NISTIR 8133

NIST/NIH Vitamin D Metabolites Quality Assurance Program Report of Participant Results: Winter 2014 Comparability Study (Exercise 8)

Mary Bedner Susan S.-C. Tai

This publication is available free of charge from: http://dx.doi.org/10.6028/NIST.IR.8133

NISTIR 8133

NIST/NIH Vitamin D Metabolites Quality Assurance Program Report of Participant Results: Winter 2014 Comparability Study (Exercise 8)

Mary Bedner Susan S.-C. Tai Chemical Sciences Division Material Measurement Laboratory

This publication is available free of charge from: http://dx.doi.org/10.6028/NIST.IR.8133

September 2016

U.S. Department of Commerce Penny Pritzker, Secretary

National Institute of Standards and Technology Willie E. May, Under Secretary of Commerce for Standards and Technology and Director

ABSTRACT

The National Institute of Standards and Technology (NIST) has established a Vitamin D Metabolites Quality Assurance Program (VitDQAP) in collaboration with the National Institutes of Health (NIH) Office of Dietary Supplements. Participants in the eighth exercise of this program, the Winter 2014 Comparability Study, were asked to use the methodology of their choice to measure concentrations of 25-hydroxyvitamin D in pooled human serum control and study materials distributed by NIST. The study materials consisted of Standard Reference Material (SRM) 909c Human Serum and VitDQAP-III (a material designed for the VitDQAP). SRM 968d Fat-Soluble Vitamins, Carotenoids, and Cholesterol in Human Serum Level 1 was provided as a control material. Participants provided their data to NIST, where it was compiled and evaluated for trueness relative to the NIST value and concordance within the participant community. A report of results was provided to all participants of the study, and laboratories were identified by code numbers known only to them. The results from this eighth study are reported along with a summary of the analytical methods used.

OVERVIEW OF THE WINTER 2014 COMPARABILITY STUDY

For the Winter 2014 comparability study of the collaborative National Institute of Standards and Technology and National Institutes of Health (NIST/NIH) Vitamin D Metabolites Quality Assurance Program (VitDQAP), human serum control and study materials were distributed to participants for evaluation. Standard Reference Material (SRM) 968d Fat-Soluble Vitamins, Carotenoids, and Cholesterol in Human Serum Level 1 (SRM 968d L1) was provided as a control material for assay validation. For SRM 968d L1 (Control), the participants were provided the NIST target values within the data reporting sheet so that they could qualify their methods prior to analyzing the study samples. The study materials consisted of two vials, each containing a sample of pooled human serum. In this study, Vial A was VitDQAP-III, and Vial B was SRM 909c Frozen Human Serum, both of which contain endogenous levels of the vitamin D metabolites. Participants were asked to determine 25-hydroxyvitamin D in each of the human serum control and study samples. Individual concentration values for 25-hydroxyvitamin D₃ (25(OH)D₃), 25-hydroxyvitamin D₂ (25(OH)D₂), and 3-epi-25-hydroxyvitamin D₃ (3-epi-25(OH)D₂) + 25(OH)D₃).

There were a total of 58 participants and 71 datasets (12 participants provided data from two or more methods) in the Winter 2014 comparability study. Twenty-eight of the datasets originated from immunoassay (IA) techniques, including 19 from chemiluminescence immunoassay (CLIA), four from enzyme immunoassay (EIA), and five from radioimmunoassay (RIA). **Appendix A-1** summarizes the IA methods used by the participants. Forty-three of the datasets originated from liquid chromatographic (LC) methods; of those, 37 were from LC with tandem mass spectrometric detection (LC-MSⁿ), and six were from LC with ultraviolet absorbance detection (LC-UV). A summary of the LC methods used by the participants may be found in **Appendices A-2** and **A-3**.

The raw data received from all participants are summarized in **Appendix B**. The IA methods do not distinguish between $25(OH)D_3$ and $25(OH)D_2$, and IA participants reported single values for $25(OH)D_{Total}$ in the control and study materials. The LC methods measure the vitamin D metabolites separately, and the majority of the LC participants reported values for $25(OH)D_2$ in addition to $25(OH)D_{Total}$; eleven LC participants also reported results for 3-epi- $25(OH)D_3$ in at least one of the study materials.

Appendix B also provides the summarized NIST results for each of the serum materials. A detailed description of the NIST methods is provided in the next section of this report.

SUMMARY OF THE NIST METHODS USED TO EVALUATE THE CONTROL AND STUDY MATERIALS

NIST used isotope dilution LC-MS/MS (ID-LC-MS/MS) [1] or a combination of ID-LC-MS/MS and ID-LC-MS [2] procedures to determine the vitamin D metabolites $(25(OH)D_3, 25(OH)D_2, and 3-epi-25(OH)D_3)$ in the control and study materials evaluated in this comparability study. The ID-LC-MS/MS approach is a reference measurement procedure (RMP) for $25(OH)D_3$ and $25(OH)D_2$ that is recognized by the Joint Committee for Traceability in Laboratory Medicine (JCTLM).

For SRM 909c (Vial B), NIST determined $25(OH)D_3$ using both ID-LC-MS and the ID-LC-MS/MS RMP. The result for $25(OH)D_3$ is a combination of results from the two methods and is a certified value. A NIST certified value is a value for which NIST has the highest confidence in its accuracy in that all known or suspected sources of bias have been investigated or taken into account [3] and are reflected in the expanded uncertainty (*U*). Note that even though the NIST value for $25(OH)D_3$ is certified, this value does not currently appear on the Certificate of Analysis for SRM 909c. The $25(OH)D_2$ concentration was below the quantitation limit (≈ 0.5 ng/mL) in SRM 909c, and thus the NIST value for $25(OH)D_{Total}$ includes only the certified result for $25(OH)D_3$.

