

NISTIR 8221

A Methodology for Enabling
Forensic Analysis Using

Hypervisor Vulnerabilities Data

Ramaswamy Chandramouli
Anoop Singhal

Duminda Wijesekera
Changwei Liu

This publication is available free of charge from:

https://doi.org/10.6028/NIST.IR.8221

NISTIR 8221

A Methodology for Enabling
Forensic Analysis Using

Hypervisor Vulnerabilities Data

Ramaswamy Chandramouli
Anoop Singhal

Duminda Wijesekera
Computer Security Division

Information Technology Laboratory

Changwei Liu
George Mason University

Fairfax, VA

This publication is available free of charge from:
https://doi.org/10.6028/NIST.IR.8221

June 2019

U.S. Department of Commerce
Wilbur L. Ross, Jr., Secretary

National Institute of Standards and Technology

Walter Copan, NIST Director and Under Secretary of Commerce for Standards and Technology

National Institute of Standards and Technology Interagency or Internal Report 8221
35 pages (June 2019)

This publication is available free of charge from:

https://doi.org/10.6028/NIST.IR.8221

Certain commercial entities, equipment, or materials may be identified in this document in order to describe an
experimental procedure or concept adequately. Such identification is not intended to imply recommendation or
endorsement by NIST, nor is it intended to imply that the entities, materials, or equipment are necessarily the best
available for the purpose.

There may be references in this publication to other publications currently under development by NIST in accordance
with its assigned statutory responsibilities. The information in this publication, including concepts and methodologies,
may be used by federal agencies even before the completion of such companion publications. Thus, until each
publication is completed, current requirements, guidelines, and procedures, where they exist, remain operative. For
planning and transition purposes, federal agencies may wish to closely follow the development of these new
publications by NIST.
Organizations are encouraged to review all draft publications during public comment periods and provide feedback to
NIST. Many NIST cybersecurity publications, other than the ones noted above, are available at
https://csrc.nist.gov/publications.

Comments on this publication may be submitted to:

National Institute of Standards and Technology
Attn: Computer Security Division, Information Technology Laboratory

100 Bureau Drive (Mail Stop 8930) Gaithersburg, MD 20899-8930
Email: nistir8221@nist.gov

All comments are subject to release under the Freedom of Information Act (FOIA).

https://csrc.nist.gov/publications
mailto:nistir8221@nist.gov

NISTIR 8221 ENABLING FORENSIC ANALYSIS USING
 HYPERVISOR VULNERABILITIES DATA

ii

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8221

Reports on Computer Systems Technology

The Information Technology Laboratory (ITL) at the National Institute of Standards and
Technology (NIST) promotes the U.S. economy and public welfare by providing technical
leadership for the Nation’s measurement and standards infrastructure. ITL develops tests, test
methods, reference data, proof-of-concept implementations, and technical analyses to advance the
development and productive use of information technology. ITL’s responsibilities include the
development of management, administrative, technical, and physical standards and guidelines for
the cost-effective security and privacy of other than national security-related information in federal
information systems.

Abstract

Hardware/Server Virtualization is a foundational technology in a cloud computing environment
and the hypervisor is the key software in that virtualized infrastructure. However, hypervisors are
large pieces of software with several thousand lines of code and are therefore known to have
vulnerabilities. Hence a capability to perform forensic analysis to detect, reconstruct and prevent
attacks based on recent vulnerabilities on an ongoing basis is a critical requirement in cloud
environments. The purpose of this document is to develop a methodology to enable this forensic
analysis. Two open-source hypervisors—Xen and Kernel-based Virtual Machine (KVM)-were
chosen as platforms to illustrate the methodology, and the source for vulnerability data is the
National Institute of Standards and Technology’s National Vulnerability Database (NIST-NVD).
The vulnerabilities were classified in terms of hypervisor functionality, attack type, and attack
source. Based on the relative distribution of vulnerabilities in a hypervisor functionality, two
sample attacks were launched to exploit vulnerabilities in the target hypervisor functionality, and
the associated system calls were logged. The gaps in evidence data that is required for fully
detecting and reconstructing those attacks are identified and techniques required to gather missing
evidence are incorporated during subsequent attack runs. This is intended to be an iterative process.

Keywords

cloud computing; forensic analysis; hypervisors; Kernel-based Virtual Machine (KVM);
vulnerabilities; Xen

NISTIR 8221 ENABLING FORENSIC ANALYSIS USING
 HYPERVISOR VULNERABILITIES DATA

iii

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8221

Acknowledgments

The authors thank Ms. Isabel Van Wyk for her valuable editorial review.

Audience
The target audience for this document includes security staff and Chief Information Security
Officers (CISO) in virtualized infrastructures used for enterprise computing needs or for offering
cloud services.

Trademark Information

All registered trademarks or trademarks belong to their respective organizations.

NISTIR 8221 ENABLING FORENSIC ANALYSIS USING
 HYPERVISOR VULNERABILITIES DATA

iv

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8221

Executive Summary

Server/Hardware Virtualization is now an established technology in cloud computing
environments as it enables ubiquitous access to shared pools of system resources and high-level
services provisioned with minimal management effort. The key enabling software of this
technology is the hypervisor. This software layer lies between the physical hardware (called the
hypervisor host) and multiple application workloads executing in Virtual Machines (VMs or guest
machines). The hypervisor supports the guest machines by presenting to their operating systems
(OSs) a virtual hardware platform and managing their execution.

However, hypervisors are large pieces of software with many lines of code and known
vulnerabilities. Hence a capability to perform forensic analysis to detect, reconstruct and prevent
attacks based on recent vulnerabilities on an ongoing basis is a critical requirement in cloud
environments. The purpose of this document is to develop a methodology to enable this forensic
analysis.

The first step of the methodology is to analyze the recent vulnerabilities and attacks on hypervisor
products. Two open-source hypervisors - Xen and Kernel-based Virtual Machine (KVM)-were
chosen as platforms to illustrate the methodology, and the source for vulnerability data is the
National Institute of Standards and Technology’s National Vulnerability Database (NIST-NVD).
The vulnerabilities were classified based on three categories – the hypervisor functionality where
the vulnerability exists, attack type and attack source. The outcome of this step is to obtain the
relative distribution of recent hypervisor vulnerabilities for the two products in the three categories.

The second step of the methodology is to identify the hypervisor functionality that is most
impacted and to build sample attacks. These sample attacks were run for the chosen target
hypervisor functionality, and the associated system calls were logged. The third step is an iterative
process to determine the gaps in evidence data that is required for fully detecting and
reconstructing those attacks and to identify techniques required to gather the needed evidence
during subsequent attack runs.

The intended benefit of the methodology is to enable all stakeholders (cloud providers and
customers) to gain a better understanding of recent hypervisor vulnerabilities and attack trends,
identify forensic information needed to reveal the presence of such attacks, and develop guidance
on taking proactive steps to detect and prevent those attacks in their operating environments.

NISTIR 8221 ENABLING FORENSIC ANALYSIS USING
 HYPERVISOR VULNERABILITIES DATA

v

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8221

Table of Contents
Executive Summary ... iv

1 Introduction .. 1

2 Technology Background and Related Work .. 2

2.1 Hypervisors ... 2

2.1.1 Xen ... 2

2.1.2 KVM ... 3

2.2 Related Work .. 4

3 Classification of Hypervisor Vulnerabilities .. 5

3.1 The Hypervisor Vulnerabilities Data in the NIST-NVD 5

3.2 Classifying Vulnerabilities Based on Hypervisor Functionality 5

3.3 Obtaining Relative Distribution of Vulnerabilities ... 7

4 Sample Attacks and Forensic Analysis ... 10

4.1 The Two Sample Attacks .. 10

4.2 Identifying Evidence Coverage for Forensic Analysis 11

4.3 Use of Virtual Machine Introspection (VMI) for Forensics 12

5 Summary and Benefits ... 14

Appendix A— Xen and KVM Vulnerabilities ... 15

Appendix B— Description of Hypervisor Functionality ... 18

Appendix C— The Syscalls Intercepted from the Attacking Program 21

Appendix D— Forensic Data Obtained by Using LibVMI .. 23

Appendix E— References ... 26

NISTIR 8221 ENABLING FORENSIC ANALYSIS USING
 HYPERVISOR VULNERABILITIES DATA

1

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8221

1 Introduction

Most cloud services are provided through a virtualized infrastructure. Since virtualization of all
system resources—including processors, memory, and Input/Output (I/O) devices—makes it
possible to run multiple operating systems on a single physical platform (host), virtualization is a
key technology in cloud computing environments that enables ubiquitous access to shared pools
of system resources and high-level services provisioned with minimal management effort [1, 2].
An Operating System (OS) directly controls hardware resources in a non-virtualized system, but
virtualization, typically performed by a hypervisor (also called a virtual machine monitor or
VMM) [3] within a cloud environment, provides a mechanism that abstracts the hardware and
system resources from an OS. As a software layer that lies between the physical hardware and the
Virtual Machines (VMs or guest machines), a hypervisor supports the guest machines by
presenting the guest OSs with a virtual operating platform and managing their execution.

However, hypervisors are large pieces of software with many lines of code and known
vulnerabilities [4]. While there is published research dedicated to characterizing and assessing
hypervisor vulnerabilities as well as detecting and forensically analyzing the corresponding attacks
[4-8], there is no formal methodology for enabling forensic analysis on open-source hypervisors,
such as Kernel-based Virtual Machine (KVM) and Xen. Motivated by the work presented in [4],
which characterized hypervisor vulnerabilities as of July 2012 with the objective of preventing
their exploitation, this document considers the recent vulnerability reports associated with Xen and
KVM in the NIST National Vulnerability Database (NIST-NVD). The objective is to analyze
recent trends in hypervisor attacks, provide suggestions for mitigating hypervisor attack risks, and
identify evidence of those attacks. The main contributions of this publication are as follows: (1)
all vulnerabilities of the Xen and KVM hypervisor products from the 2016 and 2017 NIST
National Vulnerability Database (NIST-NVD) were analyzed and classified based on their
underlying functionalities, attack types, and sources of attacks; (2) classification of the above
mentioned Xen and KVM hypervisor vulnerabilities based on three categories – hypervisor
functionality, attack types and attack sources, and generating a relative distribution of the number
of vulnerabilities (3) Use the previous data as the basis to develop sample attacks that exploit
vulnerabilities in a target hypervisor functionality and run with system call logging capability, to
identify coverage of the evidence needed for detecting, reconstructing and preventing these
attacks.

