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ABSTRACT 

The purpose of rigid-body registration is to find a rotation and translation which transforms one coordinate 

frame to another. The procedure requires measurement of common points (fiducials) in both frames. Noise 

and possible bias in the acquired locations of fiducials adversely affect the quality of registration. While the 

influence of noise can be mitigated by taking repeated measurements, bias remains in the mean locations of 

fiducials and distorts the rigid-body condition. The condition may be also violated when fiducials are attached 

to a non-rigid object. We present a numerical method which calculates corrections in the locations of measured 

fiducials and leads to the restoration of the rigid-body condition. Once the registration transformation is 

calculated using the corrected fiducials, it can be used to transform other points which are measured only in 

one coordinate frame (target points). We estimate the corrections in these points by linearly interpolating the 

corrections from neighboring fiducials.  After interpolated corrections are added to the target locations, there 

was a decrease in the target registration error. The proposed method was evaluated using three different 

datasets acquired with three different instruments. 

Keywords:   

Bias, fiducials, noise, point-based rigid-body registration, target registration error.
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1    INTRODUCTION 

 

Registration is needed when points measured in one coordinate frame are needed in another frame.  In order to 

use the data, a transformation between both frames has to be determined. We call the first coordinate frame, 

from which points are transformed, the working frame, and the second frame, to which points are transformed, 

the destination frame. Rigid-body registration is the most frequently used method to determine the 

transformation, and it assumes that the distance between any two points (𝑿𝑖, 𝑿𝑗) in the working frame is equal 

to the distance between the same two points (𝒀𝑖, 𝒀𝑗) in the destination frame. Due to noise and possible bias 

in the acquired data, the rigid-body condition  

‖𝑿𝑖,𝑛 − 𝑿𝑗,𝑛‖ = ‖𝒀𝑖,𝑛 − 𝒀𝑗,𝑛‖       (1) 

is not satisfied in n-th noisy measurement. Even when the measurement is free of noise and bias, departure 

from the rigid-body condition may occur when fiducials used for registration are attached to an object which 

is not perfectly rigid. An example is when a pose of an object, such as an airplane wing, is measured from a 

set of markers attached to its surface. The wing may flex due to gravity, and the distances between markers 

will differ from their nominal values whenever the wing is moved. This will affect the pose of the object as 

the assumption of rigid-body is no longer valid. In this report, we will demonstrate experimental examples of 

restoring rigid-body condition only for the first scenario, where the inequality in Eq. (1) is caused by the 

measuring instrument (i.e., its noise and bias); however, the method introduced in this paper is also applicable 

to the second scenario with semi-rigid objects.  

The distance preserving transformation between two frames consists of rotation R and translation τ and can 

be obtained by minimizing the following error function 

𝐸(𝑹𝑛, 𝝉𝑛) =
1

𝐽
∑ ‖𝑹𝑛𝑿𝑗,𝑛 + 𝝉𝑛 − 𝒀𝑗,𝑛‖

2𝐽
𝑗=1 .      (2) 
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2 

 

Two sets of J corresponding points used for registration, {𝑿}𝐽 in the working and {𝒀}𝐽 in the destination frame, 

are called fiducials.  A larger residual value of the error function E is an indicator of more severe violation of 

the rigid-body condition caused by noise and possible bias in the measured locations of the fiducials. The 

influence of noise can be substantially reduced by taking many repeated measurements of {𝑿}𝐽,𝑛 , {𝒀}𝐽,𝑛 (n = 

1, ..., N) and using the mean values in Eq. (2)  

�̅�𝑗 =  
1

𝑁
∑ 𝑿𝑗,𝑛 , �̅�𝑗 =

1

𝑁
∑ 𝒀𝑗,𝑛

𝑁
𝑛=1

𝑁
𝑛=1  .      (3) 

For a measurement with no bias, such a noise filtering technique should bring the residual value of the error 

function E close to zero and should yield a more accurate transformation {𝑹, 𝝉} (this statement also applies if 

there is a non-zero constant bias in either of the datasets). However, this technique does not remove position 

dependent bias from the measured locations of fiducials and cannot decrease E below Emin defined as  

𝐸𝑚𝑖𝑛({�̅�}𝐽, {�̅�}𝐽) =
1

𝐽
∑ 𝐿𝑚𝑎𝑥,𝑗

2𝐽
𝑗=1        (4) 

where 

𝐿𝑚𝑎𝑥,𝑗 =
1

2
𝑚𝑎𝑥{|𝐿𝑖,𝑗|;  𝑖 = 1, … , 𝐽}       (5) 

and  

𝐿𝑖,𝑗 = ‖�̅�𝑖 − �̅�𝑗‖ − ‖�̅�𝑖 − �̅�𝑗‖ ,       (6) 
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Figure 1. Schematic explanation of equations (4 – 6): a) the smallest possible value of the sum Δ𝑖

2 + Δ𝑗
2 is when Δ𝑖 = Δ𝑗 = 𝐿𝑖𝑗 2⁄  

and the two pair of fiducials are collinear; b) for an arbitrary orientation of fiducials, the sum must be greater than 1 2⁄ 𝐿𝑖𝑗
2  and it 

has to be true for any pair of fiducials (i,j). 