The NIST values for 25(OH)D₃, 25(OH)D₂, and 3-epi-25(OH)D₃ in VitDQAP-III (Vial A) and SRM 968d L1 (Control) were determined solely with the ID-LC-MS/MS method. For VitDQAP-III (Vial A), the NIST values for 25(OH)D₃, 25(OH)D₂, and 3-epi-25(OH)D₃ are reported with expanded uncertainties that incorporate components for measurement variability and measurement uncertainty associated with the density of the materials and the purity of the reference standards. In addition, the measurements include an additional 1% type B uncertainty for unknown systematic errors, which is consistent with the practice used at NIST for clinical measurements [1]. For SRM 968d L1 (Control), the NIST values for 25(OH)D₃ and 3-epi-25(OH)D₃ are reported as described for VitDQAP-III (Vial A), but the value for 25(OH)D₂ was well below the limit of quantitation and was estimated to be 0.1 ng/mL based on one measurement.

The NIST values for $25(OH)D_{Total}$ in VitDQAP-III (Vial A) and SRM 968d L1 (Control) are the sum of the individual values for $25(OH)D_3$ and $25(OH)D_2$, and the expanded uncertainties (*U*) incorporate the measurement uncertainties for the two analytes.

¹ Tai, S. S.-C.; Bedner, M.; Phinney, K.W.; Anal. Chem. 2010 82, 1942-1948.

² Bedner, M.; Phinney, K.W.; J. Chromatogr. A 2012 1240, 132-139.

³ May, W.; Parris, R.; Beck II, C.; Fassett, J.; Greenberg, R.; Guenther, F.; Kramer, G.; Wise, S.; Gills, T.; Colbert, J.; Gettings, R.; MacDonald, B.; NIST Special Publication 260-136 **2000**; <u>http://www.nist.gov/srm/publications.cfm</u>

WINTER 2014 COMPARABILITY STUDY RESULTS AND DISCUSSION

Results for 25(OH)D_{Total}

A summary of the individual participant data for total 25-hydroxyvitamin D ($25(OH)D_{Total}$) in VitDQAP-III (Vial A), SRM 909c (Vial B), and SRM 968d L1 (Control) is provided in **Table 1**.

The community results are summarized at the bottom of **Table 1** for all reported methods, the IA methods only, the LC methods only, and the LC-MSⁿ methods only. The community results include the total number of quantitative values reported (N), the median value for each analyte, the MADe (the median absolute deviation estimate, a robust estimate of the standard deviation), and the percent coefficient of variation (CV %).

Table 1 also presents the NIST results for 25(OH)D_{Total} in the control and the two study materials.

Table 1. Summary of participant and NIST results for 25(OH)D_{Total} (ng/mL) in VitDQAP-III (Vial A), SRM 909c (Vial B), and SRM 968d L1 (Control).

