NISTIR 8266

Dietary Supplement Laboratory Quality Assurance Program: Exercise O Final Report

Charles A. Barber Melissa M. Phillips Catherine A. Rimmer Laura J. Wood Maria R. Ale Stephen E. Long Elizabeth Mudge Shannon L. Whitehead

This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8266

NISTIR 8266

Dietary Supplement Laboratory Quality Assurance Program: Exercise O Final Report

Charles A. Barber Melissa M. Phillips Catherine A. Rimmer Laura J. Wood Maria R. Ale Stephen E. Long Elizabeth Mudge Shannon L. Whitehead *Chemical Sciences Division* Material Measurement Laboratory

This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8266

September 2019

U.S. Department of Commerce Wilbur L. Ross, Jr., Secretary

National Institute of Standards and Technology Walter Copan, NIST Director and Under Secretary of Commerce for Standards and Technology Certain commercial entities, equipment, or materials may be identified in this document in order to describe an experimental procedure or concept adequately. Such identification is not intended to imply recommendation or endorsement by the National Institute of Standards and Technology, nor is it intended to imply that the entities, materials, or equipment are necessarily the best available for the purpose.

National Institute of Standards and Technology Interagency or Internal Report 8266 Natl. Inst. Stand. Technol. Interag. Intern. Rep. 8266, 151 pages (September 2019)

> This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8266

TABLE OF CONTENTS

ABSTRACT1
INTRODUCTION1
OVERVIEW OF DATA TREATMENT AND REPRESENTATION 2
Statistics
Individualized Data Table
Summary Data Table 4
Graphs
Data Summary View (Method Comparison Data Summary View)5
Sample/Sample Comparison View
SECTION 1: TOXIC ELEMENTS (As, Cd, Pb, Hg) IN BLACK COHOSH AND TURMERIC DIETARY SUPPLEMENTS
Study Overview
Sample Information
Black Cohosh Rhizome
Turmeric Rhizome
Study Results7
Technical Recommendations
Table 1-1. NIST data summary table for arsenic, cadmium, mercury, and lead in black cohosh and turmeric rhizomes. 11
Table 1-2. Data summary table for total arsenic in black cohosh and turmeric rhizomes 12
Figure 1-1. Total arsenic in black cohosh rhizome (data summary view – analytical method). 13
Figure 1-2. Total arsenic in turmeric rhizome (data summary view – analytical method). 14
Figure 1-3. Total arsenic in black cohosh rhizome (data summary view – sample preparation method)
Figure 1-4. Total arsenic in turmeric rhizome (data summary view – sample preparation method)
Figure 1-5. Laboratory means for total arsenic in black cohosh rhizome and turmeric rhizome (sample/sample comparison view)
Table 1-3. Data summary table for cadmium in black cohosh and turmeric rhizomes
Figure 1-6. Cadmium in black cohosh rhizome (data summary view – analytical method).
Figure 1-7. Cadmium in turmeric rhizome (data summary view – analytical method) 20

Figure 1-8. Cadmium in black cohosh rhizome (data summary view – sample preparation method)
Figure 1-9. Cadmium in turmeric rhizome (data summary view – sample preparation method)
Figure 1-10. Laboratory means for cadmium in black cohosh rhizome and turmeric rhizome (sample/sample comparison view)
Table 1-4. Data summary table for lead in black cohosh and turmeric rhizomes. 24
Figure 1-11. Lead in candidate black cohosh rhizome (data summary view – analytical method)
Figure 1-12. Lead in turmeric rhizome (data summary view – analytical method)
Figure 1-13. Lead in black cohosh rhizome (data summary view – sample preparation method)
Figure 1-14. Lead in turmeric rhizome (data summary view – sample preparation method). 28
Figure 1-15. Laboratory means for lead in black cohosh rhizome and turmeric rhizome (sample/sample comparison view)
Table 1-5. Data summary table for mercury in black cohosh and turmeric rhizomes
Figure 1-16. Mercury in black cohosh rhizome (data summary view – analytical method). 31
Figure 1-17. Mercury in turmeric rhizome (data summary view – analytical method) 32
Figure 1-18. Mercury black cohosh rhizome (data summary view – sample preparation method)
Figure 1-19. Mercury in turmeric rhizome (data summary view – analytical method) 34
Figure 1-20. Laboratory means for mercury in black cohosh rhizome and turmeric rhizome (sample/sample comparison view)
SECTION 2: CURCUMINOIDS IN TURMERIC COMMERICAL PRODUCTS
Study Overview
Sample Information
Turmeric Rhizome
Turmeric Extract
Turmeric Commercial Products
Study Results
Technical Recommendations
Table 2-1. NIST data summary table for curcumin, bisdemethoxycurcumin, and desmethoxycurcumin in turmeric commercial products.41
Table 2-2.1. Data summary table for curcumin in turmeric commercial products
Table 2-2.2. Data summary table for curcumin in turmeric commercial products

Table 2-2.3. Data summary table for curcumin in turmeric commercial products
Table 2-2.4. Data summary table for curcumin in turmeric commercial products
Table 2-3. Data summary table for curcumin in turmeric commercial products
Table 2-4.1. Data summary table for bisdemethoxycurcumin (BDMC) in turmeric commercial products. 47
Table 2-4.2. Data summary table for bisdemethoxycurcumin (BDMC) in turmeric commercial products.
Table 2-4.3. Data summary table for bisdemethoxycurcumin (BDMC) in turmeric commercial products.
Table 2-5. Data summary table for bisdemethoxycurcumin (BDMC) in turmeric commercial products. 50
Table 2-6.1. Data summary table for desmethoxycurcumin (DMC) in turmeric commercial products. 51
Table 2-6.2. Data summary table for desmethoxycurcumin (DMC) in turmeric commercial products. 52
Table 2-6.3. Data summary table for desmethoxycurcumin (DMC) in turmeric commercial products. 53
Table 2-7. Data summary table for desmethoxycurcumin (DMC) in turmeric commercial products. 54
Figure 2-1. Curcumin in candidate SRM 3299 Turmeric Rhizome (data summary view – analytical method)
Figure 2-2. Curcumin in candidate SRM 3300 Turmeric Extract (data summary view – analytical method)
Figure 2-3. Curcumin in Turmeric Root Powder (data summary view – analytical method). 57
Figure 2-4. Curcumin in Turmeric Smoothie Additive (data summary view – analytical method)
Figure 2-5. Curcumin in Turmeric Root Capsule (data summary view – analytical method). 59
Figure 2-6. Curcumin in Turmeric Extract/Root Capsule with Black Pepper (data summary view – analytical method)
Figure 2-7. Curcumin in Turmeric Extract/Root Capsule with Black Pepper & Coconut Oil (data summary view – analytical method)
Figure 2-8. Curcumin in Turmeric Tincture (data summary view – analytical method) 62
Figure 2-9. Curcumin in Turmeric Gelcap with Coconut (data summary view – analytical method)
Figure 2-10. Curcumin in Turmeric Gelcap, Liquid Curcumin (data summary view –

Figure 2-11. Laboratory means for curcumin in candidate SRM 3299 Turmeric Rhizome and Figure 2-12. Laboratory means for curcumin in candidate SRM 3299 Turmeric Rhizome and Figure 2-13. Laboratory means for curcumin in candidate SRM 3299 Turmeric Rhizome and Figure 2-14. Laboratory means for curcumin in candidate SRM 3299 Turmeric Rhizome and Figure 2-15. Laboratory means for curcumin in candidate SRM 3299 Turmeric Rhizome and Turmeric Extract/Root Capsule with Black Pepper (sample/sample comparison view). 69 Figure 2-16. Laboratory means for curcumin in candidate SRM 3300 Turmeric Extract and Turmeric Extract/Root Capsule with Black Pepper (sample/sample comparison view). 70 Figure 2-17. Laboratory means for curcumin in candidate SRM 3300 Turmeric Extract and Turmeric Extract/Root Capsule with Black Pepper & Coconut Oil (sample/sample Figure 2-18. Laboratory means for curcumin in candidate SRM 3300 Turmeric Extract and Figure 2-19. Laboratory means for curcumin in candidate SRM 3299 Turmeric Rhizome and Figure 2-20. Laboratory means for curcumin in candidate SRM 3299 Turmeric Rhizome and Figure 2-21. Laboratory means for curcumin in candidate SRM 3300 Turmeric Extract and Figure 2-22. BDMC in candidate SRM 3299 Turmeric Rhizome (data summary view -Figure 2-23. BDMC in candidate SRM 3300 Turmeric Extract (data summary view -Figure 2-24. BDMC in Turmeric Root Powder (data summary view – analytical method). Figure 2-25. BDMC in Turmeric Smoothie Additive (data summary view - analytical Figure 2-26. BDMC in Turmeric Root Capsule (data summary view – analytical method). Figure 2-27. BDMC in Turmeric Extract/Root Capsule with Black Pepper (data summary Figure 2-28. BDMC in Turmeric Extract/Root Capsule with Black Pepper & Coconut Oil Figure 2-29. BDMC in Turmeric Tincture (data summary view – analytical method)...... 83 Figure 2-30. BDMC in Turmeric Gelcap with Coconut (data summary view – analytical

Figure 2-31. BDMC in Turmeric Gelcap, Liquid Curcumin (data summary view – analytical method)
Figure 2-32. Laboratory means for BDMC in candidate SRM 3299 Turmeric Rhizome and candidate SRM 3300 Turmeric Extract (sample/sample comparison view)
Figure 2-33. Laboratory means for BDMC in candidate SRM 3299 Turmeric Rhizome and Turmeric Root Powder (sample/sample comparison view)
Figure 2-34. Laboratory means for BDMC in candidate SRM 3299 Turmeric Rhizome and Turmeric Smoothie Additive (sample/sample comparison view)
Figure 2-35. Laboratory means for BDMC in candidate SRM 3299 Turmeric Rhizome and Turmeric Root Capsule (sample/sample comparison view)
Figure 2-36. Laboratory means for BDMC in candidate SRM 3299 Turmeric Rhizome and Turmeric Extract/Root Capsule with Black Pepper (sample/sample comparison view) 90
Figure 2-37. Laboratory means for BDMC in candidate SRM 3300 Turmeric Extract and Turmeric Extract/Root Capsule with Black Pepper (sample/sample comparison view) 91
Figure 2-38. Laboratory means for BDMC in candidate SRM 3300 Turmeric Extract and Turmeric Extract/Root Capsule with Black Pepper & Coconut Oil (sample/sample comparison view). 92
Figure 2-39. Laboratory means for BDMC in candidate SRM 3300 Turmeric Extract and Turmeric Tincture (sample/sample comparison view)
Figure 2-40. Laboratory means for BDMC in candidate SRM 3299 Turmeric Rhizome and Turmeric Gelcap with Coconut (sample/sample comparison view)
Figure 2-41. Laboratory means for BDMC in candidate SRM 3299 Turmeric Rhizome and Turmeric Gelcap, Liquid Curcumin (sample/sample comparison view)
Figure 2-42. Laboratory means for BDMC in candidate SRM 3300 Turmeric Extract and Turmeric Gelcap with Coconut (sample/sample comparison view)
Figure 2-43. DMC in candidate SRM 3299 Turmeric Rhizome (data summary view – analytical method)
Figure 2-44. DMC in candidate SRM 3300 Turmeric Extract (data summary view – analytical method)
Figure 2-45. DMC in Turmeric Root Powder (data summary view – analytical method)99
Figure 2-46. DMC in Turmeric Smoothie Additive (data summary view – analytical method). 100
Figure 2-47. DMC in Turmeric Root Capsule (data summary view – analytical method).
Figure 2-48. DMC in Turmeric Extract/Root Capsule with Black Pepper (data summary view – analytical method)
Figure 2-49. DMC in Turmeric Extract/Root Capsule with Black Pepper & Coconut Oil (data summary view – analytical method)
Figure 2-50. DMC in Turmeric Tincture (data summary view – analytical method) 104

Figure 2-51. DMC in Turmeric Gelcap with Coconut (data summary view – analytical method)
Figure 2-52. DMC in Turmeric Gelcap, Liquid Curcumin (data summary view – analytical method)
Figure 2-53. Laboratory means for DMC in candidate SRM 3299 Turmeric Rhizome and candidate SRM 3300 Turmeric Extract (sample/sample comparison view)
Figure 2-54. Laboratory means for DMC in candidate SRM 3299 Turmeric Rhizome and Turmeric Root Powder (sample/sample comparison view)
Figure 2-55. Laboratory means for DMC in candidate SRM 3299 Turmeric Rhizome and Turmeric Smoothie Additive (sample/sample comparison view)
Figure 2-56. Laboratory means for DMC in candidate SRM 3299 Turmeric Rhizome and Turmeric Root Capsule (sample/sample comparison view)
Figure 2-57. Laboratory means for DMC in candidate SRM 3299 Turmeric Rhizome and Turmeric Extract/Root Capsule with Black Pepper (sample/sample comparison view) 111
Figure 2-58. Laboratory means for DMC in candidate SRM 3300 Turmeric Extract and Turmeric Extract/Root Capsule with Black Pepper (sample/sample comparison view) 112
Figure 2-59. Laboratory means for DMC in candidate SRM 3300 Turmeric Extract and Turmeric Extract/Root Capsule with Black Pepper & Coconut Oil (sample/sample comparison view)
Figure 2-60. Laboratory means for DMC in candidate SRM 3300 Turmeric Extract and Turmeric Tincture (sample/sample comparison view)
Figure 2-61. Laboratory means for DMC in candidate SRM 3299 Turmeric Rhizome and Turmeric Gelcap with Coconut (sample/sample comparison view)
Figure 2-62. Laboratory means for DMC in candidate SRM 3299 Turmeric Rhizome and Turmeric Gelcap with Coconut (sample/sample comparison view)
Figure 2-63. Laboratory means for DMC in candidate SRM 3300 Turmeric Extract and Turmeric Gelcap with Coconut (sample/sample comparison view)
SECTION 3: CHONDROITIN IN DIETARY SUPPLEMENTS 118
Study Overview
Sample Information
Study Results
Technical Recommendations
Table 3-1. NIST data summary table for chondroitin in dietary supplements. 120
Table 3-2.1. Data summary table for chondroitin in dietary supplements. 121
Table 3-2.2. Data summary table for chondroitin in dietary supplements. 122
Figure 3-1. Total chondroitin sulfate in Chondroitin Caplets (data summary view – analytical method)

Figure 3-2. Total chondroitin sulfate in Chondroitin Tablets (data summary view – analytical method)
Figure 3-3. Total chondroitin sulfate in Chondroitin Chewables for Dogs (data summary view – analytical method
Figure 3-4. Total chondroitin sulfate in Chondroitin Capsules (data summary view – analytical method)
Figure 3-5. Total chondroitin sulfate in Chondroitin Sulfate Sodium (data summary view – analytical method)
Figure 3-6. Total chondroitin sulfate in Bovine Chondroitin Sulfate (data summary view – analytical method)
Figure 3-7. Total chondroitin sulfate in Chondroitin Beverage (data summary view – analytical method)
SECTION 4: IDENTIFICATION OF <i>GINKGO BILOBA</i> IN BOTANICAL SUPPLEMENTS
Study Overview
Sample Information
Technical Recommendations
Figure 4-1. Macroscopic investigation of the Ginkgo biloba plant samples (Samples A).134
Figure 4-2. Macroscopic investigation of the <i>Ginkgo biloba</i> extract samples (Samples B).
Table 4-1.1. Data summary table for identifying presence of <i>Ginkgo biloba</i> in botanical supplements by lab code by answering whether <i>Ginkgo biloba</i> is present in this material. 136
Table 4-1.2. Data summary table for identifying presence of <i>Ginkgo biloba</i> in botanical supplements by technique by answering whether <i>Ginkgo biloba</i> is present in this material. 137
Table 4-2.1. Data summary table for identifying <i>Ginkgo biloba</i> plant part in botanicalsupplements by lab code by answering whether the source of the sample can be classified intoone of the following groups
Table 4-2.2. Data summary table for identifying <i>Ginkgo biloba</i> plant part in botanicalsupplements by technique by answering whether the source of the sample can be classifiedinto one of the following groups.139
Table 4-3.1. Data summary table for identifying Ginkgo biloba adulterants in botanical supplements by lab code
Table 4-3.2. Data summary table for identifying <i>Ginkgo biloba</i> adulterants in botanical supplements by technique

ABSTRACT

The NIST Dietary Supplement Laboratory Quality Assurance Program (DSQAP) was established in collaboration with the National Institutes of Health (NIH) Office of Dietary Supplements (ODS) in 2007 to enable members of the dietary supplement research and industry communities to improve the accuracy of their measurements and for demonstration of compliance with various regulations, including the dietary supplement current good manufacturing practices (cGMPs). Exercise O of this program offered the opportunity for laboratories to assess their in-house measurements of contaminants (arsenic, cadmium, lead, mercury), marker compounds in botanicals (curcuminoids) and natural products (chondroitin sulfate), and authenticity of *Ginkgo biloba* materials in botanical dietary supplement ingredients and finished products.

INTRODUCTION

The dietary supplement industry in the US is booming, with over 75 % of adults considering themselves to be supplement users.¹ Sales of dietary supplements, which includes vitamin and mineral supplements, are estimated at annual U.S. expenditure of more than \$35 billion. These figures represent a trend, in America and worldwide, of increasing supplement consumption, and as a result, the verification and maintenance of both the quality and safety of these products is critically important.

The Dietary Supplement Health and Education Act of 1994 (DSHEA) amended the Federal Food, Drug, and Cosmetic Act to create the regulatory category called dietary supplements. The DSHEA also gave the FDA authority to write current Good Manufacturing Practices (cGMPs) that require manufacturers to evaluate the identity, purity, and composition of their ingredients and finished products. In addition, the DSHEA authorized the establishment of the Office of Dietary Supplements at the National Institutes of Health (NIH ODS). To enable members of the dietary supplement community to improve the accuracy of the measurements required for compliance with these and other regulations, NIST established the Dietary Supplements Laboratory Quality Assurance Program (DSQAP) in collaboration with the NIH ODS in 2007.

The program offered the opportunity for laboratories to assess their in-house measurements of active or marker compounds, nutritional elements, contaminants (toxic elements, pesticides, mycotoxins), and fat- and water-soluble vitamins in foods as well as botanical dietary supplement ingredients and finished products. Reports and certificates of participation are provided and can be used to demonstrate compliance with the cGMPs. In addition, NIST and the DSQAP assist the ODS Analytical Methods and Reference Materials program (AMRM) at the NIH in supporting the development and dissemination of analytical tools and reference materials.

NIST has experience in the administration of multiple quality assurance programs, but the DSQAP takes a unique approach. In other NIST quality assurance programs, a set of analytes is measured repeatedly over time in the same or similar matrices to demonstrate and improve laboratory performance. In contrast, the wide range of matrices and analytes under the "dietary supplements" umbrella means that not every laboratory is interested in every sample or analyte. The constantly changing dietary supplement market, and the enormous diversity of finished products, makes

¹ 2018 CRN Consumer Survey on Dietary Supplements. Council for Responsible Nutrition, Washington, DC; accessed https://www.crnusa.org/CRNConsumerSurvey (August 2019).

repeated determination of a few target compounds in a single matrix of little use to participants. Instead, participating laboratories are interested in testing in-house methods on a wide variety of challenging, real-world matrices to demonstrate that their performance is comparable to that of the community and that their methods provide accurate results. In an area where there are few generally accepted methods, the DSQAP offers a unique tool for assessment of the quality of measurements, provides feedback about performance, and can assist participants in improving laboratory operations. In the future, the Health Assessment Measurements Quality Assurance Program (HAMQAP) that was formed in 2017, in part as a collaboration with the NIH ODS, will represent the ongoing efforts at NIST that were supported previously via historical quality assurance programs (QAPs), including DSQAP, Micronutrients Measurement QAP (MMQAP), Fatty Acids in Human Serum QAP (FAQAP), and Vitamin D Metabolites QAP (VitDQAP).

This report summarizes the results from the fifteenth and final exercise of the DSQAP, Exercise O. Sixty-four laboratories responded to the call for participants distributed in September 2017. The first set of samples, which included only half of the commercial turmeric samples, were shipped to participants in December 2017 and results were returned to NIST by February 2018. Given the limited number of data sets that were received from laboratories using AOAC First Action *Official Method of Analysis 2016.16 Determination of Curcuminoids in Turmeric Raw Materials and Dietary Supplements by HPLC*, controls as well as the alternate four commercial turmeric samples were shipped to participants in July 2018 and results were returned to NIST by August 2018. This report contains the final data and information that was disseminated to the participants in August 2019.

OVERVIEW OF DATA TREATMENT AND REPRESENTATION

Individualized data tables and certificates are provided to the participants that have submitted data in each study, in addition to this report. Examples of the data tables using NIST data are also included in each section of this report. Community tables and graphs are provided using randomized laboratory codes, with identities known only to NIST and individual laboratories. The statistical approaches are outlined below for each type of data representation.

Statistics

Data tables and graphs throughout this report contain information about the performance of each laboratory relative to that of the other participants in this study and relative to a target around the expected result, if available. All calculations are performed in PROLab Plus (QuoData GmbH, Dresden, Germany).² The consensus mean and standard deviation are calculated according to the robust algorithm outlined in ISO 13528:2015(E), Annex C.³ The algorithm is summarized here in simplified form.

Initial values of the consensus mean, x^* , and consensus standard deviation, s^* , are estimated as

$x^* = \text{median of } x_i$	(i = 1, 2,, n)
$s^* = 1.483 \times \text{median of } x_i - x^* $	(i = 1, 2,, n).

² Certain commercial equipment, instruments or materials are identified in this certificate to adequately specify the experimental procedure. Such identification does not imply recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that the materials or equipment identified are necessarily the best available for the purpose.

³ ISO 13528:2015(E), Statistical methods for use in proficiency testing by interlaboratory comparisons, pp. 53-54.

These initial values for x^* and s^* are updated by first calculating the expanded standard deviation, δ , as

$$\delta = 1.5 \times s^*.$$

Each x_i is then compared to the expanded range and adjusted to x_i^* as described below to reduce the effect of outliers.

If $x_i < x^* - \delta$, then $x_i^* = x^* - \delta$. If $x_i > x^* + \delta$, then $x_i^* = x^* + \delta$. Otherwise, $x_i^* = x_i$.

New values of x^* , s^* , and δ are calculated iteratively until the process converges. Convergence is taken as no change from one iteration to the next in the third significant figure of s^* and in the equivalent digit in x^* :

$$x^* = \frac{\sum_{i=1}^n x_i^*}{n}$$

s* = 1.134 × $\sqrt{\frac{\sum_{i=1}^n (x_i^* - x^*)}{n-1}}$.

Individualized Data Table

The data in this table is individualized to each participating laboratory and is provided to allow participants to directly compare their data to the summary statistics (consensus or community data as well as NIST certified, reference, or estimated values, when available). The upper left of the data table includes the randomized laboratory code. Example individualized data tables are included in this report; participating laboratories received uniquely coded individualized data tables in a separate distribution.

Section 1 of the data table (*Your Results*) contains the laboratory results as reported, including the mean and standard deviation when multiple values were reported. A blank indicates that NIST does not have data on file for that laboratory for a particular analyte or matrix. An empty box for standard deviation indicates that a single value or a value below the limit of quantification (LOQ) for the participant was reported and therefore that value was not included in the calculation of the consensus data.³ Example individualized data tables are included in this report using NIST data in Section 1 to protect the identity and performance of participants.

Also included in Section 1 are two Z-scores. The first Z-score, Z'_{comm} , is calculated with respect to the community consensus value, taking into consideration bias that may result from the uncertainty in the assigned consensus value, using x* and s*:

$$Z'_{comm} = \frac{x_i - x_*}{\sqrt{2}s_*}.$$

The second Z-score, Z_{NIST} , is calculated with respect to the target value (NIST certified, reference, or estimated value, when available), using x_{NIST} and U_{95} (the expanded uncertainty) or s_{NIST} (the standard deviation of NIST measurements):

$$Z_{\text{NIST}} = \frac{x_i - x_{\text{NIST}}}{2 \cdot U_{95}}$$

or

$$Z_{\text{NIST}} = \frac{x_i - x_{\text{NIST}}}{2 \cdot U_{\text{NIST}}}$$

The significance of the *Z*-score and Z'-score is as follows:

- |Z| < 2 indicates that the laboratory result is considered to be within the community consensus range (for Z'_{comm}) or NIST target range (for Z_{NIST}).
- 2 < |Z| < 3 indicates that the laboratory result is considered to be marginally different from the community consensus value (for Z'_{comm}) or NIST target value (for Z_{NIST}).
- |Z| > 3 indicates that the laboratory result is considered to be significantly different from the community consensus value (for Z'_{comm}) or NIST target value (for Z_{NIST}).

Section 2 of the data table (*Community Results*) contains the consensus results, including the number of laboratories reporting more than a single quantitative value for a given analyte, the mean value determined for each analyte, and a robust estimate of the standard deviation of the reported values.³ Consensus means and standard deviations are calculated using the laboratory means; if a laboratory reported a single value, the reported value is not included.³ Additional information on calculation of the consensus mean and standard deviation can be found in the previous section.

Section 3 of the data table (*Target*) contains the target values for each analyte, when available. When possible, the target value is a certified value, a reference value, or a value determined at NIST. Certified values and the associated expanded uncertainty (U_{95}) have been determined with two independent analytical methods at NIST, or by combination of a single method at NIST and results from collaborating laboratories. Reference values are assigned using NIST values obtained from the average and standard deviation of measurements made using a single analytical method at NIST or by measurements obtained from collaborating laboratories. For both certified and reference values, at least six samples have been tested and duplicate preparations from the sample package have been included, allowing the uncertainty to encompass variability due to inhomogeneity within and between packages. For samples in which a NIST certified or reference value is not available, the analytes may be measured at NIST using a validated method or data from a partner laboratory may be used to establish a NIST-assessed value. The NIST-assessed value represents the mean of at least three replicates. For materials acquired from another interlaboratory study or proficiency testing program, the consensus value and uncertainty from the completed round is used as the target range. Within each section of this report, the exact methods for determination of the study target values are outlined in detail.

Summary Data Table

This data table includes a summary of all reported data for a particular analyte in a particular study. Participants can compare the raw data for their laboratory to data reported by the other participating laboratories and to the consensus data. A blank indicates that the laboratory signed up and received samples for that particular analyte and matrix, but NIST does not have data on file for that laboratory. Data points highlighted in red have been flagged as potential outliers (e.g., Grubb

and/or Cochran) by the NIST software package. The standard deviation (SD) for the target value in this table is the uncertainty (U_{NIST}) around the target value.

Graphs

Data Summary View (Method Comparison Data Summary View)

In this view, individual laboratory data (diamonds) are plotted with the individual laboratory standard deviation (rectangles). Laboratories reporting values below the method quantitation limit are shown in this view as downward triangles beginning at the limit of quantitation (LOQ), reported as quantitation limit (QL) on the figures. Laboratories reporting values as "below LOQ" can still be successful in the study if the target value is also below the laboratory LOQ. The blue solid line represents the consensus mean, and the green shaded area represents the 95 % confidence interval for the consensus mean, based on the standard error of the consensus mean. The red shaded region represents the target zone for "acceptable" performance, which encompasses the NIST target value bounded by twice its uncertainty (U_{95} or U_{NIST}). The solid red lines represent the range of tolerance (values that result in an acceptable Z'-score, $|Z'| \leq 2$). If the lower limit is below zero, the lower limit has been set to zero. In this view, the relative locations of individual laboratory data and consensus zones with respect to the target zone can be compared easily. In most cases, the target zone and the consensus zone overlap, which is the expected result. The major program goals are to reduce the size of the consensus zone and center the consensus zone about the target value. Analysis of an appropriate reference material as part of a quality control scheme can help to identify sources of bias for laboratories reporting results that are significantly different from the target zone. In the case in which a method comparison is relevant, different colored data points may be used to indicate laboratories that used a specific approach to sample preparation, analysis, or quantitation.

Sample/Sample Comparison View

In this view, the individual laboratory results for one sample (NIST SRM with a certified, reference, or NIST-determined value) are compared to the results for another sample (another NIST SRM with a more challenging matrix, a commercial sample, etc.). The solid red box represents the target zone for the first sample (x-axis) and the second sample (y-axis). The dotted blue box represents the consensus zone for the first sample (x-axis) and the second sample (y-axis). The axes of this graph are centered about the consensus mean values for each sample or control, to a limit of twice the range of tolerance (values that result in an acceptable Z'-score, $|Z'| \leq 2$). Depending on the variability in the data, the axes may be scaled proportionally to better display the individual data points for each laboratory. In some cases, when the consensus and target ranges have limited overlap, the solid red box may only appear partially on the graph. If the variability in the data is high (greater than 100 % relative standard deviation, or RSD), the dotted blue box may also only appear partially on the graph. These views emphasize trends in the data that may indicate potential calibration issues or method biases. One program goal is to identify such calibration or method biases and assist participants in improving analytical measurement capabilities. In some cases, when two equally challenging materials are provided, the same view (sample/sample comparison) can be helpful in identifying commonalities or differences in the analysis of the two materials.

SECTION 1: TOXIC ELEMENTS (As, Cd, Pb, Hg) IN BLACK COHOSH AND TURMERIC DIETARY SUPPLEMENTS

Study Overview

In this study, participants were provided with samples of black cohosh rhizome and turmeric rhizome and were asked to use in-house analytical methods to determine the mass fractions (ng/g) of As, Cd, Pb, and Hg in each matrix. Black cohosh and turmeric are popular dietary supplements used to alleviate menopausal symptoms⁴ and reduce inflammation⁵. In the United States, cGMPs require dietary supplement manufacturers to establish limits on reasonably anticipated contaminants, therefore laboratories must establish scientifically valid methods for the determination of toxic elements to demonstrate the products meet their specifications in 21 CFR 111.70(b)(3). Monitoring toxic substances in foods and dietary supplements helps prevent exposure to consumers and reduces the risk of related negative health outcomes.

Sample Information

Black Cohosh Rhizome. Participants were provided with one packet containing 3 g of black cohosh rhizome powder. Before use, participants were instructed to mix the contents of the packet thoroughly, and to use a sample size of at least 0.5 g. Participants were asked to store the material at controlled room temperature, 20 °C to 25 °C, and to prepare three samples and report three values from the single packet provided. The approximate analyte levels were not reported to participants prior to the study. The target values for As, Cd, and Pb were determined at NIST using inductively coupled plasma mass spectroscopy (ICP-MS). The target value for Hg was determined at NIST using cold-vapor inductively coupled plasma mass spectrometry (CV ICP-MS). The NIST-determined values and uncertainties for toxic elements in black cohosh rhizome are provided in the table below.

	NIST-Determined Mass Fractions in				
Analyte	Black Cohosh	Black Cohosh Rhizome (ng/g)			
Arsenic (As)	300	±	20		
Cadmium (Cd)	243	±	8		
Lead (Pb)	2236	±	46		
Mercury (Hg)	12.8	±	0.1		

Turmeric Rhizome. Participants were provided with one packet containing 3 g of turmeric rhizome powder. Before use, participants were instructed to mix the contents of the packet thoroughly, and to use a sample size of at least 0.5 g. Participants were asked to store the material at controlled room temperature, 20 °C to 25 °C, and to prepare three samples and report three values from the single packet provided. The approximate analyte levels were not reported to participants prior to the study. The target values for As, Cd, and Pb were determined at NIST using ICP-MS. The target value for Hg was determined at NIST using CV ICP-MS. The NIST-determined values and uncertainties for toxic elements in turmeric rhizome are provided in the table below.

