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Executive Summary

Introduction

Iris Exchange (IREX) IX is an evaluation of automated iris recognition algorithms. The first part of the evaluation was a
performance test of both verification (one-to-one) and identification (one-to-many) recognition algorithms over operational
test data. Those results are summarized in NIST IR 8207 [1]. The second part of the evaluation constitutes a multispectral
evaluation of iris recognition. Those results are summarized in this report.

All currently deployed iris recognition systems operate on images of the iris illuminated in the near infrared band of the
electromagnetic spectrum. The ISO/IEC 19794-6 [2] and 29794-6 [3] standards require the eye to be illuminated between
"approximately 700 and 900 nanometers (nm)". Near infrared light is specified because melanin, the pigment that makes
dark eyes dark 1, is nearly transparent in the near infrared. This evaluation assesses the accuracy of state-of-the-art iris
matchers over a much wider range of the spectrum. Particular attention is placed on the visible (400 nm to 700 nm) and
short wave infrared (700 nm to 1550 nm) bands.

Principle testing was performed over the Consolidated Multispectral Iris Dataset (CMID) which was provided to NIST by the
Southern Methodist University. Collected in well controlled laboratory settings, the dataset is ideal for multispectral analysis.
It contains about a quarter-million iris samples from over 200 subjects, by far the largest of its kind as of this writing. Thirteen
research institutions submitted matching algorithms for testing.

Key Results

• Near-Infrared (NIR) Matching: Matching accuracy is very dependent on illumination wavelength, even within the
standard 700 nm to 900 nm band. For some iris matchers, error rates vary by more than an order of magnitude
depending on whether matching is performed at 700 nm or 910 nm. Nearly every matcher performs better at 910 nm
than at 700 nm, 800 nm, or 970 nm. Matching accuracy was only measured at discrete wavelengths so an "optimal
wavelength" was difficult to identify but is probably around 850 nm.

• Visible Wavelength (VW) Matching: The VW band spans from about 400 nm to 700 nm. Matching accuracy tends
to be much better at the longer end of the VW band. At the shortest end (405 nm) matching is not viable. One matcher
performs significantly better than the others at visible wavelengths. At 620 nm, this matcher is capable of correctly
matching irises 95.5 % of the time while falsely matching only once every ten thousand attempts when using both
eyes for matching.

• Effect of Eye Color: Lighter irises (i.e. blue, grey, green) match better than darker irises (i.e. brown, black) at visible
wavelengths. However, at standard NIR wavelengths darker irises tend to match better than lighter irises. The reason
for the former result is obvious: the melanin pigments in darker irises are obscuring the iris texture. As for the latter
result, it is unclear if this is due to more rigorous algorithm tuning over darker irises (since brown is by far the most
common eye color), or if there is something intrinsic in the features of dark irises that makes them easier to recognize.
Despite lighter irises matching better than darker irises at visible wavelengths, overall accuracy for both eye hues is
still better in the NIR.

• Cross-Wavelength Matching: Matching tends to be more accurate when both compared iris samples were acquired
at the same (or similar) wavelengths. Accuracy is best for most matchers when both samples were acquired at 910
nm. One matcher that performs well on VW iris samples can compare VW samples to each other about as well as
it can compare VW samples to NIR samples. False matches are more common when both compared samples were
acquired at visible wavelengths.

• Impact of Wavelength on the False Match Rate: Generally, matching accuracy is assessed by quantifying two
properties: 1) the ability to recognize that two iris samples represent the same eye, and 2) the ability of the matcher to
distinguish when two iris samples represent different eyes. All previous research on multispectral iris recognition have
focused on the first property. This is the first study to address the second property. As Daugman has often noted, a
strength of iris recognition is its ability to distinguish samples that come from different sources. This is evidenced by
the extremely low false match rates (FMRs) iris matchers are able to achieve. Although this is true for conventional
(near-IR) matching, FMR tends to be much less predictable when comparing VW samples. FMR can vary by orders
of magnitude depending on the wavelength at which the samples were acquired. Moreover, the variation in FMR is

170 to 90 % of the world’s population have dark brown eyes.
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Executive Summary 2

inconsistent across matchers. Thus, calibrating a deployed iris recognition system to achieve a desired FMR could be
difficult if the system operates over samples acquired at non-standard wavelengths.

• Comparison to Earlier Research: The multispectral results in the current investigation do not perfectly align with
existing literature. This study found that accuracy is highest somewhere between 800 and 910 nm for most matchers.
Past studies have found that the mean SQRT-normed Hamming Distance2 is minimized at shorter wavelengths (800
nm [5] and 590 nm [6]). Additionally, the current study found that accuracy is highly sensitive to the wavelength
at which the samples were acquired while the previous studies found that accuracy changes little across samples
acquired between 590 nm and 970 nm. A possible explanation for the discrepancies is that previous studies used the
mean SQRT-normalized Hamming Distance while the current study uses the false non-match rate (FNMR) at a fixed
decision threshold or false match rate (FMR) to assess accuracy. The latter places greater emphasis on the behavior
of the crucial right-tail of the mated distribution and is therefore the recommended statistic for assessing accuracy.
The current study also uses a much larger dataset consisting of images collected in highly controlled environments.

• Low-resolution Iris Matching: There are forensic applications of iris recognition that are likely to require matching
iris samples acquired at resolutions below the ISO/IEC 19794-6:2011 recommended minimum spatial sampling rate
of 10 pixels / mm. This study found that the ability of matchers to recognize that two samples represent the same iris
remains relatively stable until the radius of the iris is reduced to about 20 pixels (corresponding to ≈4 pixels / mm).
However, the ability of matchers to distinguish that two samples represent different irises deteriorates much earlier,
at radii of 64 pixels (≈12.8 pixels / mm). This suggests that accuracy could be improved by acquiring iris samples
at spatial sampling rates above the current ISO/IEC 19794-6:2011 recommendation. The ability of most matchers
to distinguish between irises is poorest when the radius is between 10 and 16 pixels. No single matcher yields the
best accuracy across all resolutions. NeuroTechnology’s submission achieves the best accuracy at higher resolutions
while Tafirt’s and IrisID’s matchers achieve the best accuracy at lower resolutions. The latter two matchers are capable
of correctly matching the iris more than half the time when the radius of the iris is only 8 pixels (approximately 0.8
pixels/mm). When low-resolution iris samples are compared, it appears to be the lower resolution of the two that
dictates matching accuracy.

• Temporal Case Study: A short experiment was conducted to demonstrate that two images of a person’s iris can be
successfully y matched despite being captured 48 years apart. Both compared iris images were acquired "in the wild"
with conventional (non-iris) cameras and video equipment. The first sample is a fairly high resolution (red channel)
image of an actor’s eye from the film 2001:A Space Odyssey. The second is from a photograph of the same actor
captured at a celebrity event in 2015. The radius of this iris is 43 pixels, although tiling artifacts from JPEG compression
were evident. All but one of the 13 matchers produce low measures of dissimilarity. Nine of the 13 matchers produce
scores corresponding to an FMR less than 10−5. This indicates an extremely high degree of confidence that the two
samples represent the same iris. A further iris2pi matcher (not submitted to IREX IX) produced a Hamming Distance
of 0.179. The probability of two samples of different eyes producing such a low Hamming Distance is less than one in
one hundred billion.

• Multiwavelength Fusion: Fusion at the score level involves combining scores acquired at different illumination wave-
lengths into a single fused score. This fused score is then used to make a final match / nonmatch decision. Accuracy
improved significantly when scores acquired at 910 nm were combined with scores acquired at 700 nm or 800 nm.
Score fusion at visible wavelengths led to only minor improvements in accuracy (and even then, primarily only for
lighter-eyed subjects).

2Daugman[4] recommended a correction factor to take into account the change in the width of the non-mated distribution as the fraction of the iris useful
for iris recognition varies due to e.g. specularities and occlusion. This is an important correction for operational systems. It can confuse results in laboratory
experiments. Some implementations of iris2pi have an option to turn this off; some do not. For algorithms used in IREX-IX, the use of such normalization
is an unknown.
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1 Introduction

1.1 Purpose

This report constitutes a multispectral evaluation of iris recognition. The accuracy of automated iris matchers over a wide
band of the electromagnetic spectrum was assessed. Particular focus was placed on the visible (400 nm to 700 nm) and
near infrared (700 nm to 1550 nm) wavelength bands. Iris Exchange (IREX) IX Part 2 utilized a test dataset of over 220 000
images and several state-of-the-art iris matchers, making it the largest evaluation of multispectral iris to date. For this reason,
more detailed analyses could be performed compared to previous studies (e.g. determining whether certain behaviors hold
across different eye colors). Additionally, conclusions could be drawn to a much higher degree of confidence than in prior
studies.

Testing was performed over the Consolidated Multispectral Iris Dataset (CMID) which was provided to the National Institute
of Standards and Technology (NIST) by the Southern Methodist University. Collection occurred in highly controlled laboratory
environments using volunteers. Although iris recognition is particularly well suited for large-scale identification mode (a.k.a.
one-to-many mode) deployments, for academic evaluation verification mode (a.k.a. one-to-one mode) is preferred because
it can more precisely test core algorithm capability. Thirteen research institutions submitted matching algorithms for testing.
Only results for their verification mode submissions are reported.

