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Abstract

The National Institute of Standards and Technology has constructed a testbed to measure
the performance impact of cybersecurity technologies on Industrial Control Systems (ICS).
The testbed was chosen to support the implementation of the Cybersecurity Framework
Manufacturing Profile: a voluntary, risk-based approach for managing cybersecurity activ-
ities and reducing cyber risk to manufacturing systems. This report focuses on the Col-
laborative Robotics System, one of the two manufacturing systems within the testbed. A
methodology for implementation of technical solutions to meet the Profile language is de-
scribed, as well as a comprehensive review of the testbed measurement systems, and the
comparative analysis procedures used for identifying performance impacts. Finally, an
example comparative analysis is performed and the characterization of the workcell is dis-
cussed.

Key words

cybersecurity; robotics; manufacturing; performance; industrial control system; PLC; mea-
surement methodology; testbed; workcell.

Disclaimer
Certain commercial entities, equipment, or materials may be identified in this doc-
ument in order to describe an experimental procedure or concept adequately. Such
identification is not intended to imply recommendation or endorsement by NIST, nor
is it intended to imply that the entities, materials, or equipment are necessarily the best
available for the purpose.
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1. Introduction

The National Institute of Standards and Technology (NIST) has developed a voluntary,
risk-based approach for managing cybersecurity activities and reducing cyber risk to man-
ufacturing systems, called the Cybersecurity Framework Manufacturing Profile [1]. Con-
currently, NIST constructed the Cybersecurity for Smart Manufacturing Systems (CSMS)
testbed to measure the performance impact of cybersecurity technologies on industrial con-
trol systems (ICS) [2]. The Manufacturing Profile will be implemented into the testbed to
validate the outlined approach, and to measure performance impacts realized after cyber-
security tools and technologies are installed in the testbed’s manufacturing systems.

A major goal of this research is to determine the role each component of the Manufac-
turing Profile implementation contributes to the overall system performance. To meet the
research goals, a robust methodology for experimentation was developed, including a char-
acterization procedure and comparative analysis methods for identifying and quantifying
performance impacts to the manufacturing system.

2. Cybersecurity for Smart Manufacturing Systems Testbed

The Manufacturing Profile implementation will be performed on the Cybersecurity for
Smart Manufacturing Systems testbed [2], located at the NIST campus in Gaithersburg,
Maryland. The testbed contains two manufacturing systems: the Collaborative Robotics
System (CRS) [3], and the Process Control System (PCS) [4]. The CRS is a discrete
manufacturing process, while the PCS is a continuous manufacturing process. This report
focuses specifically on the Collaborative Robotics System.

The CRS workcell, shown in Figure 1, contains two robotic arms that perform a material
handling process called machine tending [3]. Robotic machine tending utilizes robots to
interact with machinery, performing physical operations a human operator would normally
perform (e.g., loading and unloading of parts in a machine, opening and closing of machine
doors, interacting with the operator control panel, etc.). A human operator interfaces with
the workcell through a human-machine interface (HMI) and a control panel external to the
work area.

The workcell was designed and constructed to be reconfigurable, allowing numerous
types of operational methodologies, network topologies, and industrial networking proto-
cols to be investigated. The two robots collaborate to transport parts through the manufac-
turing process, as a single robot cannot physically reach all four stations, and having two
robots increases workcell efficiency.

Parts are moved by the robot arms through four simulated machining operations, known
as stations. Each station is comprised of: a fixture for holding the part, an infrared prox-
imity sensor for detecting the part, a single board computer simulating the actions and
communications of a typical machining center, and a liquid crystal display (LCD) for dis-
playing the operational status of the station. The stations communicate with the supervisory
programmable logic controller (PLC) over the workcell’s local area network (LAN).

1
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Fig. 1. The CRS workcell in standby, waiting for the operator to initiate the manufacturing
process. The operator control panel is visible at the top of the figure.

The supervisory PLC monitors and controls all aspects of the manufacturing process.
Manufacturing data from the four machining stations are used by the PLC to determine
which operations (known as jobs) the robots must perform to keep the parts moving through
the sequential manufacturing process. The PLC also communicates with the HMI for op-
erator visibility and control.

The workcell is supported by a shared infrastructure of networked servers, measure-
ment tools, and other technologies. The infrastructure is used for many research functions
including: testing, deployment, and hosting of cybersecurity tools; measurement systems
for network traffic; creation and manipulation of network traffic for inducing anomalous
network activity; and archival storage of experiment data. A virtualized server infrastruc-
ture was installed to support the numerous cybersecurity technologies and tools required
for the implementation.

3. Manufacturing Profile

A major milestone of the Cybersecurity for Smart Manufacturing Systems project at NIST
was the creation of the Manufacturing Profile [1]. The Manufacturing Profile provides a
roadmap and actionable guidance for implementing the Cybersecurity Framework within

2
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a manufacturing environment. The prescribed methodology can be used to identify gaps
in cybersecurity posture (when paired with a “current profile”), and addresses each gap
with actionable language derived from industry-specific standards, guidelines, and best
practices.

As with many documents relating to the cybersecurity of manufacturing systems, the
Manufacturing Profile does not attempt to identify potential performance impacts that may
be realized once a cybersecurity solution is installed. Implementing prescribed cybersecu-
rity technologies and tools without affecting ICS performance is a challenge. Impacts to
the manufacturing system can be difficult to predict, and differ between manufacturing pro-
cesses due to a wide spectrum of manufacturing processes, operating procedures, control
schemes, industrial hardware, software, industrial protocols, and network topologies.

Meeting the Manufacturing Profile language will involve sourcing and procuring cyber-
security tools, reconfiguration of existing workcell systems, and instituting organizational
policies and procedures. Detailed information describing the installation, configuration,
operation, and financial cost of each tool will be recorded during the implementation.

3.1 Security Levels

The Manufacturing Profile identifies three Security Levels that categorize the potential im-
pact a manufacturer may realize if the manufacturing system is compromised by a cyberse-
curity incident: low, moderate, and high. Examples of how each security level aligns with
business objectives are shown in Table 1.

The implementation of each security level within the workcell is performed indepen-
dently, each with a specific manufacturing use case that is representative of the chosen
security level. A use case describes a hypothetical manufacturer and all of the operational
details required to inform the Manufacturing Profile implementation process. Use cases are
further discussed in Section 4.2.

The security levels will be implemented in sequential order from the low security level
to the high security level to measure the performance impact each has on the system. As
the security level increases, some of the cybersecurity tools previously implemented for the
lower-security level may be reconfigured to meet the language of the higher level.

3
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Table 1. Manufacturing system impact levels from the Manufacturing Profile.

Impact Category Low Impact Moderate Impact High Impact

Injury Cuts, bruises requiring
first aid

Requires hospitaliza-
tion

Loss of life or limb

Financial Loss ($) Tens of thousands Hundreds of thou-
sands

Millions

Environmental re-
lease

Temporary damage Lasting damage Permanent damage,
off-site damage

Interruption of pro-
duction

Minutes Days Weeks

Public image Temporary damage Lasting damage Permanent damage

4. Implementation of the Manufacturing Profile

Meeting the guidance language for each security level can be achieved by implementing
technical solutions within the CRS (i.e., cybersecurity tools and technologies). For this
research, the language of each subcategory is reviewed by the researchers to determine if
a technical solution can be used to meet the subcategory intent. Commercially available
technical solutions are then reviewed by the researchers, procured (if the solution meets
the language and fits the use case), and finally installed within the workcell as part of the
implementation.

