
Date updated: February 23, 2023

Withdrawn NIST Technical Series Publication

Warning Notice

The attached publication has been withdrawn (archived), and is provided solely for historical purposes.
It may have been superseded by another publication (indicated below).

Withdrawn Publication

Series/Number NISTIR 8165
Title Impact of Code Complexity On Software Analysis
Publication Date(s) 02/08/2017
Withdrawal Date 02/23/2023
Withdrawal Note Superseded by updated version

Superseding Publication(s) (if applicable)

The attached publication has been superseded by the following publication(s):

Series/Number NIST IR 8165-upd1
Title Impact of Code Complexity On Software Analysis
Author(s) Charles D. De Oliveira, Elizabeth Fong, Paul E. Black
Publication Date(s) 02/23/2023
URL/DOI https://doi.org/10.6028/NIST.IR.8165-upd1

Additional Information (if applicable)

Contact
Latest revision of the
attached publication

Related Information
Withdrawal
Announcement Link

NISTIR 8165

Impact of Code Complexity On

Software Analysis

Charles D. De Oliveira

Elizabeth Fong

Paul E. Black

This publication is available free of charge from:

https://doi.org/10.6028/NIST.IR.8165

NISTIR 8165

Impact of Code Complexity On

Software Analysis

Charles D. De Oliveira

Elizabeth Fong

Paul E. Black
Software and Systems Division

Information Technology Laboratory

This publication is available free of charge from:

https://doi.org/10.6028/NIST.IR.8165

February 2017

National Institute of Standards and Technology

Kent Rochford, Acting NIST Director and Under Secretary of Commerce for Standards and Technology

Abstract

The Software Assurance Metrics and Tool Evaluation (SAMATE) team studied thousands

of warnings from static analyzers. Tools have difficulty distinguishing between the absence

of a weakness and the presence of a weakness that is buried in otherwise-irrelevant code

elements. This paper presents classes of these code elements, which we call “code

complexities.”

They have been present in software assurance as part of test cases generation strategy when

evaluating static analyzers. Benefits of using code complexity include the development of

coding guidelines, boosting diversification of test cases.

Keywords: code complexity; test cases; static source code scanner; vulnerability;

software assurance.

DISCLAIMER

Certain commercial entities, equipment, or materials may be identified in this document in

order to describe an experimental procedure or concept adequately. Such identification is

not intended to imply recommendation or endorsement by the National Institute of

Standards and Technology, nor is it intended to imply that the entities, materials, or

equipment are necessarily the best available for the purpose.

i

T
h
is

 p
u

b
lic

a
tio

n
 is

 a
v
a
ila

b
le

 fre
e
 o

f c
h
a
rg

e
 fro

m
: h

ttp
s
://d

o
i.o

rg
/1

0
.6

0
2
8

/N
IS

T
.IR

.8
1
6
5

Table of Contents

1.Introduction ...1

1.1.Background ..1

1.2.Purpose Of Code Complexity ..1

1.3.Using Code Complexity To Characterize Vulnerabilities..2

1.4.Using Code Complexity to Generate Test Cases ...2

2.Code Complexity Factors ...2

2.1.Classes Of Code Complexities ...3

2.2.Other Complementary Code Complexities ..7

3.Code Complexities Applied in Academia and Industry ..9

3.1.Juliet ...9

3.2.Taxonomy For Buffer Overflows ...10

3.3.Stonesoup ...10

3.4.PHP Test Suite ...11

3.5.ITC Benchmarks ..11

4.Conclusion ...12

5.References ..12

ii

T
h
is

 p
u

b
lic

a
tio

n
 is

 a
v
a
ila

b
le

 fre
e
 o

f c
h
a
rg

e
 fro

m
: h

ttp
s
://d

o
i.o

rg
/1

0
.6

0
2
8

/N
IS

T
.IR

.8
1
6
5

1

T
h
is

 p
u

b
lic

a
tio

n
 is

 a
v
a
ila

b
le

 fre
e
 o

f c
h
a
rg

e
 fro

m
: h

ttp
s
://d

o
i.o

rg
/1

0
.6

0
2
8

/N
IS

T
.IR

.8
1
6
5

1. Introduction

How can one gain assurance that software is free from vulnerabilities? One step is to use

static and dynamic analysis tools. Many of the common weakness and bug classes, such as

buffer overflows, cross-site scripting and failures to validate input values, can be found by

such automated tools.