The rest of the publication is organized as follows. Section 2 presents an overview of hypervisor
taxonomy and briefly describes the architecture of Xen and KVM hypervisor products as well as
related work in the area of vulnerability/forensic analysis. Section 3 discusses the gathering of
recent vulnerabilities in the two hypervisor products and the classification of those vulnerabilities
in terms of hypervisor functionality, attack types and attack sources. Section 4 describes the sample
attacks, information gathered in the initial log configuration, and discusses the gaps in forensic
evidence that is required for fully detecting and reconstructing those attacks. Identification and
discussion of techniques required to gather the needed evidence and the inclusion of those
techniques in subsequent attack runs are also part of this section. Section 5 provides the summary
and benefits.

NISTIR 8221 ENABLING FORENSIC ANALYSIS USING
 HYPERVISOR VULNERABILITIES DATA

2

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8221

2 Technology Background and Related Work

This section provides an overview of hypervisor taxonomy and briefly describes the various
building blocks in the architecture of two open-source hypervisor products. It also summarizes
related work in the area of hypervisor vulnerability/forensic analysis.

2.1 Hypervisors

Hypervisors are software and/or firmware modules that virtualize system resources such as the
Central Processing Unit (CPU), memory, and devices. In [9], Popek and Goldberg classify
hypervisors as Type 1 hypervisors and Type 2 hypervisors. Type 1 hypervisors run directly on the
host’s hardware to control the hardware and manage guest operating systems (Guest OS). For this
reason, Type 1 hypervisors are sometimes called bare metal hypervisors and include Xen,
Microsoft Hyper-V, and VMware ESX/ESXi. Type 2 hypervisors are similar to other computer
programs that run on an OS as a process. VMware Player, VirtualBox, Parallels Desktop for Mac,
and Quick Emulator (QEMU) are Type 2 hypervisors. Some systems have features of both. For
example, Linux's Kernel-based Virtual Machine (KVM) is a kernel module that effectively
converts the host OS to a Type 1 hypervisor but is also categorized as a Type 2 hypervisor because
Linux distributions are still general-purpose OSs with other applications competing for VM
resources [10].

According to the 2015 State of Hyperconverged Infrastructure Market Report by ActualTech
media [23], there are four leading products in the hypervisor market: Microsoft Hyper-V, VMware
VSphere/ESX, Citrix XenServer/Xen, and KVM. The first two - Microsoft Hyper-V and VMware
VSphere/ESX are commercial products, while the last two are open-source products. These open-
source products (i.e., Xen and KVM) were chosen as platforms for illustrating the methodology
that forms the subject of this document. Their architectures are briefly discussed below.

2.1.1 Xen

Figure 1 shows the architecture of Xen. In this design, the Xen hypervisor provides two types of
domains – a single control domain (also called Domain0 or Dom0) and multiple guest domains
(also called DomainU or DomU). Since the hypervisor supports two different virtualization modes,
Paravirtualization (PV) and Hardware-assisted Virtualization (HVM) [11], a total of three different
types of VMs – Domain0 VM (Dom0-VM), DomainU--PVM (DomU-PVM) and DomainU--
HVM (DomU-HVM) can be hosted on the Xen platform. Dom0 is the initial domain started by
the Xen hypervisor on booting up a privileged domain that plays the administrator role and supplies
services for DomU VMs. For the two kinds of DomU guests, PV is a highly efficient and
lightweight virtualization technology introduced by Xen in which Xen PV does not require
virtualization extensions from the host hardware. Thus, PV enables virtualization on hardware
architectures that do not support HVM, but it requires PV-enabled kernels and PV drivers to power
a high performance virtual server. HVM requires hardware extensions, and Xen typically uses
QEMU, a generic hardware emulator [15], for simulating PC hardware (e.g., CPU, Basic Input
Output System (BIOS), Integrated Drive Electronics (IDE), Video Graphics Array (VGA),
network cards, and Universal Serial Bus (USBs)). Because most I/O and network operations in
HVM mode are done by using simulation technologies, performance of DomU-HVMs are inferior
to DomU-PVMs[28]. Xen 4.4 provides a new virtualization mode named Para Virtualized

NISTIR 8221 ENABLING FORENSIC ANALYSIS USING
 HYPERVISOR VULNERABILITIES DATA

3

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8221

Hardware (PVH). PVH guests are lightweight HVM-like guests that use virtualization extensions
in the host hardware. Unlike HVM guests, instead of using QEMU to emulate devices, PVH guests
use PV drivers for I/O and native OS interfaces for virtualized timers and virtualized interrupts.
PVH guests require PVH-enabled guest OS [11].

Figure 1: The Xen architecture

2.1.2 KVM

In the open-source hypervisor projects, the Kernel-based Virtual Machine (KVM) is a relatively
new product which was first introduced in 2006 and soon merged into the Linux kernel (2.6.20).
KVM is a full virtualization solution for Linux on x86 hardware containing virtualization
extensions (Intel VT or AMD-V) where VMs run as normal Linux processes [12]. Figure 2 shows
the KVM architecture, in which the KVM module uses QEMU to create guest VMs running as
separate user processes. Because KVM is installed on top of the host OS, it is considered a Type
2 hypervisor. However, the KVM kernel module turns the Linux kernel into a Type 1 bare-metal
hypervisor, providing the power and functionality of even the most complex and powerful Type 1
hypervisors.

NISTIR 8221 ENABLING FORENSIC ANALYSIS USING
 HYPERVISOR VULNERABILITIES DATA

4

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8221

Figure 2: The KVM architecture

2.2 Related Work

Hypervisor attacks are categorized as external attacks and defined as exploits of the hypervisor's
vulnerabilities which allow attackers to gain accessibility and authorization over the hypervisors
[13]. In support of hypervisor defense, Perez-Botero et al. characterized Xen and KVM
vulnerabilities based on hypervisor functionalities in 2012 [4]. However, these vulnerabilities
cannot be used as the basis for characterizing many recent attacks. Using the NIST 800-115
security testing framework, Thongtua et al [5] assessed the vulnerabilities of widely used
hypervisors, including VMware ESXi, Citrix XenServer, and KVM then performed some sample
experiments in order to derive severity scores, and attack impacts. In an effort to develop
hypervisor forensic methods, researchers discussed the attacks on hypervisors, their forensic
mechanisms and challenges [8], and leveraged existing memory forensic techniques to perform
forensic analysis on hypervisor attacks [7].

NISTIR 8221 ENABLING FORENSIC ANALYSIS USING
 HYPERVISOR VULNERABILITIES DATA

5

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8221

3 Classification of Hypervisor Vulnerabilities

This section describes the first step of our methodology which involves the collection of recent
vulnerabilities in Xen and KVM hypervisor products and classifying them based on three
categories-Hypervisor Functionality, Attack Types and Attack Sources.

A brief description of the information sources that were used and the steps adopted as part of the
approach for obtaining the relative distribution of vulnerabilities is given in Sections 3.1, 3.2, and
3.3.

3.1 The Hypervisor Vulnerabilities Data in the NIST-NVD

The NIST-NVD is the U.S. government repository of standards-based vulnerability management
data and includes databases of security checklist references, security-related software flaws,
misconfigurations, product names, and impact metrics [14]. The first task of the first step is to
obtain all vulnerabilities (tagged with Common Vulnerabilities and Exposures (CVE) numbers))
in two open-source hypervisors (Xen and KVM) from the NIST-NVD for the years 2016 and 2017.

 As listed in Appendix A, a search of the NIST-NVD for the vulnerabilities based on keyword
“Xen” and “KVM” posted during the years 2016 and 2017 revealed 83 Xen hypervisor
vulnerabilities and 20 KVM hypervisor vulnerabilities. These vulnerabilities were then classified
based on the following three categories:

• Hypervisor Functionality where the vulnerability exists (attack vector channel)
• Attack Type (impact of the attack by exploiting the vulnerability)
• Attack Source (users in different virtualization component levels (e.g., guest OS, host OS or

hypervisor) and different privilege levels (e.g., user, administrator) who can launch attacks if
malicious)).

3.2 Classifying Vulnerabilities Based on Hypervisor Functionality

To obtain a better understanding of different hypervisor vulnerabilities in terms of impacted
hypervisor functions, Perez-Botero et al. considered 11 basic functionalities that a traditional
hypervisor provides and mapped vulnerabilities to them [4]. These functionalities include:

1) Virtual CPUs (vCPU)
2) Symmetric Multiprocessing (VSMP)
3) Soft Memory Management Unit (MMU)
4) I/O and Networking
5) Paravirtualized I/O
6) Interrupt and Timer mechanisms
7) Hypercalls
8) VMExit
9) VM Management
10) Remote Management Software
11) Hypervisor Add-ons

NISTIR 8221 ENABLING FORENSIC ANALYSIS USING
 HYPERVISOR VULNERABILITIES DATA

6

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8221

In the approach adopted in this document, we used the above 11 functions in a slightly modified
way. The functionalities 4 and 5 were merged into a single functionality based on the fact that they
both pertain to I/O. (A detailed description of all these functionalities can be found in Appendix
B). All reported Xen and KVM vulnerabilities during the years 2016 and 2017 were mapped to
these hypervisor functionalities based on the approach in [4], which are listed in Appendix A. A
brief description of sample vulnerabilities associated with functionalities is given in Table 1:

Table 1: A sample vulnerability for each hypervisor functionality

Hypervisor
Functionality Sample Vulnerability

vCPU

CVE-2017-10923 is an example of vCPU vulnerability in which Xen
through 4.8.x does not validate a vCPU array index upon sending a
software generated interrupt (SGI), which allows a guest OS user to cause
a denial-of-service (DoS) attack, finally resulting in crashing the
hypervisor.