Each of the three Manufacturing Profile security levels (low, moderate, and high) will be
implemented and tested on the workcell, starting with the low security level. The technical
solutions identified to satisfy each subcategory will be installed in no specific order. The
subcategories for the low security level implementation identified as requiring technical
solutions are shown in Table 2.

Performance measurements will occur after each technical solution is installed. Techni-
cal solutions that have multiple modes of operation will be tested for each mode that meets
the Manufacturing Profile language, as each mode may affect the manufacturing process
differently. All modes of a technical solution selected for performance measurements will
be aligned with the requirements of the current security level and its applicability validated
against the use case.

After the measurements for a technical solution with multiple modes of operation have
been completed, the mode of operation that best meets the Manufacturing Profile language
for the current security level, and that has the least impact to the manufacturing process,
will be used for the remainder of the security level implementation. A flow chart describing
the the implementation methodology is shown below in Figure 2, which includes the three
measurement types to be performed, as described in Section 4.1.

4
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Table 2. Low security level Cybersecurity Framework subcategories identified as requiring
technical solutions.

Identify
(ID)

Protect
(PR)

Detect
(DE)

Respond
(RS)

Asset Management
ID.AM-1
ID.AM-2
ID.AM-3
ID.AM-4

Risk Assessment
ID.RA-1

Identity Management
and Access Control

PR.AC-1
PR.AC-2
PR.AC-5

Data Security
PR.DS-3
PR.DS-5

Information Protection
Processes and

Procedures
PR.IP-1
PR.IP-2
PR.IP-3
PR.IP-4
PR.IP-6

Maintenance
PR.MA-1
PR.MA-2

Protective Technology
PR.PT-1
PR.PT-2
PR.PT-3
PR.PT-4

Anomalies
and Events
DE.AE-1
DE.AE-2
DE.AE-3

Security Continuous
Monitoring
DE.CM-1
DE.CM-2
DE.CM-3
DE.CM-4
DE.CM-6
DE.CM-7
DE.CM-8

Detection Processes
DE.DP-3

Analysis
RS.AN-3
Mitigation
RS.MI-2
RS.MI-3
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Fig. 2. Flow chart describing the implementation process for all Manufacturing Profile security
levels.

4.1 Performance Measurements

There are three types of performance measurements that will be performed during the im-
plementation of all three security levels: baseline measurements of the initial workcell per-
formance, impact of individual technologies or configurations, and impact of the completed
security level implementation. Each of these measurements are represented in Figure 2 as
green boxes. The process of sequentially implementing and measuring enables the detec-
tion of performance-impacting interactions that may occur between the technical solutions.

• Security level baseline - Before any changes are made to the workcell, baseline
measurements must be captured. Since all experiments are meant to be compara-
tive, a baseline reference of system performance must be obtained to determine if the
manufacturing process or its sub-systems have been impacted after a technical solu-
tion is installed or reconfigured. Interim baselines may also be required to provide a
ground truth after workcell operational modifications unrelated to the Manufacturing
Profile implementation (e.g., enabling or disabling services, control system software
modifications).

• Technology/configuration implementation impact - These measurements are per-
formed after each technical solution is installed and configured to meet the security
level requirements. Some technical solutions may provide multiple modes of oper-
ation that meet the security level requirements and have the potential to affect the
manufacturing process differently. Measurements are performed for each unique
configuration to compare its impact to previous configurations. The first technical

6
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solution implemented for a given security level is compared to the security level
baseline.

• Security level implementation impact - These measurements are performed after
all technical solutions have been installed and configured for a given security level.
These measurements are compared with the Low security level baseline to determine
the total impact to the manufacturing process, and compared with other security level
implementation impact measurements to determine the relative performance impact
between the security levels.

4.2 Manufacturer Use Cases

To properly implement the Manufacturing Profile within the CRS, use cases must be cre-
ated for each of the security levels. A use case describes a hypothetical manufacturer and
all of the operational details required to inform the Manufacturing Profile implementation
process (e.g., how many employees does the company have, how large is the facility, what
are the business mission objectives, and what company data must be protected). A sum-
mary of operational details provided by a use case is shown in Table 3.

The details provided for each use case are designed to be representative of a manu-
facturer classified to the chosen security level, and to inform the selection for appropriate
cybersecurity tools, configuration, and operating modes.

Table 3. Summary of manufacturer operational details provided in the security level use cases.

Name Description

Employees Titles and roles for all employees.
External Personnel Facility operations outsourced to external entities.
Supporting Services Services provided by external entities that support the manufac-

turing system.
Supply Chain Upstream and downstream supply chain details.
Critical Infrastructure Industry categorization as a Department of Homeland Security

Critical Manufacturing sector [5].
Manufacturing Process Parts that are manufactured, processes and technologies utilized.
Critical Systems Systems that are critical for the manufacturing system to operate

properly and safely.
Data Types of data used, stored, or created by the manufacturer.
Mission Objectives Manufacturing Profile-defined mission objectives of importance

to the manufacturer, and how those objectives apply to the manu-
facturing operations.
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5. Testbed Measurement Systems

Many of the systems within the workcell perform measurements natively while the manu-
facturing process is operating. Each of these systems are listed in Table 4, and are further
described in the following subsections. As noted in [3], the high-level production mea-
surements give an indication if the manufacturing process performance is impacted, but
these measurements alone are not be able to identify the underlying cause. To solve this
problem, numerous other low-level measurements are captured beyond the manufacturing
process performance (e.g., raw network traffic, time-stamped events from machining sta-
tions).

Figure 3 shows the flow of data between workcell subsystems required for manufactur-
ing operations. Because of the tight interaction between the many workcell subsystems, it
is critical that these data flows continue to operate effectively and without error. An intro-
duction to the problem of performance impact propagation through the workcell systems is
described in detail in [6].

Fig. 3. Data flows between workcell subsystems and their respective network protocols, as
required for normal manufacturing operations.

Due to the large amount of infrastructure required (e.g., network taps, cabling, addi-
tional servers) and intrusiveness of the measurement systems, manufacturers should not
attempt to reproduce the described measurement systems, especially on production sys-
tems. Guidance for implementing measurement systems to baseline existing manufactur-
ing systems will be produced in future work. Most of the measurements performed for this
research are used to understand how performance impacts propagate through networked
ICS.

For example, assume an increase in network bandwidth is observed by a manufacturer
after a technical solution was installed. Although there is an observable and measurable
performance impact at the network level (a portion of the available network bandwidth is
being consumed by the technical solution), the manufacturer cannot immediately conclude
manufacturing system performance will be affected by this change.

8
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It is hypothesized that performance impacts to the manufacturing system can be de-
tected through existing measurement systems used by many manufacturers (e.g., data his-
torians), and production data obtained from these measurement systems are likely the most
important to monitor, since a measurable deviation in key performance indicators at the
process level indicates the manufacturing system has failed to maintain production goals.

5.1 Key Performance Indicators

Key performance indicators are computed from the measurement data after an experiment
completes. The KPI provide quantifiable and communicable indicators of performance im-
pacts from the Profile implementation [3]. If any performance impacts are detected, further
analysis is performed to assist with locating the source of the performance degradation. The
measurement data used for computation of the KPI are listed in Table 4, and the resulting
KPI files are listed in Table 5.