There are many types of static analysis tools today, both proprietary and open source. These

tools analyze software and detect vulnerabilities. Although a tool may be able to detect

vulnerabilities in many cases, a vulnerability may not be reported if it is surrounded by

extraneous elements. The reasons vary. In order to be responsive and powerful, many tools

employ sophisticated heuristics. These heuristics may be engineered to summarize or

ignore data in order to minimize storage or to limit the depth and breadth of analysis to

save time. Thus, these extraneous elements, which we call “code complexities,” may

confuse static code analyzers, making bugs harder to find. This paper presents classes of

code complexity.

1.1. Background

The Software Assurance Metrics and Tool Evaluation (SAMATE) project at the National

Institute of Standards and Technology (NIST) [8] team studied a broad class of software

assurance tools by performing a series of experiments, known as the Static Analysis Tool

Exposition (SATE) [12][9][10][11][4]. The five SATEs utilized test cases comprised of

millions of lines of code. Static analysis tool makers ran their tools on test cases and gave

us their outputs, covering a total of almost 4 million warnings. Although we did not have

the resources to analyze all warnings, we spent many person-years determining the

accuracy of thousands of warnings. By analyzing these warnings, we learned that elements

that we call “code complexities” make the detection of warnings more difficult for tools.

For the SATEs, we chose test cases in C/C++, Java, and PHP. Some cases involved

production software, e.g., Chrome and Wireshark. Other test cases had been generated:

thousands of synthetic programs, consisting of a page or two of code, e.g., Juliet [2]. We

knew the location of all of the vulnerabilities in the synthetic programs and some of the

production vulnerabilities from Common Vulnerabilities and Exposures (CVE) [7] reports.

Many of these test cases are publicly available in our repository, known as the Software

Assurance Reference Dataset (SARD) [14]. It hosts more than 200 000 test cases in

different programming languages.

1.2. Purpose of Code Complexity

In white-box assurance using static analysis tools, defect detection is limited by the

capabilities and intelligence of a given tool. The Heartbleed vulnerability (CVE-2014-

0160) and the GNU/libc DNS resolver vulnerability (CVE-2015-7547) revealed that static

analysis tools failed to find some bugs. To improve their capabilities and increase their use,

one needs a better understanding of how tools discover vulnerabilities.

2

T
h
is

 p
u

b
lic

a
tio

n
 is

 a
v
a
ila

b
le

 fre
e
 o

f c
h
a
rg

e
 fro

m
: h

ttp
s
://d

o
i.o

rg
/1

0
.6

0
2
8

/N
IS

T
.IR

.8
1
6
5

1.3. Using Code Complexity to Characterize Vulnerabilities

Black et. al. created The Bugs Framework (BF): A Structured Approach to express bugs

[1]. The approach seeks to better express software bugs enclosing in four main areas: cause,

attributes, consequences and sites. The attributes refer to well defined characteristics of a

specific bug, e.g. source code elements. The BF is intended to characterize general software

bugs classes. In particular, the buffer overflow class contains code complexities described

in this paper such as access type and magnitude.

1.4. Using Code Complexity to Generate Test Cases

Code complexities can be manually coded into test cases. However, the most beneficial

use of code complexities is in the design of a test case generator capable of creating a large

number of test cases. A test case generator needs to produce not only valid and vulnerable

code, but also various complexities. This could be very time-consuming for a human to

implement systematically. Using code complexity factors, each class of complexity can be

systematically constructed and the results can be methodically reviewed.

2. Code Complexity Factors

Code complexity is a feature of the programming language that, in theory, has no impact

on whether there is a vulnerability or not. They are combined and nested to create real

source code. The most commonly used complexities occur in expression, control or data

flow, loop structure, or memory access. Each code complexity can spawn many sub

categories; some of which are language specific (e.g., use of pointers in C and C++).

Categories of code complexities were explained by Wu and Boland [18].

1. char data;

2. data = 'C';

3. data = 'Z';

4. printLine(data);

1. char data;

2. if (1) {

3. data = 'C';

4. } else {

5. printLine(data);

6. }

7.