⁴ Black Cohosh: Fact Sheet for Health Professionals. https://ods.od.nih.gov/factsheets/BlackCohosh-HealthProfessional/ (accessed August 2019).

⁵ Turmeric. https://nccih.nih.gov/health/turmeric/ataglance.htm (accessed August 2019).

	NIST-Determined Mass Fractions in
<u>Analyte</u>	Turmeric Rhizome (ng/g)
Arsenic (As)	323 ± 23
Cadmium (Cd)	$1700 \pm \ 160$
Lead (Pb)	1143 ± 38
Mercury (Hg)	54.1 ± 3.7

Study Results

The enrollment and reporting statistics for the toxic elements study are described in the table below. Some of the reported values were non-quantitative (zero or below LOQ) but are included in the participation statistics.

	<u>Number of</u> Laboratories	Number of Laboratories Reporting Results (Percent Participation)	
Analyte	Requesting Samples	Black Cohosh Rhizome	Turmeric Rhizome
Arsenic (As)	37	27 (73 %)	27 (73 %)
Cadmium (Cd)	39	28 (72 %)	28 (72 %)
Lead (Pb)	39	28 (72 %)	28 (72 %)
Mercury (Hg)	38	23 (61 %)	27 (71 %)

- The consensus means for As and Pb in the black cohosh rhizome and for Pb in the turmeric rhizome were below the target ranges with no overlap of the target range and the consensus range.
- The consensus means for Hg in both black cohosh rhizome and turmeric rhizome were above the target ranges with no overlap of the target range and the consensus range.
- The target range and the consensus range for As and Cd in the turmeric rhizome and for Cd in the black cohosh rhizome did overlap.
- The between-laboratory variabilities were all reasonable and are reported below.

	Between-Laborate	ory Variability
	(Percent]	<u>RSD)</u>
<u>Analyte</u>	Black Cohosh Rhizome	Turmeric Rhizome
Arsenic (As)	24 %	19 %
Cadmium (Cd)	16 %	21 %
Lead (Pb)	17 %	18 %
Mercury (Hg)	37 %	30 %

• Most laboratories reported using ICP-MS (90 % to 93 %) as their analytical method for all analytes. One laboratory reported using atomic absorption spectroscopy (AAS), and another laboratory did not specify a method used.

• The sample preparation methods reported by participating laboratories are summarized in the table below. Most laboratories reported using microwave digestion for all four analytes.

Reported Method	As	<u>Cd</u>	<u>Pb</u>	<u>Hg</u>
Microwave digestion	70 %	75 %	68 %	78 %
Hot Block digestion	22 %	18 %	24 %	11 %
Open beaker digestion	7 %	7 %	8 %	11 %

Technical Recommendations

The following recommendations are based on results obtained from the participants in this study.

- For all analytes, no pattern or trend was observed between reported results and analytical methods or sample preparation methods used.
- Sample preparation methods should be well established before analyzing unknown samples. Established quality control materials (SRMs, CRMs, RMs, and in-house materials) and accepted methods of analysis can assist in this process.
- Detection of the analyte in the sample may be improved by limiting the number of dilutions performed, however matrix effects may become more significant. A matrix-matched calibration curve may reduce some matrix interferences.
- For arsenic, the majority of the laboratories reported data below the NIST target range for the black cohosh rhizome and less than half of the laboratories reported data below the NIST target range for As in the turmeric rhizome, as shown in **Figures 1-1 through 1-4**.
 - Arsenic is volatile and can be lost during sample preparation, resulting in data that is biased low as seen in **Figure 1-5**.
 - The high temperatures of a vigorous microwave digestion should convert all volatile organoarsenic species to arsenic acid (AsV), at which point subsequent heating will not result in loss of arsenic.
 - The use of an open-beaker digestion may cause loss of As during sample preparation. Closed-vessel digestions should be opened with care ensuring that no As is lost as a result of inadvertent venting.
 - **Figure 1-5** shows that more laboratories had difficulty measuring As in the black cohosh rhizome than in the turmeric rhizome. The black cohosh material may require a more rigorous sample preparation than the turmeric material, or arsenic may be lost from volatilization.
 - Higher temperatures or the use of a small amount of HF may be needed to ensure complete digestion of plant materials for analysis.
- The boiling point of Cd is high and volatile loss of Cd is not a concern, but Cd can be difficult to measure by ICP-MS due to spectral interferences or by ICP-OES due to low sensitivity.
 - As seen in **Figure 1-10**, approximately half of the laboratories fell within the target range for both the black cohosh rhizome and the turmeric rhizome indicating Cd in these materials may have been less difficult to analyze than As.
 - Some laboratories that reported low values for Cd in one material also reported low values for Cd in the second material, but laboratories reporting high values for Cd in the black cohosh did not always report high values for Cd in turmeric.
 - For laboratories reporting low values for both samples there could be a possible calibration issue or incomplete sample digestion.

- For laboratories reporting high values for black cohosh only, challenges in the sample preparation could cause suppression or enhancement of the Cd signal.
- For ICP-MS, the most used method for Cd, the presence of high concentrations of certain elements, mainly Mo, Sn, or Zr, can cause interferences in the measurement of Cd. A scan of the sample beforehand will identify potential interferences in the sample that will need to be addressed.
 - Commonly used masses of Cd (¹¹¹Cd, ¹¹²Cd, ¹¹³Cd, and¹¹⁴Cd) can have molecular interferences such as ^{95, 96, 97} and ⁹⁸Mo¹⁶O⁺, ^{94, 95, 96, and ⁹⁷Mo¹⁶O¹H⁺, ⁹⁶Zr¹⁶O⁺, ⁹⁴ and ⁹⁶Zr¹⁶O¹H⁺, ⁴⁰Ar₂¹⁶O₂, ⁴⁰Ca₂¹⁶O₂, or ⁴⁰Ca₂¹⁶O₂¹H⁺ as well as elemental isobaric interferences such as ¹¹²Sn, ¹¹³In, and ¹¹⁴Sn. Interferences can cause signal suppression or signal enhancement.}
 - Chemical separations by anion chromatography can reduce or remove interferences but are usually impractical for laboratories due to the labor-intensive work required.
 - Collision cell technology, available on most ICP-MS instruments, can be used to remove many of the molecular interferences that may be found in these two materials.
 - Interference equations inherent to the software provided on some ICP-MS instruments are designed to correct for interferences, and these equations can also be applied off-line. Both are less labor-intensive alternatives to chemical separations.
- Lead is easily digested and volatile loss of Pb is not a concern. However, digestion with HNO₃ is recommended since use of HCl may form a highly insoluble PbCl₂ precipitate. Dry ashing with a small volume of acid is another recommended technique, though this technique can be time-consuming.
 - Since both sample materials contained high levels of lead, as shown in **Figures 1-11 through 1-14**, the consensus value for both rhizomes should easily have fallen within the NIST target range, providing HCl was not used for digestion. Since the consensus values did not overlap the NIST target ranges, a calibration problem is suspected (**Figure 1-15**).
 - Only two laboratories overlapped the NIST target range for lead in black cohosh and most did not fall within the consensus range. The laboratories performed better when reporting results for lead in turmeric.
 - The concentrations of lead are high in these samples and when analyzed by ICP-MS, larger dilutions may be necessary for improved accuracy.
 - Calibration curves must be checked before sample analysis to ensure that expected sample values will fall between the lowest and highest calibration points and that the calibration curve is linear at the point where the sample values fall. A calibration curve using calibration standards of (0, 1, 10, and 100) ng/kg may appear to give a linear curve but for sample values near the 1 ng/kg range, the calibration curve may no longer be linear when using only the lower calibration standards. In this case the final Pb values will be wrong and can be either too high or too low.
- Mercury is volatile, so care must be taken to not lose Hg during sample preparation.
 - Microwave digestion is the best method for sample preparation.
 - Low concentrations of Hg are not stable in solution over time. Samples are best prepared close to the time of analysis. Samples containing low concentrations of Hg may be more stable in dilute HCl than in dilute HNO₃.
 - Mercury levels are very low in the black cohosh rhizome and may be close to method detection limits (MDL) in both materials. A sufficient number of blanks are required to

determine an accurate MDL and LOQ. Mercury blanks and backgrounds may be large, making determination of Hg values in samples containing low levels of Hg difficult.

- Mercury has a poor washout (long memory effect) and can give erratic answers if an adequate washout time is not used after each measurement.
- Values reported at the higher end of the range had more within-laboratory variability, most likely due to contamination issues or problems with sample analysis such as memory effects. Use of dilute HCl may decrease the length of necessary washout time.
- The sensitivity of ICP-MS is low for Hg. Using cold vapor mercury generation increases sensitivity allowing for lower levels of Hg to be measured.
- To summarize, measurement of toxic elements in plant materials is challenging for most laboratories.
 - An appropriate quality control material is needed and is one that will mirror both the sample matrix and the mass fraction levels expected to be found in the sample.
 - For complete digestion of plant materials, the use of a small amount of HF may be necessary even if particulates are not visible.
 - Calibration curves must be linear for all analytes, including the lowest and highest values expected to be measured in the samples. Extrapolation of the curve may cause incorrect results.
 - Analysis of an appropriate number of procedural blanks is important and can be critical when sample concentrations are near the detection limit.
 - All results should be checked closely to avoid calculation errors and to be sure that results are reported in the requested units.
 - For both rhizomes, a few laboratories reported data significantly outside of the target and consensus ranges. Calculation errors are often a cause for incorrect results. Using a quality assurance material (CRM, SRM, RM) or in-house prepared material to establish that a method is in control will also help find calculation errors. Once a method and quality assurance material appear to be in control, be sure results are reported in the correct units.

Table 1-1. NIST data summary table for arsenic, cadmium, mercury, and lead in black cohosh and turmeric rhizomes.

		DSQAP E	xercise O - T	Foxic Ele	ments									
	Lab Code:	1. Your Results					2. Community Results				3. Target			
Analyte	Sample	Units	Jnits x _i	si	Z' _{comm}	Z _{NIST}		Ν	X*	s*	X _N	ST	U	
Total arsenic	Black Cohosh Rhizome	ng/g	300	20			_	29	240	12	30	0	20	
Total arsenic	(A) SRM 3299 Turmeric Rhizome	ng/g	320	23				29	290	10	32	3	23	
Cadmium	Black Cohosh Rhizome	ng/g	240	8				30	230	6.9	24	3	8	
Cadmium	(A) SRM 3299 Turmeric Rhizome	ng/g	1700	160				30	1430	55	17	00	160	
Mercury	Black Cohosh Rhizome	ng/g	12.8	0.1				25	15.3	1.1	12	.8	0.1	
Mercury	(A) SRM 3299 Turmeric Rhizome	ng/g	54.1	3.7				30	69.9	3.6	54	.1	3.7	
Lead	Black Cohosh Rhizome	ng/g	2240	46				30	1800	53	22	40	46	
Lead	(A) SRM 3299 Turmeric Rhizome	ng/g	1140	36				30	1000	32	11	40	36	
			x _i Mean of reported values				N	Number of	of quantitative	•	x _{NIST} NIST-assessed value			
			si Standard deviation of reported values					values reported			U expanded uncertainty			
		Z'_{co}	Z'-score with respect to community consensus			ity	x*	* Robust mean of reported			about	about the NIST-assessed value		
							values							
		Z _N	VIST Z-score with respect to NIST value				s*	Robust st	andard deviat	tion				

National Institute of Standards and Technology

		Total Arsenic										
		SRM	3295 Blac	k Cohosh	Rhizome	(ng/g)	SRM 3299 Turmeric Rhizome (ng/g)					
	Lab	Α	В	С	Avg	SD	А	В	С	Avg	SD	
	NIST				300	20				323	23	
	O405											
	O407	238	241	236	238	3	268	254	308	277	28	
	O408	374	370	388	377	9	341	345	337	341	4	
	O409											
	O411	229	220	212	220	9	216	267	209	231	32	
	O412											
	O413	240	240	240	240	0	340	310	320	323	15	
	O414	330			330		270			270		
	O416	246	240	233	240	6	346	322	318	329	15	
	O417	267	266	275	269	5	320	304	303	309	10	
	O418	223	236	232	230	7	259	262	258	260	2	
	O419	199	195	200	198	3	224	242	226	231	10	
	O420	265	250	251	255	8	285	306	336	309	26	
	O423											
	O425	340	340	320	333	12	410	360	390	387	25	
lts	O427	269	275	256	267	10	295	332	289	305	23	
esul	O428	312	314	325	317	7	325	335	327	329	5	
al R	O429											
idu	O430	201	208	202	204	4	224	205	204	211	11	
ndiv	O431	259	267	266	264	4	268	268	261	266	4	
IJ	O433	156	122	109	129	24	141	280	135	186	82	
	O434											
	O437											
	O440	294	246	251	264	26	284	301	288	291	9	
	O441	221	206	219	215	8	288	280	258	275	15	
	O442	267	250	265	261	9	271	392	469	377	100	
	O445	264	270	257	264	7	281	293	289	288	6	
	O447											
	O449	173	172	177	174	3	255	306	260	273	28	
	O452	0.280	0.290	0.390	0.320	0.061	0.300	0.300	0.320	0.307	0.012	
	O454	233	240	261	245	14	247	248	246	247	1	
	O455	192	203	194	196	6	345	311	313	323	19	
	O457	200	200	210	203	6	280	270	290	280	10	
	O458											
	O462	190	180	200	190	10	320	280	250	283	35	
	O463	204	215	216	212	7	229	247	235	237	9	
	O464	139	92	72	101	34	934	920	961	938	21	
Ŷ		Consensu	is Mean		235		Consensus Mean			286		
unit lts		Consensu	is Standard	Deviation	57	57 Consens			l Deviation	55		
Comm Resul		Maximun	ı		377		Maximun	ı	938			
		Minimum			0.320		Minimum			0.307		
		Ν			27		Ν		27			

Table 1-2. Data summary table for total arsenic in black cohosh and turmeric rhizomes. Data points highlighted in red have been flagged as potential outliers (e.g., Grubb and/or Cochran) by the NIST software package.

Figure 1-1. Total arsenic in black cohosh rhizome (data summary view – analytical method). In this view, individual laboratory data are plotted (diamonds) with the individual laboratory standard deviation (rectangle). The color of the data point represents the analytical method employed. The solid blue line represents the consensus mean and the green shaded region represents the 95 % confidence interval for the consensus mean. The solid red lines represent the consensus range of tolerance, calculated as the values above and below the consensus mean that result in an acceptable Z'_{comm} score, $|Z'_{comm}| \leq 2$. The red shaded region represents the NIST range of tolerance, which encompasses the target value bounded by its uncertainty (U_{NIST}) and represents the range that results in an acceptable $Z_{NIST}| \leq 2$.

Figure 1-2. Total arsenic in turmeric rhizome (data summary view – analytical method). In this view, individual laboratory data are plotted (diamonds) with the individual laboratory standard deviation (rectangle). The color of the data point represents the analytical method employed. The solid blue line represents the consensus mean and the green shaded region represents the 95 % confidence interval for the consensus mean. The solid red lines represent the consensus range of tolerance, calculated as the values above and below the consensus mean that result in an acceptable Z'_{comm} score, $|Z'_{comm}| \leq 2$. The red shaded region represents the NIST range of tolerance, which encompasses the target value bounded by its uncertainty (U_{NIST}) and represents the range that results in an acceptable Z_{NIST} score, $|Z_{NIST}| \leq 2$.

Figure 1-3. Total arsenic in black cohosh rhizome (data summary view – sample preparation method). In this view, individual laboratory data are plotted (diamonds) with the individual laboratory standard deviation (rectangle). The color of the data point represents the sample preparation method employed. The solid blue line represents the consensus mean and the green shaded region represents the 95 % confidence interval for the consensus mean. The solid red lines represent the consensus range of tolerance, calculated as the values above and below the consensus mean that result in an acceptable Z'_{comm} score, $|Z'_{comm}| \leq 2$. The red shaded region represents the NIST range of tolerance, which encompasses the target value bounded by its uncertainty (U_{NIST}) and represents the range that results in an acceptable Z_{NIST} score, $|Z_{NIST}| \leq 2$.

Figure 1-4. Total arsenic in turmeric rhizome (data summary view – sample preparation method). In this view, individual laboratory data are plotted (diamonds) with the individual laboratory standard deviation (rectangle). The color of the data point represents the sample preparation method employed. The solid blue line represents the consensus mean and the green shaded region represents the 95 % confidence interval for the consensus mean. The solid red lines represent the consensus range of tolerance, calculated as the values above and below the consensus mean that result in an acceptable Z'_{comm} score, $|Z'_{comm}| \leq 2$. The red shaded region represents the NIST range of tolerance, which encompasses the target value bounded by its uncertainty (U_{NIST}) and represents the range that results in an acceptable Z_{NIST} score, $|Z_{NIST}| \leq 2$.

Exercise: DSQAP Exercise O Measurand: Total arsenic No. of laboratories: 28

Figure 1-5. Laboratory means for total arsenic in black cohosh rhizome and turmeric rhizome (sample/sample comparison view). In this view, the individual laboratory mean for one sample (black cohosh) is compared to the mean for a second sample (turmeric). The solid red box represents the NIST range of tolerance for the two samples, black cohosh (x-axis) and turmeric (y-axis), which encompasses the NIST-determined values bounded by their uncertainties (U_{NIST}) and represents the range that results in an acceptable Z_{NIST} score, $|Z_{\text{NIST}}| \leq 2$. The dotted blue box represents the consensus range of tolerance for black cohosh (x-axis) and turmeric (y-axis), calculated as the values above and below the consensus means that result in an acceptable Z'_{comm} score, $|Z'_{\text{comm}}| \leq 2$.

Cadmium SRM 3295 Black Cohosh Rhizome (ng/g) SRM 3299 Turmeric Rhizome (ng/g) Lab SD С A B С A B SD Avg Avg NIST O405 O407 O408 O409 O411 O412 O414 O415 O416 O417 O418 O419 O420 O423 O425 1.60 1.47 1.56 1.54 0.07 O426 Individual Results O427 O428 1.52 1.51 1.53 1.52 0.01 O429 O430 O431 O433 O437 O441 O442 O445 O447 O449 O452 0.2 0.2 0.240 0.010 1.56 1.51 1.53 0.03 0.3 1.51 O454 O455 O457 O458 O462 O463 O464 Consensus Mean Consensus Mean Community Results Consensus Standard Deviation Consensus Standard Deviation Maximum Maximum Minimum 0.240 1.52 Minimum N Ν

Table 1-3. Data summary table for cadmium in black cohosh and turmeric rhizomes. Data points highlighted in red have been flagged as potential outliers (e.g., Grubb and/or Cochran) by the NIST software package.

Figure 1-6. Cadmium in black cohosh rhizome (data summary view – analytical method). In this view, individual laboratory data are plotted (diamonds) with the individual laboratory standard deviation (rectangle). The color of the data point represents the analytical method employed. The solid blue line represents the consensus mean and the green shaded region represents the 95 % confidence interval for the consensus mean. The solid red lines represent the consensus range of tolerance, calculated as the values above and below the consensus mean that result in an acceptable Z'_{comm} score, $|Z'_{comm}| \leq 2$. The red shaded region represents the NIST range of tolerance, which encompasses the target value bounded by its uncertainty (U_{NIST}) and represents the range that results in an acceptable Z_{NIST} score, $|Z_{NIST}| \leq 2$.

Figure 1-7. Cadmium in turmeric rhizome (data summary view – analytical method). In this view, individual laboratory data are plotted (diamonds) with the individual laboratory standard deviation (rectangle). The color of the data point represents the analytical method employed. The solid blue line represents the consensus mean and the green shaded region represents the 95 % confidence interval for the consensus mean. The solid red lines represent the consensus range of tolerance, calculated as the values above and below the consensus mean that result in an acceptable Z'_{comm} score, $|Z'_{comm}| \le 2$. The red shaded region represents the NIST range of tolerance, which encompasses the target value bounded by its uncertainty (U_{NIST}) and represents the range that results in an acceptable Z_{NIST} score, $|Z_{NIST}| \le 2$.

Figure 1-8. Cadmium in black cohosh rhizome (data summary view – sample preparation method). In this view, individual laboratory data are plotted (diamonds) with the individual laboratory standard deviation (rectangle). The color of the data point represents the sample preparation method employed. The solid blue line represents the consensus mean and the green shaded region represents the 95 % confidence interval for the consensus mean. The solid red lines represent the consensus range of tolerance, calculated as the values above and below the consensus mean that result in an acceptable Z'_{comm} score, $|Z'_{comm}| \leq 2$. The red shaded region represents the NIST range of tolerance, which encompasses the target value bounded by its uncertainty (U_{NIST}) and represents the range that results in an acceptable Z_{NIST} score, $|Z_{NIST}| \leq 2$.

Figure 1-9. Cadmium in turmeric rhizome (data summary view – sample preparation method). In this view, individual laboratory data are plotted (diamonds) with the individual laboratory standard deviation (rectangle). The color of the data point represents the sample preparation method employed. The solid blue line represents the consensus mean and the green shaded region represents the 95 % confidence interval for the consensus mean. The solid red lines represent the consensus range of tolerance, calculated as the values above and below the consensus mean that result in an acceptable Z'_{comm} score, $|Z'_{comm}| \leq 2$. The red shaded region represents the NIST range of tolerance, which encompasses the target value bounded by its uncertainty (U_{NIST}) and represents the range that results in an acceptable Z_{NIST} score, $|Z_{NIST}| \leq 2$.

Exercise: DSQAP Exercise O Measurand: Cadmium No. of laboratories: 29

Figure 1-10. Laboratory means for cadmium in black cohosh rhizome and turmeric rhizome (sample/sample comparison view). In this view, the individual laboratory mean for one sample (black cohosh) is compared to the mean for a second sample (turmeric). The solid red box represents the NIST range of tolerance for the two samples, black cohosh (x-axis) and turmeric (y-axis), which encompasses the NIST-determined values bounded by their uncertainties (U_{NIST}) and represents the range that results in an acceptable Z_{NIST} score, $|Z_{\text{NIST}}| \leq 2$. The dotted blue box represents the consensus range of tolerance for black cohosh (x-axis) and turmeric (y-axis), calculated as the values above and below the consensus means that result in an acceptable $Z'_{\text{comm}} = 2$.

Table 1-4. Data summary table for lead in black cohosh and turmeric rhizomes. Data points highlighted in red have been flagged as potential outliers (e.g., Grubb and/or Cochran) by the NIST software package.

		Lead										
		SRM 3295 Black Cohosh Rhizome (n					SRM	M 3299 Tu	hizome (ng/g)			
	Lab	Α	В	С	Avg	SD	Α	В	С	Avg	SD	
	NIST				2236	46				1143	38	
	O405											
	O407	1970	2040	2050	2020	44	1090	1180	1400	1223	159	
	O408	2080	2090	2080	2083	6	1080	1100	1120	1100	20	
	O409											
	O411	1679	1633	1743	1685	55	864	739	678	760	95	
	O412											
	O413	2000	2000	2000	2000	0	1100	1100	1100	1100	0	
	O414	1900			1900		880			880		
	O415	1930	1950	1910	1930	20	1160	1110	1190	1153	40	
	O416	1764	1745	1733	1747	15	1062	1010	1056	1043	29	
	O417	1981	1989	2041	2004	33	1065	1029	1096	1063	34	
	O418	1780	1990	1970	1913	116	1080	1070	1040	1063	21	
	O419	1604	1595	1601	1600	5	918	878	872	889	25	
	O420	1986	2031	2045	2021	31	1073	1007	1057	1046	34	
	O423											
	O425	1.63	1.75	1.74	1.71	0.07	1.07	1.02	1.04	1.04	0.03	
lts	O426											
tesu	O427	1850	1800	1910	1853	55	1170	1100	1100	1123	40	
al F	O428	2.85	2.07	2.12	2.35	0.43	1.17	1.16	1.18	1.17	0.01	
/idu	O429											
vibu	O430	1708	1682	1653	1681	28	985	958	949	964	19	
I	O431	2019	2022	2056	2032	21	1099	1042	1553	1231	280	
	O433	1889	1862	1870	1873	14	1148	1262	1080	1163	92	
	O434											
	O437											
	O440	1903	1991	1871	1922	62	1162	1048	1050	1087	65	
	O441	1737	1653	1590	1660	74	862	994	955	937	68	
	O442	1830	1800	1890	1840	46	992	1100	1010	1034	58	
	O445	1904	1881	1853	1879	26	1035	1031	1000	1022	19	
	O447											
	O449	1614	1744	1770	1709	83	949	1064	1078	1030	71	
	O452	1.95	1.97	2.05	1.99	0.05	1.08	1.07	1.18	1.11	0.06	
	O454	1906	2189	2138	2077	150	961	932	974	955	22	
	O455	1577	1494	1422	1498	78	832	753	763	783	43	
	O457	2100	2000	2000	2033	58	1000	1100	1100	1067	58	
	O458											
	O462	2070	2280	2860	2403	409	1050	1100	1510	1220	252	
	O463	1169	1082	1294	1182	107	966	994	989	983	15	
	O464	197	193	187	192	5	188	197	200	195	6	
Σ.		Consensu	s Mean		1790		Consensus Mean 994					
uni lts		Consensu	s Standard	Deviation	300		Consensus Standard Deviation			182		
mm		Maximum	1		2403		Maximum			1231		
Co L		Minimum			1.707		Minimum		1.043			
		Ν			28		Ν			28		

Figure 1-11. Lead in candidate black cohosh rhizome (data summary view – analytical method). In this view, individual laboratory data are plotted (diamonds) with the individual laboratory standard deviation (rectangle). The color of the data point represents the analytical method employed. The solid blue line represents the consensus mean and the green shaded region represents the 95 % confidence interval for the consensus mean. The solid red lines represent the consensus range of tolerance, calculated as the values above and below the consensus mean that result in an acceptable Z'_{comm} score, $|Z'_{comm}| \leq 2$. The red shaded region represents the NIST range of tolerance, which encompasses the target value bounded by its uncertainty (U_{NIST}) and represents the range that results in an acceptable Z_{NIST} score, $|Z_{NIST}| \leq 2$.

Figure 1-12. Lead in turmeric rhizome (data summary view – analytical method). In this view, individual laboratory data are plotted (diamonds) with the individual laboratory standard deviation (rectangle). The color of the data point represents the analytical method employed. The solid blue line represents the consensus mean and the green shaded region represents the 95 % confidence interval for the consensus mean. The solid red lines represent the consensus range of tolerance, calculated as the values above and below the consensus mean that result in an acceptable Z'_{comm} score, $|Z'_{\text{comm}}| \leq 2$. The red shaded region represents the NIST range of tolerance, which encompasses the target value bounded by its uncertainty (U_{NIST}) and represents the range that results in an acceptable Z_{NIST} score, $|Z_{\text{NIST}}| \leq 2$.

Figure 1-13. Lead in black cohosh rhizome (data summary view – sample preparation method). In this view, individual laboratory data are plotted (diamonds) with the individual laboratory standard deviation (rectangle). The color of the data point represents the sample preparation method employed. The solid blue line represents the consensus mean and the green shaded region represents the 95 % confidence interval for the consensus mean. The solid red lines represent the consensus range of tolerance, calculated as the values above and below the consensus mean that result in an acceptable Z'_{comm} score, $|Z'_{\text{comm}}| \leq 2$. The red shaded region represents the NIST range of tolerance, which encompasses the target value bounded by its uncertainty (U_{NIST}) and represents the range that results in an acceptable Z_{NIST} score, $|Z_{\text{NIST}}| \leq 2$.

Figure 1-14. Lead in turmeric rhizome (data summary view – sample preparation method). In this view, individual laboratory data are plotted (diamonds) with the individual laboratory standard deviation (rectangle). The color of the data point represents the sample preparation method employed. The solid blue line represents the consensus mean and the green shaded region represents the 95 % confidence interval for the consensus mean. The solid red lines represent the consensus range of tolerance, calculated as the values above and below the consensus mean that result in an acceptable Z'_{comm} score, $|Z'_{comm}| \leq 2$. The red shaded region represents the NIST range of tolerance, which encompasses the target value bounded by its uncertainty (U_{NIST}) and represents the range that results in an acceptable Z_{NIST} score, $|Z_{NIST}| \leq 2$.

Figure 1-15. Laboratory means for lead in black cohosh rhizome and turmeric rhizome (sample/sample comparison view). In this view, the individual laboratory mean for one sample (black cohosh) is compared to the mean for a second sample (turmeric). The solid red box represents the NIST range of tolerance for the two samples, black cohosh (x-axis) and turmeric (y-axis), which encompasses the NIST-determined values bounded by their uncertainties (U_{NIST}) and represents the range that results in an acceptable Z_{NIST} score, $|Z_{\text{NIST}}| \leq 2$. The dotted blue box represents the consensus range of tolerance for black cohosh (x-axis) and turmeric (y-axis), calculated as the values above and below the consensus means that result in an acceptable $Z'_{\text{comm}} | \leq 2$.

Mercury SRM 3295 Black Cohosh Rhizome (ng/g) SRM 3299 Turmeric Rhizome (ng/g) SD Lab А В С Avg A В С Avg SD NIST 12.8 0.1 54.1 3.7 O405 90.0 76.7 O407 10.0 13.0 12.0 11.7 1.5 72.0 68.0 11.7 O408 18.0 17.0 15.0 16.7 1.5 81.0 91.0 150.0 107.3 37.3 O409 O412 94.0 62.0 72.7 18.5 O413 16.0 15.0 13.0 14.7 1.5 62.0 47.0 O414 11.0 11.0 47.0 O415 13.4 13.3 10.1 12.3 1.9 65.7 84.5 53.2 67.8 15.8 1.4 O416 12.4 18.3 23.3 18.0 5.5 15.5 17.7 18.0 17.1 O417 13.6 13.1 13.7 13.5 0.3 60.0 68.5 67.3 65.3 4.6 O418 < 19 < 19 < 19 < 19 53.5 42.1 85.8 60.5 22.7 O419 9.0 12.0 11.0 10.7 1.5 65.0 65.0 50.0 60.0 8.7 O420 16.0 16.015.0 15.7 0.6 60.0 60.0 72.0 64.0 6.9 O423 O425 40.0 40.0 10.0 90.0 90.0 90.0 90.0 30.0 50.0 0.0 O426 10.0 52.5 50.7 51.1 10.0 13.0 11.0 1.7 50.0 1.3 Individual Results O427 12.1 12.0 12.5 12.2 0.3 77.9 59.0 59.1 65.3 10.9 O428 21.0 21.0 23.0 21.7 1.2 102.0 72.0 79.0 84.3 15.7 O429 O430 101.0 76.2 98.3 91.8 13.6 11.7 12.4 11.3 11.8 0.5 O431 13.0 14.0 14.0 13.7 0.6 87.0 98.0 49.0 78.0 25.7 O433 19.9 9.3 9.9 13.0 5.9 86.7 54.7 72.0 71.1 16.0 O434 O437 O440 25.0 24.8 23.6 24.5 0.8 74.8 87.0 151.0 104.3 40.9 O441 62.5 49.1 51.7 54.4 7.1 O442 12.0 13.0 107.0 64.0 72.3 14.0 13.0 1.0 46.0 31.3 O445 9.4 7.3 9.9 8.9 1.4 63.9 57.9 47.8 56.5 8.1 O447 0449 74.8 27.8 24.8 22.4 25.0 77.9 69.8 76.7 4.4 2.7 < 0.01 < 0.01 < 0.01 0.040 0.030 0.070 0.047 0.021 O452 < 0.01 O454 14.3 15.0 12.9 14.1 1.1 59.7 57.4 81.2 66.1 13.1 O455 26.0 26.0 26.3 73.0 77.0 75.7 2.3 27.00.6 77.0 O457 < 10 < 10 < 10 < 10 69.0 82.0 68.0 73.0 7.8 O458 O462 < 30 < 30 < 30 < 30 < 30 30.0 < 30 30.0 O463 10.8 8.9 8.9 9.5 1.1 59.3 61.4 54.1 58.3 3.8 O464 22.0 19.0 20.0 20.3 1.5 1724 1769 1753 1749 23 Consensus Mean 15.3 Consensus Mean 68.6 Community Consensus Standard Deviation 5.6 Consensus Standard Deviation 20.3 Results Maximum 40.0 Maximum 1749 0.047 Minimum 8.9 Minimum Ν 23 Ν 27

Table 1-5. Data summary table for mercury in black cohosh and turmeric rhizomes. Data points highlighted in red have been flagged as potential outliers (e.g., Grubb and/or Cochran) by the NIST software package.

