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Reports on Computer Systems Technology

The Information Technology Laboratory (ITL) at the National Institute of Standards and
Technology (NIST) promotes the U.S. economy and public welfare by providing technical
leadership for the Nation’s measurement and standards infrastructure. ITL develops tests,
test methods, reference data, proof of concept implementations, and technical analyses to
advance the development and productive use of information technology. ITL’s responsi-
bilities include the development of management, administrative, technical, and physical
standards and guidelines for the cost-effective security and privacy of other than national
security-related information in federal information systems.

Abstract

The Computer Security Division at the National Institute of Standards and Technology is
interested in promoting the security of implementations of cryptographic primitives. This se-
curity depends not only on the theoretical properties of the primitives but also on the ability to
withstand attacks on their implementations. It is thus important to mitigate breakdowns that
result from differences between ideal and real implementations of cryptographic algorithms.

This document overviews the possibility of implementing cryptographic primitives using
threshold schemes, where multiple components contribute to the operation in a way that
attains the desired security goals even if f out of n of its components are compromised. There
is also an identified potential in providing resistance against side-channel attacks, which
exploit inadvertent leakage from real implementations. Security goals of interest include the
secrecy of cryptographic keys, as well as enhanced integrity and availability, among others.

This document considers challenges and opportunities related to standardization of
threshold schemes for cryptographic primitives. It includes examples illustrating security
tradeoffs under variations of system model and adversaries. It enumerates several high-level
characterizing features of threshold schemes, including the types of threshold, the communi-
cation interfaces (with the environment and between components), the executing platform
(e.g., single device vs. multiple devices) and the setup and maintenance requirements.

The document poses a number of questions, motivating aspects to take into account when
considering standardization. A particular challenge is the development of criteria that may
help guide a selection of threshold cryptographic schemes. An open question is deciding at
what level each standard should be defined (e.g., specific base techniques vs. conceptualized
functionalities) and which flexibility of parametrization they should allow. Suitability to
testing and validation of implementations are also major concerns to be addressed. Overall,
the document intends to support discussion about standardization, including motivating
an engagement from stakeholders. This is a step towards enabling threshold cryptography
within the US federal government and beyond.

Keywords: threshold schemes; secure implementations; cryptographic primitives; threshold
cryptography; secure multi-party computation; intrusion tolerance; distributed systems;
resistance to side-channel attacks; standards and validation.
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Executive Summary

As cryptography becomes ubiquitous, it becomes increasingly relevant to address the
potentially disastrous breakdowns resulting from differences between ideal and real imple-
mentations of cryptographic algorithms. These differences give rise to a range of attacks that
exploit vulnerabilities in order to compromise diverse aspects of real-world implementations.
Threshold schemes have the potential to enable secure modes of operation even when certain
subsets of components are compromised. However, they also present new challenges for
the standardization and validation of security assertions about their implementations.

This report is focused on threshold cryptographic schemes, i.e., threshold schemes used
for secure implementations of cryptographic primitives. In a threshold scheme, some security
property is tolerant to the compromise of up to a threshold number f (out of a total number
n of) components in the system. The topic is related to traditional “threshold cryptography”
(here adopted as an umbrella term), secure multi-party computation and intrusion-tolerant
distributed systems. A major goal is enhanced protection of secret keys used by implemen-
tations of cryptographic algorithms. More generally, the goal includes the enhancement of
a variety of security properties, such as confidentiality, integrity and/or availability.

Secret sharing is a fundamental technique in threshold cryptography. It enables a key (or
some other secret input) to be split into multiple shares distributed across multiple parties.
The “threshold” property translates into the ability to reconstruct the key from a threshold
number of shares, but not from fewer. Thus, splitting a key into shares is an approach for
protecting the secrecy of a key at rest, since the leakage of one or few shares does not reveal
the key. However, this does not solve the problem of how to execute an algorithm that
depends on a key. Particularly, conventional implementations of key-based cryptographic
algorithms require the whole key as input, so if the key had been subject to secret sharing
then the shared key would have to be reconstructed for use by the algorithm.

In threshold cryptography, the shares of the key do not need to be recombined to compute
a particular result. Instead, the parties independently or collaboratively calculate shares
of the output, without revealing the input shares to one another. This may be facilitated
by certain mathematical properties, such as homomorphisms, or by cryptographic “secure
computation” protocols. Using the threshold property, the output from the share computation
can then be reconstructed into a final output. This is possible to achieve for NIST-approved
algorithms, such as Rivest—-Shamir—Adleman (RSA) and Digital Signature Algorithm (DSA)
signatures, and Advanced Encryption Standard (AES) enciphering and deciphering.

Threshold schemes can be used, with different security goals, in different applications.
For example: (i) implement a digital signature algorithm without any single component
ever holding the signing key; (ii) implement encryption and decryption correctly even if one
compromised component attempts to corrupt the output; (iii) generate unbiased randomness
even if some (but not all) randomness contributors are biased or unavailable.

v
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The computational paradigm in threshold cryptography brings several security advan-
tages but also some potential weaknesses. For example, the use of multiple shares increases
the attack surface to encompass all shares. Thus, the security effect of implementing a
threshold scheme depends on an attack model. It is particularly relevant to consider how
difficult it may be to compromise more than the threshold number f of components. In
some cases, for example with low f, the increased attack surface may enable an attack more
efficient and effective than possible against a conventional (non-threshold) primitive, even if
the nodes in the threshold scheme have independent modes of compromise (e.g., each com-
promisable via mutually exclusive attack vectors). On the other hand, a threshold scheme
may provide better security even if the components are individually easier to compromise,
e.g., in some settings/models where they are also easier to patch.

The security effect of a threshold design may also be different across different properties
of interest. For example, while the compromise of one share might not reveal the original key,
the corruption of a single share (or of a computation dependent on it) may affect the integrity
of the output. These observations highlight the need to look at the security benefits brought
by each threshold scheme as a possible tradeoff across properties. In some settings there may
be a strengthening of some security properties while for others the assurance may be reduced.

There are techniques designed to mitigate foreseen compromises in more complicated
scenarios. For example, verifiable secret-sharing enables detection of misuse of shares by a
shareholder, thereby enabling operational modes that tolerate this kind of corruption. As an-
other example, proactive secret sharing can be used to periodically reshare a secret, thereby
periodically reducing to zero the number of compromised shares. Assuming that old un-
compromised shares are erased, the refreshing makes it more difficult to reach a state where
the number of contemporaneous compromised shares surpasses the compromise threshold.

Separating the analysis of different security aspects can sometimes lead to pitfalls. To
avoid such problems it is important to use appropriate formal models of security. At the
same time, it is relevant to assess potential tradeoffs that a threshold cryptographic scheme
induces across different security properties. A system model is also important to charac-
terize different types of attack that a system may be subject to. Specific attacks in the real
world exploit differences between conventional implementations and their idealized versions.
Threshold schemes can be used to improve resistance against some of these specific attacks
that breach specific security properties (e.g., confidentiality of a key) or sets thereof.

An abstract security model is not enough to assess the effects of placing a threshold
scheme in an adversarial environment. One also needs to characterize implementation
aspects whose variation may affect security. Such characterization helps distinguish, pos-
sibly across different application contexts, the resistance provided against certain classes of
attacks. 7o this end, this document proposes that a basis for discussion and comparison of
threshold schemes should include the description of several characterizing features. These
include the types of threshold, the communication interfaces, the target computing platforms,
and the setup and maintenance requirements.
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The examples in the document illustrate how security properties can vary depending
on high-level features, on assumed attack vectors and on the type of adversarial goals
and capabilities. On one hand, this helps prevent a possible misconception that a higher
threshold directly means higher security. On the other hand, it also intends to convey that
threshold schemes can be used to implement cryptographic primitives in a more secure
way. Altogether, structured security assertions also promote a path for meaningful security
validation of actual implementations.

This document considers the benefits of standardizing threshold cryptographic schemes,
possibly along with auxiliary threshold-cryptography primitives. Naturally, there is interest
on threshold schemes for NIST-approved cryptographic primitives. Also of major impor-
tance is the development of corresponding approaches for validation of implementations
of threshold cryptographic schemes. This should be aligned with the current moderniza-
tion process and evolving structure of the testing methodology of the NIST cryptographic
validation programs. Of particular relevance is the development of approaches to enable
automated validation tests with state-of-the-art techniques.

The use of well-characterized threshold schemes to implement cryptographic primitives
offers potential security benefits. But what criteria should one use to select from a potential
pool of candidate threshold schemes? What flexibility of features and parameters should a
threshold-cryptographic-scheme standard allow? Should some base primitives be indepen-
dently standardized and/or validated? This document does not offer definitive answers to
these questions. Instead, it motivates the need to develop an objective basis for addressing
them. It also hints at various representative questions to consider, namely about security
assessment, efficiency and applicability, among others.

There are important challenges and opportunities related to the standardization of thresh-
old cryptographic schemes. Addressing these may bring about important security improve-
ments to real implementations of cryptographic primitives. Fortunately, there is a plethora
of research work done in the broad area of threshold cryptography, providing useful insights
about possible options, caveats and tradeoffs. Further value can arise from addressing
these challenges with feedback and collaboration from stakeholders, including academic
researchers, industry participants and government representatives.

vi
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1 Introduction

Protecting sensitive information from unauthorized disclosure has always been challenging.
“Two may keep counsel, putting one away,” William Shakespeare wrote in “Romeo and Juliet”
(1597) [Sha97]. Later, in “Poor Richard’s Almanack — 1735” [Sau34], Benjamin Franklin
observed that “Three may keep a secret, if two of them are dead.” Today, cryptography is a
primary means of protecting digital information. In modern cryptography the algorithms
are well known but the keys are secret. Thus, the effectiveness of encrypting data hinges on
maintaining the secrecy of cryptographic keys. However, this is difficult in conventional
implementations, as keys are usually stored in one place on a device, and used there to
run the algorithm. Devices, much like people, are not completely dependable guardians of
secrets. Does this mean that keys are the Achilles’ heel of cryptography?!

The localization of a key, for use by an algorithm, is susceptible to enabling leaking
it out. For example, the internal state of a conventional implementation might be compro-
mised through a bug such as Heartbleed [DLK " 14, NVD14], Spectre [KGG'18, NVD18a,
NVD18b], Meltdown [LSG' 18, NVD18c] and Foreshadow [BMW *18], letting an attacker
read private memory locations, including secret keys contained therein. Another example
is the cold-boot attack [HSH™09], which allows recovery of keys from the dynamic random
access memory (DRAM) of a computer, even seconds to minutes after it has been removed
from the device. Some attacks inject faults into the computation, for example by changing
the supply voltage. An example is the “Bellcore” attack [BDL97, ABF' 03], where a fault
induces an incorrect computation whose output reveals a secret key. Other attacks obtain
information through a side channel, such as the execution time, the amount of energy it
consumes, or the electromagnetic emanations it produces. Many of these fall into the cat-
egory of non-invasive attacks, which can be performed without direct physical contact with
components within the device. Attacks that exploit leakage of key-dependent information
can lead to disastrous scenarios in which the master key used to encrypt and authenticate
device firmware becomes compromised [RSWO17].

To counter the inherent security risks of handling secret keys in conventional imple-
mentations of cryptographic algorithms, technical approaches have emerged that split the
secret key into two or more shares across different components or parties. For example,
when secret sharing is used on the key, the compromise of up to the confidentiality threshold
number f (out of n) of the shares does not reveal information about the original key. Using
appropriate threshold techniques, the shares can then be separately processed, leading the
computation to a correct result as if the original secret key had been processed by a classic
algorithm. The threshold approach can thus significantly increase the confidentiality of
secret keys in cryptographic implementations.

There is a potential benefit complementary to mitigating single-point-of-failure issues
in hardware and software implementations. The threshold approach can also enable decen-

! Some portions of writing were adapted from text appearing at a previous short magazine article [VMB18].
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tralization of trust, when delegating the ability to perform some cryptographic operation.
This can be useful for higher-level distributed applications, e.g., when the performing of a
cryptographic operation should require agreement by multiple parties.

This report is focused on threshold schemes applied to cryptographic primitives. In an
f-out-of-n threshold scheme, some security property is tolerant to some kind of compromise
of up to f out of n components in the system. As a mnemonic, the symbol f can be thought
of as counting the number of “faulty” (i.e., compromised) components that can be tolerated.
This threshold f can be specific to some implicit type of compromise, e.g., possibly including
cases of crash, leakage, intrusion and accidental or malicious malfunctioning.

In a dual perspective, a threshold can be defined with respect to an operational property.
A k-out-of-n threshold property denotes that the presence or participation of k correct
components is required to ensure some correct operation. The relation between the different
thresholds (respectively represented by symbols k and f),e.g.,. k= f+1ork=2f+1, can
vary depending on the scheme and on the type of compromise and security property.

The threshold paradigm brings several security advantages but also some potential weak-
nesses. For example, the use of multiple shares increases the attack surface to encompass
all shares. Thus, the security effect of implementing a threshold scheme depends on an
attack model. It is particularly relevant to consider how difficult may be the compromise of
more than the threshold number f of components. In some cases, for example with low f,
the increased attack surface may enable an attack more efficient and effective than possible
against a conventional (non-threshold) primitive.

The threshold concept can apply to security properties of interest beyond the secrecy of
keys. For example, it is useful to enable availability and integrity of computations in spite of
malfunctioning of some of its components. Traditional techniques of fault tolerance often
achieve such resistance when considering random or predictably modeled faults. However,
we are specially interested in resistance against targeted attacks, which can be malicious and
arbitrary. Considering a wide scope of security goals, threshold schemes can exist in several
flavors, depending on the security aspects they address and the techniques used. There are
challenges in ensuring the simultaneous upholding of diverse security properties, such as
secrecy of key material, correctness of outputs and continued availability.

