NIST IR 8154

Dietary Supplement Laboratory Quality Assurance Program: Exercise L Final Report

Melissa M. Phillips Catherine A. Rimmer Laura J. Wood

This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8154

NIST IR 8154

Dietary Supplement Laboratory Quality Assurance Program: Exercise L Final Report

Melissa M. Phillips Catherine A. Rimmer Laura J. Wood Chemical Sciences Division Material Measurement Laboratory

This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8154

October 2016

U.S. Department of Commerce Penny Pritzker, Secretary

National Institute of Standards and Technology Willie May, Under Secretary of Commerce for Standards and Technology and Director

TABLE OF CONTENTS

ABSTRACT	.1
INTRODUCTION	.1
OVERVIEW OF DATA TREATMENT AND REPRESENTATION	2
Statistics	2
Individualized Data Table	3
Summary Data Table	.4
Graphs	4
Data Summary View (Method Comparison Data Summary View)	.4
Sample/Sample Comparison View	.5
NUTRITIONAL ELEMENTS (Iodine) IN CAT FOOD AND MULTIVITAM	N
TABLETS	6
Study Overview	6
Sample Information	6
Cat Food	6
Multivitamin	.6
Study Results	.7
Technical Recommendations	.7
Table 1. Individualized data summary table (NIST) for iodine in cat food as multivitamin tablets	nd 8
Table 2. Data summary table for iodine in cat food and multivitam tablets	in 9
Figure 1. Iodine in SRM 3290 Dry Cat Food (data summary view – digestion and analytic	.) al
method)	10
Figure 2. Iodine in SRM 3280 Multivitamin/Multielement Tablets (data summary view	_
digestion and analytical method)	11
Figure 3. Iodine in SRM 3290 Dry Cat Food and SRM 3280 Multivitamin/Multieleme	nt
Tablets (sample/sample comparison view)	12

TOXIC ELEMENTS (As and Pb) IN ST. JOHN'S WORT DIETARY SUPPLEMEN	TS 13
Study Overview	13
Sample Information	13
St. John's Wort Aerial Parts	13
St. John's Wort Methanol Extract	13
Study Results	14
Technical Recommendations	14
Table 3. Individualized data summary table (NIST) for arsenic and lead in St. John distant summary table (NIST) for arsenic and lead in St. John distant summary summary table (NIST) for an end of the second sec	n's wort
Table 4. Data summary table for arsenic in St. John's wort dietary supplements	16
Table 5. Data summary table for lead in St. John's wort dietary supplements	18

Figure 4. Arsenic in SRM 3262 St. John's Wort (Hypericum perforatum L.) Aerial Parts
(data summary view – digestion and analytical method)
Figure 5. Arsenic in SRM 3264 St. John's Wort (Hypericum perforatum L.) Methanol
Extract (data summary view – digestion and analytical method)
Figure 6. Lead in SRM 3262 St. John's Wort (Hypericum perforatum L.) Aerial Parts (data
summary view – digestion and analytical method)
Figure 7. Lead in SRM 3264 St. John's Wort (Hypericum perforatum L.) Methanol Extract
(data summary view – digestion and analytical method)
Figure 8. Arsenic in SRM 3262 St. John's Wort (Hypericum perforatum L.) Aerial Parts
and SRM 3264 St. John's Wort (Hypericum perforatum L.) Methanol Extract
(sample/sample comparison view)
Figure 9. Lead in SRM 3262 St. John's Wort (<i>Hypericum perforatum L.</i>) Aerial Parts and
SRM 3264 St. John's Wort (Hypericum perforatum L.) Methanol Extract
(sample/sample comparison view)
WATER-SOLUBLE VITAMINS (Biotin) IN DIETARY SUPPLEMENTS25
Study Overview25
Sample Information25
Cat Food25
Multivitamin25
Study Results25
Technical Recommendations
Table 6. Individualized data summary table (NIST) for biotin in dietary supplements28
Table 7. Data summary table for biotin in dietary supplements
Figure 10. Biotin in SRM 3290 Dry Cat Food (data summary view – sample preparation
and analytical method)
Figure 11. Biotin in SRM 3280 Multivitamin/Multielement Tablets (data summary view -
sample preparation and analytical method)
Figure 12. Biotin in SRM 3290 Dry Cat Food and SRM 3280 Multivitamin/Multielement
Tablets (sample/sample comparison view) 32
XANTHOPHYLLS (Lutein and Zeaxanthin) IN DIETARY SUPPLEMENTS
Study Overview
Sample Information
Spinach
Multivitamin/Multielement Tablets
Study Results
Technical Recommendations
Table 8. Individualized data summary table (NIST) for lutein and zeaxanthin in dietary
supplements
Table 9. Data summary table for lutein in dietary supplements 37
Table 10. Data summary table for zeaxanthin in dietary supplements 38
Figure 13. Lutein in SRM 2385 Slurried Spinach (data summary view – sample preparation
and analytical method)
Figure 14. Lutein in SRM 3280 Multivitamin/Multielement Tablets (data summary view
– sample preparation and analytical method)40

Figure 15. Zeaxanthin in SRM 2385 Slurried Spinach (data summary view – sa	mple
preparation and analytical method)	41
Figure 16. Zeaxanthin in SRM 3280 Multivitamin/Multielement Tablets (data sum	mary
view – sample preparation and analytical method)	42
Figure 17. Lutein in SRM 2385 Slurried Spinach and SRM 3280	
Multivitamin/Multielement Tablets (sample/sample comparison view)	43
Figure 18. Zeaxanthin in SRM 2385 Slurried Spinach and SRM 3280	
Multivitamin/Multielement Tablets (sample/sample comparison view)	44
FATTY ACIDS IN FISH OILS	45
Study Overview	45
Sample Information	45
Fish Oil 1	45
Fish Oil 2	45
Study Results	46
Technical Recommendations	47
Table 11. Individualized data summary table (NIST) for fatty acids in fish oils	48
Table 12. Data summary table for linoleic acid in fish oils	49
Table 13. Data summary table for α -linolenic acid in fish oils	50
Table 14. Data summary table for γ -linolenic acid in fish oils	51
Table 15. Data summary table for arachidonic acid in fish oils	52
Table 16. Data summary table for EPA in fish oils	53
Table 17. Data summary table for DHA in fish oils	54
Figure 19. Linoleic acid in SRM 3275-I Omega-3 and Omega-6 Fatty Acids in Fisl	h Oil
(data summary view – sample preparation and analytical method)	55
Figure 20. Linoleic acid in SRM 3275-III Omega-3 and Omega-6 Fatty Acids in Fis	h Oil
(data summary view – sample preparation and analytical method)	56
Figure 21. α-Linolenic acid in SRM 3275-I Omega-3 and Omega-6 Fatty Acids in Fis	h Oil
(data summary view – sample preparation and analytical method)	57
Figure 22. α-Linolenic acid in SRM 3275-III Omega-3 and Omega-6 Fatty Acids in	Fish
Oil (data summary view – sample preparation and analytical method)	58
Figure 23. y-Linolenic acid in SRM 3275-I Omega-3 and Omega-6 Fatty Acids in Fis	h Oil
(data summary view – sample preparation and analytical method)	59
Figure 24. y-Linolenic acid in SRM 3275-III Omega-3 and Omega-6 Fatty Acids in	Fish
Oil (data summary view – sample preparation and analytical method)	60
Figure 25. Arachidonic acid in SRM 3275-I Omega-3 and Omega-6 Fatty Acids in	Fish
Oil (data summary view – sample preparation and analytical method)	61
Figure 26. Arachidonic acid in SRM 3275-III Omega-3 and Omega-6 Fatty Acids in	Fish
Oil (data summary view – sample preparation and analytical method)	62
Figure 27. EPA in SRM 3275-I Omega-3 and Omega-6 Fatty Acids in Fish Oil	(data
summary view – sample preparation and analytical method)	
Figure 28. EPA in SRM 3275-III Omega-3 and Omega-6 Fatty Acids in Fish Oil	(data
summary view – sample preparation and analytical method)	
Figure 29. DHA in SRM 3275-I Omega-3 and Omega-6 Fatty Acids in Fish Oil	(data
summary view – sample preparation and analytical method)	

Sample Information	73
St. John's Wort Aerial Parts	73
St. John's Wort Methanol Extract	73
Study Results	74
Technical Recommendations	75
Table 18. Individualized data summary table (NIST) for chlorogenic acid, fla	vonoids, and
naphthodianthrones in St. John's wort dietary supplements	
Table 19. Data summary table for chlorogenic acid in St. John's wort dietary	supplements
Table 20. Data summary table for rutin in St. John's wort dietary supplement	nts78
Table 21. Data summary table for hyperoside in St. John's wort dietary supp	plements79
Table 22. Data summary table for isoquercitrin in St. John's wort dietary sup	pplements 80
Table 23. Data summary table for quercitrin in St. John's wort dietary suppl	ements81
Table 24. Data summary table for quercetin in St. John's wort dietary supple	ements82
Table 25. Data summary table for amentoflavone in St. John's wort dietary	
supplements	83
Table 26. Data summary table for pseudohypericin in St. John's wort dietary	supplements
Table 27. Data summary table for hypericin in St. John's wort dietary supple	ements85
Figure 37. Chlorogenic acid in SRM 3262 St. John's Wort (Hypericum pe	rforatum L.)
Aerial Parts (data summary view – sample preparation and analytical	method)86

Figure 38. Chlorogenic acid in SRM 3264 St. John's Wort (*Hypericum perforatum L.*) Methanol Extract (data summary view – sample preparation and analytical method)

Figure 39. Rutin in SRM 3262 St. John's Wort (Hypericum perforatum L.) Aerial Parts

Figure 41. Hyperoside in SRM 3262 St. John's Wort (*Hypericum perforatum L.*) Aerial Parts (data summary view – sample preparation and analytical method)......90

Figure 43. Isoquercitrin in SRM 3262 St. John's Wort (*Hypericum perforatum L.*) Aerial Parts (data summary view – sample preparation and analytical method)......92

Figure 45. Quercitrin in SRM 3262 St. John's Wort (*Hypericum perforatum L.*) Aerial Parts (data summary view – sample preparation and analytical method)......94

Figure 46. Quercitrin in SRM 3264 St. John's Wort (*Hypericum perforatum L.*) Methanol Extract (data summary view – sample preparation and analytical method)95
Figure 47. Quercetin in SRM 3262 St. John's Wort (*Hypericum perforatum L.*) Aerial

Parts (data summary view – sample preparation and analytical method)......96 **Figure 48.** Quercetin in SRM 3264 St. John's Wort (*Hypericum perforatum L.*) Methanol Extract (data summary view – sample preparation and analytical method).......97

Figure 50. Amentoflavone in SRM 3264 St. John's Wort (*Hypericum perforatum L.*) Methanol Extract (data summary view – sample preparation and analytical method)

Figure 51. Pseudohypericin in SRM 3262 St. John's Wort (*Hypericum perforatum L.*) Aerial Parts (data summary view – sample preparation and analytical method).100

Figure 53. Hypericin in SRM 3262 St. John's Wort (*Hypericum perforatum L.*) Aerial Parts (data summary view – sample preparation and analytical method)......102

Figure 54. Hypericin in SRM 3264 St. John's Wort (*Hypericum perforatum L.*) Methanol Extract (data summary view – sample preparation and analytical method)103

ABSTRACT

The NIST Dietary Supplement Laboratory Quality Assurance Program (DSQAP) was established in collaboration with the National Institutes of Health (NIH) Office of Dietary Supplements (ODS) in 2007 to enable members of the dietary supplements community to improve the accuracy of measurements for demonstration of compliance with various regulations including the dietary supplement current good manufacturing practices (cGMPs). Exercise L of this program offered the opportunity for laboratories to assess their in-house measurements of nutritional elements (iodine), contaminants (lead and arsenic), water-soluble vitamins (biotin), fat-soluble vitamins (lutein and zeaxanthin), fatty acids (omega-3 and -6), and botanical marker compounds (chlorogenic acid, flavonoids, and naphthodianthrones) in foods and/or botanical dietary supplement ingredients and finished products.

INTRODUCTION

The dietary supplement industry in the US is booming, with two-thirds of adults considering themselves to be supplement users.¹ Consumption of dietary supplements, which includes vitamin and mineral supplements, represents an annual US expenditure of more than \$40 billion. These figures represent an increasing American and worldwide trend, and as a result, it is critically important that both the quality and safety of these products are verified and maintained.

The Dietary Supplement Health and Education Act of 1994 (DSHEA) amended the Federal Food, Drug, and Cosmetic Act to create the regulatory category called dietary supplements. The DSHEA also gave the FDA authority to write current Good Manufacturing Practices (cGMPs) that require manufacturers to evaluate the identity, purity, and composition of their ingredients and finished products. In addition, the DSHEA authorized the establishment of the Office of Dietary Supplements at the National Institutes of Health (NIH ODS). To enable members of the dietary supplements community to improve the accuracy of the measurements required for compliance with these and other regulations, NIST established the Dietary Supplement Laboratory Quality Assurance Program (DSQAP) in collaboration with the NIH ODS in 2007.

The program offers the opportunity for laboratories to assess their in-house measurements of active or marker compounds, nutritional elements, contaminants (toxic elements, pesticides, mycotoxins), and fat- and water-soluble vitamins in foods as well as botanical dietary supplement ingredients and finished products. Reports and certificates of participation are provided and can be used to demonstrate compliance with the cGMPs. In addition, NIST and the DSQAP assist the ODS Analytical Methods and Reference Materials program (AMRM) at the NIH in supporting the development and dissemination of analytical tools and reference materials. In the future, results from DSQAP exercises could be used by ODS to identify problematic matrices and analytes for which an AOAC INTERNATIONAL Official Method of Analysis would benefit the dietary supplement community.

NIST has experience in the administration of quality assurance programs, but the DSQAP takes a unique approach. In other NIST quality assurance programs, a set of analytes is measured

¹ Walsh, T. (2012) *Supplement Usage, Consumer Confidence Remain Steady According to New Annual Survey from CRN.* Council for Responsible Nutrition, Washington, DC.

repeatedly over time in the same or similar matrices to demonstrate and improve laboratory performance. In contrast, the wide range of matrices and analytes under the "dietary supplement" umbrella means that not every laboratory is interested in every sample or analyte. The constantly changing dietary supplement market, and the enormous diversity of finished products, makes repeated determination of a few target compounds in a single matrix of little use to participants. Instead, participating laboratories are interested in testing in-house methods on a wide variety of challenging, real-world matrices to demonstrate that their performance is comparable to that of the community and that their methods provide accurate results. In an area where there are few standard methods, the DSQAP offers a unique tool for assessment of the quality of measurements, provides feedback about performance, and can assist participants in improving laboratory operations.

This report summarizes the results from the eleventh exercise of the DSQAP, Exercise L. Eightytwo laboratories responded to the call for participants distributed in October 2015. Samples were shipped to participants in January 2016, and results were returned to NIST by March 2016. This report contains the final data and information that was disseminated to the participants in October 2016.

OVERVIEW OF DATA TREATMENT AND REPRESENTATION

Individualized data tables and certificates are provided to the participants that have submitted data in each study, in addition to this report. Examples of the data tables using NIST data are also included in each section of this report. Community tables and graphs are provided using randomized laboratory codes, with identities known only to NIST and individual laboratories. The statistical approaches are outlined below for each type of data representation.

Statistics

Data tables and graphs throughout this report contain information about the performance of each laboratory relative to that of the other participants in this study and relative to a target around the expected result, if available. All calculations are performed in PROLab Plus (QuoData GmbH, Dresden, Germany).² The consensus mean and standard deviation are calculated according to the robust algorithm outlined in ISO 13528:2015(E), Annex C.³ The algorithm is summarized here in simplified form.

Initial values of the consensus mean, x^* , and consensus standard deviation, s^* , are estimated as

$$x^* = \text{median of } x_i$$
 (*i* = 1, 2,...,*n*)
 $s^* = 1.483 \times \text{median of } |x_i - x^*|$ (*i* = 1, 2,...,*n*).

These initial values for x^* and s^* are updated by first calculating the expanded standard deviation, δ , as

$$\delta = 1.5 \times s^*.$$

² Certain commercial equipment, instruments or materials are identified in this certificate to adequately specify the experimental procedure. Such identification does not imply recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that the materials or equipment identified are necessarily the best available for the purpose.

³ ISO 13528:2015(E), Statistical methods for use in proficiency testing by interlaboratory comparisons, pp. 53-54.

Then each x_i is compared to the expanded range and adjusted to x_i^* as described below to reduce the effect of outliers.

If
$$x_i < x^* - \delta$$
, then $x_i^* = x^* - \delta$.
If $x_i > x^* + \delta$, then $x_i^* = x^* + \delta$.
Otherwise, $x_i^* = x_i$.

New values of x^* , s^* , and δ are calculated iteratively until the process converges. Convergence is taken as no change from one iteration to the next in the third significant figure of s^* and in the equivalent digit in x^* :

$$x^* = \frac{\sum_{i=1}^{n} x_i^*}{n}$$

s* = 1.134 × $\sqrt{\frac{\sum_{i=1}^{n} (x_i^* - x^*)}{n-1}}$.

Individualized Data Table

The data in this table is individualized to each participating laboratory and is provided to allow participants to directly compare their data to the summary statistics (consensus or community data as well as NIST certified, reference, or estimated values). The upper left of the data table includes the randomized laboratory code. Tables included in this report are generated using NIST data to protect the identity and performance of participants.

Section 1 of the data table contains the laboratory results as reported, including the mean and standard deviation when multiple values were reported. A blank indicates that NIST does not have data on file for that laboratory for a particular analyte or matrix. An empty box for standard deviation indicates that only a single value was reported and therefore that value was not included in the calculation of the consensus data.³

Also in Section 1 are two Z-scores. The first Z-score, Z'_{comm} , is calculated with respect to the community consensus value, taking into consideration bias that may result from the uncertainty in the assigned consensus value, using x* and s*:

$$Z'_{comm} = \frac{x_i - x_*}{\sqrt{2}s_*}$$

The second Z-score, Z_{NIST} , is calculated with respect to the target value (NIST certified, reference, or estimated value), using x_{NIST} and U_{95} (the expanded uncertainty) or s_{NIST} (the standard deviation of NIST measurements):

$$Z_{NIST} = \frac{x_i - x_{NIST}}{U_{95}}$$

or

$$Z_{NIST} = \frac{x_i - x_{NIST}}{s_{NIST}}.$$

The significance of the Z-score is as follows:

- |Z| < 2 indicates that the laboratory result is considered to be within the community consensus range (for Z'_{comm}) or NIST target range (for Z_{NIST}).
- 2 < |Z| < 3 indicates that the laboratory result is considered to be marginally different from the community consensus value (for Z'_{comm}) or NIST target value (for Z_{NIST}).
- |Z| > 3 indicates that the laboratory result is considered to be significantly different from the community consensus value (for Z'_{comm}) or NIST target value (for Z_{NIST}).

Section 2 of the data table contains the community results, including the number of laboratories reporting more than a single value for a given analyte¹, the mean value determined for each analyte, and a robust estimate of the standard deviation of the reported values.⁴ Consensus means and standard deviations are calculated using the laboratory means; if a laboratory reported a single value, the reported value is not included.³ Additional information on calculation of the consensus mean and standard deviation can be found in the previous section.

Section 3 of the data table contains the target values for each analyte. When possible, the target value is a certified or reference value determined at NIST. Certified values and the associated expanded uncertainty (U_{95}) have been determined with two independent analytical methods at NIST, by collaborating laboratories, or in some combination. Reference values are assigned using NIST values obtained from the average and standard deviation of measurements made using a single analytical method or by measurements obtained from collaborating laboratories. For both certified and reference values, at least six samples have been tested and duplicate preparations from the sample package have been included, allowing the uncertainty to encompass variability due to inhomogeneity within and between packages. For samples in which a NIST certified or reference value is not available, the analytes are measured at NIST using an appropriate method. The NIST-assessed value represents the mean of at least three replicates. For materials acquired from another proficiency testing program, the consensus value and uncertainty from the completed round is used as the target range.

Summary Data Table

This data table includes a summary of all reported data for a particular analyte in a particular study. Participants can compare the raw data for a single laboratory to data reported by the other participating laboratories or to the consensus data. A blank indicates that the laboratory signed up and received samples for that particular analyte and matrix, but NIST does not have data on file for that laboratory.