Figure 1-16. Mercury in black cohosh rhizome (data summary view – analytical method). In this view, individual laboratory data are plotted (diamonds) with the individual laboratory standard deviation (rectangle). The color of the data point represents the analytical method employed. The solid blue line represents the consensus mean and the green shaded region represents the 95 % confidence interval for the consensus mean. The solid red lines represent the consensus range of tolerance, calculated as the values above and below the consensus mean that result in an acceptable Z'_{comm} score, $|Z'_{comm}| \leq 2$. The red shaded region represents the NIST range of tolerance, which encompasses the target value bounded by its uncertainty (U_{NIST}) and represents the range that results in an acceptable Z_{NIST} score, $|Z_{NIST}| \leq 2$.

Figure 1-17. Mercury in turmeric rhizome (data summary view – analytical method). In this view, individual laboratory data are plotted (diamonds) with the individual laboratory standard deviation (rectangle). The color of the data point represents the analytical method employed. The solid blue line represents the consensus mean and the green shaded region represents the 95 % confidence interval for the consensus mean. The solid red lines represent the consensus range of tolerance, calculated as the values above and below the consensus mean that result in an acceptable Z'_{comm} score, $|Z'_{\text{comm}}| \leq 2$. The red shaded region represents the NIST range of tolerance, which encompasses the target value bounded by its uncertainty (U_{NIST}) and represents the range that results in an acceptable Z_{NIST} score, $|Z_{\text{NIST}}| \leq 2$.

Figure 1-18. Mercury black cohosh rhizome (data summary view – sample preparation method). In this view, individual laboratory data are plotted (diamonds) with the individual laboratory standard deviation (rectangle). The color of the data point represents the sample preparation method employed. The solid blue line represents the consensus mean and the green shaded region represents the 95 % confidence interval for the consensus mean. The solid red lines represent the consensus range of tolerance, calculated as the values above and below the consensus mean that result in an acceptable Z'_{comm} score, $|Z'_{comm}| \leq 2$. The red shaded region represents the NIST range of tolerance, which encompasses the target value bounded by its uncertainty (U_{NIST}) and represents the range that results in an acceptable Z_{NIST} score, $|Z_{NIST}| \leq 2$.

Figure 1-19. Mercury in turmeric rhizome (data summary view – analytical method). In this view, individual laboratory data are plotted (diamonds) with the individual laboratory standard deviation (rectangle). The color of the data point represents the analytical method employed. The solid blue line represents the consensus mean and the green shaded region represents the 95 % confidence interval for the consensus mean. The solid red lines represent the consensus range of tolerance, calculated as the values above and below the consensus mean that result in an acceptable Z'_{comm} score, $|Z'_{comm}| \leq 2$. The red shaded region represents the NIST range of tolerance, which encompasses the target value bounded by its uncertainty (U_{NIST}) and represents the range that results in an acceptable Z_{NIST} score, $|Z_{NIST}| \leq 2$.

Figure 1-20. Laboratory means for mercury in black cohosh rhizome and turmeric rhizome (sample/sample comparison view). In this view, the individual laboratory mean for one sample (black cohosh) is compared to the mean for a second sample (turmeric). The solid red box represents the NIST range of tolerance for the two samples, black cohosh (x-axis) and turmeric (y-axis), which encompasses the NIST-determined values bounded by their uncertainties (U_{NIST}) and represents the range that results in an acceptable Z_{NIST} score, $|Z_{\text{NIST}}| \leq 2$. The dotted blue box represents the consensus range of tolerance for black cohosh (x-axis) and turmeric (y-axis), calculated as the values above and below the consensus means that result in an acceptable $Z'_{\text{comm}} = 2$.

SECTION 2: CURCUMINOIDS IN TURMERIC COMMERICAL PRODUCTS

Study Overview

For this two-part curcuminoid study, participants initially were provided with two NIST candidate SRMs, SRM 3299 Ground Turmeric (*Curcuma longa* L.) Rhizome and SRM 3300 Curcumin Extract of Turmeric (*Curcuma longa* L.) Rhizome, and four of eight turmeric commercial products. Participants were asked to use the AOAC First Action Official Method of Analysis 2016.16 Determination of Curcuminoids in Turmeric Raw Materials and Dietary Supplements by $HPLC^6$ or in-house methods to determine the mass fractions (mg/g or mg/L) of curcumin, bisdemethoxycurcumin (BDMC), and desmethoxycurcumin (DMC) in each matrix. For those laboratories interested in using the AOAC method, a copy of the method was enclosed, and participants using the AOAC method received the same two candidate NIST SRMs and the remaining four products not received in the first part of the study, such that all of the selected laboratories received two sets of the candidate NIST SRMs and all eight commercial products. Data from laboratories using the AOAC method to support *Final Action* status. For participants using an in-house method, results were compared with the consensus data.

Sample Information

Turmeric Rhizome. Participants were provided with 1 packet of ground turmeric rhizome. Before use, participants were instructed to thoroughly mix the contents of the packet and were instructed to use a minimum sample size as described in AOAC 2016.16. Participants were asked to store the material at controlled room temperature, 20 °C to 25 °C, and to prepare three samples and report three values from the single packet provided. Approximate analyte levels were not reported to participants prior to the study. The target values for curcuminoids in the turmeric rhizome were determined at NIST using liquid chromatography with absorbance detection (LC-absorbance). The NIST-determined values and uncertainties for curcuminoids in the turmeric rhizome are provided in the table below.

	NIST-Determined Mass Fraction in
<u>Analyte</u>	Candidate SRM 3299 (mg/g)
Curcumin	11.04 ± 0.21
Bisdemethoxycurcumin	2.84 ± 0.05
Desmethoxycurcumin	3.14 ± 0.06

Turmeric Extract. Participants were provided with 1 packet of turmeric extract powder. Before use, participants were instructed to thoroughly mix the contents of the packet and were instructed to use a minimum sample size as described in AOAC 2016.16. Participants were asked to store the material at controlled room temperature, 20 °C to 25 °C, and to prepare three samples and report three values from the single packet provided. Approximate analyte levels were not reported to participants prior to the study. The target values for curcuminoids in the turmeric extract were

⁶Mudge, E.M.; Brown, P. N. (2018) Determination of Curcuminoids in Turmeric Raw Materials and Dietary Supplements by HPLC: Single-Laboratory Validation, First Action 2016.16. J AOAC Int. 101 (1), pp 203-207.

determined at NIST using LC-absorbance. The NIST-determined values and uncertainties for curcuminoids in the turmeric extract are provided in the table below.

	NIST-Determined Mass Fraction in
Analyte	Candidate SRM 3300 (mg/g)
Curcumin	822 ± 11
Bisdemethoxycurcumin	18.25 ± 0.49
Desmethoxycurcumin	117.1 ± 1.1

Turmeric Commercial Products. Participants received some or all the samples listed in the table below. Before use, participants were instructed to thoroughly mix the contents of each packet or vial and were instructed to use a minimum sample size as described in AOAC 2016.16. Participants were asked to store the materials at controlled room temperature, 20 °C to 25 °C, and to prepare the number of samples and report the number of values as described in the table below. The approximate analyte levels were not reported to participants prior to the study, and no values for curcuminoids in these products were determined by NIST prior to the study.

	<u>Quantity</u>	<u>Quantity</u>	
	and	per	
<u>Sample ID</u>	Packaging	Package	How to Report
Sample C: Turmeric Root Powder	3 packets	3 g of powder	Prepare 1 sample and report 1 value per packet
Sample D: Turmeric Smoothie Additive	3 packets	3 g of powder	Prepare 1 sample and report 1 value per packet
Sample E: Turmeric Root Capsule	3 packets	20 capsules	Prepare 1 sample and report 1 value per packet
Sample F: Turmeric Extract/Root Capsule with Black Pepper	3 packets	20 capsules	Prepare 1 sample and report 1 value per packet
Sample G: Turmeric Extract/Root Capsule with Black Pepper & Coconut Oil	3 packets	20 capsules	Prepare 1 sample and report 1 value per packet
Sample H: Turmeric Tincture	3 vials	3 mL of liquid	Prepare 1 sample and report 1 value per vial
Sample I: Turmeric Gelcap with Coconut	1 packet	20 capsules	Prepare 3 samples and report 3 values from the single packet
Sample J: Turmeric Gelcap, Liquid Curcumin	1 packet	20 capsules	Prepare 3 samples and report 3 values from the single packet

Study Results

- Twenty-four of the thirty-four laboratories enrolled in the exercise reported results for the samples that they received (71 % participation).
- For curcumin, the 95 % confidence intervals for the consensus mean in both turmeric candidate SRMs overlapped the NIST target ranges, as illustrated in **Figures 2-1 and 2-2**. The consensus mean for candidate SRM 3299 was within the NIST target range while the consensus mean for candidate SRM 3300 fell below the NIST target range.
- For BDMC, the 95 % confidence interval for the consensus mean in candidate SRM 3299 overlapped the NIST target range as illustrated in **Figure 2-22**, but the consensus mean was above the target range. The consensus range overlapped the NIST target range for candidate SRM 3300 and the consensus mean was within the NIST target range as illustrated in **Figure 2-23**.
- For DMC, the 95 % confidence intervals for the consensus mean in both turmeric candidate SRMs overlapped the NIST target ranges as illustrated in **Figures 2-43 and 2-44**. The consensus mean was above the NIST target range for candidate SRM 3299 and was within the NIST target range for candidate SRM 3300.
- The between-laboratory variability was acceptable for most analyte-sample pairs, as indicated in the table below. The variability generally decreased when considering only the laboratories using AOAC 2016.16.

	. 1			Lab	oratories usi	ng
	<u>Al</u>	I Laboratori	es	<u>A0</u>	<u>JAC 2016.1</u>	<u>6</u>
Sample	Curcumin	BDMC	DMC	Curcumin	BDMC	DMC
Sample A: SRM 3299 Turmeric Rhizome	16.1 %	20.9 %	21.3 %	9.4 %	7.8 %	7.3 %
Sample B: SRM 3300 Turmeric Extract	7.2 %	15.3 %	8.1 %	5.8 %	9.1 %	6.7 %
Sample C: Turmeric Root Powder	12.0 %	10.3 %	16.2 %	4.6 %	5.5 %	6.9 %
Sample D: Turmeric Smoothie Additive	10.9 %	27.7 %	14.6 %	13.8 %	37.4 %	15.8 %
Sample E: Turmeric Root Capsule	7.8 %	18.8 %	12.1 %	7.2 %	10.4 %	6.1 %
Sample F: Turmeric Extract/Root Capsule with Black Pepper	8.3 %	22.7 %	20.1 %	3.9 %	12.6 %	8.1 %
Sample G: Turmeric Extract/Root Capsule with Black Pepper &	10.0 %	21.3 %	18.9 %	9.4 %	19.2 %	18.7 %
Sample H: Turmeric Tincture	86.4 %	85.7 %	77.3 %	21.9 %	23.6 %	21.4 %
Sample I: Turmeric Gelcap with Coconut	12.4 %	35.7 %	15.2 %	7.0 %	13.7 %	8.0 %
Sample J: Turmeric Gelcap, Liquid Curcumin	9.6 %	19.8 %	8.4 %	8.2 %	17.6 %	5.7 %

Between-Laboratory Variability (RSD)

- Variability was highest for the tincture sample (over 75 % RSD), but was reduced when laboratories were using the same method.
- In general, variability was lowest for curcumin, which is present in the highest concentration in most samples.
- A variety of analytical methods were reported for determination of curcuminoids in the turmeric samples.
 - Twenty-two laboratories (65%) reported using LC-absorbance approaches for determination of curcumin in the turmeric samples.
 - Ten laboratories (29 %) reported using AOAC 2016.16, an LC-absorbance technique, as their analytical method for the turmeric samples.
 - Twelve additional laboratories (35%) reported using a different LC-absorbance technique.
 - One laboratory (3 %) reported using an LC approach but did not specify the detection method.
 - One laboratory (3 %) reported using LC with fluorescence detection for determination of curcumin in the turmeric samples.
 - One laboratory (3%) reported using high performance thin-layer chromatography (HPTLC) for determination of curcumin in the turmeric samples.

Technical Recommendations

The following recommendations are based on results obtained from the participants in this study.

- No specific trends could be noted based on the analytical methods used by participants.
 - Most laboratories reported using an LC-absorbance approach for determination of the curcuminoids in the various turmeric samples. In general, use of AOAC 2016.16 or another LC-absorbance approach gave comparable results.
 - Results reported using an LC-fluorescence approach were biased high with respect to the consensus for one sample, and biased low for a second sample.
 - Results reported using HPTLC were also biased high and low for different samples.
- Several of the sample/sample comparison view plots indicate an upward linear trend, in which the bias of laboratory values is consistent among multiple samples.
 - Such a trend may indicate overall calibration issues within each laboratory.
 - The purity of calibration standards should be evaluated or confirmed in-house prior to quantitative measurements. For best results, use a combination of methods that can provide information about various types of possible impurities (LC-absorbance, mass spectrometry, Karl-Fischer or thermogravimetry to determine moisture content, etc.).
- The quality of the separation is critical for commercial samples, to ensure that potential coeluting compounds in each unique matrix are identified and removed prior to final analysis. Coeluting compounds are a common source of a positive bias in results.
- Inefficient extraction is a common reason for values biased low with respect to the target or consensus ranges.
 - For samples that originate from turmeric rhizome or root, extraction of curcuminoids may require significant sample preparation to isolate compounds of interest. Steps to consider include sample homogenization, extraction time, extraction solvent, and extraction temperature, as well as number of required extraction cycles. Low results may be the result of curcuminoids not being fully isolated from the matrix.

- For highly concentrated samples such as extracts, the solubility limit for curcuminoids (particularly curcumin) may easily be reached during sample preparation. Additional extraction cycles may be useful to achieve maximum accuracy.
- The largest variability was observed for the smoothie additive, the capsules containing black pepper, and the tincture.
 - Measurement of curcuminoids in these matrices may be more challenging than in other matrices.
 - Inhomogeneity of the sample matrix may also result in higher variability. To avoid issues with sample homogeneity, samples should be thoroughly blended prior to sampling. For curcumin, the within-laboratory repeatability was high for the smoothie additive and the black pepper-containing samples, which supports sample inhomogeneity as a cause for higher variability.
- Use of matrix-matched CRMs for method validation and quality assurance of the measurement process is recommended.

Table 2-1. NIST data summary table for curcumin, bisdemethoxycurcumin, and desmethoxycurcumin in turmeric commercial products.

	DSQA	P Exerci	ise O - Botani	cals							
	Lab Code:	NIST	_	1. You	r Results		2. C	ommunity R	esults	3. T	arget
Analyte	Sample	Units	x _i	si	Z'_{comm}	Z _{NIST}	Ν	x*	s*	X _{NIST}	U
Bisdemethoxycurcumin	(A) SRM 3299 Turmeric Rhizome	mg/g	3.39	0.11			22	3.16	0.16	3.39	0.109
Bisdemethoxycurcumin	(B) SRM 3300 Turmeric Extract	mg/g	18.25	0.98			23	17.3	0.58	18.2	0.98
Bisdemethoxycurcumin	(C) Turmeric Root Powder	mg/g					14	10.8	0.33		
Bisdemethoxycurcumin	(D) Turmeric Smoothie Additive	mg/g					10	0.763	0.085		
Bisdemethoxycurcumin	(E) Turmeric Root Capsule	mg/g					12	4.41	0.29		
Bisdemethoxycurcumin	(F) Turmeric Extract/Root Capsule with Black Pepper	mg/g					12	3.23	0.27		
Bisdemethoxycurcumin	(G) Turmeric Extract/Root Capsule with Black Pepper & Coconut Oil	mg/g					13	11.9	0.74		
Bisdemethoxycurcumin	(H) Turmeric Tincture	mg/L					13	160	39		
Bisdemethoxycurcumin	(I) Turmeric Gelcap with Coconut	mg/g					13	1.29	0.14		
Bisdemethoxycurcumin	(J) Turmeric Gelcap, Liquid Curcumin	mg/g					12	1.88	0.13		
CURCUMIN	(A) SRM 3299 Turmeric Rhizome	mg/g	11.17	0.43			24	11.2	0.38	11.2	0.428
CURCUMIN	(B) SRM 3300 Turmeric Extract	mg/g	820	22			25	790	10	822	22
CURCUMIN	(C) Turmeric Root Powder	mg/g					16	16.4	0.56		
CURCUMIN	(D) Turmeric Smoothie Additive	mg/g					11	9.6	0.27		
CURCUMIN	(E) Turmeric Root Capsule	mg/g					12	18.1	0.4		
CURCUMIN	(F) Turmeric Extract/Root Capsule with Black Pepper	mg/g					12	48.3	1.1		
CURCUMIN	(G) Turmeric Extract/Root Capsule with Black Pepper & Coconut Oil	mg/g					15	295	7.9		
CURCUMIN	(H) Turmeric Tincture	mg/L					14	370	85		
CURCUMIN	(I) Turmeric Gelcap with Coconut	mg/g					15	24	0.77		
CURCUMIN	(J) Turmeric Gelcap, Liquid Curcumin	mg/g					12	44.6	1.2		
Desmethoxycurcumin	(A) SRM 3299 Turmeric Rhizome	mg/g	3.63	0.13			22	3.39	0.16	3.63	0.128
Desmethoxycurcumin	(B) SRM 3300 Turmeric Extract	mg/g	117	2.2			23	118	2.5	117	2.2
Desmethoxycurcumin	(C) Turmeric Root Powder	mg/g					14	8.2	0.49		
Desmethoxycurcumin	(D) Turmeric Smoothie Additive	mg/g					11	1.92	0.088		
Desmethoxycurcumin	(E) Turmeric Root Capsule	mg/g					12	5.74	0.24		
Desmethoxycurcumin	(F) Turmeric Extract/Root Capsule with Black Pepper	mg/g					12	4.34	0.29		
Desmethoxycurcumin	(G) Turmeric Extract/Root Capsule with Black Pepper & Coconut Oil	mg/g					13	60.6	3.1		
Desmethoxycurcumin	(H) Turmeric Tincture	mg/L					13	160	38		
Desmethoxycurcumin	(I) Turmeric Gelcap with Coconut	mg/g					13	5.06	0.36		
Desmethoxycurcumin	(J) Turmeric Gelcap, Liquid Curcumin	mg/g					12	10.3	0.25		
			x _i Mean of r	eported va	alues	1	N Number	of quantitative	X _{NI}	NIST-ass	essed value
			s, Standard	deviation o	of reported va	lues	values re	ported		U expanded	uncertainty

National Institute of Standards and Technology

 $Z^{\prime}_{\text{comm}}\,$ Z'-score with respect to community

x* Robust mean of reported values

about the NIST-assessed value

 $Z_{\text{NIST}}~$ Z-score with respect to NIST value s* Robust standard deviation

_

_

consensus

Table 2-2.1. Data summary table for curcumin in turmeric commercial products. Individual results are displayed in this table for ten of the laboratories that requested samples (O404 through O415), while community results are shown for all laboratories participating the study. Results for additional laboratories can be found in Tables 2-2.2 through 2-2.4. Data highlighted in red have been flagged as potential outliers (e.g., Grubb and/or Cochran) by the NIST software package.

										Curcumin	1							
					I	ndividual	Results -	Page 1 of	4						Community	Results		
	Lab	NIST	O404	O405	O406	O407	O409	O410	O411	O412	O414	O415	Mean	SD	% RSD	Max	Min	Ν
	Α		11.26		10.60	9.71		23.83			11.00	14.00						
	в		11.30		10.50	9.71		23.63			11.00	13.90						
Comple A. CDM 2200	С		11.41		10.70	9.73		23.71			11.00	13.90						
Turmorio Phiromo	D		10.26			10.80												
(mg/g)	Е		11.12			10.20												
(mg/g)	F		10.58			10.20												
	Avg	11.04	10.99		10.60	10.06		23.72			11.00	13.93	11.1	1.8	16.1%	23.7	5.6	21
	SD	0.21	0.46		0.10	0.43		0.10			0.00	0.06						
	Α		802		858	871		507			795	780						
	В		750		864	793		501			795	777						
	С		731		870	845		492			802	774						
Sample B: SRM 3300	D		801			872												
Turmeric Extract (mg/g)	Е		801			883												
	F		816			875												
	Avg	822	784		864	857		500			797	777	791	57	7.2%	867	81	22
	SD	11	34		6	34		7			4	3						
	Α		15.52		15.30	13.80		33.96	16.98			17.90						
Sample C: Turmeric	В		15.52		14.90	14.90		34.22	16.56			17.80						
Root Powder (mg/g)	С		15.76		15.30	15.10		33.65	15.92			18.10						
Root Fowder (ing/g)	Avg		15.60		15.17	14.60		33.94	16.49			17.93	16.1	1.9	12.0%	33.9	13.6	18
	SD		0.14		0.23	0.70		0.29	0.53			0.15						
	Α		11.55			8.83					9.00							
Sample D: Turmeric	В		11.13			9.11					10.00							
Smoothie Additive	С		10.97			9.41					10.00							
(mg/g)	Avg		11.22			9.12					9.67		9.4	1.0	10.9%	12.7	6.7	14
	SD		0.30			0.29					0.58							
	Α		19.56			18.80					18.00							
Sample F: Turmeric	В		19.77			18.90					18.00							
Root Cansule (mg/g)	С		19.51			18.40					18.00							
Root capsuic (ing/g)	Avg		19.61			18.70					18.00		18.0	1.4	7.8%	22.2	14.0	15
	SD		0.14			0.26					0.00							
	Α		50.60			52.40					50.00							
Sample F: Turmeric	В		48.58			52.20					51.00							
Extract/Root Capsule	С		49.23			52.60					50.00							
with Black Pepper (mg/g)	Avg		49.47			52.40					50.33		48.4	4.0	8.3%	54.6	27.6	15
	SD		1.03			0.20					0.58							
Sample G: Turmeric	Α				317	154		307				278						
Extract/Root Cansule	В				316	234		174				304						
with Black Pepper &	С				306	276		286				293						
Coconut Oil (mg/g)	Avg				313	221		255				292	295	30	10.0%	352	221	16
. 38/	SD				6	62		71			_	13						
	A		666		0.586	502		1.35				4790						
Sample H: Turmeric	В		802		0.584	497		1.30				4940						
Tincture (mg/L)	C .		705		0.613	500		1.28				4520			0.6.404	1750		
	Avg		725		0.594	500		1.31				4/50	3/1	321	86.4%	4750	1	16
	SD		70		0.016	3		0.04				213						
0	A				25.2	22.5		48.2				26.5						
Sample I: Turmeric	В				24.2	23.7		49.2				26.2						
Gelcap with Coconut	<u>C</u>				23.9	24.5	_	45.3				28.1	24.0	2.0	12.40/	17 6	15.5	15
(mg/g)	AVg				24.4	23.0		47.0				26.9	24.0	3.0	12.4%	47.0	15.5	15
	50		47.1		0.7	1.0		2.0			46.0	1.0						
6	A		47.1			45.3					46.0							
Sample J: Turmeric	В	1	47.2			47.0					47.0							
(mg/g)	1. Ava		46.1			40.7	_		_		46.0		44.2	4.2	0.6%	54.1	27.6	15
(mg/g)	SD		40.8			40.5					40.5		44.5	4.5	9.070	34.1	57.0	15
1	30	1	0.0			0.9					0.0							

Table 2-2.2. Data summary table for curcumin in turmeric commercial products. Individual results are displayed in this table for ten of the laboratories that requested samples (O416 through O431), while community results are shown for all laboratories participating the study. Results for additional laboratories can be found in Tables 2-2.1, 2-2.3, and 2-2.4. Data highlighted in red have been flagged as potential outliers (e.g., Grubb and/or Cochran) by the NIST software package.

										Curcumin	1							
					I	ndividual	Results -	Page 2 of	4						Community	y Results		
	Lab	NIST	O416	0419	O420	O421	O423	O425	O426	O428	O429	O431	Mean	SD	% RSD	Max	Min	Ν
	Α		12.19	11.11	12.05	5.61			9.25									
	В		12.92	11.50	12.13	5.54			9.50									
Sample A: SRM 3299	С		12.61	11.54	12.70	5.78			9.70									
Turmeric Rhizome	D		11.51	10.86														
(mg/g)	E		11.20	10.88														
	F	11.04	11.88	10.98	12.20	5.64			0.49				11.1	1.0	16.10/	00.7		21
	AVg	0.21	12.05	0.20	0.25	5.64			9.48				11.1	1.8	16.1%	23.7	5.0	21
	50	0.21	706	0.50	0.55	727		777	420									
	A D		790 866	700	817	727		///	420									
	ь С		755	921	815	722		777	410									
Sample R: SRM 3300	D D		835	791	015	120		,,,,	410									
Turmeric Extract (mg/g)	E		846	802														
Tunnerie Estimet (ing/g)	F		825	807														
	Avg	822	820	806	816	726		777	419				791	57	7.2%	867	419	22
	SD	11	40	14	1	3		0	1									
	Α		15.2	15.28	17.52				16.40									
	в		16.4	15.43	18.20				16.40									
Sample C: Turmeric	С		15.0	15.38	17.97				17.00									
Koot rowder (mg/g)	Avg		15.5	15.36	17.90				16.60				16.1	1.9	12.0%	33.9	13.6	18
	SD		0.8	0.07	0.35				0.35									
	Α		9.20	9.83		6.88												
Sample D: Turmeric	В		8.47	9.94		6.61												
Smoothie Additive	С		8.10	9.99		6.64												
(mg/g)	Avg		8.59	9.92		6.71							9.4	1.0	10.9%	11.2	6.7	14
	SD		0.56	0.08		0.15												
	Α		18.70	19.21		14.19		18.17										
Sample E: Turmeric	B		18.00	19.32		13.89		17.27										
Root Capsule (mg/g)	<u> </u>		17.62	19.36		13.84		17.38					10.0		5 000	10.6	14.0	
	Avg		18.11	19.30		13.97		17.61					18.0	1.4	7.8%	19.6	14.0	15
	<u>SD</u>		0.55	0.08		0.19		0.49										
Comula E. Tomorada	A		52.78	50.89		28.10		44.23										
Sample F: Turmeric	ь С		50.05	51.60		20.09		44.45										
with Black Penner (mg/g)	Ava		50.00	51.50		28.00		44.07					48.4	4.0	8 304	53.4	27.6	15
with black repper (ing/g)	SD		1.60	0.59		0.80		0.33					40.4	4.0	0.570	55.4	27.0	15
	A		249	304	309	0.00		0.55	315									
Sample G: Turmeric	B		299	306	305				312									
Extract/Root Capsule	c		292	306	310				321									
with Black Pepper &	Avg		280	305	308				316				295	30	10.0%	352	221	16
Coconut Oil (mg/g)	SD		27	1	3				5									
	Α		466	372	1.53				580									
Sample H. Tumor	В		522	372	1.49				620									
Tincture (mg/L)	С		410	366	1.53				570									
fincture (ing/L)	Avg		466	370	1.52				590				371	321	86.4%	4750	1	16
	SD		56	3	0.02				26									
	A		22.4	24.2	23.8				26.5									
Sample I: Turmeric	B		22.8	24.2	24.4				28.8									
Gelcap with Coconut	C		20.3	23.9	23.6				29.7				24.0	2.0	10.4%	17.4		
(mg/g)	Avg		21.8	24.1	23.9				28.3				24.0	3.0	12.4%	47.6	15.5	15
	SD		1.3	0.2	0.4	20.4		25.0	1.7									
Comula I. Tomas	A		42.0	47.5		38.4		35.8										
Sample J: Turmeric	в		44.9	4/.4		38.2		58.7 28.4										
(mg/g)	Δ.ν.σ		43.0	40.9		38.2		37.6					44.3	43	0.6%	18.5	37.6	15
(mg/g)	SD		45.5	47.5		0.1		16					44.5	4.3	9.070	+0.5	57.0	15
	30		1.5	0.4		0.1		1.0										

Table 2-2.3. Data summary table for curcumin in turmeric commercial products. Individual results are displayed in this table for ten of the laboratories that requested samples (O433 through O458), while community results are shown for all laboratories participating the study. Results for additional laboratories can be found in Tables 2-2.1, 2-2.2, and 2-2.4.