8. if (1) {

9. data = 'Z';

10. printLine(data);

11.}

Figure 1: Program fragments illustrating code complexities

To illustrate, consider the fragments of code in Figure 1. The code on the left side has a

problem in line 2: the character “C” is assigned to the variable data, but that value is never

used. It is overwritten by the assignment in line 3. Programmers should be warned about

such problems. At best, it is a little extra code to understand, document, and compile. In

the worst case, it may indicate a bug: that the value was supposed to be used (e.g., a new

call to printLine() after line 2), that the value at line 4 should be “C,” but the programmer

3

T
h
is

 p
u

b
lic

a
tio

n
 is

 a
v
a
ila

b
le

 fre
e
 o

f c
h
a
rg

e
 fro

m
: h

ttp
s
://d

o
i.o

rg
/1

0
.6

0
2
8

/N
IS

T
.IR

.8
1
6
5

did not notice that it was overwritten at line 3, or that some other variable should have been

set at line 2.

The fragment on the right hand side is functionally exactly the same, but it contains extra

code that makes it more difficult for a static analysis tool (or a human!) to recognize the

problem. As an extreme example, a very simplistic tool might ignore the control flow

caused by the if-else statements altogether, notice the use of data on line 5, and decide that

the value was (or, may have been) used.

Although this is a relatively simple case, other code complexities impose significant

burdens on analysis. For example, the definition and use of a variable may be in separate

files or the value may be transferred between several intermediate variables and structures

before being used (or not). In theory, what we term a code complexity does not impact our

reasoning regarding the presence or absence of a flaw. In both fragments, an analyst

(human or automated program) must note that data was given a value, which was

overwritten before it was ever used.

Note that code complexity differs from cyclomatic complexity, which is a measure of the

number of paths through the code [17]. As used in this paper, the term refers to pieces of

code that must be handled correctly to establish control and data flow which are frequently

encountered. However, once flows and values are determined, it should not affect the

detection of a flaw.

Code complexities can be minimal, such as the one in Figure 1. However, production code

involves many code complexities which are intricately interwoven. Each code complexity

can occur inside a loop or function call chains. Some complexities are specific to

programming languages, such as pointers in C and C++.

2.1. Classes of Code Complexities

We describe some classes of code complexity, using the C programming language. Some

code complexities in other programming languages may not be represented here. For

clarity, we will illustrate each class of code complexity with an example of a classic stack

buffer overflow, adapted from the baseline snippet below. In this example, the array buffer

can store up to 5 integer numbers. The C standard defines arrays as starting at index 0.

Thus, the greatest index of an array is n - 1, where n is the length of the array. However,

our example accesses position 5 of buffer, which has a greatest index of 4 (5 - 1), causing

an access outside its boundaries.

void buffer_overflow() {
 int buffer[] = {1,2,3,4,5}, ret;
 ret = buffer[5];
}

 Separate files: This code complexity is based on the premise that programs may

be composed of many files. In this example, the program uses File 1 and File 2.

4

T
h
is

 p
u

b
lic

a
tio

n
 is

 a
v
a
ila

b
le

 fre
e
 o

f c
h
a
rg

e
 fro

m
: h

ttp
s
://d

o
i.o

rg
/1

0
.6

0
2
8

/N
IS

T
.IR

.8
1
6
5

Data flow through different functions and scopes in several files requires some

tracking, similar to production code.

// File 1

int index() {
 return 5;
}

// File 2

void buffer_overflow() {
 int buffer[] = {1,2,3,4,5}, ret;
 ret = buffer[index()];
}

 Control flow and loop structure: These can be enumerated using the following

code: if, switch-case, goto, setjmp, longjmp, function pointer, function call, for, do-

while, and while. Our example was elaborated to add a basic if statement around

the flawed line.

void buffer_overflow() {
 int buffer[] = {1,2,3,4,5}, ret;
 if(0 == 0) {
 ret = buffer[5];
 }
}

 Duplicate variable or function name: This code complexity explores the same

identifier referring to different objects. For example, a global variable named buffer

may conflict with a local variable named buffer. In the example below buffer is

declared twice. The first time buffer is declared with global scope as an array of 5

integers. The second time buffer is declared, it has local scope and ends its life at

the closing curly brace following the semicolon. It might be confusing due to the

fact buffer is being overflowed right after the local buffer was declared.