The main focus areas of this evaluation are:

• Optimal Wavelength for Matching: Not all iris cameras illuminate the iris at the same illumination wavelength. The
ISO/IEC 19794-6 standard requires the iris to be illuminated between "approximately 700 and 900 nanometers (nm)".
This study aims to assess the degree to which accuracy is dependent on wavelength and to determine if one specific
wavelength consistently yields better accuracy than the others.

• Cross-wavelength Matching Accuracy: Cross-wavelength matching refers to comparing iris samples acquired at
different wavelengths. The fact that different iris cameras utilize different emission spectra poses an interoperability
problem. This study aims to quantify the accuracy penalty that results from comparing iris samples acquired at different
wavelengths. This includes comparing iris samples acquired at visible wavelengths to ones acquired at near infrared
wavelengths.

• Use as a Forensic Tool: Forensic iris is a burgeoning field. Forensic science is the application of science to criminal
and civil law. This study explores the potential for using iris as an investigational tool for law enforcement. This
is expected to involve iris samples acquired "in the wild" from photographs, videos, or other sources not originally
intended for use in iris recognition. The limits of iris recognition over such images is tested.

• Multiwavelength Fusion: The appearance of the iris differs across spectral bands, introducing the possibility of
improving accuracy by combining the information garnered at each band. This study attempts to improve matching
accuracy by applying score and sensor level fusion techniques to combine this information.

1.2 The IREX Program

IREX I
Compact Storage Formats

ANSI / NIST Type 17

IREX II
Sample Quality Metrics 

ISO / IEC 29794-6

IREX III
Large-scale 1:N

Performance Test

IREX IV
Compression Profiles
for Compact Storage

IREX V
Guidance Materials
for Image Collection

IREX VI
Temporal Stability

/ Ageing

IREX IX
Performance Test /

Multispectral Evaluation

2009         2010        2011         2012        2013 2014        2015        2016        2017        2018

IREX Ongoing
Performance Testing

Figure 1.1: Timeline of the IREX program, including a possible future installment.
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The IREX Program was initiated by NIST to support an expanded marketplace of iris-based applications. IREX provides
quantitative support for iris recognition standardization, development, and deployment. To date, seven activities have been
completed and one is tentatively planned. Each is summarized below.

• IREX I [7] was a large-scale, independently administered, evaluation of one-to-many iris recognition. It was conducted
in cooperation with the iris recognition industry to develop and test standard formats for storing iris images. Standard
formats are important for maintaining interoperability and preventing vendor lock-in. The evaluation was conducted in
support of the ISO/IEC 19794-6 [8] and ANSI/NIST-ITL 1-2011 [9] standards.

• IREX II [10] supported industry by establishing a standard set of quality metrics for iris samples. Although iris recog-
nition has the potential to be extremely accurate, it is highly dependent on the quality of the samples. The evaluation
tested the efficacy of 14 automated quality assessment algorithms in support of the ISO/IEC 29794-6 standard [11].

• IREX III [12, 13] was a performance test of the latest iris recognition algorithms over operational data. Despite growing
interest in iris-based technology, at the time there was a paucity of experimental data to support published theoretical
considerations and accuracy claims. IREX III constituted the first public presentation of large-scale performance
results using operational data.

• IREX IV [14, 15] built upon IREX III as a performance test of one-to-many iris recognition. In addition to providing
participants from previous evaluations an opportunity to further develop and test their recognition algorithms, this
evaluation explored the potential for using a cost equation model for optimizing algorithms for specific applications.

• IREX V [16] is an ongoing effort to provide best practice recommendations and guidelines for the proper collection
and handling of iris images.

• IREX VI [17, 18] explored a possible aging effect for iris recognition. The intrinsic features of the iris may naturally
change over time in a way that affects recognition accuracy. IREX VI found no evidence of a significant and widespread
ageing effect up to nine years (data for intervals larger than nine years was unavailable). Later studies supported this
conclusion [19, 20].

• IREX VII defines a framework for communication and interaction between components in an iris recognition system. By
introducing layers of abstraction that isolate underlying vendor-specific implementation details, a system can become
more flexible, extensible, and modifiable. NIST is currently using the framework internally, but no specifications or
software have been publicly released as of this writing.

• IREX VIII is a placeholder for an as yet unimplemented conformance test of standard iris samples. The activity would
constitute a laboratory evaluation of iris recognition algorithms capable of producing and consuming conformant iris
samples according to ISO/IEC 19794-6:2011. There are currently no plans to move forward with this activity.

• IREX IX [1] is a performance test of the current state of the art over operational test data as well as an evaluation of
multispectral iris recognition.

• IREX Ongoing is a possible successor to IREX IX. If conducted, it would be an ongoing, largely automated, evaluation
of iris recognition algorithms similar to MINEX III [21] and FRVT Ongoing [22].
______________________________________________________________________________________________________ 
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2 Evaluation Procedures

IREX IX is a technology evaluation in the sense that it is "an evaluation of multiple products providing the same capability"
[23]. IREX IX’s focus is on algorithm performance over other factors that might be relevant to the deployment and operation
of a biometric system (e.g. societal and economic factors, policy drivers, legacy data). Performance is assessed using
metrics that provide a general idea of the technology’s capabilities. The relative importance of these metrics will depend on
how the technology is applied.

Caution is advised when attempting to extrapolate numerical results from this evaluation to arbitrary applications. This eval-
uation measures performance over a particular test dataset collected under specific environmental conditions with specific
hardware. It is difficult to predict how changing any of these parameters might affect performance.

2.1 Test Environment

The evaluation was conducted off-line at a NIST facility. Offline evaluations are attractive because they allow uniform, fair,
repeatable, and large-scale statistically robust testing. However, they do not capture all aspects of an operational system.
While this evaluation is designed to mimic operational reality as much as possible, it does not include a live image acquisition
component or any interaction with real users.

Testing was performed on high-end PC-class blades running the Linux operating system (CentOS 7.2), which is typical of
central server applications. Most of the blades had Dual Intel Xeon E5-2695 v3 3.3 GHz CPUs (56 total cores) with 192 GB
of main memory. The test harness used concurrent processing to distribute workload across multiple blades.

2.2 Test Dataset

The Consolidated Multi-Spectral Iris Dataset (CMID) was provided to NIST by the Southern Methodist University, which was
sponsored by the US government to collect the images. Collection occurred in controlled laboratory environments using
volunteers. For this reason, the quality of the samples is generally very high. The OPS-III dataset used in IREX IX: Part I
was field-collected and contains poor quality samples (e.g. occluded and out-of-focus irides) with greater frequency. The
following description of CMID is excerpted from [24]:

• Nontraditional Spectrum – Using a custom designed camera assembly, the CMID captures six images
each of the right and left eye across a spectrum that ranges from 400 nm to 1600 nm. The LEDs used in
this experiment have been certified as eye safe by multiple radiation safety experts as well as Institutional
Review Boards at both Southern Methodist University (SMU) and the government sponsor. High-resolution
visible light images of the ocular region are also taken using a professional photographic camera. Lastly,
an image of the left and right iris is acquired using a commercial iris collection device.

• Duration and Repetition – The CMID collection is in its final (fourth) year with a goal of collecting each
subject 16 times over that period.

• Geographic Separation – The CMID enrolled more than 400 subjects1 across two geographically sepa-
rated collection sites in order to increase the diversity of the collected subject pool. Roughly two-thirds of
subjects are collected at the SMU research site.

• Scale – The CMID collects more than 160 iris images per session. The final CMID dataset is expected to
contain more than 1 million laboratory quality iris images2.

For samples acquired outside the normal 700 to 900 nm range, the pupil and limbus boundaries may be difficult to localize
using standard techniques (e.g. Daugman’s integrodifferentiable operator [25]). To address this problem, key points were
manually identified for each iris image and passed to the matching software (see Figure 2.2). A final quality control step
was performed to verify the overall accuracy of the boundary localizations. The full process is described in [24]. Figure 2.1
shows some example images from the dataset.

1The test set provided to NIST only contains samples from 220 subjects.
2The test set provided to NIST contains about 250 thousand images.
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(a) 405 nm (b) 505 nm (c) 620 nm

(d) 700 nm (e) 800 nm (f) 910 nm

(g) 970 nm (h) 1070 nm (i) 1200 nm

(j) 1300 nm (k) 1450 nm (l) 1550 nm

Figure 2.1: A blue iris acquired at different illumination wavelengths from the CMID.
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Figure 2.2: An example of an iris sample with manu-
ally identified boundary points. Eyelid, limbus, and pupil
borders were all identified in addition to the iris center.

Participant Phase 2 Phase 3
Aware Inc. D D
Decatur D D
DeltaID D D
Dermalog D D
FotoNation D D
IrisID D D
NEC D D
NeuroTechnology D D
Qualcomm D D
SOAR Advanced Technologies D
TAfIRT D D
Tiger IT D D
Unique Biometrics D

Table 2.1: Participants of IREX IX along with the submission
phases in which they participated. Phase 1 results are not published.