										Curcumin	ı							
					I	ndividual	Results -	Page 3 of	4						Communit	y Results		
	Lab	NIST	O433	O434	O437	O440	O443	O446	O449	O452	O455	O458	Mean	SD	% RSD	Max	Min	Ν
	Α		10.22		8.78	10.65		10.93	11.59	12.49	10.87							
	В		9.99		8.92			10.65	12.10	12.45	10.63							
	С		9.82		9.16			10.76	11.00	11.98	11.01							
Sample A: SRM 3299	D							9.71	10.13		11.04							
Turmeric Rhizome	Е							9.24	10.38		11.17							
(mg/g)	F							8.91	10.89		11.15							
	Ava	11.04	10.01		8.05	10.65		10.03	11.01	12 30	10.08		11.1	1.8	16.1%	23.7	5.6	21
	SD	0.21	0.20		0.10	10.05		0.86	0.73	0.20	0.20		11.1	1.0	10.170	23.7	5.0	21
	30	0.21	797		745	722		765	0.75	951	841							
	n D		707		745	132		700	0.52	820	041							
	Б		784		774			799	807	820	850							
	c		781		769			772	8/1	827	860							
Sample B: SRM 3300	D							570	807		827							
Turmeric Extract (mg/g)	E							610	822		832							
	F							604	802		830	_						
	Avg	822	784		763	732		687	837	833	840		791	57	7.2%	867	419	22
	SD	11	3		15			103	31	16	13							
	Α		14.39		13.50	15.00		15.06	15.08		15.04							
Sample C: Turmeric	В		14.03		13.50	14.80		14.90	16.16		14.96							
Root Powder (mg/g)	С		14.27		13.70	14.80		14.83	15.10		15.24							
Root Fowder (ing/g)	Avg		14.23		13.57	14.87		14.93	15.44		15.08		16.1	1.9	12.0%	33.9	13.6	18
	SD		0.18		0.12	0.12		0.12	0.62		0.14							
	Α		9.39		8.83			7.68	9.21	9.82	9.82							
Sample D: Turmeric	В		9.33		8.22			7.54	9.58	9.87	9.26							
Smoothie Additive	С		13.20		8.31			7.42	10.07	9.76	9.33							
(mg/g)	Avg		10.64		8.45			7.55	9.62	9.81	9.47		9.4	1.0	10.9%	11.2	6.7	14
	SD		2.22		0.33			0.13	0.43	0.06	0.30							
	Α		17.32		16.70			15.54	18.82	19.19	19.90							
	B		17.94		16.80			15.65	18.61	19.55	18.08							
Sample E: Turmeric	Č		17.65		16.50			15.31	18.84	19.20	17.94							
Root Capsule (mg/g)	Δνσ		17.64		16.67			15.50	18.76	19.32	18.64		18.0	14	7.8%	19.6	14.0	15
	SD		0.31		0.15			0.18	0.13	0.20	1.00		10.0	1.4	7.070	17.0	14.0	15
	5D		40.16		54.20			41.72	48.07	16.20	47.29							
Sample F. Turmaria	D D		49.10 50.04		50.20			41.75	40.07	40.07	47.20							
Sample F: Turmeric	Б С		17.96		50.30			42.07	49.90	40.12	50.03							
Extract/Koot Capsule	1		47.00		51.60			42.27	49.00	47.07	40.49		40.4	4.0	0.20/	52.4	27.6	15
with black repper (mg/g)	Avg		49.02		2.25			42.02	49.29	46.89	49.48		48.4	4.0	8.3%	55.4	27.0	15
	SD		1.10		2.25	075		0.27	1.06	0.77	1.90							
Sample G: Turmeric	A		302		289	275		296	347		272							
Extract/Root Capsule	в		246		282	2/1		294	349		285							
with Black Pepper &	C		293		281	283		293	361		277							
Coconut Oil (mg/g)	Avg		280		284	276		294	352		278		295	30	10.0%	352	221	16
	SD	L	30		4	6		2	8		6							
	A		390		439	16.6		496	468		252							
Sample H: Turmeric	В		393		428	16.4		487	487		259							
Tincture (mg/L)	С		391		422	16.3		492	523		250	_						
	Avg		391		430	16.4		492	493		253		371	321	86.4%	4750	1	16
	SD		1		9	0.1		4	28		5							
	Α		23.3		21.5	22.9		24.8	23.6		22.3							
Sample I: Turmeric	В		23.4		22.0			23.2	26.1		21.0							
Gelcap with Coconut	С		21.5		21.5			22.7	23.9		19.6							
(mg/g)	Avg		22.7		21.7	22.9		23.6	24.5		21.0		24.0	3.0	12.4%	47.6	15.5	15
	SD		1.1		0.3			1.1	1.4		1.4							
	Α		41.7		40.5			38.6	48.4	47.9	47.9							
Sample J: Turmeric	В		42.8		40.9			37.7	45.4	48.0	48.7							
Gelcap, Liquid Curcumin	С		42.9		42.4			37.7	46.9	48.2	48.9							
(mg/g)	Avg		42.5		41.3			38.0	46.9	48.0	48.5		44.3	4.3	9.6%	48.5	37.6	15
	SD		0.6		1.0			0.5	1.5	0.1	0.5							

Table 2-2.4. Data summary table for curcumin in turmeric commercial products. Individual results are displayed in this table for ten of the laboratories that requested samples (O433 through O458), while community results are shown for all laboratories participating the study. Results for additional laboratories can be found in Tables 2-2.1 through 2-2.3. Data highlighted in red have been flagged as potential outliers (e.g., difference from reference value, Grubb and/or Cochran) by the NIST software package.

							Curcumin					
		I	ndividual	Results -	Page 4 of	4			Communit	y Results		
	Lab	NIST	O459	O460	O461	O462	Mean	SD	% RSD	Max	Min	Ν
	Α		6.92	11.46	13.22	16.40						
	В		5.95	11.30	12.69	13.10						
Sample A: SRM 3299	C		5.82	11.47	12.84							
Turmeric Rhizome	D											
(mg/g)	E											
	Γ	11.04	6.23	11.41	12.92	14 75	11.1	1.8	16.1%	23.7	5.6	21
	SD	0.21	0.25	0.10	0.27	2.33	11.1	1.0	10.170	23.7	5.0	21
	A	0.000	779	803	871	800						
	В		768	802	872	745						
	С		774	816	858							
Sample B: SRM 3300	D											
Turmeric Extract (mg/g)	Е											
	F											
	Avg	822	774	807	867	773	791	57	7.2%	867	419	22
	SD	11	5	8	8	39						
	A				17.76	52.30 14.10						
Sample C: Turmeric	a C				19.45	14.10 24.60						
Root Powder (mg/g)	Avg				18.60	24.00	16.1	19	12.0%	33.9	13.6	18
	SD				0.85	9.14	10.1		12.070	000	1010	10
	Α		8.89	9.50								
Sample D: Turmeric	В		9.21	9.92								
Smoothie Additive	С		9.64	9.40								
(mg/g)	Avg		9.25	9.61			9.4	1.0	10.9%	12.7	6.7	14
(SD		0.38	0.27								
	Α		17.15	18.94								
Sample E: Turmeric	B		15.80	18.98								
Root Capsule (mg/g)	L Ava		16.20	19.68			18.0	1.4	7 90/	22.2	14.0	15
	SD Avg		0.69	0.42			16.0	1.4	7.070	22.2	14.0	15
	A		47.82	53.67								
Sample F: Turmeric	В		46.46	52.25								
Extract/Root Capsule	С		47.10	54.42								
(mg/g)	Avg		47.13	53.45			48.4	4.0	8.3%	54.6	27.6	15
(ing/g)	SD		0.68	1.10								
Sample G: Turmeric	Α				352	313						
Extract/Root Capsule	B				348	305						
with Black Pepper &	C				349	319	205	20	10.00/	252	4	16
Coconut Oil (mg/g)	AVg SD				350	512	293	50	10.0%	552	4	10
	A				745	/						
	В				707							
Sample H: Turmeric	C				745							
Tincture (mg/L)	Avg				732		371	321	86.4%	4750	1	16
	SD				22							
	Α				26.9	19.1						
Sample I: Turmeric	B				27.0	11.9						
Gelcap with Coconut	C				27.5	15.5	24.0	2.0	10.101	47 5	11.0	1.7
(mg/g)	Avg				27.1	15.5	24.0	3.0	12.4%	47.6	11.9	15
	50		147	45.0	0.3	3.1						
Sample J: Turmeric	B		44.7	45.9								
Gelcan, Liquid Curcumin	Č		43.3	44 5								
(mg/g)	Avg		43.9	45.4			44.3	4.3	9.6%	54.1	37.6	15
	SD		0.7	0.8								

Table 2-3. Data summary table for curcumin in turmeric commercial products. Individual results are displayed in this table for the laboratories that reported using AOAC 2016.16 for analysis. Data highlighted in red have been flagged as potential outliers (e.g., Grubb and/or Cochran) by the NIST software package. Data shown in italicized font were collected in the second part of the study. Data for laboratory O411 was not included in the collaborative study because only a single sample was analyzed.

								Cu	rcumin	by AOA	C 2016	.16						
						Indi	vidual Re	sults							Community	Results		
	Lab	NIST	O404	O407	0411	O416	O419	O433	O437	O446	O449	O455	Mean	SD	% RSD	Max	Min	Ν
	Α		11.3	9.7		12.2	11.1	10.2	8.8	10.9	11.6	10.9						
	В		11.3	9.7		12.9	11.5	10.0	8.9	10.7	12.1	10.6						
Sample A: SRM 3299	C		11.4	9.7		12.6	11.5	9.8	9.2	10.8	11.0	11.0						
Turmeric Rhizome	D		10.3	10.8		11.5	10.9			9.7	10.1	11.0						
(mg/g)	E		11.1	10.2		11.2	10.9			9.2	10.4	11.2						
	Γ	11.04	11.0	10.2		12.1	11.0	10.0	9.0	10.0	11.0	11.0	10.6	1.0	9.4%	12.1	9.0	9
	SD SD	0.21	0.5	0.4		0.7	0.3	0.2	0.2	0.9	0.7	0.2	10.0	1.0	9.470	12.1	9.0	,
	A	0.21	802	871		796	807	787	745	765	852	841						
	В		750	793		866	799	784	774	799	867	850						
	С		731	845		755	831	781	769	772	871	860						
Sample B: SRM 3300	D		801	872		835	791			570	807	827						
Tumeric Extract (mg/g)	Е		801	883		846	802			610	822	832						
	F		816	875		825	807			604	802	830						
	Avg	822	784	857		820	806	784	763	687	837	840	803	46	5.8%	857	687	9
	SD	11	34	34		40	14	3	15	103	31	13						
	A		15.52	13.80	16.98	15.20	15.28	14.39	13.50	15.06	15.08	15.04						
Sample C: Turmeric	В		15.52	14.90	16.56	16.40	15.43	14.03	13.50	14.90	16.16	14.96						
Root Powder (mg/g)	C Ava		15.70	15.10	16.40	15.00	15.38	14.27	13.70	14.83	15.10	15.24	14.07	0.60	1 60/	16.40	12 57	10
	Avg SD		0.14	0.70	0.53	0.76	15.50	14.25	0.12	0.12	0.62	0.14	14.97	0.69	4.0%	10.49	15.57	10
	A		11.5	8.8	0.55	9.2	9.8	94	8.8	7.7	9.2	9.8						
Sample D: Turmeric	B		11.1	9.1		8.5	9.9	9.3	8.2	7.5	9.6	9.3						
Smoothie Additive	c		11.0	9.4		8.1	10.0	13.2	8.3	7.4	10.1	9.3						
(mg/g)	Avg		11.2	9.1		8.6	9.9	10.6	8.5	7.5	9.6	9.5	9.4	1.3	13.8%	11.2	7.5	9
	SD		0.3	0.3		0.6	0.1	2.2	0.3	0.1	0.4	0.3						
	Α		19.6	18.8		18.7	19.2	17.3	16.7	15.5	18.8	19.9						
Sample F: Turmeric	В		19.8	18.9		18.0	19.3	17.9	16.8	15.7	18.6	18.1						
Root Cansule (mg/g)	С		19.5	18.4		17.6	19.4	17.6	16.5	15.3	18.8	17.9						
	Avg		19.6	18.7		18.1	19.3	17.6	16.7	15.5	18.8	18.6	18.2	1.3	7.2%	19.6	15.5	9
	SD		0.1	0.3		0.5	0.1	0.3	0.2	0.2	0.1	1.1						
Sample F: Turmeric	A		50.6	52.4		52.8	50.9	49.2	54.2	41.7	48.1	47.3						
Extract/Root Capsule	D C		48.0	52.2		50.0	52.0	30.0	50.5	42.1	40.0	50.6						
with Black Pepper	Δνσ		49.2	52.0		50.0	51.6	47.9	51.6	42.5	49.9	49.5	50.1	19	3.9%	52.4	42.0	9
(mg/g)	SD		1.0	0.2		1.6	0.6	1.1	2.3	0.3	1.1	1.9	2011		5.570	52.1	12.0	
	A			154		249	304	302	289	296	347	272						
Sample G: Turmeric	В			234		299	306	246	282	294	349	285						
Extract/Root Capsule	С			276		292	306	293	281	293	361	277						
Coconut Oil (mg/g)	Avg			221		280	305	280	284	294	352	278	287	27	9.4%	352	221	8
Coconat On (mg/g)	SD			62		27	1	30	4	2	8	6						
	Α		666	502		466	372	390	439	496	468	252						
Sample H: Turmeric	B		802	497		522	372	393	428	487	486	259						
Tincture (mg/L)	C .		705	500		410	366	391	422	492	523	250	1.10		21.00/	52.5	252	
	Avg		725	500		466	3/0	391	430	492	492	253	449	98	21.9%	725	253	9
	30		70	22.5		22.4	24.2	22.2	21.5	24.8	20	22.2						
Sample I: Turmeric	B			22.5		22.4	24.2	23.5	21.5	24.0	25.0	22.5						
Gelcap with Coconut	č			24.5		20.3	23.9	21.5	21.5	22.7	23.9	19.6						
(mg/g)	Avg	1		23.6		21.8	24.1	22.7	21.7	23.6	24.5	21.0	22.9	1.6	7.0%	24.5	21.0	8
	SD			1.0		1.3	0.2	1.1	0.3	1.1	1.4	1.4						-
	Α		47.1	45.3		42.0	47.5	41.7	40.5	38.6	48.4	47.9						
Sample J: Turmeric	В		47.2	47.0		44.9	47.4	42.8	40.9	37.7	45.4	48.7						
Gelcap, Liquid Curcumin	С		46.1	46.7		43.0	46.9	42.9	42.4	37.7	46.9	48.9						
(mg/g)	Avg		46.8	46.3		43.3	47.3	42.5	41.3	38.0	46.9	48.5	44.7	3.7	8.2%	48.5	38.0	9
	SD		0.6	0.9		1.5	0.4	0.6	1.0	0.5	1.5	0.5						

Table 2-4.1. Data summary table for bisdemethoxycurcumin (BDMC) in turmeric commercial products. Individual results are displayed in this table for eleven of the laboratories that requested samples (O404 through O419), while community results are shown for all laboratories participating the study. Results for additional laboratories can be found in Tables 2-4.2 and 2-4.3. Data highlighted in red have been flagged as potential outliers (e.g., Grubb and/or Cochran) by the NIST software package.

									Bi	sdemetho	xycurcum	in							
						Indivi	dual Resu	ilts - Page	1 of 3		-					Communit	Results		
	Lab	NIST	O404	O405 (D406	O407	O409	O410	O411	O414	O415	O416	O419	Mean	SD	% RSD	Max	Min	Ν
	Α		3.14		2.77	2.46		11.44		4.00	4.59	3.75	2.91						
	В		3.14	1	2.74	2.47		11.68		4.00	4.53	2.65	2.97						
Sample A: SRM 3299	С		3.18	1	2.81	2.48		11.56		4.00	4.38	3.30	2.99						
Turmeric Rhizome	D		2.42			3.35						2.78							
(mg/g)	E		2.55			3.34						2.80							
	F	2.94	2.45		0.77	3.23		11.50		1.00	4.50	2.97	2.06	2.14	0.66	20.0%	11.50	1.16	10
	AVg SD	2.84	2.81		2.77	2.89		0.12		4.00	4.50	5.04	2.96	5.14	0.00	20.9%	11.50	1.10	18
	30	0.05	16.23	1	17.20	16.60		89.84		19.00	17.80	19.09	15 35						
	B		16.55	1	17.30	15.10		84.63		19.00	17.30	19.18	15.30						
	c		16.06	1	17.40	16.40		82.72		19.00	17.00	17.62	15.17						
Sample B: SRM 3300	D		13.99			18.00						14.08	15.73						
Turmeric Extract (mg/g)	Е		13.61			18.40						14.40	15.73						
	F		14.31			18.20						15.12	15.72						
	Avg	18.25	15.12	1	17.30	17.12		85.73		19.00	17.37	16.58	15.50	17.1	2.6	15.3%	85.7	1.9	19
	SD	0.49	1.30	(0.10	1.30		3.69		0.00	0.40	2.34	0.25						
	Α		9.93	1	10.60	9.40		38.65	11.15		10.70	11.80	10.31						
Sample C: Turmeric	В		9.97	1	10.20	10.00		39.38	11.98		11.00	11.26	10.42						
Root Powder (mg/g)	C		10.11	1	10.70	10.20		38.83	12.10		10.70	10.84	10.34	10.8		10.00			
	Avg		10.00	1	10.50	9.87		38.95	11.74		10.80	0.48	10.35	10.7	1.1	10.3%	39.0	9.2	15
	SD		0.10		0.26	0.42		0.38	0.52	. 1.000	0.17	0.48	0.05						
Samula Di Turmania	A P		1.394			0.610				< 1.000		1.430	0.630						
Sample D: Turmeric Smoothie Additive	ь С		1.404			0.701				< 1.000		1.550	0.650						
(mg/g)	Ανσ		1.389	-		0.664				< 1.000		1.100	0.637	0.78	0.22	27.7%	1 31	0.50	12
(SD		0.018			0.048						0.137	0.012	0.70	0.22	27.770	1.01	0.00	
	Α		4.74			5.42				6.00		4.650	4.29						
Councils To Thermore de	в		4.86			5.46				5.00		4.930	4.34						
Sample E: Turmeric Boot Consula (mg/g)	С		4.78			5.21				6.00		4.880	4.35						
Root Capsule (ing/g)	Avg		4.79			5.36				5.67		4.820	4.33	4.49	0.84	18.8%	5.97	1.48	14
	SD		0.06			0.13				0.58		0.149	0.03						
	Α		3.519			3.410				4.000		3.220	2.940						
Sample F: Turmeric	в		3.450			3.250				4.000		3.100	2.970						
Extract/Root Capsule	C		3.465	_		3.410				4.000		2.920	2.990					0.07	
with Black Pepper (mg/g)	Avg		3.478			3.357				4.000		3.080	2.967	3.18	0.72	22.7%	5.15	0.96	14
	SD		0.036	1	11.70	0.092		42.01		0.000	11.20	12.01	10.025						
Sample G: Turmeric	A B			1	11.70	0.05 8.51		45.01			11.20	12.91	10.82						
Extract/Root Capsule	C			1	11.40	9.75		44.68			12.30	12.57	10.91						
with Black Pepper &	Avg			1	11.60	8.10		42.93			11.97	12.64	10.89	11.7	2.5	21.3%	42.9	8.1	14
Coconut Oil (mg/g)	SD				0.17	1.88		1.79			0.67	0.24	0.07						
	Α		22.94	(0.26	235.00		0.89			3350	242.6	198.11						
Samula II. Turmania	в		30.19		0.25	236.00		0.88			3370	270.0	199.66						
Tincture (mg/L)	С		26.44	(0.27	236.00		0.87			2840	213.0	197.98						
fincture (ing/L)	Avg		26.52		0.26	235.67		0.88			3187	241.9	198.58	156	133	85.7%	3187	0.26	14
	SD		3.62	(0.01	0.58		0.01			300	28.5	0.93						
	Α				1.14	0.98		3.64			3.56	1.530	1.08						
Sample 1: Turmeric	B				1.09	1.02		3.80			3.08	1.600	1.08						
Geicap with Coconut	U Ava				1.08	1.00		3.47			3.32	1.290	1.07	1.26	0.45	25 70/	2.62	0.60	12
(mg/g)	AVg				0.03	0.04		3.03 0.17			0.24	0.162	0.01	1.20	0.45	33.1%	3.03	0.00	15
	50		2 1 2 4		0.05	1 070		0.17		2 000	0.24	2 24	1 750						
Sample J: Turmeric	B		2.154			1.940				2.000		2.34	1.750						
Gelcan, Liquid Curcumin	č		2.172			1.980				2.000		2.27	1.740						
(mg/g)	Avg		2.155			1.963				2.000		2.28	1.753	1.89	0.37	19.8%	2.76	0.58	14
	SD		0.019			0.021				0.000		0.06	0.015						

Table 2-4.2. Data summary table for bisdemethoxycurcumin (BDMC) in turmeric commercial products. Individual results are displayed in this table for ten of the laboratories that requested samples (O420 through O437), while community results are shown for all laboratories participating the study. Results for additional laboratories can be found in Tables 2-4.1 and 2-4.3. Data highlighted in red have been flagged as potential outliers (e.g., Grubb and/or Cochran) by the NIST software package.

									Bi	sdemetho	xycurcun	nin						
						Indivi	dual Resu	ılts - Page	2 of 3						Communit	y Results		
	Lab	NIST	O420	O421	O423	O425	O428	0429	O431	O433	O434	O437	Mean	SD	% RSD	Max	Min	Ν
	Α		4.65	2.48					3.21	3.14		2.35						
	В		4.68	2.43					3.26	2.85		2.35						
Samula A. SDM 2200	С		4.79	2.53					3.27	3.05		2.40						
Sample A: SKM 5299	D																	
i urmeric Knizome	Е																	
(mg/g)	F																	
	Avg	2.84	4.71	2.48					3.247	3.01		2.37	3.14	0.66	20.9%	11.56	1.16	19
	SD	0.05	0.07	0.05					0.032	0.15		0.03						
	Α		18.16	21.78		9.09			17.10	17.55		15.10						
	В		18.05	18.56					15.30	17.55		15.80						
	С		18.12	20.80		10.04			15.40	17.24		15.40						
Sample B: SRM 3300	D																	
Turmeric Extract (mg/g)	Е																	
	F																	
	Avg	18.25	18.11	20.38		9.57			15.933	17.45		15.43	17.1	2.6	15.3%	85.7	1.9	20
	SD	0.49	0.06	1.65		0.67			1.012	0.18		0.35						
	Α		14.53							10.31		9.07						
Sample C: Turmeric	В		15.03							9.90		9.27						
Root Powder (mg/g)	С		15.05							10.16		9.29						
Root Fowder (ing/g)	Avg		14.87							10.13		9.21	10.7	1.1	10.3%	39.0	9.2	15
	SD		0.29							0.21		0.12						
	Α			0.600					0.787	0.794		0.751						
Sample D: Turmeric	В			0.570					0.789	0.766		0.737						
Smoothie Additive	С			0.580					0.810	1.005		0.737						
(mg/g)	Avg			0.583					0.795	0.855		0.742	0.78	0.22	27.7%	1.31	0.50	13
	SD			0.015					0.013	0.131		0.008						
	Α			3.76		1.48			5.16	4.48		3.97						
Sample F: Turmaria	В			3.71		1.39			5.07	4.76		4.04						
Root Cancule (mg/g)	С			3.70		1.56			5.09	4.46		3.97						
Root Capsule (ing/g)	Avg			3.72		1.48			5.11	4.57		3.99	4.49	0.84	18.8%	5.97	1.48	15
	SD			0.03		0.09			0.05	0.17		0.04						
	Α			2.830		0.850			4.360	3.711		2.980						
Sample F: Turmeric	В			2.690		1.000			4.320	3.641		2.940						
Extract/Root Capsule	С			2.780		1.040			4.190	3.480		2.880						
with Black Pepper (mg/g)	Avg			2.767		0.963			4.290	3.611		2.933	3.18	0.72	22.7%	5.15	0.96	15
	SD			0.071		0.100			0.089	0.118		0.050						
Sample G: Turmeric	Α		12.79							11.70		10.30						
Extract/Root Cansule	В		13.52							9.67		10.10						
with Black Penner &	С		13.76							10.71		10.00						
Coconut Oil (mg/g)	Avg		13.36							10.69		10.13	11.7	2.5	21.3%	42.9	8.1	14
	SD		0.51							1.02		0.15						
	Α		1.25							209.6		212.1						
Sample H: Turmeric	В		1.21							211.5		209.1						
Tincture (mg/L)	С		1.24							210.1	_	205.3						
	Avg		1.23							210.4		208.8	156	133	85.7%	3187	0.26	14
	SD		0.02							1.0		3.4						
	A		1.86							1.05		1.05						
Sample 1: Turmeric	В		1.89							1.05		1.11						
Gelcap with Coconut	C		1.85							0.97		1.06	 			0.10	0.10	
(mg/g)	Avg		1.87							1.02		1.07	1.26	0.45	35.7%	3.63	0.60	13
	SD		0.02							0.05		0.03						
	Α			1.520		0.610			2.010	1.770		2.220						
Sample J: Turmeric	B			1.500		0.460			1.800	1.793		2.160						
Gelcap, Liquid Curcumin	C			1.870		0.670			1.810	1.796		2.250	 1.00		40.001		0.40	
(mg/g)	Avg			1.630		0.580			1.873	1.786		2.210	1.89	0.37	19.8%	2.76	0.58	15
1	SD			0.208		0.108			0.118	0.014		0.046						

Table 2-4.3. Data summary table for bisdemethoxycurcumin (BDMC) in turmeric commercial products. Individual results are displayed in this table for ten of the laboratories that requested samples (O440 through O461), while community results are shown for all laboratories participating the study. Results for additional laboratories can be found in Tables 2-4.1 and 2-4.2. Data highlighted in red have been flagged as potential outliers (e.g., difference from reference value, Grubb and/or Cochran) by the NIST software package.

		Bisdemethoxycurcumin Individual Results Data 3 of 3 Community Development																	
						Indivi	dual Resu	ılts - Page	3 of 3							Communit	v Results		
	Lab	NIST	O440	O443	O446	O449	O452	O455	O458	O459	O460	O461		Mean	SD	% RSD	Max	Min	Ν
	Α		3.04		3.09	3.44	3.39	2.69		1.26	3.64	2.94							
	B				3.04	3 64	3.43	2 69		1.12	3.66	2.90							
	č				3.04	3.22	3 32	2.67		1.10	3 79	2.90							
Sample A: SRM 3299	n n				2.62	2.00	5.52	2.07		1.10	3.19	2.91							
Turmeric Rhizome	D F				2.02	3.00		2.65											
(mg/g)	E				2.66	3.00		2.87											
	F				2.63	3.10		2.89											
	Avg	2.84	3.04		2.84	3.23	3.38	2.78		1.16	3.70	2.94		3.14	0.66	20.9%	11.56	1.16	19
	SD	0.05			0.23	0.26	0.06	0.10		0.09	0.08	0.04							
	Α		15.68		19.9	11.95	19.90	19.91		13.77	19.41	25.35							
	В				19.3	12.56	19.11	19.92		13.42	19.37	23.96							
	С				18.2	13.56	18.93	20.10		13.60	18.97	23.83							
Sample B: SRM 3300	D				14.0	13.54		15.41											
Turmeric Extract (mg/g)	Е				14.7	15.04		15.52											
	F				14.5	15.60		15.48											
	Avg	18.25	15.68		16.77	13.71	19.31	17.72		13.60	19.25	24.38		17.1	2.6	15.3%	85.7	9.6	20
	SD	0.49	11.00		2 66	1 40	0.51	2 47		0.18	0.24	0.84							20
	A	0.47	11.15		0.04	0.02	0.51	0.46		0.10	0.24	10.78							
	A D		11.15		9.94	9.92		9.40				10.78							
Sample C: Turmeric	Б		10.80		9.94	10.60		9.20				12.13							
Root Powder (mg/g)			10.89		9.85	9.77		9.49				11.47		10.8		10.00			
	Avg		11.09		9.91	10.10		9.40				11.46		10.7	1.1	10.3%	39.0	9.2	15
	SD		0.17		0.05	0.44		0.12				0.68							
	Α				0.553	0.710	0.730	0.948		0.460	0.901								
Sample D: Turmeric	В				0.571	0.796	0.739	0.995		0.500	0.888								
Smoothie Additive	С				0.613	0.715	0.733	1.005		0.550	0.940								
(mg/g)	Avg				0.579	0.740	0.734	0.983		0.503	0.910			0.78	0.22	27.7%	1.31	0.50	13
	SD				0.031	0.048	0.005	0.030		0.045	0.027								
	Α				3.98	4.12	4.43	4.60		3.52	5.85								
	в				3.98	4.12	4.54	4.35		3.36	5.89								
Sample E: Turmeric	c				3.90	4.22	4 44	4 34		3 50	6.17								
Root Capsule (mg/g)	Avo				3.95	4.15	4 47	4 43		3.46	5.97			4 4 9	0.84	18.8%	5.97	1.48	15
	SD				0.04	0.06	0.06	0.15		0.00	0.18			4.47	0.04	10.070	5.71	1.40	15
	4				2 552	2 001	2 226	2 1 4 2		2.260	5 254								
Comple E. Terraria	A D				2.555	2.001	2.200	2 202		2.300	5.234								
Sample F: Turmeric	Б				2.555	2.709	5.208	5.502		2.290	5.060								
Extract/Root Capsule	C				2.558	2.713	3.247	3.204		2.330	5.146								
with Black Pepper (mg/g)	Avg				2.555	2.768	3.230	3.216		2.327	5.153			3.18	0.72	22.7%	5.15	0.96	15
	SD				0.002	0.098	0.020	0.080		0.035	0.097								
Sample C: Turmeric	Α		10.72		10.61	12.47		8.81				15.10							
Extract/Root Consula	В		10.59		10.59	13.12		9.29				15.96							
with Block Donnes &	С		10.99		10.48	15.27		8.97				16.62							
Cocomit Oil (mala)	Avg		10.77		10.56	13.62		9.02				15.89		11.7	2.5	21.3%	42.9	8.1	14
Cocontat On (mg/g)	SD		0.20		0.07	1.47		0.24				0.76							
	Α		8.56		229.0	206.5		132.8				267.5							
a 1 m m ·	в		8.40		225.9	212.4		134.7				245.9							
Sample H: Turmeric	С		8.35		227.8	255.3		131.1				273.3							
Tincture (mg/L)	Ανσ		8 44		227.6	224.7		132.9				262.2		156	133	85.7%	3187	0.26	14
	SD		0.11		1.6	26.6		1.8				14.4		100		001770	5107	0.20	••
	4		1.14		1.0	0.60		1.0				1 20							
Samula I. Tumu	A		1.14		1.24	0.00		1.19				1.20							
Sample 1: Turmeric	Б				1.10	0.50		1.12				1.02							
Geicap with Coconut	<u> </u>				1.14	0.63		1.08				1.02	_		0.14	0.5.5	0.10	0.10	
(mg/g)	Avg		1.14		1.18	0.60		1.13				1.08		1.26	0.45	35.7%	3.63	0.60	13
	SD				0.05	0.04		0.06				0.10							
	Α				1.671	1.740	1.837	2.945		1.430	2.260								
Sample J: Turmeric	в				1.638	1.610	1.839	2.587		1.330	2.349								
Gelcap, Liquid Curcumin	С				1.622	1.660	1.846	2.762		1.330	2.301								
(mg/g)	Avg				1.644	1.670	1.841	2.765		1.363	2.303			1.89	0.37	19.8%	2.76	0.58	15
	SD				0.025	0.066	0.005	0.179		0.058	0.045								
-								-				-							

Table 2-5. Data summary table for bisdemethoxycurcumin (BDMC) in turmeric commercial products. Individual results are displayed in this table for the laboratories that reported using AOAC 2016.16 for analysis. Data highlighted in red have been flagged as potential outliers (e.g., Grubb and/or Cochran) by the NIST software package. Data shown in italicized font were collected in the second part of the study. Data for laboratory O411 was not included in the collaborative study because only a single sample was analyzed.