int buffer[] = {1,2,3,4,5};
void buffer_overflow() {
 int ret;
 { int buffer[] = {1,2,3,4,5,6}; }
 ret = buffer[5];
}

 Container: The data may be wrapped in arrays, structs, or unions. Our example

shows buffer wrapped within a structure declaration (struct wrap).

struct wrap {
 int buffer[5];
};
void buffer_overflow() {
 struct wrap obj = {{1,2,3,4,5}};
 int ret;
 ret = obj.buffer[5];
}

5

T
h
is

 p
u

b
lic

a
tio

n
 is

 a
v
a
ila

b
le

 fre
e
 o

f c
h
a
rg

e
 fro

m
: h

ttp
s
://d

o
i.o

rg
/1

0
.6

0
2
8

/N
IS

T
.IR

.8
1
6
5

 Access by array or pointer: A value may be accessed through an array-like

construct, i.e., using square braces, or a pointer-like construct, i.e., using an asterisk.

This example uses a pointer arithmetic approach to trigger a buffer overflow. This

is because buffer + 5 indicates the fifth address of the array, and the asterisk is an

access to that address.

void buffer_overflow() {
 int buffer[] = {1,2,3,4,5}, ret;
 ret = *(buffer + 5);
}

 Read or write access: This code complexity explores whether access was simply

using the value or assigning the value. The buffer[5] statement assigns a new value

to the 5th element of buffer, which does not exist.

void buffer_overflow() {
 int buffer[] = {1,2,3,4,5};
 buffer[5] = 10;
}

 Magnitude: This term refers to how far outside the boundary the violation extends,

in other words, how far from the first and last indexes of the allocated memory

space. Our example below depicts an access far from regular off-by-one buffer

overflows. This is because buffer is being requested to access its 5000th element,

which is far from what it is able to store.

void buffer_overflow() {
 int buffer[] = {1,2,3,4,5}, ret;
 ret = buffer[5000];
}

 Alias (passed through other variables): Aliases are values that originate in one

place, but are copied or referenced through other variables. In our example, buffer

is aliased to ptr, which in turn has its 5th element accessed, still causing the exact

overflow as other examples presented.

void buffer_overflow() {
 int buffer[] = {1,2,3,4,5}, ret, *ptr;
 ptr = buffer;
 ret = ptr[5];
}

 Unreachable and dead code: This refers to a piece of code that logically can never

be run because it is not reachable. In the case below, the if statement will always

fail, since in C the value 0 is equivalent to false. Code in this state can be distracting

or confusing to reviewers (human or automated).

6

T
h
is

 p
u

b
lic

a
tio

n
 is

 a
v
a
ila

b
le

 fre
e
 o

f c
h
a
rg

e
 fro

m
: h

ttp
s
://d

o
i.o

rg
/1

0
.6

0
2
8

/N
IS

T
.IR

.8
1
6
5

void buffer_overflow() {
 int buffer[] = {1,2,3,4,5}, ret;
 if(0) {
 ret = buffer[5];
 }
}

 Unusual syntax: Test cases used to evaluate static analysis tools should exclude

compiler test suites. Nonetheless, it may be useful to have some cases to understand

how well unusual syntax is handled. Our example uses digraphs, trigraphs, and a

pointer to an array ((*)[]), all valid statements specified by the C standard.

Trigraphs and digraphs are features from earlier versions of the C language that

allowed programmers to represent ASCII characters using non-ASCII keyboards.

Our example presents two digraphs and two trigraphs. The first digraph, <:, is

equivalent to the left square brace, [, and the second, :>, to the right square brace,

]. The first trigraph, ??<, is equivalent to the left curly brace, {, and the second ,

??>, to the right curly brace, }. The prefixes, di- and tri-, mean the number of

characters each, 2 and 3, respectively. Lexical analyzers in C compilers consider

these as their equivalent tokens. Perhaps, compilers may require extra options for

trigraphs and digraphs to be properly evaluated.

void buffer_overflow() {
 int buffer<::> = ??<1,2,3,4,5??>, ret, (*ptr)[5];
 ptr = buffer;
 ret = ptr[5];
}

 Data type: This is one of the simplest complexities, establishing the type of the

main variable in the test case. The example below presents a variation of the

baseline simple code, now using float as data type instead of an integer (int) data

type.

void buffer_overflow() {
 float buffer[]={1.0,2.0,3.0,4.0,5.0}, ret;
 ret = buffer[5];
}

2.2. Other Complementary Code Complexities

The following are not code complexities as we have defined them. However, they are

useful attributes to consider when thinking about test cases.