5.2 Supervisory PLC

The Supervisory PLC is responsible for monitoring the workcell safety systems, supervis-
ing the four machining stations, and disseminating jobs to the robots based on the stateful
data received from each station. For measurement purposes, the PLC has direct connection
to the proximity sensors located on each machining station (for detecting when a part is
present), enabling the PLC to independently capture timestamps of each individual part
entering and exiting a station. The PLC measurement data is the primary source of all
manufacturing production metrics.

Each of the files that are generated from PLC measurement data are described in the
following subsections.

5.2.1 Experiment Metadata

This file contains general information about the experiment, as recorded by the PLC. The
most important data logged by this file is the configuration of the workcell, which is used
to validate that it was properly configured.

5.2.2 PLC Part Data

This file contains the timestamps each part generates as it triggers events within the work-
cell, as recorded by the PLC. Each numeric timestamp is relative to the start of the experi-
ment, and is measured in tens of milliseconds (e.g., a timestamp value of 2313 is equal to
23.13 seconds). The file also contains the serial number of each part, and the inspection
result. An inspection can result in a value of NOT INSPECTED, PASS, or FAIL, encoded
respectively as an integer 0, 1, or 2.

9
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Table 4. Measurement files created by the testbed components, and their resulting archive folder
location.

System Name Archive Folder Measurement Files

Packet Capture Files ./pcaps/ capture.pcap

hmi.pcap

plc.pcap

station1.pcap

PLC ./plc/ ExperimentMetadata.dat

PLCPartData.csv

PLCPerformanceData.csv

Robots ./robots/ Robot1 Performance.csv

Robot2 Performance.csv

Servers ./servers/ vController1 ServerPerformance.csv

vController2 ServerPerformance.csv

Machining Stations ./stations/ Station1 Events.csv

Station2 Events.csv

Station3 Events.csv

Station4 Events.csv

Time Synchronization ./timesync/ Mintaka.loopstats

Polaris.loopstats

vController1.loopstats

vController2.loopstats

Station1.loopstats

Station2.loopstats

Station3.loopstats

Station4.loopstats

10
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Table 5. KPI files calculated from measurement data, and their resulting archive folder location.

System Name Archive Folder KPI Files

Network ./network/ 6.1 <HOST>to<HOST> ppd.csv

6.2 <HOST>to<HOST> ipd.csv

6.3 rtt.csv

6.4 ir calcs.csv

6.4 ir hostinout.csv

6.4 ir hosttohost.csv

6.5 6.6 rates hostinout.csv

6.5 6.6 rates hosttohost.csv

6.8 protocols.txt

6.8 protocols calcs.txt

PLC ./plc/ KPI ProductionTimes CycleTimes.csv

./reports/ PLCReport SingleRun.pdf

ProductionDataReport SingleRun.pdf

Robots ./robots/ KPI RobotJobActuationTimes.csv

KPI RobotJobExecutionTimes.csv

KPI RobotPoseTravelTimes.csv

KPI RobotPower.csv

Report RobotJobActuationTimes.txt

Report RobotJobExecutionTimes.txt

Report RobotPoseTravelTimes.txt

Report RobotPower.txt

Servers ./servers/ KPI vController1.csv

KPI vController2.csv

./reports/ PerformanceReport vController1.pdf

PerformanceReport vController2.pdf

5.2.3 PLC Performance Data

This file contains the performance of the PLC internal operating system, and the logic
program (i.e., task) written specifically to supervise the workcell. The PLC is configured
to log its performance every one second while an experiment is underway. A timestamp
(seconds since the start of the experiment) is recorded, along with the processor usage ratio,
average amount of time the PLC task required to execute (measured in microseconds) since
the previous measurement, and the maximum amount of time the PLC task required to
execute during since the last measurement (measured in microseconds).
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5.3 Robot Controllers

The robot controllers are drivers that utilize the Robot Operating System (ROS) [7] frame-
work and Python [8]. The controller facilitates communications between the robots and
PLC, and executes the actions defined by each job script. Two robot controllers (one for
each robot) are required while the manufacturing process is operating.

The robot controllers are pre-programmed with a series of discrete instructions orga-
nized into scripts that are enumerated by a job number (e.g., Job 1: move to Station 1, close
gripper, move to station 2, open gripper). Which job a robot is to perform at any given time
is sent by the PLC to a robot controller using the industrial network protocol Modbus TCP.
When a robot is idle, it continues to query the PLC until a new job has been published.
After the robot controller receives a job, it executes the script instructions before returning
to the idle state and querying the PLC for the next job.

A performance logger for robot telemetry is implemented natively in each robot con-
troller. The logger combines three different sources of performance data into a single file:
robot joint states, robot position commands, and robot controller events. Joint state mes-
sages contain the position, velocity, and electrical current measured by each joint. Robot
command messages contain the requested job, job step (i.e., each discrete instruction exe-
cuted by the robots during the execution of a job), a string name of the instruction, and the
start/end timestamps. Robot controller messages identify important manufacturing process
events (e.g., batch start and end, timestamps when new jobs are received, timestamps when
a robot is within proximity of a machining station).

5.4 Machining Stations

The machining stations simulate the actions and industrial communications of a typical
machining center [9]. The stations provide access to their internal registers via a Modbus
TCP server, giving the PLC and HMI insight into the machining process in real-time (e.g.,
job progress, machine state, doors open/closed). This data is used primarily by the PLC for
supervising the process and using that information to decide which jobs to disseminate to
each robot. This data is also accessed and processed by the HMI to display to the operator.

Each station has a native event logger, which can be enabled and disabled with a con-
figuration option. When enabled, the station will log each transition of the machine state.
Each entry that is appended to the log file includes: a timestamp, string name of the new
machine state, and the value of the station’s part counter.

5.5 Servers

The physical servers used to execute the robot controllers and robot drivers have a config-
uration option to generate log files of server performance metrics. Capturing of this data
is performed by a Python script, and is executed independently of the robot processes. A
summary of these metrics is shown in Table 6.
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The performance logger inherently imparts its load on the server, resulting in the logger
recording its own system performance impact. Due to the comparative analysis methodol-
ogy (see Section 7), the logger’s performance impact to the server will not affect perfor-
mance analysis.

Table 6. Summary of captured server performance data.

Name Description

Processor timers Total amount of time across all cores consumed executing user
tasks, system tasks, idling, etc.

Disk counters and timers Counters and timers tracking reads and writes to the disks.
Network counters Counters tracking transmitted and received packets, bytes, errors,

and drops.
Memory counters Amount of memory available at the time of measurement.

5.6 Networks

Capture files of all raw network traffic are recorded using the TCPDUMP software [10] on
a measurement server dedicated to performing network captures and calculations. Each
networking device shown in Figure 4 has a dedicated mirror port that forwards all received
traffic to the measurement server. Each stream of mirrored packets enters a traffic aggre-
gator, which combines all of the traffic into a single stream before it is forwarded to the
measurement server.

Physical network probes are utilized to forward all traffic transmitted to/from the PLC,
HMI, and Station 1. Each dedicated probe forwards the captured network traffic to a dedi-
cated Ethernet port on the measurement server. The network traffic is subsequently stored
in capture files dedicated to each device.

After an experiment has completed, tools like EDITCAP, CAPINFOS, and TSHARK (com-
ponents of the WIRESHARK software package) [11] are used to dissect specific metrics from
the raw traffic for calculating networking KPI.