 

as explained schematically in Figure 1.  

Once the registration is completed and the transformation {𝑹, 𝝉} determined, it can be used to transform other 

points {𝑻𝑋} from the working to the destination frame. These points, called targets points, are not used for 

registration and, in principle, they are measured only in the working frame. Sometimes, in practical 

applications, only a subset of common points measured in both frames is used for registration and then, the 

remaining common points can be used to evaluate the quality of the registration. In research studies like this 

one, a separate set of corresponding targets {𝑻𝑌} is measured in the destination frame so that the quality of 

registration can be quantified. 

In [1], a method was proposed to evaluate bias in the locations of fiducials. The method relies on evaluating 

the mean vector (averaged over many noisy measurements) of the Fiducial Registration Error at each fiducial, 

𝑭𝑹𝑬(𝑿𝑗). The method enables one to draw some interesting general conclusions. For example, for the case of 

homogeneous bias 𝜺 (identical at each fiducial location), mean 〈𝑭𝑹𝑬(𝑿𝑗)〉 = 𝟎 for all j but the mean Target 
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Registration Error 〈𝑻𝑹𝑬(𝑻𝑋)〉 = −𝜺, see Eq. (27) and Eq. (31) in [1].  For the more general case of non-

homogeneous bias 𝜺𝑗 (different at each fiducial 𝑿𝑗)  the method yields a set of dependent linear equations which 

cannot be solved, see Eq. (23)  in [1]. In order to overcome this problem, a set of J targets without bias {𝑻𝑋}𝐽 

is required, compare Eq. (12) and Eq. (28) in [1]. However, this requirement may not be realistic because if the 

measurements from an instrument contain a bias, the bias will exist in both the measurements of the fiducials 

and of the targets. Since the method in [1] assumes that the target measurements do not contain any bias, it 

does not provide an estimate of the bias of the target location. In addition, the uncertainty of the target measured 

in the working frame 𝑻𝑋 is not considered and the method assumes that uncertainty in the transformed target 

𝑹𝑻𝑋 + 𝝉   comes only from the uncertainties of fiducials {𝑿}𝐽,  {𝒀}𝐽 propagated to the transformation {𝑹, 𝝉}. 

Similarly, the systematic error (defined as the mean difference between the transformed target and 

corresponding target in the destination frame 𝑻𝑌) is attributed only to the bias in the fiducials (i.e., not to the 

combined bias from the fiducials and target 𝑻𝑋).  

Even if noise is filtered out from the fiducials in the working and reference frames, the rigid-body condition 

can still be violated because of bias in either the working or destination frame. In this paper, we present a 

method which restores the rigid-body condition by applying corrections to the locations of fiducials in the 

working frame only. The aim of the proposed procedure is to restore the rigid-body condition and assure that 

fiducials in the working frame can be mapped exactly onto the corresponding fiducials in the destination frame. 

Although the bias may only be present in the destination frame, the method described in this paper works as if 

the bias was exclusively in the working frame and treats the mean locations of the fiducials in the destination 

frame as “truth”. The method compensates for such understood “bias” in the fiducials {𝑿}𝐽. Then, the resulting 

residual value of the error function E is reduced to zero (within numerical round-off error). Once correction 𝜺𝑗 

at each fiducial 𝑿𝑗  is evaluated, the correction at any target location 𝑻𝑋  is approximated by selecting four 

fiducials {𝑿𝑗1, 𝑿𝑗2, 𝑿𝑗3, 𝑿𝑗4}, which form the smallest tetrahedron containing 𝑻𝑋, and by linearly interpolating 
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the four corrections {𝜺𝑗1, 𝜺𝑗2, 𝜺𝑗3, 𝜺𝑗4}. This allows correction in the target location in the working frame and 

reduction of the target registration error TRE.  

The method is demonstrated on data acquired by three different instruments: 1) motion tracking, System A; 2) 

large scale metrology, System B; and 3) laser tracker, LT. The data acquired by System A are characterized by 

relatively small noise but large bias. The data collected with System B have large noise but small bias. The data 

obtained with LT are considered as noise and bias free for the purpose of this study, see [2] for details. The 

obtained results show substantial improvement in the registration quality for System A registered to LT and 

modest improvement for System B registered to LT as quantified by TRE.  

2    DESCRIPTION OF THE METHOD 

This section describes a method to determine the correction in the fiducial location and a method used to 

estimate the correction in the target location. To calculate the correction in the fiducial location, both sets of 

fiducials are used to determine correction 𝜺𝑗 in the working frame for each 𝑗 = 1, … , 𝐽. The correction of the 

fiducial locations is then used to estimate correction in the target location. The trilinear interpolation scheme 

applicable to an unorganized set of points is introduced and is used to estimate the correction in the target 

location as measured in the working frame.  