VSMP NONE

Soft MMU

An example of soft MMU vulnerability is CVE-2017-17565, which existed
up to Xen version 4.9.x. Due to an incorrect assertion related to machine-
to- people (M2P), this vulnerability allows a paravirtualized guest OS user
to cause a DoS attack when both the shadow mode and log-dirty mode are
set up and working.

I/O and
Networking

CVE-2017-15589 is an example of an I/O and networking vulnerability
discovered in Xen versions through 4.9.x which allows x86 HVM guest OS
users to obtain sensitive information from the host OS (or an arbitrary guest
OS). In these versions of Xen, at least one write path was found wherein
the data that had been stored in an internal structure could contain bits from
an uninitialized hypervisor stack slot. A subsequent emulated read would
retrieve these bits.

Interrupt/Timer

CVE-2018-7542 is an example of an interrupt/timer vulnerability caused
by leveraging the mishandling of configurations that lack a local Advanced
Programmable Interrupt Controller (APIC). It was discovered in Xen 4.8.x
through 4.10.x. This vulnerability allows an x86 PVH guest OS user to
cause a DoS attack (a NULL pointer dereference and hypervisor crash).

Hypercalls

An example of hypercall vulnerability is CVE-2017-8903, which is
reported through Xen 4.8.x on 64-bit platforms that might allow a PV guest
OS user to execute arbitrary code on the host OS by mishandling page
tables after an IRET hypercall.

VMExit

The exploit of a VM Exit-handling code usually leads to a DoS attack. An
example of a VMExit vulnerability is CVE-2017-2596, in which the
“nested_vmx_check_vmptr” function in arch/x86/kvm/vmx.c in the Linux
kernel through 4.9.8 improperly emulates the VMXON instruction that puts
the processor in Virtual Machine Extensions (VMX) root mode. This then

https://nvd.nist.gov/vuln/detail/CVE-2017-10923
https://nvd.nist.gov/vuln/detail/CVE-2017-17565
https://nvd.nist.gov/vuln/detail/CVE-2017-15589
https://nvd.nist.gov/vuln/detail/CVE-2018-7542
https://nvd.nist.gov/vuln/detail/CVE-2017-8903
https://nvd.nist.gov/vuln/detail/CVE-2017-2596

NISTIR 8221 ENABLING FORENSIC ANALYSIS USING
 HYPERVISOR VULNERABILITIES DATA

7

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8221

Hypervisor
Functionality Sample Vulnerability

allows a KVM L1 guest OS user to cause a DoS attack (the host OS
memory consumption) by leveraging the mishandling of page references.

VM Management

CVE-2016-4963 is an example vulnerability of VM management. The libxl
device-handling in Xen through 4.6.x allows local guest OS users access to
the driver domain to cause a denial of service (management tool confusion)
by manipulating information in the backend directories in xenstore.

Remote
Management

Software

The exploit of the management functionality may allow a host compromise.
An example of VM management functionality vulnerability is CVE-2016-
5302. When a deployment has been upgraded from an earlier release,
XenServer 7.0 before the vendor's Hot x XS70E003 may allow a remote
attacker on the management network to compromise a host by leveraging
credentials for an active directory account.

Hypervisor
Add-ons

CVE-2016-0749 is an example vulnerability of hypervisor add-ons. By
leveraging the smartcard interaction in Simple Protocol for Independent
Computing Environments (SPICE) as KVM add-ons, a remote attacker can
cause a DoS attack (QEMU-KVM process crash) or possibly execute
arbitrary code via vectors related to connecting to a guest VM, which
triggers a heap-based buffer overflow.

3.3 Obtaining Relative Distribution of Vulnerabilities

After tagging each vulnerability with the three categories listed above, the number of
vulnerabilities were summarized for each category and percentages of occurrence within each
category were computed to obtain their relative distribution.

Table 2: The vulnerabilities of Xen and KVM classified by hypervisor functionality

Number Hypervisor Functionality Xen (Number & Percentage
of the Total)

KVM (Number &
Percentage of the Total)

1 vCPU 6 (7 %) 4 (20 %)

2 VSMP 0 (0 %) 0 (0 %)

3 Soft MMU 34 (40 %) 5 (25 %)

4 I/O and Networking

24 (29 %)
Five are fully-virtualized;

19 are paravirtualized;
none are direct access or

self-virtualized.

4 (20 %)
All are fully-virtualized.

5 Interrupt/Timer 7 (8 %) 3 (15 %)

6 Hypercalls 3 (4 %) 1 (5 %)

7 VMExit 1 (1 %) 2 (10 %)

https://nvd.nist.gov/vuln/detail/CVE-2016-4963
https://nvd.nist.gov/vuln/detail/CVE-2016-5302
https://nvd.nist.gov/vuln/detail/CVE-2016-5302
https://nvd.nist.gov/vuln/detail/CVE-2016-0749

NISTIR 8221 ENABLING FORENSIC ANALYSIS USING
 HYPERVISOR VULNERABILITIES DATA

8

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8221

Number Hypervisor Functionality Xen (Number & Percentage
of the Total)

KVM (Number &
Percentage of the Total)

8 VM Management 7 (8 %) 0 (0 %)

9 Remote Management
Software 1 (0 %) 0 (0 %)

10 Hypervisor Add-ons 0 (0 %) 1 (5 %)

Classifications based on the hypervisor functionalities are shown in Table 2. With the exception
of the functionality of virtual symmetric multiprocessing, all functionalities were reported as
having vulnerabilities. The number of vulnerabilities and the percentages within each hypervisor
offering are listed. The table reveals that there are more reported Xen vulnerabilities than KVM.
One of the reasons can be attributed to a broader user base for Xen. Furthermore, approximately
69 % of the vulnerabilities in Xen and 45 % of the vulnerabilities in KVM are concentrated in two
functionalities—Soft MMU and I/O and Networking. A detailed reading of CVE reports reveals
that these vulnerabilities primarily originated in page tables and I/O grant table emulation.
Additionally, the vulnerabilities based on the I/O and Networking functionality were also
associated with each of the four types of I/O virtualization: (1) fully virtualized devices, (2)
paravirtualized devices, (3) direct access devices, and (4) self-virtualized devices. Table 2 shows
that most of the I/O and networking vulnerabilities in Xen came from paravirtualized devices,
while all I/O and networking vulnerabilities in KVM came from fully-virtualized devices. This is
due to the fact that in most Xen deployments, I/O and networking functionality is configured using
a paravirtualized device, while in KVM, that functionality is configured using a fully virtualized
device.

Table 3: The types of attacks caused by Xen and KVM vulnerabilities

Type of Attack Xen (Number &
Percentage of the Total)

KVM (Number &
Percentage of the Total)

Denial-of-service (DoS) 48 (four have other
impacts) (44 %)

17 (three have other
impacts) (63 %)

Privilege escalation 33 (16 have other
impacts) (30 %)

3 (two have other
impacts) (11 %)

Information leakage 15 (five have other
impacts) (14 %) 5 (19 %)

Arbitrary code execution 8 (two have other
impacts) (7 %)

2 (all have other impacts)
(7 %)

Reading/modifying/deleting a file 3 (3 %) 0 (0 %)

Others including compromising a
host, canceling other administrators’

operations and corrupting data
3 (3 %) 0 (0 %)

Classifications based on the attack types and the sources of attacks are listed in Table 3 and Table
4, respectively. Table 3 reveals that the most common attack type was DoS (44 % for Xen and

NISTIR 8221 ENABLING FORENSIC ANALYSIS USING
 HYPERVISOR VULNERABILITIES DATA

9

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8221

63 % for KVM), indicating that attacking cloud services' availability could be a serious cloud
security problem. The other top attacks were privilege escalation (30 % for Xen and 11 % for
KVM), information leakage (14 % for Xen and 19 % for KVM), and arbitrary code execution (7 %
for Xen and 7 % for KVM). Although each of these thre;e attacks occurs with less frequency than
a DoS attack, they all carry the potential risk of either leaking sensitive user information or
compromising the hosts or guest VMs. Table 4 shows that the greatest source of all attacks was
guest OS users (76 % for Xen and 85 % for KVM). This suggests that cloud providers must closely
monitor guest users' activities in order to reduce attack risks.

Table 4: Attack Sources and Number of Exploits

Source of Attack Xen (Number & Percentage of
the Total)

KVM (Number & Percentage of
the Total)

Administrator 2 (Management) (2 %) 0 (0 %)

Guest OS administrator 17 (including HVM and PV
administrators) (20 %) 1 (5 %)

Guest OS user
63 (including Advanced RISC
Machine (ARM), X86, HVM

and PV users) (76 %)

17 (including KVM L1, L2, and
privileged users) (85 %)

Remote attacker 1 (1 %) 1 (including an authenticated
remote guest user) (5 %)

Host OS user 0 (0 %) 1 (5 %)

NISTIR 8221 ENABLING FORENSIC ANALYSIS USING
 HYPERVISOR VULNERABILITIES DATA

10

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8221

4 Sample Attacks and Forensic Analysis

The second step of the methodology is to identify the hypervisor functionality that is most
impacted by the vulnerabilities (from relative distribution) and use that as the basis to build sample
attacks. Since numerous vulnerabilities are related to the Xen soft MMU functionality, this section
illustrates two sample attacks that exploit vulnerabilities in this functionality, CVE-2017-7228 and
CVE-2016-6258, to demonstrate how the requisite evidence for detecting and reconstructing
hypervisor attacks is determined.

4.1 The Two Sample Attacks

As presented in Section 2.1.1., the Xen hypervisor can host three types of VMs, Dom0-VM,
DomU-PVM and DomU-HVM. The PV module in the hypervisor that implements PV mode and
supports DomU-PVMs has been widely utilized for its higher performance [25]. However, since
this module uses complex code to emulate the MMU, it introduces many vulnerabilities, such as
CVE-2017-7228 and CVE-2016-6258.