In fact, the security impact of a threshold design may be different across different
properties of interest. For example, in some schemes the compromise of one share might not
reveal the original key, but the corruption of a single share (or of a computation dependent on
it) may affect the integrity of the output. These observations highlight the need to look at the
security benefits brought by threshold cryptography as a possible tradeoff across properties.

The basic security model for cryptographic algorithms assumes an ideal black box, in
which the cryptographic computations are correct and the internal states are kept secret.
For example, such ideal constructs have no side channels that could leak secret keys. This
model contrasts with the reality of conventional implementations, which can be subject to
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attacks that exploit differences between the ideal and real worlds. Threshold schemes deal
with some of those differences, by providing tolerance against the compromise of several
components. They may also hinder the exploitation of existing compromises (such as noisy
leakage) from a set of components, e.g., providing resistance against side-channel attacks.

A separate analysis of different security properties may lead to some pitfalls. Some
formal models of security are useful to avoid them. The ideal-real simulation paradigm,
common to analysis of secure multi-party computation protocols, combines the notion of
security into a definition of an ideal world. This abstraction captures an intended application
in an ideal world, then allowing security properties to be derived therefrom. Complementary,
a system model is also important to characterize different types of attack that a system may
be subject to. Specific attacks in the real world exploit differences between conventional
implementations and their idealized versions. Some of these may target breaching specific
security properties (e.g., confidentiality of a key) or sets thereof. There is a particular interest
in understanding how threshold schemes can be used to improve resistance against these
specific attacks. It is also relevant to assess potential tradeoffs that a threshold cryptographic
scheme induces across different security properties.

There are techniques designed to mitigate foreseen compromises in more complicated
scenarios. For example, verifiable secret-sharing enables detection of misuse of shares
by a shareholder, thereby enabling operational modes that tolerate this kind of corruption.
As another example, proactive secret sharing can be used to periodically reshare a secret,
thereby periodically reducing to zero the number of compromised shares. However, an
abstract security model is not enough to assess the effects of placing a threshold scheme in
an adversarial environment. One also needs to characterize implementation aspects whose
variation may affect security. These include the types of threshold, the communication
interfaces, the target computing platforms, and the setup and maintenance requirements.

For example, system models and attack types can differ substantially across different
platforms and communication mediums. It should thus be considered how the components
inter-communicate, and how they can be assumed separate and independent vs. mutually
interfering. In a single device setting, this may involve interaction between different com-
ponents within a single chip or a single computer. In a contrasting setting, multiple nodes
(e.g., servers) may be placed in different locations, communicating within a private network
or across the Internet.

Altogether, the security assertions made with respect to an instantiated set of features
provide a path for security validation of actual implementations. Of particular interest are
approaches that enable automated validation tests with state-of-the-art techniques. The
use of well-characterized threshold cryptographic schemes to implement cryptographic
primitives offers potential security benefits. It is thus important to develop objective criteria
for selecting from a potential pool of candidate threshold schemes.
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Audience. This document is targeted, with varying goals, at a diverse audience. Internally
for NIST, the goal is to initiate a discussion about threshold schemes for cryptographic prim-
itives. This motivated the inclusion of representative questions relevant to standardization.

The document is also written for people with managerial/policy responsibilities in devel-
opment and/or adoption of cryptographic services and modules. For such an audience, the
document highlights critical aspects of the security of implementations that can be signifi-
cantly affected by nuances in the system model and the employed threshold techniques. Sev-
eral simple examples are provided, including some based on classic secret sharing schemes.

The text is also directed to experts in cryptography from academia and industry. For
them, the document is an invitation to engage with NIST in a collaborative effort to resolve
the open questions related to the standardization of threshold schemes for cryptographic
primitives and the corresponding guidelines for implementation validation.

It is useful to further clarify one intentional design aspect related to the references to re-
lated work. This document intends to initiate a discussion that may lead NIST to standardize
threshold schemes for cryptographic primitives. For that purpose, we sought to convey in
a balanced way that there are feasible threshold approaches, but without showing particular
preferences. In fact, we specifically opted to avoid an assessment of the most recent works,
preferring instead to exemplify precursory threshold techniques. Therefore, we do not make
an exhaustive analysis and do not try to include the depth and nuances typical of a research
paper or a technical survey. We hope that a thorough assessment of state-of-the-art threshold
approaches can be subsequently performed with an inclusive participation of stakeholders.

2 Fundamentals

2.1 Terminology

This document makes use of two dual perspectives of a threshold. In “f-out-of-n” the
threshold “f” denotes the maximum number of components that can be compromised (with
respect to some implicit security property of the components), while retaining some (implicit)
security property for the global system. Correspondingly, in “k-out-of-n”" the threshold
“k” denotes the minimum number of components that must remain uncompromised to be
possible to ensure some security property of the global system.

We borrow terminology from different research areas, with some overlap, using several
terms that share similar connotations, sometimes (but not always) interchangeable. Some
informal correspondences follow:

* Active/byzantine/malicious: characterization of compromised nodes, or of an adversary,
when being able to arbitrarily deviate or induce deviations from a protocol specification.
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* Agent/component/node/party/share: a constituent part of an implemented threshold
scheme, affecting the prosecution of a functional goal (a cryptographic operation, in our
context) to be achieved by a collective of parts; most often used to denote one of the n
parts whose compromise counts towards the threshold f; when the context is clear, some
terms can designate parts outside of the threshold composition.

» Aggregator/broker/combiner/dealer/proxy/relay: an agent with a special role in aiding
the setup, execution and/or maintenance of a threshold protocol; usually not accounted in
n, except if explicitly stated as such (e.g., the case of a primary node).

* Bad/compromised/corrupted/controlled/faulty/intruded: state of a node, whereby it
departs from an ideally healthy state, and starts being counted towards the threshold f.

* Client/user: an agent, not in the threshold set of components, who is a stakeholder of the
result of a cryptographic computation, typically the requester for that computation.

* Compromise/corruption/intrusion: a process by which a node transitions from an
ideally healthy state to a compromised state and/or by which it remains therein.

* Good/healthy/honest/recovered: ideal state of a node, not yet compromised by an
adversary, but susceptible to attacks.

* Honest-but-curious/Leaky/Passive/Semi-honest: characterization of compromised com-
ponents, or of an adversary, when the internal state of the former is exfiltrated by the latter,
but without altering the computations and message-exchanges specified by the protocol.

* Recovery/refresh/rejuvenation/replacement: transitioning of a node or nodes from a
(possibly) bad state back to a good state; nuances include update, reversion, change and
reset of internal states, as well as effective replacement of physical components.

The above notes simply intend to convey intuition helpful for reading the document. We
do not undertake here the goal of unifying terminology from different areas. Cited references
in the text provide necessary context. The encyclopedia of cryptography and security [TJ11]
and the NIST glossary of security terms [Kis13] provide additional suggestions.

2.2 Secret sharing

Secret sharing is based on splitting the key into multiple shares. For example, to split key K
into three shares K1, K3, and K3, we randomly select shares K| and K, from the same key
space as K, and let the third share K3 = K| @ K> @ K be the one-time pad encryption of K,
where @ is the exclusive OR operation if the keys are bit-strings. No two shares provide any
information about the secret key — all shares are required to recover K.

The described scheme, with n = 3 parties, has a threshold property: it is a “f-out-of-3”
scheme with f = 2 with respect to the leakage of any two shares alone not giving away
information of the original secret key; it is a k-out-of-3 scheme with k = 3 with respect to
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all three shares being required to recover the key. The k notation is used hereafter for the
concrete case of secret-sharing schemes.

More generally, k-out-of-n secret-sharing schemes can be defined, for any integers n and
k satisfying n > k > 1. Such secret-sharing schemes were independently developed in 1979
by Shamir [Sha79] and Blakley [Bla79]. There, any k parties together can recover a secret
shared across n parties, but k — 1 parties together do not know anything about the secret.

Blakley secret sharing. With the help of Fig. 1, we describe an example of Blakley’s
scheme for k = 2 and n = 3, with some simplifications for illustration purposes. The secret is
the x-coordinate (x;) of the point P(x,y) in the two-dimensional plane (see Fig. 1(a)). A non-
vertical line in the plane is defined as a set of points (x,y) satisfying y = hx+ g for some con-
stants / and g. If Alice obtains coefficients /14 and g4 for some line {(x,y) : y = hax+ga},
containing the point P, this does not give Alice any advantage in discovering its x-coordinate
xs (see Fig. 1(b)). This is because the definition of the line does not provide any special
information about any point in the line, i.e. all points in the line (and all x-coordinates) are
equally likely. In practice, lines are selected only from a finite space of lines, e.g., with all
coefficients being integers modulo some prime number Q, and the lines themselves are finite
collections of points, e.g., with x and y being also integers modulo Q. The prime modulus Q
must be larger than the secret x; and larger than the number n of parties.

Similarly, if Bob and Charlie obtain coefficients of other lines that pass through the
same point P, individually they cannot determine P. Note that the lines cannot be parallel to
each other and to Alice’s line. However, any two together — Alice with Bob, or Alice with
Charlie, or Bob with Charlie — can easily compute P as the intersection of their lines (see
Fig. 1(c)). We have thus described a 2-out-of-3 secret-sharing scheme. To build a k-out-of-n
Blakley scheme for some k > 2, one considers hyperplanes y = hix; +... +hp_1xp_1+ &
that intersect in a single point P(xy,...,x;_1,y) in the k-dimensional space, provided that
no hyper-place is orthogonal to the xj-axis. Choosing n > k such hyperplanes, one can
distribute the corresponding coefficients to n different parties. Then any k parties together
can compute efficiently the intersection point P and recover the secret as its xj-coordinate.

Shamir secret sharing. Shamir secret sharing is based on the observation that any set
of k distinct points determines completely a polynomial of degree kK — 1. For example,
consider a set of positive integer coefficients cg,cy,...,cx_1 and define the polynomial
f(x) =co+c1x+ ... +c;_1x* . Typically, the secret is the coefficient ¢y = f(0) and each
party i receives as share the point (i, f(i)), where i is a positive integer distinct for each party
(e.g., 1,2,...,n). Then, any set of k parties can reconstruct f(x), and therefore compute the
secret f(0), whereas k — 1 parties cannot. All coefficients are based on finite field arithmetic
defined in terms of a prime number Q. Since each party must receive a distinct point, and
that point must not be (0, £(0)), the modulus Q must be larger than the number n of parties.
The points on the curve are thus defined as (x, f(x) mod Q) and the secret and any other
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Figure 1. Illustration® of Blakley secret sharing

coefficient are integers between 0 and Q — 1. This ensures that no information from the
secret can be recovered from incomplete sets of (i.e., with fewer than k) points on the curve.

The schemes of Shamir and Blakley are information-theoretically secure, which means
that in a standalone set of kK — 1 shares there is indeed no information about the secret.

While information-theoretic security may be an advantage, the property requires that each
share is of the same size as the secret, thus meaning that the overall size of all shares is n times
the size of the secret. In contrast, there are secret-sharing schemes with reduced optimal
size, at the cost of guaranteeing only computational (i.e., cryptographic) security [Kra94].
There, the size of each share can be up to k times smaller than the size of the secret — this
is especially useful if secret sharing is to be used to share large amounts of data.

Note: some elements of secret-sharing are standardized by the International Organization for
Standardization (ISO) / International Electrotechnical Commission (IEC) [ISO16, ISO17].

2.3 Secret resharing

The need to compute new random shares for the same original secret key often arises in
practice. It may happen that over time some (< k) shares are compromised [OY91], thus
creating a need to compute new shares and discard the old ones. Resharing can even be
proactive [HIKY95], e.g., at regular intervals in time and not as a direct response to a
detected compromise.

Resharing in Blakley’s scheme. We continue here the 2-out-of-3 example of Blakley’s
scheme, where two parties are required to reconstruct a secret x; shared among three parties.
Each resharing of x; requires re-randomizing the point P along the vertical line that defines

2 The humanoid cliparts are from clker.com/clipart-*.html, where * is 2478, 2482 and 2479.
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Figure 2. Illustration of share randomization in Blakley secret sharing

the secret. In other words, for each randomization iteration r a random y-coordinate y, is
sampled, defining a new point P, = (x;,y,). Then, the new share (a line) for each party is
also randomized, subject to the constraints that all new lines are non-vertical, intersect at
the new point P and are different from one another. With this construction, a single party
(Alice, Bob, or Charlie) still cannot gain any useful insight into the reshared secret x;. This
is because at each new resharing r the point P, where the three lines intersect is chosen
randomly in the vertical line that passes through the secret.

For visual intuition, we illustrate in Fig. 2 a parametrization based on angles. A line
through a point P in the plane can be parametrized in terms of its angle ®, in the interval
(—m/2,m/2), with respect to the x axis. Thus, for each resharing iteration r we attribute to
each party 7 a new random angle w; , and the x-coordinate where the line intersects with the
x-axis. In practice the used parametrization is based on polynomial coefficients, so the share
(a line) is instead revealed as (g, k), where y = hx + g is the equation that defines the line.

For each new iteration r+ 1, one computes a new point P, = (X5,y,+1) and new
random lines for each party. These lines, passing through point P, | correspond to new
random angles, as illustrated in Fig. 2(b). The party selecting new shares must ensure that
the lines of different parties do not overlap, i.e., that they do not have the same angles, and
are non-vertical. Concretely, this means that @; » # ®; , # w/2 for i, j € {A,B,C} and i # j.
The generalization to the case k > 2 is as before: the new point P would require randomizing
k — 1 coordinates, and the resharing would proceed as in the initial sharing.