Graphs

Data Summary View (Method Comparison Data Summary View)

In this view, individual laboratory data are plotted with the individual laboratory standard deviation (error bars). Laboratories reporting values below the method quantitation limit are shown in this view as downward triangles beginning at the limit of quantitation (LOQ). Laboratories reporting values as "below LOQ" can still be successful in the study if the target value is also below the laboratory LOQ. The black solid line represents the consensus mean, and

⁴ ISO 13528:2015(E), Statistical methods for use in proficiency testing by interlaboratory comparisons, Annex C.

the green shaded area represents the consensus variability. Where appropriate, two consensus means may be calculated for the same sample if bimodality is identified in the data. In this case, two consensus means and ranges will be displayed in the data summary view. The red shaded region represents the target zone for "acceptable" performance, which encompasses the NIST certified, reference, or estimated value bounded by twice its uncertainty (U_{95}) or standard deviation. For the purpose of the DSQAP, a target range spanning twice the uncertainty in the NIST value is selected because participants are only asked to make a limited number of observations. The size of the y-axis on the data summary view graph represents the range of tolerance (values that result in an acceptable Z' score, $|Z'| \leq 2$). In this view, the relative locations of individual laboratory data and consensus zones with respect to the target zone can be compared easily. In most cases, the target zone and the consensus zone overlap, which is the expected result. The major program goals are to reduce the size of the consensus zone and center the consensus zone about the target value. Analysis of an appropriate reference material as part of a quality control scheme can help to identify sources of bias for laboratories reporting results that are significantly different from the target zone. In the case in which a method comparison is relevant, different colored data points may be used to indicate laboratories that used a specific approach to sample preparation, analysis, or quantitation.

Sample/Sample Comparison View

In this view, the individual laboratory results for one sample (NIST SRM with a certified or reference value) are compared to the results for another sample (another NIST SRM with a more challenging matrix, a commercial sample, etc.). The solid red box represents the target zone for the first sample (x-axis) and the second sample (y-axis). The dotted blue box represents the consensus zone for the first sample (x-axis) and the second sample (y-axis). The axes of this graph are centered about the consensus mean values for each sample or control, to a limit of twice the range of tolerance (values that result in an acceptable Z' score, $|Z'| \leq 2$). Depending on the variability in the data, the axes may be scaled proportionally to better display the individual data points for each laboratory. In some cases, when the consensus and target ranges have limited overlap, the solid red box may only appear partially on the graph. If the variability in the data is high (greater than 100 % relative standard deviation (RSD)), the dotted blue box may also only appear partially on the graph. This view emphasizes trends in the data that may indicate potential calibration issues or method biases. One program goal is to identify such calibration or method biases and assist participants in improving analytical measurement capabilities. In some cases, when two equally challenging materials are provided, the same view (sample/sample comparison) can be helpful in identifying commonalities or differences in the analysis of the two materials.

NUTRITIONAL ELEMENTS (IODINE) IN CAT FOOD AND MULTIVITAMIN TABLETS

Study Overview

In this study, participants were provided with two NIST SRMs, SRM 3290 Dry Cat Food and SRM 3280 Multivitamin/Multielement Tablets. Participants were asked to use in-house analytical methods to determine the mass fraction of iodine in each of the matrices and report values on an as-received basis.

Sample Information

Cat Food. Participants were provided with one packet containing approximately 10 g of dry cat food. The cat food was blended, aliquotted, and heat-sealed inside 4 mil polyethylene bags, which were then sealed inside nitrogen-flushed aluminized plastic bags along with two packets of silica gel. Before use, participants were instructed to thoroughly mix the contents of each packet and to use a sample size of at least 0.5 g. Participants were asked to store the material at controlled room temperature, 10 °C to 30 °C, and to prepare three samples and report three values from the single packet provided. Approximate analyte levels were not reported to participants prior to the study. The reference value for iodine in SRM 3290 Dry Cat Food was determined at NIST using inductively coupled plasma mass spectrometry (ICP-MS) and instrumental neutron activation analysis (INAA). The reference values and uncertainties for iodine are provided in the table below, both on a dry-mass basis and on an as-received basis accounting for moisture of the material (4.36 %).

	Reference Mass Fraction	in SRM 3290 (mg/kg)
Analyte	(dry-mass basis)	(as-received basis)
Iodine (I)	3.38 ± 0.54	3.23 ± 0.52

Multivitamin. Participants were provided with one bottle containing 30 multivitamin/multielement tablets. Before use, participants were instructed to grind all tablets together and mix the resulting powder thoroughly, and to use a sample size of at least 0.5 g. Participants were asked to store the material at controlled room temperature, 10 °C to 30 °C, and to prepare three samples and report three values from the single bottle provided. Approximate analyte levels were not reported to participants prior to the study. The certified value for iodine in SRM 3280 Multivitamin/ Multielement Tablets was determined at NIST using inductively coupled plasma mass spectrometry (ICP-MS) and instrumental neutron activation analysis (INAA). The certified values and uncertainties for iodine are provided in the table below, both on a dry-mass basis and on an as-received basis accounting for moisture of the material (1.37 %).

	Certified Mass Fraction in	SRM 3280 (mg/kg)
<u>Analyte</u>	(dry-mass basis)	(as-received basis)
Iodine (I)	132.7 ± 6.6	$130.9~\pm~~6.5$

Study Results

- Thirty-three laboratories enrolled in this exercise and received samples. Eleven laboratories reported results for the multivitamin sample (33 % participation). Twelve laboratories reported results for the cat food sample (36 % participation). Ten and 11 laboratories were used, respectively, for calculation purposes, see Statistics, page 3.
- The consensus means for iodine in both materials were within the target range with acceptable between-laboratory variability (15 % to 20 % RSD).
- A majority of the laboratories reported using hot block digestion (33 %), microwave digestion (25 %), or solvent extraction (25 %) for sample preparation. The remaining laboratories reported using base hydrolysis or dry ashing, although no values were reported by the laboratory that reported using dry ashing.
- A majority of the laboratories reported using ICP-MS (69 %) as their analytical method. The remaining laboratories reported using ion-selective electrode, ion chromatography with conductivity detection, liquid chromatography, and thiosulfate titration, although no values were reported by the laboratory that reported using thiosulfate titration.

Technical Recommendations

The following recommendations are based on results obtained from the participants in this study.

- The iodine study had the lowest enrollment (40 %) and participation rate (33 % to 36 %) of a nutritional elements study in the last five years. The nutritional elements studies are normally some of the most popular with the highest number of participants.
 - Over the past five years, nutritional elements studies have had 47 % to 65 % of total laboratories enrolled, with 65 % to 83 % participation.
 - The low participation in this study could be the result of a lack of interest in iodine or the greater challenge posed by analysis of iodine compared to other nutritional elements.
- With a small number of laboratories reporting data, identification of strong trends in the data based on the information reported by participants is difficult. The data suggest that ICP-MS and digestion sample preparations, acid or base, were slightly more successful than chromatography methods and solvent extractions.
- Some suggestions regarding iodine sample preparation are provided below.
 - Iodine is a volatile element and can form hydrogen iodide (HI) during acid digestion; care must be taken to retain iodine during sample preparation.
 - Iodine is also light sensitive and at some stages of sample preparation solutions may need to be kept in amber or covered samples vessels.
 - When using ICP-MS, an acidic sample solution can result in sample carryover. Using a basic solution or a surfactant such as Triton X-100 will improve washout of iodine. Some protocols use an alkaline digestion with tetramethylammonium hydroxide (TMAH), but extreme caution must be taken when using TMAH, which is a very strong base with high toxicity. A safer alternative may be to use an acid digestion then solutions can be neutralized with a base such as ammonium hydroxide.
 - During sample preparation, iodine can adhere to TFM vessels, so PFA vessels or quartz/glass vessels are recommended to eliminate erratic results.

Table 1. Individualized data summary table (NIST) for iodine in cat food and multivitamin tablets.

National Institute of Standards & Technology

		Exercise L - October 2015 - Iodine										
Lab Code:	NIST		1. Your	Results			2. Co	mmunity F	Results		3. Ta	rget
Sample	Units	x _i	s _i	Z' _{comm}	Z _{NIST}		Ν	x*	s*		X _{NIST}	U_{95}
Multivitamin	mg/kg	131	13		0.0		10	131	20		131	13
Cat Food	mg/kg	3.2	1.0		0.0		11	3.5	0.7		3.2	1.0
	x _i S _i Z' _{comm}	Mean of 1 Standard Z'-score v consensus Z score v	reported v deviation with respe	values of reported ect to comm	values unity	N x*	Number values re Robust n values	of quantitat ported hean of rep	ive orted	x _{NIST} U ₉₅	NIST-ass ±95% cor about the standard o	essed value nfidence interval assessed value or deviation (s _{NIST})
	Lab Code: Sample Multivitamin Cat Food	Lab Code: NIST Sample Units Multivitamin mg/kg Cat Food mg/kg Xi Si Z'comm ZNIST	Lab Code: NIST Sample Units x _i Multivitamin mg/kg 131 Cat Food mg/kg 3.2 x _i Mean of n s _i Standard Z' _{comm} Z'-score v Consensus Z _{NIST} Z-score v Standard	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Lab Code:NIST1. Your Results2. Community FSampleUnits x_i s_i Z'_{comm} Z_{NIST} N x^* Multivitaminmg/kg131130.010131Cat Foodmg/kg3.21.00.0113.5x_iMean of reported valuesNNumber of quantitation of reported valuesNNumber of quantitation of reported values x_i Standard deviation of reported valuesX*Robust mean of reported values Z'_{comm} Z'-score with respect to community consensusx*Robust mean of reported values Z_{NIST} Z-score with respect to NIST values*Robust standard deviation deviation deviation deviation deviation	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Lab Code:NIST1. Your Results2. Community ResultsSampleUnits x_i s_i Z'_{comm} Z_{NIST} N x^* s^* Multivitaminmg/kg131130.01013120Cat Foodmg/kg3.21.00.0113.50.7x _i Mean of reported valuesNNumber of quantitative x_{NIST} s_i Standard deviation of reported valuesNNumber of quantitative x_{NIST} Z'_{comm} Z'-score with respect to community x^* Robust mean of reported U_{95} Z_{NIST} Z-score with respect to NIST values*Robust standard deviation	Lab Code:NIST1. Your Results2. Community Results3. TaSampleUnits x_i s_i Z'_{comm} Z_{NIST} N x^* s^* x_{NIST} Multivitaminmg/kg131130.01013120131Cat Foodmg/kg3.21.00.0113.50.73.2x_iMean of reported valuesNNumber of quantitative x_{NIST} NIST-asss_iStandard deviation of reported valuesNNumber of quantitative x_{NIST} NIST-ass Z'_{comm} Z'-score with respect to community x^* Robust mean of reported U_{95} $\pm 95\%$ cor Z_{NIST} Z-score with respect to NIST value s^* Robust standard deviationstandard deviation

		Iodine									
		SRM 3280 MultivitaminTablets (mg/kg) SRM					SRM 3290	M 3290 Dry Cat Food (mg/kg)			
[Lab	Α	В	С	Avg	SD	Α	В	С	Avg	SD
	NIST				131	13				3.23	1.03
	L101										
	L102										
	L103	117	93		105	17	3.03	3.34		3.19	0.22
	L104										
	L105										
	L107	129	139	140	136	6	3.66	3.80	4.69	4.05	0.56
	L108										
	L110										
	L112										
	L115	126	123	123	124	2	3.52	3.61	3.45	3.53	0.08
	L117										
	L118	142	141	140	141	1	3.46	3.49	3.29	3.41	0.11
	L123	122	129	143	131	11	3.39	2.64	2.68	2.90	0.42
	L124										
	L126										
lts	L129						4.25	3.74	4.13	4.04	0.27
esul	L130										
al R	L136										
idu	L137	202	204	207	205	2	28.72	32.15	30.65	30.51	1.72
vibr	L139	101	112	97	103	8	3.06	2.58	2.81	2.82	0.24
Ţ	L140										
	L141										
	L148										
	L151										
	L152	140			140		3.90			3.90	
	L155										
	L157										
	L159										
	L160	138	161	145	148	12	3.30	3.50	3.50	3.43	0.12
	L165										
	L170										
	L171										
	L172										
	L176										
	L177										
	L179	133	132	128	131	3	0.72	0.61	0.76	0.70	0.08
	L182	121	125	125	124	2	3.88	3.98	4.01	3.96	0.07
lity		Consensus N	Mean		131		Consensus	Mean		3.52	
nun ults		Consensus S	standard De	eviation	20		Consensus	Standard De	eviation	0.70	
om Res		Minimum			103		Minimum			0.70	
C		N			10		N			11	

Table 2. Data summary table for iodine in multivitamin tablets and cat food.

Figure 1. Iodine in SRM 3290 Dry Cat Food (data summary view – digestion and analytical method). In this view, individual laboratory data are plotted (circles) with the individual laboratory standard deviation (rectangle). The color of the data point represents the sample preparation (digestion) procedure and analytical method employed. The black solid line represents the consensus mean, and the green shaded region represents the range of tolerance, calculated as the values above and below the consensus mean that result in an acceptable Z' score, $|Z'| \leq 2$. The red shaded region represents the target zone for "acceptable" performance, which encompasses the NIST reference value bounded by twice its uncertainty (U_{95}).

Figure 2. Iodine in SRM 3280 Multivitamin/Multielement Tablets (data summary view – digestion and analytical method). In this view, individual laboratory data are plotted (circles) with the individual laboratory standard deviation (rectangle). The color of the data point represents the sample preparation (digestion) procedure and analytical method employed. The black solid line represents the consensus mean, and the green shaded region represents the range of tolerance, calculated as the values above and below the consensus mean that result in an acceptable Z' score, $|Z'| \leq 2$. The red shaded region represents the target zone for "acceptable" performance, which encompasses the NIST certified value bounded by twice its uncertainty (U_{95}).

Figure 3. Iodine in SRM 3290 Dry Cat Food and SRM 3280 Multivitamin/Multielement Tablets (sample/sample comparison view). In this view, the individual laboratory results for one sample (multivitamin) are compared to the results for a second sample (cat food). The solid red box represents the target zone for the two samples, multivitamin (x-axis) and cat food (y-axis). The dotted blue box represents the consensus zone for multivitamin (x-axis) and cat food (y-axis).

TOXIC ELEMENTS (As AND Pb) IN ST. JOHN'S WORT DIETARY SUPPLEMENTS

Study Overview

In this study, participants were provided with two NIST SRMs, SRM 3262 St. John's Wort (*Hypericum perforatum L.*) Aerial Parts and SRM 3264 St. John's Wort (*Hypericum perforatum L.*) Methanol Extract. Participants were asked to use in-house analytical methods to determine the mass fractions of total arsenic (As) and lead (Pb) in each of the matrices and report values on an as-received basis.

Sample Information

St. John's Wort Aerial Parts. Participants were provided with three packets containing approximately 3.3 g of dried St. John's Wort aerial parts. The dried leaves were ground, homogenized, and packaged inside 4 mil polyethylene bags, which were then sealed inside nitrogen-flushed aluminized plastic bags along with two packets of silica gel. Before use, participants were instructed to thoroughly mix the contents of each packet and use a sample size of at least 1.0 g. Participants were asked to store the material at controlled room temperature, 10 °C to 30 °C, and to report a single value from each packet provided. Approximate analyte levels were not reported to participants prior to the study. The target value for arsenic in SRM 3262 St. John's Wort (*Hypericum perforatum L.*) Aerial Parts was determined at NIST using inductively coupled plasma mass spectrometry (ICP-MS) and instrumental neutron activation analysis (INAA). The target value for lead in SRM 3262 St. John's Wort (*Hypericum perforatum L*.) Aerial Parts was determined at NIST using isotope dilution inductively coupled plasma mass spectrometry (ICP-MS) and uncertainties for As and Pb are provided in the table below, on an as-received basis.

NIST-Determined Mass Fraction in SRM 3262 (ng/g)

Analyte	(as-rece	ived	l basis)
Arsenic (As)	145	±	13
Lead (Pb)	933	±	137

St. John's Wort Methanol Extract. Participants were provided with three packets containing approximately 1.6 g of St. John's Wort methanol extract. The extract was ground, homogenized, and packaged inside 4 mil polyethylene bags, which were then sealed inside nitrogen-flushed aluminized plastic bags along with two packets of silica gel. Before use, participants were instructed to thoroughly mix the contents of each packet and use a sample size of at least 0.6 g. Participants were asked to store the material at controlled room temperature, 10 °C to 30 °C, and to report a single value from each packet provided. Approximate analyte levels were not reported to participants prior to the study. The target value for arsenic in SRM 3264 St. John's Wort (*Hypericum perforatum L.*) Methanol Extract was determined at NIST using inductively coupled plasma mass spectrometry (ICP-MS). The certified value for lead in SRM 3264 St. John's Wort (*Hypericum perforatum L.*) Methanol Extract was determined at NIST using isotope dilution inductively coupled plasma mass spectrometry (ID-ICP-MS). The NIST-determined value and uncertainty for As are provided in the table below, on an as-received basis. The certified values and uncertainties for Pb are provided in the table below, both on a dry-mass basis and on an as-received basis accounting for moisture of the material (0.92 %).

	NIST-Determined Mass Fraction in SRM 3264 (ng/g)
<u>Analyte</u>	(as-received basis)
Arsenic (As)	50 ± 18
	Certified Mass Fraction in SRM 3264 (ng/g)

<u>Analyte</u>	<u>(dry-mass basis)</u>	(as-received basis)			
Lead (Pb)	30.3 ± 1.8	30.0 ± 1.8			

Study Results

- Fifty-nine laboratories enrolled in this exercise and received samples.
 - Forty laboratories reported results for arsenic in St. John's wort aerial parts (68 % participation). Forty-two laboratories reported results for lead in St. John's wort aerial parts (71 % participation). Thirty-seven and 42 laboratories were used, respectively, for calculation purposes, see Statistics, page 3.
 - Thirty-seven laboratories reported results for arsenic in St. John's wort methanol extract (63 % participation). Thirty-eight laboratories reported results for lead in St. John's wort methanol extract (64 % participation). Thirty-four laboratories were used in both studies for calculation purposes, see Statistics, page 3.
- The consensus means for arsenic in the St. John's wort aerial parts and methanol extract were within the target ranges with high between-laboratory variability (23 % and 30 % RSD, respectively).
- The consensus mean for lead in the St. John's wort aerial parts was within the target range with acceptable between-laboratory variability (13 % RSD). The consensus mean for lead in the St. John's wort methanol extract was slightly above the target range with high between-laboratory variability (28 % RSD).
- For arsenic, a majority of the laboratories reported using microwave digestion (81 %) for sample preparation. Hot block digestion (14 %) and open beaker digestion (5 %) were also reported as methods of sample preparation.
- For lead, a majority of the laboratories also reported using microwave digestion (79 %) for sample preparation. Hot block digestion (14 %) and open beaker digestion (7 %) were also reported as methods of sample preparation.
- For arsenic, most laboratories reported using ICP-MS as their analytical method for analysis (90 %). Laboratories also reported using AAS (5 %) and ICP-OES (5 %).
- For lead, most laboratories also reported using ICP-MS as their analytical method for analysis (88 %). Laboratories also reported using AAS (9 %) and ICP-OES (2 %).

Technical Recommendations

The following recommendations are based on results obtained from the participants in this study.

- Loss of volatile species of As is a concern and care must be taken not to lose As during sample preparation.
 - With a vigorous microwave digestion (81 % reported using microwave sample preparation) the high temperatures should convert all volatile organoarsenic species to arsenate As(V). At this point any subsequent heating will not result in loss of arsenic.

- Some laboratories performed well on the plant material but reported values with a high bias for the lower-level extract material.
 - More accurate measurements can be achieved using a calibration curve which closely surrounds the low concentrations found in these sample solutions.
 - The concentrations of the sample solutions must lie within the linear section of the calibration curve to prevent erroneous results. For a result outside the calibration range, multiplication by a dilution factor will only magnify the error.
- Some laboratories reported values within the target range for As in the extract material but reported low values in the plant material.
 - Ensure that samples are completely digested; higher temperatures or a stronger acid such as HF may be needed for plant materials.
 - Ensure that As is not lost during sample preparation either during inadvertent venting of vessels or when open beaker digestion is used.
- Lead is easily digested and volatile loss of Pb is not a concern. However, digestion with HCl may form a highly insoluble PbCl₂ precipitate. Digestion with HNO₃ is recommended for Pb analysis, or dry ashing with a small volume of acid.
- ICP-MS or AAS are recommend for analysis of low levels of As and Pb. Sensitivity of As and Pb is poor when using ICP-OES, possible pre-concentration of sample solutions to overcome poor sensitivity may be of use but extra care should be taken to overcome any additional contamination issues.
- An appropriate number of procedural blanks are important, and can be critical when sample concentrations are near the detection limit.