Known by Xen as XSA-212, CVE-2017-7228 was first reported by Jann Horn of Google’s Project
Zero in 2017 [20]. Horn discovered that this vulnerability in X86 64 bit Xen (including 4.8.x, 4.7.x,
4.6.x, 4.5.x, and 4.4.x versions) was caused by an insufficient check on the function
“XENMEM_exchange”, which allows the PV guest user as the function caller to access hypervisor
memory outside of the PV guest VM’s provisioned memory. Therefore, a malicious 64-bit PV
guest who can make a hypercall “HYPERVISOR_memory_op” function to invoke the
“XENMEM_exchange” function may be able to access all of a system’s memory. The consequent
VM escape from DomU to Dom0 (the process of breaking out of a guest VM and interacting with
the hypervisor’s host operating system) can enable the PV guest user to cause hypervisor host
crash and information leakage. The resulting increase in privilege can also enable the malicious
PV guest user to execute commands like “qvm-run victim firefox" to open a Firefox web-browser
in the “victim” guest VM, which can only be executed by Dom0 as shown in Figure 3.

CVE-2016-6258 is also known as XSA-182, which was reported by Jeremie Boutoille from
Quarklab in 2016 [21]. In the PV module, page tables are used to map pseudo-physical/physical
addresses seen by the guest VM to the underlying memory of the machine. Since there is a
vulnerability in Xen PV page tables that allows updates to be made to pre-existing page table
entries, the malicious PV guests can access the page directory with an updated write privilege to
execute the VM escape, breaking out of DomU to control Dom 0.

Both types of attacks were launched on the PV module configured in Qubes 3.1 with Xen 4.6 [22].
As illustrated in Figure 3, the attacker impersonating the PV guest root user could execute a
command, “qvm-run victim firefox,” that can only be executed by Dom0 to open the victim PV
guest’s Firefox web browser. Both attacks allowed the PV guest users to gain the control of Dom0.

NISTIR 8221 ENABLING FORENSIC ANALYSIS USING
 HYPERVISOR VULNERABILITIES DATA

11

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8221

Figure 3: CVE-2017-7228 and CVE-2016-6258 Attacks

4.2 Identifying Evidence Coverage for Forensic Analysis

The subsection describes the third step of our methodology that seeks to determine the gaps in
evidence data that is required for fully detecting and reconstructing those attacks and to identify
techniques required to gather missing evidence during subsequent attack runs. Towards this goal,
the analysis of existing evidence was conducted as follows:

It has been observed that both attacks used vulnerabilities related to hypercalls and soft MMU in
Xen in addition to using Xen’s device activity logs. The affected processes’ runtime syscalls were
therefore logged to perform a forensic analysis. As an example, Appendix C illustrates the syscalls
obtained by using the “strace” Linux command on the running “attack” program of CVE-2017-
7228. Analysis of the device activity logs and runtime syscalls showed the relevant evidence
originated from the syscalls captured from the attackers’ VMs. Despite the noise among syscalls
that can be found in most programs, other syscalls revealed that the attack program injected a
loadable kernel module into the kernel space which exploited the vulnerability to control the
Dom0. This then opened the Firefox browser in the victim’s guest VM.

Evidence acquisition plays an important role in forensic analysis by determining and
reconstructing attacks. As presented in a previous work which illustrated the use of a layered
graphical framework to reconstruct attack scenarios [24], relevant evidence was identified and

NISTIR 8221 ENABLING FORENSIC ANALYSIS USING
 HYPERVISOR VULNERABILITIES DATA

12

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8221

collected to reconstruct the corresponding attack path(s) representing the attack scenarios. During
this process, an attack path with missing attack steps led to the collection of additional supporting
evidence. An analysis of the syscalls captured for two sample attacks revealed that while the
syscalls obtained using “strace” Linux command were useful for forensic analysis, they lacked
attack details and had the following deficiencies: (1) the syscalls did not provide details of how
features of the loadable kernel module used Xen’s memory management to launch the attack; and
(2) the syscalls were collected from the attacker’s guest VM, which could easily be tampered with
or removed by the attacker. The VM introspection technique and corresponding memory analysis
tools are therefore recommended to obtain more supporting and admissible evidence from the run-
time memory.

4.3 Use of Virtual Machine Introspection (VMI) for Forensics

The VMI is a process that allows for the external viewing of the state of a VM, either from a
privilege VM or VMM itself. The state information includes CPU state (e.g., registers), all
memory, and all I/O device states such as the contents of storage devices or register states of I/O
controllers. Leveraging this capability, VMI-based applications can be built to perform forensic
analysis in the following ways:

1. The VMI-based application can capture the entire memory and I/O state of a VM that is
suspected of being compromised or attacked by taking a checkpoint (snapshot). The
captured state of the running VM under observation can be compared to either: (a) a
suspended VM in a known good state or (b) the original VM image from which the running
VM was instantiated. [26].

2. A VMI-based application can be built to perform execution path analysis on the monitored
VM. This is achieved by tracing—analyzing the sequence of VM activities and the
corresponding complete VM state (e.g., memory map, IO access). This aids in the
construction of a detailed attack graph with the VM state as nodes and the VM activities
as edges, thereby tracing the path through which the current compromised state was
reached [27]. This approach addresses deficiencies in performing forensic analysis that
simply uses the system calls from the compromised VMs as follows:

• There is the possibility that syscalls/hypercalls from the compromised VM could
be tampered with or entirely removed by the attacker. In this approach, the sequence
of VM states and VM activities are captured from outside the compromised VM,
thus eliminating this possibility.

• All variables that characterize a VM state and a VM activity are captured, helping
to reconstruct the attack details based on memory access information with the
ability to detect even malicious attacks, such as code and data modification.

Though VMI addresses deficiencies in forensic analysis that simply uses the system calls from
the compromised VM, VMI tools must reconstruct the operational semantics of the guest
operating system based on low-level sources such as physical memory and CPU registers [29].
Because LibVMI [30] provides VMI function on Xen and KVM,and bridges the semantic gap by
reconstructing high-level state information from low-level physical memory data, we used
LibVMI as the introspection tool to capture evidence from our two sample attacks. In order to
use LibVMI on the two attacks, we installed Xen 4.6 in Debian 8 with the privileged Dom0 and

NISTIR 8221 ENABLING FORENSIC ANALYSIS USING
 HYPERVISOR VULNERABILITIES DATA

13

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8221

both PV guests in DomU configured as Kernel 3.10.100 and Ubuntu 16.04.5, respectively. By
running current LibVMI (release 0.12) installed on Dom0, we captured all running processes and
injected Linux modules of the guest attack VM. We illustrated the processes captured during the
attack time of CVE-2017-7228 in Appendix D, in which the two command lines following
“root@debian” show the two programs vmi-process-list and vmi-module-list were executed to
capture the running processes and modules of the attacker’s VM, pv-attacker in our experiment.
Lines between “[0]” and “[704]” are the captured processes (each line is composed of the
number of the process, the name of the process and the kernel task list’s address where the
process name was retrieved); and lines following the command “vmi-module-list pv-attacker”
are the captured modules (each line shows the module name). By comparing the captured
processes and modules during the attack time with those from some other time (e.g., during
normal execution) , it was easy to identify the attack process (named as attack in Line [704]) and
the injected attack module (named as test as the first listed module. Its extension,.ko, is omitted
by the program).

While an introspection tool such as LibVMI provides an effective way to detect the hypervisor
attacks, it has limitations. First, to perform consistent memory access, LibVMI pauses and resumes
the guest VM (e.g., our experiment showed that the attacker’s VM was paused for about 0.035 756
s and 0.036 173 s for capturing the running process and injected modules, respectively). Second,
because the VMI tool is only effective during the attack time, an attacker can easily utilize an in-
VM timing mechanism, such as “kprobes” (the tracing framework built into kernel), to evade a
passive VMI system [31]. Third, storing the captured snapshots of the guest VMs for forensic
analysis often requires a large amount of storage space. Our current work addresses constructing
the detailed attack path by analyzing the attacker’s VM snapshots and improving upon the timing
and memory issues related to using introspection.

NISTIR 8221 ENABLING FORENSIC ANALYSIS USING
 HYPERVISOR VULNERABILITIES DATA

14

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8221

5 Summary and Benefits

The vulnerabilities in two open source products, Xen and KVM, were analyzed and classified
based on the hypervisor functionality where they exist, attack type and attack source. The analysis
showed that most attacks on the two hypervisors were caused by vulnerabilities that existed in the
soft MMU and I/O and Networking functionalities; the two most common hypervisor attack types
were DoS and privilege escalation attacks; and that most attackers were guest OS users. Based on
this information, two sample attacks were launched for forensic analysis with the log capture of
system call data. The collected data on the sample attacks showed that evidence that is critically
required for fully detecting and reconstructing those attacks was the runtime memory access
information, but this information was missing from the log of the current run. VMI was identified
as the requisite technique to gather this needed evidence and was incorporated in the subsequent
attack run.

The intended benefit of the methodology is to enable all stakeholders (cloud providers and
customers) to gain a better understanding of recent hypervisor vulnerabilities and attack trends,
identify forensic information needed to reveal the presence of such attacks, and develop guidance
on taking proactive steps to detect and prevent those attacks in their operating environments.