						Indi	vidual Res	sults		•					Communit	Results		
	Lab	NIST	O404	O407	0411	O416	O419	O433	O437	O446	O449	O455	Mean	SD	% RSD	Max	Min	Ν
	Α		3.14	2.46		3.75	2.91	3.14	2.35	3.09	3.44	2.69						
	B		3.14	2.47		2.65	2.97	2.85	2.35	3.04	3.64	2.69						
Sample A: SRM 3299	C D		3.18	2.48		3.30	2.99	3.05	2.40	3.04	3.22	2.67						
Turmeric Rhizome	D F		2.42	3.33		2.78				2.02	3.00	2.63						
(mg/g)	F		2.45	3.23		2.00				2.63	3.10	2.89						
	Avg	2.84	2.81	2.89		3.04	2.96	3.01	2.37	2.84	3.23	2.78	2.91	0.23	7.8%	3.23	2.37	9
	SD	0.05	0.38	0.46		0.41	0.04	0.15	0.03	0.23	0.26	0.10						
	A		16.2	16.6		19.1	15.4	17.5	15.1	19.9	11.9	19.9						
	В		16.5	15.1		19.2	15.3	17.5	15.8	19.3	12.6	19.9						
	С		16.1	16.4		17.6	15.2	17.2	15.4	18.2	13.6	20.1						
Sample B: SRM 3300	D		14.0	18.0		14.1	15.7			14.0	13.5	15.4						
Tumeric Extract (mg/g)	E		13.0	18.4		14.4	15.7			14.7	15.0	15.5						
	г Ауд	18.3	15.1	17.1		16.6	15.7	17.4	15.4	16.8	13.7	17.7	16.2	15	9.1%	17.7	13.7	9
	SD	0.5	1.3	1.3		2.3	0.3	0.2	0.4	2.7	1.4	2.5	10.2	1.0	2.170		10.7	
	Α		9.93	9.40	11.15	11.80	10.31	10.31	9.07	9.94	9.92	9.46						
Samula C. Tamarada	В		9.97	10.00	11.98	11.26	10.42	9.90	9.27	9.94	10.60	9.26						
Sample C: Turmeric Boot Bourdon (mg/g)	С		10.11	10.20	12.10	10.84	10.34	10.16	9.29	9.85	9.77	9.49						
Koot rowder (mg/g)	Avg		10.00	9.87	11.74	11.30	10.35	10.13	9.21	9.91	10.10	9.40	9.97	0.55	5.5%	11.7	9.2	10
	SD		0.10	0.42	0.52	0.48	0.05	0.21	0.12	0.05	0.44	0.12						
	A		1.39	0.61		1.43	0.63	0.79	0.75	0.55	0.71	0.95						
Sample D: Turmeric	B		1.40	0.70		1.33	0.63	0.77	0.74	0.57	0.80	1.00						
(mg/g)	Ava		1.37	0.08		1.10	0.63	0.86	0.74	0.01	0.72	0.08	0.87	0.33	37.4%	1 30	0.58	0
(ing/g)	SD SD		0.02	0.00		0.14	0.04	0.13	0.01	0.03	0.05	0.03	0.87	0.55	57.470	1.59	0.58	,
	A		4.74	5.42		4.65	4.29	4.48	3.97	3.98	4.12	4.60						
	В		4.86	5.46		4.93	4.34	4.76	4.04	3.98	4.12	4.35						
Sample E: Turmeric	С		4.78	5.21		4.88	4.35	4.46	3.97	3.90	4.22	4.34						
Root Capsule (mg/g)	Avg		4.79	5.36		4.82	4.33	4.57	3.99	3.95	4.15	4.43	4.47	0.47	10.4%	5.36	3.95	9
	SD		0.06	0.13		0.15	0.03	0.17	0.04	0.04	0.06	0.15						
Sample F: Turmeric	A		3.52	3.41		3.22	2.94	3.71	2.98	2.55	2.88	3.14						
Extract/Root Capsule	B		3.45	3.25		3.10	2.97	3.64	2.94	2.55	2.71	3.30						
with Black Pepper	Ava		3.47	3.41		2.92	2.99	3.48	2.00	2.50	2.71	3.20	3.11	0.39	12.6%	3.61	2.56	0
(mg/g)	SD SD		0.04	0.09		0.15	0.03	0.12	0.05	0.00	0.10	0.08	5.11	0.59	12.070	5.01	2.50	,
	A			6.1		12.9	10.8	11.7	10.3	10.6	12.5	8.8						
Sample G: Turmeric	В			8.5		12.5	10.9	9.7	10.1	10.6	13.1	9.3						
with Black Penner &	С			9.8		12.6	11.0	10.7	10.0	10.5	15.3	9.0						
Coconut Oil (mg/g)	Avg			8.1		12.6	10.9	10.7	10.1	10.6	13.6	9.0	10.7	2.1	19.2%	13.6	8.1	8
	SD			1.9		0.2	0.1	1.0	0.2	0.1	1.5	0.2						
	A		22.9	235		243	198	210	212	229	207	133						
Sample H: Turmeric	В		30.2	230		270	200	211	209	226	212	135						
Tincture (mg/L)	Δνσ		26.5	230		213	198	210	203	228	235	131	201	47	23.6%	242	26.5	9
	SD		3.6	1		29	1	1	3	220	225	2	201	47	25.070	242	20.5	
	Α			0.98		1.53	1.08	1.05	1.05	1.24	0.60	1.19						
Sample I: Turmeric	В			1.02		1.60	1.08	1.05	1.11	1.16	0.56	1.12						
Gelcap with Coconut	С			1.06		1.29	1.07	0.97	1.06	1.14	0.63	1.08						
(mg/g)	Avg			1.02		1.47	1.07	1.02	1.07	1.18	0.60	1.13	1.08	0.15	13.7%	1.47	0.60	8
	SD			0.04		0.16	0.01	0.05	0.03	0.05	0.04	0.06						
Country I. T. T	A		2.13	1.97		2.34	1.75	1.77	2.22	1.67	1.74	2.95						
Sample J: Turmeric	в		2.16	1.94		2.22	1.77	1.79	2.10	1.04	1.01	2.59						
(mg/g)	Avg		2.17	1.96		2.27	1.74	1.79	2.23	1.64	1.67	2.76	2.00	0.35	17.6%	2.76	1.64	9
(8-8/	SD		0.02	0.02		0.06	0.02	0.01	0.05	0.03	0.07	0.18						

Table 2-6.1. Data summary table for desmethoxycurcumin (DMC) in turmeric commercial products. Individual results are displayed in this table for eleven of the laboratories that requested samples (O404 through O419), while community results are shown for all laboratories participating the study. Results for additional laboratories can be found in Tables 2-6.2 and 2-6.3. Data highlighted in red have been flagged as potential outliers (e.g., Grubb and/or Cochran) by the NIST software package.

		Desmethoxycurcumin																					
		Individual Results - Page 1 of 3													Community Results								
	Lab	NIST	O404	O405	O406	O407	O409	O410	O411	O414	O415	O416	O419	Mean	SD	% RSD	Max	Min	Ν				
	A		3.37		3.06	2.95		11.43		4.00	5.11	4.73	3.17										
	В		3.37		3.06	2.94		11.41		4.00	5.14	3.32	3.25										
Sample A: SRM 3299	C D		3.42		3.09	2.96		11.48		4.00	5.15	4.00	3.22										
Turmeric Rhizome	F		3.29			3.25						3.35	3.50										
(mg/g)	F		3.37			3.03						3.21	3.55										
	Avg	3.14	3.39		3.07	3.05		11.44		4.00	5.13	3.73	3.37	3.37	0.72	21.3%	11.44	0.82	18				
	SD	0.06	0.07		0.02	0.13		0.04		0.00	0.02	0.58	0.17										
	Α		3.4		123.0	120.0		323.8		123.0	114.0	141.7	124.2										
	в		3.4		123.0	110.0		320.8		123.0	113.0	148.7	123.2										
	С		3.4		124.0	117.0		317.6		124.0	113.0	121.8	128.0										
Sample B: SRM 3300	D		116.0			125.0						108.9	124.2										
Turmeric Extract (mg/g)	E		115.0			127.0						120.0	126.1										
	F	117	50.0		122.2	125.0		220.7		122.2	112.2	113.9	126.9	117.2	0.5	Q 10/	220.7	11.0	10				
	SD	1	61.9		0.6	64		31		0.6	0.6	125.8	125.4	117.2	9.5	0.170	320.7	11.9	19				
	5D A		7.65		7 33	6.83		22.18	10.10	0.0	8.88	8.16	7.74										
	B		7.63		7.03	7.33		22.13	9.65		9.20	7.90	7.83										
Sample C: Turmeric	c		7.74		7.36	7.42		22.20	9.00		9.03	8.10	7.77										
Root Powder (mg/g)	Avg		7.68		7.24	7.19		22.32	9.58		9.04	8.05	7.78	7.9	1.3	16.2%	22.3	6.0	14				
	SD		0.06		0.18	0.32		0.22	0.55		0.16	0.14	0.05										
	Α		2.378			1.640				2.0		2.012	1.690										
Sample D: Turmeric	В		2.309			1.740				2.0		2.720	1.720										
Smoothie Additive	С		2.294			1.740				2.0		2.590	1.740										
(mg/g)	Avg		2.327			1.707				2.0		2.441	1.717	1.90	0.28	14.6%	2.44	1.49	13				
	SD		0.045			0.058				0.0		0.377	0.025										
	A		6.240			1.640				6.0		6.105	5.630										
Sample E: Turmeric	ь С		6 3 4 9			1.740				6.0		6.102	5.070										
Root Capsule (mg/g)	Avg		6.351			1.707				6.0		6.036	5.667	5.77	0.70	12.1%	6.82	0.97	14				
	SD		0.112			0.058				0.0		0.118	0.035										
	Α		4.750			4.200				5.0		5.150	3.990										
Sample F: Turmeric	в		4.670			3.980				5.0		5.330	4.010										
Extract/Root Capsule	С		4.718			4.110				5.0		4.870	4.070										
with Black Pepper (mg/g)	Avg		4.713			4.097				5.0		5.117	4.023	4.24	0.85	20.1%	5.70	0.87	14				
	SD		0.040			0.111				0.0		0.232	0.042										
Sample G: Turmeric	A		2.0		64.5	31.2		200.0			57.7	54.6	67.6										
Extract/Root Capsule	в		2.1		64.5	46.6		128.1			63.7	69.2	67.9										
with Black Pepper &	Ava		2.0		63.8	J4.J		164.5			61.0	64.6	67.6	61	12	18 0%	165	44	14				
Coconut Oil (mg/g)	SD		0.1		11	11.8		36.0			3.0	87	0.2	01	12	10.970	105	44	14				
	A		138		0.269	237		0.743			3150	253.3	195										
	в		165		0.272	236		0.719			3070	282.0	196										
Sample H: Turmeric	С		146		0.286	237		0.718			2740	222.4	194										
Tincture (mg/L)	Avg		150		0.276	237		0.727			2987	252.5	195	159	123	77.3%	2987	0.28	14				
	SD		14		0.009	1		0.014			217	29.8	1										
	Α		6.17		4.95	4.33		14.37			7.02	5.13	5.06										
Sample I: Turmeric	B		6.34		4.75	4.56		14.86			6.57	4.78	5.06										
Gelcap with Coconut	C		6.10		4.68	4.70		13.65			7.03	5.93	4.98	1.02	0.72	15 20/	14.20	2.26	12				
(mg/g)	Avg SD		0.20		4.79	4.55		0.61			0.87	0.59	0.05	4.82	0.75	15.2%	14.29	3.30	15				
	<u>3</u>		11.14		0.14	10.00		0.01		11.0	0.20	11.02	10.10										
Sample J: Turmeric	B		11.14			10.00				11.0		11.02	10.10										
Gelcap, Liquid Curcumin	č		10.89			10.50				11.0		11.34	10.08										
(mg/g)	Avg		11.07			10.27				11.0		11.38	10.16	10.13	0.85	8.4%	11.38	2.21	14				
	SD		0.2			0.25				0.0		0.38	0.12										

Table 2-6.2. Data summary table for desmethoxycurcumin (DMC) in turmeric commercial products. Individual results are displayed in this table for ten of the laboratories that requested samples (O420 through O437), while community results are shown for all laboratories participating the study. Results for additional laboratories can be found in Tables 2-6.1 and 2-6.3. Data highlighted in red have been flagged as potential outliers (e.g., Grubb and/or Cochran) by the NIST software package.

		Desmethoxycurcumin																				
						Indivi	idual Resu	ılts - Page	2 of 3						Community Results							
	Lab	NIST	O420	O421	O423	O425	O428	O429	O431	O433	O434	O437		Mean	SD	% RSD	Max	Min	Ν			
	Α		4.74	2.36					3.56	3.15		2.98										
	В		4.74	2.33					3.59	2.95		2.98										
Sample A: SRM 3299	С		4.92	2.43					3.62	2.99		3.04										
Turmeric Rhizome	D																					
(mg/g)	E																					
	F	11.04	4.00	0.07					2.50	2.02		2.00		2.27	0.72	21.2%	11.44	0.02	10			
	AVg	0.21	4.80	2.37					3.59	3.03		3.00		3.37	0.72	21.3%	11.44	0.82	19			
	SD	0.21	122.5	0.05		24.2			125.5	0.11		107.1										
	A D		132.5	07.2		24.2			135.5	111.9		107.1										
	Б С		123.5	97.5		24.9			120.2	111.7		110.1										
Sample B. SRM 3300	Ď		125.5	114.7		24.9			122.0	111.5		110.1										
Turmeric Extract (mg/g)	E																					
Furnicite Extract (ing/g)	F																					
	Avg	822	126.5	109.0		24.5			125.9	111.6		109.5		117.2	9.5	8.1%	320.7	11.9	20			
	SD	11	5.2	10.1		0.5			8.4	0.3		2.1										
	Α		9.96							7.33		6.86										
	в		10.50							6.94		6.92										
Sample C: Turmeric	С		10.39							7.06		6.98										
Koot Powder (mg/g)	Avg		10.28							7.11		6.92		7.9	1.3	16.2%	22.3	6.0	14			
	SD		0.29							0.20		0.06										
	Α			1.530					2.088	1.948		1.960										
Sample D: Turmeric	В			1.460					2.096	1.902		1.840										
Smoothie Additive	С			1.470					2.150	2.724		1.860										
(mg/g)	Avg			1.487					2.111	2.191		1.887		1.90	0.28	14.6%	2.19	1.49	14			
	SD			0.038					0.034	0.462		0.064										
	A			4.920		0.700			6.750	5.588		5.570										
Sample E: Turmeric	в			4.820		1.090			6.640	5.761		5.640										
Root Capsule (mg/g)	C .			4.810		1.120			6.650	5.650		5.550		6.00	0.70	10.10/	6.00	0.07	15			
	AVg			4.850		0.970			0.080	5.666		5.587		5.77	0.70	12.1%	6.82	0.97	15			
	30			2.270		0.234			5.600	4 200		4.220										
Sample F: Turmeric	R			3 200		0.870			5.550	4.579		4.230										
Extract/Root Cancule	C			3 330		0.850			5.420	4.540		4.190										
with Black Penner (mg/g)	Avg			3.300		0.867			5.523	4.506		4.167		4.24	0.85	20.1%	5.70	0.87	15			
min black repper (ing/g)	SD			0.089		0.035			0.093	0.095		0.078										
	Α		66.8							63.6		58.8										
Sample G: Turmeric	в		66.7							51.7		57.7										
Extract/Root Capsule	С		67.9							60.3		57.1										
Coconut Oil (mg/g)	Avg		67.1							58.5		57.9		61	12	18.9%	165	44	14			
Coconut On (mg/g)	SD		0.6							6.1		0.9										
	Α		1.24							198		218										
Sample H: Turmeric	В		1.20							200		214										
Tincture (mg/L)	С		1.23							200		211										
	Avg		1.22							199		214		159	123	77.3%	2987	0.28	14			
	SD		0.02							1		4										
	A		5.54							4.65		4.39										
Sample I: Turmeric	B		5.66							4.65		4.57										
Gelcap with Coconut	C		5.51						_	4.28		4.39		4.00	0.72	15.00/	14.20	2.26	10			
(mg/g)	Avg		5.57							4.52		4.45		4.82	0.73	15.2%	14.29	3.36	13			
	50		0.08	8 00		2.11			12.20	0.22		0.10										
Samula I: Turmaria	A B			8.98		2.11			12.20	9.37		9.98										
Galean Liquid Curamin	C B			9.72		2.15			10.90	9.75		10.30										
(mg/g)	Avo			9.27		2.37			11.33	9.04		10.50		10.13	0.85	8.4%	11.33	2 21	15			
(mg/g)	SD			0.19		0.14			0.75	0.14		0.19		10.15	0.05	0.470	11.55	2.21	15			

Table 2-6.3. Data summary table for desmethoxycurcumin (DMC) in turmeric commercial products. Individual results are displayed in this table for ten of the laboratories that requested samples (O433 through O458), while community results are shown for all laboratories participating the study. Results for additional laboratories can be found in Tables 2-6.1 and 2-6.2. Data highlighted in red have been flagged as potential outliers (e.g., difference from reference value, Grubb and/or Cochran) by the NIST software package.

		Desmethoxycurcumin Individual Results - Pago 3 of 3 Community Desults																			
					Indiv	idual Res	ults - Page	3 of 3						Community Results							
	Lab	NIST	O440	O443 O44	0449	O452	0455	O458	O459	O460	O461		Mean	SD	% RSD	Max	Min	Ν			
	Α		3.21	3.19	3.43	3.84	2.82		0.95	3.62	2.46										
	В			3.13	3.55	3.84	2.73		0.78	3.51	2.37										
	С			3.13	3.11	3.71	2.93		0.72	3.66	2.42										
Sample A: SRM 3299	D			3.09	2.99		3.43														
Turmeric Rhizome	E			2.95	3.03		3.46														
(mg/g)	F			2.94	3 33		3.47														
	Ανσ	11.04	3.21	3.06	3.24	3.80	3.14		0.82	3 60	2 4 2		3 37	0.72	21.3%	11 44	0.82	19			
	SD	0.21	0.21	0.13	0.23	0.07	0.35		0.12	0.08	0.05		5.57	0.72	21.570		0.02	.,			
	5D	0.21	107.0	104	120.5	124.0	117.4		115.0	11.0	84.0										
	n		107.0	104.	139.5	124.0	117.4		113.0	11.9	04.0										
	Б С			107.	126.0	120.5	120.0		112.9	11.0	03.4										
Commis D. CDM 2200	D D			104.	112.2	121.5	115.7		114.0	12.1	03.7										
Sample B: SKM 3500	D			106.	112.2		115.7														
Turmeric Extract (mg/g)	E			111.	114.8		116.4														
	F	822	107.0	109.	115.1	121.0	116.0		114.0	11.0	94.4		117.0	0.5	0.10/	220.7	11.0	20			
	Avg	822	107.0	107.	124.2	121.9	117.4		114.0	11.9	84.4		117.2	9.5	8.1%	520.7	11.9	20			
	SD	11		2.8	11.7	1.9	1.7		1.1	0.1	0.9										
	A		7.57	6.92	7.84		7.24				5.72										
Sample C: Turmeric	В		7.53	6.86	8.24		7.15				6.28										
Root Powder (mg/g)	С		7.42	6.83	7.67		7.30				6.06										
noor romaci (ing/g)	Avg		7.51	6.87	7.91		7.23				6.02		7.9	1.3	16.2%	22.3	6.0	15			
	SD		0.08	0.05	0.29		0.08				0.28										
	Α			1.53	1.865	1.983	1.679		1.670	2.076											
Sample D: Turmeric	В			1.54	1.806	1.986	1.578		1.740	2.172											
Smoothie Additive	С			1.58	1.776	1.973	1.601		1.840	2.067											
(mg/g)	Avg			1.55	1.816	1.981	1.619		1.750	2.105			1.90	0.28	14.6%	2.19	1.49	14			
	SD			0.02	0.045	0.007	0.053		0.085	0.058											
	Α			5.30	5.775	6.090	5.998		4.970	6.688											
	В			5.28	5.696	6.215	5.563		4.740	6.695											
Sample E: Turmeric	С			5.21	5.772	6.105	5.607		4.920	7.083											
Root Capsule (mg/g)	Avg			5.26	5.748	6.137	5.723		4.877	6.822			5.77	0.70	12.1%	6.82	0.97	15			
	SD			0.04	0.045	0.068	0.239		0.121	0.226											
	Α			3 54	3 985	4 894	3 873		3 4 3 0	5 823											
Sample F: Turmeric	B			3.52	4 006	4 869	4 019		3 360	5 622											
Extract/Root Cansule	Č			3 54	3 984	4 911	4 027		3 4 50	5.659											
with Black Penner (mg/g)	Ανσ			3 53	3 992	4 891	3 973		3 413	5.701			4 24	0.85	20.1%	5 70	0.87	15			
with black repper (ing/g)	SD			0.01	0.012	0.021	0.087		0.047	0.107			4.24	0.05	20.170	5.70	0.07	15			
	<u>A</u>		57.3	56 (78.5	0.021	54.1		0.047	0.107	44.8										
Sample G: Turmeric	P		565	564	78.5		567				44.0										
Extract/Root Capsule	C		50.5	56.0	86.3		54.0				45.1										
with Black Pepper &	Ava		57.7	56.4	80.0		55.2				45.7		61	12	18.9%	165	44	14			
Coconut Oil (mg/g)	SD		15	- 50.0	1 8		13				0.5		01	12	10.7/0	105		14			
	30		8.20	0.4	4.0		1.3				212										
	A		8.20	221.	229		128				215										
Sample H: Turmeric	Б С		8.00	217.	21/		127				201										
Tincture (mg/L)	1.00		0.09	219.	232		127			_	215		150	122	77.20/	2097	0.28	14			
	AVg		8.14	219.	235		129				210		159	125	11.5%	2987	0.28	14			
	SD		0.06	2.0	18		2				8										
	A		4.66	4.62	4.64		4.60				5.40										
Sample I: Turmeric	в			4.3	4.58		4.33				3.31										
Gelcap with Coconut	C			4.23	4.03	_	4.09	_			3.38		1.00		18.00						
(mg/g)	Avg		4.66	4.39	4.42		4.34				3.36		4.82	0.73	15.2%	14.29	3.36	13			
	SD			0.21	0.34		0.26	_			0.05										
	Α			9.65	10.46	10.51	10.11		10.12	10.89											
Sample J: Turmeric	В			9.30	9.83	10.52	10.62		9.84	11.08											
Gelcap, Liquid Curcumin	С			9.39	10.12	10.56	10.29		9.62	10.92											
(mg/g)	Avg			9.44	10.14	10.53	10.34		9.86	10.96			10.13	0.85	8.4%	11.33	2.21	15			
	SD			0.18	0.32	0.03	0.26		0.25	0.11											

Table 2-7. Data summary table for desmethoxycurcumin (DMC) in turmeric commercial products. Individual results are displayed in this table for the laboratories that reported using AOAC 2016.16 for analysis. Data highlighted in red have been flagged as potential outliers (e.g., Grubb and/or Cochran) by the NIST software package. Data shown in italicized font were collected in the second part of the study. Data for laboratory O411 was not included in the collaborative study because only a single sample was analyzed.

		DMC by AOAC 2016.16																
						Indi	vidual Re	sults	-						Communit	y Results		
	Lab	NIST	O404	O407	0411	O416	O419	O433	O437	O446	O449	O455	Mean	SD	% RSD	Max	Min	Ν
	Α		3.37	2.95		4.73	3.28	3.15	2.98	3.19	3.43	2.82						
	B		3.37	2.94		3.32	3.36	2.95	2.98	3.13	3.55	2.73						
Sample A: SRM 3299	C		3.42	2.96		4.00	3.33	2.99	3.04	3.13	3.11	2.93						
Turmeric Rhizome	D		3.29	3.23		3.//	3.50			3.09	2.99	3.43						
(mg/g)	E		3.31	3.18		3.35	3.51			2.97	3.03	3.40						
	Δνσ	3.14	3 39	3.05		3.73	3.42	3.03	3.00	3.06	3.24	3.14	3.21	0.24	7 3%	3 73	3.00	9
	SD	0.06	0.07	0.13		0.58	0.11	0.11	0.03	0.13	0.23	0.35	5.21	0.24	1.570	5.75	5.00	
	A	0.00	122.2	120.0		141.7	121.4	111.9	107.1	104.5	139.5	117.4						
	в		114.1	110.0		148.7	120.4	111.7	111.2	107.7	128.6	118.7						
	С		112.0	117.0		121.8	125.3	111.3	110.1	104.1	135.0	120.0						
Sample B: SRM 3300	D		116.0	125.0		108.9	124.2			106.6	112.2	115.7						
Tumeric Extract (mg/g)	Е		115.0	127.0		120.0	126.1			111.2	114.8	116.4						
	F		118.1	125.0		113.9	126.9			109.4	115.1	116.0						
	Avg	117.1	116.2	120.7		125.8	124.0	111.6	109.5	107.3	124.2	117.4	117.4	7.9	6.7%	125.8	107.3	9
	SD	1.1	3.5	6.4		15.9	2.6	0.3	2.1	2.8	11.7	1.7						
	A		7.65	6.83	10.10	8.16	7.74	7.33	6.86	6.92	7.84	7.24						
Sample C: Turmeric	В		7.63	7.33	9.65	7.90	7.83	6.94	6.92	6.86	8.24	7.15						
Root Powder (mg/g)	C Ava		7.68	7.42	9.00	8.10	7.79	7.00	6.98	6.83	7.6/	7.30	7.42	0.51	6.0%	0.58	6 97	10
	SD		0.06	0.32	9.56 0.55	0.14	0.05	0.20	0.92	0.07	0.29	0.08	7.42	0.51	0.970	9.56	0.87	10
	3D A		2 38	1.64	0.55	2 31	1.81	1.95	1.96	1.54	1.87	1.68						
Sample D: Turmeric	B		2.30	1.04		2.00	1.84	1.95	1.90	1.54	1.87	1.58						
Smoothie Additive	č		2.29	1.74		1.92	1.87	2.72	1.86	1.58	1.78	1.60						
(mg/g)	Avg		2.33	1.71		2.08	1.84	2.19	1.89	1.56	1.82	1.62	1.89	0.30	15.8%	2.33	1.56	9
	SD		0.04	0.06		0.21	0.03	0.46	0.06	0.02	0.05	0.05						
	Α		6.24	6.14		6.08	5.73	5.59	5.57	5.30	5.78	6.00						
Sample F: Turmeric	В		6.46	6.16		6.03	5.76	5.76	5.64	5.29	5.70	5.56						
Root Cansule (mg/g)	С		6.35	5.80		6.14	5.79	5.65	5.55	5.21	5.77	5.61						
Hoot cupsuit (ing/g)	Avg		6.35	6.03		6.08	5.76	5.67	5.59	5.27	5.75	5.72	5.80	0.35	6.1%	6.35	5.27	9
-	SD		0.11	0.20		0.06	0.03	0.09	0.05	0.05	0.04	0.24						
Sample F: Turmeric	A		4.75	4.20		4.22	4.10	4.40	4.23	3.55	3.99	3.87						
Extract/Root Capsule	В		4.67	3.98		3./3	4.12	4.54	4.19	3.52	4.01	4.02						
with Black Pepper	Ava		4.72	4.11		4.54	4.17	4.58	4.08	3.54	3.90	4.05	4.14	0.33	8 1 %	4.71	3 54	0
(mg/g)	SD		0.04	4.10 0.11		0.32	0.04	0.09	0.08	0.01	0.01	0.09	4.14	0.55	0.170	4.71	5.54	,
	A		0.01	31		55	68	64	59	57	79	.54						
Sample G: Turmeric	В			47		69	68	52	58	57	78	57						
Extract/Root Capsule	С			55		70	67	60	57	56	86	55						
Coconut Oil (mg/g)	Avg			44		65	68	59	58	57	81	55	60	11	18.7%	81	44	8
Cocontat Oli (Ing/g)	SD			12		9	0	6	1	0	5	1						
	Α		138	237		253	195	198	218	221	229	128						
Sample H: Turmeric	В		165	236		282	196	200	214	217	217	131						
Tincture (mg/L)	C		146	237		222	194	200	211	219	252	127						
	Avg		150	237		253	195	199	214	219	233	129	204	44	21.4%	253	129	9
	50		14	1 1 2 2		5.12	5.06	1	4 20	4.62	18	2						
Sample I: Turmeric	R			4.55		4 78	5.00	4.05	4.59	4.02	4.04	4.00						
Gelcan with Coconut	c			4.70		5.93	4.98	4.28	4.39	4.23	4.03	4.09						
(mg/g)	Avg			4.53		5.28	5.03	4.52	4.45	4.39	4.42	4.34	4.60	0.37	8.0%	5.28	4.34	8
(B-B/	SD			0.19		0.59	0.05	0.22	0.10	0.21	0.34	0.26						~
	Α		11.14	10.00		9.36	10.10	9.57	9.98	9.65	10.46	10.11						
Sample J: Turmeric	В		11.17	10.30		9.12	10.29	9.75	9.96	9.30	9.83	10.62						
Gelcap, Liquid Curcumin	С		10.89	10.50		9.25	10.08	9.84	10.30	9.39	10.12	10.29						
(mg/g)	Avg		11.07	10.27		9.24	10.16	9.72	10.08	9.44	10.14	10.34	10.03	0.57	5.7%	11.07	9.24	8
	SD		0.15	0.25		0.12	0.12	0.14	0.19	0.18	0.32	0.26						

Figure 2-1. Curcumin in candidate SRM 3299 Turmeric Rhizome (data summary view – analytical method). In this view, individual laboratory data are plotted (diamonds) with the individual laboratory standard deviation (rectangle). The color of the data point represents the analytical method employed. The solid blue line represents the consensus mean, and the green shaded region represents the 95 % confidence interval for the consensus mean. The solid red lines represent the consensus range of tolerance, calculated as the values above and below the consensus mean that result in an acceptable Z'_{comm} score, $|Z'_{comm}| \le 2$. The red shaded region represents the NIST range of tolerance, which encompasses the target value bounded by its uncertainty (U_{NIST}) and represents the range that results in an acceptable Z'_{NIST} score, $|Z_{NIST}| \le 2$.

Figure 2-2. Curcumin in candidate SRM 3300 Turmeric Extract (data summary view – analytical method). In this view, individual laboratory data are plotted (diamonds) with the individual laboratory standard deviation (rectangle). In this view, individual laboratory data are plotted (diamonds) with the individual laboratory standard deviation (rectangle). The color of the data point represents the analytical method employed. The solid blue line represents the consensus mean, and the green shaded region represents the 95 % confidence interval for the consensus mean. The solid red lines represent the consensus range of tolerance, calculated as the values above and below the consensus mean that result in an acceptable Z'_{comm} score, $|Z'_{comm}| \leq 2$. The red shaded region represents the NIST range of tolerance, which encompasses the target value bounded by its uncertainty (U_{NIST}) and represents the range that results in an acceptable Z_{NIST} score, $|Z_{NIST}| \leq 2$.

Figure 2-3. Curcumin in Turmeric Root Powder (data summary view – analytical method). In this view, individual laboratory data are plotted (diamonds) with the individual laboratory standard deviation (rectangle). The color of the data point represents the sample preparation method employed. The solid blue line represents the consensus mean, and the green shaded region represents the 95 % confidence interval for the consensus mean. The solid red lines represent the consensus range of tolerance, calculated as the values above and below the consensus mean that result in an acceptable Z'_{comm} score, $|Z'_{comm}| \leq 2$. A NIST value has not been determined in this material.

Figure 2-4. Curcumin in Turmeric Smoothie Additive (data summary view – analytical method). In this view, individual laboratory data are plotted (diamonds) with the individual laboratory standard deviation (rectangle). The color of the data point represents the sample preparation method employed. The solid blue line represents the consensus mean, and the green shaded region represents the 95 % confidence interval for the consensus mean. The solid red lines represent the consensus range of tolerance, calculated as the values above and below the consensus mean that result in an acceptable Z'_{comm} score, $|Z'_{comm}| \leq 2$. A NIST value has not been determined in this material.

Figure 2-5. Curcumin in Turmeric Root Capsule (data summary view – analytical method). In this view, individual laboratory data are plotted (diamonds) with the individual laboratory standard deviation (rectangle). The color of the data point represents the sample preparation method employed. The solid blue line represents the consensus mean, and the green shaded region represents the 95 % confidence interval for the consensus mean. The solid red lines represent the consensus range of tolerance, calculated as the values above and below the consensus mean that result in an acceptable Z'_{comm} score, $|Z'_{comm}| \leq 2$. A NIST value has not been determined in this material.

Figure 2-6. Curcumin in Turmeric Extract/Root Capsule with Black Pepper (data summary view – analytical method). In this view, individual laboratory data are plotted (diamonds) with the individual laboratory standard deviation (rectangle). The color of the data point represents the sample preparation method employed. The solid blue line represents the consensus mean, and the green shaded region represents the 95 % confidence interval for the consensus mean. The solid red lines represent the consensus range of tolerance, calculated as the values above and below the consensus mean that result in an acceptable Z'_{comm} score, $|Z'_{comm}| \le 2$. A NIST value has not been determined in this material.