5.7 Time Synchronization

A Network Time Protocol (NTP) server is hosted on the workcell router for hosts within
the network. The router synchronizes its time with a grandmaster clock located within the
testbed network. Each host that performs timestamped logging within the workcell is time
synchronized with the NTP server, and is typically accurate to within 1 millisecond of the
grandmaster clock.

It is important to measure and record the clock drift between workcell hosts when the
logs are used for event correlation, as the clocks in each host tend to deviate from the
reference clock (the grandmaster) over time. The NTP performance file from each host,
which contains the measured clock drift and offset, is captured to validate that the expected
clock accuracy was maintained during the experiment.
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Fig. 4. Network topology diagram of the CRS.

6. Measurement Data Retrieval and Storage

The measurement data files, described in Table 4, are downloaded from each workcell host
to a large redundant storage array within the testbed network. All of the data files are
organized by tool and configuration, using a descriptive folder naming structure described
in Table 7, and subfolder structure for organizing the different types of measurement data.
Subfolder locations of each measurement file are also detailed in Table 4.

The measurement data files from successful experiments will be made publicly avail-
able via a website on the nist.gov domain after the data has been validated and checked for
completeness. The resulting structure of the data will be described in a future publication.
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Table 7. Description of the folder naming structure for measurement data.

Name Values Description

Testbed system C, P Testbed system the measurements were taken: the
Collaborative Robotics System (C), or the Process
Control System (P).

Security level L,M,H Low (L), moderate (M), or high (H) Manufacturing
Profile security level.

Technology identifier 000 to 999 Sequential, incrementing identifier indicating the or-
der in which the tool was installed.

Configuration identifier .0 to .9 Identifier of the technology or tool configuration.
Separator - Dash separator.
Technology name string Descriptive name of the installed technology or tool.
Separator - Dash separator.
Configuration name string Descriptive name of the measured configuration.

Consider the example folder name: CL004.2-AntiVirus-FullScan. This folder name
indicates it contains data from an experiment on the CRS (C), and it was taken during the
implementation of the low security level (L). It was scheduled as the fourth technology to
be installed (004) and the second configuration (.2). The technology installed was anti-
virus software, and the action tested was a “full-scan”. More detailed information about
the data is contained in the README file in the root directory of the folder.

7. Characterization and Analysis of Measurement Data

After each tool has been installed or a configuration measurement is performed, the data
from the experiment is analyzed to determine if the manufacturing process performance
was negatively impacted. This analysis is performed with an approach called exploratory
data analysis (EDA), and is described in great detail in the NIST Engineering Statistics
Handbook [12]. This analysis process requires the workcell to be characterized for proper
comparative analysis to be performed.

7.1 Workcell Characterization

A characterization procedure (further described in Appendix A) must first be performed
to understand the characteristics of the manufacturing process and validate its stability. If
the manufacturing process is stable, the response variables (KPI) will have constant means
and constant variances over time, and will also have a constant distribution [12]. Two
response variables (KPI) were chosen as candidates for detecting performance impacts:
part processing time, and workcell cycle time.

The characterization process concluded that the manufacturing process is stable, and
it is valid to use EDA for detecting performance impacts to the manufacturing process.
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Data from the characterization process was used to calculate the minimum sample size to
confidently indicate the process was impacted: 35 parts.

The characterization data was also used to test multiple hypotheses related to the perfor-
mance and stability of the workcell. For example, do parts produced after the workcell has
warmed-up have a shorter production time than if the workcell is cold-started? Of the four
hypotheses (see Table 8 in Appendix A), none of the null hypotheses were rejected, further
exhibiting the stability of the manufacturing process. Box plots showing the distributions
used for testing the hypotheses are shown in Figure 11.

7.2 Comparative Analysis of Measurement Data

Graphical comparisons will be regularly performed using the measurement data. Some
example comparisons include: baseline measurements vs. the completed security level
implementation, between each sequential technology installations, and between each op-
erational configuration of a single technology. The pre-implementation baseline may also
be used to compare the impact between each security level. Two graphical techniques will
be utilized consistently for these analyses: bihistograms, and box plots. Both of these
graphical methods eliminate the reliance on quantitative t-tests, as more information can be
determined visually than can be provided by a single t-test.

A bihistogram is typically used to compare the location, scale, skewness, and outliers
between two processes [12]. The bihistogram displays two histograms on a single figure,
with one histogram mirrored across the y-axis enabling easier comparative analysis versus
two overlaid histograms.

Fig. 5. Example bihistograms of production data. The first bihistogram uses raw production data,
while the second uses bootstrapped production data.

The bootstrap method can be combined with the bihistogram to better understand the
confidence interval for the mean, as a histogram with a small sample size may not provide
a clear representation of the distribution. The method involves randomly selecting samples
(with replacement) from the original data set, and calculating a statistic of the resulting
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subsample [12]. This process is repeated many times, with the statistics computed from
each subsample used to create the bootstrap histogram.

The first plot in Figure 5 (left) shows a bihistogram of production times from two 100-
part experiments, resulting in sparse histograms, making it difficult to visualize the sample
mean. The second plot (right) shows the resulting bootstrap bihistogram from the same
production data. The resulting bihistogram shows that the two experiments have similar
distributions, and a deviation of means (around 30 milliseconds).

A box plot will be used to compare more than two sets of measurement data. This may
include sequential comparisons (as shown in Figure 6), comparisons between unique tool
configurations, or comparisons between different combinations of tools. Results from these
graphical comparisons can be used to indicate if further testing is required to determine the
source of the performance impact.

Other metrics and KPI will be analyzed as-required when implementing the security
levels. For example, if the cause of a performance impact is suspected to be the increased
network throughput (KPI 6.5 in [3]) on a specific ICS device, the measurement data from
the baseline will be characterized and analyzed to determine its feasibility as a response
variable. It is not necessary to analyze every KPI for all experiments because the divergence
of a KPI from the expected value does not necessarily mean that the deviation has resulted
in a performance impact to the manufacturing system.

Some of the tool operations generate short-term actions that complete within the normal
processing time of a batch (and sometimes within the processing time of a single part).
Tool actions that have this type of behavior will be manually scheduled and initiated at
a specific time during production. Performance impacts from these types of tool actions
will be evident during post-analysis of the data. For short-term operations, the KPI may
not indicate a statistically-significant impact, but its short-term impact may be evident by
analyzing high resolution time-series data on a trend plot (or similar time-series plot).

A detailed example of the comparative analysis process is shown in Appendix B. The
baseline measurements for the example analysis were obtained from the low security level
baseline, and the experimental measurements were created by imparting a network delay
on the CRS network. A delay of 10 ms was enforced on all ingress and egress PLC traffic to
simulate an impactful tool being installed on the PLC communications path (e.g., a queuing
network-based firewall).
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Fig. 6. An example box plot illustrating how increasing performance degradation of a
manufacturing system may appear as tools are sequentially added to the system.