Lab Method Vial A Vial B Control 017 CLIA 31.0 16.2 13.9 026 LC-MS/MS 33.7 21.7 13.4 030b LC-MS/MS 24.5 23.9 13.2 056a LC-MS/MS 34.0 20.3 12.8 056b LC-MS/MS 34.4 20.0 13.0 110 LC-WS/MS 34.4 22.0 13.0 150 LC-MS/MS 34.2 20.7 12.8 119 LC-WS/MS 34.2 20.7 12.6 150 LC-MS/MS 31.2 17.7 12.1 161 CLIA 30.6 14.4 11.8 180 RIA 29.1 19.5 14.9 185a LC-MS/MS 30.3 15.8 13.0 186a LC-MS/MS 30.0 15.8 13.0 193 EIA 33.9 15.8 13.0 194 LC-MS/MS 30.8	-		VitDQAP-III	SRM 909c	SRM 968d L1
017 CLIA 31.0 16.2 13.9 026 LC-MS/MS 33.7 21.7 13.4 030a RA 40.5 24.8 15.3 030b LC-MS/MS 34.5 20.3 12.7 060 LC-MS/MS 34.4 20.3 12.7 060 LC-MS/MS 34.4 20.0 13.1 110 LC-UV 21.8 79.6 12.8 1116 LC-MS/MS 34.2 20.7 12.8 119 LC-MS/MS 39.5 27.3 15.6 139 LC-UV 24.7 51.9 13.1 150 LC-MS/MS 30.3 19.5 14.9 185a LC-MS/MS 30.3 19.0 13.1 188 CLIA 36.1 18.4 14.1 189 LC-UV 27.6 38.2 16.5 193 EIA 33.9 22.3 18.6 194 LC-MS/MS 30.3 <t< td=""><td>Lab</td><td>Method</td><td>Vial A</td><td>Vial B</td><td>Control</td></t<>	Lab	Method	Vial A	Vial B	Control
D2D D2D D2D D2D D2D D2D 030a RIA 40.5 24.8 15.3 030b LC-MS/MS 34.5 20.3 12.8 056b LC-MS/MS 33.4 20.3 12.7 060 LC-MS/MS 33.4 20.3 12.7 060 LC-MS/MS 33.4 20.7 12.8 110 LC-UV 24.7 51.9 13.1 150 LC-MS/MS 31.2 17.7 12.1 161 CLA 30.6 14.4 11.8 180 RIA 29.1 19.5 14.9 185b CLIA 16.4 33.3 14.5 187 LC-MS/MS 30.3 19.0 13.1 188 CLIA 36.1 18.4 14.1 199 LC-MS/MS 33.0 15.8 13.0 194 LC-MS/MS 33.0 15.8 13.0 195 LA 30.7	017		31.0	16.2 21.7	13.9 13.4
030b LC-MS/MS 24.5 22.9 13.2 056b LC-MS/MS 34.5 20.3 12.7 060 LC-MS/MS 33.4 22.0 13.0 110 LC-MS/MS 33.4 22.0 13.0 110 LC-MS/MS 33.4 22.0 13.0 1110 LC-MS/MS 39.5 27.3 15.6 139 LC-UV 24.7 51.9 13.1 150 LC-MS/MS 38.4 36.4 17.3 185a LC-MS/MS 38.4 36.4 17.3 185b CLIA 16.4 33.3 14.5 187 LC-MS/MS 33.0 15.8 13.0 188 CLIA 36.1 18.4 14.1 189 LC-MS/MS 33.0 15.8 13.0 193 EIA 33.9 22.3 18.6 194 LC-MS/MS 33.0 15.8 13.0 195 LA 30.7	020 030a	RIA	40.5	21.7	15.4
056a LC-MS/MS 34.5 20.3 12.8 056b LC-MS/MS 33.4 22.0 13.0 110 LC-MS/MS 33.4 22.0 13.0 110 LC-MS/MS 34.2 20.7 12.8 119 LC-MS/MS 31.2 17.7 12.1 150 LC-MS/MS 31.2 17.7 12.1 161 CLIA 30.6 14.4 11.8 180 RIA 29.1 19.5 14.9 185a LC-MS/MS 30.3 19.0 13.1 186 CLIA 16.4 33.3 14.5 187 LC-MS/MS 30.3 19.0 13.1 188 CLIA 30.7 15.1 14.1 197 LC-MS/MS 30.8 18.5 12.6 198 LC-MS/MS 30.8 18.5 12.6 198 LC-MS/MS 33.8 20.2 13.7 199 LC-MS/MS 33.8	030b	LC-MS/MS	24.5	23.9	13.2
066b LC-MS/MS 33.4 22.0 13.0 110 LC-MS/MS 33.4 22.0 13.0 116 LC-MS/MS 34.2 20.7 12.8 119 LC-MS/MS 34.2 20.7 12.8 119 LC-MS/MS 31.2 17.7 12.1 161 CLIA 30.6 14.4 11.8 180 RIA 29.1 19.5 14.9 185b CLIA 16.4 33.3 14.5 187 LC-MS/MS 30.3 19.0 13.1 188 CLIA 36.1 18.4 14.1 189 LC-MS/MS 30.3 19.0 13.1 189 LC-MS/MS 30.8 18.5 12.6 193 EIA 30.7 15.1 14.1 197 LC-MS/MS 30.8 18.5 12.6 198 LC-MS/MS 30.8 18.5 12.6 199 LC-MS/MS 33.8	056a	LC-MS/MS	34.5	20.3	12.8
060 LC-MS/MS 33.4 22.0 13.0 110 LC-UV 21.8 79.6 12.8 119 LC-MS/MS 39.5 27.3 15.6 139 LC-WS/MS 31.2 17.7 12.1 150 LC-MS/MS 31.2 17.7 12.1 161 CLIA 30.6 14.4 11.8 180 RIA 29.1 19.5 14.9 185a LC-MS/MS 38.4 36.4 17.3 187 LC-MS/MS 30.3 19.0 13.1 188 CLIA 36.1 18.4 14.1 189 LC-UV 27.6 38.2 16.5 193 EIA 33.9 22.3 18.6 194 LC-MS/MS 33.0 15.8 13.0 195 LC-MS/MS 30.8 18.5 12.6 198c CLIA 29.1 19.7 8.3 204a CLA 27.7 18.0<	056b	LC-MS/MS	34.0	20.3	12.7