 Fixed (unflawed) cases: These cases are corrected versions of flawed test cases,

used to identify false positive results. A trivial “analysis tool” might incorrectly flag

SQL statements as sites of SQL injection. If only flawed test cases are presented,

7

T
h
is

 p
u

b
lic

a
tio

n
 is

 a
v
a
ila

b
le

 fre
e
 o

f c
h
a
rg

e
 fro

m
: h

ttp
s
://d

o
i.o

rg
/1

0
.6

0
2
8

/N
IS

T
.IR

.8
1
6
5

then their lack of discrimination would go undetected. Because flaws can be fixed

in a number of ways, there may be several “fixed” cases for a given “flawed” case.

Our example below presents one of many possible ways to fix the overflow. Now

buffer is being accessed in its 4th element, which is expected.

void buffer_overflow() {
 int buffer[] = {1,2,3,4,5}, ret;
 ret = buffer[4];
}

 Undefined, unspecified, or implementation-dependent behavior: This behavior

refers to code that may yield divergent results depending on compilers and

platforms. Strictly speaking, “unspecified” may cause absolutely any behavior. Test

cases with such code are useful for checking a tool’s capability to detect and report

them. In our example, func() is defined as a function that does not receive

parameters and does not return a value. However, further down in the code func is

cast to func ptr, which is a pointer to a function that does not receive parameters

but returns an integer. The C standard allows such features, so that when it comes

to the line where func ptr() is called, the actual function being called is func(), and

its return value is used as index to access an element from buffer. But as defined

earlier, func() does not return anything, how can it return an integer? This question

has multiple answers; so does the value this function returns. The C standard does

not define behavior for such construction, letting it be implemented by

compilers/platforms. We ran some tests using Linux 3.16, running Debian 8 x86

64, using two different compilers, GCC-4.9.2 and Clang-4.0.0. On the one hand,

GCC uses a register to store a function’s return value, then sets it to zero before a

function call. So the call to func ptr() returned 0. On the other hand, Clang does not

share that strategy, thus the call to func ptr() returns a different value every time the

program runs.

void func(){}
int main() {
 int (*func_ptr)(), ret, buffer[] = {1,2,3,4};
 func_ptr = (int (*)())func;
 ret = buffer[func_ptr()];
 return 0;
}

 Minimal “fake” parsing: Some tools perform complete syntactic analysis,

parsing, or semantic analysis. It is easier to build tools that search (“grep”) for a

regular expression, such as an apparent call of the function strcpy() (string copy,

which is susceptible to buffer overflow). Such a search would flag strcpy() in a

comment. Examples with invalid code inform an evaluator of less-than-strict

analysis.

void buffer_overflow() {

8

T
h
is

 p
u

b
lic

a
tio

n
 is

 a
v
a
ila

b
le

 fre
e
 o

f c
h
a
rg

e
 fro

m
: h

ttp
s
://d

o
i.o

rg
/1

0
.6

0
2
8

/N
IS

T
.IR

.8
1
6
5

 char buffer[] = "hello";
 // strcpy(buffer, "world");
}

3. Code Complexities Applied in Academia and Industry

Section 2 depicted classes of code complexities by straightforward examples by a single

factor. When applied in academic and industrial applications, code complexities are

blended along weaknesses and bugs in order to create test cases for static analyzers. We

collected 5 such test case generations, 4 by the government or a university, and 1 by

researchers at Toyota InfoTechnology Center (ITC). We name each of these as a test suite.

Next subsections describe the test suites individually, and the methods for incorporating

code complexity. Thus, the examples below contain detailed information about

complexities identifiers, sometimes in file names or numeric codes. It is also important to

note that all test suites described in the following subsections contain both flawed and fixed

versions of test cases, except the one in Subsec. 3.3.

3.1. Juliet

The Center for Assured Software at the U.S. National Security Agency developed [2] the

Juliet test suite to evaluate static analysis tools. The test suite is a collection of 86 864

C/C++ and Java programs with well characterized weaknesses (i.e., flaws or defects) of

181 different kinds. Each flaw occurs in simple code and embedded in three dozen code

complexities, involving different control flow, data flow, and data types. The weakness

dictionary for Juliet is the Common Weaknesses Enumeration (CWE).