National Institute of Standards & Technology

	Lab Code:	NIST		1. Your Results			2. C	ommunity l	3. Target		
Analyte	Sample	Units	X _i	$\mathbf{s}_{\mathbf{i}}$	Z' _{comm}	Z _{NIST}	Ν	x*	s*	X _{NIST}	U_{95}
Lead (Pb)	SJW Aerial Parts	ng/g	933	273		0.00	42	825	106	933	273
Lead (Pb)	SJW Extract	ng/g	30.0	3.6		0.00	34	34.0	9.0	30.0	3.6
Arsenic (As)	SJW Aerial Parts	ng/g	145	26		0.00	37	129	30	145	26
Arsenic (As)	SJW Extract	ng/g	49.6	36.0		0.00	34	41.9	12.4	49.6	36.0

Exercise L - October 2015 - Toxic Elements

x_i Mean of reported values

s_i Standard deviation of reported values

- Z'_{comm} Z'-score with respect to community consensus
- Z_{NIST} Z-score with respect to NIST value
- N Number of quantitative values reportedx* Robust mean of reported
- x* Robust mean of reported valuess* Robust standard deviation

		Total Arsenic												
		SRM	3262 St. Jo	hn's Wort A	Aerial Parts	(ng/g)	SRM 3264 St. John's Wort Extract (ng/g)							
	Lab	Α	В	С	Avg	SD	Α	В	С	Avg	SD			
	NIST				145	26				49.6	36.0			
	L102	< 500.0	< 500.0	< 500.0			< 500.0	< 500.0	< 500.0					
	L103	123	154		139	22	< 60.0	< 60.0						
	L104													
	L105	105	101	121	100			20.0	05.0	244				
	L106	125	121	121	122	2	34.1	38.9	35.2	36.1	2.5			
	L107	1/8	182	187	182	5	40.9	42.2	40.9	41.3	0.8			
	L108	112	101	101	101	2	21.0	28.0	28.0	27.7	0.6			
	L109	144	144	148	145	2	78.8	75.8	76.2	76.9	1.6			
	L110	123	112	105	113	9	55.0	45.0	54.0	51.3	5.5			
	L112	120		105	115	-	5510	1510	5 110	5115	0.0			
	L115	119	129	126	125	5	32.0	31.0	31.0	31.3	0.6			
	L116	150	152	146	149	3	36.0	38.0	39.0	37.7	1.5			
	L117													
	L118 L120	160	140	120	140	20	50.0	40.0	40.0	43.3	5.8			
	L120	108	109	108	108	1	32.0	50.4	55.4	54.1	2.0			
	L123	168	155	147	157	11	39.9	42.2	48.5	43.5	4.5			
	L124				1.00		10.0	a a i	240	20.4				
	L125	164	101	97	160	6	40.0	38.4	36.9	38.4	1.6			
	L120	< 5.0	< 5.0	< 5.0	100	5	6.5	11.9	< 5.0	9.2	3.8			
	L128	114	122	105	114	9	94.0	90.0	93.0	92.3	2.1			
	L129	160	160	170	163	6								
	L130 L131													
	L132													
	L134													
sults	L136	102	104	98	101	3	23.5	22.5	22.9	23.0	0.5			
Re	L137	98	100	99	99	1	43.0	45.0	42.7	43.6	1.3			
dual	L138	173	181	186	180	7	37.4	50.9	49.1	45.8	7.3			
livid	L139	80	80	70	77	6	37.3	30.6	40.5	36.1	5.1			
In	L140 L141	114	112	122	116	5	37.0	35.6	36.1	37.2	1.2			
	L142	87	77	91	85	7	50.2	5510	5711	5711	110			
	L143													
	L144	91	99	81	90	9	58.0	37.0	40.0	45.0	11.4			
	L143	134	139	147	144	21	37.0	35.5	219.8	97.4	106.0			
	L148	141	148	147	145	4	62.3	70.5	67.3	66.7	4.1			
	L151	108	105	112	108	3	36.3	32.7	41.3	36.8	4.3			
	L154			101	110		24.0		25.0					
	L155	114	111	106	110	4	36.8	24.4	35.9	32.4	6.9			
	L150	108	112	114	111	3	32.0	37.0	34.3	34.7	2.1			
	L157	138	141	141	140	2	49.0	57.0	48.0	51.3	4.9			
	L159				-									
	L160	140	130	151	140	11	36.4	40.3	40.2	39.0	2.2			
	L161													
	L162	140	170	170	160	17	40.0	40.0	30.0	36.7	5.8			
	L166													
	L167	149	141	151	147	5	95.5	89.0	101.0	95.2	6.0			
	L169	162	157	157	159	3	69.8	71.3	67.1	69.4	2.1			
	L170 L171	107	105	90	105	5	45.0	49.0	49.0	47.7	2.3			
	L172													
	L173	215	220	220	218	3	_							
	L174 L175													
	L175													
	L179	< 330.0	< 330.0	< 330.0			< 520.0	< 520.0	< 520.0					
	L180													
~	L181	Consensue	Mean		129		Consensue	Mean		41.9				
unity ts		Consensus	Standard De	viation	30		Consensus	Standard De	eviation	12.4				
nmt		Maximum			218		Maximum			97.4				
Cor		Minimum			77		Minimum			9.2				
		IN			51		IN			54				

Table 4. Data summary table for arsenic in St. John's wort dietary supplements.

		Lead												
		SRM 3	262 St. Jo	hn's Wort A	Aerial Parts	(ng/g)	SRM 3264 St. John's Wort Extract (ng/g)							
	Lab	Α	В	С	Avg	SD	Α	В	С	Avg	SD			
	NIST				933	273				30.0	3.6			
	L102	899	834	885	873	34	< 200.0	< 200.0	< 200.0					
	L103	800	811		806	8	< 60.0	< 60.0						
	L104													
	L105	000	7.00	070	0.42	70	20.0	20.2	27.2	20.1	0.0			
	L106	889	760	8/9	843	12	28.8	28.3	27.3	28.1	0.8			
	L107	697	603	603	694	2	32.0	32.0	32.0	32.0	0.0			
	L109	763	744	680	729	43	38.6	40.3	26.1	35.0	7.8			
	L110	819	851	849	840	18	42.0	41.4	43.0	42.1	0.8			
	L111	866	791	769	809	51	30.0	29.0	31.0	30.0	1.0			
	L112													
	L115	796	767	831	798	32	28.0	27.0	29.0	28.0	1.0			
	L116	862	884	887	878	14	32.0	35.0	32.0	33.0	1.7			
	L117	720	810	870	802	70	20.0	20.0	20.0	20.0	0.0			
	L118 L120	965	729	814	836	120	37.5	37.5	41.1	38.7	2.1			
	L122													
	L123	756	725	849	777	65	24.5	24.0	22.8	23.8	0.9			
	L124 L125	850	887		869	26	29.0	31.7	32.1	30.9	17			
	L125	757	771	634	721	75	38.5	35.8	38.5	37.6	1.6			
	L127	714	714	896	775	105	< 5.0	< 5.0	< 5.0					
	L128	997	946	999	981	30	35.0	32.0	33.0	33.3	1.5			
	L129	980	990	930	967	32								
	L130													
	L132													
idual Results	L134													
	L136	683	637	640	653	26	49.5	37.0	41.3	42.6	6.4			
	L137	761	790	748	766	22	66.7	67.1	74.1	69.3	4.2			
	L130	980 680	932 670	904 670	947 673	41	24.7	23.0	24.1	23.0	20.0			
ndiv	L139	755	721	860	779	72	26.9	23.0	31.1	28.9	2.1			
I	L141	744	795	834	791	45	33.3	31.6	32.8	32.6	0.9			
	L142	815	922	968	902	79			45.0	45.0				
	L143 1 144	800	898	898	865	57	118.0	126.0	115.0	119.7	57			
	L145	000	070	0,0	005	57	110.0	120.0	110.0	117.0	5.7			
	L147	807	868	852	842	32	25.6	24.2	26.5	25.4	1.2			
	L148	740	842	671	751	86	28.2	25.7	24.9	26.3	1.7			
	L151	1000	988	1008	999	10	44.2	50.5	43.0	40.2	5.0			
	L155	813	756	744	771	37	27.6	22.9	25.9	25.5	2.4			
	L156													
	L157	689	779	845	771	78	27.2	29.1	37.0	31.1	5.2			
	L158	796	981	1170	982	187	32.0	32.0	31.0	31.7	0.6			
	L159			0.57	0.57			ac -	A 5 -	a 5 -	0.7			
	L160	756	823	909	829	77	28.9	28.5	28.3	28.6	0.3			
	L161													
	L165	860	920	830	870	46	30.0	40.0	40.0	36.7	5.8			
	L166	012	007	710			50.0	(7 F	(0.1	(5.2				
	L167	921	806 947	947	938	15	45.1	67.5 45.6	69.1 46.9	45.9	5.5 0.9			
	L170	693	773	645	704	65	26.0	26.0	29.0	27.0	1.7			
	L171													
	L172	772	778	775	775	3	20.3	20.5	21.0	20.6	0.4			
	L173	112	110	115	115	3	20.5	20.3	21.0	20.0	0.4			
	L175													
	L177	042	010	860	070		25.0	20.0	28.0	27.2	2.1			
	L179	940	810	860	870	26	25.0	29.0	28.0	27.3	2.1			
	L181	1050	1000	1010	1020	26								
ity		Consensus M	Aean		825		Consensus	Mean		34.0	-			
ults		Consensus S	standard De	eviation	106		Consensus	Standard D	eviation	9.0				
omr Rest		Minimum			653		Minimum			20.6				
Ū.		N			42		N			34				

 Table 5. Data summary table for lead in St. John's wort dietary supplements.

Figure 4. Arsenic in SRM 3262 St. John's Wort (*Hypericum perforatum L.*) Aerial Parts (data summary view – digestion and analytical method). In this view, individual laboratory data are plotted (circles) with the individual laboratory standard deviation (rectangle). The color of the data point represents the sample preparation (digestion) procedure and analytical method employed. The black solid line represents the consensus mean, and the green shaded region represents the range of tolerance, calculated as the values above and below the consensus mean that result in an acceptable Z' score, $|Z'| \leq 2$. The red shaded region represents the target zone for "acceptable" performance, which encompasses the NIST-determined value bounded by twice its uncertainty (U_{95}).

Figure 5. Arsenic in SRM 3264 St. John's Wort (*Hypericum perforatum L.*) Methanol Extract (data summary view – digestion and analytical method). In this view, individual laboratory data are plotted (circles) with the individual laboratory standard deviation (rectangle). The color of the data point represents the sample preparation (digestion) procedure and analytical method employed. The black solid line represents the consensus mean, and the green shaded region represents the range of tolerance, calculated as the values above and below the consensus mean that result in an acceptable Z' score, $|Z'| \leq 2$. The red shaded region represents the target zone for "acceptable" performance, which encompasses the NIST-determined value bounded by twice its uncertainty (U_{95}).

Figure 6. Lead in SRM 3262 St. John's Wort (*Hypericum perforatum L.*) Aerial Parts (data summary view – digestion and analytical method). In this view, individual laboratory data are plotted (circles) with the individual laboratory standard deviation (rectangle). The color of the data point represents the sample preparation (digestion) procedure and analytical method employed. The black solid line represents the consensus mean, and the green shaded region represents the range of tolerance, calculated as the values above and below the consensus mean that result in an acceptable Z' score, $|Z'| \leq 2$. The red shaded region represents the target zone for "acceptable" performance, which encompasses the NIST-determined value bounded by twice its uncertainty (U_{95}).

Figure 7. Lead in SRM 3264 St. John's Wort (*Hypericum perforatum L.*) Methanol Extract (data summary view – digestion and analytical method). In this view, individual laboratory data are plotted (circles) with the individual laboratory standard deviation (rectangle). The color of the data point represents the sample preparation (digestion) procedure and analytical method employed. The black solid line represents the consensus mean, and the green shaded region represents the range of tolerance, calculated as the values above and below the consensus mean that result in an acceptable Z' score, $|Z'| \leq 2$. The red shaded region represents the target zone for "acceptable" performance, which encompasses the NIST certified value bounded by twice its uncertainty (U_{95}).

Figure 8. Arsenic in SRM 3262 St. John's Wort (*Hypericum perforatum L.*) Aerial Parts and SRM 3264 St. John's Wort (*Hypericum perforatum L.*) Methanol Extract (sample/sample comparison view). In this view, the individual laboratory results for one sample (St. John's wort aerial parts) are compared to the results for a second sample (St. John's wort methanol extract). The solid red box represents the target zone for the two samples, St. John's wort aerial parts (x-axis) and St. John's wort methanol extract (y-axis). The dotted blue box represents the consensus zone for St. John's wort aerial parts (x-axis) and St. John's wort methanol extract (y-axis).

Figure 9. Lead in SRM 3262 St. John's Wort (*Hypericum perforatum L.*) Aerial Parts and SRM 3264 St. John's Wort (*Hypericum perforatum L.*) Methanol Extract (sample/sample comparison view). In this view, the individual laboratory results for one sample (St. John's wort aerial parts) are compared to the results for a second sample (St. John's wort methanol extract). The solid red box represents the target zone for the two samples, St. John's wort aerial parts (x-axis) and St. John's wort methanol extract (y-axis). The dotted blue box represents the consensus zone for St. John's wort aerial parts (x-axis) and St. John's wort methanol extract (y-axis).

WATER-SOLUBLE VITAMINS (BIOTIN) IN DIETARY SUPPLEMENTS

Study Overview

In this study, participants were provided with two NIST SRMs, SRM 3290 Dry Cat Food and SRM 3280 Multivitamin/Multielement Tablets. Participants were asked to use in-house analytical methods to determine the mass fraction of biotin in each of the matrices and report values on an as-received basis.

Sample Information

Cat Food. Participants were provided with one packet containing approximately 10 g of dry cat food. The cat food was blended, aliquotted, and heat-sealed inside 4 mil polyethylene bags, which were then sealed inside nitrogen-flushed aluminized plastic bags along with two packets of silica gel. Before use, participants were instructed to thoroughly mix the contents of each packet and to use a sample size of at least 0.5 g. Participants were asked to store the material at controlled room temperature, 10 °C to 30 °C, and to prepare three samples and report three values from the single packet provided. Approximate analyte levels were not reported to participants prior to the study. The certified value for biotin in SRM 3290 Dry Cat Food was determined at NIST using isotope dilution liquid chromatography mass spectrometry (ID-LC-MS), in combination with data from numerous collaborating laboratories. The certified values and uncertainties for biotin are provided in the table below, both on a dry-mass basis and on an as-received basis accounting for moisture of the material (4.36 %).

	Certified Mass Fraction in	SRM 3290 (mg/kg)						
<u>Analyte</u>	<u>(dry-mass basis)</u>	(as-received basis)						
Biotin	1.42 ± 0.23	1.36 ± 0.22						

Multivitamin. Participants were provided with one bottle containing 30 multivitamin/multielement tablets. Before use, participants were instructed to grind all tablets together and mix the resulting powder thoroughly, and to use a sample size of at least 1.0 g. Participants were asked to store the material at controlled room temperature, 10 °C to 30 °C, and to prepare three samples and report three values from the single bottle provided. Approximate analyte levels were not reported to participants prior to the study. The certified value for biotin in SRM 3280 Multivitamin/ Multielement Tablets was determined at NIST using isotope dilution liquid chromatography mass spectrometry (ID-LC-MS), in combination with data from numerous collaborating laboratories. The certified values and uncertainties for biotin are provided in the table below, both on a drymass basis and on an as-received basis accounting for moisture of the material (1.37 %).

	Certified Mass Fraction in	SRM 3280 (mg/kg)					
<u>Analyte</u>	<u>(dry-mass basis)</u>	(as-received basis)					
Biotin	23.4 ± 3.2	23.1 ± 3.2					

Study Results

• Forty laboratories enrolled in this exercise and received samples. Twenty-one laboratories reported results for SRM 3290 (53 % participation) and 23 laboratories reported results for

SRM 3280 (58 % participation). Nineteen and 23 laboratories were used, respectively, for calculation purposes, see Statistics, page 3.

- The consensus mean was within the target range for biotin in the multivitamin with acceptable between-laboratory variability (20 % RSD).
- The consensus mean was above the target range for biotin in the cat food with very high between-laboratory variability (61 % RSD).
- A majority of the laboratories reported using solvent extraction (78 %) as the sample preparation method. Laboratories also reported using dilution (13 %) and no sample preparation (9 %).
- A majority of the laboratories reported using liquid chromatography with mass spectrometry (48%) as their instrumental method for analysis. Use of LC with absorbance detection (35%), LC with tandem mass spectrometry (9%), HPLC (4%), and microbiological assay (4%) were also reported.

Technical Recommendations

The following recommendations are based on results obtained from the participants in this study.

- Results for the multivitamin tablet were excellent. No methods presented as significantly better or worse than any other. No systematic biases were noted.
- For the cat food matrix, laboratories utilizing highly specific tandem mass spectrometry methods reported the most accurate results compared to the target value. The results from the single laboratory reporting use of microbiological assay were also consistent with the target value.
- Several laboratories reported values in the target range for the multivitamin tablet but high results for the cat food, indicating a potential challenge with the cat food matrix.
- Many of the laboratories reporting near the consensus mean, but higher than the target range, reported using LC-MS based methods. The high bias could be a result of a coelution or ion enhancement/suppression effects if an appropriate internal standard is not utilized.
- Extreme outliers in the measurement of biotin are likely a result of lack of specificity in the instrumental method.
 - All of the outlying laboratories reporting extremely high values used LC-absorbance methods.
 - Some laboratories using LC-absorbance may be experiencing a co-elution that would cause a high bias in the results. The problem can likely be corrected by alteration of the chromatographic conditions. The following recommendations can help identify and avoid potential coelutions.
 - A chromatographic method with alternate selectivity (different retention order) can be used as a check for each new sample type that is run. Ideally, the retention of coeluting compounds would also be affected and the results from the two chromatographic systems would be different. Two different responses would indicate a possible bias in one approach.
 - A different detector can be used in series with an absorbance detector (as confirmation), such as a fluorescence detector or mass spectrometer. If a coeluting compound is present, the response from these detectors would be different than the response from the absorbance detector. Two different responses would indicate a possible bias in one approach.

• Considerations of potential interferences can assist in troubleshooting. Understanding the matrix that is being tested and possible coeluting compounds can be evaluated before a sample is analyzed for additional confidence in the result. Table 6. Individualized data summary table (NIST) for biotin in dietary supplements.

National Institute of Standards & Technology

			LAUI		20	15 - DIO								
	Lab Code:	NIST	1. Your Results				2. Community Results			3. Target		rget		
Analyte	Sample	Units	x _i	s _i	Z'_{comm}	Z _{NIST}		Ν	x*	s*		X _{NIST}	U_{95}	
Biotin	Multivitamin	mg/kg	23.1	6.3		0.00		23	23.9	4.9		23.1	6.3	
Biotin	Cat Food	mg/kg	1.36	0.44		0.00		19	2.39	1.45		1.36	0.44	
		x _i S _i Z' _{comm} Z _{NIST}	 Mean of reported values Standard deviation of reported values Z'-score with respect to community consensus Z-score with respect to NIST value 				N x* s*	Number values re Robust n values Robust s	of quantitat ported nean of repo tandard dev	ive orted viation	x _{NIST} U ₉₅	NIST-ass $\pm 95\%$ cor about the standard of	essed value afidence interv assessed valu deviation (s _{NIS}	7al 1e or _T)

Exercise L - October 2015 - Biotin

_
			Biotin											
		SI	RM 3280 M	ultivitaminT	ablets (mg/k	g)		SRM 3290	Dry Cat Fo	ood (mg/kg)				
-	Lab	Α	В	С	Avg	SD	Α	В	С	Avg	SD			
	NIST				23.1	6.3				1.36	0.44			
	L104													
	L105													
	L107	23.7	22.7	24.5	23.6	0.9	1.32	1.26	1.33	1.30	0.04			
	L108													
	L110	24.0	22.6	22.7	23.1	0.8	1.27	1.18	1.26	1.24	0.05			
	L111	20.6	20.6	20.8	20.7	0.1								
	L112													
	L116	21.6	22.1	21.4	21.7	0.4	1.50	1.70	1.70	1.63	0.12			
	L117													
	L118	21.2	21.1	21.4	21.2	0.2	1.23	1.28	1.21	1.24	0.04			
	L120	23.1	22.1	22.8	22.2	0.5	1.23	1.25	1.58	1.21	0.18			
	L120	23.1	22.1	22.0	22.7	0.5	25.40	24.20	24.90	24.83	0.60			
	L121						23.40	24.20	24.90	24.05	0.00			
	L122	30.3	33.1	34.3	32.6	2.1	3 66	4.00	4.03	3.00	0.21			
	L123	30.3	55.1	54.5	32.0	2.1	5.00	4.00	4.03	3.90	0.21			
	L124	22.7	22.1		22.4	0.4								
	L125	23.7	23.1	22.0	23.4	0.4	2.00	2.62	2.02	2.01	0.17			
S	L126	23.1	23.4	23.8	23.4	0.4	3.88	5.62	5.95	3.81	0.17			
dual Result	L127	71600.0	68667.0	68000.0	69422.3	1915.2	< 50.000	< 50.000	< 50.000	111 (7	0.59			
	L128 L130	40.9	41.8	41.5	41.4	0.5	112.00	112.00	111.00	111.0/	0.58			
	L130													
livid	L137	116.9	120.8	134.8	124.1	9.4	7.22	7.58	6.85	7.22	0.37			
Inc	L138	22.0	22.0	22.0	22.0	0.0	1.60	1.60	1.30	1.50	0.17			
	L139	23.6	23.1	23.1	23.3	0.3	1.10	1.12	1.07	1.10	0.03			
	L140	23.2	23.1	23.2	23.2	0.1	1.83	1.74	1.66	1.74	0.09			
	L141 142	24.7	24.6	25.5	24.9	0.5	2.08	2.38	2.12	2.19	0.16			
	L142													
	L151	22.6	22.7	23.1	22.8	0.3	2.91	2.98	2.92	2.93	0.04			
	L153													
	L155	22.5	24.1	26.2	24.3	1.9	1.76	1.90	2.03	1.90	0.14			
	L157	20.8	21.6	21.1	21.1	0.4	3.00	2.74	2.85	2.86	0.13			
	L158	15.5	14.1	14.3	14.6	0.8	1.41	1.38	1.45	1.41	0.04			
	L159													
	L160													
	L166													
	L168	20.2	20.8	21.4	20.8	0.6	1.26	1.39	1.40	1.35	0.08			
	L170	30.6	29.9	29.1	29.9	0.8								
	L171													
	L172													
	L177													
	L178	10.0	11.2	10.1	11.4	0.6	(0.200	- 0.200	< 0.200					
~	L1/9	Consonsus l	Mean	12.1	23.0	0.6	< 0.380	< 0.380 Mean	< 0.380	2 20				
nity s		Consensus S	Standard Dev	viation	4.9		Consensus	Standard De	eviation	2.39 1.45				
nmu		Maximum			69422.3		Maximum			111.67				
Con Re		Minimum			11.4		Minimum			1.10				
0		Ν			23		Ν			19				

 Table 7. Data summary table for biotin in dietary supplements.