The method assumes that a sufficiently large number N of repeat measurements of noisy fiducials {𝑿}𝐽,𝑛,

{𝒀}𝐽,𝑛, and targets {𝑻𝑋}𝑛 can be acquired under fixed experimental conditions (n ≤ N) so that the resulting

mean locations {�̅�}𝐽, {�̅�}𝐽, and {�̅�𝑋} are affected by bias only. N may be deemed as sufficiently large if the

difference 𝐿𝑖,𝑗  in Eq. (6) does not change much with the increased number of repeats N, for example:  

|𝐿𝑖,𝑗(𝑁) − 𝐿𝑖,𝑗(𝑁/2)| 𝐿𝑖,𝑗(𝑁)⁄ < 0.01 where 𝐿𝑖,𝑗(𝑁) is calculated from the mean locations obtained from N

repeats. 
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2.1 Determination of corrections in fiducials 

 

In order to restore the rigid-body condition, locations of fiducials {�̅�}𝐽 are modified by unknown correction 

vectors {𝜺}𝐽 such that  

‖(�̅�𝑖 − 𝜺𝑖) − (�̅�𝑗 − 𝜺𝑗)‖
2

= ‖�̅�𝑖 − �̅�𝑗‖
2
,      (7) 

where 1 ≤ 𝑖 < 𝑗 ≤ 𝐽 . We assume that the rigid-body condition is only slightly violated in Eq. (1) and 

‖𝜺𝑖‖, ‖𝜺𝑗‖ ≪ ‖�̅�𝑖 − �̅�𝑗‖  in Eq. (7). Therefore, we use linear approximation, where the squared terms 

‖𝜺𝑖‖
2and ‖𝜺𝑗‖

2
 are ignored and Eq. (7) can be written as  

(�̅�𝑖 − �̅�𝑗) ⋅ (𝜺𝑖
′ − 𝜺𝑗

′) =
1

2
(‖�̅�𝑖 − �̅�𝑗‖

2
− ‖�̅�𝑖 − �̅�𝑗‖

2
) ,    (8) 

where ⋅ is the dot product and {𝜺′}𝐽 are approximate corrections satisfying the set of linear equations in Eq. (8). 

In matrix notation, equation (8) written as  

𝑨′𝜺′ = 𝒃′          (9) 

needs to be solved for the unknown column vector 𝜺′ of size [3𝐽, 1] 

𝜺′ = [𝜀𝑥,1
′ ,  𝜀𝑦,1

′ , 𝜀𝑧,1
′ , … 𝜀𝑥,𝐽

′ , 𝜀𝑦,𝐽
′ , 𝜀𝑧,𝐽

′ ]𝑇 .     (10) 

The known column vector 𝒃′ of size [𝑁𝑝, 1] is equal to 

𝒃′ = [𝑏1,2, … , 𝑏1,𝐽, 𝑏2,3, … , 𝑏2,𝐽, … , 𝑏𝐽−1,𝐽]
𝑇
      (11) 

where 𝑁𝑝 = 𝐽(𝐽 − 1) 2⁄  is the number of unique pairs (i, j) and 𝑏𝑖,𝑗 represents the right hand side of Eq. (8)  

𝑏𝑖,𝑗 =
1

2
(‖�̅�𝑖 − �̅�𝑗‖

2
− ‖�̅�𝑖 − �̅�𝑗‖

2
) .      (12) 

Finally, matrix 𝑨′ in Eq. (9) has size of [𝑁𝑝, 3𝐽] and consists mostly of zero elements except for six non-zero 

entries in each row as follows from Eq. (8). Linear equation Eq. (9) can be solved for 𝜺′ using Singular Value 

Decomposition (SVD), but the solution is not unique: if 𝜺𝑗
′ is a solution then 𝜺𝑗

′ + 𝒗 is also a solution where 𝒗 
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is an arbitrary 3D vector, the same for all j ≤ J. This step may be iterated once more to get a better estimate of 

the correction by substituting �̅�𝑖 − 𝜺𝑖
′ for �̅�𝑖 in Eq. (8) and solving the equation for the unknown 𝜺𝑖

′′  

[(�̅�𝑖 − 𝜺𝑖
′) − (�̅�𝑗 − 𝜺𝑗

′)] ⋅ (𝜺𝑖
′′ − 𝜺𝑗

′′) =
1

2
(‖�̅�𝑖 − �̅�𝑗‖

2
− ‖(�̅�𝑖 − 𝜺𝑖

′) − (�̅�𝑗 − 𝜺𝑗
′)‖

2
)  (13) 

or, in matrix form  

𝑨′′𝜺′′ = 𝒃′′          (14) 

 analogous to Eqs.(8-11). After solving Eq. (14) (again, the solution 𝜺′′ is not unique), the resulting estimate of 

the correction 𝜺𝑗 and the corrected location of fiducial �̃�𝑗 in the working frame are equal 

𝜺𝑗 = 𝜺𝑗
′ + 𝜺𝑗

′′ , �̃�𝑗 = �̅�𝑗 − 𝜺𝑗 .      (15) 

No further iterations are needed as the convergence is achieved in two steps except for the situation when all 

the points {�̅�}𝐽 in the working frame are located on a plane perpendicular to any one of the three axes of the 

Cartesian coordinate frame. For example, if the z component of each vector �̅�𝑗  is the same, then the z 

component of each correction vector 𝜺𝑗
′ is zero and the convergence is not achieved. 