8. Conclusion

The implementation and validation of the Manufacturing Profile on the Cybersecurity for
Smart Manufacturing Systems project Collaborative Robotics System, and its resulting per-
formance impact measurements, will provide an excellent source of data for developing
new cybersecurity guidance for the manufacturing sector, and numerous other industries
that utilize ICS. The final results of this research will give industry the confidence it needs
to successfully implement cybersecurity technologies within ICS without the worry of neg-
atively impacting their manufacturing processes.
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Appendix A: Characterization of the Workcell

Measuring the performance impact of cybersecurity technologies on the manufacturing
process requires detailed knowledge of the process behavior. This knowledge can be ob-
tained through an analysis called characterization, in which data from the manufacturing
process is used to find the typical distribution and variation of the chosen KPI. Once the
manufacturing process is characterized, performance impacts can be detected and quanti-
fied by comparing experimental data to the characterized data or baselines.

For this research, two potential response variables (KPI) were chosen as candidates:
the part production time (2.1 in [3]) and the part cycle time (2.2 in [3]). Since parts must
progress sequentially through the workcell, it is assumed that performance impacts to any
process operation will likely be detected by one of these two KPI.

The first question that must be answered is, how many parts must be produced to ac-
curately determine the mean of the KPI? The larger the sample size obtained during the
characterization, the more accurately the process mean can be estimated. However, sample
size is also restricted by the amount of time required to produce the sample. For each sam-
ple that is produced on the workcell, it can be said that the mean of the sample is within a
certain amount of error to the population mean. But how many samples are required? This
problem can be formally defined by the equation:

Y −δ ≤ µ ≤ Y +δ , (1)

where µ is the estimated average of the KPI, Y the sample mean, and δ is the error of
estimation. This is simply formalizing that the sample mean Y is within some error ±δ of
the population mean µ . Because the standard deviation of the manufacturing process can
be estimated by using data previously obtained from the workcell, the following equation
can be used to find the error of estimation:

δ =
σ√
N

z1−α/2 , (2)

where σ is the standard deviation of the manufacturing process, N is the sample size,
and z1−α/2 is the critical value from the normal distribution for 1−α/2 (i.e., the confidence
interval). This equation can be rewritten as an inequality to estimate the minimum quantity
of samples required:

N ≥
(z1−α/2

δ

)2
σ

2 . (3)

To calculate the number of samples required, a confidence interval of 95% was chosen
(α = 0.05). At this point, the only remaining unknown is the error of estimation. Since
the data used to calculate the response variables is captured by the supervisory PLC and
its timestamp resolution is limited to 10 milliseconds, it was decided to use an error of
estimation of 0.01 seconds. This results in the solution:
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N ≥
(

1.96
0.01

)2

0.112 ≥ 464parts .

Therefore, to estimate the mean part production time with an error estimation of less
than 0.01 seconds with a probability of 95% on a process with an estimated standard devi-
ation of 0.11, a minimum of 464 parts must be produced during the characterization phase.
Since the sample size required is so large, it was decided to increase the sample size to
1000 parts.

The sample size was increased because: it allows for the total sample size to be evenly
divided into smaller “batches”, it enables sub-samples of the characterization data to be
selectively combined to test hypotheses of the underlying manufacturing process, and it
further increases the accuracy of the estimated mean.

The characterization sample was divided into ten equal batches of 100 parts. The pro-
duction of each batch was then distributed across five calendar days, with two batches
produced per day: one batch in the morning, and one batch in the afternoon. The first four
batches were produced on a Thursday and Friday, and the last six batches were produced
the following Monday, Tuesday, and Wednesday.

The batch distribution across multiple calendar days allowed for the following hypothe-
ses to be evaluated from the data:

• Part production time is consistent across all batches.

• Part production time does not differ from day-to-day.

• Part production time of batches produced in the morning does not differ from batches
produced in the afternoon.

• Part production time of batches produced during a calendar week does not differ from
the batches produced during the following calendar week (i.e., after the workcell is
shut down for an extended period of time and subsequently restarted).

• Part production time does not differ from the first twenty five parts of a batch to the
last twenty five parts of a batch (i.e., the robots do not transfer parts at faster or slower
rates depending on when the part was transferred).

At this point, the batches were produced and the production data captured. The pro-
duction time for each individual part is shown in Appendix C, and is organized by batch
number. The production time of the first part from each batch is removed from the data set
because its production time is not representative of the later parts. This is a result of the
workcell being purged when the manufacturing process is started. This results in a final
characterization sample size of n = 99 parts per batch, and N = 990 parts total for all ten
batches combined.
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Exploratory Data Analysis

Now that the production data has been obtained, exploratory data analysis (EDA) is em-
ployed to gain insight into the manufacturing process. The EDA process is described in
great detail in the NIST Engineering Statistics Handbook [12]. Most importantly, it must
be determined if the manufacturing process is stable and consistent. If not, it will be impos-
sible to effectively model the manufacturing process and measure any performance impacts.

The expectation for the EDA of the workcell KPI (specifically, the part production time
KPI) is to fit a univariate model. This type of model has only two components: a constant
term, and an error term. The constant term (which, as of this point, is unknown) represents
the fixed location of the distribution, and the error term represents the expected amount of
randomness in the process (the variance of which must also be fixed). The model also has
other requirements, which will be addressed throughout this section. The univariate model
is defined as:

Yi =C+ ε ,

where C is the estimated mean and ε is the error term.

Scatter Plot

The resulting scatter plot of part production time vs. part number is shown in Figure 7.
From this plot, it is evident there are no large shifts in location, variation, or any significant
outliers. The manufacturing process appears stable and consistent (at least, for this response
variable).

A horizontal line (red) representing the mean part production time was added to the plot
to aid the analysis or variance around the mean. The plot appears to show a larger quantity
of parts with values above the mean line than below, and a larger variance for parts with
values above the mean. Further analysis is required to verify this hypothesis.

4-Plot

The next step is to verify the process is in-control (i.e., stable), and to determine if the
resulting data is normally distributed. This is performed with a 4-plot, which combines
four plots: a run-sequence plot, lag plot, histogram, and normal probability plot. The
resulting 4-plot from the characterization dataset is shown in Figure 8.

As discussed in the previous section, the run-sequence plot shows there are no large
shifts in location, variation, or any significant outliers, suggesting that the process is stable
and in-control. The fitted trend line (shown in red) does appear to show a slight upward
trend, but it is not statistically significant.

The lag plot is used to determine if the data are random. It is produced by comparing
the production time of part Yi to the production time of part Yi+1. If there is a relationship
between the production times of successive parts, an identifiable structure will result in
the lag plot. If there is no relationship, the data should appear random and reasonably
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Fig. 7. Scatter plot of the part production time KPI from the characterization process data. The
horizontal red line denotes the mean part production time.

symmetric. The lag plot created from the characterization data in Figure 8 does not show
any obvious structure and does not show any serial correlation, therefore implying that the
data is random.

The histogram plot is used to visualize the distribution of a data set, and to determine
which model is best for statistically representing the data. Many features of the distribution
can be determined from the plot including: the center and spread, if the data is skewed, and
if the data is multimodal. The histogram created from the characterization data implies that
the data is normally distributed, is slightly skewed towards the right tail, and is unimodal.

These observations are also confirmed by the normal probability plot, which plots the
data set against a theoretical normal distribution. Evidence of the slight skew towards the
right tail is visible in the top-right of the plot, which shows the points trending below the
red line representing the theoretical normal distribution.

Analysis of the right skew is beyond the scope of this paper, but it is believed that its
presence is likely because of the varying performance of the manufacturing control systems
and networking equipment (known in this context as operational technology, or OT). There
is a theoretical minimum amount of time a part can travel through the process due to the
OT limitations, but there is no theoretical limit to the amount of delay that can be imparted
by the OT. However, for the purposes of characterizing the manufacturing process, the data
is accurately represented by the normal distribution.