Figure 10. Biotin in SRM 3290 Dry Cat Food (data summary view – sample preparation and analytical method). In this view, individual laboratory data are plotted (circles) with the individual laboratory standard deviation (rectangle). The color of the data point represents the sample preparation procedure and analytical method employed. The black solid line represents the consensus mean, and the green shaded region represents the range of tolerance, calculated as the values above and below the consensus mean that result in an acceptable Z' score, $|Z'| \leq 2$. The red shaded region represents the target zone for "acceptable" performance, which encompasses the NIST certified value bounded by twice its uncertainty (U_{95}).

Figure 11. Biotin in SRM 3280 Multivitamin/Multielement Tablets (data summary view – sample preparation and analytical method). In this view, individual laboratory data are plotted (circles) with the individual laboratory standard deviation (rectangle). The color of the data point represents the sample preparation procedure and analytical method employed. The black solid line represents the consensus mean, and the green shaded region represents the range of tolerance, calculated as the values above and below the consensus mean that result in an acceptable Z' score, $|Z'| \leq 2$. The red shaded region represents the target zone for "acceptable" performance, which encompasses the NIST certified value bounded by twice its uncertainty (U_{95}).

Figure 12. Biotin in SRM 3290 Dry Cat Food and SRM 3280 Multivitamin/Multielement Tablets (sample/sample comparison view). In this view, the individual laboratory results for one sample (cat food) are compared to the results for a second sample (multivitamin). The solid red box represents the target zone for the two samples, cat food (x-axis) and multivitamin (y-axis). The dotted blue box represents the consensus zone for cat food (x-axis) and multivitamin (y-axis).

XANTHOPHYLLS (LUTEIN AND ZEAXANTHIN) IN DIETARY SUPPLEMENTS

Study Overview

In this study, participants were provided with two NIST SRMs, SRM 2385 Slurried Spinach and SRM 3280 Multivitamin/ Multielement Tablets. Participants were asked to use in-house analytical methods to determine the mass fractions of lutein and zeaxanthin in each of the matrices and report values on an as-received basis.

Sample Information

Spinach. Participants were provided with one jar containing approximately 70 g of slurried spinach. The pureed spinach was blended, aliquotted, and sealed inside 2.5-oz. jars. Before use, participants were instructed to mix the contents of the jar thoroughly, and use a sample size of at least 1.5 g. Participants were asked to store the material under refrigeration, 0 °C to 4 °C, and to prepare three samples and report three values from the single jar provided. Approximate analyte levels were not reported to participants prior to the study. The certified value and uncertainty for total lutein in SRM 2385 was determined at NIST by LC-absorbance following solvent extraction with and without saponification, in combination with data from numerous collaborating laboratories. The certified value and uncertainty for zeaxanthin in SRM 2385 was determined at NIST by LC-absorbance following solvent extraction without saponification. The NIST-determined value and uncertainty are reported in the table below on an as-received basis.

	Certified Mass Fraction in SRM 2385 (mg/kg)
<u>Analyte</u>	(as-received basis)
Total Lutein	32.9 ± 6.5
	NIST-Determined Mass Fraction in SRM 2385 (mg/kg)
<u>Analyte</u>	(as-received basis)
Free Zeaxanthin	0.450 ± 0.080

Multivitamin/Multielement Tablets. Participants were provided with one bottle containing 30 multivitamin/multielement tablets. Before use, participants were instructed to grind all 30 tablets, mix the resulting powder thoroughly, and use a sample size of at least 2.0 g. Participants were asked to store the material at controlled room temperature, 10 °C to 30 °C, prepare three samples, and report three values from the single bottle provided. Approximate analyte levels were not reported to participants prior to the study. The certified value and uncertainty for lutein in SRM 3280 was determined by LC-absorbance following solvent extraction, in combination with data from numerous collaborating laboratories. The certified value and uncertainty are reported in the table below on a dry-mass basis and after correction for moisture of the material (1.37 %). The target value and uncertainty for zeaxanthin in SRM 3280 was determined at NIST by LC-absorbance following solvent extraction. The NIST-determined value and uncertainty are reported in the table below on an as-received basis.

	Certified Mass Fraction in SRM 3280 (mg/kg)							
<u>Analyte</u>	<u>(dry-mass basis)</u>	(as received basis)						
Total Lutein	205 ± 50	202 ± 49						

NIST-Determined Mass Fraction in SRM 3280 (mg/kg)

Analyte	(as-received basis)
Total Zeaxanthin	5.4 ± 0.5

Study Results

- Forty laboratories enrolled in this exercise and received samples.
 - Thirteen laboratories reported results for lutein in the spinach sample (33 % • participation). Seven laboratories reported results for zeaxanthin in the spinach sample (18 % participation). Thirteen and five laboratories were used, respectively, for calculation purposes, see Statistics, page 3.
 - Sixteen laboratories reported results for lutein in the multivitamin (40 % participation). • Twelve laboratories reported results for zeaxanthin in the multivitamin (30 % participation). Sixteen and 12 laboratories were used, respectively, for calculation purposes, see Statistics, page 3.
- The consensus mean for lutein in the spinach was near the bottom of the target range with high between-laboratory variability (37 % RSD). The consensus mean for lutein in the multivitamin was within the target range with acceptable between-laboratory variability (15 % RSD).
- The consensus mean for zeaxanthin in the spinach was above the target range with • extremely high between-laboratory variability (>100 % RSD). The consensus mean for zeaxanthin in the multivitamin was above the target range with high between-laboratory variability (30 % RSD).
- A majority of the laboratories reported using solvent extraction (86 %) as the sample preparation method. Some laboratories also reported using saponification (7 %), dilution (7 %), or no sample preparation technique (7 %).
- A majority of the laboratories reported using LC-absorbance (87 %) as their instrumental method for analysis. HPLC (7 %) and LC with a Diode Array Detector (LC-DAD, 7 %) were also reported by some laboratories.

Technical Recommendations

The following recommendations are based on results obtained from the participants in this study.

- Care should be taken to minimize losses during the extraction process, during solvent • evaporation, and by carefully washing down container walls with several rinses during each step to ensure complete dissolution of any residues.
- In general, laboratories reporting more vigorous extraction procedures, i.e. those using • hexanes and longer extraction times, reported results closer to the target value.
- Since loss by photodecomposition is possible, care should be taken to prevent such losses (use of amber vials, aluminum foil, and/or reduced lighting).
- When using LC-absorbance, chromatographic coelutions may cause results to be biased • high. This is particularly important if monitoring the absorbance in the UV where many

other compounds may also have chromophores. To avoid a high bias, more selective detectors (fluorescence, mass spectrometry) or chromatography with alternate selectivity may be used.

- When making calibration solutions make sure they are of known quality. These may need to be tested before running samples, which may include determination of purity by chromatographic and spectroscopic methods.
- If using an internal standard, the internal standard must behave similarly to the analyte of interest in extraction, chromatographic analysis, and detection.

National Institute of Standards & Technology

	Lab Code:	NIST		1. Your Results			2. Co	mmunity H	3. Target		
Analyte	Sample	Units	x _i	s _i	Z' _{comm}	Z _{NIST}	Ν	x*	s*	X _{NIST}	U_{95}
Lutein	Multivitamin	mg/kg	202	99		0.00	16	175	27	202	99
Lutein	Spinach	mg/kg	32.9	13.0		0.00	13	21.5	8.0	32.9	13.0
Zeaxanthin	Multivitamin	mg/kg	5.40	0.52		0.00	12	11.09	3.30	5.40	0.52
Zeaxanthin	Spinach	mg/kg	0.450	0.160		0.00	5	1.591	1.746	0.450	0.160

Exercise L - October 2015 - Xanthophylls

x_i Mean of reported values

si Standard deviation of reported values

Z'_{comm} Z'-score with respect to community consensus

Z_{NIST} Z-score with respect to NIST value

N Number of quantitative values reported

x* Robust mean of reported values s* Robust standard deviation

		Lutein												
		SI	RM 3280 M	ultivitaminT	ablets (mg/kg	g)	S	SRM 2385 S	Slurried Spin	nach (mg/kg))			
	Lab	Α	В	С	Avg	SD	Α	В	С	Avg	SD			
	NIST				202	99				32.9	13.0			
	L101													
	L102													
	L103													
	L104													
	L105													
	L107	166	164	165	165	1	18.6	18.8	18.6	18.7	0.1			
	L110	167	171	160	166	6								
	L111	108	104	111	108	4								
	L112													
	L113	180	181	169	177	7	24.9	24.2	24.2	24.4	0.4			
	L116													
	L117													
	L118	200	186	187	191	8	25.2	24.2	25.6	25.0	0.7			
	L119	152	148	141	147	5	7.2	7.2	7.4	7.3	0.1			
s	L121	144	177	155	159	17	20.5	19.7	19.8	20.0	0.5			
sults	L122													
Res	L123	269	251	263	261	9	8.6	9.8	8.7	9.0	0.7			
lual	L128	174	154	175	168	12	21.0	21.0	21.0	21.0	0.0			
dividu	L130													
Inc	L134													
	L137	166	156	173	165	8	19.3	19.5	24.1	21.0	2.7			
	L138													
	L139	164	178	159	167	10	20.8	20.8	22.6	21.4	1.0			
	L144						_							
	L145													
	L150						_							
	L158													
	L159													
	L166													
	L167	225	211	221	219	7	30.3	33.0	29.8	31.0	1.7			
	L168	162	174	169	168	6	28.1	26.1	26.2	26.8	1.2			
	L170	182	181	181	181	1	_	_			_			
	L171	975	1015	1035	1008	31	43.0	44.0	42.0	43.0	1.0			
	L172		_	_		_	_	_			_			
	L177	150	105				1.5.0							
	L179	173	185	161	173	12	17.8	17.9	17.7	17.8	0.1			
nity s		Consensus I	Viean	intion	175		Consensus	Mean	21.5					
sult		Maximum	Standard Dev	auon	27 1008		Maximum	Standard De	eviation 8.0 43.0					
Com		Minimum			108		Minimum			7.3				
)		Ν			16		Ν			13				

 Table 9. Data summary table for lutein in dietary supplements.

						Zeax	anthin					
		SR	M 3280 Mu	ıltivitaminT	ablets (mg/	kg)	S	RM 2385 S	Slurried Spin	nach (mg/kg	g)	
	Lab	Α	В	С	Avg	SD	Α	В	С	Avg	SD	
	NIST				5.4	0.5				0.450	0.160	
	L101											
	L102											
	L103											
	L104											
	L105											
	L107	13.4	13.7	13.7	13.6	0.2	0.638	0.646	0.644	0.643	0.004	
	L110	13.0	13.4	12.5	13.0	0.5						
	L111	7.5	7.4	7.8	7.6	0.2						
	L112											
	L113	12.5	12.6	11.5	12.2	0.6	3.053	2.898	3.013	2.988	0.080	
	L116											
	L117											
sults	L118	12.1	11.2	11.0	11.4	0.6	< 1.000	< 1.000	< 1.000			
	L121	8.9	8.3	10.1	9.1	0.9	0.459	0.397	0.453	0.436	0.034	
Res	L122											
lividual	L128	13.0	10.0	13.0	12.0	1.7						
	L130											
Ind	L137	7.1	6.9	8.8	7.6	1.1						
	L138											
	L139	13.5	12.0	12.0	12.5	0.9	< 1.000	< 1.000	< 1.000			
	L144											
	L150											
	L158											
	L159											
	L160											
	L166											
	L167	31.4	29.6	33.4	31.5	1.9	3.900	3.400	3.300	3.533	0.321	
	L168											
	L170	11.9	12.3	11.6	11.9	0.4						
	L172											
	L177											
	L179	4.7	4.7	4.6	4.7	0.1	0.350	0.360	0.360	0.357	0.006	
y		Consensus	Mean		11.1		Consensus	Mean		1.591		
unit; lts		Consensus	Standard De	viation	3.3		Consensus	Standard De	andard Deviation 1.746			
nmn esul		Maximum			31.5		Maximum			3.533		
Col		Minimum			4.7		Minimum			0.357		
		Ν			12		Ν			5		

 Table 10. Data summary table for zeaxanthin in dietary supplements.

Figure 13. Lutein in SRM 2385 Slurried Spinach (data summary view – sample preparation and analytical method). In this view, individual laboratory data are plotted (circles) with the individual laboratory standard deviation (rectangle). The color of the data point represents the sample preparation procedure and analytical method employed. The black solid line represents the consensus mean, and the green shaded region represents the range of tolerance, calculated as the values above and below the consensus mean that result in an acceptable Z' score, $|Z'| \leq 2$. The red shaded region represents the target zone for "acceptable" performance, which encompasses the NIST certified value bounded by twice its uncertainty (U_{95}).

Figure 14. Lutein in SRM 3280 Multivitamin/Multielement Tablets (data summary view – sample preparation and analytical method). In this view, individual laboratory data are plotted (circles) with the individual laboratory standard deviation (rectangle). The color of the data point represents the sample preparation procedure and analytical method employed. The black solid line represents the consensus mean, and the green shaded region represents the range of tolerance, calculated as the values above and below the consensus mean that result in an acceptable Z' score, $|Z'| \leq 2$. The red shaded region represents the target zone for "acceptable" performance, which encompasses the NIST-determined value bounded by twice its uncertainty (U_{95}).

Figure 15. Zeaxanthin in SRM 2385 Slurried Spinach (data summary view – sample preparation and analytical method). In this view, individual laboratory data are plotted (circles) with the individual laboratory standard deviation (rectangle). The color of the data point represents the sample preparation procedure and analytical method employed. The black solid line represents the consensus mean, and the green shaded region represents the range of tolerance, calculated as the values above and below the consensus mean that result in an acceptable Z' score, $|Z'| \leq 2$. The red shaded region represents the target zone for "acceptable" performance, which encompasses the NIST certified value bounded by twice its uncertainty (U_{95}).

Figure 16. Zeaxanthin in SRM 3280 Multivitamin/Multielement Tablets (data summary view – sample preparation and analytical method). In this view, individual laboratory data are plotted (circles) with the individual laboratory standard deviation (rectangle). The color of the data point represents the sample preparation procedure and analytical method employed. The black solid line represents the consensus mean, and the green shaded region represents the range of tolerance, calculated as the values above and below the consensus mean that result in an acceptable Z' score, $|Z'| \leq 2$. The red shaded region represents the target zone for "acceptable" performance, which encompasses the NIST-determined value bounded by twice its uncertainty (U_{95}).

Figure 17. Lutein in SRM 2385 Slurried Spinach and SRM 3280 Multivitamin/Multielement Tablets (sample/sample comparison view). In this view, the individual laboratory results for one sample (spinach) are compared to the results for a second sample (multivitamin). The solid red box represents the target zone for the two samples, spinach (x-axis) and multivitamin (y-axis). The dotted blue box represents the consensus zone for spinach (x-axis) and multivitamin (y-axis).

Figure 18. Zeaxanthin in SRM 2385 Slurried Spinach and SRM 3280 Multivitamin/Multielement Tablets (sample/sample comparison view). In this view, the individual laboratory results for one sample (spinach) are compared to the results for a second sample (multivitamin). The solid red box represents the target zone for the two samples, spinach (x-axis) and multivitamin (y-axis). The dotted blue box represents the consensus zone for spinach (x-axis) and multivitamin (y-axis).

Measurand: Zeaxanthin, DSQAP Exercise L No. of laboratories: 5

FATTY ACIDS IN FISH OILS

Study Overview

In this study, participants were provided with two NIST SRMs, SRM 3275-I Omega-3 and Omega-6 Fatty Acids in Fish Oil and SRM 3275-III Omega-3 and Omega-6 Fatty Acids in Fish Oil. Participants were asked to use in-house analytical methods to determine the mass fractions of six fatty acids (linoleic acid, α -linolenic acid, γ -linolenic acid, arachidonic acid, EPA, and DHA) in each of the matrices and report values on an as-received basis as fatty acid methyl esters (FAMEs).

Sample Information

Fish Oil 1. Participants were provided with three ampoules containing 1.2 mL of fish oil concentrate high in DHA. The fish oil was combined with mixed natural tocopherols (minimum 1 mg/g) as an antioxidant and ampouled under argon into 2 mL amber ampoules. Before use, participants were instructed to mix the contents of each ampoule thoroughly and use a sample size of at least 0.5 g. Participants were asked to store the material under refrigeration, 0 °C to 4 °C, and report a single value from each ampoule provided. Approximate analyte levels were not reported to participants prior to the study. The certified and reference values and uncertainties for fatty acids in SRM 3275-I were determined at NIST by gas chromatography with mass spectrometric detection (GC-MS) and GC with flame ionization detection (GC-FID). The certified and reference values and uncertainties are reported in the table below on an as-received basis.

	Certified and Reference Mass Fraction
Analyte	in SRM 3275-I (mg/g as FAME)
Linoleic Acid	2.31 ± 0.19
α-Linolenic Acid	1.21 ± 0.05
γ-Linolenic Acid	0.344 ± 0.025
Arachidonic Acid	5.69 ± 0.19
EPA	113 ± 12
DHA	429 ± 15

Fish Oil 2. Participants were provided with three ampoules containing 1.2 mL of fish oil concentrate containing 60 % long-chain omega-3 fatty acids. The fish oil was combined with mixed natural tocopherols (minimum 1 mg/g) as an antioxidant and ampouled under argon into 2 mL amber ampoules. Before use, participants were instructed to mix the contents of each ampoule thoroughly and use a sample size of at least 0.5 g. Participants were asked to store the material under refrigeration, 0 °C to 4 °C, and report a single value from each ampoule provided. Approximate analyte levels were not reported to participants prior to the study. The certified and reference values and uncertainties for fatty acids in SRM 3275-I were determined at NIST by gas chromatography with mass spectrometric detection (GC-MS) and GC with flame ionization detection (GC-FID). The certified and reference values and uncertainties are reported in the table below on an as-received basis.