Resharing in Shamir’s scheme. Share re-randomization can also be done with Shamir
secret sharing. There, the fixed secret is comod Q = f(0) mod Q. At each random-
ization iteration r, one chooses random coefficients ¢y ,...,ck—1, for a new polynomial
frix)=cotcrx+...+ ck_”xk*l satisfying f,(0) = co. The new shares are then points
evaluated with f,. Concretely, each party i, for i = 1,2,3, ... receives f,(i) as its new share.

8
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2.4 Threshold cryptography

We take broad input from several research areas with traditionally distinctive names, but
with a strong relation to threshold schemes. Since we are focused on the implementation
of cryptographic primitives, we adopt the umbrella term “threshold cryptography” to de-
note our area of interest. The expression “threshold cryptography’ has been traditionally
used to refer to schemes where some computation is performed over secret shares of in-
puts [DF90, DSDFY94]. Usually, the setting is such that the shares are used to compute
something useful, but without being revealed across parties. Often, a main security goal is
secrecy of cryptographic keys, but a variety of other security properties, such as integrity
and availability, may also be a motivating drive. Achieving these properties is possible
based on a variety of techniques. For example, integrity may in some settings be enhanced
based on verifiable secret sharing schemes [AMGCS8S5, Fel87] and/or zero-knowledge proofs
[GMRS85, BFM88], allowing checking whether shares are used consistently. Specifically, a
threshold scheme can be made robust against adversarially induced inconsistencies in shares
or in related computations, outputting correct results in spite of up to a threshold number
of compromised parties [GRJKO00]. While we focus on secure implementations of cryp-
tographic primitives, the actual threshold techniques may also include non-cryptographic
techniques, e.g., simple replication and majority voting.

One main area of related research is “secure multi-party computation” (SMPC) [Ya086,
GMW&87, BGW88, CCD88]. It allows mutually distrustful parties to compute functions
(and randomized functionalities) of their combined inputs, without revealing the corre-
sponding inputs to one another. This can be useful for threshold schemes even if the inputs
of different parties are not shares of some key and/or if the actual computation requires
interaction between parties. Provided suitable definitions and assumptions, any crypto-
graphic primitive can be implemented in a threshold manner based on SMPC. Often this
is based on a framework of definitions of ideal functionalities, and protocols that emulate
those functionalities. Nonetheless, some systems may implement threshold techniques (e.g.,
secret-sharing, replication) not modeled within an SMPC framework.

Threshold schemes also do not encompass all that exists in the realm of SMPC. In usual
SMPC descriptions, the parties themselves are stakeholders of the secrecy of their input
and correctness of the output, e.g., in the millionaires’ problem [Yao82] and in secure set
intersection [FNPO4]. In threshold schemes for cryptographic primitives, the nodes within
the threshold system can have a neutral interest for the outcome, and in fact just be a service
provider (of cryptographic services) to a set of external users/clients.

Threshold schemes can also be based on elements from the “distributed systems” re-
search area, where fault and intrusion tolerance are main topics. Common properties of
interest in distributed systems are liveness (making progress even in the face of concurrent
execution/requests) and safety (ensuring consistency of state across multiple parties). Why
would this be relevant for threshold cryptography? As an example, consider implementing
a multi-party threshold version of a full-fledged cryptographic platform. Such a platform

9
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would perform a variety of cryptographic operations, some using secret keys, and based
on requests by users whose credentials and authorization profiles may be updated across
time. Now we could ask: in a setting where availability (of cryptographic operations) is
a critical property, and where the system is supposed to operate even in cases of network
partition (i.e., even if some parties in the threshold scheme cannot inter-communicate), can
consistency (of state, e.g., credentials, across different parties) be simultaneously satisfied
under concurrent executions? This is a kind of “distributed systems” problem relevant for
threshold schemes. There are settings [Brel2] where these three properties (consistency,
availability and partition tolerance) cannot be guaranteed to be achieved simultaneously.

2.5 Side-channel and fault attacks

The secrecy of keys can be compromised by the leakage of key-dependent information
during computations. This is possible even without direct physical contact with components
within the device. For example, the time taken, the power consumed, and the electromagnetic
radiation emanated by a device can be measured without penetrating the device enclosure.

We will assume that, regardless of whether the computation is in hardware or software,
the device that performs the computation consists of some circuit with wires connecting to
logical gates and memory cells. Then, the attacker’s view of the circuit elements may be
noisy (the noisy leakage model [CJRR99]), or the attacker may be limited by the number
of wires of the circuit that it can observe within a certain period of time (the probing
model [ISWO03]). The noisy leakage model and probing model have been unified [DDF14].
In both models, under some reasonable assumptions on the statistical distributions of side-
channel information, the complexity of a side-channel attack of a suitable implementation
with an n-out-of-n secret-sharing increases exponentially with the number of shares.

As such, side channel attacks on secret-shared implementations become infeasible if the
number of shares is sufficiently high, and is further thwarted when the shares are refreshed
before the attacker can collect enough side-channel information. Further refinements of
the model take transient behavior (“glitches”) of the transistors into account, which can
be handled by Threshold Implementations (TI) [NRRO6] or by “lazy engineering” to just
increase the number of shares [BGG™14].

Besides the aforementioned side-channel attacks, an attacker may also obtain key-
dependent information by injecting a fault into the computation, and then observing the
outputs [BDL97]. To inject the fault, the attacker may, for example, apply a strong external
electromagnetic field. Note that the injection of faults may also introduce errors in the outputs
of the computation, thereby violating the integrity of the outputs. If the threshold scheme
is endowed with the ability to detect which shares have errors, and if the threshold scheme
does not require all shares to be present, it can resist temporary and permanent faults in parts
of the computation. This would provide resistance against a wide range of fault attacks.

10
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3 Examples

3.1 Threshold signature examples
3.1.1 Basic threshold computation on secret shares

First, we recall the RSA (Rivest-Shamir-Adleman) signature scheme [RSA78], which
defines the public key as (N, e) and the private key as d, such that ed = 1 mod ¢ (N). Here,
the modulus N is a product of two large secret primes and ¢ is Euler’s totient function. Then,
the RSA signature for a (possibly hashed) message m is defined as s = m¢ mod N. Anyone
possessing the public key can verify the signature by checking s¢ = m*® = m mod N.

Now let us proceed to describe a simple threshold variant of this signature scheme
[Fra90, BHO98]. We first consider the role of a dealer — someone that, knowing the secret
parameter @ (N) and the secret signing key d, wishes to delegate to other parties the ability to
jointly produce signatures in a threshold manner. The dealer splits the private key d into three
shares dy, d», and d3, such that dj +d» +d3 = d mod ¢ (N). Now, without reconstructing d, it
is possible to first process the message independently using each of the shares: s; =m?, s, =
m%, and s3 = m%; and then compute the signature s = s15253. Note that this is indeed a valid
RSA signature, as 515253 = mé %244 = ;y? mod N. This simple threshold RSA signature
scheme mitigates the risk of exposing the potentially high-value private key d, which does not
appear in any of the three shares that are used in the actual computations. Thus, compromis-
ing any one of the shares, and even two of them, poses no threat of exposing d. Moreover, fre-
quent updates to the key shares (dy, d», and d3) would reduce the window of opportunity for
attacks and thereby further reduce the risk. Refreshing can even occur after every signature.

3.1.2 A k-out-of-n threshold scheme

In the above example, all shares must be present. This might be impractical in situations
where one or more of the shares become unavailable. For such cases, a k-out-of-n threshold
scheme could be used when at least k shares are available.

But how to generalize from the n-out-of-n to a k-out-of-n signature scheme (with £ < n)?
The needed secret-sharing is no longer a simple additive decomposition into shares (in the ex-
ponent), and correspondingly the combination into a final signature becomes more complex,
namely because the share-holders do not know ¢ (N) (the group order). It is nonetheless
possible to slightly adjust the computation of key shares and signature shares so that the final
combination becomes possible even without knowledge of the secret information [Sho0OO].
The secret vs. public knowledge of the order of the underlying group can indeed be relevant in
the development of diverse threshold schemes, with some schemes taking advantage of using
groups with publicly known group order (e.g., as in the case of ElGamal decryption [DF90]).
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So for RSA signatures one can use, €.g., a 2-out-of-3 secret-sharing scheme, and a corre-
sponding threshold variant of RSA. Then, in the case of one share being irrecoverably lost or
breached, the private signature key d remains intact, available, and not breached. This means
that one can continue to use the same public key to verify the correctness of the signature.

In contrast, when a conventional implementation is breached, the corresponding pub-
lic/private key pair would have to be revoked and a new pair issued. Typically this also
requires an external certification of the public key by a certificate authority and propagating
it to all relying parties. In addition, a 2-out-of-3 threshold signature scheme becomes
more resilient to future share losses if it continuously refreshes the key shares, provided
that at most one is compromised at any given time. Note that in a scheme composed of
three separate conventional RSA implementations with independent keys, refreshing would
require updating the public/private key pairs, along with all entailing inconveniences.

3.1.3 Avoiding the dealer

In the above descriptions, an implicit trusted party, often called the dealer, knows the secret
d and performs each secret-sharing operation. Particularly, the threshold RSA examples
based on a common modulus N required the dealer to also know the secret prime factoriza-
tion. If needed, the dealer could, without revealing the secret, prove to each share-holder
that N is indeed a valid product of two primes, by using zero-knowledge proofs [vdGP88].
Nonetheless, in a dealerless setting a threshold computation of shares of the secret signing
key d would also require a threshold generation of the public N, along with a secret sharing
of its factorization. This does not lend itself to a straightforward efficient computation, but
can in general be done based on SMPC protocols [BF97]. Different RSA-based threshold
schemes can take advantage of specialized solutions, with tradeoffs related to the threshold
parameters k and n and to properties of the prime factorization.

Schemes based on particular assumptions can enable a more straightforward selection
and verification of the validity of public elements. For example, this is possible based on
assumptions of intractability of computing discrete logarithms in certain groups of known
order. If the group parameters can be verified as correct in a standalone procedure, then no
one requires having any secret knowledge about the group. Furthermore, if the selection is
made in a way that avoids the possibility of a trapdoor being known, then the parameters can
be trusted by anyone. The intractability assumption can then, for fixed security parameters,
be accepted for global parameters of a group (e.g., [Ber06]). In particular, this can facilitate
a respective threshold mechanism, so that a secret key never exists locally at any entity. For
example, one can then define a dealer-absent threshold version of a public key generation
(the result of an exponentiation), such that each party knows one share of the secret key (a
discrete logarithm) [Ped91, GJKR99].

The same possibilities exist for resharing. In suitable threshold schemes, the share-
holders can perform resharing without a dealer, i.e., interacting to create new shares for the
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same secret, without ever reconstructing the secret. The final shares can even be obtained
for new threshold structures (e.g., different threshold and number of parties) [DJ97].

3.1.4 Other constructions

The above examples focused on threshold schemes where the secret-key is shared, and then
a threshold scheme enables a generation of a signature identical to the non-threshold manner.
A feature of those schemes is that the final signature is identical to a non-threshold one,
thereby being inherently efficient in size (i.e., not incurring an increase with the threshold
parameter). Such schemes also have the property that the identities of the signatories remain
secret to the external users interested in verifying the correctness of a signature. However,
some settings may favor the identifiability of signatories, e.g., as an accountability and
credibility feature. Each signatory might also prefer retaining an individual public credential,
not wanting to use a private-key share associated with a common public key. Even in this
setting it is possible to devise short threshold signatures, with size equal to a non-threshold
signature. Concretely, “multi-signature” schemes [IN83, MORO1] enable multiple parties,
with independent secret-public key pairs, to jointly produce a common short signature.’

A multi-signature scheme can be used as a threshold signature scheme where the
application layer, and possibly the user, has added flexibility to define which subsets of
signatories determine a valid signature, i.e., beyond structures defined by a pre-determined
threshold number. For example, a multi-signature may be defined as valid if it contains one
signature from each of three groups of individuals in different roles in an organization. The
verification procedure then depends on the set of independent public keys. For example,
these schemes can be easily based on Schnorr signatures [Sch90, BNO6].

To complement the resilience in the face of compromise, signatures can also be im-
plemented with a “forward security” property [And02]. Such schemes can be based on
an evolving private key, while the public key remains fixed, so that even a future key
leakage will not allow the adversary to forge past messages, assuming the signer erases
past keys [BM99]. To some extent, this property has some conceptual similarity to the
refreshing we previously described in the RSA example. This property can be achieved also
for threshold signatures [AMNO1], including the case of multi-signatures [SA(09].

In summary, we showed by examples that “threshold signature schemes” can be based
on secret-shared computation of regular signatures or on multi-signatures, with or without a
dealer, with or without robustness, and possibly with forward security.

Several of the exemplified threshold schemes take advantage of group homomorphic
properties. While such properties are not applicable in every cryptographic primitive,
threshold computation can still in general be obtained via secure multi-party computation.

3 These should not be confused with “group signatures” [CvH91], where a member of a group signs a message,
while proving group membership but remaining anonymous with respect to its identity within the group.
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3.2 Side-channel attacks and countermeasures

Timing attacks were first presented by Kocher [Koc96], and have been shown to be easy to
perform on a variety of cryptographic algorithms. An advantage of timing attacks is that
no specialized equipment is required. Because they do not require physical access to the
system, they may even be performed remotely over the Internet [BBO3].