2.3 Matching Software

Thirteen commercial organizations and academic institutions submitted 46 iris recognition software libraries for evaluation.
The participation window opened on October 7th, 2016 and closed on September 7th, 2017. Participation was open world-
wide to anyone with the ability to implement an iris matching algorithm. There was no charge to participate.

Participants provided their submissions to NIST as static or dynamic libraries compiled on a recent Linux kernel. The libraries
were then linked against NIST’s test driver code to produce executables. A further validation step was performed to ensure
that the algorithms produce identical output on both the participants’ and NIST’s test machines. The full process is described
in the IREX IX API and CONOPS document [26].

Participants submitted their implementations in three rounds referred to as "phases". After the first two phases, participants
were provided with rudimentary feedback on the performance of their submissions in the hope that it would assist with
algorithm development for the next phase. Although only two phases were planned, a third phase was introduced and the
first was designated a test phase. Table 2.1 lists the IREX IX participants along with the phases in which they participated.
The deadline to submit to the second phase was January 21st, 2017 and the deadline for the third phase was September 1st,
2017. Each participant was required to submit at least one one-to-one implementation and one one-to-many implementation
for each phase, although participants were allowed to submit up to two of each per phase. Some of the participants are new
to the IREX program and some (Iris ID, NeuroTechnology, Delta ID, NEC, FotoNation) have participated in previous IREX
evaluations.

2.4 Performance Metrics

Since this report has a more academic focus, accuracy is only assessed for one-to-one matching (a.k.a verification mode).
Additionally, performance factors other than accuracy (e.g. computation time, template size, memory utilization) are not
reported. Section 2.4.1 details the accuracy metrics while Section 2.4.2 provides a high-level introduction to estimates of
uncertainty (e.g. confidence intervals) and how they should be interpreted in this report.

2.4.1 Accuracy

The degree of dissimilarity between two biometric templates is quantified by a dissimilarity score. In the case of John
Daugman’s IrisCode algorithm [27], the dissimilarity score is also known as a Hamming Distance. A dissimilarity score is
referred to as mated if it is the result of comparing two templates representing the same iris (or pair of irides in the case
of two-eye comparisons). It is known as a nonmated score if it is the result of comparing templates representing different
irides. An identity claim is accepted if the dissimilarity score is below (or equal to) a preset decision threshold. Otherwise, the
identity claim is rejected. As with any binary classification problem, two types of decision errors are possible. The first occurs
when a nonmated comparison is misclassified as mated. This is known as a false match. The second type of decision error
occurs when a mated comparison is misclassified as nonmated. This is known as a false nonmatch. The rates at which
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these errors occur are the FMR and FNMR. Formally, let mi (i = 1...M) be a set of M mated dissimilarity scores and n j
( j = 1...N) is a set of N nonmated dissimilarity scores. Then the accuracy statistics are computed as

FNMR(τ) =
1
M

M
∑

i=1
[mi > τ], and (2.1)

FMR(τ) =
1
N

N
∑
j=1

[n j ≤ τ] , (2.2)

where τ is the decision threshold and [...] is the Iverson Bracket [28] which denotes 1 if the boolean expression inside the
bracket is true and 0 otherwise.

Since two types of decision errors are possible, no single numerical value can fully convey the accuracy of a biometric
matching algorithm. Any fixed decision threshold yields a specific false match rate and false nonmatch rate. Adjusting the
decision threshold reduces the rate of one type of error but at the expense of the other. This relationship is characterized by
a DET (Detection Error Trade-off) curve [29], which plots the tradeoff between the two error rates. DET curves have become
a standard in biometric testing, superseding the analogous ROC (Receiver Operating Characteristic) curve. Compared
to ROC curves, the logarithmic axes of DET curves provide a superior view of the differences between matchers in the
critical high performance region. A comprehensive introduction to the fundamentals of assessing the accuracy of binary
classification systems can be found in [30].

2.4.1.1 Treatment of Feature Extraction Failures

Participants were instructed to provide submissions that always create comparable templates, even when no useful feature
information could be extracted. These "blank templates" are expected to produce high measures of dissimilarity (effectively
infinity) when compared to any other template. This was done for ease of testing but does not reflect operational reality.
For example, a blank template would never be saved onto a smartcard and used for access control. If the template is
being acquired in real-time from a cooperative user, the user could be prompted to provide a new sample or different
accommodations could be made (e.g. using fingerprints instead). This inability to handle template creation errors in real
time highlights a weakness of off-line testing.

2.4.2 Uncertainty Estimation

The Multispectral Dataset is a sampling of students and professors from the Southern Methodist University. This is not
a perfect representation of the overall adult human population, but we nevertheless use the results in this report to draw
conclusions about how automated iris recognition behaves over adults in general. Thus, we are effectively treating the set
of all human adults as the population.

The confidence intervals presented in this report show how well the accuracy statistics calculated over our test data estimate
the true population values. All of our confidence intervals are computed at the 90 % confidence level. This does not mean
there is a 90 % probability that the true population value falls within the interval. Rather, it means that if the population is
repeatedly sampled and an interval estimate is computed each time, the interval estimates would contain the true population
value 90 % of the time.

The iris images in the Multispectral Dataset are paired in various ways to form comparison sets. These pairings introduce a
correlation structure. For example, samples of a person’s left and right eye captured during the same session are expected
to be highly correlated in terms of sample quality. Wayman [31] found that failing to account for these dependencies can
lead to overly optimistic estimates of confidence intervals. Thus, we took steps to factor the correlation structure into our
estimates of uncertainty. The full procedure is detailed in Appendix A.
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Figure 3.1: FNMR as a function of the wavelength at which both of the compared samples were acquired. Results for
two-eye comparisons are presented for 13 matchers. The decision threshold is fixed to elicit an FMR of 10−4 at 800 nm.
Each point is generated from about half a million mated comparisons. FMR is computed from about 40 million nonmated
comparisons.

3 Results

3.1 Intra-spectral Matching

All currently deployed iris recognition systems operate on iris images illuminated in the near infrared (NIR) band of the
electromagnetic spectrum. The ISO/IEC 19794-6 & 29794-6 standards require the eye to be illuminated between "approx-
imately 700 and 900 nanometers (nm)" [2, 3]. NIR light is specified because melanin, the pigment that makes dark eyes
dark1, is nearly transparent in the NIR. This makes the stromal structure of dark brown irises easier to resolve. Operation at
still longer wavelengths becomes problematic because fluids bathing the iris are strongly absorbing at wavelengths beyond
1000 nm and silicon based image sensors lose essentially all sensitivity. This section explores iris matching accuracy over
wavelenegths ranging from a low of 405 nm (the nominal short edge of the visible spectrum) to a high of 1550 nm.

Figure 3.1 plots FNMR as a function of the wavelength at which the samples were acquired. All comparisons are between
samples acquired at the same wavelength. When computing FNMR, the decision threshold was fixed to elicit an FMR of
10−4 when the samples were acquired at 800 nm. Only one matcher from each participant is shown because matchers
submitted by the same participant tend to exhibit similar behavior. Eleven of the 13 IREX-IX matchers produce their lowest
FNMR at 910 nm. FotoNation produces a slightly lower FNMR at 800 nm than at 910 nm but the difference is probably
not statistically significant. The line segments connecting points are intended to make it easier for readers to track the
results for specific matchers and should not be regarded as reliable interpolations. The true minimum FNMR for each of
the 11 matchers could lie anywhere between 800 nm and 970 nm. With the exception of Unique Biometrics 1, none of the
matchers produce their lowest FNMR at 700 nm or 970 nm. FNMR appears to be extremely dependent on wavelength, even
within the standard 700-900 nm band. For example, FNMR is about 25 times greater at 700 nm compared to 800 nm for
Qualcomm 6.

At the visible wavelengths 505 nm and 620 nm, NeuroTechnology 5 achieves the lowest FNMR among all matchers, although
several other matchers perform better at longer wavelengths. At 620 nm, NeuroTechnology 5 produces an FNMR of 0.045

170 to 90 % of the world’s population have dark brown eyes.
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Figure 3.2: FNMR and mean dissimilarity score as a function of the wavelength at which both of the compared samples
were acquired. Two-eye matching results are presented for Qualcomm 6. When computing FNMR, the decision threshold
was fixed to elicit an FMR of 10−4 at 800 nm. Each point is generated from about half a million mated comparisons.

(corresponding to a "true match rate" of 0.955). Matching does not appear viable at 405 nm, near the blue edge of the
visible spectrum. A visual inspection of the iris images revealed that little iris texture is visible at this wavelength (although
blood vessels in the sclera are considerably more apparent than at any other tested wavelength). For all matchers, FNMR
increases monotonically as the wavelength decreases from 800nm to 405 nm. Similarly, FNMR increases monotonically as
the wavelength elongates from 800 nm to 1550 nm (Unique Biometrics 1 excepted).

