shows an identification miss rates vs. false positive rates, at seven operating thresholds. The enrolled population size is fixed. The images are enrolled with lifetime-consolidation - see section 2.3.

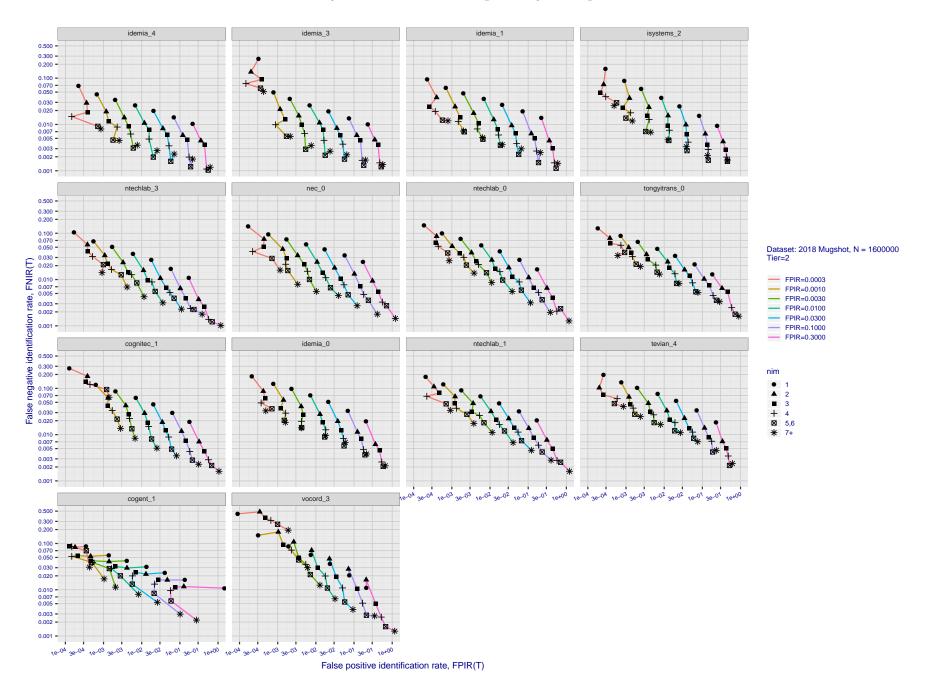


Figure 88: [FRVT-2018 Mugshot Dataset] Effect of enrolling multiple images for each identity. The plot shows an identification miss rates vs. false positive rates, at seven operating thresholds. The enrolled population size is fixed. The images are enrolled with lifetime-consolidation - see section 2.3.

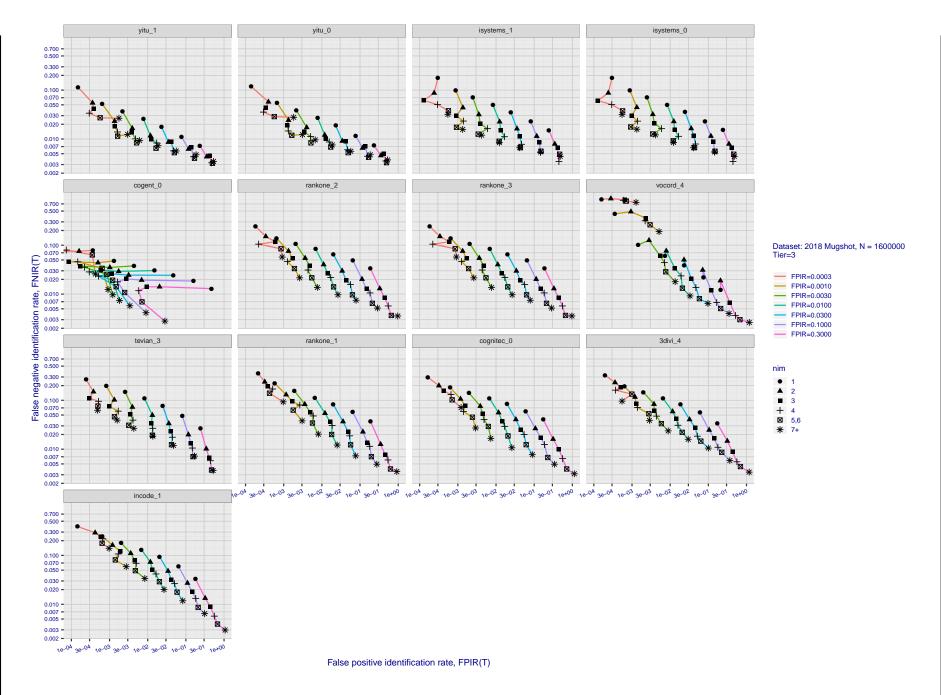


Figure 89: [FRVT-2018 Mugshot Dataset] Effect of enrolling multiple images for each identity. The plot shows an identification miss rates vs. false positive rates, at seven operating thresholds. The enrolled population size is fixed. The images are enrolled with lifetime-consolidation - see section 2.3.

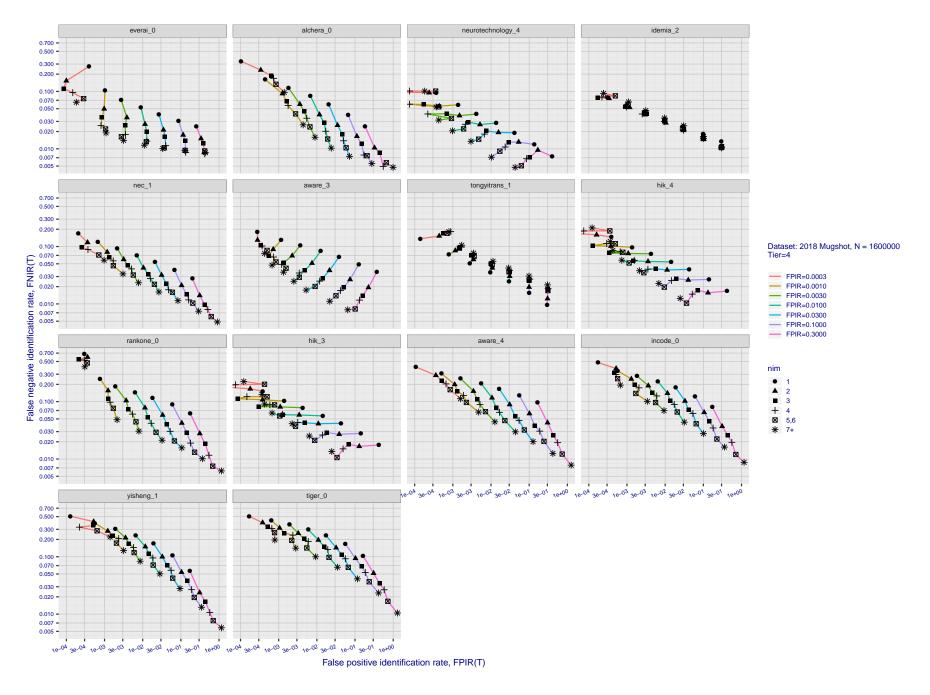


Figure 90: [FRVT-2018 Mugshot Dataset] Effect of enrolling multiple images for each identity. The plot shows an identification miss rates vs. false positive rates, at seven operating thresholds. The enrolled population size is fixed. The images are enrolled with lifetime-consolidation - see section 2.3.

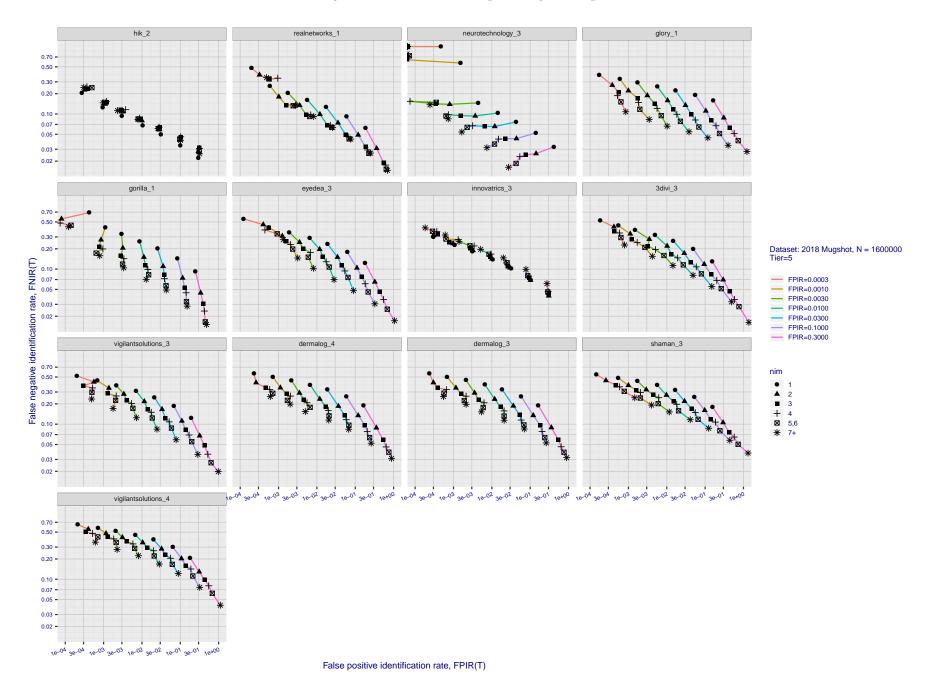


Figure 91: [FRVT-2018 Mugshot Dataset] Effect of enrolling multiple images for each identity. The plot shows an identification miss rates vs. false positive rates, at seven operating thresholds. The enrolled population size is fixed. The images are enrolled with lifetime-consolidation - see section 2.3.