A possible countermeasure against timing attacks is to ensure that the implementation is
“constant time,” that is, that its execution time does not depend on the value of the secret key.
This turns out to be surprisingly difficult for many commonly-used implementations. The
reason is that having “constant-time” source code, that is, source code without key-dependent
branches or memory accesses [Ber05], may not be sufficient. Indeed, an implementation that
is free of timing attacks on one platform may be vulnerable on another platform. This can
happen, for example, when source code that contains multiplication operations is compiled
with a different runtime library [KPVV16], or when the same binary is executed on a
different processor [Porl8].

The execution time of the program, however, is just one example of a side channel.
Implementations in hardware and software may also leak through other side channels, such
as power consumption or electromagnetic radiation. The limitation of the currently-known
countermeasures (such as “constant-time” implementations, dual-rail logic, or electromag-
netic shielding) is that they usually do not get rid of all the leakage, but may still be
vulnerable to higher-order or data-dependent leakages.

To protect against side-channel attacks, the framework of threshold cryptography can
provide a promising starting point. If the implementation is split into a number of “parties,”
such that no single party holds the entire secret required to perform the cryptographic
operation, then the leakage of information from only one “party” would not enable a
successful attack on the original secret.

However, when all these parties reside on a single chip, we must assume that an attacker
can gain some (bounded) information about every party. In that case, it may happen that the
threshold cryptosystem only complicates a side-channel attack by a small factor, depending
on the number of parties. For example, the n-out-of-n threshold block cipher by Brickell et
al. [BCFOO] uses the n-fold composition (or cascade) of a block cipher with n different keys,
which may slow down power analysis attacks only by roughly a factor of n.

Nevertheless, there exist sound countermeasures against side-channel attacks where the
secret variables are split into shares, such that a threshold number of shares can be used to re-
combine the secret, but fewer shares reveal no information at all. We described the theoretical
foundation of these approaches and their resistance against side-channel attacks in Sec. 2.
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4 Models

The basic security model for conventional cryptographic algorithms assumes an ideal black
box, in which the cryptographic computations are correct and all internal states, including
keys, are kept secret. This basic model leaves aside the possibility of leakage through side-
channels, such as timing and power. This may be due to these parameters not being included
in the model, or being assumed independent of the secrets (e.g., assuming instantaneous or
constant-time computations). Under this assumption, the problem of quantifying a security
property of the algorithm can be reduced to the problem of evaluating the complexity of
the best-known attack against this model.

For example, one can define the security strength, which can also be expressed as bit
strength, of different classes of cryptographic algorithms based on the amount of work
needed to perform a brute-force search of the key in a large space related to the key
size. When the algorithms are implemented in real hardware and software, the black-box
assumption can break down in several ways. For example, bugs in the implementation can
lead to side effects that compromise the secret key, as with Heartbleed. Also, the material
and electromagnetic characteristics of the platforms on which the algorithms run can cause
side-channel information to leak and allow attackers to recover the secret key.

The distinction of ideal versus real implementations can yield useful insights into
the assessment of threshold schemes for cryptographic primitives. What are the security
advantages and disadvantages of performing separate computations on shares of a key,
compared to conventional implementations that use a single secret key? How can threshold
cryptography mitigate the potentially disastrous consequences that a coding error or a
side-channel leak could have on a conventional implementation?

This section considers how a range of applicable scenarios may differently affect a range
of tradeoffs between several security properties. These scenarios depend on adversarial goals
and capabilities, and various properties of the system model. It is important to be aware that
security strengthening and weakening may co-exist. The discussion also preludes the next
section, which motivates the need to describe characterizing features of threshold schemes.

4.1 Security considerations

In a first baseline comparison, a real implementation allows vectors of attack not possible
in an ideal black-box. Once these are identified, one asks how to augment conventional
implementations, in the real world, to improve security. Particularly, how does a threshold
approach affect security, compared to a non-threshold approach? Perhaps security is
improved if an attacker is limited to not compromising more than f-out-of-n components
within a certain time interval. Also, as explained in Sec. 3.2, a threshold design may
make it inherently more difficult to exploit existing compromises (such as noisy leakage)
in the set of “parties”. While these intuitions are valuable, we want to enable a more
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meaningful formulation and/or validation of security assertions about implementations
based on threshold schemes.

Two general metrics of interest are reliability and availability [Rad97]. We can call
them meta-metrics, since we are especially interested in considering them to measure (even
when just qualitatively/comparatively) the upholding of concrete security properties related
to implementations under attack. Reliability — probability of not failing a security goal
— is specially suited for cases of “all-or-nothing” security, where the break of a certain
property represents a catastrophic failure. For example, if a secret decryption key is leaked,
then secrecy is lost with respect to the plaintext associated with public ciphertexts, without
anything being able to revert it. Availability — proportion of time during which a security
goal is satisfied — can be used to measure the actual “availability” of a service or property,
e.g., the proportion of cryptographic output produced as intended. These metrics also depend
on the mission time of an application, so it is relevant to consider, for example, resilience
enhanced by rejuvenating compromised components back into a healthy state.

4.1.1 Diverse security properties

A threshold augmentation may have different effects across different security properties, e.g.,
confidentiality vs. availability vs. integrity, possibly improving one while degrading others.
To show the nuances, consider the 3-out-of-3 threshold RSA-signature scheme described in
Sec. 3.1.1, supported on a 3-out-of-3 secret sharing of the key. (Recall that, with the notation
used here, a 3-out-of-3 secret sharing of the key means k = 3 for availability, i.e., three
parties (out of n = 3) are necessary to produce a signature, and f = 2 for confidentiality,
1.e., any subset of only two parties cannot learn anything about the key.) There, each node
loses visibility of the original signing key, but retains the ability to influence the output of a
computation dependent on the key. If a compromised node simply refrains from outputting,
then it compromises the availability of the signing operation. If a corrupted node outputs
a syntactically valid but semantically incorrect output share, then it may or may not com-
promise the integrity of the final signature, depending on whether or not the mechanism
(implicit in the example) responsible for recombining the output shares is prescribed or not
to verify the correctness of the signature.

In summary, even for the considered simple example of “3-out-of-3” signature scheme
(based on a “3-out-of-3” secret sharing), there are different compromise thresholds for
different properties. For example, the compromise thresholds for confidentiality (of the
signing key) and availability (to produce signatures) are respectively fc =2 and fa =0,
similar to the underlying secret-sharing scheme. For integrity of produced signatures, the
compromise threshold is by default also equal to f; = 0, since the described mechanism
produces an incorrect signature if one of the output shares is incorrect. However, one can
also consider an analysis that incorporates the context of a signature application where the
corruption is detected by a verification against the provided plaintext. If the detection of a
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bad signature prevents an error propagation in the application, then the integrity compromise
can be disregarded (fi = n) and the problem be instead classified as an availability issue
(fa = 0). More generally, for a “k-out-of-n” signature scheme: fc =k — 1 (for the confiden-
tiality of the signing key); fa can depend on the scheme, but ideally can be as high as n — k;
J1 can depend on the scheme and on the application definition of integrity compromise.

Based on the above, under certain types of attack the exemplified threshold scheme may,
in comparison with the conventional scheme, improve the confidentiality of the original
key, while degrading the availability and/or integrity of the intended output. Particularly,
this happens if: (when fa = 0) compromising the availability of one (= 1 + fa) out of
the three nodes in the threshold version is easier than compromising the availability of a
conventional non-threshold version; (when f; = 0) if compromising the integrity of one
(= 1+ f1) out of the three nodes in the threshold version is easier than compromising the
integrity of a conventional non-threshold version; if compromising the confidentiality in
the conventional implementation is easier than compromising the confidentiality of all n
(= 1+ fc) nodes in the threshold version (when fc = n —1). In some attack/compromise
models it may be possible to quantify the likelihood of f 4 1 nodes being compromised, e.g.,
dependent on an attack intensity and rejuvenation pattern [BB12]. In particular, one may
find that under certain models the threshold property induces less reliability or availability
if not properly provisioned with rejuvenation mechanisms. If, for example, nodes are of
similar type, such as several hardware security modules (HSMs) or several virtual machines
(VMs) in different computers and have diversity at certain levels (OS, vendor, etc.), and if
a constant rate probability of compromise is plausible for certain attack vectors, then it is
possible to analyze the impact of reactive and proactive rejuvenation.

Consider the mentioned case with threshold f; = O for integrity. In a context where
integrity is as important as confidentiality, can the above mentioned scheme still be appro-
priate? Yes, since the difficulty of compromising each property may vary with the conceived
type of attack on the implementation. For example: compromising confidentiality may be
possible by passively exploiting side-channel leakage from a set of nodes; compromising
integrity may require actively intruding a node to (maliciously) change an internal state (e.g.,
an incorrect share). Particularly, a security property P; having a compromise threshold value
/1 lower than the threshold f> of another property P> does not imply that Pj is easier to break
than P,. Thus, there may be scenarios justifying a threshold scheme with a high threshold for
some properties, even if with a low threshold (including f = 0) for others. Properties with
associated threshold 0 may possibly also be distinctively protected per node, e.g., based on
standard non-threshold techniques. Also, as already mentioned with an example for integrity,
some properties with a low threshold in a threshold scheme module may be considered in
an adjusted way at the application layer, if the application can handle the compromise of a
property (e.g., integrity) in the threshold scheme. (Still, the compromise of some properties,
such as confidentiality of a key, may often be undetectable).
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4.1.2 A word of caution: pitfalls of decoupling security properties

A simplistic decoupling of security properties may lead to pitfalls. An enumeration of
separate security properties (e.g., privacy of input and correctness of output) may sometimes
fail to capture relevant dependencies or other independent properties. A typical example in
cryptography research is related to commitment schemes, useful for auction applications as
follows: first, each agent independently commits to a chosen bid, in a way that hides its value
but binds the agent to the value; then all agents reveal their bids in a verifiable way, and the
one with the highest bid wins. An over-simplistic analysis of the application could determine
that the commitment would only need to ensure hiding and binding properties — respectively
mappable to confidentiality and integrity properties. However, this would fail to capture a
needed property of non-malleability [DDNO3]: upon seeing a commitment from someone
else, an agent should not be able to produce a new commitment that commits to a value
related to the originally committed value, and which the agent is able to open upon seeing
the opening of the original commitment. There are hiding-and-binding commitments that are
simultaneously malleable [Ped92], which would be ill-suited to the mentioned application.

In contrast to the mentioned pitfall, there are formal methods for defining and proving
security. For example, the ideal-real simulation paradigm [Can01] provides an abstraction
that captures the intended application in an ideal world. Starting with such modeling,
one can then deduce diverse properties, such as confidentiality, integrity and availability,
among others (e.g. non-repudiation, or plausible deniability). If some intended property
is not present, then the specified ideal world is not capturing the intended functionality,
and perhaps a different ideal version should be specified. This formal approach may offer
useful properties, such as composability, allowing upper layer protocols to be analyzed by
replacing the threshold protocol by a corresponding ideal functionality.

The above mentioned considerations are also pertinent when changing from a conven-
tional scheme to a threshold scheme. The threshold augmentation may require adjusting
an ideal functionality and/or adding definitions and security properties. For example,
the communication between components of the threshold scheme may be subject to at-
tacks/compromises that affect security in a way that is not possible in the non-threshold
version (where the notion of communication between components is not even applicable).
As another example, a security property defined with the help of a “game” (a game-based
definition), where an adversary has some access to an “oracle” (e.g., an encryption oracle),
may have to update the game definition (including the definition of a success) to account
for the possibility of several components being controlled by the adversary.

4.1.3 Specific attacks

As just conveyed, there is a phase of security assessment that justifies care about pitfalls of
basing the analysis on a limited number of security properties. In that regard, we assume
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as baseline that a conventional implementation already implicitly satisfies the security req-
uisites of an intended context. For example, if we discuss a block-cipher or a signature
algorithm, then we assume we are talking of corresponding algorithms already suitable under
some formal model. In other words, the reference conventional system would be secure if its
implementation was not subject to compromise in the real world. It is then that we position
our perspective about threshold schemes in a setting that considers specific attack vectors in
the real world. These attacks, exploiting differences between conventional implementations
and their idealized versions, may sometimes be focused on specific security properties, e.g.,
confidentiality of a key. For possible relations between threshold parameters (e.g., f and n),
other features (see Sec. 5), and the assumed difficulty to perform exploits (e.g., per node), we
consider how threshold approaches can affect (e.g., improve) security properties of interest.
This may include asking how difficult it is to compromise more than f parties, and/or to
extract meaningful information from leakage collected from a threshold scheme. To be clear,
this is not incompatible with threshold schemes being themselves provably secure within
formal models of security, e.g., within the ideal/real simulation paradigm. Our focus is in
asking how and which threshold schemes may improve security in the real world.

We have been focusing on attacks against the confidentiality of a key, but attacks can
have other goals. An attack focused on breaking availability can try to accomplish a denial of
service of some cryptographic operation. The consequences can be catastrophic if the opera-
tion is part of a time-sensitive critical mission. Threshold schemes also provide tradeoffs for
availability. If nodes can only fail by crash, better availability can typically be obtained by
increasing the overall number of nodes n, while keeping k constant. However, if nodes can be-
come malicious, then availability (of correct operations, i.e., with integrity) requires handling
faulty nodes. The cost (in n) for handling faulty nodes may vary significantly based on the
ability vs. inability to detect and replace faulty nodes and may impose restrictions on f and k.