	Certified and Reference Mass Fraction
Analyte	in SRM 3275-III (mg/g as FAME)
Linoleic Acid	13.49 ± 0.45
α-Linolenic Acid	6.61 ± 0.31
γ-Linolenic Acid	1.771 ± 0.099
Arachidonic Acid	not assigned
EPA	154 ± 9
DHA	104 ± 5

Study Results

- Forty laboratories enrolled in this exercise and received samples. Seventeen to twentythree laboratories reported results (43 % to 58 % participation), depending on the analyte and matrix combination.
- In the first fish oil sample (SRM 3275-I, a concentrate high in DHA), the consensus means for all fatty acids were within the target ranges.
 - While within the target ranges, the consensus means for γ -linolenic acid, arachidonic acid, and DHA were near the upper bounds of the respective target ranges.
 - The between-laboratory variability for EPA and DHA was excellent at 10 % and 14 % RSD, respectively.
 - The variabilities for linoleic acid, α -linolenic acid, and arachidonic acid were acceptable at 25 % to 31 % RSD.
 - Results for γ-linolenic acid displayed very high between-laboratory variability (76 % RSD).
- In the second fish oil sample (SRM 3275-III, a concentrate containing 60 % long-chain omega-3 fatty acids), only the consensus means for α -linolenic acid, EPA, and DHA were within the target ranges.
 - While within the target ranges, the consensus means for α -linolenic acid and EPA were near the lower bounds of the respective target ranges. The consensus mean for DHA was near the upper bounds of the target range.
 - The consensus mean for linoleic acid was below the target range.
 - The consensus mean for γ -linolenic acid was above the target range.
 - No target range was provided for arachidonic acid.
 - The between-laboratory variability for EPA and DHA was acceptable at 22 % and 28 % RSD, respectively.
 - The variabilities for linoleic acid, α -linolenic acid, γ -linolenic acid, and arachidonic acid were high at 32 % to 57 % RSD.
- A majority of laboratories reported using saponification or base hydrolysis (41 %) or derivatization (36 %) for sample preparation. Other reported techniques included acid hydrolysis (9 %), solvent extraction (9 %), and dilution (5 %).
- A majority of laboratories reported using gas chromatography with flame ionization detection (GC-FID) as their analytical method of analysis (91 %). GC with mass spectrometric detection (GC-MS) was also reported (9 %).

Technical Recommendations

The following recommendations are based on results obtained from the participants in this study.

- With a small number of laboratories reporting data for these fatty acids, and a majority reporting use of the same or very similar methods, drawing extensive technical conclusions is difficult.
- Participants were asked to report concentrations for fatty acids as fatty acid methyl esters (FAMEs). In this case, FAMEs should be used as calibrants or non-esterified fatty acids should be carried through the entire sample preparation procedure (hydrolysis and derivatization) to improve quantitation.
- Knowledge of calibrant response when carried through the derivatization procedure is necessary. For example, at NIST, calibrants for EPA and DPA give response factors of 1.3 and 1.6, respectively, corresponding to 30 % or 60 % low bias in the quantitation of these compounds if not considered.
- Similarly, for those laboratories using GC-MS, quantitation for some compounds may be inaccurate as a result of non-unity response factors from EI fragmentation.

National Institute of Standards & Technology

Exercise L - October 2013 - Faity Actus										
Lab Code:	NIST		1. Your	Results		2. Co	mmunity H	Results	3. Ta	arget
Sample	Units	Xi	s _i	Z' _{comm}	Z _{NIST}	Ν	x*	s*	X _{NIST}	U_{95}
Fish Oil 1	mg/g	2.31	0.38		0.00	20	2.24	0.57	2.31	0.38
Fish Oil 2	mg/g	13.49	0.90		0.00	20	11.28	3.62	13.49	0.90
Fish Oil 1	mg/g	1.21	0.10		0.00	19	1.26	0.35	1.21	0.10
Fish Oil 2	mg/g	6.61	0.62		0.00	20	6.31	2.31	6.61	0.62
Fish Oil 1	mg/g	0.344	0.050		0.00	14	0.389	0.297	0.344	0.050
Fish Oil 2	mg/g	1.77	0.20		0.00	18	2.12	1.21	1.77	0.20
Fish Oil 1	mg/g	5.69	0.38		0.00	18	6.02	1.85	5.69	0.38
Fish Oil 2	mg/g					18	11.0	4.4		
Fish Oil 1	mg/g	113	24		0.00	22	109	11	113	24
Fish Oil 2	mg/g	154	18		0.00	21	145	32	154	18
Fish Oil 1	mg/g	429	30		0.00	22	448	63	429	30
Fish Oil 2	mg/g	104	10		0.00	21	109	31	104	10
	Lab Code: Sample Fish Oil 1 Fish Oil 2 Fish Oil 2 Fish Oil 2 Fish Oil 2 Fish Oil 2 Fish Oil 1 Fish Oil 2 Fish Oil 1 Fish Oil 2 Fish Oil 1 Fish Oil 2	Lab Code:NISTSampleUnitsFish Oil 1mg/gFish Oil 2mg/gFish Oil 1mg/gFish Oil 1mg/gFish Oil 1mg/gFish Oil 1mg/gFish Oil 2mg/gFish Oil 1mg/gFish Oil 2mg/gFish Oil 1mg/gFish Oil 2mg/gFish Oil 1mg/gFish Oil 1mg/gFish Oil 2mg/gFish Oil 1mg/gFish Oil 1mg/gFish Oil 1mg/gFish Oil 1mg/gFish Oil 1mg/gFish Oil 1mg/g	Lab Code: NIST Sample Units x _i Fish Oil 1 mg/g 2.31 Fish Oil 2 mg/g 13.49 Fish Oil 1 mg/g 6.61 Fish Oil 2 mg/g 6.61 Fish Oil 2 mg/g 1.77 Fish Oil 1 mg/g 5.69 Fish Oil 2 mg/g 113 Fish Oil 1 mg/g 154 Fish Oil 2 mg/g 143 Fish Oil 1 mg/g 144 Fish Oil 2 mg/g 143 Fish Oil 1 mg/g 1429 Fish Oil 1 mg/g 154 Fish Oil 2 mg/g 104	Lab Code: NIST 1. Your Sample Units X _i S _i Fish Oil 1 mg/g 2.31 0.38 Fish Oil 2 mg/g 13.49 0.90 Fish Oil 1 mg/g 1.21 0.10 Fish Oil 2 mg/g 6.61 0.62 Fish Oil 2 mg/g 1.77 0.20 Fish Oil 1 mg/g 5.69 0.38 Fish Oil 2 mg/g 113 24 Fish Oil 1 mg/g 154 18 Fish Oil 1 mg/g 154 18 Fish Oil 1 mg/g 104 10	Lab Code: NIST I. Your Results Sample Units x_i s_i Z'_{comm} Fish Oil 1 mg/g 13.49 0.90 Fish Oil 2 mg/g 13.49 0.90 Fish Oil 1 mg/g 6.61 0.62 Fish Oil 2 mg/g 1.77 0.20 Fish Oil 2 mg/g 5.69 0.38 Fish Oil 1 mg/g 5.69 0.38 Fish Oil 2 mg/g 113 24 Fish Oil 1 mg/g 154 18 Fish Oil 1 mg/g 12 30 Fish Oil 1 mg/g 10 10	Lab Code: NIST 1. Your Results Sample Units x_i s_i Z'_{comm} Z_{NIST} Fish Oil 1 mg/g 2.31 0.38 0.00 Fish Oil 2 mg/g 13.49 0.90 0.00 Fish Oil 1 mg/g 1.21 0.10 0.00 Fish Oil 2 mg/g 6.61 0.62 0.00 Fish Oil 1 mg/g 0.344 0.050 0.00 Fish Oil 2 mg/g 1.77 0.20 0.00 Fish Oil 1 mg/g 5.69 0.38 0.00 Fish Oil 1 mg/g 113 24 0.00 Fish Oil 1 mg/g 154 18 0.00 Fish Oil 1 mg/g 124 0.00 0.00 Fish Oil 1	Lab Code: NIST 1. Your Results 2. Common Commo	Lab Code:NIST1. Your Results2. Community FSampleUnits x_i s_i Z'_{comm} Z_{NIST} N x^* Fish Oil 1mg/g2.310.380.00202.24Fish Oil 2mg/g13.490.900.002011.28Fish Oil 1mg/g1.210.100.00191.26Fish Oil 2mg/g6.610.620.00206.31Fish Oil 1mg/g0.3440.0500.00140.389Fish Oil 2mg/g1.770.200.00182.12Fish Oil 1mg/g5.690.380.00186.02Fish Oil 2mg/g113240.0022109Fish Oil 1mg/g154180.0021145Fish Oil 1mg/g154180.0021145Fish Oil 1mg/g104100.0021109	Lab Code:NIST1. Your Results2. Community ResultsSampleUnits x_i s_i Z'_{comm} Z_{NIST} N x^* s^* Fish Oil 1mg/g2.310.380.00202.240.57Fish Oil 2mg/g13.490.900.002011.283.62Fish Oil 1mg/g1.210.100.00191.260.35Fish Oil 2mg/g6.610.620.00206.312.31Fish Oil 1mg/g0.3440.0500.00140.3890.297Fish Oil 2mg/g1.770.200.00182.121.21Fish Oil 1mg/g5.690.380.00186.021.85Fish Oil 2mg/g113240.002210911Fish Oil 1mg/g154180.002114532Fish Oil 1mg/g104100.002110931	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Exercise L - October 2015 - Fatty Acids

x_i Mean of reported values

- s_i Standard deviation of reported values
- Z'_{comm} Z'-score with respect to community consensus
- N Number of quantitative values reportedx* Robust mean of reported
- x* Robust mean of reported values
 s* Robust standard deviation

Z_{NIST} Z-score with respect to NIST value

Linoleic Acid												
	SRM 3	275-I Fish O	il (mg/g)			SRM 327	75-III Fish	Oil (mg/g)				
Α	В	С	Avg	SD	Α	В	С	Avg	SD			
			2.31	0.38				13.49	0.90			
2.37	2.33	2.30	2.33	0.04	12.20	12.20	12.20	12.20	0.00			
2.43	2.55	< 1.00	2.49	0.08	2.43	2.50	2.72	2.55	0.15			
2.91	2.89	2.87	2.89	0.02	16.10	16.20	15.95	16.08	0.13			
2.14	2.16	2.15	2.15	0.01	11.85	11.87	11.87	11.86	0.01			
3.76	3.60	3.68	3.68	0.08	18.53	18.09	18.31	18.31	0.22			
					11.80	11.80	11.90	11.83	0.06			
2.07	2.09	2.00	2.05	0.05								
1.10	0.93	0.96	1.00	0.09	9.14	9.37	9.40	9.30	0.14			
2.04	2.08	2.08	2.07	0.02	11.75	11.50	11.61	11.62	0.13			
3.00	3.00	3.00	3.00	0.00	15.00	15.00	14.00	14.67	0.58			
0.99	0.56	0.63	0.73	0.23	4.37	4.29	3.40	4.02	0.54			
2.15	2.14	2.23	2.17	0.05	10.11	10.37	10.47	10.32	0.19			
1.50	1.50	1.40	1.47	0.06	10.60	10.60	10.60	10.60	0.00			
2.19	2.10	2.10	2.13	0.05	12.03	12.14	12.24	12.14	0.11			
3.07	3.57	3.63	3.42	0.31	13.50	13.90	14.00	13.80	0.26			
2.29	2.29	2.57	2.38	0.16	2.37	2.34	2.62	2.44	0.15			
	2.20	2.20	2.20	0.00		11.90	12.00	11.95	0.07			
2.11	2.14	2.12	2.12	0.02	11.90	12.00	11.90	11.93	0.06			
2.09	2.12	2.15	2.12	0.03	13.98	14.05	14.09	14.04	0.06			
2.00	2.10	2.04	2.05	0.05	11.87	11.83	11.97	11.89	0.07			
2.20	2.20	2.20	2.20	0.00	6.90	6.30	7.90	7.03	0.81			
Consensus	Mean		2.24		Consensus	Mean		11.28				
Consensus	Standard De	eviation	0.57		Consensus	Standard De	3.62					
Maximum			3.68		Maximum		18.31					
Minimum			0.73		Minimum		2.44					
Ν			20		Ν			20				

 Table 12. Data summary table for linoleic acid in fish oils.

						α-Linolenic Acid						
			SRM 327	/5-I Fish (Oil (mg/g)		S	SRM 327	5-III Fish (Oil (mg/g))	
	Lab	Α	В	С	Avg	SD	Α	В	С	Avg	SD	
	NIST				1.21	0.10				6.61	0.62	
	L103											
	L104											
	L105											
	L107	1.25	1.28	1.27	1.27	0.02	7.02	6.97	6.95	6.98	0.04	
	L110											
	L111	< 1.00	< 1.00	< 1.00			1.89	1.60	< 1.00	1.75	0.21	
	L112											
	L113	1.71	1.70	1.69	1.70	0.01	9.25	9.30	9.14	9.23	0.08	
	L114											
	L116	1.20	1.21	1.20	1.20	0.01	6.68	6.68	6.69	6.68	0.01	
	L117											
	L121	1.10	1.10	1.30	1.17	0.12	7.00	6.90	7.00	6.97	0.06	
	L125	1.21	1.23	1.19	1.21	0.02						
	L129											
	L130			0.00	0.04	0.04		2.0.6			0.01	
	L131	0.21	0.20	0.22	0.21	0.01	3.98	3.96	4.51	4.15	0.31	
	L133											
ts	L134	1.15	0.00	1.00	1.07	0.00	7.04	6.00	7.00	7.02	0.01	
esul	L135	1.15	0.80	1.23	1.06	0.23	7.06	6.99	7.03	7.03	0.04	
ndividual R	L136	2.00	2.00	2.00	2.00	0.00	9.00	9.30	9.00	9.10	0.17	
	L137	1.24	1.24	1.25	1.29	0.06	2.40	2.40	1.78	2.19	0.30	
	L139	1.24	1.24	1.55	1.28	0.06	0.40	0.79	0.04	0.01	0.20	
IJ	L140											
	L144	0.60	0.60	0.70	0.63	0.06	5.90	6.00	5.90	5.03	0.06	
	L140 I 149	1.16	1.13	1.16	1.15	0.02	6.45	6.64	6.38	5.75 6.49	0.00	
	L151	1.10	1.15	1.10	1.15	0.02	0.45	0.04	0.50	0.49	0.15	
	L151	1.66	1.71	1.75	1.71	0.05	7 40	7.55	7.72	7.56	0.16	
	L155	1100	11/1	1170	11/1	0100	7110	100		1100	0110	
	L157											
	L158	1.33	1.33	1.29	1.32	0.02	1.28	1.20	1.21	1.23	0.04	
	L159											
	L160		1.40	1.40	1.40	0.00		7.00	7.00	7.00	0.00	
	L164											
	L165	1.75	1.79	1.76	1.77	0.02	10.60	10.80	10.80	10.73	0.12	
	L168	1.13	1.21	1.16	1.17	0.04	7.02	7.15	7.09	7.09	0.07	
	L170	0.90	0.97	0.94	0.94	0.04	6.22	6.15	6.24	6.20	0.05	
	L172											
	L176											
	L177											
	L179	1.20	1.10	1.20	1.17	0.06	4.00	3.60	4.50	4.03	0.45	
	L182	1.21	1.20	1.27	1.23	0.04	6.72	6.84	6.74	6.77	0.06	
Ŋ	_	Consensu	is Mean		1.26		Consensu	s Mean		6.31		
unit Its		Consensu	us Standard	Deviation	0.35		Consensu	s Standard	l Deviation	2.31		
mm tesu		Maximun	n		2.00		Maximum	1		10.73		
C0 B		Minimum	L		0.21		Minimum			1.23		
<u> </u>		Ν			19		Ν			20		

Table 13. Data summary table for α -linolenic acid in fish oils.

		γ-Linolenic Acid									
			SRM 322	75-I Fish (Dil (mg/g)		SRM 3275-III Fish Oil (mg/g)				
_	Lab	Α	В	С	Avg	SD	Α	В	С	Avg	SD
	NIST				0.344	0.050				1.77	0.20
	L103										
	L104										
	L105										
	L107	< 0.550	< 0.550	< 0.550			1.79	1.99	1.95	1.91	0.11
	L110										
	L111	< 1.000	< 1.000	< 1.000			6.32	< 1.000	< 1.000	6.32	
	L112										
	L113	0.466	0.446	0.457	0.456	0.010	2.87	2.89	2.84	2.87	0.03
	L114										
	L116	0.290	0.260	0.270	0.273	0.015	1.90	1.90	1.88	1.89	0.01
	L117										
	L121						2.40	2.50	2.40	2.43	0.06
	L125	0.242	0.265	0.251	0.253	0.012					
	L129										
	L130										
	L131	0.060	0.059	0.060	0.060	0.001	3.09	3.10	3.34	3.18	0.14
	L133										
s	L134										
Individual Results	L135	0.001	0.001	0.001	0.001	0.000	1.64	1.68	1.53	1.62	0.08
	L136	13.000	13.000	13.000	13.000	0.000	11.00	9.00	4.00	8.00	3.61
	L137						0.29	0.44	0.29	0.34	0.09
	L139	0.110	0.120	0.110	0.113	0.006	0.33	0.37	0.33	0.34	0.02
	L140										
	L144										
	L146	2.900	2.700	2.800	2.800	0.100	3.10	3.20	3.20	3.17	0.06
	L149	0.275	0.367	0.308	0.317	0.047	1.79	1.84	1.84	1.82	0.03
	L151										
	L152	0.470	0.620	0.610	0.567	0.084	2.44	2.35	2.35	2.38	0.05
	L155										
	L157	0.460	0.500	0.070	0.447	0.0(1	0.40	0.60	0.55	0.50	0.16
	L158	0.460	0.580	0.960	0.667	0.261	0.40	0.68	0.66	0.58	0.16
	L159		0.270	0.250	0.260	0.014		2.00	2.00	2.00	0.00
	L160		0.370	0.350	0.360	0.014		2.00	2.00	2.00	0.00
	L164	< 0.100	< 0.100	< 0.100			2.46	2 49	2.45	2 16	0.02
	L103	< 0.100	< 0.100	< 0.100	0.412	0.021	2.40	2.40	2.43	2.40	0.02
	L108	0.390	0.420	0.430	0.415	0.021	1.62	1.95	1.69	1.00	0.00
	L170										
	L172										
	L170										
	L179	0.300	0 300	0.300	0.300	0.000	1 30	1 20	1.50	1 33	0.15
	L182	0.000	0.500	0.500	0.500	0.000	1.50	1.20	1.50	1.55	0.15
	2102	Consensi	ıs Mean		0.389		Consensi	us Mean		2.12	
nity s		Consensu	is Standard	Deviation	0.297		Consensus Standard Deviation			1 21	
sult		Maximum	1		13.000		Maximur	n		8.00	
Re		Minimum	1		0.001		Minimum	1		0.34	
-		N			14		N			18	

Table 14. Data summary table for γ -linolenic acid in fish oils.

						onic Acid					
			SRM 327	75-I Fish (Oil (mg/g)		SRM 3275-III Fish Oil (mg/g)				
	Lab	А	В	С	Avg	SD	Α	В	С	Avg	SD
	NIST				5.69	0.38					
	L103										
	L104										
	L105										
	L107	5.94	5.89	5.87	5.90	0.04	13.20	13.10	13.20	13.17	0.06
	L110										
	L111	7.26	6.68	7.01	6.98	0.29	6.30	6.93	6.69	6.64	0.32
	L112										
	L113	8.32	8.35	8.28	8.31	0.04	17.33	17.45	17.19	17.32	0.13
	L114										
	L116	6.07	6.10	6.14	6.10	0.04	12.89	12.85	12.81	12.85	0.04
	L117										
	L119	5.55	5.58	5.56	5.56	0.02	12.88	12.73	12.80	12.80	0.08
	L121						13.10	13.00	13.00	13.03	0.06
	L125	11.80	12.00	11.70	11.83	0.15					
	L129										
	L130										
	L131	3.24	3.19	2.88	3.10	0.20	7.82	8.36	9.17	8.45	0.68
ts	L134										
esul	L135	5.33	5.42	5.49	5.41	0.08	12.49	12.31	12.49	12.43	0.10
ıl R	L136	1.00	1.00	1.00	1.00	0.00	3.00	11.00	10.00	8.00	4.36
idu	L137	2.32	1.97	1.95	2.08	0.21	4.58	4.73	3.57	4.29	0.63
Indiv	L139	6.33	6.20	6.08	6.20	0.13	14.72	15.06	15.42	15.07	0.35
	L140										
	L144										
	L146	7.00	7.10	7.00	7.03	0.06	13.90	13.80	13.80	13.83	0.06
	L149	6.97	6.68	7.05	6.90	0.19	13.23	13.09	13.47	13.26	0.19
	L151										
	L152	7.84	8.18	8.24	8.09	0.22	14.80	15.30	15.30	15.13	0.29
	L155										
	L157										
	L158	7.00	6.74	6.65	6.80	0.18	6.96	6.75	6.59	6.77	0.19
	L159										
	L164										
	L165										
	L168	5.02	5.20	5.16	5.13	0.09	0.98	0.89	0.93	0.93	0.05
	L170	5.59	5.77	5.65	5.67	0.09	13.04	12.87	13.08	13.00	0.11
	L172										
	L176										
	L177										
	L179	5.90	5.70	5.70	5.77	0.12	7.70	7.00	8.80	7.83	0.91
	L182										
ţ		Consensu	s Mean		6.02		Consensus Mean			11.02	
umi Its		Consensu	s Standard	Deviation	1.85		Consensus Standard Deviation			4.42	
mm tesu		Maximum	ı		11.83		Maximum			17.32	
		Minimum			1.00		Minimum			0.93	
		Ν			18		Ν		18		

Table 15. Data summary table for arachidonic acid in fish oils.