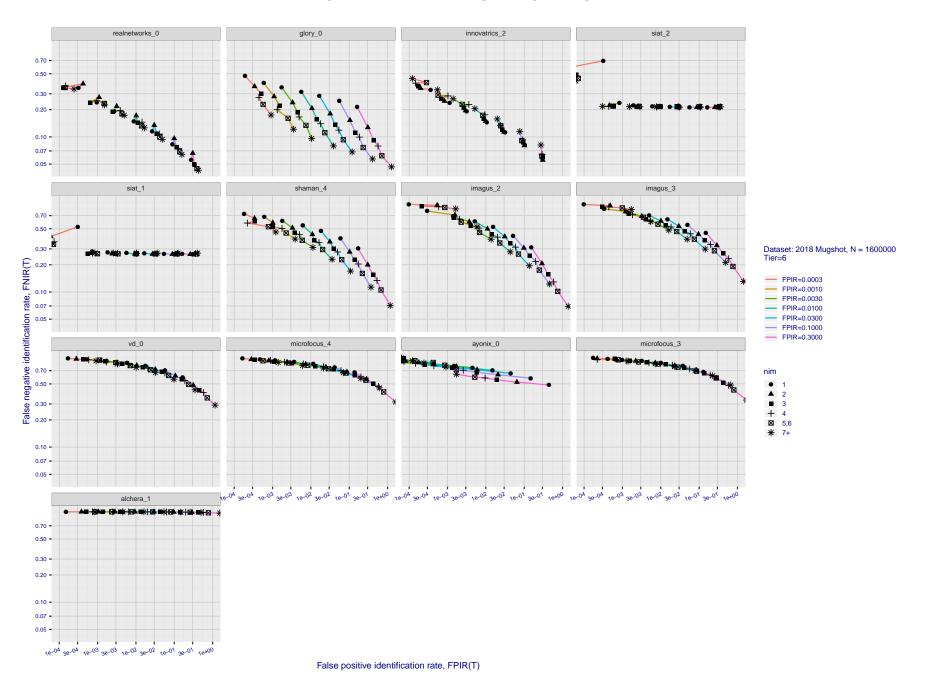


Figure 92: [FRVT-2018 Mugshot Dataset] Effect of enrolling multiple images for each identity. The plot shows an identification miss rates vs. false positive rates, at seven operating thresholds. The enrolled population size is fixed. The images are enrolled with lifetime-consolidation - see section 2.3.

Appendix D Accuracy with poor quality webcam images

2019/09/11 17:24:52 FNIR(N, R, T) = FPIR(N, T) = False neg. identification rate False pos. identification rate N = Num. enrolled subjects R = Num. candidates examined T = Threshold
$$\begin{split} T &= 0 \rightarrow Investigation \\ T &> 0 \rightarrow Identification \end{split}$$

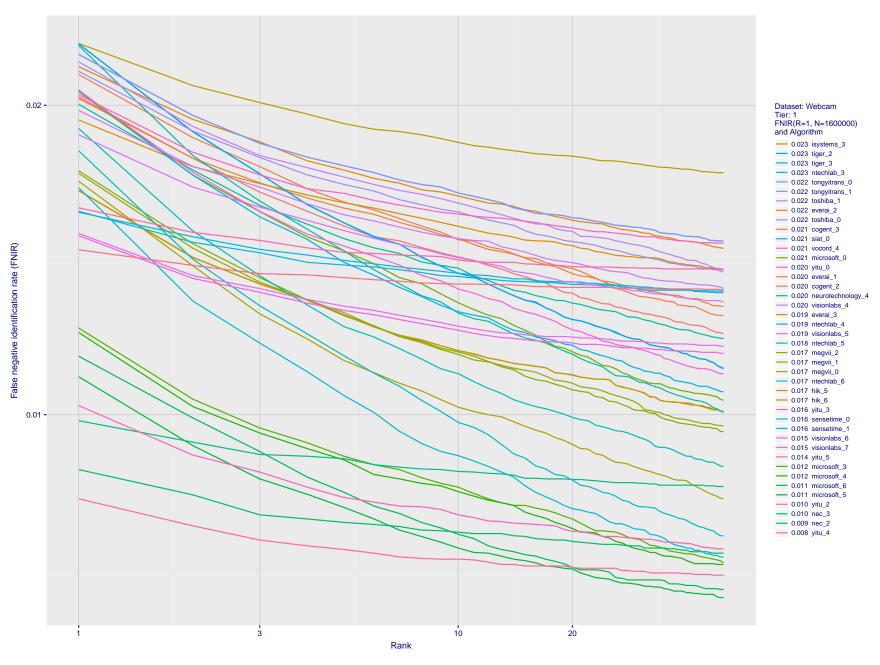


Figure 93: [Webcam Dataset] Identification miss rates vs. rank. The results apply to cross-domain recognition in which webcams are searched against enrolled mugshots. The FNIR values are higher than those for mugshot-mugshot identification due to low image resolution, lighting and less constrained subject pose in webcam images - see Figure 4.

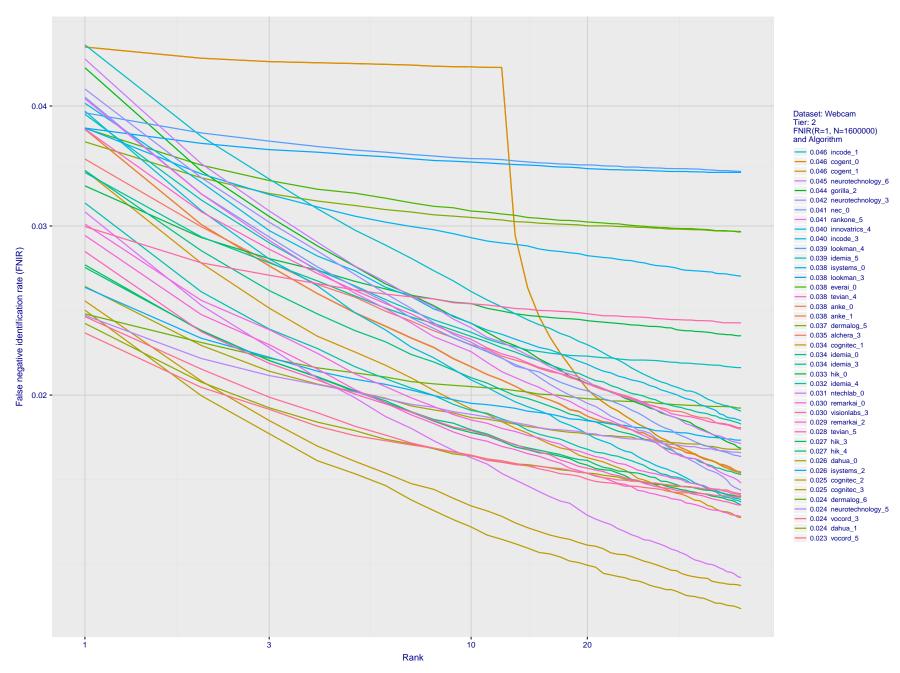


Figure 94: [Webcam Dataset] Identification miss rates vs. rank. The results apply to cross-domain recognition in which webcams are searched against enrolled mugshots. The FNIR values are higher than those for mugshot-mugshot identification due to low image resolution, lighting and less constrained subject pose in webcam images - see Figure 4.

FNIR(N, R, T) = FPIR(N, T) =

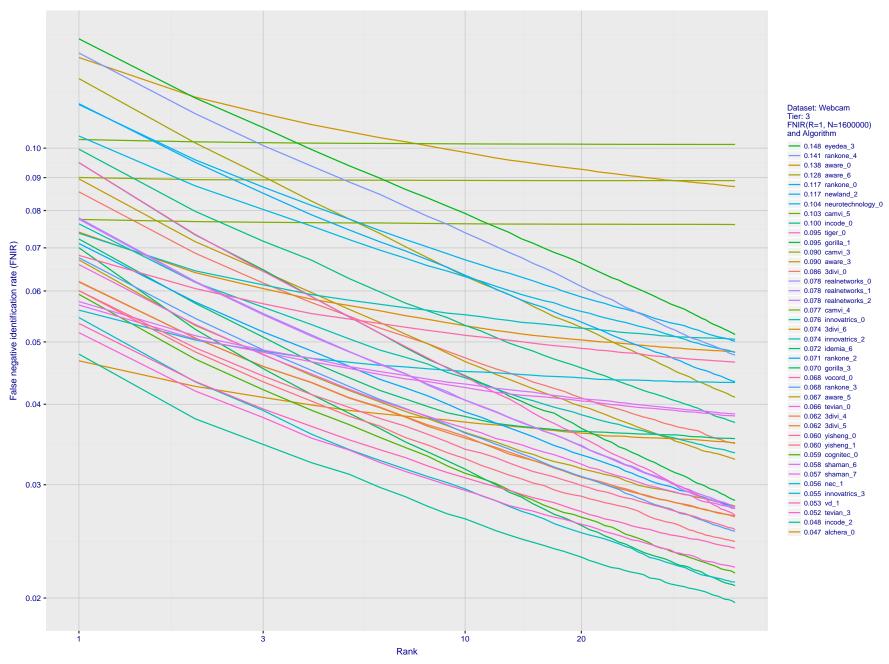


Figure 95: [Webcam Dataset] Identification miss rates vs. rank. The results apply to cross-domain recognition in which webcams are searched against enrolled mugshots. The FNIR values are higher than those for mugshot-mugshot identification due to low image resolution, lighting and less constrained subject pose in webcam images - see Figure 4.

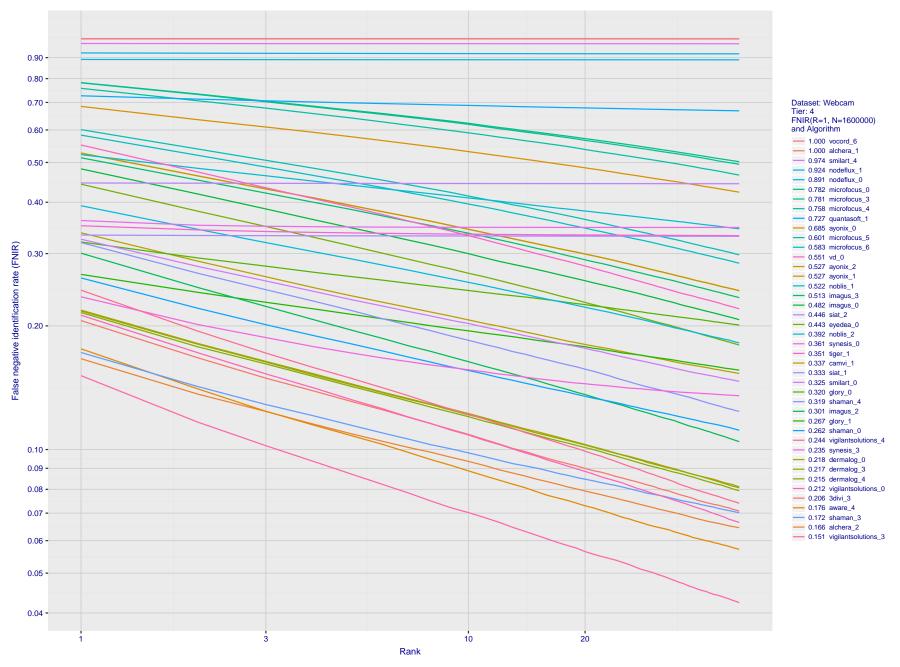


Figure 96: [Webcam Dataset] Identification miss rates vs. rank. The results apply to cross-domain recognition in which webcams are searched against enrolled mugshots. The FNIR values are higher than those for mugshot-mugshot identification due to low image resolution, lighting and less constrained subject pose in webcam images - see Figure 4.