Figure 2-7. Curcumin in Turmeric Extract/Root Capsule with Black Pepper & Coconut Oil (data summary view – analytical method). In this view, individual laboratory data are plotted (diamonds) with the individual laboratory standard deviation (rectangle). The color of the data point represents the sample preparation method employed. The solid blue line represents the consensus mean, and the green shaded region represents the 95 % confidence interval for the consensus mean. The solid red lines represent the consensus range of tolerance, calculated as the values above and below the consensus mean that result in an acceptable Z'_{comm} score, $|Z'_{comm}| \le 2$. A NIST value has not been determined in this material.

Figure 2-8. Curcumin in Turmeric Tincture (data summary view – analytical method). In this view, individual laboratory data are plotted (diamonds) with the individual laboratory standard deviation (rectangle). The color of the data point represents the sample preparation method employed. The solid blue line represents the consensus mean, and the green shaded region represents the 95 % confidence interval for the consensus mean. The solid red lines represent the consensus range of tolerance, calculated as the value above the consensus mean that result in an acceptable Z'_{comm} score, $|Z'_{comm}| \leq 2$, with the lower limit has been set to zero. A NIST value has not been determined in this material.

Figure 2-9. Curcumin in Turmeric Gelcap with Coconut (data summary view – analytical method). In this view, individual laboratory data are plotted (diamonds) with the individual laboratory standard deviation (rectangle). The color of the data point represents the sample preparation method employed. The solid blue line represents the consensus mean, and the green shaded region represents the 95 % confidence interval for the consensus mean. The solid red lines represent the consensus range of tolerance, calculated as the values above and below the consensus mean that result in an acceptable Z'_{comm} score, $|Z'_{comm}| \leq 2$. A NIST value has not been determined in this material.

Figure 2-10. Curcumin in Turmeric Gelcap, Liquid Curcumin (data summary view – analytical method). In this view, individual laboratory data are plotted (diamonds) with the individual laboratory standard deviation (rectangle). The color of the data point represents the sample preparation method employed. The solid blue line represents the consensus mean, and the green shaded region represents the 95 % confidence interval for the consensus mean. The solid red lines represent the consensus range of tolerance, calculated as the values above and below the consensus mean that result in an acceptable Z'_{comm} score, $|Z'_{comm}| \leq 2$. A NIST value has not been determined in this material.

Exercise: DSQAP Exercise O Measurand: CURCUMIN No. of laboratories: 23

Figure 2-11. Laboratory means for curcumin in candidate SRM 3299 Turmeric Rhizome and candidate SRM 3300 Turmeric Extract (sample/sample comparison view). In this view, the individual laboratory mean for one sample (turmeric rhizome) is compared to the mean for a second sample (turmeric extract). The solid red box represents the NIST range of tolerance for the two samples, turmeric rhizome (x-axis) and turmeric extract (y-axis), which encompasses the NIST-determined values bounded by their uncertainties (U_{NIST}) and represents the range that results in an acceptable Z_{NIST} score, $|Z_{\text{NIST}}| \leq 2$. The dotted blue box represents the consensus range of tolerance for turmeric rhizome (x-axis) and turmeric extract (y-axis), calculated as the values above and below the consensus means that result in an acceptable $Z'_{\text{comm}} \leq 2$.

Figure 2-12. Laboratory means for curcumin in candidate SRM 3299 Turmeric Rhizome and Turmeric Root Powder (sample/sample comparison view). In this view, the individual laboratory mean for one sample (turmeric rhizome) is compared to the mean for a second sample (turmeric root powder). The dotted blue box represents the consensus range of tolerance for turmeric rhizome (x-axis) and turmeric root powder (y-axis), calculated as the values above and below the consensus means that result in an acceptable Z'_{comm} score, $|Z'_{comm}| \leq 2$.

Exercise: DSQAP Exercise O Measurand: CURCUMIN No. of laboratories: 11

Figure 2-13. Laboratory means for curcumin in candidate SRM 3299 Turmeric Rhizome and Turmeric Smoothie Additive (sample/sample comparison view). In this view, the individual laboratory mean for one sample (turmeric rhizome) is compared to the mean for a second sample (turmeric smoothie additive). The dotted blue box represents the consensus range of tolerance for turmeric rhizome (x-axis) and turmeric smoothie additive (y-axis), calculated as the values above and below the consensus means that result in an acceptable Z'_{comm} score, $|Z'_{comm}| \le 2$.

Exercise: DSQAP Exercise O Measurand: CURCUMIN No. of laboratories: 11

Figure 2-14. Laboratory means for curcumin in candidate SRM 3299 Turmeric Rhizome and Turmeric Root Capsule (sample/sample comparison view). In this view, the individual laboratory mean for one sample (turmeric rhizome) is compared to the mean for a second sample (turmeric root capsule). The dotted blue box represents the consensus range of tolerance for turmeric rhizome (x-axis) and turmeric root capsule (y-axis), calculated as the values above and below the consensus means that result in an acceptable Z'_{comm} score, $|Z'_{comm}| \leq 2$.

Figure 2-15. Laboratory means for curcumin in candidate SRM 3299 Turmeric Rhizome and Turmeric Extract/Root Capsule with Black Pepper (sample/sample comparison view). In this view, the individual laboratory mean for one sample (turmeric rhizome) is compared to the mean for a second sample (turmeric capsule). The dotted blue box represents the consensus range of tolerance for turmeric rhizome (x-axis) and turmeric capsule (y-axis), calculated as the values above and below the consensus means that result in an acceptable Z'_{comm} score, $|Z'_{\text{comm}}| \leq 2$.

Figure 2-16. Laboratory means for curcumin in candidate SRM 3300 Turmeric Extract and Turmeric Extract/Root Capsule with Black Pepper (sample/sample comparison view). In this view, the individual laboratory mean for one sample (turmeric extract) is compared to the mean for a second sample (turmeric capsule). The dotted blue box represents the consensus range of tolerance for turmeric rhizome (x-axis) and turmeric capsule (y-axis), calculated as the values above and below the consensus means that result in an acceptable Z'_{comm} score, $|Z'_{comm}| \le 2$.

Exercise: DSQAP Exercise O Measurand: CURCUMIN No. of laboratories: 12

Exercise: DSQAP Exercise O Measurand: CURCUMIN No. of laboratories: 15

Figure 2-17. Laboratory means for curcumin in candidate SRM 3300 Turmeric Extract and Turmeric Extract/Root Capsule with Black Pepper & Coconut Oil (sample/sample comparison view). In this view, the individual laboratory mean for one sample (turmeric extract) is compared to the mean for a second sample (turmeric capsule). The dotted blue box represents the consensus range of tolerance for turmeric extract (x-axis) and turmeric capsule (y-axis), calculated as the values above and below the consensus means that result in an acceptable Z'_{comm} score, $|Z'_{comm}| \le 2$.

Exercise: DSQAP Exercise O Measurand: CURCUMIN No. of laboratories: 14

Figure 2-18. Laboratory means for curcumin in candidate SRM 3300 Turmeric Extract and Turmeric Tincture (sample/sample comparison view). In this view, the individual laboratory mean for one sample (turmeric extract) is compared to the mean for a second sample (turmeric tincture). The dotted blue box represents the consensus range of tolerance for turmeric extract (x-axis) and turmeric tincture (y-axis), calculated as the values above and below the consensus means that result in an acceptable Z'_{comm} score, $|Z'_{comm}| \le 2$.

Exercise: DSQAP Exercise O Measurand: CURCUMIN No. of laboratories: 15

Figure 2-19. Laboratory means for curcumin in candidate SRM 3299 Turmeric Rhizome and Turmeric Gelcap with Coconut (sample/sample comparison view). In this view, the individual laboratory mean for one sample (turmeric rhizome) is compared to the mean for a second sample (turmeric gelcap). The dotted blue box represents the consensus range of tolerance for turmeric rhizome (x-axis) and turmeric gelcap (y-axis), calculated as the values above and below the consensus means that result in an acceptable Z'_{comm} score, $|Z'_{comm}| \leq 2$.

Ring test: DSQAP Exercise O, Measurand: CURCUMIN No. of laboratories: 11

Figure 2-20. Laboratory means for curcumin in candidate SRM 3299 Turmeric Rhizome and Turmeric Gelcap, Liquid Curcumin (sample/sample comparison view). In this view, the individual laboratory mean for one sample (turmeric rhizome) is compared to the mean for a second sample (turmeric gelcap). The dotted blue box represents the consensus range of tolerance for turmeric rhizome (x-axis) and turmeric gelcap (y-axis), calculated as the values above and below the consensus means that result in an acceptable Z'_{comm} score, $|Z'_{comm}| \leq 2$.

Ring test: DSQAP Exercise O, Measurand: CURCUMIN No. of laboratories: 12

Figure 2-21. Laboratory means for curcumin in candidate SRM 3300 Turmeric Extract and Turmeric Gelcap, Liquid Curcumin (sample/sample comparison view). In this view, the individual laboratory mean for one sample (turmeric extract) is compared to the mean for a second sample (turmeric gelcap). The dotted blue box represents the consensus range of tolerance for turmeric extract (x-axis) and turmeric gelcap (y-axis), calculated as the values above and below the consensus means that result in an acceptable Z'_{comm} score, $|Z'_{comm}| \le 2$.

Figure 2-22. BDMC in candidate SRM 3299 Turmeric Rhizome (data summary view – analytical method). In this view, individual laboratory data are plotted (diamonds) with the individual laboratory standard deviation (rectangle). The color of the data point represents the analytical method employed. The solid blue line represents the consensus mean and the green shaded region represents the 95 % confidence interval for the consensus mean. The solid red lines represent the consensus range of tolerance, calculated as the values above and below the consensus mean that result in an acceptable Z'_{comm} score, $|Z'_{comm}| \le 2$. The red shaded region represents the NIST range of tolerance, which encompasses the target value bounded by its uncertainty (U_{NIST}) and represents the range that results in an acceptable $Z_{NIST}| \le 2$.

Figure 2-23. BDMC in candidate SRM 3300 Turmeric Extract (data summary view – analytical method). In this view, individual laboratory data are plotted (diamonds) with the individual laboratory standard deviation (rectangle). The color of the data point represents the analytical method employed. The solid blue line represents the consensus mean and the green shaded region represents the 95 % confidence interval for the consensus mean. The solid red lines represent the consensus range of tolerance, calculated as the values above and below the consensus mean that result in an acceptable Z'_{comm} score, $|Z'_{comm}| \le 2$. The red shaded region represents the NIST range of tolerance, which encompasses the target value bounded by its uncertainty (U_{NIST}) and represents the range that results in an acceptable $Z_{NIST}| \le 2$.

Figure 2-24. BDMC in Turmeric Root Powder (data summary view – analytical method). In this view, individual laboratory data are plotted (diamonds) with the individual laboratory standard deviation (rectangle). The color of the data point represents the analytical method employed. The solid blue line represents the consensus mean and the green shaded region represents the 95 % confidence interval for the consensus mean. The solid red lines represent the consensus range of tolerance, calculated as the values above and below the consensus mean that result in an acceptable Z'_{comm} score, $|Z'_{comm}| \leq 2$. A NIST value has not been determined in this material.

Figure 2-25. BDMC in Turmeric Smoothie Additive (data summary view – analytical method). In this view, individual laboratory data are plotted (diamonds) with the individual laboratory standard deviation (rectangle). The color of the data point represents the analytical method employed. The solid blue line represents the consensus mean and the green shaded region represents the 95 % confidence interval for the consensus mean. The solid red lines represent the consensus range of tolerance, calculated as the values above and below the consensus mean that result in an acceptable Z'_{comm} score, $|Z'_{comm}| \leq 2$. A NIST value has not been determined in this material.

Figure 2-26. BDMC in Turmeric Root Capsule (data summary view – analytical method). In this view, individual laboratory data are plotted (diamonds) with the individual laboratory standard deviation (rectangle). The color of the data point represents the analytical method employed. The solid blue line represents the consensus mean and the green shaded region represents the 95 % confidence interval for the consensus mean. The solid red lines represent the consensus range of tolerance, calculated as the values above and below the consensus mean that result in an acceptable Z'_{comm} score, $|Z'_{comm}| \leq 2$. A NIST value has not been determined in this material.

Figure 2-27. BDMC in Turmeric Extract/Root Capsule with Black Pepper (data summary view – analytical method). In this view, individual laboratory data are plotted (diamonds) with the individual laboratory standard deviation (rectangle). The color of the data point represents the analytical method employed. The solid blue line represents the consensus mean and the green shaded region represents the 95 % confidence interval for the consensus mean. The solid red lines represent the consensus range of tolerance, calculated as the values above and below the consensus mean that result in an acceptable Z'_{comm} score, $|Z'_{comm}| \le 2$. A NIST value has not been determined in this material.

Figure 2-28. BDMC in Turmeric Extract/Root Capsule with Black Pepper & Coconut Oil (data summary view – analytical method). In this view, individual laboratory data are plotted (diamonds) with the individual laboratory standard deviation (rectangle). The color of the data point represents the analytical method employed. The solid blue line represents the consensus mean and the green shaded region represents the 95 % confidence interval for the consensus mean. The solid red lines represent the consensus range of tolerance, calculated as the values above and below the consensus mean that result in an acceptable Z'_{comm} score, $|Z'_{comm}| \le 2$. A NIST value has not been determined in this material.

Figure 2-29. BDMC in Turmeric Tincture (data summary view – analytical method). In this view, individual laboratory data are plotted (diamonds) with the individual laboratory standard deviation (rectangle). The color of the data point represents the analytical method employed. The solid blue line represents the consensus mean and the green shaded region represents the 95 % confidence interval for the consensus mean. The solid red lines represent the consensus range of tolerance, calculated as the values above the consensus mean that result in an acceptable Z'_{comm} score, $|Z'_{comm}| \le 2$, with the lower value set to zero. A NIST value has not been determined in this material.

Figure 2-30. BDMC in Turmeric Gelcap with Coconut (data summary view – analytical method). In this view, individual laboratory data are plotted (diamonds) with the individual laboratory standard deviation (rectangle). The color of the data point represents the analytical method employed. The solid blue line represents the consensus mean and the green shaded region represents the 95 % confidence interval for the consensus mean. The solid red lines represent the consensus range of tolerance, calculated as the values above and below the consensus mean that result in an acceptable Z'_{comm} score, $|Z'_{comm}| \leq 2$. A NIST value has not been determined in this material.

Figure 2-31. BDMC in Turmeric Gelcap, Liquid Curcumin (data summary view – analytical method). In this view, individual laboratory data are plotted (diamonds) with the individual laboratory standard deviation (rectangle). The color of the data point represents the analytical method employed. The solid blue line represents the consensus mean and the green shaded region represents the 95 % confidence interval for the consensus mean. The solid red lines represent the consensus range of tolerance, calculated as the values above and below the consensus mean that result in an acceptable Z'_{comm} score, $|Z'_{comm}| \leq 2$. A NIST value has not been determined in this material.

Exercise: DSQAP Exercise O Measurand: Bisdemethoxycurcumin No. of laboratories: 21

Figure 2-32. Laboratory means for BDMC in candidate SRM 3299 Turmeric Rhizome and candidate SRM 3300 Turmeric Extract (sample/sample comparison view). In this view, the individual laboratory mean for one sample (turmeric rhizome) is compared to the mean for a second sample (turmeric extract). The solid red box represents the NIST range of tolerance for the two samples, turmeric rhizome (x-axis) and turmeric extract (y-axis), which encompasses the NIST-determined values bounded by their uncertainties (U_{NIST}) and represents the range that results in an acceptable Z_{NIST} score, $|Z_{\text{NIST}}| \leq 2$. The dotted blue box represents the consensus range of tolerance for turmeric rhizome (x-axis) and turmeric extract (y-axis), calculated as the values above and below the consensus means that result in an acceptable $Z'_{\text{comm}} | \leq 2$.

Exercise: DSQAP Exercise O Measurand: Bisdemethoxycurcumin No. of laboratories: 13

Figure 2-33. Laboratory means for BDMC in candidate SRM 3299 Turmeric Rhizome and Turmeric Root Powder (sample/sample comparison view). In this view, the individual laboratory mean for one sample (turmeric rhizome) is compared to the mean for a second sample (turmeric root powder). The dotted blue box represents the consensus range of tolerance for turmeric rhizome (x-axis) and turmeric root powder (y-axis), calculated as the values above and below the consensus means that result in an acceptable Z'_{comm} score, $|Z'_{comm}| \leq 2$.

Exercise: DSQAP Exercise O Measurand: Bisdemethoxycurcumin No. of laboratories: 10

Figure 2-34. Laboratory means for BDMC in candidate SRM 3299 Turmeric Rhizome and Turmeric Smoothie Additive (sample/sample comparison view). In this view, the individual laboratory mean for one sample (turmeric rhizome) is compared to the mean for a second sample (turmeric smoothie additive). The dotted blue box represents the consensus range of tolerance for turmeric rhizome (x-axis) and turmeric smoothie additive (y-axis), calculated as the values above and below the consensus means that result in an acceptable Z'_{comm} score, $|Z'_{comm}| \le 2$.

Exercise: DSQAP Exercise O Measurand: Bisdemethoxycurcumin No. of laboratories: 11

Figure 2-35. Laboratory means for BDMC in candidate SRM 3299 Turmeric Rhizome and Turmeric Root Capsule (sample/sample comparison view). In this view, the individual laboratory mean for one sample (turmeric rhizome) is compared to the mean for a second sample (turmeric capsule). The dotted blue box represents the consensus range of tolerance for turmeric rhizome (x-axis) and turmeric capsule (y-axis), calculated as the values above and below the consensus means that result in an acceptable Z'_{comm} score, $|Z'_{comm}| \le 2$.

Exercise: DSQAP Exercise O Measurand: Bisdemethoxycurcumin No. of laboratories: 11

0404

0<u>45</u>5

0421

(A) SRM 3299 Turmeric Rhizome [mg/g]

Exercise: DSQAP Exercise O Measurand: Bisdemethoxycurcumin No. of laboratories: 12

Figure 2-37. Laboratory means for BDMC in candidate SRM 3300 Turmeric Extract and Turmeric Extract/Root Capsule with Black Pepper (sample/sample comparison view). In this view, the individual laboratory mean for one sample (turmeric extract) is compared to the mean for a second sample (turmeric capsule). The dotted blue box represents the consensus range of tolerance for turmeric extract (x-axis) and turmeric capsule (y-axis), calculated as the values above and below the consensus means that result in an acceptable Z'_{comm} score, $|Z'_{comm}| \le 2$.

Exercise: DSQAP Exercise O Measurand: Bisdemethoxycurcumin No. of laboratories: 13

Figure 2-38. Laboratory means for BDMC in candidate SRM 3300 Turmeric Extract and Turmeric Extract/Root Capsule with Black Pepper & Coconut Oil (sample/sample comparison view). In this view, the individual laboratory mean for one sample (turmeric extract) is compared to the mean for a second sample (turmeric capsule). The dotted blue box represents the consensus range of tolerance for turmeric extract (x-axis) and turmeric capsule (y-axis), calculated as the values above and below the consensus means that result in an acceptable Z'_{comm} score, $|Z'_{\text{comm}}| \leq 2$.

Exercise: DSQAP Exercise O Measurand: Bisdemethoxycurcumin No. of laboratories: 13

Figure 2-39. Laboratory means for BDMC in candidate SRM 3300 Turmeric Extract and Turmeric Tincture (sample/sample comparison view). In this view, the individual laboratory mean for one sample (turmeric extract) is compared to the mean for a second sample (turmeric tincture). The dotted blue box represents the consensus range of tolerance for turmeric extract (x-axis) and turmeric tincture (y-axis), calculated as the values above and below the consensus means that result in an acceptable Z'_{comm} score, $|Z'_{comm}| \le 2$.

Exercise: DSQAP Exercise O Measurand: Bisdemethoxycurcumin No. of laboratories: 13

Figure 2-40. Laboratory means for BDMC in candidate SRM 3299 Turmeric Rhizome and Turmeric Gelcap with Coconut (sample/sample comparison view). In this view, the individual laboratory mean for one sample (turmeric rhizome) is compared to the mean for a second sample (turmeric gelcap). The dotted blue box represents the consensus range of tolerance for turmeric rhizome (x-axis) and turmeric gelcap (y-axis), calculated as the values above and below the consensus means that result in an acceptable Z'_{comm} score, $|Z'_{comm}| \leq 2$.

Exercise: DSQAP Exercise O Measurand: Bisdemethoxycurcumin No. of laboratories: 11

Figure 2-41. Laboratory means for BDMC in candidate SRM 3299 Turmeric Rhizome and Turmeric Gelcap, Liquid Curcumin (sample/sample comparison view). In this view, the individual laboratory mean for one sample (turmeric rhizome) is compared to the mean for a second sample (turmeric gelcap). The dotted blue box represents the consensus range of tolerance for turmeric rhizome (x-axis) and turmeric gelcap (y-axis), calculated as the values above and below the consensus means that result in an acceptable Z'_{comm} score, $|Z'_{comm}| \leq 2$.

Exercise: DSQAP Exercise O Measurand: Bisdemethoxycurcumin No. of laboratories: 12

Figure 2-42. Laboratory means for BDMC in candidate SRM 3300 Turmeric Extract and Turmeric Gelcap with Coconut (sample/sample comparison view). In this view, the individual laboratory mean for one sample (turmeric extract) is compared to the mean for a second sample (turmeric gelcap). The dotted blue box represents the consensus range of tolerance for turmeric extract (x-axis) and turmeric gelcap (y-axis), calculated as the values above and below the consensus means that result in an acceptable Z'_{comm} score, $|Z'_{comm}| \le 2$.

Figure 2-43. DMC in candidate SRM 3299 Turmeric Rhizome (data summary view – analytical method). In this view, individual laboratory data are plotted (diamonds) with the individual laboratory standard deviation (rectangle). The color of the data point represents the analytical method employed. The solid blue line represents the consensus mean and the green shaded region represents the 95 % confidence interval for the consensus mean. The solid red lines represent the consensus range of tolerance, calculated as the values above and below the consensus mean that result in an acceptable Z'_{comm} score, $|Z'_{comm}| \le 2$. The red shaded region represents the NIST range of tolerance, which encompasses the target value bounded by its uncertainty (U_{NIST}) and represents the range that results in an acceptable Z'_{NIST} score, $|Z_{NIST}| \le 2$.

Figure 2-44. DMC in candidate SRM 3300 Turmeric Extract (data summary view – analytical method). In this view, individual laboratory data are plotted (diamonds) with the individual laboratory standard deviation (rectangle). The color of the data point represents the analytical method employed. The solid blue line represents the consensus mean and the green shaded region represents the 95 % confidence interval for the consensus mean. The solid red lines represent the consensus range of tolerance, calculated as the values above and below the consensus mean that result in an acceptable Z'_{comm} score, $|Z'_{comm}| \le 2$. The red shaded region represents the NIST range of tolerance, which encompasses the target value bounded by its uncertainty (U_{NIST}) and represents the range that results in an acceptable $Z'_{NIST} | \le 2$.

Figure 2-45. DMC in Turmeric Root Powder (data summary view – analytical method). In this view, individual laboratory data are plotted (diamonds) with the individual laboratory standard deviation (rectangle). The color of the data point represents the analytical method employed. The solid blue line represents the consensus mean and the green shaded region represents the 95 % confidence interval for the consensus mean. The solid red lines represent the consensus range of tolerance, calculated as the values above and below the consensus mean that result in an acceptable Z'_{comm} score, $|Z'_{comm}| \le 2$. A NIST value has not been determined in this material.

Figure 2-46. DMC in Turmeric Smoothie Additive (data summary view – analytical method). In this view, individual laboratory data are plotted (diamonds) with the individual laboratory standard deviation (rectangle). The color of the data point represents the analytical method employed. The solid blue line represents the consensus mean and the green shaded region represents the 95 % confidence interval for the consensus mean. The solid red lines represent the consensus range of tolerance, calculated as the values above and below the consensus mean that result in an acceptable Z'_{comm} score, $|Z'_{comm}| \le 2$. A NIST value has not been determined in this material.

Figure 2-47. DMC in Turmeric Root Capsule (data summary view – analytical method). In this view, individual laboratory data are plotted (diamonds) with the individual laboratory standard deviation (rectangle). The color of the data point represents the analytical method employed. The solid blue line represents the consensus mean and the green shaded region represents the 95 % confidence interval for the consensus mean. The solid red lines represent the consensus range of tolerance, calculated as the values above and below the consensus mean that result in an acceptable Z'_{comm} score, $|Z'_{comm}| \leq 2$. A NIST value has not been determined in this material.

Figure 2-48. DMC in Turmeric Extract/Root Capsule with Black Pepper (data summary view – analytical method). In this view, individual laboratory data are plotted (diamonds) with the individual laboratory standard deviation (rectangle). The color of the data point represents the analytical method employed. The solid blue line represents the consensus mean and the green shaded region represents the 95 % confidence interval for the consensus mean. The solid red lines represent the consensus range of tolerance, calculated as the values above and below the consensus mean that result in an acceptable Z'_{comm} score, $|Z'_{comm}| \leq 2$. A NIST value has not been determined in this material.

Exercise: DSQAP Exercise 0 Sample: (6) Turmeric Extract/Root Capsule with Black Pepper & Coconut Oil Measurand: Desmethoxycurcumin

Figure 2-49. DMC in Turmeric Extract/Root Capsule with Black Pepper & Coconut Oil (data summary view – analytical method). In this view, individual laboratory data are plotted (diamonds) with the individual laboratory standard deviation (rectangle). The color of the data point represents the analytical method employed. The solid blue line represents the consensus mean and the green shaded region represents the 95 % confidence interval for the consensus mean. The solid red lines represent the consensus range of tolerance, calculated as the values above and below the consensus mean that result in an acceptable Z'_{comm} score, $|Z'_{comm}| \leq 2$. A NIST value has not been determined in this material.

Figure 2-50. DMC in Turmeric Tincture (data summary view – analytical method). In this view, individual laboratory data are plotted (diamonds) with the individual laboratory standard deviation (rectangle). The color of the data point represents the analytical method employed. The solid blue line represents the consensus mean and the green shaded region represents the 95 % confidence interval for the consensus mean. The solid red lines represent the consensus range of tolerance, calculated as the values above and below the consensus mean that result in an acceptable Z'_{comm} score, $|Z'_{comm}| \le 2$. A NIST value has not been determined in this material.

Figure 2-51. DMC in Turmeric Gelcap with Coconut (data summary view – analytical method). In this view, individual laboratory data are plotted (diamonds) with the individual laboratory standard deviation (rectangle). The color of the data point represents the analytical method employed. The solid blue line represents the consensus mean and the green shaded region represents the 95 % confidence interval for the consensus mean. The solid red lines represent the consensus range of tolerance, calculated as the values above and below the consensus mean that result in an acceptable Z'_{comm} score, $|Z'_{comm}| \leq 2$. A NIST value has not been determined in this material.

Figure 2-52. DMC in Turmeric Gelcap, Liquid Curcumin (data summary view – analytical method). In this view, individual laboratory data are plotted (diamonds) with the individual laboratory standard deviation (rectangle). The color of the data point represents the analytical method employed. The solid blue line represents the consensus mean and the green shaded region represents the 95 % confidence interval for the consensus mean. The solid red lines represent the consensus range of tolerance, calculated as the values above and below the consensus mean that result in an acceptable Z'_{comm} score, $|Z'_{comm}| \leq 2$. A NIST value has not been determined in this material.

Exercise: DSQAP Exercise O Measurand: Desmethoxycurcumin No. of laboratories: 21

0410

6

0415

(sample/sample comparison view). In this view, the individual laboratory mean for one sample (turmeric rhizome) is compared to the mean for a second sample (turmeric extract). The solid red box represents the NIST range of tolerance for the two samples, turmeric rhizome (x-axis) and turmeric extract (y-axis), which encompasses the NIST-determined values bounded by their uncertainties (U_{NIST}) and represents the range that results in an acceptable Z_{NIST} score, $|Z_{\text{NIST}}| \leq 2$. The dotted blue box represents the consensus range of tolerance for turmeric rhizome (x-axis) and turmeric extract (y-axis), calculated as the values above and below the consensus means that result in an acceptable Z'_{comm} score, $|Z'_{\text{comm}}| \leq 2$.

Figure 2-54. Laboratory means for DMC in candidate SRM 3299 Turmeric Rhizome and Turmeric Root Powder (sample/sample comparison view). In this view, the individual laboratory mean for one sample (turmeric rhizome) is compared to the mean for a second sample (turmeric root powder). The dotted blue box represents the consensus range of tolerance for turmeric rhizome (x-axis) and turmeric root powder (y-axis), calculated as the values above and below the consensus means that result in an acceptable Z'_{comm} score, $|Z'_{comm}| \leq 2$.

Exercise: DSQAP Exercise O Measurand: Desmethoxycurcumin No. of laboratories: 13

0410

Exercise: DSQAP Exercise O Measurand: Desmethoxycurcumin No. of laboratories: 11

sample (turmeric smoothie additive). The dotted blue box represents the consensus range of tolerance for turmeric rhizome (x-axis) and turmeric smoothie additive (y-axis), calculated as the values above and below the consensus means that result in an acceptable Z'_{comm} score, $|Z'_{\text{comm}}| \le 2$.

5

6

Figure 2-56. Laboratory means for DMC in candidate SRM 3299 Turmeric Rhizome and Turmeric Root Capsule (sample/sample comparison view). In this view, the individual laboratory mean for one sample (turmeric rhizome) is compared to the mean for a second sample (turmeric capsule). The dotted blue box represents the consensus range of tolerance for turmeric rhizome (x-axis) and turmeric capsule (y-axis), calculated as the values above and below the consensus means that result in an acceptable Z'_{comm} score, $|Z'_{comm}| \le 2$.

Exercise: DSQAP Exercise O Measurand: Desmethoxycurcumin No. of laboratories: 11

Figure 2-57. Laboratory means for DMC in candidate SRM 3299 Turmeric Rhizome and Turmeric Extract/Root Capsule with Black Pepper (sample/sample comparison view). In this view, the individual laboratory mean for one sample (turmeric rhizome) is compared to the mean for a second sample (turmeric capsule). The dotted blue box represents the consensus range of tolerance for turmeric rhizome (x-axis) and turmeric capsule (y-axis), calculated as the values above and below the consensus means that result in an acceptable Z'_{comm} score, $|Z'_{comm}| \le 2$.

Exercise: DSQAP Exercise O Measurand: Desmethoxycurcumin No. of laboratories: 12

Figure 2-58. Laboratory means for DMC in candidate SRM 3300 Turmeric Extract and Turmeric Extract/Root Capsule with Black Pepper (sample/sample comparison view). In this view, the individual laboratory mean for one sample (turmeric extract) is compared to the mean for a second sample (turmeric capsule). The dotted blue box represents the consensus range of tolerance for turmeric extract (x-axis) and turmeric capsule (y-axis), calculated as the values above and below the consensus means that result in an acceptable Z'_{comm} score, $|Z'_{comm}| \le 2$.

Exercise: DSQAP Exercise O Measurand: Desmethoxycurcumin No. of laboratories: 13

Figure 2-59. Laboratory means for DMC in candidate SRM 3300 Turmeric Extract and Turmeric Extract/Root Capsule with Black Pepper & Coconut Oil (sample/sample comparison view). In this view, the individual laboratory mean for one sample (turmeric extract) is compared to the mean for a second sample (turmeric capsule). The dotted blue box represents the consensus range of tolerance for turmeric extract (x-axis) and turmeric capsule (y-axis), calculated as the values above and below the consensus means that result in an acceptable Z'_{comm} score, $|Z'_{comm}| \le 2$.