4.1.4 Proofs of Security

Proofs of security are essential in state-of-the-art cryptography. Their importance in
supporting proposals of cryptographic schemes is recognized in the “NIST Cryptographic
Standards and Guidelines Development Process” document, published by the Cryptographic
Technology Group in 2016 [Gro16]. These proofs can serve as a guide to follow a logical
path to assess the security of a threshold scheme, being useful to identify assumptions and
attack models on which to base security assertions. This can, for example, be helpful to
compare security of a threshold scheme vs. the security of a corresponding conventional
(non-threshold) scheme. Proofs are characterized by different attributes, e.g.: contextualized
to adversary types (e.g., see Sec. 4.2), security parameters (e.g., computational and/or statis-
tical) and other characteristics of a system model (e.g., see Sec. 4.3); proving an enumeration
of security properties vs. proving that a scheme (protocol) emulates an ideal functionality;
proving security in a standalone setting vs. establishing security under composition with
other protocol executions; being thorough in modeling the real world vs. omitting consid-
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Table 1. Representative attack types

| Type | Representative question J
pazsclt\i/\e/evs. Does the attack affect the specified protocol flow?
static vs. To which extent are the choices of the attacker
adaptive based on observations of the protocol execution?
communication interfaces Is the attack based on information channels
vs. side-channels not modeled in the protocol specification?
detectable vs. Is the system aware of (e.g., reacts to or logs evidence
undetectable of) attempted attacks and/or successful intrusions?
invasive vs. Does an attack require physical access to and/or
non-invasive does it affect the physical structure of a device?
threshold-related vs. Is an attack on the threshold scheme a straightforward
similar between generalization (e.g., parallel or sequential attack to nodes)
non-threshold and nodes | of a possible attack to the conventional implementation?

eration of possible real side-channels. Proofs may also vary with the primitive type and
research area, e.g., single-device setting (e.g., threshold circuits) vs. general SMPC. Overall,
results from state-of-the-art research can provide useful insights on these choices.

4.2 Types of attack

Security goals are considered with respect to an adversary, also known as an “attacker”.
When evaluating a proposal for threshold scheme implementation, we would like to have
a sense of the range of adversarial scenarios that it may be able to withstand. As a baseline
to crosscheck security assertions, we consider several attack types, as enumerated in Table 1.
This is not intended as a full characterization or rigorous taxonomy, but it helps us recall
and differentiate relevant cases when considering threshold schemes.

Passive vs. active. A passive attacker (or a passively corrupted node) does not change
the flow of the prescribed protocol execution, but may gain knowledge of the internal state
of some participants, as well as read the content transmitted via communication channels.
In active attacks, some components may be subject to intrusion and behave arbitrarily
differently from the protocol specification; in the later case, the attacker may also interfere
with the communication channels, by altering, dropping and/or reordering messages.

Static vs. adaptive. In static attacks, the attack pattern, e.g., the choice of which compo-
nents to try to compromise, does not depend on observations of the protocol execution. In
adaptive attacks, the attacker can adapt the adversarial actions based on an observation of
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the protocol flow. For example, a node may be targeted for intrusion upon being elected to
a role of leader in a phase of the protocol.

Communication interfaces vs. side-channels. Some attacks can be perpetrated via regu-
lar communication channels, though possibly using specially crafted messages. For example,
a corrupted client may send an invalid message to a node of a threshold scheme in order
to exploit a buffer-overflow vulnerability. Other attacks can be based on side-channels, as
mentioned in Sec. 3.2, taking advantage of an information flow outside the scope of the
explicitly designated communication interface of the system.

Detectable vs. undetectable. Attacks may be detectable (and detected or undetected) or
undetectable. The latter may happen due to adversaries that are able to bypass possible
attack-detection mechanisms. They may also result from blatant attacks, if the attacked
system is nonetheless unprepared for detection. When a system does not detect being under
attack or having been compromised, it is unable to initiate reactive measures of attack miti-
gation. It may nonetheless have proactive measures in place, triggered at regular intervals of
time, e.g., replacing components that might or might not meanwhile have been compromised.
The prospect of attack detectability may also act as a deterrent against malicious behavior.
From a different angle: a stealth attack may lead to a detectable compromise/intrusion; a
detectable attack may lead to an undetected compromise/intrusion.

Invasive vs. non-invasive. Another attack characterization relates to the needed proximity
and interaction between the attacker and the physical boundaries of the attacked system.
Non-invasive attacks do not require interaction within the physical boundary of the sys-
tem [ISO12]. Invasive attacks require the attacker to be in the presence of (e.g., “touching”)
the physical device or be in its immediate proximity. This includes the case of stripping out
some coating layers of a device, to reach an area of a circuit that can then be directly probed.
This may also include beaming ultra-violet light into particular zones of a circuit (which
requires close proximity), to change an internal state (e.g., a lock bit [AK96]) and thereby
inducing a change of behavior.

Conventional vs. threshold-related. While threshold schemes may be designed to miti-
gate the effectiveness of some attacks on conventional applications, the actual implementa-
tion of a threshold design may be the cause of new inherent vulnerabilities. For example,
an attack may be able to exploit some vulnerability in the communication network that
intermediates several nodes, where such a network would not even exist in a conventional
implementation. We characterize an attack as threshold-related if the attack vector is in-
herently allowed by the threshold design. Complementary, there are conventional attacks
that can be considered similarly with respect to each component of a threshold scheme. In
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the latter case, it is still relevant to consider, for example, if an attacker is able to choose
whether to attack the nodes/platform in parallel or sequentially.

Tolerance to compromise can be useful even in scenarios of non-intentional adversaries.
For example, some systems may be constrained to satisfy auditability requirements that
warrant taking down components for audit. If a service is supported on a multi-party
threshold scheme with tolerance to compromise, then the audit of components can be done
without affecting the overall availability.

4.3 System model

The goal of this subsection is to convey possible nuances of system models, in order to
encourage a reflection of different consequences they may induce. Several characterizing
features of system model for threshold schemes are further discussed in Sec. 5.

4.3.1 Interactions

For a security assessment, it is relevant to consider the interaction between the threshold
system and its environment. A threshold system, e.g., a module composed of n nodes, usu-
ally interacts with its clients/operators, through a medium of communication. The system
may also include other interfaces through which a (possibly stealthy) adversary may obtain
information and/or actively interact with components of the system. Thus, attack vectors
are not limited just to actual intrusion/compromise of nodes, but also to adversarial effects
on the environment. For example: corrupted clients may behave maliciously to try to induce
a denial of service for other clients; an adversary controlling part of the network might be
able to induce a state of inconsistency across different nodes, even if no node in particular
can be said to be compromised. We are interested in security properties involving both the
threshold entity and the complementary environment.

Besides the n nodes and users/clients, there may also exist special auxiliary components
with the task of relaying, proxying and/or aggregating messages. Such components, which
we may call brokers, can conceivably be outside of the threshold compromise model (i.e.,
not accounted in n). Particularly, it may be justifiably assumed that a broker does not fail
within the attack model considered for the other components. For example, a broker may
be a simple stateless web-redirector, independent of the cryptographic computation needed
by the threshold components. Conversely, the n nodes accounted for the threshold may be
instantiated in a platform more susceptible to certain attacks.

A broker can be used to modularize some concerns, e.g., replacing or substantiating
usual assumptions, such as the existence of authenticated channels. Depending on the
communication model, the broker can, for example, broadcast messages from clients to
all components. At the inter-node level, the broker can be a router at the center of a star
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configuration, substantiating an inter-node (logical) clique model. The broker can also act as
a mediator between each client and the set of nodes of the threshold scheme, possibly hiding
from the client the threshold scheme layer. For example, the broker can produce secret shares
of the client’s messages and then only send these shares to the nodes; in the reverse direction,
it can check consistency, and possibly perform error correction, and aggregate replies from
a threshold number of nodes, to then just send a consolidated reply to the client. Depending
on the protocol, the threshold nature can be hidden or not from the client. Even in the broker
case, the threshold nature of the scheme may, as a feature, be intentionally revealed to the
client. For example, the client may receive a multi-signature enabling non-repudiation of
the participation of a number of nodes in the production of a response.

The security of a cryptographic service also depends on the communication model. Con-
ceivably, an attacker may be able to eavesdrop, delay, drop, corrupt and/or forge messages
in a number of communication channels. A protocol secure in the case of synchronous,
fail-safe (messages always delivered) and authenticated channels may become insecure if
the channel conditions change. Thus, the characterization of the communication model is
essential to contextualize security claims about a threshold scheme. Main characterizing
parameters include the existence or lack of synchrony, authentication and encryption. Also,
the presence of certain trusted components (or trusted setups) may significantly affect the
capabilities of the system. For example, the existence of trusted clocks may sometimes
be sufficient to counteract certain difficulties imposed by asynchronous communication
channels. It is specifically pertinent to justify when the communication medium should be
protected with some mechanism, such as transport layer security (TLS), Internet protocol
security (IPSec) or others.

4.3.2 Identity trust

It is easy to leave implicit certain assumptions about the identities of nodes involved in a
threshold scheme, but different settings lead to different results. Who decides and enforces
who the participants (nodes) of a multi-party threshold scheme are? Is the identity of
each party verifiable by other parties? Is the set of parties constant, does it change in a
well-defined manner, or is it arbitrarily open to new membership?

In an easy scenario, no new nodes join after the onset of a threshold scheme, and their
identities remain valid throughout their lifetimes. A dealer knowing a secret can define
the setup configuration, deploying nodes, establishing their identities and possibly even the
inter-node communication channels. The dealer then distributes shares of the secret and
delegates the threshold execution of some cryptographic primitive.

A threshold scheme may also be implemented in a setting where the nodes have identities
tied to public keys within a public-key infrastructure (PKI). The PKI can then support secure
authentication and communication (e.g., with confidentiality and integrity of content and
origin) between any pair of nodes. (This assurance assumes that the attacker may control
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the delivery of messages between nodes but cannot prevent nodes from accessing the root
certification authority.) With PKI-based signatures, a threshold scheme can be designed to
enable external users to verify that results were indeed obtained upon a threshold interaction.

In a different setting, the initial state of parties might be defined by a joint protocol, e.g.,
a distributed key generation [Ped92]. The joint computation may yield to every node a share
of a new secret, possibly along with authentication credentials. This can conceivably be
used by a certification authority (CA) to generate a new signing key, without ever having
it available (for leakage) in any localized point. In such case, there is no use for a trusted
dealer of shared secrets, although the nodes may still have been deployed by the same entity.

Some systems may need or benefit from being dynamic with respect to the number
of participants in a protocol. This may involve allowing different parties to dynamically
enter the protocol, thereby making the threshold parameters f and n variable (perhaps while
maintaining a fixed f/n ratio). What if there is no verifiability criterion for the legitimacy
of a new intended guest participant? In a Sybil attack [Dou02] a single entity can forge
multiple entities perceived as valid, thereby easily breaking any fixed threshold ratio f/n
(< 1) of compromisable components. Some mitigation measures may involve enforcing a
cost of participation per party, e.g., performing some cryptographic puzzle [JB99].

In more controlled settings, there may be a requirement that new parties be able to
prove belonging to an allowed group. This may be based on a PKI certificate signed by
an authority. Some scenarios can justify having a dynamic number of parties in an actual
threshold scheme for cryptographic primitives. This may happen, for example, in the case of
an implementation with a system of intrusion detection and proactive and reactive refreshing
of nodes. There may be times when the system must refresh some nodes, and due to a high
rate of reactive refreshing it may temporarily have no additional nodes to join.

4.3.3 Trust between clients and threshold scheme

We have emphasized the use of threshold schemes as a way to enhance the protection of
secret keys. But when the threshold system is then used to, say, encrypt or sign messages at
the request of a client, is there a concern about confidentiality of the plaintext? An intention
to ensure confidentiality of the plaintext may dictate restrictions on the type of threshold
scheme and system model. If the plaintext is to remain secret, then the client cannot simply
send the plaintext in clear to one or several of the nodes. Alternatively, it may for example: (i)
send it through a trusted proxy that creates and sends a corresponding plaintext share to each
node; or (ii) it may communicate directly a share to each node; or (iii) it may encrypt shares
for each node but send them through a single primary node. Each example may be supported
by a nuanced system model, e.g., respectively (1) the existence of a special trusted component;
(i1) a communication model where each client can directly communicate with each node;
(ii1) a PKI (or shared symmetric keys) enabling encrypted communication with each node.
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We can also consider the assurances that a client would like to receive from a threshold
scheme operation. We already referred to the possibility of a client receiving independent
signatures (or multi-signatures) from the nodes. Going further, we can also think of clients
wanting to obtain assurance of correct behavior by the nodes. This can be achieved, for exam-
ple, with the support of publicly verifiable secret sharing (PVSS) schemes [Sta96, Sch99].

Another matter related to the relation between users and threshold system is authenti-
cation and authorization of users. Cryptographic modules often have to support an access
control mechanism to determine from which users to accept which requests for cryptographic
operations. Access control can itself be implemented using a threshold approach.

4.3.4 Distributed agreement/consensus

To explain the importance of defining a system model, we use the distributed agree-
ment/consensus problem — fundamental in the area of distributed systems — to illustrate
how varying models can lead to a wide variability of results. This is a relevant problem
for threshold schemes, namely for certain multi-party implementation settings. The goal
of consensus is to ensure that all good parties within a group of n parties agree on a value
proposed by one of the good parties, even if up to f-out-of-n parties are compromised. For
example, this may be necessary for letting a multi-party system decide which cryptographic
operations to perform in which order, when the system receives concurrent requests, possibly
maliciously delivered, from multiple users.