2019/09/11 17:24:52 FNIR(N, R, T) = FPIR(N, T) = False neg. identification rate False pos. identification rate N = Num. enrolled subjects R = Num. candidates examined T = Threshold
$$\begin{split} T &= 0 \rightarrow Investigation \\ T &> 0 \rightarrow Identification \end{split}$$

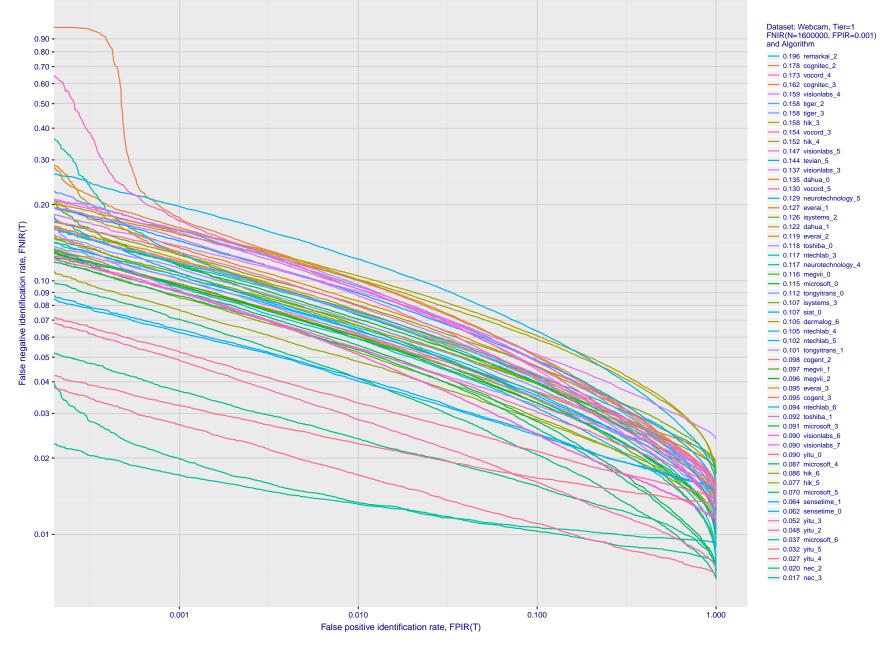


Figure 97: [Webcam Dataset] Identification miss rates vs. false positive rates. The results apply to cross-domain recognition in which webcams are searched against enrolled mugshots. The FNIR values are higher than those for mugshot-mugshot identification due to low image resolution, lighting and less constrained subject pose in webcam images - see Figure 4.

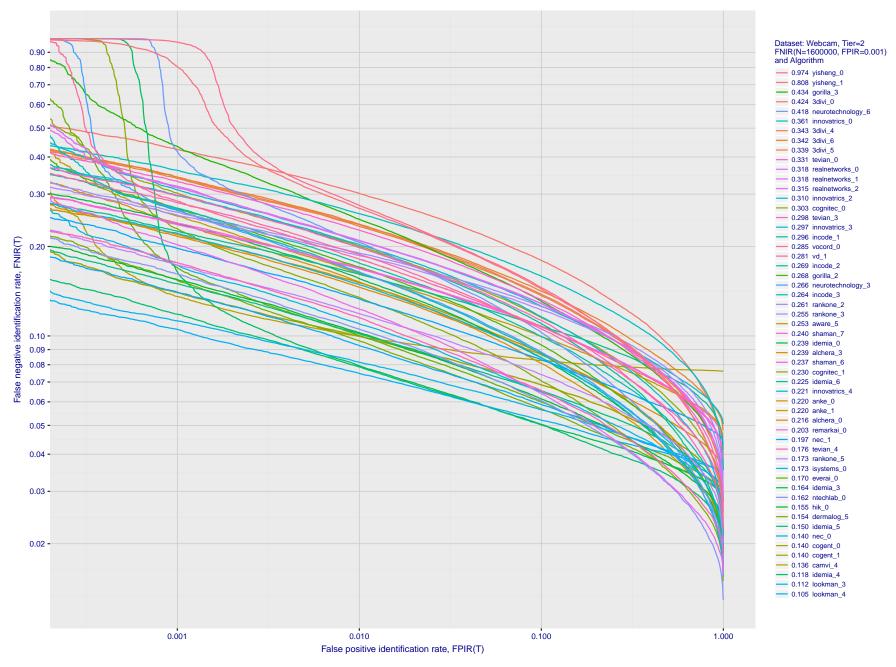


Figure 98: [Webcam Dataset] Identification miss rates vs. false positive rates. The results apply to cross-domain recognition in which webcams are searched against enrolled mugshots. The FNIR values are higher than those for mugshot-mugshot identification due to low image resolution, lighting and less constrained subject pose in webcam images - see Figure 4.

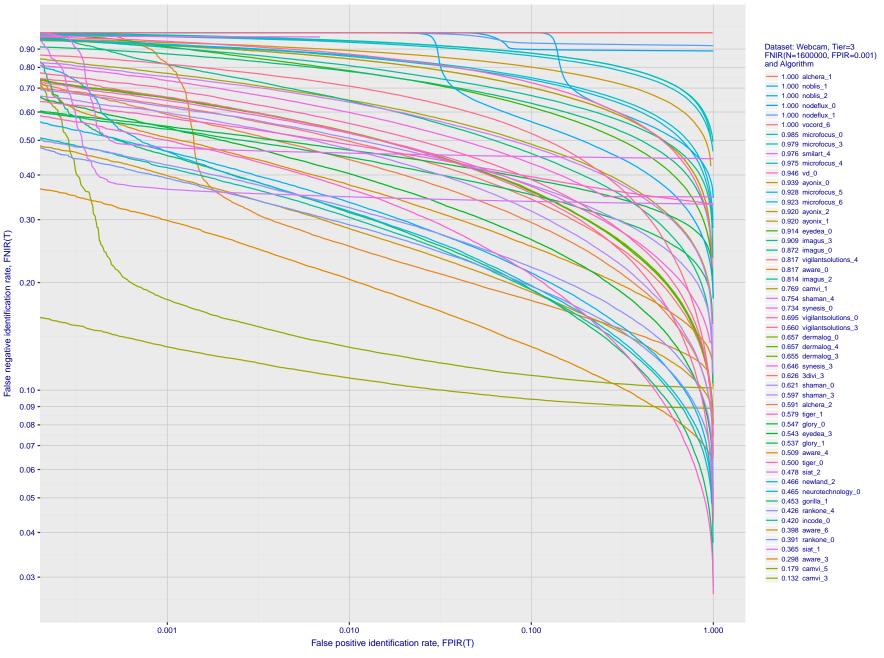


Figure 99: [Webcam Dataset] Identification miss rates vs. false positive rates. The results apply to cross-domain recognition in which webcams are searched against enrolled mugshots. The FNIR values are higher than those for mugshot-mugshot identification due to low image resolution, lighting and less constrained subject pose in webcam images - see Figure 4.

Appendix E Accuracy for profile-view to frontal recognition

Figures 100 - 102 gives accuracy results for searching $100\,000$ mated and $100\,000$ non-mated profile-view images against the same FRVT 2018 frontal enrollment dataset, $N = 1\,600\,000$, used in the main mugshot trials. This experiment corresponds to row-13 of Table 5. An example of profile-view image is given in Figure 5.

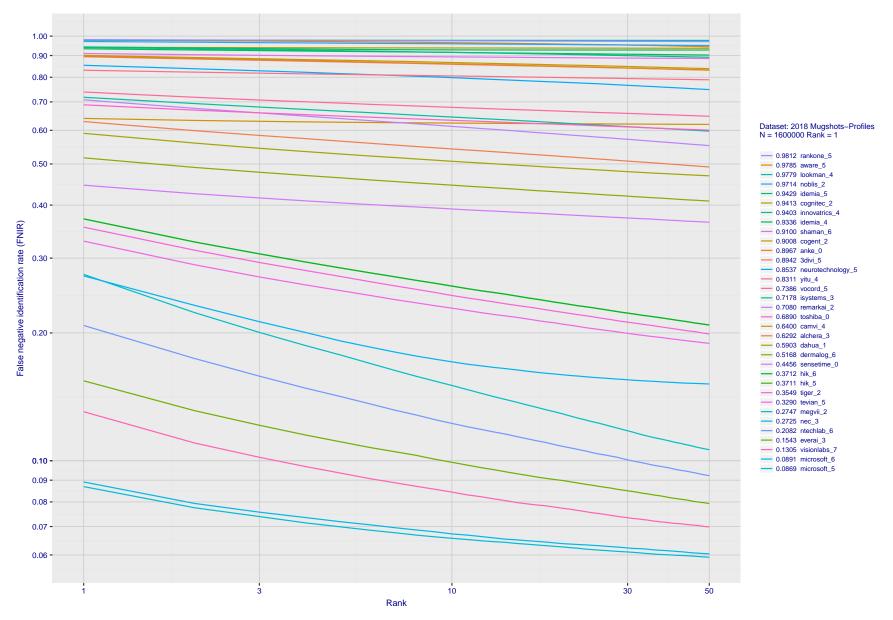


Figure 100: [Mugshot and profile-view dataset] Rank-based accuracy. For some of the more accurate Phase 3 algorithms the figure plots error tradeoff characteristics for frontal and profile-view searches into an enrolled set of $N = 1600\,000$ frontal images. Note that some algorithms fail on profile-view images with FNIR $\rightarrow 1$ - this evaluation did not ask developers to provide profile-view capability. Some algorithms, on the other hand, give FNIR approaching that for frontal-view searches using c. 2010 algorithms. The best result is that 91% of profile-view searches yield the correct mate at rank 1, and better than 94% in the top-50 candidates.