Exercise: DSQAP Exercise O Measurand: Desmethoxycurcumin No. of laboratories: 13

Figure 2-60. Laboratory means for DMC in candidate SRM 3300 Turmeric Extract and Turmeric Tincture (sample/sample comparison view). In this view, the individual laboratory mean for one sample (turmeric extract) is compared to the mean for a second sample (turmeric tincture). The dotted blue box represents the consensus range of tolerance for turmeric extract (x-axis) and turmeric tincture (y-axis), calculated as the values above and below the consensus means that result in an acceptable Z'_{comm} score, $|Z'_{comm}| \le 2$.

Exercise: DSQAP Exercise O Measurand: Desmethoxycurcumin No. of laboratories: 13

Figure 2-61. Laboratory means for DMC in candidate SRM 3299 Turmeric Rhizome and Turmeric Gelcap with Coconut (sample/sample comparison view). In this view, the individual laboratory mean for one sample (turmeric rhizome) is compared to the mean for a second sample (turmeric gelcap). The dotted blue box represents the consensus range of tolerance for turmeric rhizome (x-axis) and turmeric gelcap (y-axis), calculated as the values above and below the consensus means that result in an acceptable Z'_{comm} score, $|Z'_{comm}| \leq 2$.

Exercise: DSQAP Exercise O Measurand: Desmethoxycurcumin No. of laboratories: 11

Figure 2-62. Laboratory means for DMC in candidate SRM 3299 Turmeric Rhizome and Turmeric Gelcap with Coconut (sample/sample comparison view). In this view, the individual laboratory mean for one sample (turmeric rhizome) is compared to the mean for a second sample (turmeric gelcap). The dotted blue box represents the consensus range of tolerance for turmeric rhizome (x-axis) and turmeric gelcap (y-axis), calculated as the values above and below the consensus means that result in an acceptable Z'_{comm} score, $|Z'_{comm}| \leq 2$.

Exercise: DSQAP Exercise O Measurand: Desmethoxycurcumin No. of laboratories: 12

Figure 2-63. Laboratory means for DMC in candidate SRM 3300 Turmeric Extract and Turmeric Gelcap with Coconut (sample/sample comparison view). In this view, the individual laboratory mean for one sample (turmeric extract) is compared to the mean for a second sample (turmeric gelcap). The dotted blue box represents the consensus range of tolerance for turmeric extract (x-axis) and turmeric gelcap (y-axis), calculated as the values above and below the consensus means that result in an acceptable Z'_{comm} score, $|Z'_{comm}| \le 2$.

SECTION 3: CHONDROITIN IN DIETARY SUPPLEMENTS

Study Overview

In this study, participants were provided with seven different chondroitin dietary supplements. Participants were asked to use the AOAC First Action *Official Method of Analysis 2015.11 Chondroitin Sulfate Content in Raw Materials and Dietary Supplements* or in-house methods to determine the mass fraction (μ g/g) of total chondroitin sulfate in each matrix. For those laboratories interested in using the AOAC method, a copy of the method was enclosed, and participants were advised to follow the method exactly. The data from laboratories using the AOAC method will be included in a collaborative study effort to evaluate the reproducibility of the method to support *Final Action* status. All data submitted by participants regardless of the method is reported in the community tables and graphs below.

Sample Information

Participants received each sample listed in the table below. Before use, participants were instructed to thoroughly mix the contents of each package of ground material. Instructions for preparation of samples from tablets, caplets, and capsules were given in AOAC 2015.11 along with a minimum sample size to use for analysis. The approximate analyte levels were not reported to participants prior to the study. Participants were asked to store the materials at controlled room temperature, 20 °C to 25 °C, and report all results as total chondroitin sulfate on a dry-mass basis in units of $\mu g/g$. Values for total chondroitin sulfate in these products were not determined by NIST prior to the study.

	<u>Quantity</u>	<u>Quantity</u>	
	and	per	
<u>Sample</u>	Packaging 1 2 2	Package 1	How to report
Sample A: Chondroitin Caplets	3 packets	20 caplets	Prepare 1 sample and report 1 value per packet
Sample B: Chondroitin Tablets	3 packets	20 tablets	Prepare 1 sample and report 1 value per packet
Sample C: Chondroitin Chewables for Dogs	3 packets	20 tablets	Prepare 1 sample and report 1 value per packet
Sample D: Chondroitin Capsules	3 packets	20 caplets	Prepare 1 sample and report 1 value per packet
Sample E: Chondroitin Sulfate Sodium	3 vials	4 g of powder	Prepare 1 sample and report 1 value per vial
Sample F: Chondroitin Sulfate Sodium	3 vials	4 g of powder	Prepare 1 sample and report 1 value per vial
Sample G: Chondroitin Beverage	1 bottle	237 mL	Prepare 3 samples and report 3 values from the single bottle

Study Results

- Fourteen laboratories enrolled in the exercise and received samples to measure total chondroitin sulfate in seven different dietary supplements. Five laboratories reported results for every sample (36 % participation). A sixth laboratory reported one result for three of the supplements.
- The between-laboratory variability was good for samples A through F (<18 % RSD) and poor for Sample G (82 % RSD).

	Between-Laboratory
Sample ID	Variability (RSD)
Sample A: Chondroitin Caplets	15.1 %
Sample B: Chondroitin Tablets	11.7 %
Sample C: Chondroitin Chewables for Dogs	13.6 %
Sample D: Chondroitin Capsules	17.3 %
Sample E: Chondroitin Sulfate Sodium	3.9 %
Sample F: Bovine Chondroitin Sulfate	6.0 %
Sample G: Chondroitin Beverage	82.0 %

- Most laboratories reported enzymatic hydrolysis as their sample preparation method (83 %). One laboratory reported using acid hydrolysis (17 %) for sample preparation.
- Laboratories reported using AOAC 2015.11 (50 %), the USP Chondroitin Sulfate Sodium method (17 %), LC-absorbance (17 %), or in-house methods (17 %) for determination of total chondroitin sulfate.

Technical Recommendations

The following recommendations are based on results obtained from the participants in this study.

- The small number of laboratories reporting data does not allow meaningful conclusions to be drawn from performance of specific analytical methods or sample preparation approaches.
- Analysis of chondroitin sulfate can be challenging because of molecular weight variation of chondroitin sulfate polymers, poor UV absorbance, and strong ionic nature.
- Other glycosaminoglycans may be present as impurities or adulterants in chondroitin-containing products. Therefore, analytical methodology must be designed to quantify total chondroitin sulfate in the presence of these glycosaminoglycans.
- All results should be checked closely to avoid calculation errors and to be sure that results are reported in the requested units.
- The between-laboratory variability for most of the samples was very good. With more participating laboratories, AOAC 2015.11 may meet the performance requirements and become a fully validated approach for determination of total chondroitin sulfate in supplements.

		Ι	OSQAP Exe	ercise O -	Natural Pro	ducts								
	Lab Code:	NIST		1. You	r Results			2. 0	Community R		3. Target			
Analyte	Sample	Units	x _i	s _i	Z' _{comm}	Z _{NIST}		N	x*	s*		X _{NIST}	U	
Total Chondroitin Sulfate	Chondroitin Sample A	µg/g						5	362000	24000				
Total Chondroitin Sulfate	Chondroitin Sample B	µg/g						6	324000	15000				
Total Chondroitin Sulfate	Chondroitin Sample C	µg/g						6	152000	8400				
Total Chondroitin Sulfate	Chondroitin Sample D	µg/g						6	299000	21000				
Total Chondroitin Sulfate	Chondroitin Sample E	µg/g						5	934000	16000				
Total Chondroitin Sulfate	Chondroitin Sample F	µg/g						5	963000	25000				
Total Chondroitin Sulfate	Chondroitin Sample G	µg/g						5	1040	380				
			x _i Mean of	reported va	alues		N	Number	of quantitative	e	X _{NIST}	NIST-asse	essed value	
			s _i Standard	deviation of	of reported va	lues		values re	ported		U	expanded u	uncertainty	
		Z' _{com}	Z'-score	with respec	ct to commun	ity	x*	Robust n	ean of report	ed		about the N	NIST-assessed val	
		con	consensu	is		2		values	1					
		Z _{NIS}	T Z-score	with respec	t to NIST va	lue	s*	Robust st	andard devia	tion				

National Institute of Standards and Technology

Table 3-2.1. Data summary table for chondroitin in dietary supplements. Individual results are displayed in this table for seven of the laboratories that requested samples (O403 through O423), while community results are shown for all laboratories participating the study. Results for additional laboratories can be found in Table 3-2.2. Data highlighted in red have been flagged as potential outliers (e.g., Grubb and/or Cochran) by the NIST software package.

		Chondroitin																
			Individual Results - Page 1 of 2								Community Results							
	Lab	NIST	O403	O406	O409	O412	O419	O420	O423	Mean	SD	% RSD	Max	Min	Ν			
	Α			362000			400222	399310										
Sample A: Chondroitin Caplets (µg/g)	В			362000			417927	385040										
	С			365000			417316	374280										
	Avg			363000			411822	386210		362467	54755	15.1%	411822	363000	4			
	SD			1732			10050	12556										
	Α			309000			356471	367420										
Sample P. Chandraitin	В			299000			363469	329471										
Tablets (ug/g)	С			305000			364634	310140										
Tablets (µg/g)	Avg			304333			361525	335677		324480	38015	11.7%	361525	428	5			
	SD			5033			4415	29140										
	Α			149000			174313	160470										
Sample C: Chondroitin	В			147000			179164	159530										
Chewables for Dogs	С			154000			177758	159990										
(µg/g)	Avg			150000			177078	159997		152211	20721	13.6%	177078	219	5			
	SD			3606			2496	470										
	Α			308000			325160	343690										
Sample D: Chondroitin	В			296000			338664	370020										
Capsules (µg/g)	С			295000			329110	337670										
	Avg			299667			330978	350460		299456	51861	17.3%	350460	381	5			
	SD			7234			6943	17205										
	Α			918000			975519	923200										
Sample E: Chondroitin	В			917000			989761	936030										
Sulfate Sodium (ug/g)	С			915000			993918	944460										
Sunate Soutain (µg/g)	Avg			916667			986399	934563		933749	36269	3.9%	986399	916667	4			
	SD			1528			9649	10706										
	Α			933000			993174	1026010										
Sample F: Bovine	В			900000			1079737	986190										
Chondroitin Sulfate	С			929000			1010293	999780										
(µg/g)	Avg			920667			1027735	1003993		962647	58222	6.0%	1027735	920667	4			
	SD			18009	_		45842	20242	_									
	A			571			1029	980										
Sample G: Chondroitin	В						1012	880										
Beverage (ug/g)	С						999	810										
20,000 Br (MB/B)	Avg			571			1013	890		1037	850	82.0%	1013	406	4			
	SD						15	85										

Table 3-2.2. Data summary table for chondroitin in dietary supplements. Individual results are displayed in this table for seven of the laboratories that requested samples (O425 through O462), while community results are shown for all laboratories participating the study. Results for additional laboratories can be found in Table 3-2.1. Data highlighted in red have been flagged as potential outliers (e.g., Grubb and/or Cochran) by the NIST software package.

		Chondroitin																	
			Individual Results - Page 2 of 2									Community Results							
	Lab	NIST	O425	O431	O434	O440	O449	O452	O462	Mean	SD	% RSD	Max	Min	Ν				
	Α			283468			369500												
Sample A: Chondroitin Caplets (µg/g)	В						370600												
	С						363400												
	Avg			283468			367833			362467	54755	15.1%	411822	363000	4				
	SD						3879												
	Α		428	343301			330600												
Sample B: Chondroitin	В						335600												
Tablets (µg/g)	С						337200												
	Avg		428	343301			334467			324480	38015	11.7%	361525	428	5				
	SD					_	3443												
	A		218.9	155315			155700												
Sample C: Chondroitin	В						144700												
Chewables for Dogs	C .		010.0	155215		_	148600			150011	20721	12 (0)	177070	210	~				
(µg/g)	Avg SD		218.9	155315			149667 5577			152211	20721	13.6%	1//0/8	219	5				
	Α		381.1	277299			316000												
	В						306900												
Sample D: Chondroitin	С						326200												
Capsules (µg/g)	Avg		381.1	277299			316367			299456	51861	17.3%	350460	381	5				
	SD						9655												
	Α			904018			901900												
Sampla F: Chandraitin	В						964200												
Sulfate Sodium (ug/g)	С						915200												
Sunate Soutum (µg/g)	Avg			904018			927100			933749	36269	3.9%	986399	916667	4				
	SD						32811												
	Α			918740			961800												
Sample F: Bovine	В						930100												
Chondroitin Sulfate	C						934400												
(µg/g)	Avg			918740			942100			962647	58222	6.0%	1027735	920667	4				
	SD						17196												
	A			2306			415												
Sample G: Chondroitin	B						397												
Beverage (µg/g)	C			2206			405			1027	050	00.00/	1012	107	4				
0 400	Avg			2306			406			1037	850	82.0%	1013	406	4				
	SD	1					9												

Figure 3-1. Total chondroitin sulfate in Chondroitin Caplets (data summary view – analytical method). In this view, individual laboratory data are plotted (diamonds) with the individual laboratory standard deviation (rectangle). The color of the data point represents the analytical method employed. The solid blue line represents the consensus mean, and the green shaded region represents the 95 % confidence interval for the consensus mean. The solid red lines represent the consensus range of tolerance, calculated as the values above and below the consensus mean that result in an acceptable Z'_{comm} score, $|Z'_{comm}| \leq 2$. A NIST value has not been determined in this material.

Figure 3-2. Total chondroitin sulfate in Chondroitin Tablets (data summary view – analytical method). In this view, individual laboratory data are plotted (diamonds) with the individual laboratory standard deviation (rectangle). The color of the data point represents the analytical method employed. The solid blue line represents the consensus mean, and the green shaded region represents the 95 % confidence interval for the consensus mean. The solid red lines represent the consensus range of tolerance, calculated as the values above and below the consensus mean that result in an acceptable Z'_{comm} score, $|Z'_{comm}| \leq 2$. A NIST value has not been determined in this material.

Figure 3-3. Total chondroitin sulfate in Chondroitin Chewables for Dogs (data summary view – analytical method In this view, individual laboratory data are plotted (diamonds) with the individual laboratory standard deviation (rectangle). The color of the data point represents the analytical method employed. The solid blue line represents the consensus mean, and the green shaded region represents the 95 % confidence interval for the consensus mean. The solid red lines represent the consensus range of tolerance, calculated as the values above and below the consensus mean that result in an acceptable Z'_{comm} score, $|Z'_{comm}| \leq 2$. A NIST value has not been determined in this material.

Figure 3-4. Total chondroitin sulfate in Chondroitin Capsules (data summary view – analytical method). In this view, individual laboratory data are plotted (diamonds) with the individual laboratory standard deviation (rectangle). The color of the data point represents the analytical method employed. The solid blue line represents the consensus mean, and the green shaded region represents the 95 % confidence interval for the consensus mean. The solid red lines represent the consensus range of tolerance, calculated as the values above and below the consensus mean that result in an acceptable Z'_{comm} score, $|Z'_{comm}| \leq 2$. A NIST value has not been determined in this material.

Exercise: DSQAP Exercise O Sample: Chondroitin Sample E Measurand: Total Chondroitin Sulfate

Figure 3-5. Total chondroitin sulfate in Chondroitin Sulfate Sodium (data summary view – analytical method). In this view, individual laboratory data are plotted (diamonds) with the individual laboratory standard deviation (rectangle). The color of the data point represents the analytical method employed. The solid blue line represents the consensus mean, and the green shaded region represents the 95 % confidence interval for the consensus mean. The solid red lines represent the consensus range of tolerance, calculated as the values above and below the consensus mean that result in an acceptable Z'_{comm} score, $|Z'_{comm}| \leq 2$. A NIST value has not been determined in this material.

Figure 3-6. Total chondroitin sulfate in Bovine Chondroitin Sulfate (data summary view – analytical method). In this view, individual laboratory data are plotted (diamonds) with the individual laboratory standard deviation (rectangle). The color of the data point represents the analytical method employed. The solid blue line represents the consensus mean, and the green shaded region represents the 95 % confidence interval for the consensus mean. The solid red lines represent the consensus range of tolerance, calculated as the values above and below the consensus mean that result in an acceptable Z'_{comm} score, $|Z'_{comm}| \leq 2$. A NIST value has not been determined in this material.

Figure 3-7. Total chondroitin sulfate in Chondroitin Beverage (data summary view – analytical method). In this view, individual laboratory data are plotted (diamonds) with the individual laboratory standard deviation (rectangle). The color of the data point represents the analytical method employed. The solid blue line represents the consensus mean, and the green shaded region represents the 95 % confidence interval for the consensus mean. The solid red line represents the upper consensus range of tolerance, calculated as the values above and below the consensus mean that result in an acceptable Z'_{comm} score, $|Z'_{comm}| \leq 2$, with the lower range set at zero. A NIST value has not been determined in this material.

SECTION 4: IDENTIFICATION OF *GINKGO BILOBA* IN BOTANICAL SUPPLEMENTS

Study Overview

In this study, participants were provided with ground *Ginkgo biloba* leaf and extract materials at various levels of adulteration. Participants were asked to use their usual in-house methods of analysis to determine authenticity of test samples in order to compare the performance of all reported methods. A secondary goal of this study was to help the community understand the effectiveness of DNA sequencing techniques for botanical ingredient identification. The data gathered from this exercise will be used in collaboration with the American Herbal Products Association (AHPA) to establish resources and provide recommendations to help effective development and advance this emerging technology.

Sample Information

Participants were provided with two sample sets, Samples A and Samples B, each containing 16 sample packets. Samples A contained *Ginkgo biloba* plant materials and Samples B contained *Ginkgo biloba* extract materials. Each packet contained a minimum of 3 g of powdered *Ginkgo biloba* material with up to 15 % (by weight) of *Sophora japonica* extract (see table below). The material was ground, homogenized, and heat-sealed inside 4 mil polyethylene bags, which were then sealed inside aluminized plastic bags. Before use, participants were instructed to thoroughly mix the contents of each packet. Participants were asked to store the material at controlled room temperature, 20 °C to 25 °C. The approximate levels of adulteration and material source were not reported to participants prior to the study.

			Percent Sophor	a Fruit Extrac	<u>t</u>
	Ginkgo Source	<u>0%</u>	<u>3%</u>	<u>7%</u>	<u>15%</u>
SΑ	Ginkgo biloba leaves	A9	A3	A16	A4 & A12
amples	<i>Ginkgo biloba</i> leaves (steam treated)	A5	A14	A7 & A13	A8
kgo S	Ginkgo biloba stem	A15	A2 & A10	A1	A11
Gin	SRM 3246 Ginkgo biloba leaves	A6			
B	Aqueous Ginkgo extract	B10	В5	B13	В7
nkgo Samples	Ethanol:Water Ginkgo extract 1	B3			
	Ethanol:Water Ginkgo extract 2	B8	B12 & B16	B1	B9
	Acetone:Water Ginkgo extract 1	B6	B14	B11	B4 & B15
G	Acetone:Water Ginkgo extract 2	B2			

Study Results

Participation and Methods

- Thirty-six laboratories enrolled in this exercise and received samples. Twenty-two laboratories reported results (61 % participation). Six laboratories reported results for multiple methods.
- Sixteen laboratories reported using chromatography as one of their analytical methods (57 % of total data sets). Eight laboratories reported using genomic methods (28 %), and four reported using microscopy (14 %).

Ginkgo Samples A

Correctly identifying the presence of *Gingko biloba* in plant materials (**Table 4-1**):

- Of the eight laboratories reporting the use of genomic methods, seven (88 %) were able to correctly identify the presence of *Ginkgo biloba* in plant materials, including stems and one laboratory (12 %) reported inconclusive results for all plant materials. The laboratory reported inconclusive results stating that their method was not robust and could not be applied to *Ginkgo*.
- Of the sixteen laboratories reporting chromatography methods, 14 to 16 laboratories (88 % to 100 %) were able to correctly identify the presence of *Ginkgo biloba* in leaf materials. One laboratory reported inconclusive results. One laboratory reported that *Ginkgo biloba* was not present in a leaf sample.
- Of the sixteen laboratories reporting chromatography methods, four to five (25 % to 31 %) were able to correctly identify the presence of *Ginkgo biloba* in stem materials.
 - Six laboratories (38%) reported that no *Ginkgo biloba* was present in any samples containing *Ginkgo* stem.
 - Five laboratories (31 %) reported inconclusive results or a combination of inconclusive results and that no *Ginkgo biloba* was present for samples containing *Ginkgo* stem.
 - For the sample containing no *Sophora*, more laboratories reported that no *Ginkgo* was present than when some *Sophora* had been added to the sample.
- No laboratory reporting the use of microscopy methods was able to identify the presence of *Ginkgo biloba* in all samples.
 - One of the four laboratories (25 %) identified the presence of *Ginkgo biloba* in all but one sample, which was reported as inconclusive.
 - The remaining three laboratories (75%) reported a combination of positive and inconclusive results for the samples.

Correctly identifying *Gingko biloba* leaf or stem as the source in plant materials (**Table 4-2**):

- All eight laboratories reporting the use of genomic methods reported inconclusive results or did not report results for plant part.
- Three laboratories (19 %) using chromatography methods correctly identified the plant part in all leaf and stem samples. Three laboratories (19 %) correctly identified the plant part in all leaf samples. Seven laboratories (44 %) reported a combination of correct and inconclusive results for the plant samples, while three laboratories (19 %) reported incorrect plant parts for some samples.
- One laboratory using microscopy (25 %) correctly identified the plant part in all leaf and stem samples, and one laboratory (25 %) correctly identified the plant part in a majority of the leaf

and stem samples. Two laboratories (50 %) were not able to consistently identify the plant part in the leaf and stem samples.

Ginkgo Samples B

Correctly identifying the presence of *Gingko biloba* in extract materials (**Table 4-1**):

- Of the eight laboratories reporting the use of genomic methods, four (50%) reported inconclusive results for all *Ginkgo* extract samples. Remaining laboratories reported a combination of positive identifications and inconclusive results for the extract samples.
- Of the sixteen laboratories reporting chromatography methods, nine (56 %) correctly identified *Ginkgo biloba* in all of the extract samples.
 - Four laboratories (25 %) reported inconclusive results for some of the *Ginkgo* extract samples.
 - Three laboratories (19%) reported that no *Ginkgo biloba* was present in the extract samples.
 - No laboratories reported results for microscopy evaluation of extract samples.

Correctly identifying *Gingko biloba* leaf as the source in extract materials (**Table 4-2**):

- All eight laboratories reporting the use of genomic methods reported inconclusive results or did not report results for plant part.
- Three laboratories (19 %) using chromatography methods correctly identified the plant part in all extract samples. Ten laboratories (63 %) reported a combination of correct and inconclusive results for the extract samples, while three laboratories (19 %) reported incorrect plant parts for one or more samples.
- All four laboratories using microscopy reported inconclusive or did not report results for extract samples.

Ginkgo Adulterants

Correctly identifying *Gingko biloba* adulterants (**Table 4-3**):

- For genomic methods, two of the eight laboratories (25 %) reported the presence of other species.
 - One laboratory reported adulteration for nearly every sample, regardless of adulteration level.
 - One laboratory reported the presence of unexpected species primarily for the samples containing *Ginkgo* stem.
- For chromatographic methods, seven of the 16 laboratories (44 %) did not report adulteration for any of the samples. Remaining laboratories reported adulteration levels consistent with the in-house adulteration levels for most of the samples.
- For microscopy methods, two of the four laboratories (50 %) reported adulteration in all plant samples, and one laboratory also reported adulteration of all extract samples. Two laboratories (50 %) correctly identified the level of adulteration in most plant samples. Three laboratories (75 %) did not report adulteration in any extract samples.

Technical Recommendations

The following recommendations are based on results obtained from the participants in this study.

- No single method was able to correctly identify the presence of *Ginkgo biloba*, the plant part, and the level of adulteration in every sample. The laboratories that were most successful in this study utilized multiple fit-for-purpose methods.
 - A macroscopic investigation of samples can yield valuable information, such as an easily identifiable texture or color difference (**Figures 4-1 and 4-2**). Microscopic investigation can also be useful to identify plant parts or presence of unexpected substances.
 - Following macroscopic and microscopic evaluation, a combination of genomic and chromatographic methods is recommended.
 - Genomic methods can be used to confirm the presence of the proper species, provided that a sufficient quantity of DNA is available for testing.
 - Some of the genomic methods found species in addition to *Ginkgo biloba* and *Sophora japonica*, emphasizing the importance of reporting and introduces the question, if *Hypericum perforatum* DNA is reported, does that make the material adulterated?
 - Genomic methods could not be used to identify plant parts, and most could not identify the *Sophora japonica* extract.
 - Chromatographic methods can be used to confirm consistency of the chemical profile, which often corresponds to the plant part. The ratios of peaks or bands corresponding to marker compounds, as well as the relative intensity of unexpected peaks, can be used to identify and quantify the presence of adulteration.
- In future QAP authentication/identification studies, more specific questions will be asked about testing methods and the responses will be used to pinpoint strengths and weaknesses of each approach.
- In future studies, laboratories will be given specific instructions on whether to test for authenticity/identity or adulteration.

Figure 4-1. Macroscopic investigation of the *Ginkgo biloba* plant samples (Samples A).

Figure 4-2. Macroscopic investigation of the *Ginkgo biloba* extract samples (Samples B).

Table 4-1.1. Data summary table for identifying presence of *Ginkgo biloba* in botanical supplements by lab code by answering whether *Ginkgo biloba* is present in this material.

Is G	<i>linkgo biloba</i> present in this	s material?				Y	Yes	N	No	Ι	Inconc	lusive		NR	Not Re	ported		С	Chron	atograph	y	G	Genom	ic	М	Micros	сору				
(arra	nged by mb couc)	Parcent Sonhora	O401	0402	0	404	O406	0	407	0416	0419	0420	0429	0425	0432	0	433	0	438	0439	0444	0449	O450	0	451		0452		0453	0455	0462
	Ginkgo Source	Fruit Extract	С	G	G	С	С	С	М	С	С	С	С	С	G	С	М	С	М	G	G	С	G	G	С	С	С	М	G	С	С
A6	SRM 3246 Ginkgo biloba leaves	0	Y	Y	Y	Y	Y	Y	I	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Ι	Y	Y	NR	I	Ν	Y	Y	Y
A9	Ginkgo biloba leaves untreated	0	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Ι	Y	Y	Y	Y	Y	Ι	Y	Y	NR	Y	Y	Y	Y	Y
A3	Ginkgo biloba leaves untreated	3	Y	Y	Y	Y	I	Y	Y	Y	Y	Y	Y	Y	Y	Y	I	Y	Y	Y	Y	Y	Ι	Y	Y	NR	Y	Y	Y I	Y	Y
A16	Ginkgo biloba leaves untreated	7	Y	Y	Y	Y	I	Y	Y	Y	Y	Ν	Y	Ι	Y	Y	Ι	Y	Y	Y	Y	Y	Ι	Y	Y	NR	Y	Y	Y	Y	Y
A4	Ginkgo biloba leaves untreated	15	Y	Y	Y	Y	I	Y	Y	Y	Y	Y	Y	Ι	Y	Y	Y	Y	Y	Y	Y	Y	I	Y	Y	NR	Y	Y	Y	Y	Y
A12	Ginkgo biloba leaves untreated	15	Y	Y	Y	Y	I	I	I	Y	Y	Y	Y	I	Y	Y	I	Ι	Y	Y	Y	Y	I	Y	Y	NR	Y	Y	Y I	Y	Y
A5	Ginkgo biloba leaves steam treated	0	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	I	Y	Y	NR	Y	Y	Y	Y	Y
A14	Ginkgo biloba leaves steam treated	3	Y	Y	Y	Y	I	Y	Y	Y	Y	Y	Y	I	Y	Y	I	Y	Y	Y	Y	Y	Ι	Y	Y	NR	Y	Y	Y	Y	Y
A7	Ginkgo biloba leaves steam treated	7	Y	Y	Y	Y	I	Ι	Y	Y	Y	Y	Y	Ι	Y	Y	I	Y	Y	Y	Y	Y	I	Y	Y	NR	Y	Y	Y	Y	Y
A13	Ginkgo biloba leaves steam treated	7	Y	Y	Y	Y	I	Ι	Ι	Y	Y	Y	Y	Ι	Y	Y	I	Y	Y	Y	Y	Y	Ι	Y	Y	NR	Y	Y	Y -	Y	Y
A11	Ginkgo biloba stem	15	Y	Y	Y	Y	I	Ι	Ι	N	N	Ι	Ν	Ι	Y	Y	I	Ι	Ι	Y	Y	N	I	Y	Y	NR	Ν	Ι	Y	Ν	Ν
A15	Ginkgo biloba stem	0	Y	Y	Y	Y	I	Ι	Ι	N	Ν	Ν	Ν	Ν	Y	Ι	I	Y	Y	Y	Y	N	Ι	Y	Y	NR	Ν	I	Y	Ν	Ν
A2	Ginkgo biloba stem	3	Y	Y	Y	Y	I	Ι	Ι	N	Y	Ι	N	Ι	Y	Y	Y	Ι	Y	Y	Y	N	I	Y	Y	NR	Ν	Ι	Y	Ν	Ν
A10	Ginkgo biloba stem	3	Y	Y	Y	Y	I	Ι	Ι	N	Ν	Ι	Ν	I	Y	Y	I	Ι	Y	Y	Y	N	Ι	Y	Y	NR	Ν	Ι	Y	Ν	Ν
A1	Ginkgo biloba stem	7	Y	Y	Y	Y	I	Ι	Ι	N	Y	Ι	Ν	I	Y	Y	Y	Ι	Y	Y	Y	N	Ι	Y	Y	NR	Ν	Ι	Y	Ν	Ν
A8	Ginkgo biloba leaves steam treated	15	Y	Y	Y	Y	I	Ι	Y	Y	Y	Y	Y	I	Y	Y	I	Y	Y	Y	Y	Y	Ι	Y	Y	NR	Y	Y	Y	Y	Y
B10	Aqueous ginkgo extract	0	Y	Ι	Ι	Y	I	Y	NR	Y	Y	Y	Y	Y	Y	Y	I	Y	NR	Y	I	Y	I	I	Y	Y	NR	NR	I	Y	Y
B5	Aqueous ginkgo extract	3	Y	Ι	Ι	Y	I	Y	NR	Y	Y	Y	Y	Y	Y	Y	I	Y	NR	Y	Ι	Y	I	Ι	Y	Y	NR	NR	Y	Y	Y
B13	Aqueous ginkgo extract	7	Y	Ι	Ι	Y	I	Ι	NR	Y	Y	Y	Y	Y	Y	Y	I	Ι	NR	Ι	Ι	Y	I	I	Y	Y	NR	NR	Y	Y	Y
B7	Aqueous ginkgo extract	15	Y	Ι	Ι	Y	I	Ι	NR	Y	Y	Y	Y	Y	Y	Y	I	Y	NR	Y	Y	Y	I	Ι	Y	Y	NR	NR	I	Y	Y
B3	Ethanol:Water extract 1	0	Y	Ι	Ι	Y	Y	Y	NR	Y	Y	Y	Y	I	Y	Y	I	Ι	NR	Y	Y	N	I	Ι	Y	Y	NR	NR	Y	Ν	Y
B8	Ethanol:Water extract 2	0	Y	Ι	Ι	Y	Y	Y	NR	Y	Y	Y	Y	Ι	I	Y	I	Ι	NR	I	Y	N	I	Ι	Y	Y	NR	NR	Y	Ν	Y
B12	Ethanol:Water extract 2	3	Y	Ι	Ι	Y	Y	Y	NR	Y	N	Y	Y	I	Y	Y	I	Ι	NR	Y	Y	N	Ι	Ι	Y	Y	NR	NR	Ι	N	Y
B16	Ethanol:Water extract 2	3	Y	Ι	Ι	Y	Y	Y	NR	Y	N	Y	Y	Ι	Y	Y	I	Ι	NR	Y	Y	N	I	Ι	Y	Y	NR	NR	Y	Ν	Y
B1	Ethanol:Water extract 2	7	Y	Ι	Ι	Y	Y	Y	NR	Y	Y	Y	Y	Ι	Y	Y	I	Ι	NR	Y	Ι	N	I	Ι	Y	Y	NR	NR	Y	N	Y
B9	Ethanol:Water extract 2	15	Y	Ι	Ι	Y	Y	Y	NR	Y	N	Y	Y	I	Y	Y	I	Ι	NR	Y	Y	N	Ι	Ι	Y	Y	NR	NR	Y	Ν	Y
B2	Acetone:Water extract 2	0	Y	Ι	Ι	Y	Ν	Y	NR	Y	Y	Y	Y	Ι	I	Y	I	Ι	NR	Y	Ι	Y	I	Ι	Y	Y	NR	NR	Y	Y	Y
B14	Acetone:Water extract	3	Y	Ι	Ι	Y	Y	Y	NR	Y	Ν	Y	Y	I	Y	Y	I	Ι	NR	I	Y	Y	I	Ι	Y	Y	NR	NR	I	Y	Y
B6	Acetone:Water extract	7	Y	Ι	Ι	Y	Y	Y	NR	Y	Y	Y	Y	Ι	Y	Y	Ι	Ι	NR	Y	Ι	Y	Ι	Ι	Y	Y	NR	NR	Ι	Y	Y
B11	Acetone:Water extract	7	Y	Ι	Ι	Y	Y	Y	NR	Y	N	Y	Y	I	Y	Y	Ι	Ι	NR	Y	Y	Y	I	Ι	Y	Y	NR	NR	Ι	Y	Y
B 4	Acetone:Water extract	15	Y	Ι	Ι	Y	Y	Y	NR	Y	Y	Y	Y	Ι	Y	Y	Ι	Ι	NR	Y	Y	Y	Ι	Ι	Y	Y	NR	NR	Ι	Y	Y
B15	Acetone:Water extract	15	Y	Ι	Ι	Y	Y	Y	NR	Y	N	Y	Y	I	Y	Y	Ι	Ι	NR	Y	Y	Y	Ι	Ι	Y	Y	NR	NR	Y	Y	Y

Table 4-1.2. Data summary table for identifying presence of *Ginkgo biloba* in botanical supplements by technique by answering whether *Ginkgo biloba* is present in this material.