Code complexities and weaknesses are injected in each test case in a manner that it is

uncomplicated to interpret its file name. The weakness is represented with a CWE identifier

at the beginning of every file name. There will be at least one test case serving as baseline

per weakness type, free of code complexity (files ending with 01). Control flow

complexities, e.g. if ’s, switch’s, while’s, for’s, goto’s and functions change program flow

appear in tests with endings from 2 through 22. These are intermixed with global constants

and static variables. Data flow complexities, such as values being passed through other

variables multiple times or even through a function in different files are present in tests

from 31 through 84. Note that several code complexity variants are language-specific to

C++ and Java and were not described in this paper.

Following is an example of a Juliet test case file name: CWE121_Stack_Based_Buffer_

Overflow_fgets_05. It indicates a test case containing a stack-based buffer overflow

(CWE-121), surrounded by an if using a static variable within its Boolean expression

(ending with 05).

3.2. Taxonomy for Buffer Overflows

9

T
h
is

 p
u

b
lic

a
tio

n
 is

 a
v
a
ila

b
le

 fre
e
 o

f c
h
a
rg

e
 fro

m
: h

ttp
s
://d

o
i.o

rg
/1

0
.6

0
2
8

/N
IS

T
.IR

.8
1
6
5

Kratkiewicz and Lippmann designed [6] a taxonomy of C code complexities consisted of

twenty-two attributes, able to properly characterize a buffer access or overflow. Many

complexities described in Sec. 2 appear in this test suite, including read or write access,

data type and magnitude. They created four version of 291 test cases. First containing no

weakness: buffer access does not cause overflow; the other three are structurally identical

to the first except that they contain a buffer violation in different magnitudes: 1, 8 and 4096

bytes out-of-range, under or overflow. The four variations resulted in 1164 test cases.

Test cases have a twenty-two-digit numeric code describing complexities enclosing the

weakness. The following is an example: 0000000100000153000110. In this particular

case, it represents a write of a constant value to the upper boundary of a character buffer

allocated in the stack; the trigger point occurs in the same scope where its memory was

allocated; it was accessed directly through a primitive variable, and the site is wrapped by

a do-while loop and an if statement. We do not intend to explain every detail of the test

case since that is not the purpose of this paper.

3.3. STONESOUP

The Intelligence Advanced Research Projects Activity (IARPA) developed the Securely

Taking On Software Of Uncertain Provenance (STONESOUP) program [3], igniting

security research on software binaries from unknown provenance, or third-party software.

For the final phase of the program, they created a test suite consisting of C and Java test

cases. A test is an extension of an open source software (e.g., GNU/Gimp), spawning

variants by intermixing a code complexity class, an injection point, and a weakness type.

The code complexities were organized in four groups: taint source, data type, data flow

and control flow. Taint source indicates an input type, choosing one from: environment

variables, file contents, sockets, or shared memory. Data type indicates whether the main

variable that triggers the vulnerability is: simple (primitive), array, void pointer, heap

pointer, struct/union, or user defined types (e.g., typedef or class). Data flow indicates the

variable type used to transport input data to a trigger point, some of the options are aliases,

index aliases, constant addresses, variable number of arguments, buffer addresses, or Java

generics (templates). Control flow defines language constructions that change the flow of

a program: call back/recursive functions, infinite/long loops, inter class/procedures, try-

catch’s, function pointers, macros, goto’s, and jumps. The complexities map to unique

identifiers, later used to characterize test cases. All four groups are present in test cases,

differing on the chosen code elements.

Complexities identifiers are stamped in file names, along with information regarding

weakness and injection point. The following code name illustrates an instance of a

STONESOUP test case: C-C120D-GIMP-06-ST02-DT04-DF05-CF12-01. The tainted

source comes from a file (ST02). Data type is a heap pointer (DT04). Data flow is a

constant address (DF05), passed to another function (CF12), where a buffer copy results in

overflow. The first letter indicates a test case written in C, forked from a GNU/Gimp

(GIMP) source tree, containing a buffer copy without checking the size of input (CWE-

120). Other pieces of information from the example aforementioned are not relevant for

the purpose of the paper.