Results relating n and f within this setting include many impossibilities [Lyn89], with
myriad nuances depending on communication and failure models. In one extreme, the
problem is unsolvable deterministically in a completely asynchronous setting [FLP85], even
with (non-transferable) authentication and a single crash-stop process (which can only fail
by crashing). Yet, realistic subtle nuances of the system model circumvent the impossibility.

For example, the problem is solvable even with Byzantine faults if the processes have
access to randomness [Ben83, Rab83] or synchronous communication [PSL80, LSP82,
DDS87]. In those settings the number of good components must be larger than two-thirds of
the total, i.e., k > (2n+ 1) /3, or equivalently n > 3f + 1. Provided the appropriate timing
assumptions, if nodes only fail by crash then a non-crashed simple-majority is sufficient,
1e., k> f+1, or equivalently n > 2f 4 1 [LamO06]. In another extreme, consensus is
solvable even with a single good party if a suitable trusted setup can be instantiated to
enable transferable message authentication. This is the case when a PKI setup enables
cryptographic signatures [PSL80], or in some other setups (e.g., reliable broadcast and
secret channels in a precomputation phase [PW92]).

The discussion above motivates reflecting also on the property of brittleness [Vas15].
This expresses a degree of susceptibility to a breakdown of the security properties (e.g.,
exfiltration of a key) of a particular algorithm due to errors in the configuration and/or
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input parameters. In other words, one is concerned with the fragility of a system with
respect to changes in the system model or expected setup. Even if a system has all desired
properties under a well-defined model, it may be unsuitable for real deployment if it fails
catastrophically under reasonable variations of the environment. One would typically prefer
instead some kind of graceful degradation. Also related and pertinent is the consideration of
how protocols behave differently under different types of attack. Some protocols can be char-
acterized by two (or more) ordered thresholds (e.g, f1 < f2), meaning that desired security
properties hold while the first threshold is not surpassed, but the security failure is not catas-
trophic while the second threshold is not met [FHHWO03]. The thresholds can also depend
on the type of attackers, and different nodes can be subject to different types of compromise.

5 Characterizing features

We now provide a high-level structured review of characterizing features of threshold
schemes, to facilitate the discussion towards criteria for evaluation of concrete proposals.
We intend to motivate a characterization that helps clarify security tradeoffs when reflecting
on diverse adversarial models. Put differently, we find that the upfront clarification of certain
high-level features is important for discussing the standardization and validation of threshold
cryptographic schemes. Table 2 shows examples of possible representations and attributes
of characterizing features — it does not intend to be exhaustive.

5.1 Threshold values
5.1.1 A threshold

From within a total number n of components, a “threshold” can be expressed in two ways: a
minimum required number k of good (i.e., non-compromised) components; or a maximum
allowed number f of bad (i.e., compromised) components. Correspondingly, the dual
threshold notation — f vs. k — enables us to pinpoint each perspective, which can be useful.
For example: in some cases, a design goal is directly set as the ability to withstand the
compromise of up to a threshold number f of components; in other cases, design constraints
such as cost may directly limit the total number n of components, which in turn may impose
a threshold number & of good components, depending on the protocol and adversarial model.

As already discussed in Sec. 4.1.1, these thresholds (of good and bad number of com-
ponents) make sense when contextualized (sometimes implicitly) to some security property.
For example, when referring to a k-out-of-n secret sharing scheme the & refers to availability
(minimum number of components necessary to recover a secret), whereas the compromise
threshold f for confidentiality of the secret (maximum number of components that together
cannot recover the secret) is in that case equal to k — 1. The meanings of good and bad and
the corresponding thresholds can vary across different security properties. The threshold
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Table 2. Characterizing features of threshold schemes

Feature Representation Examples
Threshold numbers of max f=0,...(n—1)/3,(n—1)/2,n—1
Threshold bad (f) z-md gqod (k) npdes ormink=n,..2f+1, f+1,1
type Variation with security (ksecrecy > Kntegrity) = (1,7),
property and attack vector (n—=1)/2,(n—1)/2),...,(n,1)
Compromise across nodes common; independent; sequential

Communi- Client <+ crypto module broadcast; primary node; secret-sharing

cation Inter-node structure star; clique
interfaces Channel protection TLS; IPSec; dedicated physical connections;

trusted paths [NISO1]; application-level encryption
Multiple parties vs. multiple interacting computers; multi-chip

Target single device in single device; threshold circuit design
executing Software vs. hardware VMs as components; HSM; cry'pto acc.elerators;
platforms crypto libraries; trusted computing environments

Auxiliary components global clock; proxy; combiner;
random number generator (RNG)
Bootstrap support dealer; SMPC
Rejuvenation modes reactive vs. proactive; parallel vs. sequential
Setup - -
and Diversity generation offline pre—computatlop vs. on-the-fly;
. unbounded vs. limited set
maintenance

operating system; CA; access control; location;
vendor; processor architecture; randomization

Diversity levels

symbols k and f can be indexed by the corresponding security property (e.g., fc vs. f Vs.
fa, respectively for confidentiality, integrity and availability), but we omit indices when the
context is clear.

5.1.2 Relating n vs. f and k

When analyzing proposals for concrete threshold schemes, we intend that the system model
be sufficiently characterized to enable determining allowed relations between n vs. f and
k. Furthermore, it is important to understand how these thresholds can have an extreme
variation across security properties.

As one example, a n-out-of-n secret-sharing scheme has an optimal threshold for con-
fidentiality (fc =n—1, i.e., kc = 1) and at the same time a pessimal threshold for integrity
(fi =0, i.e., ky = n) and availability (f4 =0, i.e., kg = n).

For another example, consider a threshold randomness-generator, intended to output
uniformly random bit-strings, periodically or upon request. In a particular specification,
the output randomness can be defined as the XOR of bit-string contributions from several
generators of randomness (the components of the threshold scheme). The output is then
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uniformly random if at least one (good) contribution is a uniformly random bit-string that
is independent of the other contributions. Note that the guarantees for independence are
important but out of scope for this report. Thus, this scheme has an optimal integrity thresh-
old, i.e., (k;, f;) = (1,n— 1), with respect to guaranteeing the uniformly random property
of a produced output. However, if an output generation requires the participation of all com-
ponents, then the scheme also has the worst threshold for availability, i.e., (k4, fa) = (n,0),
since a single bad party can boycott the output.

In comparison, the two examples have the same availability thresholds (f4 = 0), but dif-
ferent integrity thresholds: pessimal (f; = 0) in the first example and optimal f; =n—1) in
the second example. Furthermore, confidentiality is a relevant property with optimal thresh-
old (f4 = n—1) in the first example, whereas it is not even applicable in the second example.

5.1.3 Different thresholds for the same scheme

We gave examples for how the same threshold scheme may be characterized by different
thresholds for different security properties. Going further, the thresholds may vary even for
a fixed qualitative property (e.g., confidentiality, or integrity, or availability). Typically, an
active/malicious/byzantine adversary induces a lower fault-tolerance threshold (i.e., lower
tolerance to compromise), when compared to a passive and/or crash-only adversary. The
same is true for system model assumptions, such as asynchrony vs. synchrony of commu-
nication channels, and the absence vs. existence of a trusted setup such as a public-key
infrastructure. The distributed consensus problem in Sec. 4.3.4 shows how a threshold can
vary widely depending on the setting.

The determination of relevant threshold values can also depend on the primitives used
and the application context, e.g., how the actual threshold scheme is used in connection with
other entities. In some applications, a client can check the validity of signatures obtained
upon request to a threshold signature module. If a detection of an incorrect signature allows a
proper reaction, then a threshold signature scheme can be useful even if its integrity does not
tolerate compromised components (i.e., if f = 0). One could then argue that the application
itself allows a different threshold for integrity. Similar verifiability with respect to decryption,
or symmetric-key encryption, may be more difficult/costlier, though not impossible. In fact,
certain threshold schemes can be directly built with a property (often called robustness)
that prevents integrity violations when up to a threshold number of parties misbehave. For
example, this can be based on verifiable secret sharing schemes, which allow verification
of correct use of shares. It can also be based on zero-knowledge proofs of correct behavior.

In the simplest form, a threshold f is a number that defines a simple partition of subsets,
distinguishing the set of subsets with more than f nodes from the remaining subsets. It is
worth noticing that the concept can extend to more general partitions [[SN89, HMOO].
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5.1.4 Representative questions about threshold values

1. For each desired security property, what are the threshold values (maximum f and/or
minimum k), as a function of the total number 7 of components?

2. What envisioned application contexts justify a high threshold for some properties at
the cost of a low threshold for other properties (or of other mitigation measures)?

3. How do threshold values vary with respect to conceivable variations of the system
model (e.g., synchrony vs. asynchrony, passive vs. active adversaries)?

5.2 Communication interfaces

The augmentation from a conventional cryptographic implementation to a threshold scheme
impacts the communication model. Conceivably, a client can now communicate with more
than one component (hereafter “node’), and the nodes can communicate between themselves.
In Sec. 4.3.1 we already described several nuances of system model, including synchrony vs.
asynchrony, and the possible existence of a broker. We now briefly describe three nuances
of communication structures related to clients and nodes.

5.2.1 Client to/from primary node

The client may communicate with the threshold scheme via a single contact component.
When such component is one of the n nodes of the threshold scheme, we can call it a primary
node for communication. It relays to all other nodes the communication from the client
(e.g., a plaintext), and inversely the result (e.g., a signature). For example, it aggregates
intermediate results produced by other components, to then send a single consolidated reply
to the client. In such a setting the system might, for example with respect to availability,
not be able to tolerate the failure of the primary node (if this role does not change across
nodes). But other threshold properties, e.g., confidentiality sustained on a secret sharing
scheme across all nodes, may remain independent of the use or not of a primary.

5.2.2 From client to all nodes

If the client is aware of the threshold scheme, it may be able to replicate a request across
all components. A possible advantage is ensuring that all correct components receive the
same request. Correspondingly, the client may also receive replies from all (or a threshold
number of) components and only then decide on a final result. In a different implementation
model, the client can perform secret-sharing on the input and then communicate one share
per component. This can be used to support confidentiality of the input, e.g., a plaintext
to encrypt or sign. At the very least, this prevents components from applying corruptions
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dependent on the plaintext value. In the reverse direction, the client can reconstruct (possibly
with error-correction) an output from a set of replied shares.

5.2.3 Inter-node communication

In typical threshold schemes, the components have to directly communicate between them-
selves. (An exception is when the client is the sole intermediary between nodes). The
inter-node network structure influences the efficiency and security of communication. In a
star configuration, a primary node intermediates all communication. In a clique configuration
(i.e., a complete graph), all nodes are able to directly contact any other node. For efficiency
reasons, a star configuration may be used for most communication and a clique configuration
be available for secondary communications. A dynamic selection of the primary node (also
known as leader) may enable overcoming cases of it being compromised [CLO02].

5.2.4 Representative questions about communication interfaces

1. Are clients aware of the threshold nature of the implementation?
How is the initial request from a client propagated through the set of nodes?

How can the inter-node communication be compromised?

oo

How does the client obtain a consolidated reply based on a set of partial results
produced by a set of nodes?

5. How is the logical/physical “boundary” [NIS18c] of the system affected by the existing
communication channels?

5.3 Target computing platforms

To some extent, the implementation platform can be abstracted from some functional
properties of a threshold scheme. Yet, there are distinctive platform-related aspects relevant
for security assessment and validation. We elaborate here on three main instances: single-
device vs. multi-party; software vs. hardware; and auxiliary components. These aspects can
affect other features and are relevant for the development of validation profiles.

5.3.1 Software vs. hardware
Cryptography is implemented on a variety of computing platforms. In the early days of the

modern technological revolution in computing and communications, cryptographic algo-
rithms were implemented predominantly in hardware. Examples of such embodiments are
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the secure phone lines between federal offices in the 1970s. Hardware implementations pro-
vide a level of isolation of the sensitive cryptographic keys and their utilization in processing
information, along with storage and management of keys and other sensitive parameters.

It is natural to think of the physical boundary of a dedicated circuit board, a dedicated
chip, a smart card, or USB key. Thus, one can relate that physical boundary to the ideal
black box boundary introduced in Sec. 4 and formulate a set of security assertions. This in
fact is the foundation for FIPS 140-2 [NISO1], which was initially developed for hardware
cryptographic implementations. This standard contains specific security requirements on
the physical boundary of hardware modules, namely in Ref. [NISO1, Section 4], which are
concerned with ensuring the attacker cannot probe the circuitry and extract the keys.

As the adoption of cryptography extended into e-commerce over the Internet, software
implementations of cryptography emerged and over the years became a widely used embod-
iment for cryptographic primitives. Software cryptographic implementations on a general
purpose computer (GPC) are just like any other software component that runs within the
control of an operating system (OS). GPCs are much more porous (see Sec. 1) and tend
to provide fewer assurances with respect to the isolation of cryptographic keys and other
security-sensitive parameters from unauthorized access by other applications running on the
same GPC/OS platform, or remotely through the network interfaces of the platform. Corre-
spondingly, these software modules are subject only to a subset of the security requirements
described in Ref. [NISO1] and are limited to a lower level of security assurances they can
claim to deliver.

Given this historical context, the distinction of hardware vs. software in FIPS 140-2
comes from the difference in isolation that the approaches provide, and is not directly related
to the manner in which the computation is performed. Note, for example, that an HSM might
actually contain an embedded microcontroller that performs the cryptographic computation
in software. Also, some hardware platforms such as a Field-Programmable Gate Arrays
(FPGAs) can be “reprogrammed,” a property that was historically reserved for software
implementations. For the sake of readability, we will assume a more “traditional” separation
between hardware and software, focusing primarily on the isolation properties, rather than
on different types of computing platforms.