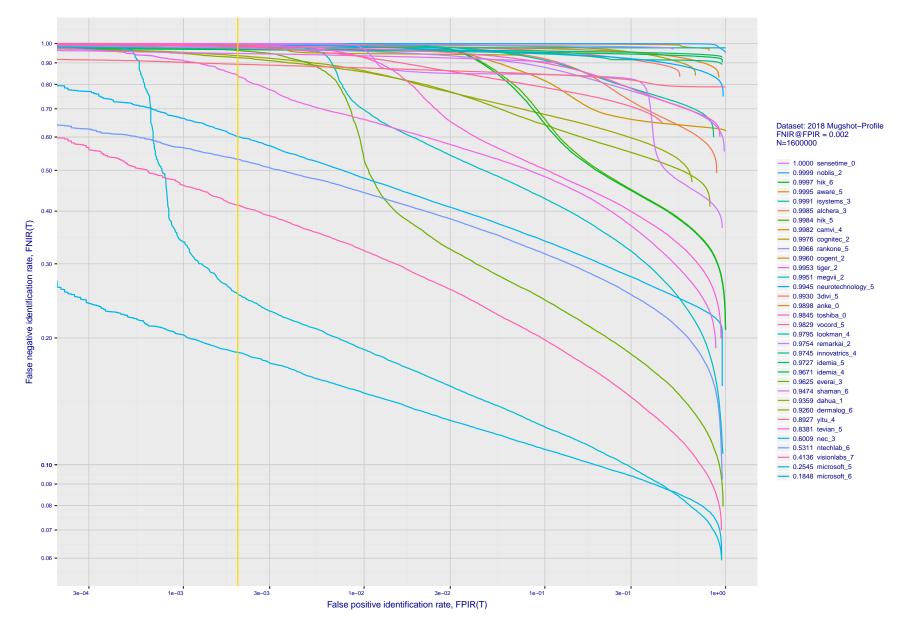


Figure 101: [Mugshot and profile-view dataset] Threshold-based accuracy. For some of the more accurate Phase 3 algorithms the figure plots error tradeoff characteristics for frontal and profile-view searches into an enrolled set of $N = 1\,600\,000$ frontal images. Note that some algorithms fail on profile-view images with FNIR $\rightarrow 1$ - this evaluation did not ask developers to provide profile-view capability. Some algorithms, on the other hand, give FNIR approaching that for frontal-view searches using c. 2010 algorithms.

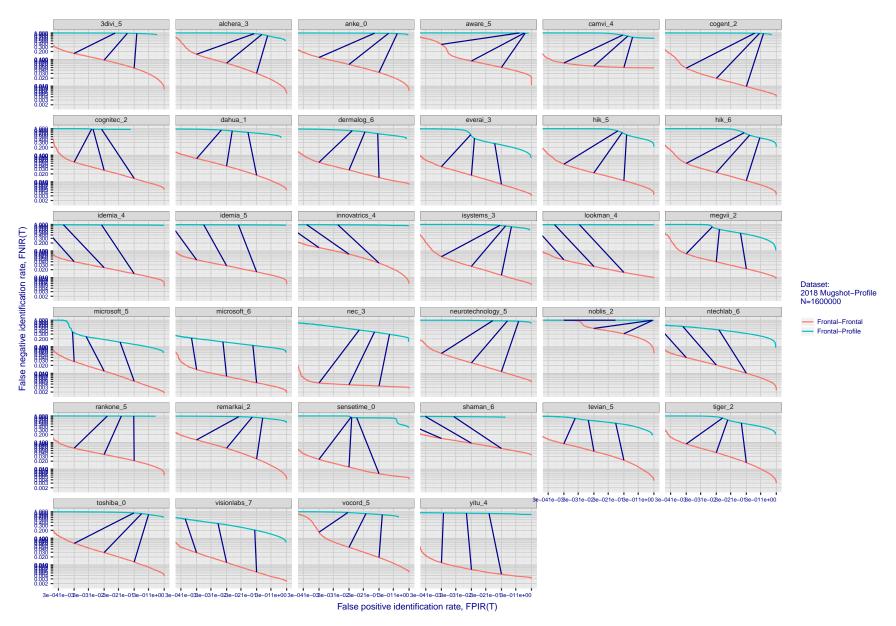


Figure 102: [Mugshot and profile-view dataset] Speed-accuracy tradeoff. For some of the more accurate Phase 3 algorithms the figure plots error tradeoff characteristics for frontal and profile-view searches into an enrolled set of $N = 1\,600\,000$ frontal images. Some algorithms fail on profile-view images with FNIR $\rightarrow 1$ - this evaluation did not ask developers to provide profile-view capability. Some algorithms, on the other hand, give FNIR approaching that for frontal-view searches using c. 2010 algorithms. Blue lines connect points of equal threshold from which it is evident that some algorithms would give markedly higher false positive outcomes if profile-view images were searched in a system configured for frontal searches. This would be a vulnerability in an access control system.

Appendix F Accuracy when identifying wild images

2019/09/11 17:24:52 FNIR(N, R, T) = FPIR(N, T) = False neg. identification rate False pos. identification rate N = Num. enrolled subjects R = Num. candidates examined T = Threshold
$$\begin{split} T &= 0 \rightarrow Investigation \\ T &> 0 \rightarrow Identification \end{split}$$

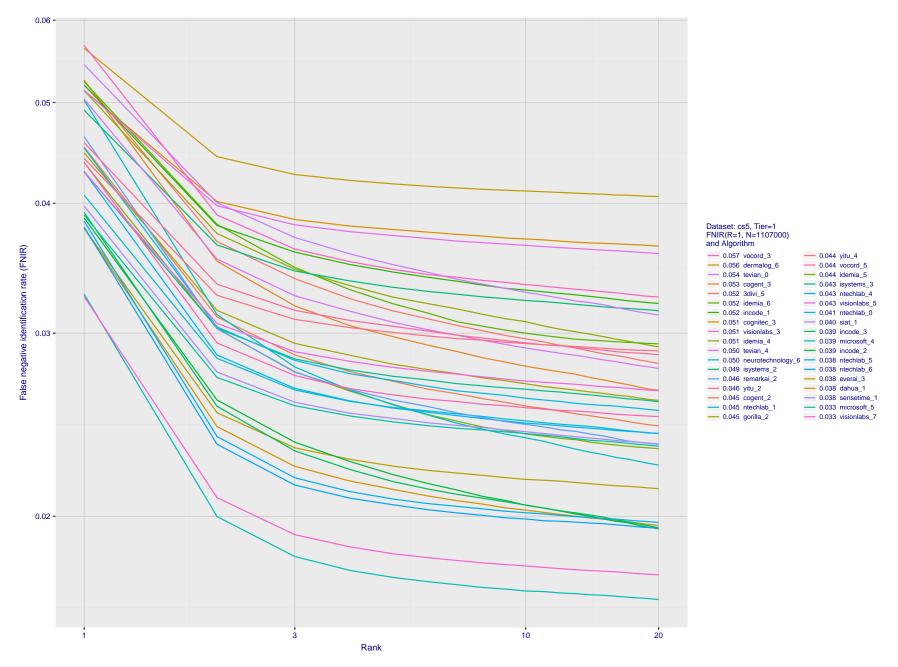


Figure 103: [Wild Dataset] Identification miss rates vs. rank. For the wild dataset, the figure shows false negative identification rates (FNIR) vs. rank when the threshold is set to zero. This metric is relevant to human reviewers who will traverse candidate lists checking whether any of the returned identities match to the search imagery. Specifically, wild images were searched against 1.1 million individuals enrolled with wild images as well.

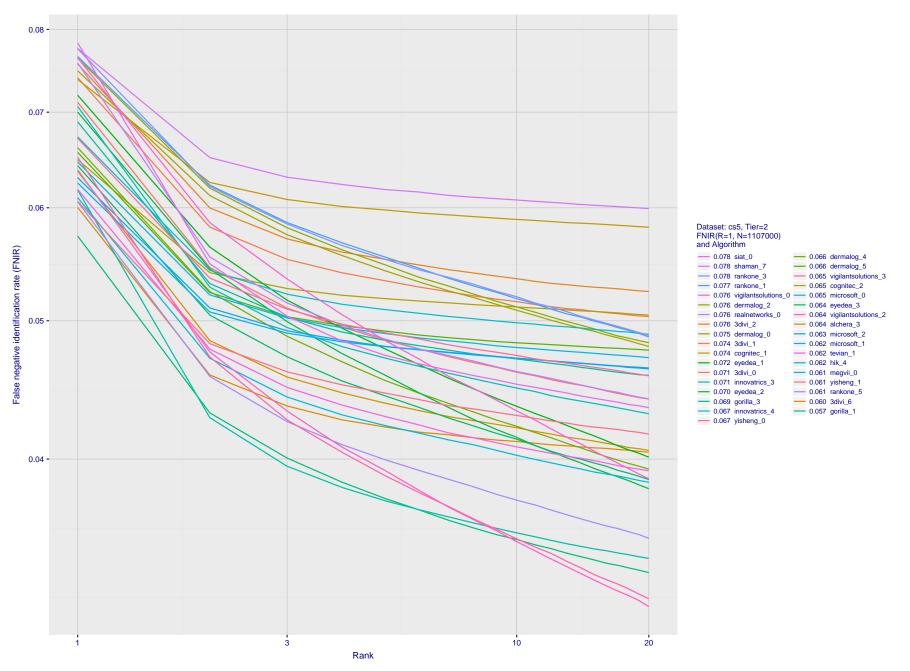


Figure 104: [Wild Dataset] Identification miss rates vs. rank. For the wild dataset, the figure shows false negative identification rates (FNIR) vs. rank when the threshold is set to zero. This metric is relevant to human reviewers who will traverse candidate lists checking whether any of the returned identities match to the search imagery. Specifically, wild images were searched against 1.1 million individuals enrolled with wild images as well.

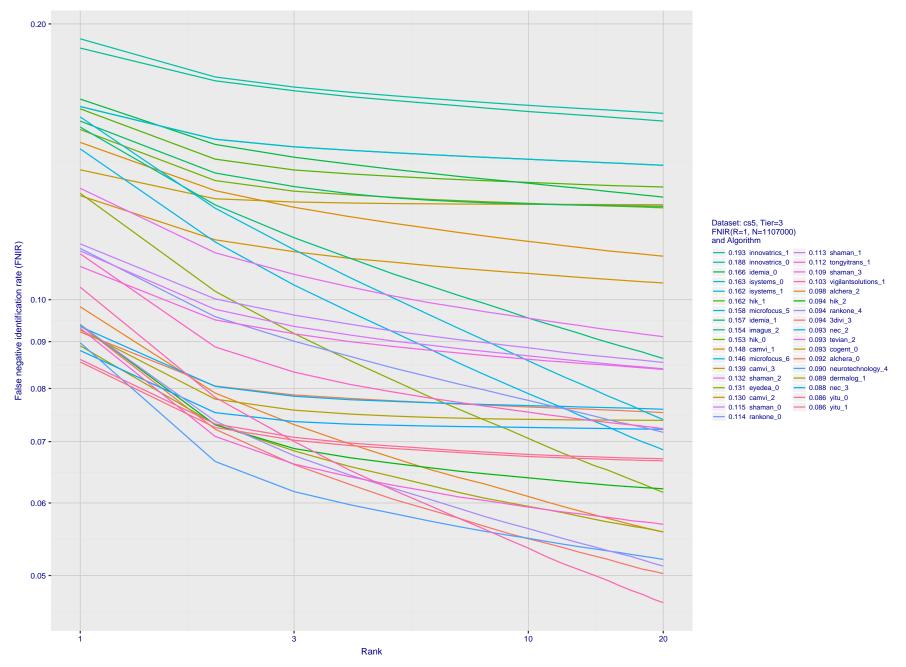


Figure 105: [Wild Dataset] Identification miss rates vs. rank. For the wild dataset, the figure shows false negative identification rates (FNIR) vs. rank when the threshold is set to zero. This metric is relevant to human reviewers who will traverse candidate lists checking whether any of the returned identities match to the search imagery. Specifically, wild images were searched against 1.1 million individuals enrolled with wild images as well.