NISTIR 8221 ENABLING FORENSIC ANALYSIS USING
 HYPERVISOR VULNERABILITIES DATA

15

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8221

Appendix A—Xen and KVM Vulnerabilities

Table 5: The 83 Xen Vulnerability Entries in NIST-NVD (2016-2017)

No. Xen-CVE-Entry Functionality No. Xen-CVE- Entry Functionality

1 CVE-2017-15588 Hypercall 43 CVE-2016-9381 MMU

2 CVE-2017-7228 Hypercall 44 CVE-2016-9383 MMU

3 CVE-2017-8903 hypercall 45 CVE-2016-9384 MMU

4 CVE-2016-3961 I/O and networking 46 CVE-2016-9385 MMU

5 CVE-2016-5403 I/O and Networking 47 CVE-2016-9386 MMU

6 CVE-2016-9637 I/O and networking 48 CVE-2016-9932 MMU

7 CVE-2016-9815 I/O and networking 49 CVE-2017-10912 MMU

8 CVE-2016-9816 I/O and networking 50 CVE-2017-10915 MMU

9 CVE-2016-9817 I/O and Networking 51 CVE-2017-10918 MMU

10 CVE-2016-9818 I/O and Networking 52 CVE-2017-14316 MMU

11 CVE-2017-10911 I/O and networking 53 CVE-2017-14431 MMU

12 CVE-2017-10913 I/O and networking 54 CVE-2017-15591 MMU

13 CVE-2017-10914 I/O and networking 55 CVE-2017-15592 MMU

14 CVE-2017-10920 I/O and networking 56 CVE-2017-15593 MMU

15 CVE-2017-10921 I/o and networking 57 CVE-2017-15595 MMU

16 CVE-2017-10922 I/O and networking 58 CVE-2017-15596 MMU

17 CVE-2017-12134 I/O and networking 59 CVE-2017-17044 MMU

18 CVE-2017-12135 I/O and networking 60 CVE-2017-17045 MMU

19 CVE-2017-12136 I/O and networking 61 CVE-2017-17046 MMU

20 CVE-2017-12137 I/O and Networking 62 CVE-2017-17563 MMU

https://nvd.nist.gov/vuln/detail/CVE-2016-9381
https://nvd.nist.gov/vuln/detail/CVE-2017-7228
https://nvd.nist.gov/vuln/detail/CVE-2016-9383
https://nvd.nist.gov/vuln/detail/CVE-2017-8903
https://nvd.nist.gov/vuln/detail/CVE-2016-9384
https://nvd.nist.gov/vuln/detail/CVE-2016-3961
https://nvd.nist.gov/vuln/detail/CVE-2016-9385
https://nvd.nist.gov/vuln/detail/CVE-2016-5403
https://nvd.nist.gov/vuln/detail/CVE-2016-9386
https://nvd.nist.gov/vuln/detail/CVE-2016-9637
https://nvd.nist.gov/vuln/detail/CVE-2016-9932
https://nvd.nist.gov/vuln/detail/CVE-2016-9815
https://nvd.nist.gov/vuln/detail/CVE-2017-10912
https://nvd.nist.gov/vuln/detail/CVE-2016-9816
https://nvd.nist.gov/vuln/detail/CVE-2017-10915
https://nvd.nist.gov/vuln/detail/CVE-2016-9817
https://nvd.nist.gov/vuln/detail/CVE-2017-10918
https://nvd.nist.gov/vuln/detail/CVE-2016-9818
https://nvd.nist.gov/vuln/detail/CVE-2017-14316
https://nvd.nist.gov/vuln/detail/CVE-2017-10911
https://nvd.nist.gov/vuln/detail/CVE-2017-14431
https://nvd.nist.gov/vuln/detail/CVE-2017-10913
https://nvd.nist.gov/vuln/detail/CVE-2017-15591
https://nvd.nist.gov/vuln/detail/CVE-2017-10914
https://nvd.nist.gov/vuln/detail/CVE-2017-15592
https://nvd.nist.gov/vuln/detail/CVE-2017-10920
https://nvd.nist.gov/vuln/detail/CVE-2017-15593
https://nvd.nist.gov/vuln/detail/CVE-2017-10921
https://nvd.nist.gov/vuln/detail/CVE-2017-10922
https://nvd.nist.gov/vuln/detail/CVE-2017-12134
https://nvd.nist.gov/vuln/detail/CVE-2017-17044
https://nvd.nist.gov/vuln/detail/CVE-2017-12135
https://nvd.nist.gov/vuln/detail/CVE-2017-17045
https://nvd.nist.gov/vuln/detail/CVE-2017-12136
https://nvd.nist.gov/vuln/detail/CVE-2017-17046
https://nvd.nist.gov/vuln/detail/CVE-2017-12137
https://nvd.nist.gov/vuln/detail/CVE-2017-17563

NISTIR 8221 ENABLING FORENSIC ANALYSIS USING
 HYPERVISOR VULNERABILITIES DATA

16

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8221

No. Xen-CVE-Entry Functionality No. Xen-CVE- Entry Functionality

21 CVE-2017-12855 I/O and networking 63 CVE-2017-17564 MMU

22 CVE-2017-14318 I/O and networking 64 CVE-2017-17565 MMU

23 CVE-2017-14319 I/O and networking 65 CVE-2017-17566 MMU

24 CVE-2017-15589 I/O and networking 66 CVE-2017-8905 MMU

25 CVE-2017-15597 I/O and networking 67 CVE-2016-7093 MMU

26 CVE-2017-7995 I/O and networking 68 CVE-2016-9382 MMU

27 CVE-2017-8904 I/O and networking 69 CVE-2016-3710 vCPU

28 CVE-2017-15594 Interrupt/Timer 70 CVE-2016-3712 vCPU

29 CVE-2016-7154 Interrupt/Timer 71 CVE-2016-6259 vCPU

30 CVE-2016-9377 Interrupt/Timer 72 CVE-2017-10916 vCPU

31 CVE-2016-9378 Interrupt/Timer 73 CVE-2017-10923 vCPU

32 CVE-2017-10917 Interrupt/Timer 74 CVE-2016-7777 vCPU

33 CVE-2017-10919 Interrupt/Timer 75 CVE-2016-10025 VM Exit

34 CVE-2017-15590 Interrupt/Timer 76 CVE-2016-4962 VM
management

35 CVE-2016-10013 MMU 77 CVE-2016-4963 VM
management

36 CVE-2016-10024 MMU 78 CVE-2016-9379 VM
management

37 CVE-2016-3960 MMU 79 CVE-2016-9380 VM
Management

38 CVE-2016-4480 MMU 80 CVE-2017-14317 VM
Management

39 CVE-2016-5242 MMU 81 CVE-2017-5572 Vm
Management

40 CVE-2016-6258 MMU 82 CVE-2017-5573 VM
management

41 CVE-2016-7092 MMU 83 CVE-2016-5302
Remote

management
software

https://nvd.nist.gov/vuln/detail/CVE-2017-12855
https://nvd.nist.gov/vuln/detail/CVE-2017-17564
https://nvd.nist.gov/vuln/detail/CVE-2017-14318
https://nvd.nist.gov/vuln/detail/CVE-2017-17565
https://nvd.nist.gov/vuln/detail/CVE-2017-14319
https://nvd.nist.gov/vuln/detail/CVE-2017-17566
https://nvd.nist.gov/vuln/detail/CVE-2017-15589
https://nvd.nist.gov/vuln/detail/CVE-2017-8905
https://nvd.nist.gov/vuln/detail/CVE-2016-7093
https://nvd.nist.gov/vuln/detail/CVE-2017-7995
https://nvd.nist.gov/vuln/detail/CVE-2016-9382
https://nvd.nist.gov/vuln/detail/CVE-2017-8904
https://nvd.nist.gov/vuln/detail/CVE-2016-3710
https://nvd.nist.gov/vuln/detail/CVE-2016-3712
https://nvd.nist.gov/vuln/detail/CVE-2016-7154
https://nvd.nist.gov/vuln/detail/CVE-2016-6259
https://nvd.nist.gov/vuln/detail/CVE-2016-9377
https://nvd.nist.gov/vuln/detail/CVE-2017-10916
https://nvd.nist.gov/vuln/detail/CVE-2016-9378
https://nvd.nist.gov/vuln/detail/CVE-2017-10923
https://nvd.nist.gov/vuln/detail/CVE-2017-10917
https://nvd.nist.gov/vuln/detail/CVE-2016-7777
https://nvd.nist.gov/vuln/detail/CVE-2017-10919
https://nvd.nist.gov/vuln/detail/CVE-2016-10025
https://nvd.nist.gov/vuln/detail/CVE-2017-15590
https://nvd.nist.gov/vuln/detail/CVE-2016-4962
https://nvd.nist.gov/vuln/detail/CVE-2016-10013
https://nvd.nist.gov/vuln/detail/CVE-2016-4963
https://nvd.nist.gov/vuln/detail/CVE-2016-10024
https://nvd.nist.gov/vuln/detail/CVE-2016-9379
https://nvd.nist.gov/vuln/detail/CVE-2016-3960
https://nvd.nist.gov/vuln/detail/CVE-2016-9380
https://nvd.nist.gov/vuln/detail/CVE-2016-4480
https://nvd.nist.gov/vuln/detail/CVE-2017-14317
https://nvd.nist.gov/vuln/detail/CVE-2016-5242
https://nvd.nist.gov/vuln/detail/CVE-2017-5572
https://nvd.nist.gov/vuln/detail/CVE-2016-6258
https://nvd.nist.gov/vuln/detail/CVE-2017-5573
https://nvd.nist.gov/vuln/detail/CVE-2016-7092
https://nvd.nist.gov/vuln/detail/CVE-2016-5302

NISTIR 8221 ENABLING FORENSIC ANALYSIS USING
 HYPERVISOR VULNERABILITIES DATA

17

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8221

No. Xen-CVE-Entry Functionality No. Xen-CVE- Entry Functionality

42 CVE-2016-7094 MMU

Table 6: The 20 KVM Vulnerability Entries in NIST-NVD (2016-2017)