The hybrid approach to cryptographic implementations aims to benefit from the flex-
ibility in software and the isolation and/or acceleration in hardware. Here a portion of
the implementation is in software executing on a GPC/OS platform and another portion is
executing on a dedicated HSM attached to the same GPC. Examples of such modules are
the Trusted Platform Module (TPM) [Mor11], or the cryptographic extensions of standard
Central Processing Unit (CPU) instruction sets, such as the Software Guard Extensions
(SGX) instruction on Intel platforms [Int18], and the TrustZone technology on Advanced
RISC Machine (ARM) processors [ARM18]. These modules can also be used as secure
sub-components within a hybrid fault model. The “secure” components have a more re-
stricted mode of compromise (e.g., only by crash), thereby enabling better thresholds for
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byzantine fault tolerance of a distributed system composed also of larger and less secure
components [VCB'13, BDK17].

In some cases, a specific cryptographic primitive is implemented partially in software
and partially in hardware. For example, an RSA signature algorithm may be implemented in
such a way that the modulo exponentiation is executed in hardware but the required padding
of the data is implemented in software. In other cases, an entire suite of fully implemented
cryptographic primitives is implemented in an HSM and used by a software component
through application programming interfaces (API).

The hybrid approach offers important security advantages for implementing crypto-
graphic primitives and key management in isolation, as well as performance improve-
ments. For example, a hybrid implementation could potentially mitigate cold-boot at-
tacks [HSH™09], which allows keys to be recovered in seconds or even minutes after it has
been removed from the device. Cold-boot attacks typically assume that the keys are stored
in the virtual memory of the operating system, and might therefore be moved into DRAM.
An HSM could mitigate this attack by ensuring that keys never leave the HSM.

Another reason to delegate the execution of cryptographic primitives to dedicated
hardware is for performance improvement. An example of this is the AES extension on

Intel [Gue09] and Advanced Micro Devices (AMD) CPUs [AMDI12]. HSMs offer similar
acceleration benefits.

5.3.2 Single device vs. multi-party

When a threshold scheme is developed to enable tolerance to the compromise of several
components, it is intuitive to think of a set of interacting parties (also known as nodes or
devices). For example, a multi-party threshold setting can be composed of n computers
communicating over the Internet, or n hardware security modules (HSMs) connected via a
private network, or n virtual machines (VMs) running within the same hardware machine.
The connectivity may be dynamic, with the components being possibly replaceable for
testing, updating and patching. In a multi-party computation, the nodes may be separated
by a network, possibly asynchronous, inherently outside of the control of the threshold
scheme. For testing and validation, the tester/validator might not be able to simulate a
realistic communication medium between multiple parties.

In contrast to the alluded multi-party systems, we also consider “single device” settings.
Main distinctive aspects include, typically, a somewhat rigid configuration of components
and a well-defined physical boundary. If the device is a hardware circuit, then in most
cases the connections between inner wires and gates are fixed throughout the life of the
device. However, there are technologies that actually allow even those components to be
adapted across the lifetime of the device, e.g. FPGA. Communication synchrony between
components is often expected and achieved. Threshold schemes are applicable to the single-
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device setting by means of an inner threshold design. There, the inputs and outputs of a
threshold circuit become encodings (e.g, sets of secret shares) of the inputs and outputs of
the conventional (non-threshold) circuit. For confidentiality, the threshold property may be
that no isolated subset of up to f wires in the threshold circuit contains information about
any bit that would be flowing in the original circuit. A main application of this design is
providing increased resistance against certain side-channel attacks [NRROG6].

There is flexibility in distinguishing, and identifying similarities, between multi-party
and single-device scenarios. For example, we could imagine the physical components within
a device with a threshold design to be multiple “parties”. Conversely, a single-device may
indeed not have any redundancy of hardware components, and yet a threshold scheme be
applied by means of repeated executions of an algorithm. The value of distinguishing the
platforms is in facilitating a categorization of aspects that may justify different standard-
ization and/or validation profiles. For example, in a multi-party setting it may be easier to
isolate, replace and test corruption of a singular component, for the purpose of validating
properties of an implementation. In some single-device cases, it may be infeasible to achieve
complete separation of components to test their individual correctness.

5.3.3 Auxiliary components

Threshold schemes may require essential components beyond those accounted in n. To use
a distinctive term, we call them auxiliary components. These may include, for example,
a trusted global clock, a proxy, a common random (or pseudo-random) bit generator, a
combiner of information from components. Having a threshold-scheme characterization
that acknowledges these components enables a better system model for security assessment.
For example: a trusted (assumed trustworthy) clock may be what enables synchrony in a
system model, which in turn can influence the threshold and the protocol; the interaction
with a trusted random number generator may be necessary to take advantage of the threshold
design of a circuit based on secret-sharing; we have also already given examples of how
the auxiliary components may affect the inter-node and the client-node communication
interfaces. The auxiliary components may have their own compromise model, and their
testing and validation is also needed when testing and validating a threshold system. Yet, it is
foreseeable that a great deal of analysis about the auxiliary components can be modularized
away from threshold-related arguments.

5.3.4 Representative questions about computing platforms

1. If a proposed threshold scheme is devised for a “single-device” setting, what can go
wrong if its components are instead separated and communicate over the Internet?

2. Which parts of the logical boundary of the threshold system do not correspond to a
physical boundary, as verified by the system developer or deployer?
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3. Is the system simply developed at the software layer, or are there software components
tied to particular hardware components?

4. Which auxiliary components support the threshold scheme but have a failure model
different from the one applied to the threshold nodes?

5.4 Setup and maintenance

In some settings a threshold scheme can be implemented from scratch as an alternative to
a construction with a single point of failure. In other cases the starting point is exactly an
existing single-point-of-failure entity, which is intended to be redesigned as a threshold
system. To compare the effects from the change, we should consider how the system is
bootstrapped, including “who” deploys the nodes, and their initial states. Also relevant is the
setup of the communication network and continued maintenance of the system, including
during detection and/or recovery of compromised components.

5.4.1 Dealer vs. dealer-free setup

In secret sharing, a “dealer” is an entity, possibly outside the failure model of the threshold
scheme, that knows a secret and “deals” shares of it to the nodes of the threshold scheme. In
a possible scenario, a key holder in a safe environment deals shares of a long-term signature
key to nodes that operate in a threshold manner in a less-secure environment. The role
of a dealer is not necessarily limited to applications related to secret keys. As a practical
example, a setup phase can also consist of a trusted party generating and secret sharing
so-called “Beaver-triplets” — triplets of field elements (possibly bits) where the third is
the product of the first two. The pre-processing of these triplets enables a very-efficient
execution of certain secure computation protocols [Bea92].

In a setting with a dealer, it is relevant to consider the extent to which the protocol security
withstands or breaks in the presence of misbehavior by the dealer [BRO7]. Some protocols
can be made secure against an untrusted dealer, with respect to integrity, if the protocol
enables parties to verify correctness of the distributed parameters. Other protocols may have
security hinge on an assumption of a trusted dealer. Depending on the functionality, there
may exist tradeoffs between efficiency and the property of supporting the malicious dealer.

5.4.2 Rejuvenation of nodes
It is desirable that compromising f-out-of-n nodes in a good threshold scheme is not easier

than compromising 1-out-of-1 in a conventional scheme. But is such property inherently
guaranteed if f > 0 and if the process of compromising each node is independent? Not
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necessarily, even if the compromise of a node requires an independent exploitation effort
(e.g., time, computation) per node.

If nodes of a threshold system can only transition from an uncompromised to a com-
promised state, then the system may be less secure under certain attack vectors. This may
be due to an increased attack surface, a sufficiently low f/n ratio and a sufficiently high
mission time. This is a well-known result in fault tolerance, as may happen in a basic
triple-modular-redundancy design [KKO7]. One may also consider adversarial scenarios
that induce a probability rate of a node under attack becoming compromised [OY91]. To
counteract these transitions, it is possible, and in many settings essential, to implement
recovery/replacement/rejuvenation of nodes that can bring nodes back to a “healthy” (un-
compromised) state. There is a plethora of possible rejuvenation modes, e.g., reactive vs.
proactive, parallel vs. sequential, instantaneous vs. delayed, stateless vs. stateful, etc.

If a compromise is detected, then the corresponding node should be reactively replaced
by a healthy version, lest the system eventually converges to all nodes being compromised.
If the compromises are not detectable but are nonetheless conceivable, then a proactive
recovery should take place. In the threshold signature scheme from Sec. 3, the resharing of
the secret key constitutes a parallel rejuvenation of nodes. If there is no persistent intrusion,
and the number of compromises never exceeds the allowed threshold, then the resharing
brings the whole system back to a pristine state, with all nodes healthy.

The rejuvenation feature brings along a whole new set of considerations, possibly affect-
ing security in non-trivial ways. If the nodes need to be stateful (i.e., hold state about the
application), then newly inserted nodes need to be consistently updated, which requires spec-
ification as a sub-protocol. The rejuvenation of a previously compromised node may need to
diversify some component, to prevent re-exploitation of the same vulnerability [KF95]. The
diversification operation may have its own requirements, possibly requiring pre-computation
vs. being generated on-the-fly by some sampling procedure.

In some protocols a rejuvenation may have to take place in parallel, e.g., such as the
already discussed example of updating key shares, with all online parties being rejuvenated
simultaneously. In other cases, rejuvenations may occur sequentially, replacing/recovering
each node at a time, especially if the process involves a long downtime. Many of the
considerations pertinent to the initial setup of a threshold system are also applicable to the
rejuvenation context. For example, is there a “dealer” responsible for setting up the full state
of a rejuvenated node or should the state be updated by the set of online nodes?

If a threshold scheme is based on electing a primary node, what happens when the
primary node is the one in need of replacement? If a scheme allows reactive and proactive
rejuvenations, can an attacker take advantage of knowing the schedule/ordering of the
proactive rejuvenations? What happens if the regular threshold scheme performs correctly in
an asynchronous environment, but the recovery procedure requires synchrony? Not handling
asynchrony in recovery procedures may hide subtle problems [SNVO07]. If the regular
threshold scheme requires only a simple honest majority, but the corresponding rejuvenation
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mechanism requires a 2/3 honest majority, then the threshold properties are also affected.

5.4.3 Levels of diversity

Intuitively, a main motivation for threshold schemes is to improve security by withstanding
the compromise of some nodes.* Yet, a standalone characterization of threshold values does
not say anything about the difficulty of compromising the threshold number f of nodes.
Consider the case of a common vulnerability, i.e., common across all nodes (e.g., a bug in a
common operating system). Once the vulnerability is discovered, an adversary might be
able to exploit it with negligible cost to compromise all nodes. In this example, this would
then be “as easy” as compromising a conventional scheme with the same vulnerability.

Consider an example where all nodes are symmetric with respect to the threshold pro-
tocol, i.e., all implement the same functionality. One can then imagine all nodes being
implemented in the same manner, say, the same software, possibly containing a common
vulnerability. Conversely, each node can also be programmed for the same functionality
via different software versions [CA78]. In practice, common vulnerabilities may occur at
multiple levels where the set of nodes is homogeneous, e.g., operating system, network pro-
tocol, hardware design, physical location, password. Diversity may be implemented across
space (i.e., across the components within a threshold protocol) and time (i.e., replacements
and executions across time). In the multi-party case, rejuvenation can happen by actually
replacing a physical node by a new one. In certain single-device settings, rejuvenation
might be limited to refreshing randomness, while the actual hardware structure remains
fixed. In a software setting, rejuvenation may correspond to replacing a virtual machine, or
changing some randomness used when compiling a software version. At some levels, there
may be a small set of variants (e.g., operating systems), whereas others (e.g., passwords) are
impossible to replace.

The use of diversity is a longstanding practice of traditional fault-tolerance, but its use for
security is more intricate [LSO4]. Implementation-wise, multiple levels of diversity (among
other properties) may be required to reduce the possibility of common vulnerabilities [SZ05]
and to substantiate an assumption that compromising more nodes is more difficult than
compromising fewer nodes. A fundamental difficulty is that the level of effort used by an
attack vector may be unpredictable until the attack takes place.

5.4.4 Representative questions about setup and maintenance

1. Can a threshold scheme be bootstrapped in both dealer and dealer-free manners?

2. What levels of diversity are envisioned to deter common-mode failures?

4 We also bear in mind the possible mapping of threshold properties into side-channel resistance properties.
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3. What dependency of compromise exists across nodes, for envisioned attack vectors?

4. Does the sub-protocol for handling rejuvenations interfere with the system availability?

6 Validation of implementations

6.1 The existing CMVP and FIPS 140-2

Governments recognize cryptography’s important role in protecting sensitive information
from unauthorized disclosure or modification, and tend to select algorithms with well-
established theoretical security properties. For example, US and Canadian federal agen-
cies must use NIST-defined cryptographic algorithm standards to protect sensitive data
in computer and telecommunications systems [tC96]. They must also use only validated
cryptographic implementations, typically referred to as modules.

As we have pointed out, the correct and bug-free implementation of a cryptographic
algorithm and the environment in which it executes are also very important for security. To
assess security aspects related to real hardware and software implementations, NIST estab-
lished the Cryptographic Module Validation Program (CMVP) [NIS18c] in 1995 to validate
cryptographic modules against the security requirements in Federal Information Processing
Standard (FIPS) Publication 140-2 [NISO1]. The CMVP leverages independent third-party
testing laboratories to test commercial-off-the-shelf cryptographic modules supplied by
industry vendors.