116 LC-MS/MS 34.2 20.7 12.8 119 LC-MS/MS 39.5 27.3 15.6 139 LC-UV 24.7 51.9 13.1 150 LC-MS/MS 31.2 17.7 12.1 161 CLIA 30.6 14.4 11.8 180 RIA 29.1 19.5 14.9 185a LC-MS/MS 30.3 19.0 13.1 185b CLIA 16.4 33.3 14.5 187 LC-MS/MS 30.3 19.0 13.1 188 CLIA 36.1 18.4 14.1 189 LC-UV 27.6 38.2 16.5 193 EIA 30.7 15.1 14.1 197 LC-MS/MS 30.8 18.5 12.6 198 LC-MS/MS 30.8 18.5 12.6 198c CLIA 29.1 19.7 8.3 198 LC-MS/MS 33.8 20.2 12.5 210a RIA 27.7 18.0 13.8	060	LC-MS/MS	33.4	22.0	13.0
119 LC-MS/MS 39.5 27.3 15.6 139 LC-UV 24.7 51.9 13.1 150 LC-MS/MS 31.2 17.7 12.1 161 CLIA 30.6 14.4 11.8 180 RIA 29.1 19.5 14.9 185a LC-MS/MS 38.4 36.4 17.3 185b CLIA 16.4 33.3 14.5 187 LC-MS/MS 30.3 19.0 13.1 188 CLIA 36.1 18.4 14.1 199 LC-MS/MS 33.9 23.3 18.6 194 LC-MS/MS 30.8 18.5 12.6 198 CLIA 20.7 18.0 13.8 200 RIA 27.7 18.0 13.8 204a CLIA 29.1 19.7 8.3 210a RIA 27.7 18.0 13.8 210a RIA 27.7 14.0	116	LC-UV	21.0	79.6 20.7	12.0
139 LC-UV 24.7 51.9 13.1 150 LC-MS/MS 31.2 17.7 12.1 161 CLIA 30.6 14.4 11.8 180 RIA 29.1 19.5 14.9 185b CLIA 16.4 33.3 14.5 187 LC-MS/MS 30.3 19.0 13.1 188 CLIA 36.1 18.4 14.1 189 LC-UV 27.6 38.2 16.5 193 EIA 33.9 22.3 18.6 194 LC-MS/MS 33.0 15.8 13.0 196 CLIA 30.7 15.1 14.1 197 R.3 30.7 15.1 14.1 198 LC-MS/MS 38.2 29.6 13.7 200 RIA 27.7 18.0 13.8 204a CLIA 27.5 14.0 12.2 204b LC-MS/MS 33.8 20.2	119	LC-MS/MS	39.5	27.3	15.6
150 LC-MS/MS 31.2 17.7 12.1 161 CLIA 30.6 14.4 11.8 180 RIA 29.1 19.5 14.9 185a LC-MS/MS 38.4 36.4 17.3 187 LC-MS/MS 30.3 19.0 13.1 188 CLIA 36.1 18.4 14.1 189 LC-MS/MS 33.0 15.8 13.0 193 EIA 39.9 22.3 18.6 194 LC-MS/MS 33.0 15.8 13.0 196 CLIA 30.7 15.1 14.1 197 LC-MS/MS 30.8 18.5 12.6 198c CLIA 29.1 19.7 8.3 200 RIA 27.7 18.0 13.8 204a CLIA 37.7 22.9 12.5 210a RIA 31.4 17.9 12.4 210b CLMS/MS 36.0 18.3	139	LC-UV	24.7	51.9	13.1
161 CLIA 14.4 11.8 180 RIA 29.1 19.5 14.9 185a LC-MS/MS 38.4 36.4 17.3 185b CLIA 16.4 33.3 14.5 187 LC-MS/MS 30.3 19.0 13.1 188 CLIA 36.1 18.4 14.1 189 LC-UV 27.6 38.2 16.5 193 EIA 30.7 15.1 14.1 194 LC-MS/MS 33.0 15.8 13.0 196 CLIA 30.7 15.1 14.1 197 LC-MS/MS 30.8 18.5 12.6 198c CLIA 29.1 19.7 8.3 199 LC-MS/MS 33.8 20.2 12.8 204a CLIA 27.5 14.0 12.2 204b LC-MS/MS 33.9 22.9 12.5 210a RIA 31.4 17.9 12.4 210b CLIA 38.7 25.0 9.1 21	150	LC-MS/MS	31.2	17.7	12.1
160 RIA 19.3 19.3 14.9 185a LC-MS/MS 38.4 36.4 17.3 185b CLIA 16.4 33.3 14.5 187 LC-MS/MS 30.3 19.0 13.1 188 CLIA 36.1 18.4 14.1 189 LC-UV 27.6 38.2 16.5 193 EIA 33.9 22.3 18.6 194 LC-MS/MS 33.0 15.8 13.0 196 CLIA 30.7 15.1 14.1 197 LC-MS/MS 38.2 29.6 13.7 200 RIA 27.7 18.0 13.8 204a CLIA 27.5 14.0 12.2 204b LC-MS/MS 33.8 20.2 12.8 209 LC-MS/MS 36.0 18.3 13.6 212 LC-MS/MS 36.0 18.3 13.6 211 LC-MS/MS 31.7 20.5	161	CLIA	30.6	14.4	11.8
185b CLIA 164 33.3 14.5 187 LC-MS/MS 30.3 19.0 13.1 188 CLIA 36.1 18.4 14.1 189 LC-UV 27.6 38.2 16.5 193 EIA 33.9 22.3 18.6 194 LC-UV 27.6 38.2 16.5 193 EIA 33.9 22.3 18.6 194 LC-MS/MS 34.2 22.0 13.1 198 LC-MS/MS 38.2 29.6 13.7 200 RIA 27.7 18.0 13.8 204a CLIA 27.5 14.0 12.2 204b LC-MS/MS 33.8 20.2 12.8 209 LC-MS/MS 36.0 18.3 13.6 211 LC-MS/MS 36.0 18.3 13.6 212 LC-MS/MS 31.7 20.5 12.2 213b EIA 26.3 17.3	185a	LC-MS/MS	29.1 38.4	36.4	14.9
187 LC-MS/MS 30.3 19.0 13.1 188 CLIA 36.1 18.4 14.1 189 LC-UV 27.6 38.2 16.5 193 EIA 33.9 22.3 18.6 194 LC-MS/MS 33.0 15.8 13.0 196 CLIA 30.7 15.1 14.1 197 LC-MS/MS 34.2 22.0 13.1 198 LC-MS/MS 38.2 29.6 13.7 200 RIA 27.7 18.0 13.8 204a CLIA 27.5 14.0 12.2 210a RIA 31.4 17.9 12.4 210b CLIA 38.7 22.0 9.1 211 LC-MS/MS 35.7 22.3 12.3 213a CLIA 30.4 19.4 6.5 213b EIA 26.3 17.3 12.9 214a RIA 27.5 31.3	185b	CLIA	16.4	33.3	14.5