Next, registration between the corrected fiducials {�̃�}
𝐽

 in the working frame and fiducials {�̅�}𝐽  in the 

destination frame can be performed. Then, the resulting residual value of the error function E should be 

practically reduced to zero and the corresponding transformation {𝑹, 𝝉} should map {�̃�}
𝐽
 exactly onto {�̅�}𝐽 

because the rigid-body condition  

‖�̃�𝑖 − �̃�𝑗‖ = ‖�̅�𝑖 − �̅�𝑗‖        (16) 

is now restored for all pairs of processed fiducials (i, j).  

As stated earlier, but which bears repetition, the restoration of rigid-body condition obtained by applying 

corrections {𝜺}𝐽  is performed in the working frame. This, however, does not imply that {�̅�}𝐽 measured in the 

destination frame constitute ground truth.  
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2.2 Estimation of correction in target location 

 

Correction in the target location 𝜺(�̅�𝑋) cannot be achieved in the same way as corrections in fiducials because 

in most practical applications, the target {�̅�𝑌} is not measured in the destination frame. Therefore, correction 

𝜺(�̅�𝑋) is estimated by linear interpolation of previously calculated corrections in four nearby fiducials. In 

general, the set of J fiducials {�̅�}𝐽  is not acquired in a regular grid. Therefore, popular trilinear interpolation 

schemes requiring measured points located on a strictly regular 3D grid are not applicable [3]. We use 

tetrahedral linear interpolation illustrated schematically in Figure 2 and described in [4]. This kind of 

interpolation method was used to interpolate between discrete points in colorspace [5].  

 

Figure 2. Tetrahedral linear interpolation. Unknown bias at target location 𝜺(�̅�𝑋) is linearly interpolated from the four biases 

calculated at four nearest fiducials 𝜺(�̃�𝑘), where 𝑘 ∈ {𝑗1,  𝑗2, 𝑗3, 𝑗4}. 

  

  

 �̃�𝑗1  

 �̃�𝑗2  

 �̃�𝑗3  

 �̃�𝑗4  

 �̅�𝑋  
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For a given target location �̅�𝑋 in the working space, the four vertices of the tetrahedron {�̃�𝑗1, �̃�𝑗2, �̃�𝑗3, �̃�𝑗4} 

containing �̅�𝑋 are selected in the following way. For each j ≤ J, distances 𝑑𝑗 = ‖�̅�𝑋 − �̃�𝑗‖ are calculated and 

sorted in ascending order where �̃�𝑗  is the corrected fiducial location compensated by the correction calculated 

using Eq. (15). The first three smallest distances {𝑑𝑗1, 𝑑𝑗2, 𝑑𝑗3} define three vertices {�̃�𝑗1, �̃�𝑗2, �̃�𝑗3} of the 

sought tetrahedron. Then, the fiducial �̃�𝑖4 corresponding to the fourth smallest distance 𝑑𝑖4 is checked as a 

possible candidate for the remaining vertex. The candidate is accepted if the resulting tetrahedron passes the 

test for containing target point �̅�𝑋 . The test is based on the observation that the sum of volumes of four 

tetrahedrons (where one of the vertices is the target point) must be equal to the volume of the tetrahedron 

formed by the four fiducials. Thus, the following condition has to be satisfied  

∑ 𝑤𝑘 = 14
𝑘=1           (17) 

where 𝑤𝑘 is the ratio of two tetrahedron volumes  

𝑤𝑘 = 𝑣𝑜𝑙 ({𝑿,̃ �̅�𝑿}
𝑘

) 𝑣𝑜𝑙({�̃�𝑗1, �̃�𝑗2, �̃�𝑗3, �̃�𝑖4})⁄     (18) 

and {�̃�, 𝑻𝑋}
𝑘

 denotes a set of four points {�̃�𝑗1, �̃�𝑗2, �̃�𝑗3, �̃�𝑖4} with k-th point substituted by �̅�𝑋 , k ≤ 4. For 

example, {�̃�, �̅�𝑋}
1

= {�̅�𝑋 , �̃�𝑗2, �̃�𝑗3, �̃�𝑖4}  and {�̃�, �̅�𝑋}
4

= {�̃�𝑗1, �̃�𝑗2, �̃�𝑗3, �̅�𝑋} . The volume of the tetrahedron 

formed by four points {𝑷1, 𝑷2, 𝑷3, 𝑷4}  is the absolute value of the scalar triple product   

𝑣𝑜𝑙({𝑷1, 𝑷2, 𝑷3, 𝑷4}) =
1

6
|(𝑷2 − 𝑷1) ⋅ [(𝑷3 − 𝑷1)×(𝑷4 − 𝑷1)]|.  (19) 

If the fiducial �̃�𝑖4  does not satisfy Eq. (17), i.e., ∑ 𝑤𝑘
4
𝑘=1 > 1, then the target point �̅�𝑋  is not inside the 

tetrahedron {�̃�𝑗1, �̃�𝑗2, �̃�𝑗3, �̃�𝑖4}  and the next candidate point �̃�𝑖5 is checked and the process continues until the 

first fiducial �̃�𝑖𝑚 satisfies Eq. (17) where  �̃�𝑖𝑚 corresponds to the distance 𝑑𝑖𝑚 on a sorted list of distances 