The results presented here are not in perfect alignment with the existing literature. Ngo et. al. [5] found that Daugman’s
normalized Hamming distance2 for mated comparisons is minimized when both of the compared iris images are acquired
at 800 nm, suggesting this might be the best wavelength at which to acquire iris images. However, Figure 3.1 in this report
seems to indicate FNMR is minimized at 910 nm. The dataset used by Ngo et. al. at the USNA was small, containing only
6 subjects, and no manual markup of the iris boundaries was provided. Ives et. al. [6], also at the USNA, expanded on Ngo
and found that when boundary coordinates were not provided, the lowest normalized Hamming distance was achieved at
910 nm, with slightly increased distances at the neighboring wavelengths 810 nm and 970 nm. When boundary coordinates
were provided, the mean distance score varied little between 500 and 900 nm, with the lowest mean score at 590 nm. This
contrasts with the current report, which indicates accuracy is highly sensitive across this wavelength band.

The apparent discrepancy between the current results and previous research could be explained in part by the different
accuracy metrics used. This report uses FNMR (at fixed FMR) to investigate the impact of wavelength on the ability of
the matchers to recognize irises. Most previous studies used the mean SQRT-normed Hamming Distance (a common
measure of dissimilarity) rather than FNMR. Figure 3.2 demonstrates how conclusions can differ depending on the metric
used. Results are shown for Qualcomm 6 because it produces Hamming distance like scores3. The figure demonstrates
that mean dissimilarity score is minimized at 800 nm while FNMR is minimized at 910 nm. Mean score is a more robust
statistic than FNMR in the sense that it is less sensitive to outliers. However, in the context of iris recognition, outliers are
of particular interest because they tend to dictate matcher accuracy. An exception would be if the outliers are caused by
unwanted covariates. For example, capturing at 620 nm could be more distracting to the subject because the illuminators
are visible to the naked eye. To mitigate such possibilities, SMU manually inspected the images in the CMID. Since the CMID
illumination was provided by LEDs at the respective wavelengths and the LEDs are, by necessity, at different locations, we
cannot rule out, at this time, the possibility that some of the observed variance is due to illumination position.

Figure 3.3 plots FMR as a function of the wavelength at which both of the compared samples were acquired. Results are
less consistent compared to Figure 3.1. Most of the matchers produce higher FMRs at 505 nm and 620 nm compared to
800 nm. For NeuroTechnology 5, FMR increases from 0.0001 to ≈ 0.0006 when going from 800 nm to 620 nm. Within the
range 505 nm to 1300 nm, FMR varies by about two orders of magnitude for several of the matchers. At the given decision
threshold, the FMR is 500 times greater at 970 nm compared to 700 nm for DeltaID 6. With the exception of Tafirt 6, FMR
never varies by more than about a factor of two between 970 nm and 1200 nm for any of the matchers.

2A correction factor applied to iris comparison scores first proposed by Daugman [4]. The score is adjusted based on the amount of overlapping iris
texture between the compared iris images. The result is a more stable and predictable non-mated distribution. This can be useful for operational systems
but can confound results in laboratory experiments.

3Algorithms submitted to IREX are typically black boxes; we are not given insight into the internal details of the algorithms.
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Figure 3.4: FMR as a function of the decision threshold for different capture wavelengths. Results are presented for two-eye
comparisons for NeuroTechnology 5.

Figure 3.4 plots FMR as a function of dissimilarity score for NeuroTechnology 5. Such plots provide more information
about the non-mated distributions but can be more difficult to interpret and analyze, especially when the distributions do not
approximate smooth curves. The figure demonstrates that FMR varies by about a factor of 10 depending on the wavelength,
with the lowest FMR at 910 nm and the highest at 620 nm, although the factor difference tends to increase as the decision
threshold decreases.
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3.2 Cross-spectral Matching

This section assesses accuracy when iris samples acquired at different wavelengths are compared to each other. Figure 3.5
is a heatmap where FNMR is indicated by color and the axes specify the illumination wavelengths at which the verification
and enrollment samples were acquired. The main diagonal shows FNMR when both compared samples were acquired at
the same illumination wavelength. Broadly speaking, FNMR tends to be lower when the samples were acquired at the same,
or similar, wavelengths, and is lowest when both samples were acquired at 910 nm. The authors were curious about what
might be causing the few misses that do occur at 910 nm. A manual inspection found that some quality-related problems are
present in these images (despite attempts by SMU to filter such images out). The most prominent problems appear to be
blur and limited visible iris texture due to eyelid occlusion (and often a combination of the two). The IREX III supplemental
report found that eyelid occlusion compounded by blur is a common cause of misses. When both samples were acquired at
620 nm, the FNMR is 0.045. When one sample was acquired at 620 nm and the other at 800 nm, FNMR is slightly greater
at 0.055. Even though 910 nm appears to be better for NIR matching, samples acquired at the shorter NIR wavelengths
(700 and 800 nm) yield much lower FNMRs when compared to samples acquired at visible wavelengths.
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Figure 3.5: Relationship between FNMR and the wavelength at which the compared samples were acquired. Capture
wavelength for verification and enrollment samples is indicated by the axes. color indicates FNMR, with the precise number
sometimes shown in the cell. Results are for two-eye comparisons for NeuroTechnology 5. Each FNMR value is generated
from about 65 thousand mated comparisons. The decision threshold is set to yield an FMR of 10−4 when both of the
compared samples were acquired at 800 nm.
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Figure 3.6 is a heat map where FMR is indicated by color and the axes specify the illumination wavelengths at which the
verification and enrollment samples were acquired. It is similar to Figure 3.5 except the color indicates FMR rather than
FNMR. FMR appears to be higher at shorter wavelengths (specifically between 505 nm and 800 nm). FMR is highest when
both compared samples were acquired at 620 nm. FMR is almost always zero or very nearly zero when one of the compared
samples was acquired at 405 nm, or at 1450 nm or above. When one of the compared samples was acquired between 910
nm and 1300 nm results are much less consistent. FMR is often unusually low when one of the samples was acquired at
910 nm, This is probably an artifact of NeuroTechnology’s matcher as it does not occur with the other matchers. Figures 3.3
and 3.6 both demonstrate the lack of stability of the nonmated distribution across wavelengths.
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Figure 3.6: Relationship between FMR and the wavelength at which the compared samples were acquired. Capture
wavelength for verification and enrollment samples is indicated by the axes. color indicates FMR. Sometimes the factor
increase in FMR compared to when both samples were acquired at 800 nm is shown in the cell. Results are for two-eye
comparisons for NeuroTechnology 5. Each FMR value is generated from about a million and a half nonmated comparisons.
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Figure 3.7: FNMR as a function of capture wavelength when comparisons are broken out by eye hue (light or dark). Results
are presented for two-eye comparisons for NeuroTechnology 5 and NEC 5. The decision threshold is fixed to elicit an FMR
of 10−4 at 800 nm ignoring eye color. Each point is generated from about 25 thousand comparisons for light eyes and 40
thousand for dark eyes.

3.3 Effect of Eye Color

Several studies have suggested that accuracy at visible wavelengths is likely to be impacted by eye color [32, 5, 33, 34]
although they did not investigate the problem directly. As previously noted, melanin pigments in darker irises absorb light at
visible wavelengths, making recognition more difficult. This is demonstrated for two matchers in Figure 3.7, which plot FNMR
as a function of the wavelength at which both of the compared samples were acquired. Comparisons are further broken out
by eye color. Most subjects in the dataset have brown eyes (297). Comparisons involving these subjects are classified as
Dark. Comparisons involving subjects with green (78 subjects), grey (9 subjects), blue (148 subjects), and blue-green (28
subjects) are classified as Light. Comparisons involving hazel-eyed subjects are ignored. For both NeuroTechnology 5 and
NEC 6, FNMR is lower for light-eyed comparisons than dark-eyed comparisons at 505 nm and 620 nm. This holds true for
all of the matchers tested. At 700 nm, FNMR is comparable between the two eye hues. At this wavelength, absorption by
the melanin is almost completely attenuated [35]. Interestingly, FNMR is typically lower for darker eyes than lighter eyes at
800 nm and 910 nm. This holds true for nearly all of the more accurate matchers over the CMID images (Qualcomm 6, Tiger
IT 6, NeuroTechnology 5, DeltaID 6, and NEC 5). The reason is unclear. It could be the result of more rigorous training or
tuning over individuals with darker eyes, or there could be something intrinsic in the features or behavior of individuals with
darker eyes that makes them easier to recognize. Limbus, pupil, and eyelid boundary coordinates were provided for all iris
images, so the difference cannot be due to the accuracy of boundary localization.
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3.4 Multispectral Fusion

Multiwavelength fusion refers to combining multiple acquisitions of the iris at different wavelengths to improve performance.
Fusion can occur at four possible levels depending on where along the matching process the data from multiple biometric
sources are integrated. The four levels are sensor, feature, score, and decision level. The sensor and feature levels are
referred to as pre-mapping (i.e. before matching) fusion while the score and decision levels are referred to as post-mapping
(i.e. after matching) fusion [36]. Post-mapping fusion strategies tend to be fairly simple and straightforward to implement.
The downside is that the data is combined further along in the matching process and is thus heavily reduced by the time it is
fused. This can diminish the potential for improving performance since a lot of the original data is lost before fusion occurs.