188 CLIA 36.1 18.4 14.1 189 LC-UV 27.6 38.2 16.5 193 EIA 33.9 22.3 18.6 194 LC-MS/MS 33.0 15.8 13.0 196 CLIA 30.7 15.1 14.1 197 LC-MS/MS 30.8 18.5 12.6 198a LC-MS/MS 30.8 18.5 12.6 198c CLIA 29.1 19.7 8.3 200 RIA 27.7 18.0 13.8 204a CLIA 27.5 14.0 12.2 204b LC-MS/MS 33.8 20.2 12.8 209 LC-MS/MS 36.7 22.3 12.3 210a RIA 31.4 17.9 12.4 210b CLIA 38.7 25.0 9.1 211 LC-MS/MS 36.0 18.3 13.6 212a LC-MS/MS 36.7 22.3 <td>187</td> <td>LC-MS/MS</td> <td>30.3</td> <td>19.0</td> <td>13.1</td>	187	LC-MS/MS	30.3	19.0	13.1
189 LC-UV 27.6 38.2 16.5 193 EIA 33.9 22.3 18.6 194 LC-MS/MS 33.0 15.8 13.0 196 CLIA 30.7 15.1 14.1 197 LC-MS/MS 30.8 18.5 12.6 198c CLIA 29.1 19.7 8.3 199 LC-MS/MS 38.2 29.6 13.7 200 RIA 27.7 18.0 13.8 204a CLIA 27.5 14.0 12.2 204b LC-MS/MS 33.8 20.2 12.8 209 LC-MS/MS 33.8 20.2 12.8 204a CLIA 38.7 25.0 9.1 211 LC-MS/MS 36.0 18.3 13.6 212 LC-MS/MS 36.0 18.3 13.6 213a CLIA 30.4 19.4 6.5 213b EIA 26.3 17.3 12.9 214a RIA 27.5 31.3 11.5	188	CLIA	36.1	18.4	14.1
194 LC-MS/MS 33.9 22.3 10.0 194 LC-MS/MS 33.0 15.8 13.0 196 CLIA 30.7 15.1 14.1 197 LC-MS/MS 30.8 18.5 12.6 198c CLIA 29.1 19.7 8.3 199 LC-MS/MS 38.2 29.6 13.7 200 RIA 27.7 18.0 13.8 204a CLIA 27.5 14.0 12.2 204b LC-MS/MS 33.8 20.2 12.8 209 LC-MS/MS 33.9 22.9 12.5 210a RIA 31.4 17.9 12.4 210b CLIA 38.7 25.0 9.1 211 LC-MS/MS 36.0 18.3 13.6 212 LC-MS/MS 35.7 22.3 12.3 213a CLIA 30.4 19.4 6.5 214a RIA 27.5 51.3<	189	LC-UV	27.6	38.2	16.5
196 CLIA 30.7 15.1 14.1 197 LC-MS/MS 34.2 22.0 13.1 198a LC-MS/MS 30.8 18.5 12.6 198c CLIA 29.1 19.7 8.3 199 LC-MS/MS 38.2 29.6 13.7 200 RIA 27.7 18.0 13.8 204a CLIA 33.9 22.9 12.5 204b LC-MS/MS 33.8 20.2 12.8 209 LC-MS/MS 33.9 22.9 12.5 210a RIA 31.4 17.9 12.4 210b CLIA 38.7 25.0 9.1 211 LC-MS/MS 36.0 18.3 13.6 212 LC-MS/MS 36.7 22.3 12.3 213a CLIA 30.4 19.4 6.5 213b EIA 26.3 17.3 12.9 214a RIA 27.5 31.3 <td>193</td> <td>LC-MS/MS</td> <td>33.0</td> <td>15.8</td> <td>13.0</td>	193	LC-MS/MS	33.0	15.8	13.0
197 LC-MS/MS 34.2 22.0 13.1 198a LC-MS/MS 30.8 18.5 12.6 198c CLIA 29.1 19.7 8.3 199 LC-MS/MS 38.2 29.6 13.7 200 RIA 27.7 18.0 13.8 204a CLIA 27.5 14.0 12.2 204b LC-MS/MS 33.8 20.2 12.8 209 LC-MS/MS 33.9 22.9 12.5 210a RIA 31.4 17.9 12.4 210b CLIA 38.7 25.0 9.1 211 LC-MS/MS 35.7 22.3 12.3 213a CLIA 30.4 19.4 6.5 213b EIA 26.3 17.3 12.9 214a RIA 27.5 31.3 11.5 214b CLIA 31.2 14.4 13.0 214c LC-MS/MS 31.7 20.5 </td <td>196</td> <td>CLIA</td> <td>30.7</td> <td>15.1</td> <td>14.1</td>	196	CLIA	30.7	15.1	14.1
198a LC-MS/MS 30.8 18.5 12.6 198c CLIA 29.1 19.7 8.3 199 LC-MS/MS 38.2 29.6 13.7 200 RIA 27.7 18.0 13.8 204a CLIA 27.5 14.0 12.2 204b LC-MS/MS 33.9 22.9 12.5 210a RIA 31.4 17.9 12.4 210b CLIA 38.7 25.0 9.1 211 LC-MS/MS 36.0 18.3 13.6 212 LC-MS/MS 35.7 22.3 12.3 213a CLIA 30.4 19.4 6.5 213b EIA 26.3 17.3 12.9 214a RIA 27.5 31.3 11.5 214b CLIA 31.7 20.5 12.2 215 LC-MS/MS 32.9 21.9 12.8 214c LC-MS/MS 31.7 20.5 </td <td>197</td> <td>LC-MS/MS</td> <td>34.2</td> <td>22.0</td> <td>13.1</td>	197	LC-MS/MS	34.2	22.0	13.1