{𝑑𝑗1, 𝑑𝑗2, … , 𝑑𝑖𝑚, … } . Then, �̃�𝑗4 = �̃�𝑖𝑚 and the resulting tetrahedron {�̃�𝑗1, �̃�𝑗2, �̃�𝑗3, �̃�𝑗4} contains �̅�𝑋 and has 

the property that the following sum  

∑ ‖�̅�𝑋 − �̃�𝑘‖4
𝑘=1 , 𝑘 ∈ {𝑗1, 𝑗2, 𝑗3, 𝑗4}      (20) 
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is the smallest from all possible corrected fiducials {�̃�}
𝐽
. Once the tetrahedron with this property is identified 

for a given target point �̅�𝑋, the correction 𝜺(�̅�𝑋) can be estimated as the weighted mean of corrections 𝜺𝑘 

calculated using Eq. (15) for the k-th fiducial  

𝜺(�̅�𝑋) = ∑ 𝑤𝑘 𝜺𝑘
4
𝑘=1 ,  𝑘 ∈ {𝑗1, 𝑗2, 𝑗3, 𝑗4} ,     (21) 

with weights 𝑤𝑘 calculated using Eq. (18). Finally, the corrected target location �̃�𝑋 in the working frame can 

be determined as  

�̃�𝑋 = �̅�𝑋 − 𝜺(�̅�𝑋) .        (22) 

It is easy to show that tetrahedral linear interpolation reduces to a simple 1D linear interpolation when the target 

�̅�𝑋 is located on one of the tetrahedron edges and to a 2D-simplex (triangular) interpolation when �̅�𝑋 is on one 

of the tetrahedron faces. Correction 𝜺(�̅�𝑋) in Eq. (21) is a continuous function (C0 class) of target location; it 

is differentiable but has discontinuous partial derivatives (not C1 class).  

 

3   EXPERIMENT AND DATA PROCESSING 

Locations of 3D points in a work volume (approximately 3 m x 3 m x 1.8 m) were acquired by three 

instruments: 1) motion tracking, System A; 2) large scale metrology, System B; and 3) laser tracker, LT. 

Fiducials were measured on a semi-regular grid of 5 x 5 x 5 points; in addition, K = 16 target points scattered 

randomly in the work volume were also acquired. Measurement of each point (fiducial and target) were 

repeated N = 200 times for Systems A and B; no repeats were obtained with LT as the noise level for laser 

tracker was negligible compared to the noise of Systems A and B. Care was taken to ensure that all three 

instruments measured the same physical point in the work volume, see [2] for details.   

Repeated measurements taken with Systems A or B were used to calculate the corresponding mean locations 

of fiducials {�̅�}𝐽  and targets {�̅�𝑋}𝐾  in the working frame. Two registrations were investigated: coordinate 

frame A to LT and B to LT. Accordingly, the need for corrections in A or B was revealed by building histograms 
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of differences 𝐿𝑖,𝑗 calculated using Eq. (6) for all possible pairs 1 ≤ 𝑖 < 𝑗 ≤ 𝐽. In addition, for each mean k-th 

target location �̅�𝑋,𝑘 the degree of departure from the rigid-body condition was quantified by calculating the 

distance 𝑔(𝑘, 𝑗)  

𝑔(𝑘, 𝑗) = ‖�̅�𝑋,𝑘 − �̅�𝑗‖ −  ‖�̅�𝑌,𝑘 − �̅�𝑗‖     (23) 

for all J fiducials {�̅�}𝐽, {�̅�}𝐽 (�̅�𝑌,𝑘 is k-th target measured in the destination frame).  

For each j-th fiducial �̅�𝑗, corresponding corrections 𝜺𝑗 = 𝜺𝑗
′ + 𝜺𝑗

′′ were calculated by solving Eq. (9) and Eq. 

(14). To track the progress of the two iterations of the procedure to calculate the correction, histograms of 

differences 𝐿𝑖,𝑗 were calculated using Eq. (6) after each iteration, i.e., �̅�𝑖 , �̅�𝑗 were replaced with �̅�𝑖 − 𝜺𝑖
′, �̅�𝑗 −

𝜺𝑗
′ after the first iteration and with �̅�𝑖 − 𝜺𝑖

′ − 𝜺𝑖
′′, �̅�𝑗 − 𝜺𝑗

′ − 𝜺𝑗
′′ after the second iteration. Once all J corrections 

{𝜺}𝐽 at the fiducial locations were calculated, registration was performed based on {�̅�}𝐽 in the destination frame 

and the corrected locations of fiducials {�̃�}
𝐽
 in the working frame. Since the rigid-body condition has been 

restored, the actual number 𝐽∗ of corrected fiducials used for registration (3 ≤ 𝐽∗ ≤ 𝐽) and their placement in 

the work volume is irrelevant as all subsets of the corrected fiducials are supposed to yield the same registration 

transformation {𝑹, 𝝉} (with the obvious restriction that not all selected registration points are collinear). Similar 

to 𝐿𝑖,𝑗, the distances 𝑔(𝑘, 𝑗) are calculated using Eq. (23) for the original, uncorrected locations of the fiducials 