10

T
h
is

 p
u

b
lic

a
tio

n
 is

 a
v
a
ila

b
le

 fre
e
 o

f c
h
a
rg

e
 fro

m
: h

ttp
s
://d

o
i.o

rg
/1

0
.6

0
2
8

/N
IS

T
.IR

.8
1
6
5

3.4. PHP Test Suite

Stivalet and Delaitre [16] designed a test case generator and created 42 212 safe and unsafe

PHP programs. The test cases cover the Open Web Application Security Project (OWASP)

top 10 weaknesses [13], i.e. cross-site scripting, insecure direct object reference, injection,

URL redirects, security misconfiguration and sensitive data exposure. The design of code

complexities within a test case starts with input coming through a taint source; passed to a

sanitizing step, filtering received input; and ends with the construction of the output.

Basically these are small programs that receive input, process it then generate content based

on inputs.

Similarly, to other suites presented in this Section, complexities of PHP test cases are

present in file names. Following is a sample test case name extracted from the test suite:

CWE_601_fopen_no_sanitizing_header_file_name-concatenation_simple_quote. The

input comes from a file containing a malicious URL, read with the function fopen. No

sanitization is performed. The tainted source was concatenated through the header

function. Note that complexities explored in this test suite are language-specific and web-

oriented.

3.5. ITC Benchmarks

The Toyota InfoTechnology Center developed [15] a test suite for evaluating static analysis

tool, incorporating characteristics of automotive software. It contains approximately 30

000 lines of code, including 39 different weakness categories, mostly written in C. The test

suite explores in depth undefined behaviors such as bit shifts, function casting, memory

allocation on stack, and integer overflows. It is comprised of fifty different types of test

cases, each type in its own file. There are eight major defect types, including memory and

pointer issues, numerical defects, and race conditions. Each file contains many instances

of a targeted defect in various levels of complexity. Although file names only identify

weakness categories, the defects are well described in comments throughout the source

code.

Complexities appear in the test cases uniformly, including data type, alias, and undefined

behavior. Each test is enclosed in a function, receiving an identifier; exploring a

complexity. Further in the file, tests pack multiple complexities combined. Although not

clearly documented, ITC implements similar code complexities found in other test suites,

such as Juliet and STONESOUP.

4. Conclusion

Applying characteristics of code complexity in test suites can greatly improve the

evaluation of static analyzer products. Understanding code complexity can assist in the

development of coding guidelines for assuring that software is fully analyzable by static

analyzers.

11

T
h
is

 p
u

b
lic

a
tio

n
 is

 a
v
a
ila

b
le

 fre
e
 o

f c
h
a
rg

e
 fro

m
: h

ttp
s
://d

o
i.o

rg
/1

0
.6

0
2
8

/N
IS

T
.IR

.8
1
6
5

In this paper, we sketched many of the factors making programs less analyzable. Our five

SATEs showed that heuristics and other engineering constraints may prevent tools from

identifying “obvious” weaknesses. A tool may find a weakness in one context, but not

another context. Hence, test cases containing many occurrences of the same weakness type,

surrounded by many code complexities [5], broadens the working range of a static analyzer,

exploring more of its functionalities.

Some complexities were detailed in this paper, and some were referenced from earlier

publications. The majority of available test suites used C, C++, C#, Java, and PHP. Both

are attempts of creating small versions of programs as well as combining the realism of

production code to improve the mechanical analysis of tools, representing the needs of

organizations willing to make investments in tools.

Future research involves refining and incorporating this code complexity element in the

design and selection of test cases for the next static analysis tool exposition.

5. References

[1] I. Bojanova, P. E. Black, Y. Yesha, and Y. Wu. The Bugs Framework (BF): A

Structured Approach to Express Bugs. 2016 IEEE International Conference on Software

Quality, Reliability and Security, 2016. https://doi.org/10.1109/QRS.2016.29

[2] T. Boland and P. E. Black. The Juliet 1.1 C/C++ and Java Test Suite. IEEE Computer

society, Computer, pages 82–84, 2012.

http://doi.ieeecomputersociety.org/10.1109/MC.2012.345

[3] C. De Oliveira and F. Boland. Real World Software Assurance Test Suite:

STONESOUP. In Proceedings of software Technology Conference, STC ’15, October

2015.