198c CLIA 29.1 19.7 8.3 199 LC-MS/MS 38.2 29.6 13.7 200 RIA 27.7 18.0 13.8 204a CLIA 27.5 14.0 12.2 204b LC-MS/MS 33.9 22.9 12.5 210a RIA 31.4 17.9 12.4 210b CLIA 38.7 25.0 9.1 211 LC-MS/MS 36.0 18.3 13.6 212 LC-MS/MS 36.0 18.3 13.6 212 LC-MS/MS 36.0 18.3 13.6 213b EIA 26.3 17.3 12.9 214a RIA 27.5 31.3 11.5 214b CLIA 31.7 20.5 12.2 215 LC-MS/MS 37.2 21.2 13.6 214b CLIA 33.7 14.5 14.5 218a CLA/S/MS 36.7 31.7 </td <td>198a</td> <td>LC-MS/MS</td> <td>30.8</td> <td>18.5</td> <td>12.6</td>	198a	LC-MS/MS	30.8	18.5	12.6
199 LC-MS/MS 36.2 29.0 13.7 200 RIA 27.7 18.0 13.8 204a CLIA 27.5 14.0 12.2 204b LC-MS/MS 33.8 20.2 12.8 209 LC-MS/MS 33.9 22.9 12.5 210a RIA 31.4 17.9 12.4 210b CLIA 38.7 25.0 9.1 211 LC-MS/MS 36.0 18.3 13.6 212 LC-MS/MS 36.0 18.3 13.6 213b EIA 26.3 17.3 12.9 214a RIA 27.5 31.3 11.5 214b CLIA 31.2 14.4 13.0 214a RIA 27.5 31.3 11.5 214b CLIA 31.7 20.5 12.2 215 LC-MS/MS 37.2 21.2 13.6 216 LC-MS/MS 31.8 23.8 <td>198C</td> <td></td> <td>29.1</td> <td>19.7</td> <td>8.3</td>	198C		29.1	19.7	8.3
204a CLIA 27.5 14.0 12.2 204b LC-MS/MS 33.8 20.2 12.8 209 LC-MS/MS 33.9 22.9 12.5 210a RIA 31.4 17.9 12.4 210b CLIA 38.7 25.0 9.1 211 LC-MS/MS 36.0 18.3 13.6 212 LC-MS/MS 35.7 22.3 12.3 213a CLIA 30.4 19.4 6.5 213b EIA 26.3 17.3 12.9 214a RIA 27.5 31.3 11.5 214b CLIA 31.2 14.4 13.0 214c LC-MS/MS 37.2 21.2 3.6 216 LC-MS/MS 32.9 21.9 12.8 218a CLIA 33.7 14.5 14.5 218b LC-MS/MS 36.7 31.7 15.0 221a LC-MS/MS 36.7	200	RIA	27.7	29.0 18.0	13.7
204b LC-MS/MS 33.8 20.2 12.8 209 LC-MS/MS 33.9 22.9 12.5 210a RIA 31.4 17.9 12.4 210b CLIA 38.7 25.0 9.1 211 LC-MS/MS 36.0 18.3 13.6 212 LC-MS/MS 35.7 22.3 12.3 213a CLIA 30.4 19.4 6.5 213b EIA 26.3 17.3 12.9 214a RIA 27.5 31.3 11.5 214b CLIA 31.2 14.4 13.0 214c LC-MS/MS 31.7 20.5 12.2 215 LC-MS/MS 32.9 21.9 12.8 218a CLIA 33.7 14.5 14.5 218b LC-MS/MS 36.7 31.7 15.0 221a LC-MS/MS 36.7 31.7 15.0 221b LC-MS/MS 36.7	204a	CLIA	27.5	14.0	12.2
209 LC-MS/MS 33.9 22.9 12.5 210a RIA 31.4 17.9 12.4 210b CLIA 38.7 25.0 9.1 211 LC-MS/MS 36.0 18.3 13.6 212 LC-MS/MS 35.7 22.3 12.3 213a CLIA 30.4 19.4 6.5 213b EIA 26.3 17.3 12.9 214a RIA 27.5 31.3 11.5 214b CLIA 31.2 14.4 13.0 214c LC-MS/MS 31.7 20.5 12.2 215 LC-MS/MS 31.7 20.5 12.2 216 LC-MS/MS 32.9 21.9 12.8 218a CLAS/MS 36.7 31.7 15.0 221a LC-MS/MS 36.7 31.7 15.0 221a LC-MS/MS 36.7 31.7 15.0 221a LC-MS/MS 31.0	204b	LC-MS/MS	33.8	20.2	12.8
210a RIA 31.4 17.9 12.4 210b CLIA 38.7 25.0 9.1 211 LC-MS/MS 36.0 18.3 13.6 212 LC-MS/MS 35.7 22.3 12.3 213a CLIA 30.4 19.4 6.5 213b EIA 26.3 17.3 12.9 214a RIA 27.5 31.3 11.5 214b CLIA 31.2 14.4 13.0 214c LC-MS/MS 37.2 21.2 13.6 215 LC-MS/MS 37.2 21.9 12.8 218a CLIA 33.7 14.5 14.5 218b LC-MS/MS 36.0 23.0 15.0 221a LC-MS/MS 36.7 31.7 15.0 221b LC-UV 37.5 36.3 10.7 222 CLIA 35.2 23.5 11.1 225 LC-MS/MS 31.0 14.	209	LC-MS/MS	33.9	22.9	12.5
2100 CLIA 36.7 21.0 3.1 211 LC-MS/MS 36.0 18.3 13.6 212 LC-MS/MS 35.7 22.3 12.3 213a CLIA 30.4 19.4 6.5 213b EIA 26.3 17.3 12.9 214a RIA 27.5 31.3 11.5 214b CLIA 31.2 14.4 13.0 214c LC-MS/MS 37.2 21.2 13.6 216 LC-MS/MS 32.9 21.9 12.8 218a CLIA 33.7 14.5 14.5 218b LC-MS/MS 36.0 23.0 15.0 221a LC-MS/MS 36.7 31.7 15.0 221b LC-UV 37.5 36.3 10.7 222 CLIA 35.2 23.5 11.1 225 LC-MS/MS 31.0 14.8 10.4 228a LC-MS/MS 31.0 <t< td=""><td>210a 210b</td><td>RIA</td><td>31.4</td><td>17.9</td><td>12.4</td></t<>	210a 210b	RIA	31.4	17.9	12.4
212 LC-MS/MS 35.7 22.3 12.3 213a CLIA 30.4 19.4 6.5 213b EIA 26.3 17.3 12.9 214a RIA 27.5 31.3 11.5 214b CLIA 31.2 14.4 13.0 214c LC-MS/MS 31.7 20.5 12.2 215 LC-MS/MS 37.2 21.2 13.6 216 LC-MS/MS 32.9 21.9 12.8 218a CLIA 33.7 14.5 14.5 218b LC-MS/MS 36.0 23.0 15.0 221a LC-MS/MS 36.7 31.7 15.0 221b LC-UV 37.5 36.3 10.7 222 CLIA 35.2 23.5 11.1 225 LC-MS/MS 31.0 14.8 10.4 228a LC-MS/MS 31.1 18.7 12.2 243a LC-WS/MS 33.0	2100	LC-MS/MS	36.0	18.3	13.6