Is (Ginkgo biloba present in this	s material?				Y	Yes	N	No	I	Inconc	lusive		NR	Not Re	ported		С	Chroma	utograph	y	G	Genom	ic	М	Micros	сору				
		Percent Sophora	O402	O404	0432	0439	0444	O450	0451	0453	O401	O404	O406	O407	0416	0419	O420	0425	0429	0433	0438	0449	0451	0452	0452	0455	O462	O407	0433	0438	0452
	Ginkgo Source	Fruit Extract	G	G	G	G	G	G	G	G	С	С	С	С	С	С	С	С	С	С	С	С	С	С	С	С	С	М	М	М	М
A6	SRM 3246 Ginkgo biloba leaves	0	Y	Y	Y	Y	Y	Ι	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	NR	Ι	Y	Y	Ι	Y	Y	Ν
A9	Ginkgo biloba leaves untreated	0	Y	Y	Y	Y	Y	Ι	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	NR	Y	Y	Y	Y	Ι	Y	Y
A3	Ginkgo biloba leaves untreated	3	Y	Y	Y	Y	Y	Ι	Y	Y	Y	Y	Ι	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	NR	Y	Y	Y	Y	Ι	Y	Y
A16	Ginkgo biloba leaves untreated	7	Y	Y	Y	Y	Y	I	Y	Y	Y	Y	Ι	Y	Y	Y	Ν	I	Y	Y	Y	Y	Y	NR	Y	Y	Y	Y	Ι	Y	Y
A4	Ginkgo biloba leaves untreated	15	Y	Y	Y	Y	Y	I	Y	Y	Y	Y	Ι	Y	Y	Y	Y	Ι	Y	Y	Y	Y	Y	NR	Y	Y	Y	Y	Y	Y	Y
A12	Ginkgo biloba leaves untreated	15	Y	Y	Y	Y	Y	I	Y	Y	Y	Y	Ι	Ι	Y	Y	Y	I	Y	Y	I	Y	Y	NR	Y	Y	Y	Ι	Ι	Y	Y
A5	Ginkgo biloba leaves steam treated	0	Y	Y	Y	Y	Y	I	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	NR	Y	Y	Y	Y	Y	Y	Y
A14	Ginkgo biloba leaves steam treated	3	Y	Y	Y	Y	Y	Ι	Y	Y	Y	Y	Ι	Y	Y	Y	Y	Ι	Y	Y	Y	Y	Y	NR	Y	Y	Y	Y	I	Y	Y
A7	Ginkgo biloba leaves steam treated	7	Y	Y	Y	Y	Y	Ι	Y	Y	Y	Y	Ι	I	Y	Y	Y	Ι	Y	Y	Y	Y	Y	NR	Y	Y	Y	Y	Ι	Y	Y
A13	Ginkgo biloba leaves steam treated	7	Y	Y	Y	Y	Y	I	Y	Y	Y	Y	Ι	Ι	Y	Y	Y	Ι	Y	Y	Y	Y	Y	NR	Y	Y	Y	Ι	I	Y	Y
A11	Ginkgo biloba stem	15	Y	Y	Y	Y	Y	Ι	Y	Y	Y	Y	Ι	Ι	Ν	Ν	I	Ι	Ν	Y	Ι	N	Y	NR	Ν	Ν	Ν	Ι	Ι	I	Ι
A15	Ginkgo biloba stem	0	Y	Y	Y	Y	Y	Ι	Y	Y	Y	Y	Ι	I	Ν	N	Ν	N	Ν	Ι	Y	N	Y	NR	N	Ν	Ν	Ι	Ι	Y	Ι
A2	Ginkgo biloba stem	3	Y	Y	Y	Y	Y	I	Y	Y	Y	Y	Ι	Ι	Ν	Y	Ι	I	Ν	Y	Ι	N	Y	NR	Ν	Ν	Ν	Ι	Y	Y	Ι
A10	Ginkgo biloba stem	3	Y	Y	Y	Y	Y	Ι	Y	Y	Y	Y	Ι	I	Ν	N	I	Ι	Ν	Y	Ι	Ν	Y	NR	Ν	Ν	Ν	Ι	Ι	Y	Ι
A1	Ginkgo biloba stem	7	Y	Y	Y	Y	Y	I	Y	Y	Y	Y	Ι	Ι	Ν	Y	Ι	I	Ν	Y	I	N	Y	NR	N	Ν	Ν	Ι	Y	Y	Ι
A8	Ginkgo biloba leaves steam treated	15	Y	Y	Y	Y	Y	Ι	Y	Y	Y	Y	Ι	I	Y	Y	Y	Ι	Y	Y	Y	Y	Y	NR	Y	Y	Y	Y	Ι	Y	Y
B10	Aqueous ginkgo extract	0	Ι	Ι	Y	Y	I	I	I	Ι	Y	Y	Ι	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	NR	Y	Y	NR	I	NR	NR
B5	Aqueous ginkgo extract	3	Ι	Ι	Y	Y	I	Ι	I	Y	Y	Y	I	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	NR	Y	Y	NR	Ι	NR	NR
B13	Aqueous ginkgo extract	7	I	Ι	Y	I	I	I	I	Y	Y	Y	Ι	Ι	Y	Y	Y	Y	Y	Y	I	Y	Y	Y	NR	Y	Y	NR	Ι	NR	NR
B7	Aqueous ginkgo extract	15	Ι	Ι	Y	Y	Y	Ι	I	Ι	Y	Y	Ι	I	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	NR	Y	Y	NR	Ι	NR	NR
B3	Ethanol:Water extract 1	0	Ι	Ι	Y	Y	Y	Ι	Ι	Y	Y	Y	Y	Y	Y	Y	Y	Ι	Y	Y	Ι	N	Y	Y	NR	N	Y	NR	Ι	NR	NR
B8	Ethanol:Water extract 2	0	Ι	Ι	Ι	I	Y	Ι	I	Y	Y	Y	Y	Y	Y	Y	Y	Ι	Y	Y	Ι	N	Y	Y	NR	Ν	Y	NR	Ι	NR	NR
B12	Ethanol:Water extract 2	3	Ι	Ι	Y	Y	Y	Ι	I	Ι	Y	Y	Y	Y	Y	N	Y	Ι	Y	Y	Ι	N	Y	Y	NR	Ν	Y	NR	Ι	NR	NR
B16	Ethanol:Water extract 2	3	Ι	Ι	Y	Y	Y	Ι	Ι	Y	Y	Y	Y	Y	Y	N	Y	Ι	Y	Y	Ι	N	Y	Y	NR	Ν	Y	NR	Ι	NR	NR
B1	Ethanol:Water extract 2	7	Ι	Ι	Y	Y	I	Ι	I	Y	Y	Y	Y	Y	Y	Y	Y	Ι	Y	Y	Ι	Ν	Y	Y	NR	Ν	Y	NR	Ι	NR	NR
B9	Ethanol:Water extract 2	15	Ι	Ι	Y	Y	Y	Ι	Ι	Y	Y	Y	Y	Y	Y	N	Y	Ι	Y	Y	Ι	N	Y	Y	NR	N	Y	NR	Ι	NR	NR
B2	Acetone:Water extract 2	0	Ι	Ι	Ι	Y	I	Ι	Ι	Y	Y	Y	Ν	Y	Y	Y	Y	Ι	Y	Y	Ι	Y	Y	Y	NR	Y	Y	NR	Ι	NR	NR
B14	Acetone:Water extract	3	Ι	Ι	Y	Ι	Y	Ι	Ι	Ι	Y	Y	Y	Y	Y	N	Y	Ι	Y	Y	Ι	Y	Y	Y	NR	Y	Y	NR	Ι	NR	NR
B6	Acetone:Water extract	7	Ι	Ι	Y	Y	I	Ι	Ι	Ι	Y	Y	Y	Y	Y	Y	Y	Ι	Y	Y	Ι	Y	Y	Y	NR	Y	Y	NR	Ι	NR	NR
B11	Acetone:Water extract	7	I	Ι	Y	Y	Y	Ι	I	I	Y	Y	Y	Y	Y	N	Y	I	Y	Y	I	Y	Y	Y	NR	Y	Y	NR	I	NR	NR
B 4	Acetone:Water extract	15	I	Ι	Y	Y	Y	Ι	I	Ι	Y	Y	Y	Y	Y	Y	Y	Ι	Y	Y	I	Y	Y	Y	NR	Y	Y	NR	I	NR	NR
B15	Acetone:Water extract	15	I	Ι	Y	Y	Y	I	Ι	Y	Y	Y	Y	Y	Y	N	Y	Ι	Y	Y	I	Y	Y	Y	NR	Y	Y	NR	I	NR	NR

Table 4-2.1. Data summary table for identifying *Ginkgo biloba* plant part in botanical supplements by lab code by answering whether the source of the sample can be classified into one of the following groups.

Car	n the source of the sample b	e classified int	to one	of th	e follo	wing	group	s?		L	Leaf	В	Bark		S	Stem	F	Fruit	I	Inconcl	isive	NR	Not Re	ported	С	Chroma	atography	G	Genom	ic	
(arra	nged by lab code)																							L		Interose	юру				
		Percent Sophora	O401	0402	04	404	O406	0	407	0416	0419	O420	0425	O429	0432	04	433	04	38	0439	0444	0449	O450	04	51		0452		0453	0455	O462
	Ginkgo Source	Fruit Extract	С	G	G	С	С	С	М	С	С	С	С	С	G	С	М	С	М	G	G	С	G	G	С	С	С	М	G	С	С
A6	SRM 3246 Ginkgo biloba leaves	0	L	Ι	Ι	L	I	L	Ι	L	L	L	L	L	Ι	L	L	L	В	Ι	I	Ι	NR	I	L	NR	L	L	NR	L	I
A9	Ginkgo biloba leaves untreated	0	L	I	I	L	Ι	L	L	L	L	L	L	L	Ι	L	Ι	L	L	I	I	L	NR	I	L	NR	L	L	NR	L	L
A3	Ginkgo biloba leaves untreated	3	L	I	I	L	Ι	L	L	Ι	L	I	L	L	Ι	L	Ι	L	L	I	I	L	NR	I	L	NR	L	L	NR	S	L
A16	Ginkgo biloba leaves untreated	7	L	I	I	L	Ι	L	L	Ι	L	I	Ι	L	Ι	L	Ι	L	L	I	I	I	NR	I	L	NR	L	L	NR	S	L
A4	Ginkgo biloba leaves untreated	15	L	I	I	L	Ι	L	L	Ι	L	I	Ι	L	Ι	L	L	L	L	I	I	Ι	NR	I	L	NR	L	L	NR	S	L
A12	Ginkgo biloba leaves untreated	15	L	Ι	I	L	Ι	Ι	Ι	Ι	L	Ι	Ι	L	Ι	L	Ι	I	L	I	Ι	В	NR	Ι	L	NR	L	L	NR	S	L
A5	Ginkgo biloba leaves steam treated	0	L	I	I	L	Ι	L	L	L	L	L	L	L	Ι	L	L	L	L	Ι	I	I	NR	Ι	L	NR	L	L	NR	L	Ι
A14	Ginkgo biloba leaves steam treated	3	L	I	I	L	Ι	L	L	I	L	Ι	I	L	Ι	L	I	L	L	I	I	L	NR	Ι	L	NR	L	L	NR	S	L
A7	Ginkgo biloba leaves steam treated	7	L	Ι	I	L	Ι	Ι	Ι	Ι	L	I	Ι	L	Ι	L	Ι	L	L	I	I	Ι	NR	Ι	L	NR	L	L	NR	S	L
A13	Ginkgo biloba leaves steam treated	7	L	Ι	Ι	L	I	Ι	Ι	Ι	L	Ι	Ι	L	Ι	L	Ι	L	L	Ι	Ι	Ι	NR	I	L	NR	L	L	NR	S	L
A11	Ginkgo biloba stem	15	Ι	Ι	I	S	Ι	Ι	Ι	Ι	I	I	Ι	Ι	Ι	L	Ι	I	S	Ι	I	В	NR	I	S	NR	S	S	NR	S	Ι
A15	Ginkgo biloba stem	0	I	I	I	S	Ι	Ι	Ι	Ι	I	I	Ι	Ι	Ι	I	Ι	В	В	I	I	Ι	NR	I	S	NR	S	S	NR	Ι	Ι
A2	Ginkgo biloba stem	3	Ι	I	I	S	I	Ι	Ι	I	L	Ι	I	Ι	Ι	L	L	Ι	S	I	I	В	NR	I	S	NR	S	S	NR	Ι	Ι
A10	Ginkgo biloba stem	3	Ι	I	I	S	Ι	Ι	Ι	Ι	I	I	Ι	Ι	Ι	L	Ι	I	В	I	I	В	NR	I	S	NR	S	S	NR	Ι	Ι
A1	Ginkgo biloba stem	7	Ι	Ι	I	S	Ι	Ι	Ι	Ι	L	Ι	Ι	Ι	I	L	L	I	S	I	Ι	В	NR	Ι	S	NR	S	S	NR	Ι	Ι
A8	Ginkgo biloba leaves steam treated	15	L	Ι	I	L	I	Ι	Ι	Ι	L	Ι	Ι	L	Ι	L	Ι	L	L	I	Ι	Ι	NR	Ι	L	NR	L	L	NR	S	L
B10	Aqueous ginkgo extract	0	L	Ι	NR	L	Ι	L	NR	L	L	L	L	L	Ι	L	Ι	L	NR	I	I	S	NR	Ι	Ι	Ι	NR	NR	NR	L	Ι
B5	Aqueous ginkgo extract	3	L	Ι	NR	L	Ι	L	NR	Ι	L	Ι	L	L	Ι	L	Ι	L	NR	Ι	I	S	NR	Ι	Ι	Ι	NR	NR	NR	L	Ι
B13	Aqueous ginkgo extract	7	L	Ι	NR	L	I	Ι	NR	Ι	L	Ι	L	L	Ι	L	Ι	I	NR	I	I	S	NR	I	Ι	Ι	NR	NR	NR	S	Ι
B7	Aqueous ginkgo extract	15	L	Ι	NR	L	I	Ι	NR	Ι	L	Ι	L	L	Ι	L	Ι	L	NR	I	I	S	NR	Ι	Ι	Ι	NR	NR	NR	S	Ι
B3	Ethanol:Water extract 1	0	L	Ι	NR	L	I	L	NR	Ι	L	L	Ι	L	Ι	L	Ι	I	NR	I	I	S	NR	Ι	L	I	NR	NR	NR	Ι	Ι
B 8	Ethanol:Water extract 2	0	L	Ι	NR	L	Ι	L	NR	L	L	L	Ι	L	Ι	L	Ι	Ι	NR	Ι	Ι	S	NR	Ι	L	Ι	NR	NR	NR	Ι	Ι
B12	Ethanol:Water extract 2	3	L	Ι	NR	L	I	L	NR	Ι	Ι	Ι	Ι	L	Ι	L	Ι	I	NR	I	Ι	S	NR	Ι	L	I	NR	NR	NR	Ι	Ι
B16	Ethanol:Water extract 2	3	L	Ι	NR	L	I	L	NR	L	Ι	Ι	Ι	L	Ι	L	Ι	I	NR	I	Ι	S	NR	Ι	L	I	NR	NR	NR	Ι	Ι
B1	Ethanol:Water extract 2	7	L	Ι	NR	L	I	L	NR	Ι	L	Ι	Ι	L	Ι	L	Ι	I	NR	I	Ι	S	NR	Ι	L	Ι	NR	NR	NR	Ι	Ι
B9	Ethanol:Water extract 2	15	L	Ι	NR	L	Ι	L	NR	Ι	Ι	Ι	Ι	L	Ι	F	Ι	Ι	NR	I	Ι	S	NR	Ι	L	Ι	NR	NR	NR	Ι	Ι
B2	Acetone:Water extract 2	0	L	Ι	NR	L	Ι	L	NR	L	L	L	Ι	L	Ι	L	Ι	Ι	NR	Ι	I	S	NR	Ι	I	Ι	NR	NR	NR	S	Ι
B14	Acetone:Water extract	3	L	Ι	NR	L	Ι	L	NR	Ι	Ι	Ι	Ι	L	Ι	L	Ι	Ι	NR	Ι	I	S	NR	Ι	L	Ι	NR	NR	NR	S	L
B6	Acetone:Water extract	7	L	Ι	NR	L	I	L	NR	Ι	L	L	Ι	L	Ι	L	Ι	Ι	NR	Ι	I	S	NR	Ι	L	I	NR	NR	NR	L	L
B11	Acetone:Water extract	7	L	Ι	NR	L	Ι	L	NR	I	Ι	Ι	Ι	L	Ι	L	Ι	Ι	NR	Ι	I	S	NR	Ι	L	I	NR	NR	NR	S	L
B4	Acetone:Water extract	15	L	I	NR	L	I	L	NR	Ι	L	I	Ι	L	Ι	L	Ι	Ι	NR	Ι	I	S	NR	I	L	Ι	NR	NR	NR	S	L
B15	Acetone:Water extract	15	L	Ι	NR	L	Ι	L	NR	Ι	Ι	Ι	Ι	L	Ι	L	Ι	I	NR	Ι	Ι	S	NR	Ι	L	I	NR	NR	NR	S	L

Table 4-2.2. Data summary table for identifying *Ginkgo biloba* plant part in botanical supplements by technique by answering whether the source of the sample can be classified into one of the following groups.

Can the source of the sample b	e classified int	to one	of th	e follo	wing	group	s?		L	Leaf	В	Bark		S	Stem	F	Fruit	I	Inconc	usive	NR	Not Re	ported	С	Chroma	tography	G	Genom	ic	
(arranged by technique)																							l		WIRCH05C	ору				
	Percent Sonhora	O402	O404	0432	O439	0444	O450	0451	0453	O401	O404	O406	O407	O416	0419	O420	0425	0429	0433	0438	0449	0451	0452	0452	0455	O462	O407	0433	0438	0452
Ginkgo Source	Fruit Extract	G	G	G	G	G	G	G	G	С	С	С	С	С	С	С	С	С	С	С	С	С	С	С	С	С	М	М	М	М
A6 SRM 3246 Ginkgo biloba leaves	0	Ι	Ι	I	Ι	Ι	NR	Ι	NR	L	L	I	L	L	L	L	L	L	L	L	Ι	L	NR	L	L	I	Ι	L	В	L
A9 Ginkgo biloba leaves untreated	0	Ι	Ι	I	Ι	I	NR	Ι	NR	L	L	I	L	L	L	L	L	L	L	L	L	L	NR	L	L	L	L	I	L	L
A3 Ginkgo biloba leaves untreated	3	Ι	Ι	I	Ι	I	NR	Ι	NR	L	L	I	L	Ι	L	Ι	L	L	L	L	L	L	NR	L	S	L	L	Ι	L	L
A16 Ginkgo biloba leaves untreated	7	Ι	Ι	I	Ι	I	NR	Ι	NR	L	L	I	L	Ι	L	Ι	Ι	L	L	L	Ι	L	NR	L	S	L	L	I	L	L
A4 Ginkgo biloba leaves untreated	15	Ι	Ι	I	Ι	I	NR	Ι	NR	L	L	I	L	Ι	L	Ι	I	L	L	L	Ι	L	NR	L	S	L	L	L	L	L
A12 Ginkgo biloba leaves untreated	15	Ι	Ι	I	Ι	I	NR	Ι	NR	L	L	I	Ι	Ι	L	Ι	Ι	L	L	Ι	В	L	NR	L	S	L	Ι	Ι	L	L
A5 Ginkgo biloba leaves steam treated	0	Ι	Ι	I	Ι	I	NR	Ι	NR	L	L	I	L	L	L	L	L	L	L	L	Ι	L	NR	L	L	I	L	L	L	L
A14 Ginkgo biloba leaves steam treated	3	Ι	Ι	I	Ι	I	NR	Ι	NR	L	L	I	L	Ι	L	Ι	Ι	L	L	L	L	L	NR	L	S	L	L	Ι	L	L
A7 Ginkgo biloba leaves steam treated	7	Ι	Ι	I	Ι	I	NR	Ι	NR	L	L	I	Ι	Ι	L	Ι	Ι	L	L	L	Ι	L	NR	L	S	L	Ι	Ι	L	L
A13 Ginkgo biloba leaves steam treated	7	Ι	Ι	I	Ι	I	NR	Ι	NR	L	L	I	Ι	Ι	L	Ι	Ι	L	L	L	Ι	L	NR	L	S	L	Ι	Ι	L	L
A11 Ginkgo biloba stem	15	Ι	Ι	I	Ι	I	NR	Ι	NR	Ι	S	I	Ι	Ι	I	Ι	Ι	Ι	L	Ι	В	S	NR	S	S	I	Ι	Ι	S	S
A15 Ginkgo biloba stem	0	Ι	Ι	I	Ι	I	NR	Ι	NR	Ι	S	I	Ι	I	I	Ι	I	Ι	Ι	В	Ι	S	NR	S	Ι	I	Ι	Ι	В	S
A2 Ginkgo biloba stem	3	Ι	Ι	I	Ι	I	NR	Ι	NR	Ι	S	I	Ι	Ι	L	Ι	Ι	Ι	L	Ι	В	S	NR	S	Ι	I	Ι	L	S	S
A10 Ginkgo biloba stem	3	Ι	Ι	I	Ι	I	NR	Ι	NR	Ι	S	I	Ι	Ι	I	Ι	Ι	Ι	L	Ι	В	S	NR	S	Ι	I	Ι	Ι	В	S
A1 Ginkgo biloba stem	7	I	Ι	I	Ι	I	NR	Ι	NR	I	S	I	Ι	Ι	L	Ι	I	Ι	L	I	В	S	NR	S	Ι	I	I	L	S	S
A8 Ginkgo biloba leaves steam treated	15	Ι	Ι	I	Ι	I	NR	Ι	NR	L	L	I	Ι	Ι	L	Ι	Ι	L	L	L	Ι	L	NR	L	S	L	Ι	Ι	L	L
B10 Aqueous ginkgo extract	0	Ι	NR	I	Ι	I	NR	Ι	NR	L	L	I	L	L	L	L	L	L	L	L	S	I	Ι	NR	L	I	NR	Ι	NR	NR
B5 Aqueous ginkgo extract	3	I	NR	I	I	Ι	NR	Ι	NR	L	L	I	L	I	L	Ι	L	L	L	L	S	I	Ι	NR	L	Ι	NR	I	NR	NR
B13 Aqueous ginkgo extract	7	Ι	NR	I	Ι	I	NR	Ι	NR	L	L	I	Ι	Ι	L	Ι	L	L	L	Ι	S	I	Ι	NR	S	I	NR	I	NR	NR
B7 Aqueous ginkgo extract	15	Ι	NR	I	Ι	I	NR	Ι	NR	L	L	I	Ι	Ι	L	Ι	L	L	L	L	S	I	Ι	NR	S	I	NR	I	NR	NR
B3 Ethanol:Water extract 1	0	I	NR	I	I	I	NR	Ι	NR	L	L	I	L	I	L	L	I	L	L	I	S	L	Ι	NR	Ι	Ι	NR	I	NR	NR
B8 Ethanol:Water extract 2	0	Ι	NR	Ι	Ι	Ι	NR	Ι	NR	L	L	I	L	L	L	L	Ι	L	L	Ι	S	L	Ι	NR	Ι	I	NR	Ι	NR	NR
B12 Ethanol:Water extract 2	3	Ι	NR	I	Ι	I	NR	Ι	NR	L	L	I	L	Ι	I	Ι	Ι	L	L	Ι	S	L	Ι	NR	Ι	I	NR	Ι	NR	NR
B16 Ethanol:Water extract 2	3	Ι	NR	I	Ι	I	NR	Ι	NR	L	L	I	L	L	I	Ι	Ι	L	L	Ι	S	L	Ι	NR	Ι	I	NR	I	NR	NR
B1 Ethanol:Water extract 2	7	Ι	NR	I	Ι	I	NR	Ι	NR	L	L	I	L	Ι	L	Ι	Ι	L	L	Ι	S	L	Ι	NR	Ι	I	NR	I	NR	NR
B9 Ethanol:Water extract 2	15	Ι	NR	I	Ι	I	NR	Ι	NR	L	L	I	L	I	I	Ι	Ι	L	F	I	S	L	Ι	NR	Ι	I	NR	I	NR	NR
B2 Acetone:Water extract 2	0	Ι	NR	I	Ι	I	NR	Ι	NR	L	L	I	L	L	L	L	Ι	L	L	Ι	S	I	Ι	NR	S	I	NR	Ι	NR	NR
B14 Acetone:Water extract	3	Ι	NR	Ι	Ι	Ι	NR	Ι	NR	L	L	Ι	L	Ι	Ι	Ι	Ι	L	L	Ι	S	L	Ι	NR	S	L	NR	Ι	NR	NR
B6 Acetone:Water extract	7	Ι	NR	Ι	Ι	Ι	NR	Ι	NR	L	L	Ι	L	Ι	L	L	Ι	L	L	Ι	S	L	Ι	NR	L	L	NR	Ι	NR	NR
B11 Acetone:Water extract	7	Ι	NR	Ι	Ι	Ι	NR	Ι	NR	L	L	Ι	L	Ι	Ι	Ι	Ι	L	L	Ι	S	L	Ι	NR	S	L	NR	Ι	NR	NR
B4 Acetone:Water extract	15	Ι	NR	Ι	I	Ι	NR	Ι	NR	L	L	Ι	L	I	L	Ι	Ι	L	L	I	S	L	Ι	NR	S	L	NR	Ι	NR	NR
B15 Acetone:Water extract	15	Ι	NR	Ι	I	Ι	NR	Ι	NR	L	L	Ι	L	Ι	Ι	I	I	L	L	Ι	S	L	Ι	NR	S	L	NR	Ι	NR	NR

Table 4-3.1. Data summary table for identifying *Ginkgo biloba* adulterants in botanical supplements by lab code.

Wh (arra	at else was found in the Sar nged by technique)	nple?		Not Re	ported			Descriț definitiv	ption of s ve statem	ample/co nent of ac	ells witho Iulteratio	out on			Identifi unexpe	cation of cted spe	f ecies		Sophor an adul	r <i>a japon</i> lterant.	ica was	not repo	orted as		Results in-hous	consister e adulter	nt with ation	C M	Chroma Micros	tography copy	G	Genomic
		Percent Sophora	O402	0404	0432	0439	0444	0450	0451	0453	0401	0404	0406	O407	0416	0419	0420	0425	0429	0433	0438	0449	0451	0452	0452	0455	0462	O407	0433	0438	0452	
	Ginkgo Source	Fruit Extract	G	G	G	G	G	G	G	G	С	С	С	С	С	С	С	С	С	С	С	С	С	С	С	С	С	М	М	М	М	I
A6	SRM 3246 Ginkgo biloba leaves	0																														I
A9	Ginkgo biloba leaves untreated	0																														I
A3	Ginkgo biloba leaves untreated	3																														1
A16	Ginkgo biloba leaves untreated	7																														I
A4	Ginkgo biloba leaves untreated	15																														1
A12	Ginkgo biloba leaves untreated	15																														1
A5	Ginkgo biloba leaves steam treated	0																														
A14	Ginkgo biloba leaves steam treated	3																														
A7	Ginkgo biloba leaves steam treated	7																														1
A13	Ginkgo biloba leaves steam treated	7																														1
A11	Ginkgo biloba stem	15																														1
A15	Ginkgo biloba stem	0																														1
A2	Ginkgo biloba stem	3																														1
A10	Ginkgo biloba stem	3																														1
A1	Ginkgo biloba stem	7																														1
A8	Ginkgo biloba leaves steam treated	15																														1
B10	Aqueous ginkgo extract	0																														1
B5	Aqueous ginkgo extract	3																														1
B13	Aqueous ginkgo extract	7																														1
B7	Aqueous ginkgo extract	15																														1
B3	Ethanol:Water extract 1	0																														
B8	Ethanol:Water extract 2	0																														1
B12	Ethanol:Water extract 2	3																														
B16	Ethanol:Water extract 2	3																														
B1	Ethanol:Water extract 2	7																														1
B9	Ethanol:Water extract 2	15																														
B2	Acetone:Water extract 2	0																														
B14	Acetone:Water extract	3																														
B6	Acetone:Water extract	7																														I
B11	Acetone:Water extract	7																														1
B4	Acetone:Water extract	15																														1
B15	A cetone:Water extract	15																														1

 Table 4-3.2. Data summary table for identifying *Ginkgo biloba* adulterants in botanical supplements by technique.