		EPA										
		SRM 3275-I Fish Oil (mg/g)					5	SRM 327	Oil (mg/g)			
	Lab	А	В	С	Avg	SD	Α	В	С	Avg	SD	
	NIST				113	24				154	18	
	L103											
	L104											
	L105											
	L107	107	107	108	107	1	155	155	154	155	1	
	L110											
	L111	110	118	112	113	4	111	113	114	113	2	
	L112											
	L113	142	144	142	143	1	206	207	205	206	1	
	L114											
	L116	112	112	112	112	0	157	158	158	158	1	
	L117											
	L119	110	110	110	110	0	157	156	157	157	1	
	L121	112	110	109	110	2	153	152	151	152	1	
	L125	106	107	104	106	2						
	L129											
	L130											
	L131	82	73	72	76	6	108	107	118	111	6	
	L133	114	115		115	1	111	112		112	1	
	L134											
ults	L135	99	102	104	102	3	148	149	147	148	1	
Individual Resu	L136	146	145	146	146	1	206	214	201	207	7	
	L137	45	37	37	40	5	58	59	47	55	7	
	L139	113	106	114	111	4	169	167	172	169	3	
	L140											
	L144											
	L146	103	103	101	102	1	146	146	145	146	1	
	L149	100	100	100	100	0	146	147	148	147	1	
	L151											
	L152	149	146	146	147	2	172	175	176	174	2	
	L155											
	L157											
	L158	106	106	106	106	0	106	106	106	106	0	
	L159											
	L160	92	95	94	94	2	136	137	135	136	1	
	L164											
	L165	110	111	109	110	1	159	160	160	160	1	
	L168	120	125	121	122	3	161	164	163	163	2	
	L170	104	108	106	106	2	158	156	158	157	1	
	L171											
	L172											
	L176											
	L177											
	L179	110	107	107			95	87	107			
	L182	107	107	109	108	1	153	155	153	154	1	
		Consensu	s Mean		109		Consensus Mean			145		
nity s		Consensu	s Standard	Deviation	11		Consensu	s Standard	Deviation	32		
sult		Maximum	ı		147		Maximum	ı		207		
Con Re		Minimum			40		Minimum			55		
•		Ν			22		Ν			21		

Table 16. Data summary table for EPA in fish oils.

		DHA										
	SRM 3275-I			75-I Fish (Dil (mg/g)		SRM 3275-III Fish Oil (mg/g))	
	Lab	A	В	С	Avg	SD	А	В	С	Avg	SD	
	NIST				429	30				104	10	
	L103											
	L104											
	L105											
	L107	428	427	430	428	2	102	102	102	102	0	
	L110											
	L111	438	474	450	454	18	441	443	452	445	6	
	L112											
	L113	569	574	568	570	3	136	137	135	136	1	
	L114											
	L116	500	502	500	501	1	108	108	109	108	1	
	L117											
	L119	427	430	429	429	2	103	101	102	102	1	
	L121	447	444	438	443	5	101	100	99	100	1	
	L125	411	419	415	415	4						
	L129											
	L130											
	L131	265	232	243	247	17	55	54	60	56	3	
	L133	525	528		527	2	492	493		493	1	
	L134											
ılts	L135	394	401	411	402	9	97	96	97	97	1	
Resi	L136	596	596	593	595	2	143	148	138	143	5	
I la I	L137	206	171	175	184	19	36	36	29	34	4	
Individu	L139	472	445	474	464	16	113	115	116	115	2	
	L140					-						
	L144											
	L146	407	409	405	407	2	98	99	98	98	1	
	L149	390	389	392	390	2	94	94	95	94	1	
	L151					_						
	L152	558	577	575	570	10	111	113	114	113	2	
	L155	000	511	0,0	0,0	10		110		110	-	
	L157											
	L157	427	424	424	425	2	428	424	423	425	3	
	L159	.27			120	-	120		.20	120	5	
	L160	410	420	418	416	5	99	101	99	100	1	
	L164										-	
	L165	500	498	489	496	6	112	112	111	112	1	
	L168	434	440	438	437	3	110	113	112	112	2	
	L170	437	445	439	440	4	104	103	104	104	1	
	L171	107	110	107	110		101	100	101	101		
	L172											
	L176											
	L177											
	L179	483	467	470			62	57	71			
	L182	430	430	434	431	2	101	103	101	102	1	
	2102	Consensu	is Mean		448	-	Consensu	s Mean	1.91	109	-	
nity ;		Consensu	is Standard	Deviation	63		Consensu	s Standard	Deviation	31		
sults		Maximum	1		595		Maximum			493		
om Re		Minimum	-		184		Minimum 24					
C		N			22		N			21		

Table 17. Data summary table for DHA in fish oils.

Figure 19. Linoleic acid in SRM 3275-I Omega-3 and Omega-6 Fatty Acids in Fish Oil (data summary view – sample preparation and analytical method). In this view, individual laboratory data are plotted (circles) with the individual laboratory standard deviation (rectangle). The color of the data point represents the sample preparation procedure and analytical method employed. The black solid line represents the consensus mean, and the green shaded region represents the range of tolerance, calculated as the values above and below the consensus mean that result in an acceptable Z' score, $|Z'| \leq 2$. The red shaded region represents the target zone for "acceptable" performance, which encompasses the NIST certified value bounded by twice its uncertainty (U_{25}).

Figure 20. Linoleic acid in SRM 3275-III Omega-3 and Omega-6 Fatty Acids in Fish Oil (data summary view – sample preparation and analytical method). In this view, individual laboratory data are plotted (circles) with the individual laboratory standard deviation (rectangle). The color of the data point represents the sample preparation procedure and analytical method employed. The black solid line represents the consensus mean, and the green shaded region represents the range of tolerance, calculated as the values above and below the consensus mean that result in an acceptable Z' score, $|Z'| \leq 2$. The red shaded region represents the target zone for "acceptable" performance, which encompasses the NIST certified value bounded by twice its uncertainty (U_{25}).

Figure 21. α -Linolenic acid in SRM 3275-I Omega-3 and Omega-6 Fatty Acids in Fish Oil (data summary view – sample preparation and analytical method). In this view, individual laboratory data are plotted (circles) with the individual laboratory standard deviation (rectangle). The color of the data point represents the sample preparation procedure and analytical method employed. The black solid line represents the consensus mean, and the green shaded region represents the range of tolerance, calculated as the values above and below the consensus mean that result in an acceptable Z' score, $|Z'| \leq 2$. The red shaded region represents the target zone for "acceptable" performance, which encompasses the NIST reference value bounded by twice its uncertainty (U_{95}).

Figure 22. α -Linolenic acid in SRM 3275-III Omega-3 and Omega-6 Fatty Acids in Fish Oil (data summary view – sample preparation and analytical method). In this view, individual laboratory data are plotted (circles) with the individual laboratory standard deviation (rectangle). The color of the data point represents the sample preparation procedure and analytical method employed. The black solid line represents the consensus mean, and the green shaded region represents the range of tolerance, calculated as the values above and below the consensus mean that result in an acceptable Z' score, $|Z'| \leq 2$. The red shaded region represents the target zone for "acceptable" performance, which encompasses the NIST reference value bounded by twice its uncertainty (U_{95}).

Figure 23. γ -Linolenic acid in SRM 3275-I Omega-3 and Omega-6 Fatty Acids in Fish Oil (data summary view – sample preparation and analytical method). In this view, individual laboratory data are plotted (circles) with the individual laboratory standard deviation (rectangle). The color of the data point represents the sample preparation procedure and analytical method employed. The black solid line represents the consensus mean, and the green shaded region represents the range of tolerance, calculated as the values above and below the consensus mean that result in an acceptable Z' score, $|Z'| \leq 2$. The red shaded region represents the target zone for "acceptable" performance, which encompasses the NIST reference value bounded by twice its uncertainty (U_{95}).

Figure 24. γ -Linolenic acid in SRM 3275-III Omega-3 and Omega-6 Fatty Acids in Fish Oil (data summary view – sample preparation and analytical method). In this view, individual laboratory data are plotted (circles) with the individual laboratory standard deviation (rectangle). The color of the data point represents the sample preparation procedure and analytical method employed. The black solid line represents the consensus mean, and the green shaded region represents the range of tolerance, calculated as the values above and below the consensus mean that result in an acceptable Z' score, $|Z'| \leq 2$. The red shaded region represents the target zone for "acceptable" performance, which encompasses the NIST reference value bounded by twice its uncertainty (U_{95}).

Figure 25. Arachidonic acid in SRM 3275-I Omega-3 and Omega-6 Fatty Acids in Fish Oil (data summary view – sample preparation and analytical method). In this view, individual laboratory data are plotted (circles) with the individual laboratory standard deviation (rectangle). The color of the data point represents the sample preparation procedure and analytical method employed. The black solid line represents the consensus mean, and the green shaded region represents the range of tolerance, calculated as the values above and below the consensus mean that result in an acceptable Z' score, $|Z'| \leq 2$. The red shaded region represents the target zone for "acceptable" performance, which encompasses the NIST reference value bounded by twice its uncertainty (U_{95}).

Figure 26. Arachidonic acid in SRM 3275-III Omega-3 and Omega-6 Fatty Acids in Fish Oil (data summary view – sample preparation and analytical method). In this view, individual laboratory data are plotted (circles) with the individual laboratory standard deviation (rectangle). The color of the data point represents the sample preparation procedure and analytical method employed. The black solid line represents the consensus mean, and the green shaded region represents the range of tolerance, calculated as the values above and below the consensus mean that result in an acceptable Z' score, $|Z'| \leq 2$. No NIST-determined value is available for this sample.

Figure 27. EPA in SRM 3275-I Omega-3 and Omega-6 Fatty Acids in Fish Oil (data summary view – sample preparation and analytical method). In this view, individual laboratory data are plotted (circles) with the individual laboratory standard deviation (rectangle). The color of the data point represents the sample preparation procedure and analytical method employed. The black solid line represents the consensus mean, and the green shaded region represents the range of tolerance, calculated as the values above and below the consensus mean that result in an acceptable Z' score, $|Z'| \leq 2$. The red shaded region represents the target zone for "acceptable" performance, which encompasses the NIST certified value bounded by twice its uncertainty (U_{95}).

Figure 28. EPA in SRM 3275-III Omega-3 and Omega-6 Fatty Acids in Fish Oil (data summary view – sample preparation and analytical method). In this view, individual laboratory data are plotted (circles) with the individual laboratory standard deviation (rectangle). The color of the data point represents the sample preparation procedure and analytical method employed. The black solid line represents the consensus mean, and the green shaded region represents the range of tolerance, calculated as the values above and below the consensus mean that result in an acceptable Z' score, $|Z'| \leq 2$. The red shaded region represents the target zone for "acceptable" performance, which encompasses the NIST reference value bounded by twice its uncertainty (U_{95}).

Figure 29. DHA in SRM 3275-I Omega-3 and Omega-6 Fatty Acids in Fish Oil (data summary view – sample preparation and analytical method). In this view, individual laboratory data are plotted (circles) with the individual laboratory standard deviation (rectangle). The color of the data point represents the sample preparation procedure and analytical method employed. The black solid line represents the consensus mean, and the green shaded region represents the range of tolerance, calculated as the values above and below the consensus mean that result in an acceptable Z' score, $|Z'| \leq 2$. The red shaded region represents the target zone for "acceptable" performance, which encompasses the NIST reference value bounded by twice its uncertainty (U_{95}).

Figure 30. DHA in SRM 3275-III Omega-3 and Omega-6 Fatty Acids in Fish Oil (data summary view – sample preparation and analytical method). In this view, individual laboratory data are plotted (circles) with the individual laboratory standard deviation (rectangle). The color of the data point represents the sample preparation procedure and analytical method employed. The black solid line represents the consensus mean, and the green shaded region represents the range of tolerance, calculated as the values above and below the consensus mean that result in an acceptable Z' score, $|Z'| \leq 2$. The red shaded region represents the target zone for "acceptable" performance, which encompasses the NIST reference value bounded by twice its uncertainty (U_{95}).

Measurand: Linoleic Acid (as FAME), DSQAP Exercise L No. of laboratories: 19

Figure 31. Linoleic acid in SRM 3275-I Omega-3 and Omega-6 Fatty Acids in Fish Oil and SRM 3275-III Omega-3 and Omega-6 Fatty Acids in Fish Oil (sample/sample comparison view). In this view, the individual laboratory results for one sample (fish oil 1) are compared to the results for a second sample (fish oil 2). The solid red box represents the target zone for the two samples, fish oil 1 (x-axis) and fish oil 2 (y-axis). The dotted blue box represents the consensus zone for fish oil 1 (x-axis) and fish oil 2 (y-axis).

Figure 32. α -Linolenic acid in SRM 3275-I Omega-3 and Omega-6 Fatty Acids in Fish Oil and SRM 3275-III Omega-3 and Omega-6 Fatty Acids in Fish Oil (sample/sample comparison view). In this view, the individual laboratory results for one sample (fish oil 1) are compared to the results for a second sample (fish oil 2). The solid red box represents the target zone for the two samples, fish oil 1 (x-axis) and fish oil 2 (y-axis). The dotted blue box represents the consensus zone for fish oil 1 (x-axis) and fish oil 2 (y-axis).

Measurand: gamma-Linolenic Acid (as FAME), DSQAP Exercise L No. of laboratories: 13

Figure 33. γ -Linolenic acid in SRM 3275-I Omega-3 and Omega-6 Fatty Acids in Fish Oil and SRM 3275-III Omega-3 and Omega-6 Fatty Acids in Fish Oil (sample/sample comparison view). In this view, the individual laboratory results for one sample (fish oil 1) are compared to the results for a second sample (fish oil 2). The solid red box represents the target zone for the two samples, fish oil 1 (x-axis) and fish oil 2 (y-axis). The dotted blue box represents the consensus zone for fish oil 1 (x-axis) and fish oil 2 (y-axis).

Measurand: Arachidonic Acid (as FAME), DSQAP Exercise L No. of laboratories: 17

Figure 34. Arachidonic acid in SRM 3275-I Omega-3 and Omega-6 Fatty Acids in Fish Oil and SRM 3275-III Omega-3 and Omega-6 Fatty Acids in Fish Oil (sample/sample comparison view). In this view, the individual laboratory results for one sample (fish oil 1) are compared to the results for a second sample (fish oil 2). The dotted blue box represents the consensus zone for fish oil 1 (x-axis) and fish oil 2 (y-axis).

Figure 35. EPA in SRM 3275-I Omega-3 and Omega-6 Fatty Acids in Fish Oil and SRM 3275-III Omega-3 and Omega-6 Fatty Acids in Fish Oil (sample/sample comparison view). In this view, the individual laboratory results for one sample (fish oil 1) are compared to the results for a second sample (fish oil 2). The solid red box represents the target zone for the two samples, fish oil 1 (x-axis) and fish oil 2 (y-axis). The dotted blue box represents the consensus zone for fish oil 1 (x-axis) and fish oil 2 (y-axis).

Measurand: DHA (as FAME), DSQAP Exercise L No. of laboratories: 22

Figure 36. DHA in SRM 3275-I Omega-3 and Omega-6 Fatty Acids in Fish Oil and SRM 3275-III Omega-3 and Omega-6 Fatty Acids in Fish Oil (sample/sample comparison view). In this view, the individual laboratory results for one sample (fish oil 1) are compared to the results for a second sample (fish oil 2). The solid red box represents the target zone for the two samples, fish oil 1 (x-axis) and fish oil 2 (y-axis). The dotted blue box represents the consensus zone for fish oil 1 (x-axis) and fish oil 2 (y-axis).

CHLOROGENIC ACID, FLAVONOIDS, AND NAPHTHODIANTHRONES IN ST. JOHN'S WORT DIETARY SUPPLEMENTS

Study Overview

In this study, participants were provided with two NIST SRMs, SRM 3262 St. John's Wort (*Hypericum perforatum L.*) Aerial Parts and SRM 3264 St. John's Wort (*Hypericum perforatum L.*) Methanol Extract. Participants were asked to use in-house analytical methods to determine the mass fractions of chlorogenic acid, rutin, hyperoside, isoquercitrin, quercitrin, quercetin, amentoflavone, pseudohypericin, and hypericin in each of the matrices and report values on an asreceived basis.

Sample Information

St. John's Wort Aerial Parts. Participants were provided with three packets containing approximately 3.3 g of dried St. John's Wort aerial parts. The dried leaves were ground, homogenized, and packaged inside 4 mil polyethylene bags, which were then sealed inside nitrogen-flushed aluminized plastic bags along with two packets of silica gel. Before use, participants were instructed to thoroughly mix the contents of each packet and use a sample size of at least 1.0 g. Participants were asked to store the material at controlled room temperature, 10 °C to 30 °C, and to report a single value from each packet provided. Approximate analyte levels were not reported to participants prior to the study. The target values for chlorogenic acid, rutin, hyperoside, quercitrin, pseudohypericin, and hypericin in SRM 3262 St. John's Wort (*Hypericum perforatum L.*) Aerial Parts were determined at NIST using liquid chromatography with absorbance and fluorescence detection following Soxhlet extraction. Target values for amentoflavone, isoquercitrin, and quercetin have not been established in this material. The NIST-determined values and uncertainties for chlorogenic acid, rutin, hyperoside, quercitrin, pseudohypericin are provided in the table below, on an as-received basis.

NIST-Determined Mass Fra	action in S	SRM 3262	(mg/g)
--------------------------	-------------	----------	--------

Analyte	(as-received basis)
Chlorogenic acid	$0.154 ~\pm~ 0.007$
Rutin	5.05 ± 0.11
Hyperoside	5.02 ± 0.11
Quercitrin	$0.984 ~\pm~ 0.030$
Pseudohypericin	$0.711 ~\pm~ 0.020$
Hypericin	$0.515 ~\pm~ 0.018$

St. John's Wort Methanol Extract. Participants were provided with three packets containing approximately 1.6 g of St. John's Wort methanol extract. The extract was ground, homogenized, and packaged inside 4 mil polyethylene bags, which were then sealed inside nitrogen-flushed aluminized plastic bags along with two packets of silica gel. Before use, participants were instructed to thoroughly mix the contents of each packet and use a sample size of at least 0.1 g. Participants were asked to store the material at controlled room temperature, 10 °C to 30 °C, and to report a single value from each packet provided. Approximate analyte levels were not reported to participants prior to the study. The reference values for chlorogenic acid, rutin, hyperoside,

isoquercitrin, quercitrin, pseudohypericin, and hypericin in SRM 3264 St. John's Wort (*Hypericum perforatum L.*) Methanol Extract were determined at NIST using liquid chromatography with absorbance and fluorescence detection following Soxhlet extraction. Target values for amentoflavone and quercetin have not been established in this material. The NIST-determined values and uncertainties for chlorogenic acid, rutin, hyperoside, isoquercitrin, quercitrin, pseudohypericin, and hypericin are provided in the table below, both on a dry-mass basis and on an as-received basis accounting for moisture of the material (0.92 %).

	Reference Mass Fraction	n in SRM 3264 (mg/g)
Analyte	<u>(dry-mass basis)</u>	(as-received basis)
Chlorogenic acid	1.050 ± 0.059	$1.040 ~\pm~ 0.058$
Rutin	$34.3 \pm \ 1.7$	$34.0 \pm \ 1.7$
Hyperoside	$17.66 \pm \ 0.88$	$17.50 \hspace{0.1in} \pm \hspace{0.1in} 0.87$
Isoquercitrin	9.47 ± 0.46	$9.38 \hspace{0.2cm} \pm \hspace{0.2cm} 0.46$
Quercitrin	3.23 ± 0.16	$3.20 \hspace{0.2cm} \pm \hspace{0.2cm} 0.16$
Pseudohypericin	$0.809 ~\pm~ 0.031$	$0.802 ~\pm~ 0.031$
Hypericin	$0.439 ~\pm~ 0.017$	$0.435~\pm~0.017$

Study Results

- Thirty-nine laboratories enrolled in this exercise and received samples. Seventeen laboratories reported data for at least one analyte in the St. John's wort samples (44 % participation).
- The consensus means for rutin in the St. John's wort extract and quercitrin in the St. John's wort aerial parts were within the target ranges with acceptable between-laboratory variability (14 % and 20 % RSD, respectively).
- The consensus means were above the target ranges for chlorogenic acid and hypericin in both samples, as well as for hyperoside, pseudohypericin, and quercitrin in the St. John's wort extract.
 - Observed between-laboratory variability was excellent for chlorogenic acid, hyperoside, and quercitrin in the St. John's wort extract (6 % to 14 % RSD).
 - Between-laboratory variability was extremely high for chlorogenic acid in the St. John's wort aerial parts, for pseudohypericin in St. John's wort extract, and hypericin in both matrices (55 % to 97 % RSD).
- The consensus means were below the target ranges for rutin, hyperoside, and pseudohypericin, in the St. John's wort aerial parts, and for isoquercitrin in the St. John's wort extract.
 - Observed between-laboratory variability was excellent for isoquercitrin in the St. John's wort extract (10 % RSD).
 - Between-laboratory variability was acceptable for rutin and hyperoside in the St. John's wort aerial parts (23 % to 28 % RSD).
 - Between-laboratory variability was extremely high for pseudohypericin in St. John's wort aerial parts (85 % RSD).