Further analysis was performed to verify the randomness of the data. The lag plot
included in the four plot (Figure 8) is limited to a “lag of 1” (i.e., the data point Yi is
correlated with the point Yi+1). This does not, however, show if there are correlations
between data points Yi and Yi+2, Yi+3, etc. These relationships can be visualized using an
autocorrelation plot, which is shown in Figure 9.
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Fig. 8. Four plot of the ‘part production time’ KPI from parts produced during workcell
characterization.

The plot shows the autocorrelation for data points from lag 1 to lag 100, along with
the significance bands for 95% and 99% significance. There appears to be a statistical
significance for lag 1, and some significance for lag 2, 3, and 4 above the 95% confidence
band. The data for lag 1 is the same that is visualized in the lag plot from the 4-plot shown
in Fig. 8, and was already determined to not have any obviously visible structure.

To further test the statistical significance shown at lag 1, it must be realized that the
autocorrelation plot assumes the data is in sequential run order. This becomes an issue
when correlating data points from different batches, which happens to be the case with the
part production time data set, since it is composed of 10 sequential batches combined into
a single dataset. Operationally, the manufacturing process is halted and the workcell is
shut down between the batches, meaning there is no inherent relationship between the data
points being compared.

To resolve this issue, autocorrelation plots were created for each batch up to lag 25, as
shown in Fig. 10. While some of the plots do show levels of correlation greater than the
confidence intervals, the correlations are neither consistent between batches nor of great
enough significance to imply that the data is not random.

It is hypothesized that the significance at lag 1 through lag 4 in the batches shown in
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Fig. 9. Autocorrelation plot showing lag 1 to lag 100 of the production time KPI.

Fig. 10 are due to the parallel operations of the workcell and its underlying OT systems.
For example, assume there are two parts in the workcell, one at Station 1 and one at Station
2. Since both of those stations are serviced by a single robot, if the part being transferred
out of Station 2 is delayed, the part waiting at Station 1 will incur the same amount of
delay before it is transferred. Therefore, the effect of communications delays between the
OT systems is the likely cause.

However, during normal operating conditions the probability of a part accumulating
delay is unlikely (as evident in the data). Future experiments may increase the probability
of OT-related delay, resulting in a stronger correlation at lag 1 through 4. Therefore, lag
analysis should continue to be performed during the implementation.

Based on the data set from the characterization batches and the subsequent EDA, the
process is said to be in-control, stable, and random. This validates the assumption that the
process can be modeled using the normal distribution, and the univariate model can be used
to model the production time of parts produced in the workcell.

The production time KPI will continue to be used as the primary response variable for
indicating a performance impact to the manufacturing system. Any other potential response
variables used during the implementation must also undergo the same characterization pro-
cess.

Batch Evaluations

Distributing the batches across multiple days, and the time of day, enabled multiple hy-
potheses to be tested during the characterization process. The hypotheses and results are
listed in Table 8, and the box plots of the data are shown in Figure 11. None of the evalu-
ations produced statistically significant results, failing to reject any of the null hypotheses,
further displaying the stability of the manufacturing process.
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Fig. 10. Autocorrelation plots for each batch produced during the workcell characterization. Each
plot includes lag 1 to lag 25.

Table 8. Hypotheses tested on the characterization data.

Plot Null Hypothesis (H0) Reject H0?

Batch v. Batch KPI does not change between batches. NO
Morning v. Afternoon KPI does not change from morning to afternoon. NO
Day v. Day KPI does not change between calendar days. NO
Day v. Day KPI does not change after an extended shut down. NO
First 25 v. Last 25 KPI does not change between production stages. NO

Sample Size for Cybersecurity Technology Implementations

Just as Equation 3 was used to calculate the sample size required for characterization, the
equation can also be used to estimate the bound on the error for a specified sample size.
This information can then be used to find the optimal sample size and bound of the error.

A table was created (see Table 9) to determine the bound of the error using Equation 1.
A confidence interval α=95 % was used, resulting in the equation:

δ =
σ√
N

z1−α/2 =
0.846√

N
z0.025 .

After reviewing the results, a sample size of 35 parts was selected for future experiments
due to the relatively quick experiment time of 1 hour, and the minimal bound on the error
of ±0.028 seconds. An important consideration for the error bound is the 0.01 seconds
PLC task cycle time. With the chosen sample size of 35 parts and a task cycle time of 0.01
seconds (e.g., a timer resolution of 0.01 seconds), the bound on the error of estimation can
be rewritten in terms of timer periods, or±3 PLC task cycles. In statistical terms, there is a
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Fig. 11. Box plots of the batch evaluations using production time data from the workcell
characterization. The first plot (‘Batch v. Batch’) compares the distribution of part production
times between each batch. The second plot (‘Morning v. Afternoon’) compares the distribution of
parts produced in the morning vs. the afternoon. The third plot compares the distribution of parts
produced on each day. The fourth and final plot shows the distribution of parts produced at the
beginning of the batch vs. the end of the batch.

95 % probability (confidence interval) that a sample size of 35 parts covers or contains the
true mean.

For proper analysis of the results, it is important to understand how the error estima-
tion increases as the standard deviation changes. This relationship is shown in Figure 12.
The plot identifies two examples demonstrating the increasing error of estimation as the
standard deviation of the manufacturing process also increases. The plot shows how the
error of estimation between the two different values of σ causes the error of estimation (δ )
to increase from ±0.028 to ±0.053. Therefore, it is important that the standard deviation
be calculated for each KPI to understand the effect it has on the distribution, and if the
resulting calculations are statistically significant.

Appendix B performs a comparative analysis of the standard deviation from example
production data, and calculates the critical value that indicates a statistically significant
change to the standard deviation (with a confidence interval of 99 %).
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Table 9. Bound on the error of estimation and the amount of workcell time required to obtain a
sample of size N at 95% confidence.

N δproduction
production

time (minutes) N δproduction
production

time (minutes)

5 ±0.074 35 60 ±0.021 79
10 ±0.052 39 65 ±0.021 83
15 ±0.043 43 70 ±0.020 87
20 ±0.037 47 75 ±0.019 91
25 ±0.033 51 80 ±0.019 95
30 ±0.030 55 85 ±0.018 99
35 ±0.028 59 90 ±0.017 103
40 ±0.026 63 95 ±0.017 106
45 ±0.025 67 100 ±0.017 110
50 ±0.023 71 990 ±0.005 820
55 ±0.022 75

Fig. 12. Plot displaying the relationship between the standard deviation σ , error of estimation δ ,
and sample size n. The two examples shown demonstrate the increasing error of estimation as the
standard deviation of the manufacturing process becomes larger. In this case, an increase of σ to
0.160 causes δ to increase to ±0.053, much larger than the characterized δ of ±0.028.
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Appendix B: Example comparative analysis

To validate the methodology described in this report, a performance impact was deliber-
ately imparted on the CRS. More specifically, a constant network delay was forced on all
packets received by and transmitted from the PLC. This network link between the workcell
and its PLC is critical to maintain because of the supervisory functions it performs: com-
municating with machining stations to gather operational data, and transmitting jobs to the
robot controllers.