No. KVM-CVE-Entry Functionality No. KVM-CVE-Entry Functionality

1 CVE-2016-0749 Adds-on 11 CVE-2017-12188 MMU

2 CVE-2016-5412 Hypercall 12 CVE-2016-8630 MMU

3 CVE-2017-15306 I/O and Networking 13 CVE-2017-2583 MMU

4 CVE-2016-10150 I/O and Networking 14 CVE-2016-9756 MMU

5 CVE-2016-3713 I/O and Networking 15 CVE-2017-12154 vCPU

6 CVE-2017-17741 I/O and Networking 16 CVE-2016-9777 vCPU

7 CVE-2016-4020 Interrupt/Timer 17 CVE-2017-2584 vCPU

8 CVE-2017-1000252 Interrupt/Timer 18 CVE-2017-12168 vCPU

9 CVE-2016-4440 Interrupt/Timer 19 CVE-2017-2596 VM Exit

10 CVE-2016-9588 MMU 20 CVE-2017-8106 VM Exit

https://nvd.nist.gov/vuln/detail/CVE-2016-7094
https://nvd.nist.gov/vuln/detail/CVE-2017-12188
https://nvd.nist.gov/vuln/detail/CVE-2016-5412
https://nvd.nist.gov/vuln/detail/CVE-2016-8630
https://nvd.nist.gov/vuln/detail/CVE-2017-15306
https://nvd.nist.gov/vuln/detail/CVE-2017-2583
https://nvd.nist.gov/vuln/detail/CVE-2016-10150
https://nvd.nist.gov/vuln/detail/CVE-2016-9756
https://nvd.nist.gov/vuln/detail/CVE-2016-3713
https://nvd.nist.gov/vuln/detail/CVE-2017-12154
https://nvd.nist.gov/vuln/detail/CVE-2017-17741
https://nvd.nist.gov/vuln/detail/CVE-2016-9777
https://nvd.nist.gov/vuln/detail/CVE-2016-4020
https://nvd.nist.gov/vuln/detail/CVE-2017-2584
https://nvd.nist.gov/vuln/detail/CVE-2017-1000252
https://nvd.nist.gov/vuln/detail/CVE-2017-12168
https://nvd.nist.gov/vuln/detail/CVE-2016-4440
https://nvd.nist.gov/vuln/detail/CVE-2017-2596
https://nvd.nist.gov/vuln/detail/CVE-2016-9588
https://nvd.nist.gov/vuln/detail/CVE-2017-8106

NISTIR 8221 ENABLING FORENSIC ANALYSIS USING
 HYPERVISOR VULNERABILITIES DATA

18

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8221

Appendix B—Description of Hypervisor Functionality

Virtual CPUs (vCPU): A vCPU, also known as a virtual processor, abstracts a portion or share
of a physical CPU that is assigned to a virtual machine (VM). The hypervisor uses a portion of the
physical CPU cycle and allocates it to a vCPU assigned to a VM. The hypervisor schedules vCPU
tasks to the physical CPUs.

Virtual Symmetric Multiprocessing (VSMP): VSMP is a method of symmetric multiprocessing
(SMP), which enables multiple vCPU belonging to the same VM to be scheduled to a physical
CPU that has at least two logical processors.

Soft Memory Management Unit (Soft MMU): The Memory Management Unit (MMU) is the
hardware responsible for managing memory by translating the virtual addresses manipulated by
the software into physical addresses. In an OS running on bare metal, the MMU translates the
virtual addresses manipulated by the software into physical addresses. The mappings from virtual
to physical addresses are kept in page tables (PT) and managed by the OS. In a virtualized
environment, the hypervisor emulates the MMU (therefore called the soft MMU) for the guest
OSs. This is done by mapping what the guest OS sees as physical memory (often called pseudo-
physical/physical address in Xen) to the underlying memory of the machine (called machine
addresses in Xen). The mapping table from the physical address to machine address (P2M) is
typically maintained in the hypervisor and hidden from the guest OS by using techniques such as
a shadow page table (SPT) for each guest VM[16, 17]. When in SPT mode, the guest OS PT is not
performing a mapping from virtual-to-machine, but a virtual-to-physical mapping. The Xen
paravirtualized MMU model requires that the guest OS be directly aware of mapping between
(pseudo) physical and machine addresses (the P2M table). Additionally, in order to read page table
entries that contain machine addresses and convert them back into (pseudo) physical addresses, a
translation from machine to (pseudo) physical addresses provided by the M2P table is required in
Xen paravirtualized MMU model [17].

I/O and Networking: There are three common approaches that provide I/O services to guest
VMs. Using the Xen I/O structures illustrated in Figure 4 as an example, these common approaches
include:

(1) the hypervisor emulates a known I/O device in a fully virtualized system, and the guests
use an unmodified driver (called a native driver) to interact with it (illustrated as “Native
Driver 1” in DomU to “Device Model” in Dom0 in Figure 4);
(2) a paravirtual driver (known as a front-end driver) in a paravirtualized system is installed
in the modified guest OS in DomU, which uses shared-memory—asynchronous buffer-
descriptor rings—to communicate with the back-end I/O driver in the hypervisor
(illustrated as “Front-end Driver” in DomU to “Back-end Driver” to Dom0 in Figure 4);
(3) the host assigns a device (known as a pass-through device) directly to the guest VM
(illustrated as “Native Driver 2” in DomU to “Pass-through Device” in Figure 4).

To reduce I/O virtualization overhead, improve virtual machine performance, and provide I/O
services to guest VMs, scalable self-virtualizing I/O devices that allow direct access interface to
multiple VMs are also used. However, the two approaches do not virtualize the I/O since they

NISTIR 8221 ENABLING FORENSIC ANALYSIS USING
 HYPERVISOR VULNERABILITIES DATA

19

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8221

include direct access, and self-virtualized I/O devices allow the device driver within a guest OS to
interact with the hardware directly. Furthermore, they scale poorly due to challenges, performance,
and cost [22].

Figure 4: Xen I/O structures

In paravirtualized Xen systems, the front-end and back-end drivers communicate with each other
using two producer-consumer ring buffers (standard lockless shared memory data structures built
on grant tables and event channels), where one is used for packet reception and the other is used
for packet transmission. Though hypervisors enforce isolation across VMs residing within a single
physical machine, the grant mechanism provides inter-domain communications in Xen, allowing
shared-memory communications between unprivileged domains by using grant tables [16]. Grant
tables are used to protect the I/O buffer in a guest domain's memory and share the I/O buffer with
Dom0 properly, which underpin the split device drivers for block and network I/O. Each domain
has its own grant table that allows the domain to inform Xen with the kind of permissions other
domains have on their pages. KVM typically uses Virtio, a virtualization standard for network and
disk drivers, which is architecturally similar to Xen paravirtualized device drivers which are
composed of front-end drivers and back-end drivers.

Interrupt/Timer: Hypervisors should be able to virtualize and manage interrupts/timers [18], the
interrupt/timer controller of the guest OS, and the guest OS’s access to the controller. The
interrupt/timer mechanism in a hypervisor includes a programmable interval timer (PIT), the
advanced programmable interrupt controller (APIC), and the interrupt request (IRQ) mechanisms.

Hypercall: Hypercalls are similar to system calls (syscalls) that provide user-space applications
with kernel-level operations. They are performed using the syscall instruction with up to six
arguments passed in registers. A hypercall layer is commonly available and allows guest OSs to
make requests of the host OS. Domains will use hypercalls to request privileged operations such
as updating page tables from the hypervisors. Thus, an attacker can use hypercalls to attack the
hypervisor from a guest VM.

NISTIR 8221 ENABLING FORENSIC ANALYSIS USING
 HYPERVISOR VULNERABILITIES DATA

20

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8221

VMExit: According to Belay at el. [19], the mode change from Virtual Machine Extension (VMX)
root mode to VMX non-root mode is called VMEntry, and the mode change from VMX non-root
mode to VMX root mode is called VMExit. VM exits are a response to some instructions and
events (e.g., page fault) from guest VMs and are the main cause of performance degradation in a
virtualized system. These events could include external interrupts, accesses to control registers,
task switches, and I/O operation instructions (e.g., INB, OUTB).

VM management functionality: Hypervisors support basic VM management functionalities,
including starting, pausing, or stopping VMs. These tasks are managed in Xen Dom0 and KVM's
libvirt driver.

Remote Management Software: Remote management software is employed as a user-friendly
interface that remotely manages the hypervisor through the network. With an intuitive user
interface that visualizes the status of a system, the remote management software allows
administrators to tweak or manage the virtualized environment.

Add-ons: The add-ons of hypervisors use modular designs to add extended functions. By
leveraging the interaction between the add-ons and hypervisors, an attacker can cause a host to
crash (a DoS attack) or even compromise the host.

NISTIR 8221 ENABLING FORENSIC ANALYSIS USING
 HYPERVISOR VULNERABILITIES DATA

21

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8221

Appendix C—The Syscalls Intercepted from the Attacking Program

The syscalls in this appendix were obtained by employing the Linux command “strace” on the
running attack program using the vulnerability CVE-2017-7228 (the attack program is named
“attack”). These syscalls show: (1) the attacker executed the attack program with arguments aimed
at the victim guest VM (Line 1); (2) the attack program and required Linux libraries have been
loaded to the memory for the program execution (Line 2 to Line 16); (3) the memory pages of the
attack program have been protected from access by other processes (Line 17 to Line 23); and (4)
the attack program injected a loadable Linux module named “test.ko” to the kernel space to exploit
the vulnerability (Line 24 to Line 31).