- A majority of the laboratories reported using solvent extraction as the sample preparation method (88 %). One laboratory reported using open beaker digestion a sample preparation technique (6 %), and one laboratory reported that no sample preparation was used (6 %).
- A majority of the laboratories reported using LC-absorbance as the analytical approach (82 %). One laboratory reported using UV-VIS (6 %) as their instrumental method, and one laboratory reported using HPLC (6 %).

Technical Recommendations

The following recommendations are based on results obtained from the participants in this study.

- With a small number of laboratories reporting data for these compounds, and a majority reporting use of the same or very similar methods, drawing extensive technical conclusions is difficult.
- No methods presented as significantly better or worse than any other. No systematic biases were noted.
- Some laboratories using LC-absorbance may be experiencing a co-elution that would cause a high bias in the results. The problem can likely be corrected by alteration of the chromatographic conditions. The following recommendations can help identify and avoid potential coelutions.
 - A chromatographic method with alternate selectivity (different retention order) can be used as a check for each new sample type that is run. Ideally, the retention of coeluting compounds would also be affected and the results from the two chromatographic systems would be different. Two different responses would indicate a possible bias in one approach.
 - A different detector can be used in series with an absorbance detector (as confirmation), such as a fluorescence detector or mass spectrometer. If a coeluting compound is present, the response from these detectors would be different than the response from the absorbance detector. Two different responses would indicate a possible bias in one approach.
 - Considerations of potential interferences can assist in troubleshooting. Understanding the matrix that is being tested and possible coeluting compounds can be evaluated before a sample is analyzed for additional confidence in the result.
- Low results for some compounds (such as rutin, isoquercitrin, and hyperoside) may be the result of an incomplete extraction, or only partial hydrolysis of glycosides.
- Calibration materials had a lower purity than expected. It is important to critically evaluate the purity of standards.

Table 18. Individualized data summary table (NIST) for chlorogenic acid, flavonoids, and naphthodianthrones in St. John's wort dietary supplements.

National Institute of Standards & Technology

Excrete El October 2010 Doumicul Mulyes											
	Lab Code:	NIST	1. Your Results				2. Co	mmunity I	Results	<u> </u>	arget
Analyte	Sample	Units	Xi	\mathbf{s}_{i}	Z'_{comm}	Z _{NIST}	Ν	x*	s*	X _{NIST}	U_{95}
Chlorogenic Acid	SJW Aerial Parts	mg/g	0.15	4 0.015		0.00	8	0.186	0.130	0.154	0.015
Chlorogenic Acid	SJW Extract	mg/g	1.04	0.12		0.00	9	1.26	0.17	1.04	0.12
Rutin	SJW Aerial Parts	mg/g	5.05	0.22		0.00	17	3.57	0.84	5.05	0.22
Rutin	SJW Extract	mg/g	34.0	3.4		0.00	17	30.9	4.5	34.0	3.4
Hyperoside	SJW Aerial Parts	mg/g	5.02	0.22		0.00	11	3.48	0.98	5.02	0.22
Hyperoside	SJW Extract	mg/g	17.5	1.7		0.00	11	20.3	1.2	17.5	1.7
Isoquercitrin	SJW Aerial Parts	mg/g					8	1.44	0.37		
Isoquercitrin	SJW Extract	mg/g	9.38	0.91		0.00	8	7.58	0.72	9.38	0.91
Quercitrin	SJW Aerial Parts	mg/g	0.98	4 0.060		0.00	10	0.952	0.191	0.984	0.060
Quercitrin	SJW Extract	mg/g	3.20	0.32		0.00	10	3.94	0.43	3.20	0.32
Quercetin	SJW Aerial Parts	mg/g					16	2.01	0.32		
Quercetin	SJW Extract	mg/g					16	6.44	0.80		
Amentoflavone	SJW Aerial Parts	mg/g					2	0.0370	0.0040		
Amentoflavone	SJW Extract	mg/g					2	0.0980	0.0040		
Pseudohypericin	SJW Aerial Parts	mg/g	0.71	1 0.040		0.00	6	0.605	0.514	0.711	0.040
Pseudohypericin	SJW Extract	mg/g	0.80	2 0.061		0.00	6	1.310	0.726	0.802	0.061
Hypericin	SJW Aerial Parts	mg/g	0.51	5 0.036		0.00	7	0.781	0.676	0.515	0.036
Hypericin	SJW Extract	mg/g	0.43	5 0.034		0.00	8	1.609	1.560	0.435	0.034

Exercise L - October 2015 - Botanical Analytes

- x_i Mean of reported values
- s_i Standard deviation of reported values
- Z'_{comm} Z'-score with respect to community consensus
- Z_{NIST} Z-score with respect to NIST value
- N Number of quantitative values reported
- x* Robust mean of reported values
- s* Robust standard deviation

		SRM	3262 St. Jo	hn's Wort A	erial Parts	(mg/g)	SRM 3264 St. John's Wort Extract (mg/g)				
	Lab	Α	В	С	Avg	SD	Α	В	С	Avg	SD
	NIST				0.154	0.015				1.04	0.12
	L101										
	L102	0.760	0.820	0.630	0.737	0.097	3.47	3.38	3.54	3.46	0.08
	L103	< 0.100	< 0.100	< 0.100			1.04	1.10	1.09	1.08	0.03
	L104										
	L105										
	L107										
	L110	0.245	0.246	0.246	0.246	0.001	1.26	1.33	1.31	1.30	0.04
	L111	0.225	0.224	0.223	0.224	0.001	1.24	1.31	1.31	1.29	0.04
	L112										
	L113										
	L118										
	L120										
	L122										
	L125	0.188	0.191	0.207	0.195	0.010	1.30	1.29	1.29	1.29	0.01
	L126										
	L128	0.140	0.110	0.130	0.127	0.015	1.38	1.36	1.38	1.37	0.01
lts	L130										
tesu	L131										
al R	L133										
<i>i</i> du	L137										
ndiv	L138	0.080	0.080	0.070	0.077	0.006	1.24	1.25	1.26	1.25	0.01
I	L139										
	L141										
	L144	0.010	0.010		0.010	0.000	0.80	0.70		0.75	0.07
	L150										
	L151										
	L153										
	L155										
	L157										
	L159										
	L160										
	L163										
	L164										
	L165	0.230	0.230	0.230	0.230	0.000	1.24	1.24	1.25	1.24	0.01
	L166										
	L170										
	L172										
	L177										
	L179										
ity		Consensus	Mean		0.186		Consensus I	Mean		1.26	
nuni ılts		Consensus	Standard De	viation	0.130		Consensus S	Standard De	viation	0.17	
Rest		Maximum			0.737		Maximum			3.46	
° C		Minimum			0.010		Minimum			0.75	
		Ν			8		Ν			9	

 Table 19. Data summary table for chlorogenic acid in St. John's wort dietary supplements.

						R	Rutin					
	P	SRM	3262 St. Jol	hn's Wort A	Aerial Parts	(mg/g)	SRM	M 3264 St.	John's Wor	t Extract (m	g/g)	
	Lab	Α	В	С	Avg	SD	Α	В	С	Avg	SD	
	NIST				5.05	0.22				34.0	3.4	
	L101											
	L102	5.68	5.98	6.35	6.00	0.34	8.3	9.3	9.7	9.1	0.7	
	L103											
	L104											
	L105											
	L107											
	L110	5.46	5.53	5.43	5.47	0.05	32.3	35.2	33.4	33.6	1.5	
	L111	3.15	3.05	2.87	3.02	0.14	29.1	29.2	29.5	29.3	0.2	
	L112											
	L113											
	L118											
	L120	4.21	3.70	3.69	3.87	0.30	33.1	33.6	33.0	33.2	0.3	
	L122											
	L126	3.60	3.32	3.94	3.62	0.31	34.2	34.0	33.9	34.0	0.2	
	L128											
	L130		_	_		_		_			_	
s	L131											
esult	L133	2.31	2.20	2.11	2.21	0.10	29.1	27.9	29.4	28.8	0.8	
l Re	L137	50.25	46.97	48.28	48.50	1.65	249.9	241.5	253.5	248.3	6.2	
qua	L138	3.23	3.25	3.14	3.21	0.06	31.1	30.9	31.2	31.1	0.1	
divi	L139	3.25	3.82	3.31	3.46	0.31	14.9	15.5	14.5	15.0	0.5	
In	L140	3.75	4.26	3.40	3.80	0.43	33.9	33.3	33.7	33.6	0.3	
	L141	3.27	3.51	3.67	3.48	0.20	33.8	33.3	32.4	33.2	0.7	
	L144	3.80	3.50		3.65	0.21	33.4	33.5		33.5	0.1	
	L150	2.22	2.64	2 75	2.57	0.22	24.6	24.9	24.9	24.9	0.1	
	L151	5.52	5.04	5.75	5.57	0.22	54.0	34.0	54.0	34.0	0.1	
	L155											
	L155	2.76	3 67	3 /3	3 27	0.45	31.2	31.0	31.0	31.3	0.5	
	L157	2.70	5.02	5.45	5.27	0.45	51.2	51.9	51.0	51.5	0.5	
	L157											
	L163											
	L164											
	L165	1.60	1.70	1.68	1.66	0.05	15.7	16.0	15.9	15.9	0.2	
	L166	1100	1170	1100	1100	0100	1017	1010	1015	1017	0.12	
	L100											
	L170	3.44	3.45	3.52	3.47	0.04	29.7	30.6	29.2	29.8	0.7	
	L172						_,		_,	_,		
	L177											
	L179	3.25	3.21	3.24	3.23	0.02	29.0	29.1	29.0	29.0	0.1	
<u> </u>		Consensus	Mean		3.57		Consensus	Mean		30.9		
nity s		Consensus	Standard De	viation	0.84		Consensus	Standard De	eviation	4.5		
mu sult		Maximum			48.50		Maximum			248.3		
Con Re		Minimum			1.66		Minimum			9.1		
Ŭ		Ν			17		Ν			17		

 Table 20. Data summary table for rutin in St. John's wort dietary supplements.

						R	Rutin					
	-	SRM (3262 St. Jo	hn's Wort A	Aerial Parts	(mg/g)	SRI	M 3264 St.	John's Wor	t Extract (m	g/g)	
	Lab	Α	В	С	Avg	SD	Α	В	С	Avg	SD	
	NIST				5.05	0.22				34.0	3.4	
	L101											
	L102	5.68	5.98	6.35	6.00	0.34	8.3	9.3	9.7	9.1	0.7	
	L103											
	L104											
	L105											
	L107											
	L110	5.46	5.53	5.43	5.47	0.05	32.3	35.2	33.4	33.6	1.5	
	L111	3.15	3.05	2.87	3.02	0.14	29.1	29.2	29.5	29.3	0.2	
	L112											
	L113											
	LI18											
	L120	4.21	3.70	3.69	3.87	0.30	33.1	33.6	33.0	33.2	0.3	
	L122											
	L126	3.60	3.32	3.94	3.62	0.31	34.2	34.0	33.9	34.0	0.2	
	L128											
	L130											
ts	L131	0.21	2.20	2.11	2.21	0.10	20.1	27.0	20.4	20.0	0.0	
esul	L133	2.31	2.20	49.29	2.21	0.10	29.1	27.9	29.4	28.8	0.8	
al R	L137	2.22	40.97	48.28	48.50	1.05	249.9	241.5	255.5	248.5	0.2	
ividua	L138	3.23	3.25	2.21	3.21	0.06	14.0	15.5	14.5	51.1	0.1	
vibr	L139	2.75	3.62	2.40	2.80	0.31	22.0	13.5	22.7	22.6	0.3	
I	L140	3.75	3.51	3.40	3.60	0.43	33.9	33.3	32.4	33.0	0.3	
	L141	3.80	3.50	5.07	3.40	0.20	33.4	33.5	32.4	33.5	0.7	
	L150	5.00	5.50		5.05	0.21	55.4	55.5		55.5	0.1	
	L150	3 32	3 64	3 75	3 57	0.22	34.6	34.8	34.8	34.8	0.1	
	L153	5.52	5.01	5.75	5.57	0.22	51.0	51.0	51.0	5110	0.1	
	L155											
	L157	2.76	3.62	3.43	3.27	0.45	31.2	31.9	31.0	31.3	0.5	
	L159											
	L160											
	L163											
	L164											
	L165	1.60	1.70	1.68	1.66	0.05	15.7	16.0	15.9	15.9	0.2	
	L166											
	L170											
	L171	3.44	3.45	3.52	3.47	0.04	29.7	30.6	29.2	29.8	0.7	
	L172											
	L177											
	L179	3.25	3.21	3.24	3.23	0.02	29.0	29.1	29.0	29.0	0.1	
>		Consensus	Mean		3.57		Consensus	Mean		30.9		
ınit; ts		Consensus	Standard De	eviation	0.84		Consensus	Standard De	eviation	4.5		
nmı esul		Maximum			48.50		Maximum			248.3		
Cor		Minimum			1.66		Minimum			9.1		
		Ν			17		Ν			17		

 Table 21. Data summary table for hyperoside in St. John's wort dietary supplements.

		Isoquercitrin												
		SRM	3262 St. Jol	hn's Wort A	Aerial Parts	(mg/g)	SRM	A 3264 St.	John's Wor	t Extract (m	g/g)			
	Lab	Α	В	С	Avg	SD	Α	В	С	Avg	SD			
	NIST									9.38	0.91			
	L101													
	L103													
	L104													
	L105													
	L107													
	L110	2.43	2.45	2.41	2.43	0.02	7.85	8.56	8.04	8.15	0.37			
	L112													
	L113													
	L120	1.58	1.40	1.34	1.44	0.12	7.12	7.59	7.43	7.38	0.24			
	L122													
	L126	1.33	1.24	1.06	1.21	0.13	6.43	6.49	6.36	6.42	0.06			
	L128													
lts	L130													
esu	L131													
al R	L137													
idu	L138	1.83	1.85	1.77	1.82	0.04	12.09	12.03	12.15	12.09	0.06			
Indivi	L139													
I	L140	1.47	1.39	1.52	1.46	0.07	7.49	7.61	7.99	7.70	0.26			
	L141	1.17	1.31	1.39	1.29	0.11	7.73	7.46	7.43	7.54	0.16			
	L151	0.99	1.00	1.01	1.00	0.01	7.33	7.34	7.42	7.36	0.05			
	L153													
	L155													
	L157	1.02	1.44	1.37	1.28	0.22	7.34	7.44	7.27	7.35	0.09			
	L159													
	L163													
	L164													
	L166													
	L170													
	L172													
	L177													
	L179													
y		Consensus	Mean		1.44		Consensus	Mean		7.58				
unit lts		Consensus	Standard De	eviation	0.37		Consensus	Standard De	eviation	0.72				
mm tesu		Maximum			2.43		Maximum			12.09				
C00 R		Minimum			1.00		Minimum			6.42				
		Ν			8		Ν			8				

 Table 22. Data summary table for isoquercitrin in St. John's wort dietary supplements.

		Quercitrin											
-		SRM	3262 St. Jo	hn's Wort A	erial Parts	(mg/g)	SRM	A 3264 St.	John's Wor	t Extract (m	ıg/g)		
	Lab	Α	В	С	Avg	SD	Α	В	С	Avg	SD		
	NIST				0.984	0.060				3.20	0.32		
	L101												
	L103												
	L104												
	L105												
	L107												
	L110	1.210	1.220	1.190	1.207	0.015	3.59	3.90	3.70	3.73	0.16		
	L112												
	L113												
	L120	1.022	0.951	0.962	0.978	0.038	3.75	3.81	3.84	3.80	0.05		
	L122												
	L126	1.056	0.987	0.936	0.993	0.060	3.91	3.88	3.93	3.91	0.03		
	L128												
	L130												
ults	L131												
Re	L137	0.710	0.687	0.733	0.710	0.023	3.40	3.44	3.33	3.39	0.06		
dividual	L138	0.928	0.931	0.906	0.922	0.014	3.63	3.61	3.63	3.62	0.01		
	L139												
Ind	L140	0.800	0.740	0.820	0.787	0.042	5.44	5.80	5.66	5.63	0.18		
	L141	0.899	0.928	0.952	0.926	0.027	3.99	3.89	3.93	3.94	0.05		
	L144	2.100	1.900		2.000	0.141	6.20	6.20		6.20	0.00		
	L151	0.837	0.824	0.827	0.829	0.007	3.88	4.03	3.95	3.95	0.08		
	L153												
	L155												
	L157	0.823	1.003	0.972	0.933	0.096	3.90	3.89	3.84	3.88	0.03		
	L159												
	L163												
	L164												
	L166												
	L170												
	L172												
	L177												
	L179												
Ń		Consensus	Mean		0.952		Consensus	Mean		3.94			
unit lts		Consensus	Standard De	eviation	0.191		Consensus Standard Deviation			0.43			
mm tesu		Maximum			2.000		Maximum			6.20			
C 0		Minimum			0.710		Minimum			3.39			
		Ν			10		Ν			10			

 Table 23. Data summary table for quercitrin in St. John's wort dietary supplements.

		Quercetin										
	-	SRM	3262 St. Jol	hn's Wort A	Aerial Parts	(mg/g)	SRI	M 3264 St.	John's Wor	t Extract (m	g/g)	
	Lab	Α	В	С	Avg	SD	Α	В	С	Avg	SD	
	NIST											
	L101											
	L102	2.07	2.15	2.25	2.16	0.09	5.96	5.99	6.06	6.00	0.05	
	L103	23.90	24.30	24.80	24.33	0.45	98.00	98.60	94.50	97.03	2.21	
	L104											
	L105											
	L107											
	L110	2.38	2.38	2.35	2.37	0.02	6.09	6.59	6.27	6.32	0.25	
	L111	1.93	1.83	1.78	1.85	0.08	5.43	5.45	5.51	5.46	0.04	
	L112											
	L113											
	L118											
	L120	1.80	1.79	1.77	1.78	0.02	6.23	6.35	6.23	6.27	0.07	
	L122											
	L126	1.98	1.96	2.00	1.98	0.02	7.47	7.25	7.47	7.40	0.13	
	L128											
	L130											
	L131											
ts	L133	1.54	1.49	1.43	1.49	0.06	6.07	5.73	5.81	5.87	0.18	
esul	L134											
al R	L137	1.92	1.88	1.94	1.91	0.03	5.63	5.58	5.55	5.59	0.04	
idus	L138	2.14	2.16	2.09	2.13	0.04	6.34	6.27	6.33	6.31	0.04	
ndiv	L139	2.19	2.30	2.20	2.23	0.06	5.99	6.09	5.85	5.98	0.12	
I	L140	1.89	1.86	1.82	1.86	0.04	6.63	6.38	6.59	6.53	0.13	
	L141	1.77	1.71	1.71	1.73	0.03	6.80	6.70	6.53	6.68	0.14	
	L144											
	L150											
	L151	1.97	1.94	1.99	1.97	0.02	7.47	7.54	7.47	7.49	0.04	
	L153											
	L155											
	L157	1.54	1.63	1.60	1.59	0.04	5.89	5.96	5.73	5.86	0.12	
	L159											
	L160											
	L163											
	L164											
	L165	2.12	2.11	2.10	2.11	0.01	6.08	6.23	6.16	6.16	0.08	
	L166											
	L170											
	L171	1.91	1.92	2.00			6.33	6.38	6.37			
	L172											
	L177											
	L179	28.29	28.03	28.23	28.18	0.14	105.01	108.92	103.23	105.72	2.91	
Ŷ		Consensus	Mean		2.01		Consensus	Mean		6.44		
umit Its		Consensus	Standard De	viation	0.32		Consensus	Standard De	eviation	0.80		
mm		Maximum			28.18		Maximum			105.72		
C ₀		Minimum			1.49		Minimum			5.46		
		Ν			16		Ν			16		

Table 24. Data summary table for quercetin in St. John's wort dietary supplements.