To generate the network delay, an IXIA ANUE network emulator was physically con-
nected into the network path between the PLC and the CRS network. The emulator was
configured to impart a 10 millisecond delay on all incoming and outgoing traffic. This net-
work performance impact is comparable to a network-based firewall that queues network
traffic to be analyzed against a set of rules. This results in a round-trip time (RTT) of 20
milliseconds above the baseline RTT (typically < 1 millisecond).

The workcell was exercised through the normal production process with all measure-
ment systems activated, producing a batch of 35 parts. After the workcell completed the
batch, all measurement data was captured and analyzed.

Fig. 13. Bihistogram showing the production time probability of the baseline measurements
(blue-colored histogram) and the post-implementation measurements (orange-colored histogram).

The first step of the comparative analysis procedure was to determine if the technology
impacted the performance of the manufacturing process. A bihistogram plot was produced
using production time data (KPI 2.1 [3]) from the experiment and production time data
from a previous baseline. The resulting bihistogram is shown in Figure 13.

The bihistogram shows an obvious performance impact to the manufacturing process:
the average time required to produce a part increased from 101.17 seconds during the base-
line to 101.84 seconds during the experiment. The bihistogram plot indicates that the null
hypothesis (the tool does not affect the performance of the manufacturing process) should
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be rejected, and the alternate hypothesis (the tool affects the performance of the manufac-
turing process) should be accepted.

A quantile-quantile (Q-Q) plot is used to determine if the distribution of the two data
sets are different, and can be used to determine if there are shifts in location, shifts in scale,
changes in symmetry, or the presence of outliers [12]. The similar “normal probability plot”
was used during the characterization process, which compares the data set to the normal
probability distribution. As with the bihistogram, the Q-Q plot (shown in Figure 13) shows
an obvious performance impact (i.e., shift in location). More importantly, the linearity of
the plot indicates that the distribution has not changed (i.e., the typical variation of part
production times has not been affected by the cybersecurity tool).

It is not obvious from the bihistogram or Q-Q plot if the two data sets have the same
standard deviation. This can be determined numerically, as described in §7.3.2 in [12].
First, the critical value from the F table for a significance level of 1% with degrees of
freedom v1 = 33 and v2 = 33 is found.

F1−α,v1,v2 = F0.99,33,33 = 2.29 .

The F statistic is computed using the variance of each data set (in this case σb = 0.084,
and σe = 0.107).

F =
s2

b
s2

e
=

(
0.084
0.107

)2

= 0.616 , (4)

where s2
b is the variance of the baseline part process times, and s2

e is the variance of the
experimental part process times. Since F is less than the critical value F1−α,v1,v2 , the alter-
nate hypothesis (the standard deviations of each data set are different) can be rejected. The
difference in standard deviations between the baseline measurements and the experimental
measurements are, therefore, not statistically significant.

The formula can be rewritten to determine what value of standard deviation would result
in the null hypothesis being rejected (when the experimental data is compared to the true
baseline). This is possible since the experiment methodology has a consistent sample size
of 35 parts, and the manufacturing process is known to be stable.

Rewriting Eq. 4 for s2
e ,

s2
e = F0.99,33,33 · s2

b ,

which is equivalent to,

σe = σb ·
√

F0.99,33,33 ,

and finally,

σe = 0.085 ·
√

2.29 = 0.129 .
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Therefore, if the standard deviation of the experimental batch (σe) with a sample size
of 35, and σb of the true baseline ever exceeds a value of 0.129, the null hypothesis is
rejected, meaning that the installed technology or tool impacted the performance of the
manufacturing process.

It is important to note that the underlying mechanisms allowing the performance impact
to propagate to the manufacturing process cannot be determined from the EDA, nor is
it meant to be. The EDA process is meant to indicate if the manufacturing process has
been impacted, regardless of the underlying mechanism. However, the cause of the impact
is known: the cybersecurity technology, or its configuration. This is the most important
indicator, as most manufacturers consider maintaining production goals and quality goals
to be a primary business objective.

In terms of the Manufacturing Profile implementation at NIST, it is important to deter-
mine how the technology caused the impact. This information will be used as the foun-
dation for future guidance language and to enhance the Manufacturing Profile. A detailed
investigation of how the workcell ICS operation was impacted by this experiment is de-
scribed in NIST IR 8226 [6].
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Appendix C: Production Data

Table 10. Part production time data measured during the characterization process. The unit of
measure is seconds, with resolution down to hundredths of seconds.

Part
No.