�̅�𝑗  and �̅�𝑋,𝑘  as well for the corrected locations �̃�𝑗  and �̃�𝑋,𝑘 , as given by Eq. (15) and Eq. (22). Once the 

registration transformation {𝑹, 𝝉} is found, it can be applied to calculate the k-th target registration error TRE(k)  

𝑇𝑅𝐸(𝑘) = ‖𝑹�̅�𝑋,𝑘 + 𝝉 − 𝑻𝑌,𝑘‖      (24) 

as well as the root mean square 𝑅𝑀𝑆𝑇 of TRE(k)  

𝑅𝑀𝑆𝑇 =  √
1

𝐾
∑ 𝑇𝑅𝐸2(𝑘)𝐾

𝑘=1  .       (25) 

The TRE(k) and resulting 𝑅𝑀𝑆𝑇 were calculated using three different post-processing scenarios. In scenario 1, 

the original mean locations of fiducials {�̅�}𝐽 and targets {�̅�𝑋}𝐾 in the working frame were used. A subset of 
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four fiducials was selected from all possible combinations of 𝐽∗ = 4 out of J = 125 fiducials which yielded the 

smallest 𝑅𝑀𝑆𝑇, as described in [2]. Once the registration to the destination frame was performed, the resulting 

transformation was used to transform the uncorrected mean locations of targets {�̅�𝑋}𝐾 from the working to the 

destination frame and TRE(k) and 𝑅𝑀𝑆𝑇 were calculated. In scenario 2, the same four fiducials as in scenario 

1 were chosen from the fiducials whose locations were corrected {�̃�}
𝐽
. Thus, the resulting transformation {𝑹, 𝝉} 

was slightly different than in 1) and again, it was applied to the uncorrected targets {�̅�𝑋}𝐾 and TRE(k) and 

𝑅𝑀𝑆𝑇 were calculated. Finally, in scenario 3, the same transformation {𝑹, 𝝉} as in scenario 2 was applied to 

the targets {�̃�𝑋}
𝐾

 (modified by the tetragonal interpolated corrections) and TRE(k) and 𝑅𝑀𝑆𝑇 were calculated.  

 

4   RESULTS 

 

Figure 3 shows histograms of 𝐿𝑖,𝑗 calculated using Eq. (6) for the mean, uncorrected locations of fiducials �̅�𝑗 

acquired with System A (Figure 3a), corrected locations after the first iteration of the procedure by 𝜺𝑗
′ (Figure 

3b), and after the second iteration corrected by the total bias 𝜺𝑗
′ + 𝜺𝑗

′′ (Figure 3c), as given by Eq. (15). For J = 

125 fiducials, there are 𝐽(𝐽 − 1) 2⁄ = 7,750 unique pairs of fiducials. Figure 4 contains similar histograms 

calculated for data acquired with System B.  
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Figure 3. Histograms of 𝐿𝑖,𝑗 calculated from data acquired by System A and LT: a) original, uncorrected locations of fiducials �̅�𝑗; 

b) corrected location of fiducials �̅�𝑗 − 𝜺𝑗
′  after the first iteration of the procedure; c) final, corrected locations of fiducials �̃�𝑗 given 

by Eq. (15) after the second iteration of the procedure. 

 

 

Figure 4. Histograms of 𝐿𝑖,𝑗 calculated from data acquired by System B and LT: a) original, uncorrected locations of fiducials �̅�𝑗; 

b) corrected location of fiducials �̅�𝑗 − 𝜺𝑗
′ after the first iteration of the procedure; c) final, corrected locations of fiducials �̃�𝑗 given 

by Eq. (15) after the second iteration of the procedure. 

 

Figure 5 shows the three Cartesian components of the correction vector 𝜺𝑗 calculated at mean fiducials �̅�𝑗 for 

data acquired with System A and LT. Figure 6 shows vector 𝜺𝑗 calculated at mean fiducials �̅�𝑗 for data acquired 

with System B and LT.   
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Figure 5. Components of the correction vectors 𝜺𝑗 calculated at mean locations of fiducials �̅�𝑗 for data acquired with System A: a) 

x component of correction 𝜺𝑗; b) y component; c) z component.  
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Figure 6. Components of the correction vectors 𝜺𝑗 calculated at mean locations of fiducials �̅�𝑗 for data acquired with System B: a) 

x component of correction 𝜺𝑗; b) y component; c) z component. 

 

Figure 7 shows the magnitudes of the correction vector ‖𝜺𝑗‖ calculated for data acquired with System A and 

displayed on a 3D graph. Figure 8 shows similar results for data acquired with System B. For easier comparison, 

both 3D graphs in Figure 7 and Figure 8 are displayed in the LT coordinate system (destination frame).  
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Figure 7. Magnitude of the correction vectors ‖𝜺𝑗‖ calculated for data acquired with System A. The radius of the j-th sphere is 

proportional to ‖𝜺𝑗‖, and the center of the sphere is located at �̅�𝑗 transformed to the destination frame LT.  
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Figure 8. Magnitude of the correction vectors ‖𝜺𝑗‖ calculated for data acquired with System B. The radius of the j-th sphere is 

proportional to ‖𝜺𝑗‖, and the center of the sphere is located at �̅�𝑗 transformed to the destination frame LT.  