		Amentoflavone												
		SRM	3262 St. Jol	hn's Wort A	erial Parts	(mg/g)	SRI	A 3264 St.	John's Wor	t Extract (m	ıg/g)			
	Lab	Α	В	С	Avg	SD	Α	В	С	Avg	SD			
	NIST													
	L103													
	L104													
	L105													
	L107													
	L110	0.0410	0.0380	0.0370	0.0387	0.0021	0.0930	0.0990	0.0960	0.0960	0.0030			
	L112													
	L120													
	L122													
	L126													
	L128													
lts	L130													
esul	L137													
al R	L138	0.0340	0.0350	0.0340	0.0343	0.0006	0.1050	0.0990	0.0950	0.0997	0.0050			
idu	L139													
Individ	L141													
I	L151													
	L153													
	L155													
	L157													
	L159													
	L163													
	L164													
	L166													
	L170													
	L172													
	L177													
	L179													
y		Consensus	Mean		0.0370		Consensus	Mean		0.0980				
unit Its		Consensus	Standard De	eviation	0.0040		Consensus	Standard De	eviation	0.0040				
mm tesu		Maximum			0.0387		Maximum			0.0997				
C OR		Minimum			0.0343		Minimum			0.0960				
		Ν			2		Ν			2				

 Table 25. Data summary table for amentoflavone in St. John's wort dietary supplements.

		Pseudohypericin											
1		SRM	3262 St. Jo	hn's Wort A	Aerial Parts	(mg/g)	SRM	A 3264 St.	John's Wor	rt Extract (mg/g)			
	Lab	Α	В	С	Avg	SD	Α	В	С	Avg	SD		
	NIST				0.711	0.040				0.802	0.061		
	L102	0.360	0.360	0.360	0.360	0.000	1.760	1.770	1.760	1.763	0.006		
	L103												
	L104												
	L105												
	L107												
	L110	1.090	1.050	1.090	1.077	0.023	1.230	1.210	1.230	1.223	0.012		
	L111	1.080	1.070	1.040	1.063	0.021	1.460	1.480	1.480	1.473	0.012		
	L112												
	L120												
	L122												
	L126												
	L128												
	L130												
lts	L131												
esu	L133												
al R	L137	0.875	0.885	0.872	0.877	0.007	2.067	2.250	2.199	2.172	0.094		
ividus	L138												
ndiv	L139	0.081	0.082	0.084	0.082	0.002	0.810	0.850	0.840	0.833	0.021		
I	L141												
	L144												
	L151												
	L153												
	L155												
	L157												
	L159												
	L163												
	L164												
	L165	0.134	0.206	0.179	0.173	0.036	0.415	0.360	0.412	0.396	0.031		
	L166												
	L170												
	L172												
	L177												
	L179												
ţ,		Consensus	Mean		0.605		Consensus	Mean		1.310			
uni lts		Consensus	Standard De	eviation	0.514		Consensus	Standard De	eviation	0.726			
mm tesu		Maximum			1.077		Maximum			2.172			
Co. R		Minimum			0.082		Minimum			0.396			
		Ν			6		Ν			6			

 Table 26. Data summary table for pseudohypericin in St. John's wort dietary supplements.

		Hypericin									
I		SRM 3262 St. John's Wort Aerial Parts (mg/g)					SRM 3264 St. John's Wort Extract (mg/g)				
	Lab	Α	В	С	Avg	SD	A	В	С	Avg	SD
	NIST				0.515	0.036	4 5			0.435	0.034
	L102	1.460	1.290	1.340	1.363	0.087	1.550	1.570	1.560	1.560	0.010
	L103						5.600	4.900	5.500	5.333	0.379
	L104										
	L105										
Individual Results	L107	0.452	0.425	0.454	0.447	0.011	0.000	0.207	0.401	0.205	0.007
	L110	0.453	0.435	0.454	0.447	0.011	0.390	0.397	0.401	0.396	0.006
	LIII	0.607	0.592	0.585	0.595	0.011	0.603	0.676	0.636	0.638	0.037
	LI12										
	L118										
	L120										
	L122										
	L124										
	L120										
	L128										
	L130										
	L131										
	L134										
	L137	0.767	0 719	0.730	0.739	0.025	1 756	1 859	1 786	1 800	0.053
	L138	0.707	0.71	0.750	0.157	0.025	1.750	1.057	1.700	1.000	0.055
	L139	0.008	0.008	0.009	0.008	0.001	0.170	0.180	0.150	0.167	0.015
	L141		1000				512.10				
	L144										
	L150										
	L151										
	L153										
	L155										
	L157										
	L159										
	L163										
	L164										
	L165	0.536	0.528	0.553	0.539	0.013	1.053	1.003	1.080	1.045	0.039
	L166										
	L170	1.810	1.770	1.750	1.777	0.031	3.310	3.330	3.310	3.317	0.012
	L172										
	L177										
	L179										
Community Results		Consensus Mean			0.781		Consensus	Consensus Mean			
		Consensus Standard Deviation			0.676		Consensus Standard Deviation			1.560	
		Maximum			1.777	1.777 Maximum			5.333		
		Minimum			0.008		Minimum			0.167	
		Ν			7		Ν			8	

Table 27. Data summary table for hypericin in St. John's wort dietary supplements.

Figure 37. Chlorogenic acid in SRM 3262 St. John's Wort (*Hypericum perforatum L.*) Aerial Parts (data summary view – sample preparation and analytical method). In this view, individual laboratory data are plotted (circles) with the individual laboratory standard deviation (rectangle). The color of the data point represents the sample preparation procedure and analytical method employed. The black solid line represents the consensus mean, and the green shaded region represents the range of tolerance, calculated as the values above and below the consensus mean that result in an acceptable Z' score, $|Z'| \leq 2$. The red shaded region represents the target zone for "acceptable" performance, which encompasses the NIST-determined value bounded by twice its uncertainty (U_{95}).

Figure 38. Chlorogenic acid in SRM 3264 St. John's Wort (*Hypericum perforatum L.*) Methanol Extract (data summary view – sample preparation and analytical method). In this view, individual laboratory data are plotted (circles) with the individual laboratory standard deviation (rectangle). The color of the data point represents the sample preparation procedure and analytical method employed. The black solid line represents the consensus mean, and the green shaded region represents the range of tolerance, calculated as the values above and below the consensus mean that result in an acceptable Z' score, $|Z'| \leq 2$. The red shaded region represents the target zone for "acceptable" performance, which encompasses the NIST reference value bounded by twice its uncertainty (U_{95}).

Figure 39. Rutin in SRM 3262 St. John's Wort (*Hypericum perforatum L.*) Aerial Parts (data summary view – sample preparation and analytical method). In this view, individual laboratory data are plotted (circles) with the individual laboratory standard deviation (rectangle). The color of the data point represents the sample preparation procedure and analytical method employed. The black solid line represents the consensus mean, and the green shaded region represents the range of tolerance, calculated as the values above and below the consensus mean that result in an acceptable Z' score, $|Z'| \leq 2$. The red shaded region represents the target zone for "acceptable" performance, which encompasses the NIST-determined value bounded by twice its uncertainty (U_{95}).

Figure 40. Rutin in SRM 3264 St. John's Wort (*Hypericum perforatum L.*) Methanol Extract (data summary view – sample preparation and analytical method). In this view, individual laboratory data are plotted (circles) with the individual laboratory standard deviation (rectangle). The color of the data point represents the sample preparation procedure and analytical method employed. The black solid line represents the consensus mean, and the green shaded region represents the range of tolerance, calculated as the values above and below the consensus mean that result in an acceptable Z' score, $|Z'| \leq 2$. The red shaded region represents the target zone for "acceptable" performance, which encompasses the NIST reference value bounded by twice its uncertainty (U_{95}).

Figure 41. Hyperoside in SRM 3262 St. John's Wort (*Hypericum perforatum L.*) Aerial Parts (data summary view – sample preparation and analytical method). In this view, individual laboratory data are plotted (circles) with the individual laboratory standard deviation (rectangle). The color of the data point represents the sample preparation procedure and analytical method employed. The black solid line represents the consensus mean, and the green shaded region represents the range of tolerance, calculated as the values above and below the consensus mean that result in an acceptable Z' score, $|Z'| \leq 2$. The red shaded region represents the target zone for "acceptable" performance, which encompasses the NIST-determined value bounded by twice its uncertainty (U_{95}).

Figure 42. Hyperoside in SRM 3264 St. John's Wort (*Hypericum perforatum L.*) Methanol Extract (data summary view – sample preparation and analytical method). In this view, individual laboratory data are plotted (circles) with the individual laboratory standard deviation (rectangle). The color of the data point represents the sample preparation procedure and analytical method employed. The black solid line represents the consensus mean, and the green shaded region represents the range of tolerance, calculated as the values above and below the consensus mean that result in an acceptable Z' score, $|Z'| \leq 2$. The red shaded region represents the target zone for "acceptable" performance, which encompasses the NIST reference value bounded by twice its uncertainty (U_{95}).

Figure 43. Isoquercitrin in SRM 3262 St. John's Wort (*Hypericum perforatum L.*) Aerial Parts (data summary view – sample preparation and analytical method). In this view, individual laboratory data are plotted (circles) with the individual laboratory standard deviation (rectangle). The color of the data point represents the sample preparation procedure and analytical method employed. The black solid line represents the consensus mean, and the green shaded region represents the range of tolerance, calculated as the values above and below the consensus mean that result in an acceptable Z' score, $|Z'| \leq 2$. No NIST-determined value is available for this sample.

Figure 44. Isoquercitrin in SRM 3264 St. John's Wort (*Hypericum perforatum L.*) Methanol Extract (data summary view – sample preparation and analytical method). In this view, individual laboratory data are plotted (circles) with the individual laboratory standard deviation (rectangle). The color of the data point represents the sample preparation procedure and analytical method employed. The black solid line represents the consensus mean, and the green shaded region represents the range of tolerance, calculated as the values above and below the consensus mean that result in an acceptable Z' score, $|Z'| \leq 2$. The red shaded region represents the target zone for "acceptable" performance, which encompasses the NIST reference value bounded by twice its uncertainty (U_{95}).

Figure 45. Quercitrin in SRM 3262 St. John's Wort (*Hypericum perforatum L.*) Aerial Parts (data summary view – sample preparation and analytical method). In this view, individual laboratory data are plotted (circles) with the individual laboratory standard deviation (rectangle). The color of the data point represents the sample preparation procedure and analytical method employed. The black solid line represents the consensus mean, and the green shaded region represents the range of tolerance, calculated as the values above and below the consensus mean that result in an acceptable Z' score, $|Z'| \leq 2$. The red shaded region represents the target zone for "acceptable" performance, which encompasses the NIST-determined value bounded by twice its uncertainty (U_{95}).

Figure 46. Quercitrin in SRM 3264 St. John's Wort (*Hypericum perforatum L.*) Methanol Extract (data summary view – sample preparation and analytical method). In this view, individual laboratory data are plotted (circles) with the individual laboratory standard deviation (rectangle). The color of the data point represents the sample preparation procedure and analytical method employed. The black solid line represents the consensus mean, and the green shaded region represents the range of tolerance, calculated as the values above and below the consensus mean that result in an acceptable Z' score, $|Z'| \leq 2$. The red shaded region represents the target zone for "acceptable" performance, which encompasses the NIST reference value bounded by twice its uncertainty (U_{95}).

Figure 47. Quercetin in SRM 3262 St. John's Wort (*Hypericum perforatum L.*) Aerial Parts (data summary view – sample preparation and analytical method). In this view, individual laboratory data are plotted (circles) with the individual laboratory standard deviation (rectangle). The color of the data point represents the sample preparation procedure and analytical method employed. The black solid line represents the consensus mean, and the green shaded region represents the range of tolerance, calculated as the values above and below the consensus mean that result in an acceptable Z' score, $|Z'| \leq 2$. No NIST-determined value is available for this sample.

Figure 48. Quercetin in SRM 3264 St. John's Wort (*Hypericum perforatum L.*) Methanol Extract (data summary view – sample preparation and analytical method). In this view, individual laboratory data are plotted (circles) with the individual laboratory standard deviation (rectangle). The color of the data point represents the sample preparation procedure and analytical method employed. The black solid line represents the consensus mean, and the green shaded region represents the range of tolerance, calculated as the values above and below the consensus mean that result in an acceptable Z' score, $|Z'| \leq 2$. No NIST-determined value is available for this sample.

Figure 49. Amentoflavone in St. John's Wort (*Hypericum perforatum L.*) Aerial Parts (data summary view – sample preparation and analytical method). In this view, individual laboratory data are plotted (circles) with the individual laboratory standard deviation (rectangle). The color of the data point represents the sample preparation procedure and analytical method employed. The black solid line represents the consensus mean, and the green shaded region represents the range of tolerance, calculated as the values above and below the consensus mean that result in an acceptable Z' score, $|Z'| \leq 2$. No NIST-determined value is available for this sample.

Figure 50. Amentoflavone in SRM 3264 St. John's Wort (*Hypericum perforatum L.*) Methanol Extract (data summary view – sample preparation and analytical method). In this view, individual laboratory data are plotted (circles) with the individual laboratory standard deviation (rectangle). The color of the data point represents the sample preparation procedure and analytical method employed. The black solid line represents the consensus mean, and the green shaded region represents the range of tolerance, calculated as the values above and below the consensus mean that result in an acceptable Z' score, $|Z'| \leq 2$. No NIST-determined value is available for this sample.

Figure 51. Pseudohypericin in SRM 3262 St. John's Wort (*Hypericum perforatum L.*) Aerial Parts (data summary view – sample preparation and analytical method). In this view, individual laboratory data are plotted (circles) with the individual laboratory standard deviation (rectangle). The color of the data point represents the sample preparation procedure and analytical method employed. The black solid line represents the consensus mean, and the green shaded region represents the range of tolerance, calculated as the values above and below the consensus mean that result in an acceptable Z' score, $|Z'| \leq 2$. The red shaded region represents the target zone for "acceptable" performance, which encompasses the NIST-determined value bounded by twice its uncertainty (U_{95}).

Figure 52. Pseudohypericin in SRM 3264 St. John's Wort (*Hypericum perforatum L.*) Methanol Extract (data summary view – sample preparation and analytical method). In this view, individual laboratory data are plotted (circles) with the individual laboratory standard deviation (rectangle). The color of the data point represents the sample preparation procedure and analytical method employed. The black solid line represents the consensus mean, and the green shaded region represents the range of tolerance, calculated as the values above and below the consensus mean that result in an acceptable Z' score, $|Z'| \leq 2$. The red shaded region represents the target zone for "acceptable" performance, which encompasses the NIST reference value bounded by twice its uncertainty (U_{95}).

Figure 53. Hypericin in SRM 3262 St. John's Wort (*Hypericum perforatum L.*) Aerial Parts (data summary view – sample preparation and analytical method). In this view, individual laboratory data are plotted (circles) with the individual laboratory standard deviation (rectangle). The color of the data point represents the sample preparation procedure and analytical method employed. The black solid line represents the consensus mean, and the green shaded region represents the range of tolerance, calculated as the values above and below the consensus mean that result in an acceptable Z' score, $|Z'| \leq 2$. The red shaded region represents the target zone for "acceptable" performance, which encompasses the NIST-determined value bounded by twice its uncertainty (U_{95}).

Figure 54. Hypericin in SRM 3264 St. John's Wort (*Hypericum perforatum L.*) Methanol Extract (data summary view – sample preparation and analytical method). In this view, individual laboratory data are plotted (circles) with the individual laboratory standard deviation (rectangle). The color of the data point represents the sample preparation procedure and analytical method employed. The black solid line represents the consensus mean, and the green shaded region represents the range of tolerance, calculated as the values above and below the consensus mean that result in an acceptable Z' score, $|Z'| \leq 2$. The red shaded region represents the target zone for "acceptable" performance, which encompasses the NIST reference value bounded by twice its uncertainty (U_{95}).

Figure 55. Chlorogenic acid in SRM 3262 St. John's Wort (*Hypericum perforatum L.*) Aerial Parts and SRM 3264 St. John's Wort (*Hypericum perforatum L.*) Methanol Extract (sample/sample comparison view). In this view, the individual laboratory results for one sample (St. John's wort aerial parts) are compared to the results for a second sample (St. John's wort methanol extract). The solid red box represents the target zone for the two samples, St. John's wort aerial parts (x-axis) and St. John's wort methanol extract (y-axis). The dotted blue box represents the consensus zone for St. John's wort aerial parts (x-axis) and St. John's wort methanol extract (y-axis).

Figure 56. Rutin in SRM 3262 St. John's Wort (*Hypericum perforatum L.*) Aerial Parts and SRM 3264 St. John's Wort (*Hypericum perforatum L.*) (sample/sample comparison view). In this view, the individual laboratory results for one sample (St. John's wort aerial parts) are compared to the results for a second sample (St. John's wort methanol extract). The solid red box represents the target zone for the two samples, St. John's wort aerial parts (x-axis) and St. John's wort methanol extract (y-axis). The dotted blue box represents the consensus zone for St. John's wort aerial parts (x-axis) and St. John's wort methanol extract (y-axis).

Figure 57. Hyperoside in SRM 3262 St. John's Wort (*Hypericum perforatum L.*) Aerial Parts and SRM 3264 St. John's Wort (*Hypericum perforatum L.*) Methanol Extract (sample/sample comparison view). In this view, the individual laboratory results for one sample (St. John's wort aerial parts) are compared to the results for a second sample (St. John's wort methanol extract). The solid red box represents the target zone for the two samples, St. John's wort aerial parts (x-axis) and St. John's wort methanol extract (y-axis). The dotted blue box represents the consensus zone for St. John's wort aerial parts (x-axis) and St. John's wort methanol extract (y-axis).

Figure 58. Isoquercitrin in SRM 3262 St. John's Wort (*Hypericum perforatum L.*) Aerial Parts and SRM 3264 St. John's Wort (*Hypericum perforatum L.*) Methanol Extract (sample/sample comparison view). In this view, the individual laboratory results for one sample (St. John's wort aerial parts) are compared to the results for a second sample (St. John's wort methanol extract). The dotted blue box represents the consensus zone for St. John's wort aerial parts (x-axis) and St. John's wort methanol extract (y-axis).

Figure 59. Quercitrin in SRM 3262 St. John's Wort (*Hypericum perforatum L.*) Aerial Parts and SRM 3264 St. John's Wort (*Hypericum perforatum L.*) Methanol Extract (sample/sample comparison view). In this view, the individual laboratory results for one sample (St. John's wort aerial parts) are compared to the results for a second sample (St. John's wort methanol extract). The solid red box represents the target zone for the two samples, St. John's wort aerial parts (x-axis) and St. John's wort methanol extract (y-axis). The dotted blue box represents the consensus zone for St. John's wort aerial parts (x-axis) and St. John's wort methanol extract (y-axis).

Figure 60. Quercetin in SRM 3262 St. John's Wort (*Hypericum perforatum L.*) Aerial Parts and SRM 3264 St. John's Wort (*Hypericum perforatum L.*) Methanol Extract (sample/sample comparison view). In this view, the individual laboratory results for one sample (St. John's wort aerial parts) are compared to the results for a second sample (St. John's wort methanol extract). The dotted blue box represents the consensus zone for St. John's wort aerial parts (x-axis) and St. John's wort methanol extract (y-axis).

Figure 61. Amentoflavone in SRM 3262 St. John's Wort (*Hypericum perforatum L.*) Aerial Parts and SRM 3264 St. John's Wort (*Hypericum perforatum L.*) Methanol Extract (sample/sample comparison view). In this view, the individual laboratory results for one sample (St. John's wort aerial parts) are compared to the results for a second sample (St. John's wort methanol extract). The dotted blue box represents the consensus zone for St. John's wort aerial parts (x-axis) and St. John's wort methanol extract (y-axis).

Figure 62. Pseudohypericin in SRM 3262 St. John's Wort (*Hypericum perforatum L.*) Aerial Parts and SRM 3264 St. John's Wort (*Hypericum perforatum L.*) Methanol Extract (sample/sample comparison view). In this view, the individual laboratory results for one sample (St. John's wort aerial parts) are compared to the results for a second sample (St. John's wort methanol extract). The solid red box represents the target zone for the two samples, St. John's wort aerial parts (x-axis) and St. John's wort methanol extract (y-axis). The dotted blue box represents the consensus zone for St. John's wort aerial parts (x-axis) and St. John's wort methanol extract (y-axis).

Figure 63. Hypericin in SRM 3262 St. John's Wort (*Hypericum perforatum L.*) Aerial Parts and SRM 3264 St. John's Wort (*Hypericum perforatum L.*) Methanol Extract (sample/sample comparison view). In this view, the individual laboratory results for one sample (St. John's wort aerial parts) are compared to the results for a second sample (St. John's wort methanol extract). The solid red box represents the target zone for the two samples, St. John's wort aerial parts (x-axis) and St. John's wort methanol extract (y-axis). The dotted blue box represents the consensus zone for St. John's wort aerial parts (x-axis) and St. John's wort methanol extract (y-axis).