FIPS 140-2 is a standard defined as a system of conformance security assertions. The
security assertions in the standard cover a wide range of cryptographic primitives imple-
mented into various types of physical embodiments called cryptographic modules. The
security assertions are grouped into sets, one for each security level. FIPS 140-2 defines four
security levels for cryptographic modules. Depending on the type of technology used for
a particular module, e.g. software or hardware, the standard defines a subset of applicable
security assertions that the module must meet for a chosen security level and module-specific
functional capabilities. In turn, the cryptographic primitives approved by NIST and adopted
in FIPS 140-2 through Annex A for use in cryptographic modules are also specified as
sets of conformance security assertions. This allows the CMVP to work with a reasonably
constrained and well-defined set of security assertions that can be validated.

The Common Criteria [Com17] follows a contrasting approach, where one is allowed
to define a unique set of security assertions for a target component, often referred to as a
target of evaluation (TOE). The goal of the Common Ceriteria certification then is to evaluate
the correctness of the specific security assertions claimed by the TOE. The evaluation is
typically much less structured than the validation process in FIPS 140-2, takes longer time
and requires substantially higher expertise from the evaluators and validators.
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6.2 Integration of threshold cryptographic schemes

When we consider standardizing threshold cryptographic schemes for approved NIST cryp-
tographic primitives, we intend to pursue the approach of conformance security assertions,
similar to the approach taken for the cryptographic primitives and modules.

FIPS 140-2 already has security requirements for secret sharing applied to cryptographic
keys. Section 4.7.4 of the standard defines security requirements for split-knowledge
procedures for security levels 3 and 4, stipulating that “if knowledge of n key components
is required to reconstruct the original key, then knowledge of n — 1 components provides no
information about the original key, other than the length.” This can for example be satisfied
by implementations of the Shamir and Blakley secret sharing schemes mentioned in Sec. 2.2.

The above-mentioned provision in FIPS 140-2 refers only to secret-sharing and by itself
does not ensure that keys are never recombined when needed by an algorithm, which is
a main subject of threshold schemes for cryptographic primitives. That provision is thus
insufficient to accommodate the plethora of threshold considerations that have been pointed
out in this report. Generally speaking, the process towards standardization of threshold
schemes may involve reconsidering the adequacy of the validation requirements and where
necessary devise new or complementary requirements.

As technology progresses and cryptography becomes ubiquitous in the federal informa-
tion infrastructure, the number and complexity of modules to be validated increases. This
makes it increasingly difficult to detect at validation stage all possible defects that might
compromise security. This is one more reason to consider the potential of threshold cryptog-
raphy in avoiding single points of failure in real implementations. However, similarly to
conventional cryptography, the security of the threshold cryptographic implementation may
also be impacted by defects introduced as a result of human errors or unsafe optimization
by the tools used to compile or synthesize the implementation. Thus, it is important to
ensure that the algorithms supporting threshold cryptography are theoretically secure, and
to verify that they have been implemented correctly. The definition of guidelines would
help develop a structured process of formulating and validating security assertions about
threshold cryptographic implementations.

One additional challenge is to enable ways to validate those assertions in an automated
fashion. NIST is working with the industry to rebuild its cryptographic validation programs
and improve the efficiency and effectiveness of cryptographic module testing in order to
reduce the time and cost required for testing while providing a high level of assurance for
Federal government consumers. As the NIST cryptographic validation programs evolve,
the adoption of new cryptographic technology into them should target the future structure
and mechanisms for testing and reporting results [NIS18b]. The current project includes an
Industry/NIST collaboration website for automated validation of cryptographic algorithms
(ACVP) and cryptographic modules [NIS18a, NIS18b].

It is encouraging to note that automated methods for validating protocol implementa-
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tions have emerged recently (e.g., [CHH" 17, BBK17, DLFK ™ 17]). This experience may
be useful to leverage for the protocols involved in threshold cryptographic schemes.

7 Criteria for standardization

Active research over the last few decades has resulted in a substantial body of literature on
threshold cryptographic schemes. Usually there are tradeoffs of threshold values for different
security properties, potentially depending on the application context and system model.
With appropriate caution, threshold cryptography offers a great potential for strengthening
the security of cryptographic implementations. But what criteria should one use to ask for
and select from a potential pool of candidate threshold cryptographic schemes?

7.1 Representative questions

We intend this document to promote the development of criteria for evaluation of proposals
of threshold cryptographic schemes. Here we list representative questions likely to induce a
discussion about this:

1. Characterizing features
(a) Are the characterizing features of the threshold scheme fully described?
(b) On what executing platforms can the scheme be implemented?
(c) What are the node-rejuvenation mechanisms (e.g., resharing or replacement)?
(d) What are the operational costs and properties of setup and maintenance?
(e) How are nearby components assumed separate/independent vs. interfering?

2. Applicability of scheme
(a) How efficient/performant are the operations as a function of threshold parameters?
(b) Is the scheme applicable to NIST-approved cryptographic primitives?
(c) Do base primitives (e.g., oblivious transfer) require independent standardization?
(d) Is the system model applicable to known and relevant application contexts?

3. Implementations
(a) Should the standard take into account feasibility and interoperability on different
platforms, e.g., hardware or operating systems?
(b) Should the standard define common APlIs for client-side functions?
(c) What degree of automated protocol validation should be targeted for proposed
standards?

4. Implementation vs. security

(a) How is diversity of nodes related to known attack vectors?
(b) What threshold aspects can lead to new implementation bugs or misconfiguration?
(c) What trusted setup / assumptions are required (e.g., dealer, special components)?
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(d) How brittle is the scheme (likely to break under small environmental variations)?
(e) What faults can be detected and reversed, while identifying the culprit node(s)?

5. Security

(a) What threshold properties relate to resistance against side-channel attacks and how?
(b) Are there identified security tradeoffs across attack types and configurations?
(c) How does the reliability compare against that of a conventional implementation?
(d) What features of graceful degradation exist against conceivable failures?

(e) Does the security proof ensure composability useful for conceived deployments?
(f) Can real attacks thwart the trusted setup assumed in the proof of security?

(g) To which degree has/have the proof(s) of security been formally verified?

6. Validation

(a) Do the security assertions match / fit into the FIPS 140-2 framework?
(b) How ftestable is the scheme (can security assertions be tested and validated)?
(c) Is there a proposed automated validation mechanism?

7. Licensing
(a) What are the intellectual property implications and the licensing conditions?

8. New standards development

Depending on the adopted approach to developing the new standards, there may be
submissions of candidate threshold schemes for evaluation. If such an approach is
adopted then potential criteria for quality submissions might include the following:
(a) Are working implementations available?

(b) Is interoperability between two or more different implementations demonstrated?
(c) Are high-level use-cases/applications (e.g., signing, decryption, etc.) feasible?

We need to develop an objective criteria set to support a call for and a selection of
schemes for standardization. An actual criteria guideline would elaborate further on each
of the above questions, or variations thereof, and possibly others. The development of such
criteria would benefit from collaborative public feedback from the cryptography research
community, as well as from stakeholders in the government and industry.

In addition, there may exist pertinent questions about what and how to standardize.
What flexibility of parametrization should a standard allow? Should there be distinct
standardization profiles to separately focus on distinct attribute instantiations, e.g., single-
device vs. multi-party platform, side-channel attack vs. intrusion per node? Next, we
elaborate a bit further on two additional aspects.
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7.2 Standardization at what granularity level?

Current industry guidelines for best practices in cybersecurity [Ver18] recommend active
patching of vulnerable components. If in a validated multi-party threshold scheme a node
is found to have a serious vulnerability, the node may need to be patched. This would
not be a problem if the scheme tolerates the full compromise of at least one node, and/or
if it can replace it with another type of (validated) component. In that case, the overall
system continues to operate smoothly during the patching and revalidation of the vulnerable
component. Thus, when considering the standardization of a particular threshold scheme,
there may be value in validating implementations with diverse platforms/implementations
for the individual nodes. This example suggests a question about the standardization criteria:
what levels of granularity/modularity should be considered for standardization?

While it may be useful to standardize modular components, such development is not
on its own sufficient to achieve good standards for threshold schemes for cryptographic
primitives. There are difficulties associated with secure composition of secure components
into a protocol (e.g., into a threshold scheme). Composability is indeed a recurring subject
in the development of secure multi-party computation protocols. It is thus an open question
how one should or should not create standards for combining modular components.

Another consideration on what and how to standardize pertains to the potentially large set
of available solutions. On the one hand, SMPC provides general techniques that can use com-
mon building blocks to enable thresholdizing any cryptographic primitive. On the other hand,
there are also specialized (ad-hoc) solutions with techniques tailored to specific primitives
and their applications. How should we handle the two types of solutions in the standard-
ization process, both of which are likely to improve over time? Some benchmarking may be
helpful for navigating the pool of possibilities and making objective comparisons between ad-
hoc and generic solutions. It is important that this process for characterizing such solutions
is conducted in a way that invites and encourages participation from all stakeholders.

7.3 Standardization opportunities

At a basic level, secret-sharing schemes can be used to split a secret key while its use is not
required, ensuring that a threshold number f + 1 of shares is needed to reconstruct the key.
However, this by itself does not enable cryptographic primitives to use the key shares instead
of the recombined key. Secret sharing alone might also not enable threshold properties for
other purposes, such as preventing a corruption of the intended output. The above limita-
tions can be addressed with threshold cryptography (in the broad sense of encompassing
threshold schemes for a secure implementation of cryptographic primitives). For example,
the computation may be performed on shares of the key, without the need to ever recombine
the original key, and enabling threshold security for other properties, including integrity and
availability. What then should be standardized, within the realm of threshold cryptography?
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Threshold schemes have wide applicability, in the sense that there are general techniques
to convert a conventional implementation into a threshold version thereof. One can thus
ask: for which conventional cryptographic schemes should one consider standardization of
a threshold version? On one hand, there is a clear interest in enabling threshold versions
of NIST-approved cryptographic primitives. On the other hand, the consideration of stan-
dardization of threshold schemes is in itself an opportunity to review suitability for new
standards. In this line, we also wonder how the standardization of threshold schemes might
also benefit other ongoing NIST efforts of standardization. For example, could elements
from the lightweight [MBTM17] and post-quantum cryptography (PQC) [NIS17] projects
at NIST be useful for threshold cryptography? Could the schemes considered by those
projects also be looked at in the perspective of possible threshold variants? More research
is needed. That is why we do not intend here to show any preference about concrete cases,
but simply to raise the point for consideration. We believe that a better clarification may
arise from a constructive interaction with the research community and other stakeholders.

8 Conclusions

Conventional cryptographic implementations have a single point of failure when the secret
key is stored in one location, or when a localized fault breaks integrity of the output or
availability of a cryptographic operation. These failure modes can be mitigated by using
threshold schemes for a secure implementation of cryptographic primitives. This includes
schemes related to secure multi-party computation and intrusion-tolerant distributed systems.
Usually, a threshold property is expressed as an f-out-of-n tolerance to compromise, where
the compromise of up to f nodes does not break some security property. For example, when
up to f parties possess no information about a secret, security against a wide range of side-
channel attacks can be achieved under some reasonable assumptions about the distributions
of side-channel information. Furthermore, a threshold scheme may even provide resistance
against side-channel attacks that collect information correlated across all nodes (beyond
the threshold). This is because, in some models, a threshold design may complicate the
exploitation of noisy side-channel information.

Threshold schemes can be efficient. For example, we described how a simple threshold
RSA signature scheme based on a n-out-of-n secret-sharing has a complexity that increases
only linearly with the number of shares, and whose computation is parallelized across several
nodes. In such case, the simplicity of the method is based on a mathematical property (a
homomorphism) of the underlying structure of the original scheme. In contrast, schemes
for other cryptographic primitives, such as some block ciphers, may require significant
computational overhead compared to their conventional counterparts. Still, even in those
cases the threshold schemes may be practical and justifiable, depending on the intended
security assurances and the application context.

The discussion in the preceding sections highlighted nuanced security assertions that can
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be obtained about threshold cryptographic schemes. The security of such schemes has to be
seen through the prism of a security model and possibly considering several system models
of implementation. For example, there may be differences between active or passive attacks.
To help navigate the landscape of possible schemes, this report enumerated characterizing
features and their possible effects. For example: there are potential benefits of rerandomizing
the shares of the secret key; properties can be different between multi-device vs. single-
device platforms; some security properties are different depending on the communication
platform with the environment and between components.

An understanding of a variety of instantiations of characterizing features is necessary
for the development of objective criteria for selecting candidates for standardization. For the
purpose of standardization and validation, the combination of characterizing features and
attack models should be translated into security assertions. The way these can fit into FIPS
140-2 and/or require complementary standardization is a matter for discussion.

We have looked at numerous factors that influence the type of security assessment
that can be made about threshold cryptographic schemes. Clearly, threshold cryptography
has potential to improve the security of the implementation of cryptographic primitives,
provided it is carefully used. There is a clear interest in enabling threshold schemes for
already standardized cryptographic primitives. The standardization effort may also constitute
an opportunity to consider the case for standardizing new primitives. There are long-standing
research results, and the research community is still active in the area.

We intend this report to initiate a discussion on the standardization of threshold cryp-
tographic schemes. We can envision some of the challenges ahead. The most immediate
seems to be the development of criteria for and selection of proposals. This document did
not put forth such criteria, but motivated the need for one and developed some basis for it.

Once criteria are in place, the selection and standardization of concrete schemes should
include an integration with validation methodologies. How then to express security asser-
tions that may fit within FIPS 140-2 or fit well as a complement thereof? What security
and implementation profiles should be devised? When tackling these challenges, positive
synergies may result from engaging with and incorporating feedback from the research
community and other stakeholders.
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