3.4.1 Score Level

Score level fusion refers to combining comparison scores from different biometric sources into a single score. The fused
score is then used to make the final match/nonmatch decision. Figure 3.8 depicts the process of combining two scores from
different sources into a single score. Score level fusion occurs further along in the matching process than sensor and feature
level fusion but earlier than decision level fusion. In the case of multispectral fusion, each score corresponds to a comparison
performed at a different illumination wavelength. So Verification Template 1 and Enrollment Template 1 in the figure would
be created from samples acquired at one illumination wavelength while Verification Template 2 and Enrollment Template
2 would be created from samples acquired at another illumination wavelength. It is common to use the same matcher to
produce all of the comparison scores. A disadvantage of applying fusion at the score level is that multiple samples must
be acquired and stored. Transferring the samples over a network could also take longer if the bandwidth is low. Although
score level fusion increases computational complexity, many of the operations can be performed in parallel to mitigate the
real-time increase in processing time.

Verification Template 1

Enrollment Template 1

Verification Template 2

Enrollment Template 2

Fusion Rule

score

score

fused score Decision
match

non-match

Matcher

Matcher

Figure 3.8: Depiction of biometric fusion occurring at the score level. Two comparisons between verification and enrollment
templates are performed, each producing a score. The scores are then combined using a fusion rule. A final decision is
made using the fused score.

Abdullah et. al. [37] applied simple sum-rule fusion to combine scores acquired from VW and NIR comparisons and
found that it significantly improved accuracy over using NIR comparisons alone. Boyce [38] confirmed this result using a
larger dataset. Gong et. al. [39] similarly found that accuracy could be improved by combining scores acquired at various
illumination wavelengths. Most of the improvement in their analysis occurred when they combined scores acquired at 700
and 850 nm within the NIR band. Smaller improvements were achieved by incorporating scores acquired at shorter visible
wavelengths. All of the aforementioned studies used sum-rule fusion which involves summing the scores acquired at the
different wavelengths. Sum-rule fusion is typically regarded as occurring at the score level although a nearly identical result
could be achieved at the feature level by concatenating (and then comparing) the IrisCodes created from iris images acquired
at different illumination wavelengths.

The current analysis uses the CMID, which as of this writing is larger than any other dataset used to test multispectral iris
fusion. During each capture session, the subject was positioned in front of the iris camera and several images of each iris
were acquired at different wavelengths. Approximately 20 seconds elapsed between captures. Manually specified boundary
coordinates for each image (see Section 2.2) were provided to the matchers during template creation. This prevents the
accuracy of boundary localization from being a potential confounding factor in the analysis. Fusion is applied at the score
level using the unweighted version of Neyman-Pearson Fusion (NPF) proposed by Hube [40]:

sfused = s′1 + ...+ s′k (3.1)

where
s′i =− logFMR(si) (3.2)
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Figure 3.9: Neyman Pearson boundaries for Aware 6. The axes correspond to LFMR scores acquired at two different
illumination wavelengths (505 and 620 nm). The color indicates the density. The black lines show level curves for unweighted
sum-rule fusion. The lines trace the joint density of the LFMR scores quite well.

and si is the raw comparison score (often a Hamming Distance) at the wavelength indexed by i ( 1 ≤ i ≤ k). Equation 3.2
is typically referred to as the LFAR of the score but to remain consistent with ISO/IEC JTC 1/SC 37/WG 1 [41] terminology
it will be referred to as the LFMR of the score. Note that Equation 3.2 converts the score from a measure of dissimilarity
to a measure of similarity. The LFMR of the score is easier to interpret than the raw score. The probability of a nonmated
comparison producing an LFMR score of 2 or higher is 10−2. The probability of producing an LFMR score of 3 or higher is
10−3 and so on. The only downside to working with the LFMR score is that it requires precise knowledge of the nonmated
distribution to perform the conversion.

There is a strong theoretical justification for using Neyman-Pearson Fusion. The name of the fusion rule references the
Neyman-Pearson Lemma [42] which in the context of biometrics asserts that thresholding the likelihood ratio (i.e. the
likelihood of the comparison being mated vs. nonmated) is the optimal method for making match/nonmatch decisions.
When only a single score is available (i.e. no fusion is applied) the score is usually monotonic with the likelihood ratio.
Hube’s definition of Neyman-Pearson Fusion would be optimal but for the fact that it makes a few simplifying assumptions
when combining the scores. Firstly, the LFMR score is typically computed using an empirical estimation of the FMR of
the raw score. Secondly, the fusion rule assumes the scores are independent. Finally, the unweighted version of Neyman
Pearson Fusion assumes FNMR increases linearly with the log of FMR (i.e. the ROC curve has a constant slope). To
address the second problem, Hube suggests fusing the LFMR scores using a rule that closely aligns with the level curves
of the joint density of the nonmated scores. Figure 3.9 shows such a density plot for Aware 6 given LFMR scores acquired
at two different illumination wavelengths. The solid black lines show the level curves for unweighted sum-rule fusion which
align quite well with the contour lines of the joint density plot.

Figure 3.10 shows the results of applying Neyman-Pearson Fusion using scores acquired at different wavelengths within the
NIR band (700 nm to 910 nm). The bars show 90 % confidence intervals (computed using the method described in Appendix
A). The figure demonstrates that combining scores acquired at 910 nm with scores acquired at either 700 nm or 800 nm
leads to substantial improvements in accuracy for nearly every matcher. In the case of NEC 5, FNMR drops from 0.0132 to
0.0014, a factor of 9 improvement. Most of the matchers do not achieve significant improvements by incorporating a third
wavelength. The exceptions, IrisID 6 and DeltaID 6, had high FNMRs compared to the other matchers before incorporating
the third wavelength. Several matchers appear to bottom out at an FNMR around 0.0014 when all three wavelengths are
used. A quick manual inspection of these images revealed that all, or nearly all, of the failed matches are due to ground truth
errors (i.e. incorrect person identifiers being assigned to some of the iris images). Thus, the "matching errors" are actually
mistakes in labeling the test data. Although no formal process for manually comparing iris images has been established,
the iris images have superb sample quality and it was straightforward for the authors to determine that the textures did not
match.
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Figure 3.10: FNMR (at FMR=10−4) for selected matchers and wavelength combinations. Fusion of scores at each illumi-
nation wavelength was performed using Neyman-Pearson Fusion. Results are for single-eye comparisons. Each point was
generated using about 40 thousand mated comparisons.
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Figure 3.11: Full DET plots for different combinations of illumination wavelengths for Aware 6. Fusion is performed at
the score-level using unweighted Neyman-Pearson Fusion. Results show single-eye matching results. Each DET curve is
generated from about 40 thousand mated scores and 13 million nonmated scores.

Figure 3.11 shows full DET plots for Aware 6 when different combinations of wavelengths are fused together using un-
weighted Neyman-Pearson Fusion. As is the case with all of the matchers, any combination of wavelengths achieves better
accuracy than any single wavelength by itself. No appreciable difference in accuracy appears to exist between 910+700 nm
and 910+800 nm. The small apparent improvement in accuracy for 910+800+700 nm may not be statistically significant.
(The fact that the 90 % confidence bounds shown in the previous figure between 910+ 800+ 700 nm and 910+ 800 nm
do not overlap does not necessarily mean that the difference is statistically significant). Neyman-Pearson Fusion does not
appear to produce DETs that are radically different in overall shape or curvature compared to DETs produced by the original
iris dissimilarity scores.

Figure 3.12 shows the results of using Neyman-Pearson Fusion to combine scores acquired at wavelengths in the VW band
(405 - 620 nm). It is analogous to Figure 3.10 except it applies fusion within the VW rather than NIR band. Fusion does not
appear to substantially improve accuracy for any of the matchers. It also does not appear to significantly reduce accuracy
for any of the matchers. Matching at 405 nm produces extremely high error rates (FNMR > 0.96 at FMR = 10−4 for all
matchers) and is therefore not expected to improve accuracy through fusion. Error rates at 505 nm are also very high (FNMR
> 0.96 at FMR = 10−4) again limiting the potential benefit of fusion.