1. execve("./attack", ["./attack", "qvm-run victim firefox"], [/* 30 vars */]) = 0
2. brk(NULL) = 0x8cd000
3. mmap(NULL, 4096, PROT_READ|PROT_WRITE,

MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0x7fa3a3022000
4. access("/etc/ld.so.preload", R_OK) = -1 ENOENT (No such file or directory)
5. open("/etc/ld.so.cache", O_RDONLY|O_CLOEXEC) = 3
6. fstat(3, {st_mode=S_IFREG|0644, st_size=74105, ...}) = 0
7. mmap(NULL, 74105, PROT_READ, MAP_PRIVATE, 3, 0) = 0x7fa3a300f000
8. close(3) = 0
9. open("/lib64/libc.so.6", O_RDONLY|O_CLOEXEC) = 3
10. read(3, "\177ELF\2\1\1\3\0\0\0\0\0\0\0\0\3\0>\0\1\0\0\0\240\6\2\0\0\0\0\0"..., 832) = 832
11. fstat(3, {st_mode=S_IFREG|0755, st_size=2104216, ...}) = 0
12. mmap(NULL, 3934688, PROT_READ|PROT_EXEC,

MAP_PRIVATE|MAP_DENYWRITE, 3, 0) = 0x7fa3a2a42000
13. mprotect(0x7fa3a2bf9000, 2097152, PROT_NONE) = 0
14. mmap(0x7fa3a2df9000, 24576, PROT_READ|PROT_WRITE,

MAP_PRIVATE|MAP_FIXED|MAP_DENYWRITE, 3, 0x1b7000) = 0x7fa3a2df9000
15. mmap(0x7fa3a2dff000, 14816, PROT_READ|PROT_WRITE,

MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0) = 0x7fa3a2dff000
16. close(3) = 0
17. mmap(NULL, 4096, PROT_READ|PROT_WRITE,

MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0x7fa3a300e000
18. mmap(NULL, 4096, PROT_READ|PROT_WRITE,

MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0x7fa3a300d000
19. mmap(NULL, 4096, PROT_READ|PROT_WRITE,

MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0x7fa3a300c000
20. arch_prctl(ARCH_SET_FS, 0x7fa3a300d700) = 0
21. mprotect(0x7fa3a2df9000, 16384, PROT_READ) = 0
22. mprotect(0x600000, 4096, PROT_READ) = 0
23. mprotect(0x7fa3a3023000, 4096, PROT_READ) = 0
24. munmap(0x7fa3a300f000, 74105) = 0
25. open("test.ko", O_RDONLY) = 3
26. finit_module(3, "user_shellcmd_addr=1407334317317"..., 0) = 0
27. fstat(1, {st_mode=S_IFCHR|0620, st_rdev=makedev(136, 0), ...}) = 0
28. mmap(NULL, 4096, PROT_READ|PROT_WRITE,

MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0x7fa3a3021000

NISTIR 8221 ENABLING FORENSIC ANALYSIS USING
 HYPERVISOR VULNERABILITIES DATA

22

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8221

29. mmap(0x600000000000, 4096, PROT_READ|PROT_WRITE,
MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS|MAP_LOCKED, -1, 0) =
0x600000000000

30. delete_module("test", O_NONBLOCK) = 0
31. exit_group(0) = ?

NISTIR 8221 ENABLING FORENSIC ANALYSIS USING
 HYPERVISOR VULNERABILITIES DATA

23

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8221

Appendix D—Forensic Data Obtained by Using LibVMI

The running processes obtained from the attacker’s VM:
root@debian:/home/guest/src/libvmi/libvmi# ./examples/vmi-process-list pv-attacker
Process listing for VM pv-attacker (id=2)
[0] swapper/0 (struct addr:ffffffff81e13500)
[1] systemd (struct addr:ffff88007c460000)
[2] kthreadd (struct addr:ffff88007c460e00)
[3] ksoftirqd/0 (struct addr:ffff88007c461c00)
[4] kworker/0:0 (struct addr:ffff88007c462a00)
[5] kworker/0:0H (struct addr:ffff88007c463800)
[6] kworker/u2:0 (struct addr:ffff88007c464600)
[7] rcu_sched (struct addr:ffff88007c465400)
[8] rcu_bh (struct addr:ffff88007c466200)
[9] migration/0 (struct addr:ffff88007c467000)
[10] watchdog/0 (struct addr:ffff88007c4c8000)
[11] kdevtmpfs (struct addr:ffff88007c4c8e00)
[12] netns (struct addr:ffff88007c4c9c00)
[13] perf (struct addr:ffff88007c4caa00)
[14] xenwatch (struct addr:ffff88007c4cb800)
[15] xenbus (struct addr:ffff88007c4cc600)
[16] khungtaskd (struct addr:ffff88007c4cd400)
[17] writeback (struct addr:ffff88007c4ce200)
[18] ksmd (struct addr:ffff88007c4cf000)
[19] crypto (struct addr:ffff88007c568000)
[20] kintegrityd (struct addr:ffff88007c568e00)
[21] bioset (struct addr:ffff88007c569c00)
[22] kblockd (struct addr:ffff88007c56aa00)
[23] ata_sff (struct addr:ffff88007c56b800)
[24] md (struct addr:ffff88007c56c600)
[25] devfreq_wq (struct addr:ffff88007c56d400)
[26] kworker/0:1 (struct addr:ffff88007c56e200)
[27] kworker/u2:1 (struct addr:ffff88007c56f000)
[29] kswapd0 (struct addr:ffff880076060e00)
[30] vmstat (struct addr:ffff880076061c00)
[31] fsnotify_mark (struct addr:ffff880076062a00)
[32] ecryptfs-kthrea (struct addr:ffff880076063800)
[48] kthrotld (struct addr:ffff880076131c00)
[50] khvcd (struct addr:ffff880076133800)
[51] bioset (struct addr:ffff880076134600)
[52] bioset (struct addr:ffff880076135400)
[53] bioset (struct addr:ffff880076136200)
[54] bioset (struct addr:ffff880076137000)
[55] bioset (struct addr:ffff880076238000)
[56] bioset (struct addr:ffff880076238e00)
[57] bioset (struct addr:ffff880076239c00)

NISTIR 8221 ENABLING FORENSIC ANALYSIS USING
 HYPERVISOR VULNERABILITIES DATA

24

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8221

[58] bioset (struct addr:ffff88007623aa00)
[62] ipv6_addrconf (struct addr:ffff88007623e200)
[64] bioset (struct addr:ffff880076132a00)
[76] deferwq (struct addr:ffff880076100000)
[77] charger_manager (struct addr:ffff880076100e00)
[145] kworker/0:1H (struct addr:ffff880004340e00)
[147] jbd2/xvda1-8 (struct addr:ffff880004340000)
[148] ext4-rsv-conver (struct addr:ffff880004346200)
[177] kworker/0:2 (struct addr:ffff880076103800)
[181] kworker/0:3 (struct addr:ffff880076065400)
[184] kworker/0:4 (struct addr:ffff880076064600)
[187] kworker/0:5 (struct addr:ffff880004347000)
[189] kworker/0:6 (struct addr:ffff880004345400)
[192] kworker/0:7 (struct addr:ffff88007623f000)
[194] kworker/0:8 (struct addr:ffff88007623c600)
[195] systemd-journal (struct addr:ffff88007623b800)
[196] kauditd (struct addr:ffff880076130e00)
[198] kworker/0:9 (struct addr:ffff880078820000)
[201] kworker/0:10 (struct addr:ffff880078823800)
[204] kworker/0:11 (struct addr:ffff880078825400)
[206] kworker/0:12 (struct addr:ffff880078827000)
[207] kworker/0:13 (struct addr:ffff880076105400)
[234] systemd-udevd (struct addr:ffff880076106200)
[383] systemd-timesyn (struct addr:ffff88007bd7aa00)
[516] dhclient (struct addr:ffff880077b78e00)
[560] cron (struct addr:ffff880077b7d400)
[562] dbus-daemon (struct addr:ffff880076107000)
[574] accounts-daemon (struct addr:ffff880004342a00)
[577] systemd-logind (struct addr:ffff880078821c00)
[579] rsyslogd (struct addr:ffff880078820e00)
[615] sshd (struct addr:ffff880003c88000)
[629] login (struct addr:ffff880003c8b800)
[630] agetty (struct addr:ffff880003c8e200)
[669] systemd (struct addr:ffff880076060000)
[674] (sd-pam) (struct addr:ffff880076104600)
[677] bash (struct addr:ffff880003c8aa00)
[703] sudo (struct addr:ffff880004341c00)
[704] attack (struct addr:ffff880004343800)

The obtained injected modules from the attacker’s VM:
root@debian:/home/guest/src/libvmi/libvmi# ./examples/vmi-module-list pv-attacker
test
intel_rapl
x86_pkg_temp_thermal
coretemp
crct10dif_pclmul

NISTIR 8221 ENABLING FORENSIC ANALYSIS USING
 HYPERVISOR VULNERABILITIES DATA

25

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8221

crc32_pclmul
ghash_clmulni_intel
aesni_intel
aes_x86_64
lrw
gf128mul
glue_helper
ablk_helper
cryptd
autofs4

NISTIR 8221 ENABLING FORENSIC ANALYSIS USING
 HYPERVISOR VULNERABILITIES DATA

26

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8221

Appendix E—References

[1] Uhlig R, Neiger G, Rodgers D, Santoni AL, Martins FCM, Anderson AV, Bennett SM,
Kagi A, Leung FH, Smith L (2005) Intel virtualization technology. Computer 38(5):48-56.
https://doi.org/10.1109/MC.2005.163

[2] Mell P, Grance T (2010) The NIST definition of cloud computing. Communications of the
ACM 53(6):50-54.