 

Figure 9 shows the difference between the distances of the k-th target and the j-th fiducial in the working and 

the destination frame, as calculated using Eq. (23) for data acquired with System A and LT. Plotted are the 
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mean difference 〈𝑔(𝑘)〉 averaged over all J fiducials as well as the minimum and maximum difference. The 

plot in Figure 9a is based on the original, uncorrected locations of fiducials and target and Figure 9b is based 

on the corrected locations of fiducials and target. Figure 10 shows the similar results for data acquired with 

System B and LT. 

 

Figure 9. The difference g for the k-th target for System A. Square markers correspond to the mean value calculated over all J 

fiducials and error bars indicate the minimum and the maximum value of difference g. a) original, uncorrected locations of fiducials 

and target; b) corrected locations of fiducials and target. 

 

 

Figure 10. The difference g for the k-th target for System B. Square markers correspond to the mean value calculated over all J 

fiducials and error bars indicate the minimum and the maximum value of difference g. a) original, uncorrected locations of fiducials 

and target; b) corrected locations of fiducials and target. 
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Target registration errors TRE(k) for the three post-processing scenarios 1, 2, and 3 are plotted in Figure 11 and 

Figure 12 for data acquired with Systems A and B, respectively. Finally, Figure 13 shows the corresponding 

𝑅𝑀𝑆𝑇 for the three scenarios for Systems A and B.  

 

Figure 11. Target registration errors TRE(k) for data acquired with System A calculated for three post-processing scenarios: 1) 

uncorrected fiducial and target locations; 2) corrected fiducial location only; 3) corrected fiducial and target locations.  

 

Figure 12. Target registration errors TRE(k) for data acquired with System B calculated for three post-processing scenarios: 1) 

uncorrected fiducial and target locations; 2) corrected fiducial locations only; 3) corrected fiducial and target locations. 
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Figure 13. RMST calculated for the three different post-processing scenarios 1 to 3. a) data acquired with System A; b) data 

acquired with System B. 

 

 

5   DISCUSSION AND FINDINGS 

The histograms of differences L in Figure 3 and Figure 4 show that two iterations of the procedure were 

sufficient to restore the rigid-body condition for the fiducials in the working frame. The mean of L as well as 

its spread reduced to almost zero (the range of L values displayed in Figure 3c and Figure 4c confirms the 

numerical convergence of the procedure; physical measurements at the level of 10-8 mm  are not achievable by 

System A, B and LT). Figure 5 and Figure 7 reveal some regular pattern in the spatial distribution of corrections 

for System A. In particular, the z-component in Figure 5c shows noticeable and similar periodicity for all layers. 

Note that in Figure 5 and Figure 6, every 25 fiducials constitute a horizontal layer of the 5 x 5 x 5 grid of 
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fiducials.  In Figure 7, the magnitude of the correction increases with the distance �̅�𝑗 to the center of the work 

volume. For the data acquired with System B, the regularity of the observed pattern is weaker and the 

corrections seem to differ for different layers indicating a more complex bias function.  

Plots of differences g in Figure 9 and Figure 10 document how the rigid-body condition is satisfied when both 

fiducials and target locations are corrected. A large value of 𝑔(𝑘, 𝑗) calculated using Eq. (23) indicates that the 

rigid-body condition is violated for the pair of k-th target and j-th fiducial. Graphs in Figure 9a and Figure 10a 

are based on the original, uncorrected locations of fiducials and targets, and graphs in Figure 9b and Figure 10b 

are obtained for the corrected fiducial locations and for target locations modified by the estimated corrections. 

It is clear that the corrections lead to improvement: rigid-body condition is less violated as is evident from the 

mean value 〈𝑔(𝑘)〉 which is closer to zero (compare locations of square markers in Figure 9a, Figure 10a with 

Figure 9b, Figure 10b, respectively) as well from the reduced difference between the maximum and the 

minimum value of 𝑔(𝑘, 𝑗) over all fiducials j ≤ J. We note that neither the differences L shown in Figure 3 and 

Figure 4 nor the differences g in Figure 9 and Figure 10 require prior calculation of registration transformation 

{𝑹, 𝝉}. However, knowledge of mean targets locations {�̅�}𝐾 in the destination frame is needed to calculate g.  

Since the corrections in the fiducial and target locations lead to better compliance with the rigid-body condition, 

it is no surprise that the registration transformation {𝑹, 𝝉} based on corrected fiducials and applied to the 

corrected target in the working frame (via tetrahedral interpolation) yields smaller target error TRE(k). 