213a CLIA 30.4 19.4 6.5 213b EIA 26.3 17.3 12.9 214a RIA 27.5 31.3 11.5 214b CLIA 31.2 14.4 13.0 214c LC-MS/MS 37.2 21.2 13.6 216 LC-MS/MS 32.9 21.9 12.8 218b LC-MS/MS 33.7 14.5 14.5 218b LC-MS/MS 36.0 23.0 15.0 221a LC-MS/MS 36.7 31.7 15.0 221b LC-VV 37.5 36.3 10.7 222 CLIA 35.2 23.5 11.1 225 LC-MS/MS 31.0 14.8 10.4 228a LC-MS/MS 31.1 18.7 12.2 231 LC-UV 30.2 30.8 8.5 241 LC-MS/MS 31.1 18.7 12.2 243a LC-MS/MS 33.0	212	LC-MS/MS	35.7	22.3	12.3
213b EIA 26.3 17.3 12.9 214a RIA 27.5 31.3 11.5 214b CLIA 31.2 14.4 13.0 214c LC-MS/MS 37.2 21.2 13.6 216 LC-MS/MS 32.9 21.9 12.8 218a CLIA 33.7 14.5 14.5 218b LC-MS/MS 32.9 21.9 12.8 218b LC-MS/MS 36.0 23.0 15.0 221a LC-MS/MS 36.7 31.7 15.0 221b LC-UV 37.5 36.3 10.7 222 CLIA 35.2 23.5 11.1 225 LC-MS/MS 31.0 14.8 10.4 228a LC-MS/MS 35.4 21.5 12.7 231 LC-UV 30.2 30.8 8.5 241 LC-MS/MS 28.7 17.2 12.3 243a LC-MS/MS 33.0 25.0 13.0 247a CLIA 31.9 16.7 1	213a	CLIA	30.4	19.4	6.5
214a RIA 27.5 31.3 11.5 214b CLIA 31.2 14.4 13.0 214c LC-MS/MS 31.7 20.5 12.2 215 LC-MS/MS 37.2 21.2 13.6 216 LC-MS/MS 32.9 21.9 12.8 218a CLIA 33.7 14.5 14.5 218b LC-MS/MS 36.0 23.0 15.0 221a LC-MS/MS 36.7 31.7 15.0 221b LC-UV 37.5 36.3 10.7 222 CLIA 35.2 23.5 11.1 225 LC-MS/MS 31.0 14.8 10.4 228a LC-MS/MS 35.4 21.5 12.7 231 LC-UV 30.2 30.8 8.5 241 LC-MS/MS 31.1 18.7 12.2 243a LC-MS/MS 33.0 25.0 13.0 244 LC-MS/MS 33.0 25.0 13.0 247a CLIA 31.9 16.7 <t< td=""><td>213b</td><td>EIA</td><td>26.3</td><td>17.3</td><td>12.9</td></t<>	213b	EIA	26.3	17.3	12.9
2140 CL/MS/MS 31.7 20.5 12.2 214c LC-MS/MS 31.7 20.5 12.2 215 LC-MS/MS 32.9 21.9 12.8 218a CLIA 33.7 14.5 14.5 218b LC-MS/MS 32.9 21.9 12.8 218b LC-MS/MS 31.8 23.8 12.2 220 LC-MS/MS 36.0 23.0 15.0 221a LC-MS/MS 36.7 31.7 15.0 221b LC-UV 37.5 36.3 10.7 222 CLIA 35.2 23.5 11.1 225 LC-MS/MS 31.0 14.8 10.4 228a LC-MS/MS 35.4 21.5 12.7 231 LC-UV 30.2 30.8 8.5 241 LC-MS/MS 28.7 17.2 12.3 243a LC-WS/MS 33.0 25.0 13.0 243a LC-MS/MS 33.0 25.0 13.0 247a CLIA 31.9 16.7 <td>214a 214b</td> <td>RIA</td> <td>27.5</td> <td>31.3</td> <td>11.5</td>	214a 214b	RIA	27.5	31.3	11.5
215 LC-MS/MS 37.2 21.2 13.6 216 LC-MS/MS 32.9 21.9 12.8 218a CLIA 33.7 14.5 14.5 218b LC-MS/MS 31.8 23.8 12.2 220 LC-MS/MS 36.0 23.0 15.0 221a LC-MS/MS 36.7 31.7 15.0 221b LC-UV 37.5 36.3 10.7 222 CLIA 35.2 23.5 11.1 225 LC-MS/MS 31.0 14.8 10.4 228a LC-MS/MS 35.4 21.5 12.7 231 LC-UV 30.2 30.8 8.5 241 LC-MS/MS 28.7 17.2 12.3 243a LC-UV 27.8 19.6 11.5 243a LC-MS/MS 33.0 25.0 13.0 247a CLIA 31.9 16.7 11.7 244 LC-MS/MS 33.3	2140 214c	LC-MS/MS	31.7	20.5	12.2
216 LC-MS/MS 32.9 21.9 12.8 218a CLIA 33.7 14.5 14.5 218b LC-MS/MS 31.8 23.8 12.2 220 LC-MS/MS 36.0 23.0 15.0 221a LC-MS/MS 36.7 31.7 15.0 221b LC-UV 37.5 36.3 10.7 222 CLIA 35.2 23.5 11.1 225 LC-MS/MS 31.0 14.8 10.4 228a LC-MS/MS 35.4 21.5 12.7 231 LC-UV 30.2 30.8 8.5 241 LC-MS/MS 28.7 17.2 12.3 242 LC-MS/MS 28.7 17.2 12.3 243a LC-UV 27.8 19.6 11.5 243a LC-MS/MS 33.0 25.0 13.0 247a CLIA 31.9 16.7 11.7 249 LC-MS/MS 33.3	215	LC-MS/MS	37.2	21.2	13.6