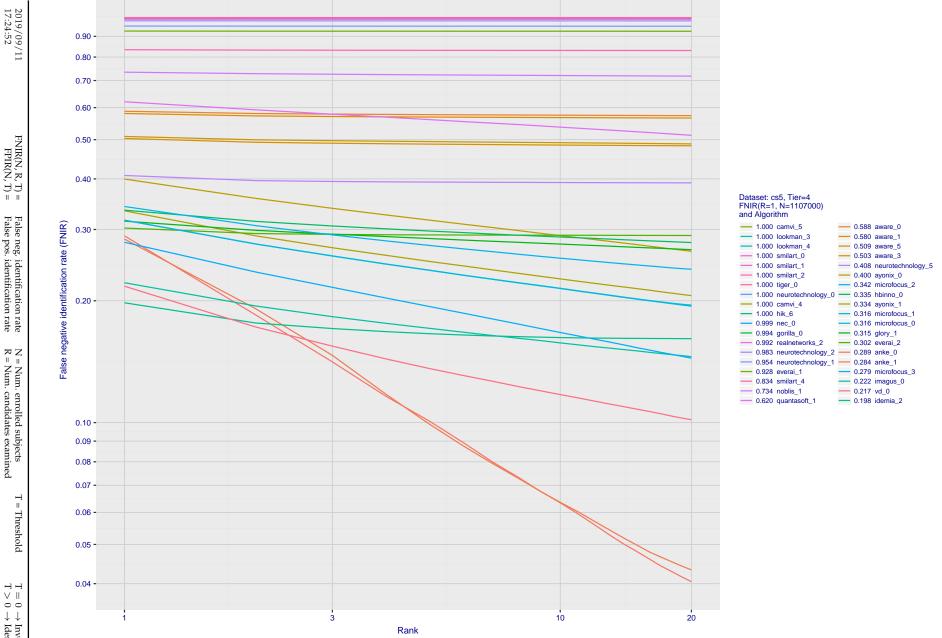


Figure 106: [Wild Dataset] Identification miss rates vs. rank. For the wild dataset, the figure shows false negative identification rates (FNIR) vs. rank when the threshold is set to zero. This metric is relevant to human reviewers who will traverse candidate lists checking whether any of the returned identities match to the search imagery. Specifically, wild images were searched against 1.1 million individuals enrolled with wild images as well.

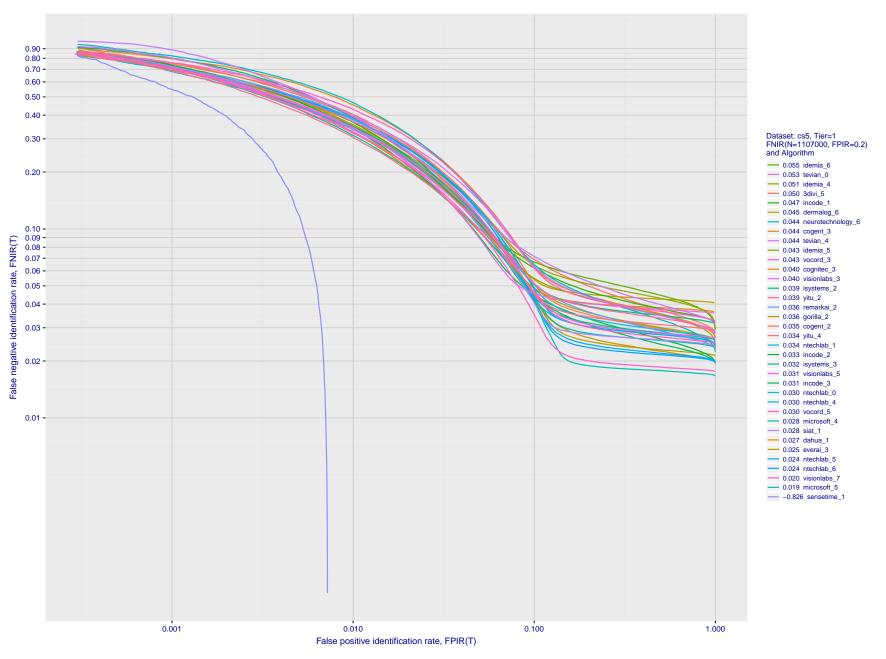
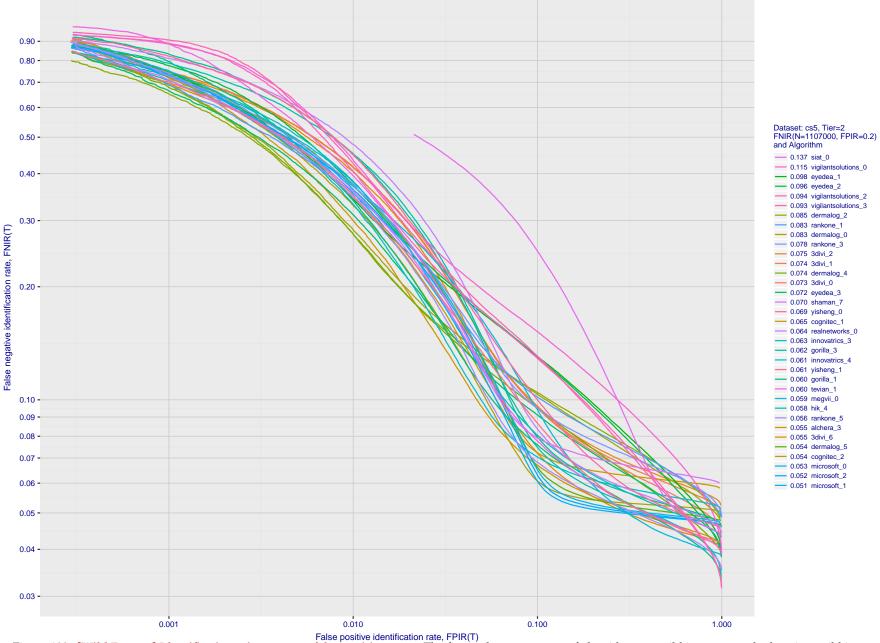
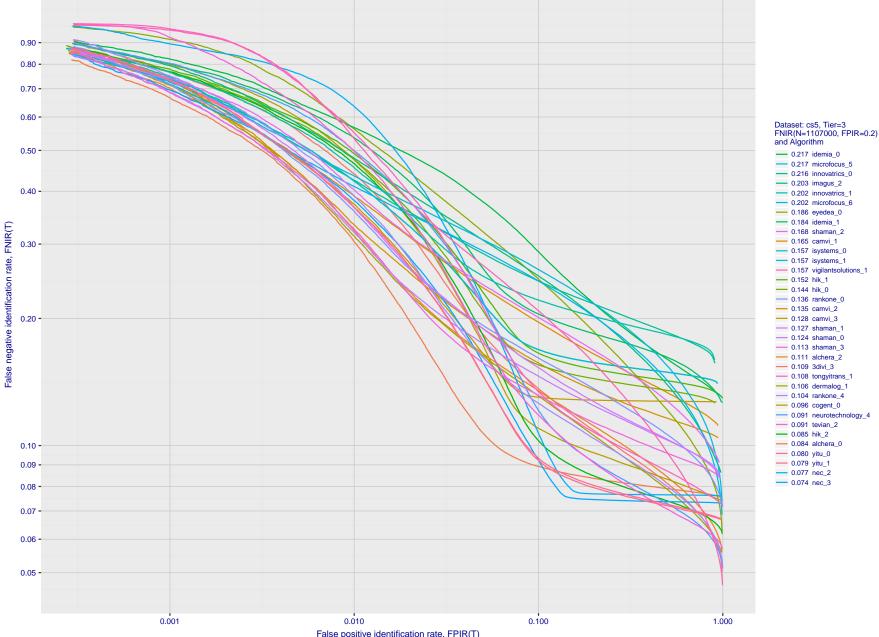
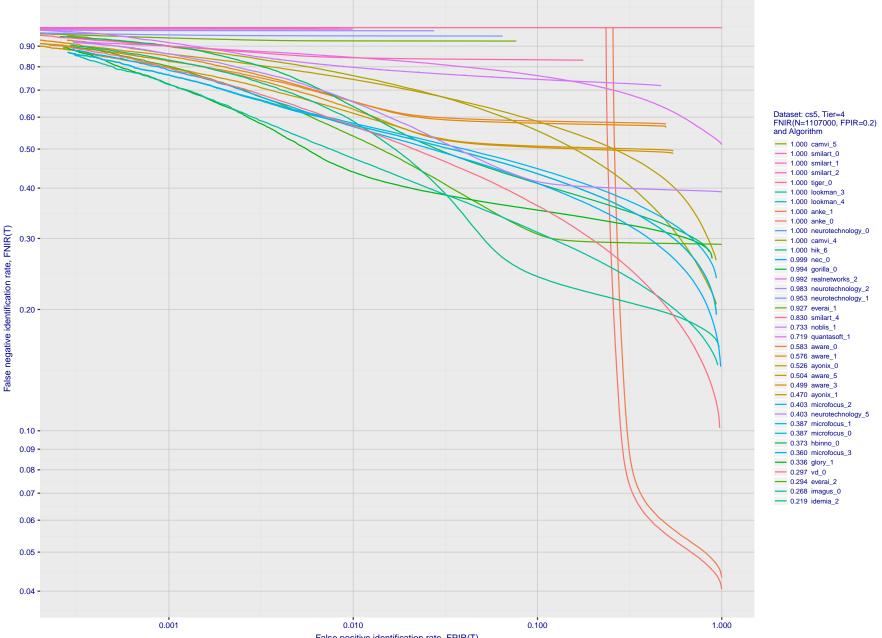




Figure 107: [Wild Dataset] Identification miss rates vs. false positive rates. The figure shows accuracy of algorithms on wild images searched against wild images of 1.1 million individuals enrolled into a gallery. On the vertical axis is miss rate FNIR(N, T, L) with $N = 1\,107\,000$, as a function of false positive identification FPIR(N, T). The rapid increase in FNIR below FPIR = 0.1 suggests that some background identities in the gallery are actually present in the non-mated search sets. This issue will be addressed in the 2019 revision of this report.