Fusion does appear to produce small improvements in accuracy for many of the matchers. For example, the FNMR for Tiger
IT 5 drops from 0.245 to 0.195 when scores acquired at 620 are combined with scores acquired at 505 nm. Figure 3.14
demonstrates that this improvement is limited to comparisons involving lighter eyes (i.e. green, blue, grey). The figure shows
full DETs for DeltaID 6 but the stated conclusion holds for all of the matchers where fusion produces a clear (but minor)
improvement in accuracy. Fusing 620 nm with 505 nm produces an FNMR of 0.026 at FMR = 10−4 for DeltaID 6 for lighter
eyes, far below that of 505 nm (FNMR= 0.070) or 620 nm (FNMR= 0.086) alone. In contrast, fusing the scores for dark
eyes (i.e. brown, black) produces DET curves that are nearly indistinguishable from the DET produced at 620 nm alone. The
higher concentration of melanin in brown eyes is clearly obscuring the iris texture at the lower visible wavelengths, limiting
the benefit of fusion.
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Figure 3.12: FNMR (at FMR=10−4) for selected matchers and wavelength combinations. Fusion of scores at each illumi-
nation wavelength was performed using Neyman-Pearson Fusion. Results are for single-eye comparisons. Each point was
generated using about 80 thousand mated comparisons.
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Figure 3.13: Full DET plots for different combinations of illumination wavelengths for NeuroTechnology 5. Fusion is per-
formed at the score-level using unweighted Neyman-Pearson Fusion. Results show single-eye matching results. Each DET
curve is generated from about 80 thousand mated scores and 20 million nonmated scores.
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Figure 3.14: Full DET plots for different combinations of illumination wavelengths for DeltaID 6. Fusion is performed at the
score-level using unweighted Neyman-Pearson Fusion. Results show single-eye matching results.
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Figure 3.15: Example of a composite image created by combining iris images acquired at 700, 800, and 910 nm. Each
image was aligned and unweighted pixel averaging was used to create the composite image. Although the iris texture is
clear, the eyelashes appear blurry because the eyelid was open by slightly different amounts across images.

3.4.2 Sensor Level

Sensor level fusion refers to consolidating information acquired by multiple sensors (i.e. capture devices) into a single
biometric sample. In the case of multiwavelength iris recognition this would entail acquiring the same image at different
illumination wavelengths and combining the information into a single image. Features would then be extracted from the
composite image to produce a template that is in turn is used for matching. A sample similar to a composite image can be
produced by simply illuminating the iris at multiple wavelengths simultaneously during capture. In fact, many iris cameras do
this to enhance interoperability.

Composite images were created by superimposing iris images acquired at 700, 800, and 910 nm. Accurately superimposing
the images required precisely aligning them. The manually specified iris center was used for initial alignment. The OpenCV
Library’s [43] geometric transformation capabilities were used to achieve a precise pixel-level alignment. The library was
used to align one iris with another by translating and rotating one of the images. Possible perspective distortions were
ignored. Images were combined using equal-weight pixel averaging. The three combined images always came from the
same capture session. Although the subject held their head in the same position throughout the capture session, acquisition
of iris samples at different wavelengths was staggered, with each image being acquired a few seconds to a few minutes
apart. The amount of dilation, the position of the eyelids, and the gaze angle could have changed during this time. Figure
3.15 shows an example of a composite image where the eyelid positions differed slightly across captures.

Figure 3.16 shows FNMR at fixed FMR for each matcher when comparing composite images to iris images acquired at
various wavelengths. Comparisons involving composite images are never worse than the worst-case scenario: comparing
samples acquired at opposite ends of the standard NIR band (700 nm to 910 nm). Nevertheless, composite images never
perform as well as the best-case scenario: comparing samples that were both acquired at 910 nm. Figure 3.17 shows full
DETs for IrisID 6. Although sensor-level fusion never catastrophically increases the error rates, neither does it lead to any
substantial improvement in accuracy. For the case of IrisID 6, using a sample acquired at 910 nm seems to perform at least
as well as the composite images in all cases and sometimes noticeably better (e.g. comparing samples both acquired at
910 nm always outperforms comparing composite images to images acquired at 910 nm). Section 3.4.1 also demonstrated
that better results can be achieved using score-level fusion. The current investigation was unable to demonstrate that sensor
level fusion offers any clear benefits.

______________________________________________________________________________________________________ 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8252



IREX IX Second Public Report 25

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

FNMR= 0.0252

FNMR= 0.1614

FNMR= 0.0282

FNMR= 0.1126

FNMR= 0.0339

FNMR= 0.1022

FNMR= 0.0304

FNMR= 0.0795

FNMR= 0.0074

FNMR= 0.0358

FNMR= 0.0100

FNMR= 0.0299

FNMR= 0.0100

FNMR= 0.1085

FNMR= 0.0265

FNMR= 0.0990

FNMR= 0.0171

FNMR= 0.0729

FNMR= 0.0296

FNMR= 0.0643

FNMR= 0.0089

FNMR= 0.1051

FNMR= 0.0085

FNMR= 0.0942

FNMR= 0.0152

FNMR= 0.1446

FNMR= 0.0216

FNMR= 0.1471

FNMR= 0.0076

FNMR= 0.0974

FNMR= 0.0255

FNMR= 0.0980

FNMR= 0.0127

FNMR= 0.0646

FNMR= 0.0134

FNMR= 0.0473

Aware 6, 910 nm vs 910 nm

Aware 6, Composite vs 910 nm

Aware 6, Composite vs 700 nm

Aware 6, 910 nm vs 700 nm

DeltaID 6, 910 nm vs 910 nm

DeltaID 6, Composite vs 910 nm

DeltaID 6, Composite vs 700 nm

DeltaID 6, 910 nm vs 700 nm

NeuroTechnology 5, 910 nm vs 910 nm

NeuroTechnology 5, Composite vs 910 nm

NeuroTechnology 5, Composite vs 700 nm

NeuroTechnology 5, 910 nm vs 700 nm

Tiger IT 5, 910 nm vs 910 nm

Tiger IT 5, Composite vs 910 nm

Tiger IT 5, Composite vs 700 nm

Tiger IT 5, 910 nm vs 700 nm

IrisID 6, 910 nm vs 910 nm

IrisID 6, Composite vs 910 nm

IrisID 6, Composite vs 700 nm

IrisID 6, 910 nm vs 700 nm

NEC 5, 910 nm vs 910 nm

NEC 5, Composite vs 910 nm

NEC 5, Composite vs 700 nm

NEC 5, 910 nm vs 700 nm

Qualcomm 6, 910 nm vs 910 nm

Qualcomm 6, Composite vs 910 nm

Qualcomm 6, Composite vs 700 nm

Qualcomm 6, 910 nm vs 700 nm

Decatur 5, 910 nm vs 910 nm

Decatur 5, Composite vs 910 nm

Decatur 5, Composite vs 700 nm

Decatur 5, 910 nm vs 700 nm

Tafirt 6, 910 nm vs 910 nm

Tafirt 6, Composite vs 910 nm

Tafirt 6, Composite vs 700 nm

Tafirt 6, 910 nm vs 700 nm

0.002 0.005 0.01 0.02 0.05 0.1 0.2 0.5 1
FNMR

Figure 3.16: FNMR (at FMR=10−4) for selected matchers when composite images are used for matching. Results are for
single-eye comparisons. Each point was generated using about 80 thousand mated comparisons.
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Figure 3.17: Full DET plots for comparisons involving composite images for IrisID 6. Results show single-eye matching
results. Each DET curve is generated from about 80 thousand mated scores and 20 million nonmated scores.
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3.5 Forensic Iris

Forensic iris is the application of iris recognition to civil and criminal law, including criminal investigation. Forensic iris
is likely to involve comparing two iris images to determine if they represent the same person (inclusionary evidence) or to
establish that they represent different people (exclusionary evidence). The comparisons may be performed by trained human
examiners, automated matching algorithms, or some combination of the two.

Forensic iris is a nascent field. A decade ago leaders in the industry, including John Daugman [44], did not consider iris
recognition viable for forensic applications. Although their observations were accurate at the time, advances in iris recognition
technology, large-scale collection of iris data, and a growing corpus of research, have superseded those observations. There
is now legitimate interest from government agencies in utilizing iris for forensic applications.

This section of the report explores the limits of automated iris recognition over "in the wild" iris images. "In the wild" refers
to images of the iris acquired from sources not originally intended for iris recognition or images of the iris not acquired
using traditional iris capture equipment. An example would be an image of a person’s iris extracted from a high resolution
photograph from the internet. Matey et. al. [45] recently demonstrated that iris recognition can operate reliably over images
pulled from the internet. This report limits its investigation to automated matching and does not address other forensic topics
such as manual iris recognition or interpretation of matching results in a court of law.

3.5.1 Visible Wavelength Matching

Nearly all forensic applications of iris recognition are expected to operate over iris samples acquired at visible wavelengths.
Section 3.1 already demonstrated that operating within the VW band leads to a significant hit in accuracy. NeuroTechnology’s
matcher performed better than the other matchers over VW iris images. As Figure 3.18 demonstrates, FNMRs fall within
the 0.04 to 0.06 range for two-eye matching, significantly worse than for NIR matching where FNMR is below 0.001 at any
reasonable decision threshold.
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Figure 3.18: DET plots when comparing VW iris images (blue) and NIR iris images (red) using NeuroTechnology 5. Results
are for two-eye matching. Each grey line segment shows how a particular decision threshold produces different error rates
depending on whether the matcher is comparing VW images or NIR images.
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(a) Original Iris Image (b) Low-resolution Iris Image

Figure 3.19: Example of an image intentionally subjected to degradation to simulate a low-resolution capture. The first step
involves decimating the image (i.e. reducing the sampling rate) so that the radius of the iris spans a specific number of
pixels (12 in this example). Then, the image is upscaled back to its original pixel dimensions using bilinear interpolation. The
interpolation used for upscaling leads to a blurry rather than pixelated appearance.