[4] A. Delaitre and et al. Report on Static Analysis Tool Exposition (SATE) V. To be

published. Available at https://samate.nist.gov/SATE.html.

[5] A. Delaitre, B. Stivalent, E. Fong, and V. Okun. Evaluating Bug Finders, Test and

Measurement of Static Code Analyzers. In Proceedings of the 1st International Workshop

on Complex Faults and failures in Large Software Systems, COUFLESS’ 15, pages 14–

20. IEEE, May 2015.

[6] K. Kratkiewicz. Evaluating Static Analysis Tools for Detecting Buffer Overflows in C

Code. Master’s thesis, Harvard University, Cambridge, MA, USA, 2005.

[7] MITRE. Common Vulnerabilities and Exposures. https://cve.mitre.org/, 2016.

[8] NIST. Software Assurance Metrics and Tool Evaluation (SAMATE).

http://samate.nist.gov, 2016.

https://doi.org/10.1109/QRS.2016.29
http://doi.ieeecomputersociety.org/10.1109/MC.2012.345
http://doi.ieeecomputersociety.org/10.1109/MC.2012.345
https://samate.nist.gov/SATE.html
https://cve.mitre.org/

12

T
h
is

 p
u

b
lic

a
tio

n
 is

 a
v
a
ila

b
le

 fre
e
 o

f c
h
a
rg

e
 fro

m
: h

ttp
s
://d

o
i.o

rg
/1

0
.6

0
2
8

/N
IS

T
.IR

.8
1
6
5

[9] V. Okun, A. Delaitre, and P. Black. The Second Static Analysis Tool Exposition

(SATE). NIST Special Publication 500-287, 2010. Available at

https://samate.nist.gov/SATE2009.html.

[10] V. Okun, A. Delaitre, and P. Black. Report on the Third Static Analysis Tool

Exposition (SATE). NIST Special Publication 500-283, 2011. Available at

https://samate.nist.gov/SATE2010.html.

[11] V. Okun, A. Delaitre, and P. Black. Report on Static Analysis Tool Exposition

(SATE) IV. NIST Special Publication 500-297, 2013. Available at

https://samate.nist.gov/SATE4.html.

[12] V. Okun, R. Gaucher, and P. Black. Static Analysis Tool Exposition (SATE). NIST

Special Publication 500-279, 2009. Available at https://samate.nist.gov/SATE2008.html.

[13] OWASP. The ten most critical web application security risk.

https://www.owasp.org/index.php/Top 10 2013-Top 10, 2013.

[14] SAMATE. Software Assurance Reference Dataset. http://samate.nist.gov/SARD,

2016.

[15] S. Shiraishi, V. Mohan, and H. Marimuthu. Quantitative Evaluation of Static

Analysis Tools. In Proceedings of the 2014 IEEE International Symposium on Software

Reliability Engineering Workshops, ISSREW ’14, pages 96–99, Washington, DC, USA,

2014. https://doi.org/10.1109/ISSREW.2014.62

[16] B. Stivalet and E. Fong. Large Scale Generation of Complex and Faulty PHP Test

Cases. In Proceedings of the 2016 IEEE International Conference on Software Testing,

Verification and Validation (ICST), ICST ’16, pages 409–415. (IEEE Computer Society,

Washington, DC), April 2016. https://doi.org/10.1109/ICST.2016.43

[17] A. H. Watson and T. J. McCabe. Structured Testing: A Testing Methodology Using

the Cyclomatic Complexity Metric. NIST Special Publication 500-235, 1996. Available

at http://www.mccabe.com/pdf/mccabe-nist235r.pdf.

[18] Y. Wu and F. Boland. Categorizing Code Complexities in support of analysis. In

Proceedings of the 11th International Conference on Cyber Warfare and Security,

ICCWS 2016, pages 17–18, Boston, MA, USA, 2016.

https://samate.nist.gov/SATE2009.html
https://samate.nist.gov/SATE2010.html
https://samate.nist.gov/SATE4.html
https://samate.nist.gov/SATE2008.html
https://doi.org/10.1109/ISSREW.2014.62
https://doi.org/10.1109/ISSREW.2014.62
https://doi.org/10.1109/ICST.2016.43
https://doi.org/10.1109/ICST.2016.43
http://www.mccabe.com/pdf/mccabe-nist235r.pdf