FNIR(N, R, T) = FPIR(N, T) =

False positive identification rate, FPIR(T)
Figure 108: [Wild Dataset] Identification miss rates vs. false positive rates. The figure shows accuracy of algorithms on wild images searched against wild images of 1.1 million individuals enrolled into a gallery. On the vertical axis is miss rate FNIR(N, T, L) with $N = 1\,107\,000$, as a function of false positive identification FPIR(N, T). The rapid increase in FNIR below FPIR = 0.1 suggests that some background identities in the gallery are actually present in the non-mated search sets. This issue will be addressed in the 2019 revision of this report.

False positive identification rate, FPIR(T)
Figure 109: [Wild Dataset] Identification miss rates vs. false positive rates. The figure shows accuracy of algorithms on wild images searched against wild images of 1.1 million individuals enrolled into a gallery. On the vertical axis is miss rate FNIR(N, T, L) with $N = 1\,107\,000$, as a function of false positive identification FPIR(N, T). The rapid increase in FNIR below FPIR = 0.1 suggests that some background identities in the gallery are actually present in the non-mated search sets. This issue will be addressed in the 2019 revision of this report.

False positive identification rate, FPIR(T)
Figure 110: [Wild Dataset] Identification miss rates vs. false positive rates. The figure shows accuracy of algorithms on wild images searched against wild images of 1.1 million individuals enrolled into a gallery. On the vertical axis is miss rate FNIR(N, T, L) with $N = 1\,107\,000$, as a function of false positive identification FPIR(N, T). The rapid increase in FNIR below FPIR = 0.1 suggests that some background identities in the gallery are actually present in the non-mated search sets. This issue will be addressed in the 2019 revision of this report.

Appendix G Search duration

As in and prior tests, this section documents search speeds spanning three orders of magnitude. In applications where search volumes are high enough, this will have implications for hardware requirements especially for large N or when search duration is appreciably larger than the time it takes to prepare a template from the search image(s). Further, given very large (and growing) operational databases, the scalability of algorithms is important. It has been reported previously [8] that search duration can scale sublinearly with enrolled population size N. Further there has been considerable recent research on indexing, exact [13] and approximate nearest neighbor search [1,13] and fast-search [14,16].

Figure 111 charts the search duration measurements presented earlier in Tables 6 - 9.

- ▶ Most algorithms scale linearly. For those in that category, there is a wide range in speed with search durations ranging from 82 milliseconds for a 12 million gallery (for NEC-3) to more than 40 seconds (for Yitu-3, Toshiba-2) and even higher for less accurate algorithms.
- Some developers (Camvi, Dermalog, EverAI, Innovatrics, and Visionlabs) provide algorithms whose template search durations grow logarithmically i.e. approximately $T(N) = a \log N$ with the constant a varying between implementations. In the figure this model is fit using the point T(1) = 0, and $T(640\,000)$. This very sublinear behaviour affords extremely fast search times in very large galleries. One caveat for the sublinear algorithms is that the fast-search data structures require considerable computation time on the order of hours for N in the millions, and this scales mildy super-linearly, i.e. $O(N^b)$, b > 1. There are exceptions: the Camvi algorithms take minutes; and Innovatrics' scale sublinearly.

2019/09/11 17:24:52 FNIR(N, R, T) = FPIR(N, T) = False neg. identification rate False pos. identification rate N = Num. enrolled subjects R = Num. candidates examined T = Threshold
$$\begin{split} T &= 0 \rightarrow Investigation \\ T &> 0 \rightarrow Identification \end{split}$$

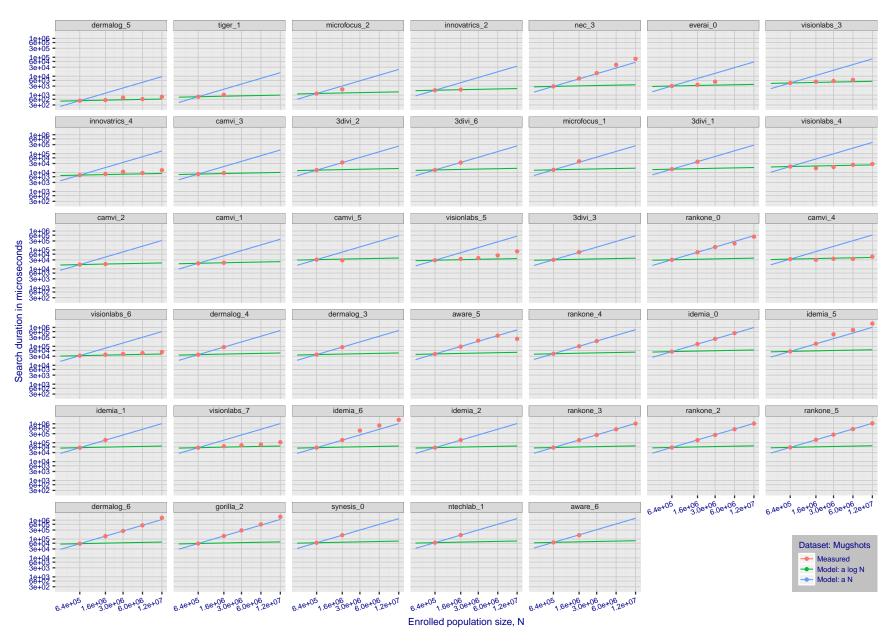


Figure 111: [Mugshot Dataset] Search duration vs. enrolled population size. In red are the actual point durations measured on a single c. 2016 core. The blue shows linear growth from $N=640\,000$. The green line shows logathmic growth from that point to $N=1\,600\,000$. Note the sublinear growth from algorithms from Camvi, Dermalog, EverAI, Innovatrics, and Visionlabs. The tiger-1 algorithm is also sublinear, but inaccurate and inoperable at $N\geq3000000$. This capability sometimes comes at the additional expense of converting a linear gallery data structure into whatever fast-search data structure is used. Note that search times are sometimes dominated by the template generation times shown in Table 16.

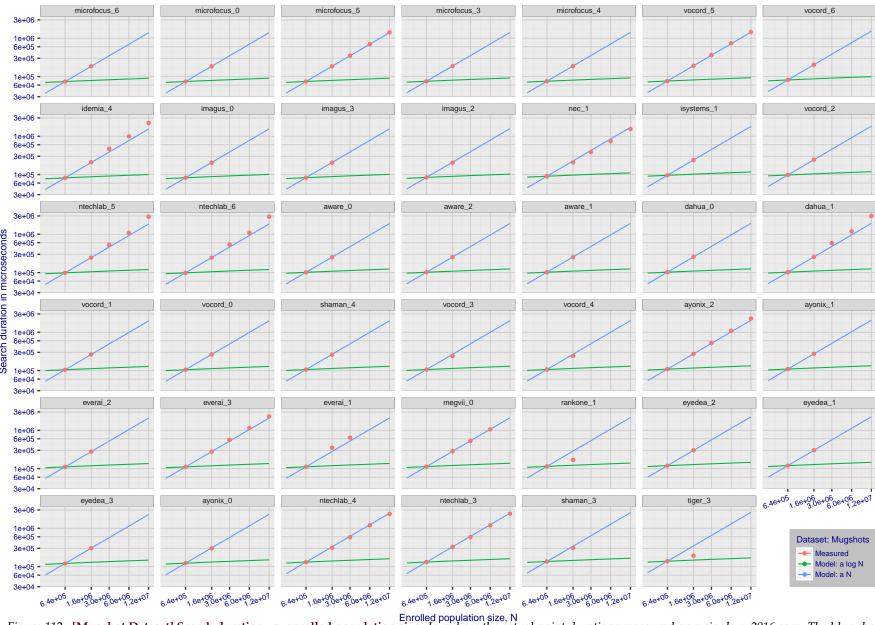


Figure 112: [Mugshot Dataset] Search duration vs. enrolled population size. In red are the actual point durations measured on a single c. 2016 core. The blue shows linear growth from $N=640\,000$. The green line shows logathmic growth from that point to $N=1\,600\,000$. Note the sublinear growth from algorithms from Camvi, Dermalog, EverAI, Innovatrics, and Visionlabs. The tiger_1 algorithm is also sublinear, but inaccurate and inoperable at $N\geq3000000$. This capability sometimes comes at the additional expense of converting a linear gallery data structure into whatever fast-search data structure is used. Note that search times are sometimes dominated by the template generation times shown in Table 16.

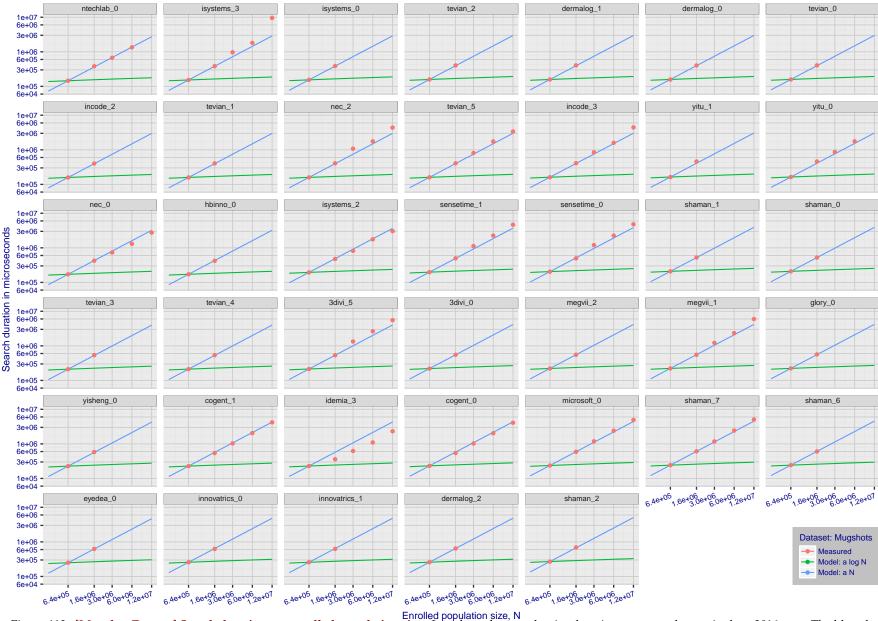
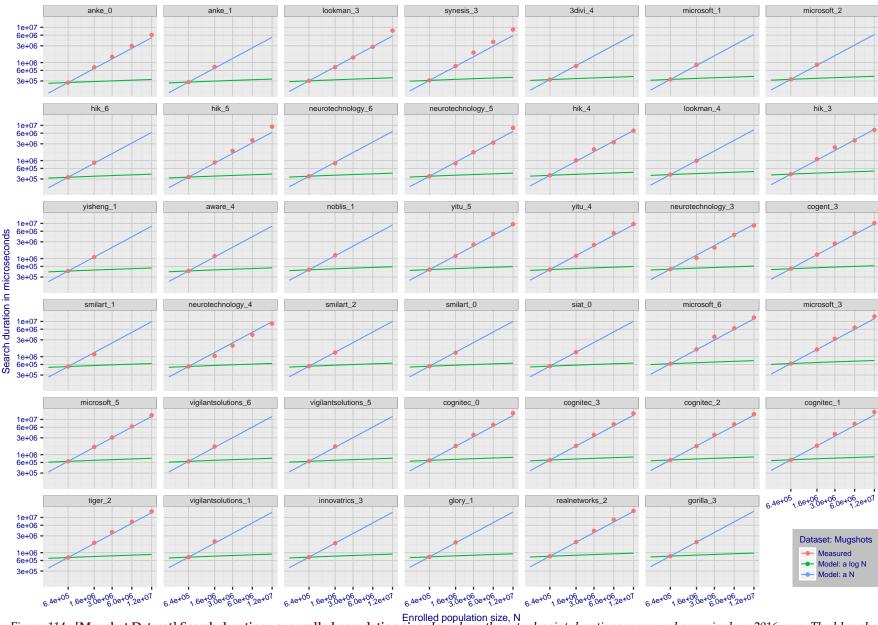