3.5.2 Matching Low Resolution Iris Samples

Forensic iris is expected to sometimes involve images where the resolution of the iris is not well controlled. For optimal
performance, ISO/IEC 19794-6:2011 [2] recommends a spatial sampling rate of no less than 10 pixels/mm and an MTF
of no less than 0.6 at 2 cycles/mm; the earlier version of the standard [46] recommended 20 pixels/mm. Matey et al.
[47, 48, 49] and Ackerman [50, 51] demonstrated that the Iris on the Move® applications could operate successfully at 10
pixels/mm. Typical commercial iris cameras such as the IrisAccess 4000 series [52] produce images with approximately
200 pixels across the nominally 10 mm wide iris in accord with the earlier recommendations of 20 pixels/mm. This section
explores recognition at resolutions below the recommendations of the new standard. Consideration is further restricted to
VW matching because it is expected to be the most common forensic use-case.

A sufficiently large dataset of low-resolution iris images was not available, so images from the CMID were decimated to
simulate low-resolution captures. Decimation was performed with the pamscale command from the NetPGM package [53].
To minimize aliasing, the command filters out frequencies above half the new sampling rate before picking the new samples.
The sampling rate is chosen so that the radius of the iris (i.e. the distance from the pupil center to the limbus boundary) in the
decimated image spans a predetermined number of pixels. Figure 3.19 shows an example of an iris that was decimated by
a factor of 15.7 to produce an image where the radius of the iris spans exactly 12 pixels (≈1.2 pixels/mm). Upsampling was
then applied to the decimated images to return them to their original pixel dimensions. Upsampling was performed using
bilinear interpolation, which gives the images a blurry, rather than pixelated, appearance. The iris radius was determined
using the manually marked boundary coordinates. These boundary coordinates were also provided to the matchers during
template creation since boundary localization would otherwise be quite difficult in severely decimated images.
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Figure 3.20: FNMR as a function of the radius of the iris in pixels for various iris matchers. Only enrollment images were
decimated (verification images were not decimated). The decision threshold is fixed to produce an FMR of 10−4 when no
decimation is applied. Two-eye matching results are presented for samples acquired at 620 nm. Each point is produced
from about 650 thousand mated comparisons. Note the sharp upturn in FNMR once the radius drops below 20 pixels and
consider it in context with the internet image example discussed in the text.

Figure 3.20 plots FNMR as a function of iris resolution for various matchers. Only enrollment images were decimated.
Verification images were left at their original resolutions, which tended to be around 120 pixels (≈12 pixels/mm). The figure
shows results for two-eye matching when all samples were acquired at 620 nm (which corresponds to orange-red in the VW
band). FNMR appears to remain stable for most matchers until the radius is reduced to about 20 pixels (≈2 pixels/mm).
Further reductions in resolution lead to exponential increases in FNMR. NeuroTechnology 5 produces the lowest FNMRs
at higher resolutions (iris radii ≥ 12 pixels). At lower resolutions it is surpassed by both Tafirt 6 and IrisID 6. These
two matchers are still capable of correctly matching the iris more than half the time when the radius of the iris is only 8
pixels (≈0.8 pixels/mm). This result is surprising and auspicious but further research is recommended before drawing any
solid conclusions. The CMID dataset consists of extremely high-quality samples collected in well controlled environments.
It is possible that FNMR is sensitive to small deviations from optimal sample quality that could lead to different results
operationally. For example, variations in pupil dilation4, which are minor in the CMID, could have a significant impact on
accuracy. More importantly, FNMR only presents one side of matching accuracy. Namely, the ability to recognize that two
samples represent the same iris. The other problem, being able to distinguish that two samples represent different irises, is
addressed next.

4Dilation and constriction are terms that describe the pupil diameter. Dilation is an increase in pupil diameter, normally a response to low light levels;
constriction is a decrease in pupil diameter, normally a response to high light levels. Both dilation and constriction can be caused by drugs.
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Figure 3.21: FMR as a function of the radius of the iris in pixels for various iris matchers. Only enrollment images were
decimated (verification images were not decimated). The decision threshold is fixed across all resolutions to produce an
FMR of 10−4 when no decimation is applied. Two-eye matching results are presented for samples acquired at 620 nm. Each
point is produced using about 1.5 million nonmated comparisons.

Figure 3.21 plots FMR as a function of iris resolution along the same lines and setup as Figure 3.20. However, as the current
figure demonstrates, behavior is much less consistent across matchers for FMR than for FNMR. FMR peaks between iris
radii of 10 and 16 pixels for several of the matchers. Tiger IT 5, Decatur 5, and NeuroTechnology 5 experience the greatest
fluctuations in FMR. In the case of NeuroTechnology 5, FMR peaks when the radius of the iris is about 14 pixels (≈1.4
pixels/mm). At this resolution, FMR is roughly 20 times higher than when the radius of the iris is 64 pixels (≈6.4 pixels/mm).
For many of the matchers, FMR does not appear to level out as the iris radius increases, even when it reaches 64 pixels.
This contrasts with FNMR, which appears to vary little for the matchers between radii of 24 pixels (≈2.4 pixels/mm) and
64 pixels (≈6.4 pixels/mm). In summary, it appears that less severe decimation tends to detrimentally impact the ability of
matchers to distinguish between samples representing different irises, while more severe decimation detrimentally impacts
the ability of matchers to recognize that two samples represent the same iris. Furthermore, some matchers might perform
better if the iris samples were acquired at resolutions higher than the current ISO/IEC 19794-6 standard of 10 pixels/mm.
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Figure 3.22: FNMR as a function of the iris radius (in pixels) of both the verification and enrollment samples for NeuroTech-
nology 5. The decision threshold is fixed across all cells to produce an FMR of 10−4 when no decimation is applied. Two-eye
matching results are presented for samples acquired at 620 nm. Each point is produced from about 650 thousand mated
comparisons.

A forensic application that is likely to arise is the need to compare iris samples where both samples were acquired at
resolutions below the minimum ISO/IEC 19794-6 recommendations. Figure 3.22 shows a heatmap where color indicates
FNMR and the axes specify the iris radius (in pixels) for the verification and enrollment samples. The decision threshold is
universally fixed to elicit an FMR of 10−4 when no decimation is applied to the images. Generally, FNMR is lowest (i.e. best)
when the iris resolution is high (radius≥ 20 pixels) for both the verification and enrollment samples. At the lower resolutions,
FNMR tends to be lowest when both the verification and enrollment samples are decimated to similar resolutions. This may
seem auspicious, as it indicates that the matcher still has the ability to recognize that two iris samples represent the same
source even when their resolutions are extremely low. While true, further analysis reveals that this benefit is offset by the
fact that the matcher loses the ability to distinguish between samples representing different irises. This is demonstrated in
the next figure.
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Figure 3.23: FMR as a function of the iris radius (in pixels) of both the verification and enrollment samples for NeuroTech-
nology 5. The decision threshold is fixed across all cells to produce an FMR of 10−4 when no decimation is applied.
Two-eye matching results are presented for samples at 620 nm. Each point is produced from about 1.5 million nonmated
comparisons.

Figure 3.23 shows a heatmap where color indicates FMR and the resolution and the axes specify the iris radius (in pixels)
for verification and enrollment samples. The figure is identical to Figure 3.22 except color indicates FMR rather than FNMR.
FMR varies considerably depending on the resolution of the samples. FMR balloons to around 0.1 when the resolution of
both samples is low (i.e. the radius of the irises is ≤ 12 pixels, or≈1.2 pixels/mm). The previous figure shows that matchers
still have the ability to recognize that two samples represent the same iris even at extremely low resolutions. However, the
current figure demonstrates that they lose the ability to recognize when two samples represent different irises. Figure 3.23
also reveals the need for threshold calibration based on the resolution of the compared samples to keep FMR low.
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Figure 3.24: Heatmap of FNMR at fixed FMR where the axes specify the iris radius (in pixels) of the verification and
enrollment samples. Two-eye matching results at 620 nm are presented for NeuroTechnology 5. FNMRs are computed at
FMR = 10−4. Unlike Figure 3.22, where the same decision threshold is used to compute each FNMR, the decision threshold
is adjusted in each cell to elicit an FMR of 10−4. Each FNMR is calculated using about 650 thousand mated comparisons
and each FMR is computed using 1.5 million nonmated comparisons.

Biometric recognition accuracy for one-to-one matchers is characterized by the trade-off between FNMR and FMR as a
decision threshold is adjusted [54]. For this reason, showing the effect of resolution on just FNMR (or FMR) at a fixed
decision threshold is an incomplete representation of accuracy. Figure 3.24 attempts to address this limitation by plotting
FNMR at fixed FMR for different iris resolutions. Unlike Figure 3.22, where the same decision threshold is used in each cell,
the decision threshold is adjusted to ensure a fixed FMR of 10−4. Accuracy drops precipitously when the radius of either the
verification or enrollment samples dips below 20 pixels and continues to drop sharply as the resolution is further reduced.
Generally speaking, it appears that FNMR (at FMR=10−4) can be approximated reasonably well using the minimum of the
resolution of the verification and enrollment samples. Thus, if the verification and enrollment samples have different iris
resolutions, accuracy appears to be dependent upon the lower resolution of the two.
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A Uncertainty Estimation

This appendix describes how estimates of variability are computed in this report. Estimates of variability do not directly
describe the population. Rather, they convey information about the primary statistics that are used to make inferences about
the population. The primary statistics in this report are the core accuracy metrics defined in Section 2.4. Variability refers to
how tightly these statistics represent the true population parameters.