Substantial reduction in TRE(k) occurs for all K = 16 targets for data acquired with System A, as shown in 

Figure 11, compare scenarios 1 and 3. For some targets (for example: k = 7), the reduced TRE is almost ten 

times smaller. On average, the corresponding 𝑅𝑀𝑆𝑇 for all K targets is reduced by a factor of about four, 

compare scenarios 1 and 3 in Figure 13a. It is crucial to recognize that the corrections in fiducials only without 

corrections in target location lead to little or no improvement of RMST, see scenario 2 in Figure 11 and Figure 

13a. For data acquired with System B, the overall improvement is smaller, compare scenarios 1 and 3 in Figure 
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13b; 𝑅𝑀𝑆𝑇 is reduced by about 30 % as compared to about 75 % for System A. In fact, for some targets, the 

error TRE(k) is larger after the correction is applied when compared with the error for the original, uncorrected 

fiducials and target, see for example: k = 10 and 9 for scenarios 1 and 3 in Figure 12. For data acquired with 

System B, correction in fiducials only without correction in target location lead to worse results, see scenario 

2 Figure 12 and Figure 13b.  

Based on the results in Figure 11 - Figure 13, two important questions are raised: 1) why is the relative 

improvement for data acquired with System B smaller than for data acquired with System A when the 

expectation is that the performance would be similar since the same procedure was used; and 2) what can be 

done to improve the outcome of the method introduced in this paper? To answer the first question, one must 

explore the differences between data sets acquired with System A and B. The first most noticeable difference 

is the degree of compliance with the rigid-body condition: data A violate this condition much more than data 

B (compare Figure 3a with Figure 4a and Figure 9a with Figure 10a). Thus, one may conclude that, 

paradoxically, the method works better for worse data, i.e., data which require larger correction. However, 

since the improvement is based on the ratio of corrected to uncorrected 𝑅𝑀𝑆𝑇 and not on a comparison of 

absolute values, this reasoning does not hold. However, we mentioned earlier another difference between data 

A and B: data from System A has a higher degree of regularity than data from System B. It appears that the 

dependence of correction on the position, i.e., the function 𝜺(𝑿), for System B may be more complicated and 

have larger high frequency components than the function 𝜺(𝑿) for System A. While evaluation of corrections 

𝜺𝑗 at discretely sampled fiducials 𝑿𝑗 does not depend on the smoothness of the function 𝜺(𝑿), the performance 

of the tetrahedral interpolation (or any interpolating scheme) at target 𝑻𝑥 depends on the sampling density of 

fiducials {𝑿}𝐽 in the working volume and the smoothness of the function 𝜺(𝑿). This observation suggests an 

answer to the second question. We expect that for data acquired with System B the method could yield equally 

good results as obtained for data A if a larger number J of fiducials were measured in the working and reference 
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frames, to account for the high frequency components in the function 𝜺(𝑿). Alternatively, instead of using 

linear interpolation, a non-linear interpolation (for example: tricubic interpolation [6]) may be better, but these 

approaches would also require a more dense sampling of fiducials.  

It needs to be restated that the restoration of the rigid-body condition can be achieved in various ways, and the 

set of corrections {𝜺}𝐽 evaluated at fiducials locations {�̅�}𝐽 in the working frame is not unique. However, we 

want to mention one property of the corrections {𝜺}𝐽 which makes them well defined: namely, the sum of their 

squares ∑ 𝜺𝑗
2𝐽

𝑗=1   is the smallest from all possible corrections which can restore the rigid-body condition in Eq. 

(7) (for a given set of fiducials {�̅�}𝐽 and {�̅�}𝐽). We do not have analytical proof for this statement but numerical 

results strongly support this conjecture. We calculated the registration transformation {𝑹0, 𝝉0} between the 

original fiducials {�̅�}𝐽 and the fiducials {�̃�}
𝐽
 corrected by Eq. (15). The resulting transformation was close 

(within numerical round-off error) to the identity transformation, i.e., 𝝉0 ≈ 𝟎 and 𝑹0 ≈ 𝑰3×3. Since the point-

based rigid-body registration minimizes the least squared distance between both sets of fiducials, this means 

that ∑ 𝜺𝑗
2𝐽

𝑗=1  is the smallest.  

Finally, we need to caution against a possible improper implementation of the procedure introduced in this 

paper. At the beginning of section II, we stated that the noise has to be filtered out from the locations of the 

fiducials in both the working and destination frames and from targets in the working frame. The method 

discussed here is based on the mean locations of fiducials and targets. Modern instruments allow users to 

acquire repeated measurements quickly so the requirement for many repeated measurements should not be a 

severe limitation. However, due to time or other constraints, one may attempt to use a single, instantaneous 

measurement of fiducials and target positions instead of the mean of repeated values. This may negate the 

method which is based on the interpolation of corrections (biases) from four nearby fiducials since any 

interpolation scheme must be based on time independent, noise free locations of fiducials and targets. Applying 
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our method to instantaneous locations of fiducials instead of recommended average locations may be 

considered only in experimental conditions where noise is few times smaller than observed bias.  

 

6   FINAL REMARKS 

We introduced a new method to improve point-based, rigid-body registration by restoring the rigid-body 

condition distorted by bias in measurement or by using fiducials attached to a non-rigid object. Improved 

registration can be achieved by correcting the locations of fiducials in the working frame and then correcting 

the target locations by the linearly interpolated corrections from nearby fiducials. The method has been shown 

to reduce the target registration error in the experimentally obtained datasets. The degree of reduction depends 

on two factors: the smoothness of the position dependent correction 𝜺(𝑿)  and the number of measured 

fiducials. A smaller number of fiducials is sufficient for correction that slowly varies within the work volume; 

a larger number is required when the correction is a more complicated, sharply varying function 𝜺(𝑿) within 

the work volume.  
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