Figure 113: [Mugshot Dataset] Search duration vs. enrolled population size. In red are the actual point durations measured on a single c. 2016 core. The blue shows linear growth from $N=640\,000$. The green line shows logathmic growth from that point to $N=1\,600\,000$. Note the sublinear growth from algorithms from Camvi, Dermalog, EverAI, Innovatrics, and Visionlabs. The tiger_1 algorithm is also sublinear, but inaccurate and inoperable at $N\geq3000000$. This capability sometimes comes at the additional expense of converting a linear gallery data structure into whatever fast-search data structure is used. Note that search times are sometimes dominated by the template generation times shown in Table 16.

Enrolled population size, N
Figure 114: [Mugshot Dataset] Search duration vs. enrolled population size. In red are the actual point durations measured on a single c. 2016 core. The blue shows linear growth from $N = 640\,000$. The green line shows logarithmic growth from that point to $N = 1\,600\,000$. Note the sublinear growth from algorithms from Camvi, Dermalog, EverAI, Innovatrics, and Visionlabs. The tiger_1 algorithm is also sublinear, but inaccurate and inoperable at $N \ge 3000000$. This capability sometimes comes at the additional expense of converting a linear gallery data structure into whatever fast-search data structure is used. Note that search times are sometimes dominated by the template generation times shown in Table 16.

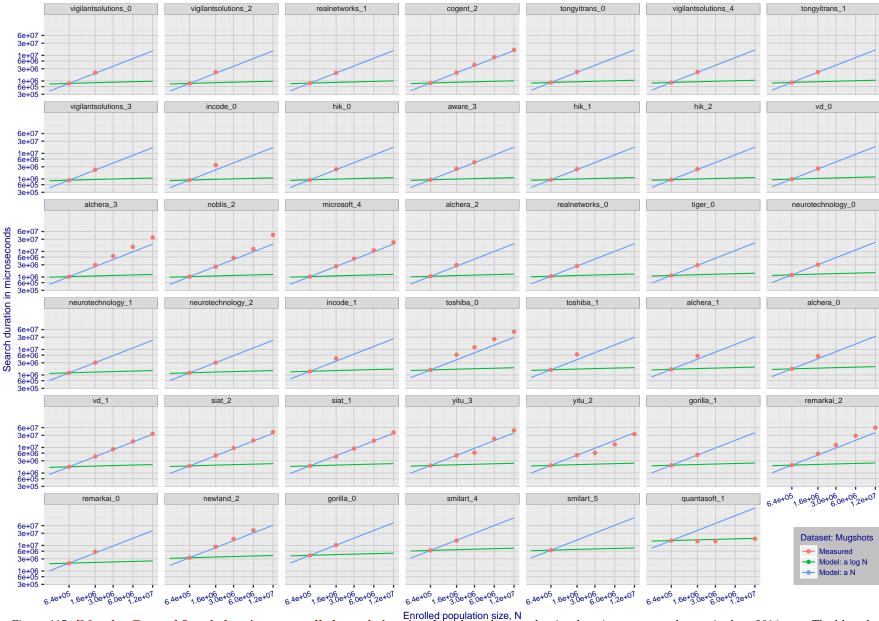
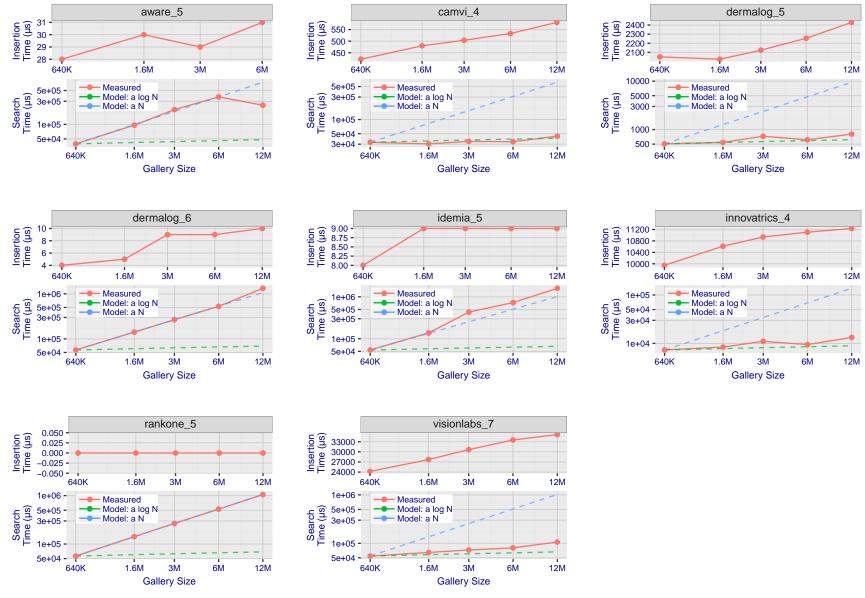



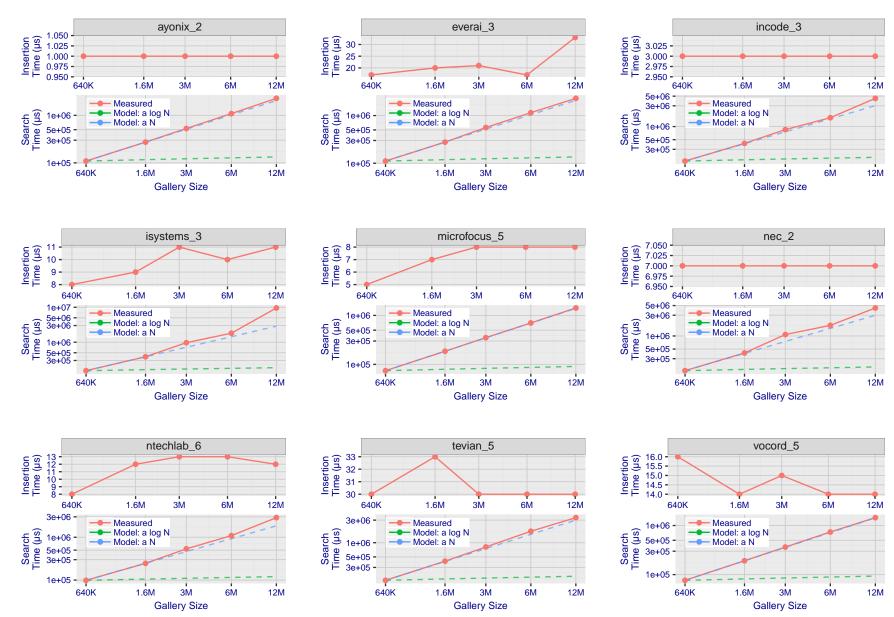
Figure 115: [Mugshot Dataset] Search duration vs. enrolled population size. In red are the actual point durations measured on a single c. 2016 core. The blue shows linear growth from $N = 640\,000$. The green line shows logathmic growth from that point to $N = 1\,600\,000$. Note the sublinear growth from algorithms from Camvi, Dermalog, EverAI, Innovatrics, and Visionlabs. The tiger_1 algorithm is also sublinear, but inaccurate and inoperable at $N \ge 3000000$. This capability sometimes comes at the additional expense of converting a linear gallery data structure into whatever fast-search data structure is used. Note that search times are sometimes dominated by the template generation times shown in Table 16.

Appendix H Gallery Insertion Timing

FNIR(N, R, T) = FPIR(N, T) =

False pos. identification rate

N = Num. enrolled subjects R = Num. candidates examined


T = Threshold

T T

0 ↓ ↓

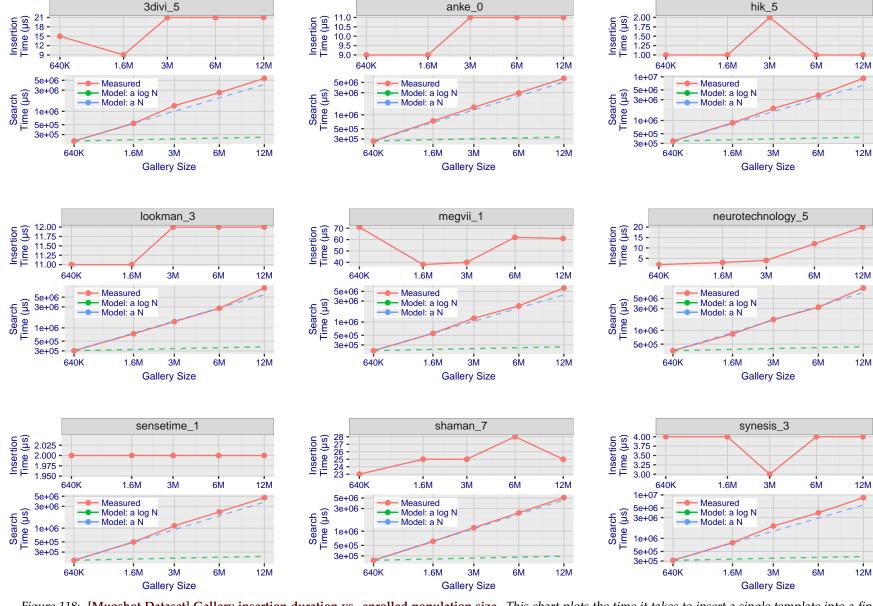
InvestigationIdentification

Figure 116: [Mugshot Dataset] Gallery insertion duration vs. enrolled population size. This chart plots the time it takes to insert a single template into a finalized gallery, illustrated over increasing gallery sizes. For reference, search times on finalized galleries of corresponding sizes are plotted right underneath. Gallery insertion time plots were generated on algorithms that 1) successfully implemented gallery insertion with no errors and 2) that were run on galleries with N up to 12 000 000. Generally, only the more accurate algorithms were run on galleries with N up to $12\,000\,000$.