The core accuracy metrics are computed over a sample of data subjects1 selected from a larger population. In our case, we
regard the larger population as the set of all adults in the United States. In truth, the sample was collected from volunteers
at two geographically separated collection sites, which may not perfectly represent a random sample from the overall adult
population. The iris images collected from the data subjects are paired in various ways to form comparison sets. These
pairings introduce a correlation structure that must be incorporated into the estimates of variability.

The correlation structure for one-to-one comparisons is characterized by the positive correlations between comparisons. For
example, two comparisons are expected to be positively correlated if they share a reference template in common. Table A.1
defines eight distinct types of dependency for single-eye mated comparison. The final column shows the strength of each
type of dependency as the mean Pearson Correlation Coefficient (PCC) across all submissions for samples acquired at 800
nm. The correlations are measured with respect to the decisions made at an FMR of 10−4. Although the correlation values
are threshold dependent, they tend to change little for varying FMR due to the relative "flatness" of iris DET curves.

Correlation
Type

Same Verification
Session

Same Verification
Samples

Same Enrollment
Session

Same Enrollment
Samples

Correlation
at FMR = 10−4

1 Yes Yes Yes No 0.5 ± 0.3
2 Yes Yes No No 0.2978 ± 0.2
3 Yes No Yes Yes 0.5173 ± 0.3
4 Yes No Yes No 0.3402 ± 0.3
5 Yes No No No 0.1592 ± 0.2
6 No No Yes Yes 0.3223 ± 0.2
7 No No Yes No 0.15965 ± 0.2
8 No No No No 0.148 ± 0.2

Table A.1: A basic correlation structure for dual-eye mated comparisons. The rows describe different types of dependencies that can
exist between comparisons. The values in the final column are mean correlation coefficients across all submissions (along with their
standard deviations) when the images are acquired at 800 nm.

The first type of dependency refers to comparisons that share their reference samples in common. The third dependency
type refers to comparisons that share their verification samples in common. The second dependency type refers to compar-
isons where the verification samples are not identical but were acquired during the same capture session (recall that for the
CMID, six images of each of the right and left eyes are acquired during a single session). The eighth type of dependency
refers to comparisons that share neither a verification nor an enrollment session in common. Interestingly, the correlation is
still positive. Furthermore, the correlation tends to be much stronger when the samples are acquired at wavelengths outside
the normal 700 - 900 nm range. At a wavelength of 620 nm, the correlation coefficient is 0.5±0.1. At a wavelength of 1070
nm, it is X±X . This value likely reflects the degree to which accuracy is dependent upon the person-specific features of the
iris.

The mated comparison sets for CMID were constructed using all possible mated pairings where the reference sample was
acquired first chronologically. Comparisons between samples acquired during the same capture session were also excluded.
Given our strategy for set construction, Table A.1 fully captures the significant sources of dependency for dual-eye mated
comparisons. For single-eye mated comparisons, we account for twelve different types of dependency. Identifying the
appropriate correlation structure for a given comparison set can be a daunting task. Straightforward factorial design [56]
may be the best approach in most cases. Certain approaches to constructing the comparison sets also lead to simplified
correlation structures.

General equations are presented for estimating the variability of the core accuracy metrics given arbitrary correlation struc-
tures. Formally, let p̂(τ) be the estimate of either FMR or FNMR as computed in Equations 2.1 and 2.2. Let di(τ) be the
decision at threshold τ for the ith comparison (i = 1, ...,N). If the comparison is mated, then di(τ) = [mi ≤ τ]. From this
point onward, the input, τ , will be omitted from all equations for clarity of presentation. Furthermore, let Sk be the set of com-
parison pairs fulfilling the criteria for dependency type k (k = 1, ...,K). The elements of Sk are pairs of indices where a given

1Terminology such as "data subject" is now used by NIST to conform with ISO/IEC 2382-3: Vocabulary, Part 37: Biometrics [55]
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element (i, j) refers to comparisons i and j respectively. An unbiased estimate of the covariance for the kth dependency
type is

σ̂
2
k =

N
N−1

1
|Sk| ∑

(i, j) ∈ Sk

(di− p̂)(d j− p̂). (A.1)

The first term is Bessel’s Correction [57]. The rest of the equation is just the common estimate of covariance. The estimate
of variance is

σ̂
2 =

p̂(1− p̂)
N

+ ĉ (A.2)

where

ĉ =
1

N2

K

∑
k=1
|Sk|σ̂2

k . (A.3)

Equation A.3 consolidates the contribution of all of the covariances to the overall estimate of the variance.

Confidence intervals can be constructed using estimates of both p and the σ2. The simplest and most straightforward
approach is to invoke the Central Limit Theorem (CLT) and define the interval as

p̂ ± z
√

σ̂2 (A.4)

where z is the (1−α/2)th quantile of the standard normal distribution and α is the desired significance level. (Typically
α = 0.1 or α = 0.05 corresponding to confidence levels of 90% and 95% respectively.) However, Brown et. al. [58] identify
several problems with this approach. First, they note that always defining p̂ as the center of the interval can introduce a
systematic negative bias to the coverage probability. Second, the actual distribution of p̂ is significantly nonnormal when p is
close to 0 or 1, even for large N. Finally, due to the fact that p̂ is a discretized estimator, Equation A.4 severely underestimates
the true coverage probability for certain "unlucky pairs" of p and N. For these reasons, we adopt their recommendation to
use the Wilson Score method. However, the method must be modified to account for the correlation structure.

The Wilson Score interval is formed by inverting the normal approximation to the equal-tailed hypothesis test of H0 : p = p0.
The hypothesis is accepted if p̂ falls within the interval

|p̂− p0|√
1
N p0(1− p0)+ ĉ

≤± z. (A.5)

The denominator is the standard deviation of the test statistic. Unlike Equation A.4, it does not require a full estimate of the
variance. The additional ĉ term incorporates the contribution of the correlation structure to the estimate. Since knowing p0
does not reveal the true value of c, the latter must be approximated using Equation A.3. The Wilson Interval is derived by
regarding p0 as the unknown parameter. Using the quadratic equation to solve Equation A.5 for p0 yields the interval:

CIW =
p̂+ 1

2N z2± z
√

1
N p̂(1− p̂)+ 1

4N2 z2 +(1+ 1
N z2)ĉ

1+ 1
N z2

. (A.6)

The Wilson Score interval still loses accuracy when np or n(p−1) is small (though not as severely as Equation A.4) . For
this reason, we conservatively opt not to apply the Wilson Score Interval to cases where np < 102.

Previous NIST evaluations [14, 15] used the Wilson Score Method under the assumption that all comparisons are indepen-
dent (effectively utilizing Equation A.6 under the assumption ĉ = 0). Failing to account for the dependencies probably led
to overly optimistic estimates of variability. In the current evaluation, we found that the independence assumption leads to
significant underestimates of variance, sometimes by a factor of 3 or more. Many academic iris datasets (e.g. CASIA [59],
Notre Dame 0405 [60]) consist of iris samples collected from comparatively small numbers of subjects, typically a few hun-
dred at most. Thus, the dependencies are expected to contribute considerably toward the variability of accuracy statistics
computed over these public datasets.

Sometimes we report estimates of variability for FNMR at fixed FMR when in fact the decision threshold is fixed. Uncertainty
with respect to what decision threshold corresponds to the targeted FMR results in increased uncertainty about the true value
of FNMR. That said, our estimates of FMR are expected to be very tight given the large number of nonmated comparisons
performed (often in excess of a billion). Additionally, even at very low FMRs, the lightly sloping nature of iris DET curves
means that small discrepancies in FMR are not expected to significantly impact FNMR.
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A.1 Discussion

Some previous literature exists on the topic of estimating uncertainty for biometric accuracy statistics. Mansfield et. al. [61]
provided estimates of variability for FNMR and FMR given a particular sampling strategy. The sampling strategy assumes
full cross comparisons and only accounts for a single source of dependency. Bickel [62] defined equations for estimating
confidence bounds under similar restrictions, which were later tested by Wayman [31] over fingerprint data and found to be
accurate. Schuckers [63] expanded upon their work by defining a general correlation structure for fingerprint recognition.
Although his proposed method of estimating confidence intervals is common and asymptotically valid, it still suffers from the
same weaknesses identified by Brown et. al. [58] in relation to Equation A.4. Bootstrapping [64] also fails to offer a viable
alternative because it assumes independent and identically distributed (iid) comparison scores and thus ignores all sources
of dependency. Altering the resampling strategy can sometimes compensate for one or two types of dependency [61], but
typically no more than that.

The previous section provides a framework for computing unbiased estimates of variability. The downside of this approach
compared to other methods is the added difficulty of having to identify the correlation structure. One approach is to concep-
tualize the problem as a factorial experiment [65] and construct the correlation structure as a design matrix.
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