Batch
1

Batch
2

Batch
3

Batch
4

Batch
5

Batch
6

Batch
7

Batch
8

Batch
9

Batch
10

1 100.99 101.06 101.01 100.99 100.96 100.98 101.00 100.91 100.98 100.97
2 101.17 101.23 101.11 101.04 100.93 100.95 101.13 101.16 101.03 101.06
3 101.07 100.92 101.07 101.12 101.01 101.05 100.96 101.09 100.98 101.03
4 101.06 101.21 101.13 101.04 101.07 101.08 101.07 100.99 101.13 101.03
5 101.25 101.11 101.15 101.14 101.11 101.07 101.12 101.02 100.96 101.04
6 101.19 101.10 101.01 101.06 101.09 101.10 101.17 101.15 101.06 101.11
7 101.31 101.14 101.11 101.24 101.10 100.97 101.03 101.15 101.01 101.09
8 101.10 101.09 101.09 101.00 101.01 101.06 101.01 101.06 101.16 101.10
9 101.08 101.10 101.04 101.08 101.14 101.08 101.02 101.18 101.21 100.98
10 100.85 101.02 101.06 101.03 101.05 101.03 101.12 100.92 101.04 101.15
11 100.93 101.11 101.02 101.09 101.14 100.94 101.06 101.02 101.14 101.09
12 100.99 100.96 100.95 101.09 101.09 101.13 101.30 101.04 101.12 101.02
13 101.00 100.99 101.05 101.01 101.10 101.08 101.15 101.11 101.08 101.14
14 101.00 101.06 101.04 101.10 101.14 101.00 101.07 101.10 100.98 101.11
15 101.05 100.89 101.01 101.04 101.25 100.88 100.99 101.08 100.89 101.03
16 101.10 101.09 101.11 101.05 101.14 100.89 101.14 101.06 101.02 101.27
17 100.98 101.14 101.01 100.98 101.26 100.96 100.98 101.04 101.11 101.17
18 100.78 100.98 100.99 101.12 100.98 100.89 100.97 101.01 101.07 101.13
19 101.03 101.03 101.05 101.17 100.95 101.08 101.05 101.05 101.09 101.11
20 101.04 101.10 100.97 101.12 101.07 101.02 101.00 101.29 101.13 101.19
21 101.05 101.16 100.99 101.06 101.05 101.03 101.02 101.10 101.22 101.16
22 100.97 101.04 101.06 100.99 101.12 101.05 101.08 101.10 101.05 101.21
23 101.20 101.11 101.00 101.15 101.02 101.03 101.11 101.09 101.03 101.05
24 101.16 100.99 101.04 101.18 101.10 101.09 101.16 101.10 100.96 101.10
25 101.17 101.19 100.87 101.02 101.18 101.18 101.09 101.18 101.12 100.92
26 101.23 101.16 100.95 101.14 101.11 101.06 101.03 101.24 101.07 101.13
27 101.17 101.00 100.93 101.03 101.07 101.10 101.16 101.22 100.97 101.10
28 100.91 101.03 101.01 101.06 101.20 101.20 101.06 101.21 101.12 101.07
29 101.02 101.08 101.01 100.96 101.12 101.09 101.02 101.13 101.13 100.96
30 101.06 101.01 101.04 100.95 101.06 101.20 101.06 101.03 101.09 101.10
31 101.09 101.01 100.91 101.06 101.02 101.05 101.04 101.03 101.03 100.97
32 101.01 101.00 100.88 101.06 100.96 101.06 100.97 100.98 101.03 101.12
33 101.09 101.04 100.99 101.13 101.10 101.14 101.05 100.99 100.97 101.05
34 100.93 101.04 101.00 100.99 101.07 101.18 101.06 101.03 101.02 101.04
35 101.01 101.03 101.09 100.96 101.06 100.97 101.00 101.07 101.06 101.11
36 101.03 100.96 100.99 101.00 101.17 101.12 100.91 101.07 101.19 101.06
37 100.91 101.01 101.13 101.26 101.03 101.05 101.16 101.04 101.11 101.03
38 101.06 101.02 101.12 101.02 101.14 101.07 101.05 100.94 101.05 101.18
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39 101.10 100.99 101.14 101.15 101.14 100.95 100.95 101.22 101.02 101.19
40 101.03 101.12 100.95 101.04 101.16 101.02 100.95 101.04 100.91 101.10
41 101.13 101.12 101.23 101.08 101.03 101.19 100.99 101.06 101.02 101.11
42 101.27 100.97 101.19 101.11 100.90 101.11 101.00 101.11 101.03 101.10
43 101.18 101.12 101.03 100.95 101.04 101.07 101.01 101.08 100.98 101.17
44 100.98 101.00 101.01 101.09 101.05 101.05 101.06 101.15 101.04 101.15
45 100.95 100.95 100.98 100.95 101.21 101.09 101.00 101.19 101.02 101.01
46 101.09 101.09 100.98 101.15 101.21 101.11 100.97 101.06 101.17 100.95
47 101.07 101.10 101.13 101.16 101.28 101.08 100.99 101.10 101.24 101.18
48 101.14 101.05 101.01 100.97 101.17 100.97 101.19 101.02 101.03 101.05
49 101.20 101.10 100.97 100.93 101.06 101.13 101.23 101.06 100.96 101.11
50 101.07 101.17 100.94 101.06 101.09 101.09 101.06 101.03 101.14 101.09
51 101.12 101.02 100.92 101.05 101.06 101.08 100.88 101.05 101.01 101.01
52 101.04 101.10 101.00 101.05 100.98 101.09 101.10 101.16 101.08 101.12
53 101.04 101.08 101.13 100.98 101.10 100.96 101.08 101.04 101.10 101.09
54 100.94 101.06 101.10 101.06 101.05 101.20 101.07 101.20 101.14 100.95
55 100.99 101.07 101.09 101.17 100.93 101.15 100.95 101.06 101.08 100.88
56 101.13 100.97 101.03 101.01 101.02 101.00 101.00 101.01 101.04 101.05
57 101.09 101.12 101.10 101.01 101.24 101.08 101.07 101.02 101.10 101.08
58 100.93 101.01 100.92 100.99 101.08 101.05 100.95 101.02 101.10 100.95
59 101.09 101.04 101.02 101.09 101.06 101.18 101.02 101.03 101.16 101.09
60 101.02 101.25 101.07 101.05 100.98 100.98 101.09 100.95 101.10 101.12
61 101.03 101.19 101.13 101.10 101.13 101.00 101.27 101.07 101.20 100.96
62 100.90 100.98 100.95 101.00 101.01 101.00 101.00 101.03 101.29 100.96
63 100.87 101.14 100.95 100.98 101.00 101.00 100.91 100.96 100.98 101.06
64 101.07 101.14 101.03 100.95 101.10 101.07 100.94 101.05 101.12 101.08
65 100.94 101.03 101.03 101.06 101.10 101.11 101.03 101.02 101.23 101.12
66 101.25 101.19 100.95 101.07 101.02 100.99 101.08 101.12 101.13 100.98
67 101.04 101.11 101.10 101.04 101.15 101.02 101.22 101.00 100.94 101.08
68 101.04 100.91 101.22 101.08 100.90 101.18 101.01 101.02 101.04 101.16
69 101.07 101.08 101.01 101.13 101.11 101.27 101.07 101.12 101.17 101.11
70 100.95 100.86 100.99 101.03 101.02 101.23 101.13 101.00 101.10 101.12
71 101.03 101.00 100.99 100.91 100.98 100.94 101.00 100.96 101.14 101.10
72 100.99 101.10 101.25 101.00 101.03 101.15 101.16 100.97 100.97 101.11
73 100.95 101.08 100.99 100.95 101.00 101.13 101.20 100.95 101.04 101.01
74 101.01 101.14 101.01 101.06 101.06 101.14 101.07 101.07 101.18 101.14
75 101.02 100.94 100.92 100.97 101.01 101.13 101.19 100.99 100.93 101.05
76 100.97 100.95 101.08 101.01 101.10 101.01 101.18 101.12 101.18 101.02
77 100.91 100.96 100.94 100.96 100.98 100.89 101.17 101.09 101.24 101.11
78 101.10 101.06 100.99 101.09 101.17 101.11 101.07 100.97 101.10 101.11
79 101.15 101.06 100.97 100.91 100.96 101.25 101.07 101.06 100.99 101.11
80 101.11 101.09 101.15 100.97 101.00 101.06 100.99 101.04 101.07 101.05
81 101.19 101.22 101.05 100.99 101.08 101.06 101.02 101.10 101.06 101.10
82 101.03 101.03 101.15 101.18 101.17 101.09 100.90 100.99 101.13 101.05
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83 101.06 101.08 101.04 101.06 100.97 100.97 100.94 100.88 101.15 101.06
84 101.06 101.19 101.13 101.11 101.20 100.98 100.96 101.05 101.03 101.08
85 101.04 101.22 101.09 101.22 101.22 101.19 100.96 101.09 101.24 101.05
86 101.18 100.99 101.15 101.03 101.08 101.12 101.00 100.96 101.22 101.02
87 100.88 100.99 101.07 101.07 101.07 101.04 100.97 101.11 101.05 101.16
88 101.02 101.05 101.14 101.10 101.16 101.06 101.07 100.99 100.96 101.14
89 101.11 101.16 101.13 100.97 101.01 101.01 100.99 100.93 101.04 101.02
90 101.19 101.10 101.10 101.05 100.98 101.06 100.97 101.03 101.07 101.20
91 100.87 101.12 100.91 101.01 101.14 100.95 101.04 100.92 101.16 101.16
92 100.91 101.16 101.02 101.11 101.18 101.05 101.08 101.02 101.14 101.11
93 100.97 101.15 100.90 101.18 101.09 100.97 100.95 101.03 100.99 101.18
94 101.06 101.24 101.00 101.01 101.21 101.02 100.99 101.06 101.06 101.15
95 101.03 100.99 100.98 101.08 100.99 100.99 100.97 101.05 101.06 101.35
96 101.19 101.10 101.25 101.13 100.96 101.03 101.02 101.21 100.91 101.14
97 100.95 101.08 101.05 101.24 101.14 101.15 100.99 101.15 100.87 101.11
98 101.04 101.09 100.91 100.96 101.01 101.14 101.08 101.09 101.09 101.13
99 100.97 101.07 100.87 100.99 101.15 100.94 101.08 101.23 100.87 101.12
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