[3] Goldberg RP (1974) Survey of virtual machine research. Computer 7(6):34-45.
https://doi.org/10.1109/MC.1974.6323581

[4] Perez-Botero D, Szefer J, Lee RB (2013) Characterizing hypervisor vulnerabilities in cloud
computing servers. Proceedings of the 2013 International Workshop on Security in Cloud
Computing, (ACM, Hangzhou, China), pp 3-10. https://doi.org/10.1145/2484402.2484406

[5] Thongthua A, Ngamsuriyaroj S (2016) Assessment of hypervisor vulnerabilities.
Proceedings of the 2016 International Conference Cloud Computing Research and
Innovations (ICCCRI), (IEEE, Singapore, Singapore), pp 71-77.
https://doi.org/10.1109/ICCCRI.2016.19

[6] Szefer J, Keller E,Lee RB, Rexford R (2011) Eliminating the hypervisor attack surface for
a more secure cloud. Proceedings of the 18th ACM Conference on Computer and
Communications Security, (ACM, Chicago, IL), pp 401-412.
https://doi.org/10.1145/2046707.2046754

[7] Graziano M, Lanzi A, Balzarotti D (2013) Hypervisor memory forensics. Proceedings of
the International Workshop on Recent Advances in Intrusion Detection, (Springer, Rodney
Bay, St. Lucia), pp 21-40. https://doi.org/10.1007/978-3-642-41284-4_2

[8] Joshi LM, Kumar M, Bharti R (2015) Understanding threats in hypervisor, its forensics
mechanism and its research challenges. International Journal of Computer Applications
119(1):1-5. https://doi.org/10.5120/21028-2755

[9] Popek GJ, Goldberg RP (1974) Formal requirements for virtualizable third generation
architectures. Communications of the ACM 17(7):412-421.
https://doi.org/10.1145/361011.361073

[10] Pariseau B (2018) KVM reignites Type 1 vs Type 2 hypervisor debate. Available at
https://searchservervirtualization.techtarget.com/news/2240034817/KVM-reignites-Type-
1-vs-Type-2-hypervisor-debate

[11] Xen Project (2019) Xen project software overview. Available at
https://wiki.xen.org/wiki/Xen_Project_Software_Overview

[12] KVM contributors (2019) Kernel Virtual Machine [Main page]. Available at
https://www.linux-kvm.org/page/Main_Page

[13] Shi J, Yang Y, Tang C (2016) Hardware assisted hypervisor introspection. SpringerPlus,
5:647. https://doi.org/10.1186/s40064-016-2257-7

[14] National Institute of Standards and Technology (2019) National Vulnerability Database.
Available at https://nvd.nist.gov

https://doi.org/10.1109/MC.2005.163
https://doi.org/10.1109/MC.1974.6323581
https://doi.org/10.1145/2484402.2484406
https://doi.org/10.1109/ICCCRI.2016.19
https://doi.org/10.1145/2046707.2046754
https://doi.org/10.1007/978-3-642-41284-4_2
https://doi.org/10.5120/21028-2755
https://doi.org/10.1145/361011.361073
https://searchservervirtualization.techtarget.com/news/2240034817/KVM-reignites-Type-1-vs-Type-2-hypervisor-debate
https://searchservervirtualization.techtarget.com/news/2240034817/KVM-reignites-Type-1-vs-Type-2-hypervisor-debate
https://wiki.xen.org/wiki/Xen_Project_Software_Overview
https://www.linux-kvm.org/page/Main_Page
https://doi.org/10.1186/s40064-016-2257-7
https://nvd.nist.gov/

NISTIR 8221 ENABLING FORENSIC ANALYSIS USING
 HYPERVISOR VULNERABILITIES DATA

27

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8221

[15] QEMU contributors (2019) QEMU--the FAST! processor emulator. Available at
https://www.qemu.org

[16] Kloster JF, Kristensen J, Mejlholm A (2006) Efficient memory sharing in the Xen virtual
machine monitor. (Aalborg University). Available at http://mejlholm.org/uni/pdfs/dat5.pdf

[17] Xen Project (2019) X86 Paravirtualised Memory Management. Available at
https://wiki.xen.org/wiki/X86_Paravirtualised_Memory_Management

[18] Song Y, Wang H, Soyata T (2015) Hardware and software aspects of VM-based mobile-
cloud offloading. Enabling Real-Time Mobile Cloud Computing through Emerging
Technologies, ed Soyata T (Hershey, PA, Information Science Reference), Chapter 8, 1st
Ed., pp 247-271. https://doi.org/10.4018/978-1-4666-8662-5.ch008

[19] Belay A, Bittau, A, Mashtizadeh J, Terei D, Mazières D, Kozyrakis C (2012). Dune: safe
user-level access to privileged CPU features. Proceedings of the 10th USENIX Symposium
on Operating Systems Design and Implementation, (USENIX Association, Hollywood,
CA), pp 335-348. https://www.usenix.org/node/170864

[20] Horn J (2017) Paravirtualization: exploiting the Xen hypervisor. Available at
https://googleprojectzero.blogspot.com/2017/04/pandavirtualization-exploiting-xen.html

[21] Boutoille J, Campana G (2016) Xen exploitation part 3: XSA-182, Qubes escape. Available
at https://blog.quarkslab.com/xen-exploitation-part-3-xsa-182-qubes-escape.html

[22] Satran J, Shalev L, Ben-Yehuda M, Machulsky Z (2008) Scalable I/O-a well-architected
way to do scalable, secure and virtualized I/O. First Workshop on I/O Virtualization
(WIOV’08), (USENIX Association, San Diego, CA), pp 1-6. Available at
https://www.usenix.org/legacy/events/wiov08/tech/full_papers/satran/satran.pdf

[23] Lowe SD (2015) 2015 state of hyperconverged infrastructure market report. (ActualTech
Media, Bluffton, SC). Available at https://www.actualtechmedia.com/wp-
content/uploads/2015/05/2015-State-of-Hyperconverged-Infrastructure-Market-
Report.pdf

[24] Liu C, Singhal A, Wijesekera D (2017) A layered graphical model for mission attack
impact analysis. IEEE Conference on Communications and Network Security (CNS),
(IEEE, Las Vegas, NV), pp 602-609. https://doi.org/10.1109/CNS.2017.8228706

[25] Fayyad-Kazan H, Perneel L, Timmerman M (2013) Full and para-virtualization with Xen:
a performance comparison. Journal of Emerging Trends in Computing and Information
Sciences 4(9):719-727. Available at
http://www.cisjournal.org/journalofcomputing/archive/vol4no9/vol4no9_9.pdf

[26] Garfinkel T, Rosenblum M (2003) A Virtual Machine Introspection Based Architecture for
Intrusion Detection. Proceedings of Network and Distributed Systems Security Symposium,
(Internet Society, San Diego, CA), pp 1-16. Available at https://www.ndss-
symposium.org/wp-content/uploads/2017/09/A-Virtual-Machine-Introspection-Based-
Architecture-for-Intrusion-Detection-Tal-Garfinkel.pdf

[27] Moser A, Kruegel C, Kirda E (2007) Exploring multiple execution paths for malware
analysis. Proceedings of the IEEE Symposium on Security and Privacy (S&P 2007), (IEEE,
Berkeley, CA), pp 231-245. https://doi.org/10.1109/SP.2007.17

https://www.qemu.org/
http://mejlholm.org/uni/pdfs/dat5.pdf
https://wiki.xen.org/wiki/X86_Paravirtualised_Memory_Management
https://doi.org/10.4018/978-1-4666-8662-5.ch008
https://www.usenix.org/node/170864
https://googleprojectzero.blogspot.com/2017/04/pandavirtualization-exploiting-xen.html
https://blog.quarkslab.com/xen-exploitation-part-3-xsa-182-qubes-escape.html
https://blog.quarkslab.com/xen-exploitation-part-3-xsa-182-qubes-escape.html
https://www.usenix.org/legacy/events/wiov08/tech/full_papers/satran/satran.pdf
https://www.actualtechmedia.com/wp-content/uploads/2015/05/2015-State-of-Hyperconverged-Infrastructure-Market-Report.pdf
https://www.actualtechmedia.com/wp-content/uploads/2015/05/2015-State-of-Hyperconverged-Infrastructure-Market-Report.pdf
https://www.actualtechmedia.com/wp-content/uploads/2015/05/2015-State-of-Hyperconverged-Infrastructure-Market-Report.pdf
https://doi.org/10.1109/CNS.2017.8228706
http://www.cisjournal.org/journalofcomputing/archive/vol4no9/vol4no9_9.pdf
https://www.ndss-symposium.org/wp-content/uploads/2017/09/A-Virtual-Machine-Introspection-Based-Architecture-for-Intrusion-Detection-Tal-Garfinkel.pdf
https://www.ndss-symposium.org/wp-content/uploads/2017/09/A-Virtual-Machine-Introspection-Based-Architecture-for-Intrusion-Detection-Tal-Garfinkel.pdf
https://www.ndss-symposium.org/wp-content/uploads/2017/09/A-Virtual-Machine-Introspection-Based-Architecture-for-Intrusion-Detection-Tal-Garfinkel.pdf
https://doi.org/10.1109/SP.2007.17

NISTIR 8221 ENABLING FORENSIC ANALYSIS USING
 HYPERVISOR VULNERABILITIES DATA

28

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8221

[28] Whalen E (2013) HVM vs. Paravirtualized. (Performance Tuning Corporation, Austin,
TX). Available at https://www.perftuning.com/blog/hvm-vs-paravirtualized

[29] Dolan-Gavitt B, Payne B, Lee W (2011) Leveraging forensic tools for virtual machine
introspection. (Georgia Institute of Technology, Atlanta, GA), Technical Report, GT-CS-
11-05. http://hdl.handle.net/1853/38424

[30] LibVMI contributors (2015) LibVMI-Virtual Machine Introspection. Available at
http://libvmi.com

[31] Wang G, Zachary JE, Pham CM, Kalbarczyk ZT, Iyer RK (2015) Hypervisor
Introspection: A Technique for Evading Passive Virtual Machine Monitoring. 9th USENIX
Workshop on Offensive Technologies (WOOT ’15), (USENIX Association, Washington,
DC), pp 1-8. https://www.usenix.org/node/191959

https://www.perftuning.com/blog/hvm-vs-paravirtualized
http://hdl.handle.net/1853/38424
http://libvmi.com/
https://www.usenix.org/node/191959

	Executive Summary
	1 Introduction
	2 Technology Background and Related Work
	2.1 Hypervisors
	2.1.1 Xen
	2.1.2 KVM

	2.2 Related Work

	3 Classification of Hypervisor Vulnerabilities
	3.1 The Hypervisor Vulnerabilities Data in the NIST-NVD
	3.2 Classifying Vulnerabilities Based on Hypervisor Functionality
	3.3 Obtaining Relative Distribution of Vulnerabilities

	4 Sample Attacks and Forensic Analysis
	4.1 The Two Sample Attacks
	4.2 Identifying Evidence Coverage for Forensic Analysis
	4.3 Use of Virtual Machine Introspection (VMI) for Forensics

	5 Summary and Benefits
	Appendix A— Xen and KVM Vulnerabilities
	Appendix B— Description of Hypervisor Functionality
	Appendix C— The Syscalls Intercepted from the Attacking Program
	Appendix D— Forensic Data Obtained by Using LibVMI
	Appendix E— References