FNIR(N, R, T) = FPIR(N, T) =

False pos. identification rate

N = Num. enrolled subjects R = Num. candidates examined


T = Threshold

T T

0 ↓ ↓

InvestigationIdentification

Figure 117: [Mugshot Dataset] Gallery insertion duration vs. enrolled population size. This chart plots the time it takes to insert a single template into a finalized gallery, illustrated over increasing gallery sizes. For reference, search times on finalized galleries of corresponding sizes are plotted right underneath. Gallery insertion time plots were generated on algorithms that 1) successfully implemented gallery insertion with no errors and 2) that were run on galleries with N up to 12 000 000. Generally, only the more accurate algorithms were run on galleries with N up to $12\,000\,000$.

FNIR(N, R, T) = FPIR(N, T) =

False pos. identification rate

N = Num. enrolled subjects R = Num. candidates examined

T = Threshold

T T

• ii 0 ↓ ↓

InvestigationIdentification

Figure 118: [Mugshot Dataset] Gallery insertion duration vs. enrolled population size. This chart plots the time it takes to insert a single template into a finalized gallery, illustrated over increasing gallery sizes. For reference, search times on finalized galleries of corresponding sizes are plotted right underneath. Gallery insertion time plots were generated on algorithms that 1) successfully implemented gallery insertion with no errors and 2) that were run on galleries with N up to 12 000 000. Generally, only the more accurate algorithms were run on galleries with N up to $12\,000\,000$.

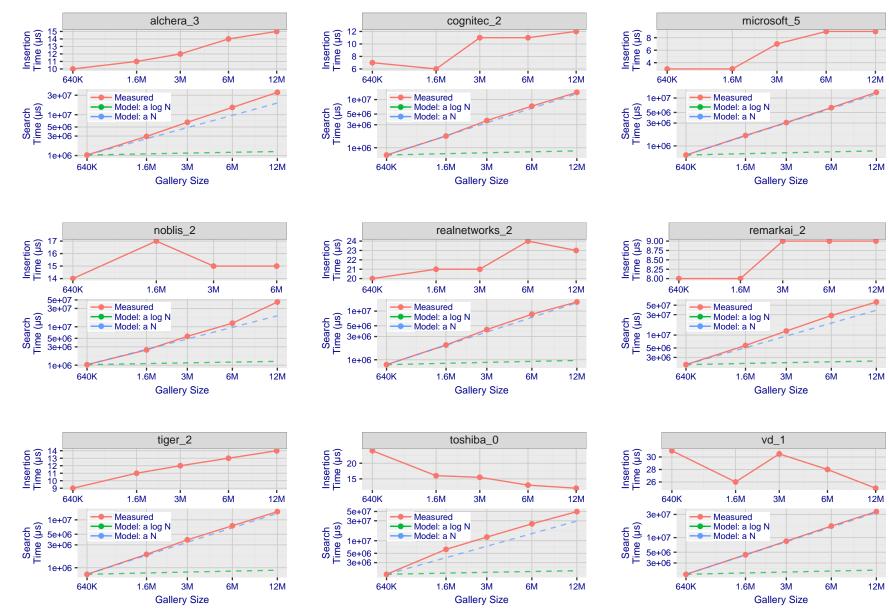


Figure 119: [Mugshot Dataset] Gallery insertion duration vs. enrolled population size. This chart plots the time it takes to insert a single template into a finalized gallery, illustrated over increasing gallery sizes. For reference, search times on finalized galleries of corresponding sizes are plotted right underneath. Gallery insertion time plots were generated on algorithms that 1) successfully implemented gallery insertion with no errors and 2) that were run on galleries with N up to $12\,000\,000$. Generally, only the more accurate algorithms were run on galleries with N up to $12\,000\,000$.

References

- [1] Artem Babenko and Victor Lempitsky. Efficient indexing of billion-scale datasets of deep descriptors. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2016.
- [2] L. Best-Rowden and A. K. Jain. Longitudinal study of automatic face recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 40(1):148–162, Jan 2018.
- [3] Blumstein, Cohen, Roth, and Visher, editors. Random parameter stochastic models of criminal careers. National Academy of Sciences Press, 1986.
- [4] Thomas P. Bonczar and Lauren E. Glaze. Probation and parole in the united statesm 2007, statistical tables. Technical report, Bureau of Justice Statistics, December 2008.
- [5] White D., Kemp R. I., Jenkins R., Matheson M, and Burton A. M. Passport officers errors in face matching. PLoS ONE, 9(8), 2014. e103510. doi:10.1371/journal. pone.0103510.
- [6] P. Grother, G. W. Quinn, and P. J. Phillips. Evaluation of 2d still-image face recognition algorithms. NIST Interagency Report 7709, National Institute of Standards and Technology, 8 2010. http://face.nist.gov/mbe as MBE2010 FRVT2010.
- [7] P. J. Grother, R. J. Micheals, and P. J. Phillips. Performance metrics for the frvt 2002 evaluation. In Proceedings of Audio and Video Based Person Authentication Conference (AVBPA), June 2003.
- [8] Patrick Grother and Mei Ngan. Interagency report 8009, performance of face identification algorithms. Face Recognition Vendor Test (FRVT), May 2014.
- [9] Patrick Grother, George Quinn, and Mei Ngan. Face in video evaluation (five) face recognition of noncooperative subjects. Interagency Report 8173, National Institute of Standards and Technology, March 2017. https://doi.org/10.6028/NIST.IR.8173.
- [10] Patrick Grother, George W. Quinn, and Mei Ngan. Face recognition vendor test still face image and video concept, evaluation plan and api. Technical report, National Institute of Standards and Technology, 7 2013. http://biometrics.nist.gov/cs_links/face/frvt/frvt2012/NIST_FRVT2012_api_Aug15.pdf.
- [11] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 770–778, June 2016.
- [12] Gary B. Huang, Manu Ramesh, Tamara Berg, and Erik Learned-Miller. Labeled faces in the wild: A database for studying face recognition in unconstrained environments. Technical Report 07-49, University of Massachusetts, Amherst, October 2007.
- [13] Masato Ishii, Hitoshi Imaoka, and Atsushi Sato. Fast k-nearest neighbor search for face identification using bounds of residual score. In 2017 12th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2017), pages 194–199, Los Alamitos, CA, USA, May 2017. IEEE Computer Society.
- [14] Jeff Johnson, Matthijs Douze, and Hervé Jégou. Billion-scale similarity search with gpus. CoRR, abs/1702.08734, 2017.

- [15] Ira Kemelmacher-Shlizerman, Steven M. Seitz, Daniel Miller, and Evan Brossard. The megaface benchmark: 1 million faces for recognition at scale. *CoRR*, abs/1512.00596, 2015.
- [16] Yury A. Malkov and D. A. Yashunin. Efficient and robust approximate nearest neighbor search using hierarchical navigable small world graphs. *CoRR*, abs/1603.09320, 2016.
- [17] Joyce A. Martin, Brady E. Hamilton, Michelle J.K. Osterman, Anne K. Driscoll, , and Patrick Drake. National vital statistics reports. Technical Report 8, Centers for Disease Control and Prevention, National Center for Health Statistics, National Vital Statistics System, Division of Vital Statistics, November 2018.
- [18] O. M. Parkhi, A. Vedaldi, and A. Zisserman. Deep face recognition. In British Machine Vision Conference, 2015.
- [19] P. Jonathon Phillips, Amy N. Yates, Ying Hu, Carina A. Hahn, Eilidh Noyes, Kelsey Jackson, Jacqueline G. Cavazos, Géraldine Jeckeln, Rajeev Ranjan, Swami Sankaranarayanan, Jun-Cheng Chen, Carlos D. Castillo, Rama Chellappa, David White, and Alice J. O'Toole. Face recognition accuracy of forensic examiners, superrecognizers, and face recognition algorithms. Proceedings of the National Academy of Sciences, 115(24):6171–6176, 2018.
- [20] Florian Schroff, Dmitry Kalenichenko, and James Philbin. Facenet: A unified embedding for face recognition and clustering. CoRR, abs/1503.03832, 2015.
- [21] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. CoRR, abs/1409.1556, 2014.
- [22] Jeroen Smits and Christiaan Monden. Twinning across the developing world. PLOS ONE, 6(9):1–5, 09 2011.
- [23] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott E. Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolutions. CoRR, abs/1409.4842, 2014.
- [24] Yaniv Taigman, Ming Yang, Marc'Aurelio Ranzato, and Lior Wolf. Deepface: Closing the gap to human-level performance in face verification. In Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, CVPR '14, pages 1701–1708, Washington, DC, USA, 2014. IEEE Computer Society.
- [25] A. Towler, R. I. Kemp, and D White. Unfamiliar face matching systems in applied settings. Nova Science, 2017.
- [26] Working Group 3. Ed. M. Werner. ISO/IEC 19794-5 Information Technology Biometric Data Interchange Formats Part 5: Face image data. JTC1:: SC37, 2 edition, 2011. http://webstore.ansi.org.
- [27] David White, James D. Dunn, Alexandra C. Schmid, and Richard I. Kemp. Error rates in users of automatic face recognition software. PLoS ONE, 10:1–14, October 2015.
- [28] Bradford Wing and R. Michael McCabe. Special publication 500-271: American national standard for information systems data format for the interchange of fingerprint, facial, and other biometric information part 1. Technical report, NIST, September 2015. ANSI/NIST ITL 1-2015.
- [29] Andreas Wolf. Portrait quality (reference facial images for mrtd). Technical report, ICAO, April 2018.
- [30] D. Yadav, N. Kohli, P. Pandey, R. Singh, M. Vatsa, and A. Noore. Effect of illicit drug abuse on face recognition. In 2016 IEEE Winter Conference on Applications of Computer Vision (WACV), pages 1-7, Los Alamitos, CA, USA, mar 2016. IEEE Computer Society.