218a CLIA 33.7 14.5 14.5 218b LC-MS/MS 31.8 23.8 12.2 220 LC-MS/MS 36.0 23.0 15.0 221a LC-MS/MS 36.7 31.7 15.0 221b LC-WS/MS 36.7 31.7 15.0 221b LC-WS/MS 36.7 31.7 15.0 221b LC-WS/MS 36.7 31.7 15.0 222 CLIA 35.2 23.5 11.1 225 LC-MS/MS 35.4 21.5 12.7 231 LC-WS/MS 28.7 17.2 12.3 242 LC-MS/MS 28.7 17.2 12.3 243a LC-UV 27.8 19.6 11.5 243a LC-MS/MS 33.0 25.0 13.0 247a CLIA 31.9 16.7 11.7 244 LC-MS/MS 33.3 21.7 12.6 251 LC-MS/MS 33	216	LC-MS/MS	32.9	21.9	12.8
218b LC-MS/MS 31.8 23.8 12.2 220 LC-MS/MS 36.0 23.0 15.0 221a LC-MS/MS 36.7 31.7 15.0 221b LC-WS/MS 36.7 31.7 15.0 221b LC-WS/MS 36.7 31.7 15.0 221c CLIA 35.2 23.5 11.1 225 LC-MS/MS 31.0 14.8 10.4 228a LC-MS/MS 35.4 21.5 12.7 231 LC-UV 30.2 30.8 8.5 241 LC-MS/MS 28.7 17.2 12.3 242 LC-MS/MS 28.7 17.2 12.3 243 LC-WS/MS 33.0 25.0 13.0 244 LC-MS/MS 33.0 25.0 13.0 247a CLIA 31.9 16.7 11.7 247b EIA 31.0 22.3 15.7 249 LC-MS/MS 33.3<	218a	CLIA	33.7	14.5	14.5
221a LC-MS/MS 36.7 31.7 15.0 221b LC-MS/MS 36.7 31.7 15.0 221b LC-WS/MS 36.7 31.7 15.0 221b LC-WS/MS 37.5 36.3 10.7 222 CLIA 35.2 23.5 11.1 225 LC-MS/MS 31.0 14.8 10.4 228a LC-MS/MS 35.4 21.5 12.7 231 LC-UV 30.2 30.8 8.5 241 LC-MS/MS 28.7 17.2 12.3 242 LC-MS/MS 31.1 18.7 12.2 243a LC-UV 27.8 19.6 11.5 244 LC-MS/MS 33.0 25.0 13.0 247a CLIA 31.9 16.7 11.7 247b EIA 31.0 22.3 15.7 251 LC-MS/MS 33.3 21.7 12.6 253 LC-MS/MS 35.5 <td>218b 220</td> <td>LC-MS/MS</td> <td>31.8</td> <td>23.8</td> <td>12.2</td>	218b 220	LC-MS/MS	31.8	23.8	12.2
221b LC-UV 37.5 36.3 10.7 222 CLIA 35.2 23.5 11.1 225 LC-MS/MS 31.0 14.8 10.4 228a LC-MS/MS 35.4 21.5 12.7 231 LC-UV 30.2 30.8 8.5 241 LC-MS/MS 28.7 17.2 12.3 242 LC-MS/MS 28.7 17.2 12.3 242 LC-MS/MS 31.1 18.7 12.2 243a LC-UV 27.8 19.6 11.5 243b LC-MS/MS 33.0 25.0 13.0 247a CLIA 31.9 16.7 11.7 247b EIA 31.0 22.3 15.7 249 LC-MS/MS 33.3 21.7 12.6 251 LC-MS/MS 35.5 21.0 13.1 255 LC-MS/MS 32.9 20.2 12.8 256 CLIA 30.4	221a	LC-MS/MS	36.7	31.7	15.0
222 CLIA 35.2 23.5 11.1 225 LC-MS/MS 31.0 14.8 10.4 228a LC-MS/MS 35.4 21.5 12.7 231 LC-UV 30.2 30.8 8.5 241 LC-MS/MS 28.7 17.2 12.3 242 LC-MS/MS 28.7 17.2 12.3 242 LC-MS/MS 31.1 18.7 12.2 243a LC-UV 27.8 19.6 11.5 243b LC-MS/MS 33.0 25.0 13.0 247a CLIA 31.9 16.7 11.7 247b EIA 31.0 22.3 15.7 249 LC-MS/MS 33.3 21.7 12.6 251 LC-MS/MS 35.5 21.0 13.1 255 LC-MS/MS 32.9 20.2 12.8 256 CLIA 30.4 17.3 18.5 257 CLIA 32.8 <	221b	LC-UV	37.5	36.3	10.7
225 LC-MS/MS 31.0 14.8 10.4 228a LC-MS/MS 35.4 21.5 12.7 231 LC-UV 30.2 30.8 8.5 241 LC-MS/MS 28.7 17.2 12.3 242 LC-MS/MS 31.1 18.7 12.2 243a LC-UV 27.8 19.6 11.5 243b LC-MS/MS 28.2 21.1 12.4 244 LC-MS/MS 33.0 25.0 13.0 247a CLIA 31.9 16.7 11.7 247b EIA 31.0 22.3 15.7 249 LC-MS/MS 33.3 21.7 12.6 251 LC-MS/MS 35.5 21.0 13.1 255 LC-MS/MS 32.9 20.2 12.8 256 CLIA 30.4 17.3 18.5 257 CLIA 31.9 22.4 6.2 258 CLA 32.8 <td< td=""><td>222</td><td>CLIA</td><td>35.2</td><td>23.5</td><td>11.1</td></td<>	222	CLIA	35.2	23.5	11.1
225a LC-INS/MS 35.4 21.3 12.7 231 LC-UV 30.2 30.8 8.5 241 LC-MS/MS 28.7 17.2 12.3 242 LC-MS/MS 31.1 18.7 12.2 243a LC-UV 27.8 19.6 11.5 243b LC-MS/MS 28.2 21.1 12.4 244 LC-MS/MS 33.0 25.0 13.0 247a CLIA 31.9 16.7 11.7 247b EIA 31.0 22.3 15.7 249 LC-MS/MS 33.3 21.7 12.6 251 LC-MS/MS 35.5 21.0 13.1 255 LC-MS/MS 32.9 20.2 12.8 256 CLIA 30.4 17.3 18.5 257 CLIA 32.8 17.5 11.4 258 CLIA 32.8 17.5 14.8 260 EIA 32.3 1	225	LC-MS/MS	31.0	14.8	10.4
241 LC-MS/MS 28.7 17.2 12.3 242 LC-MS/MS 31.1 18.7 12.2 243a LC-UV 27.8 19.6 11.5 243b LC-MS/MS 28.2 21.1 12.4 243a LC-WS/MS 28.2 21.1 12.4 243b LC-MS/MS 33.0 25.0 13.0 247a CLIA 31.9 16.7 11.7 247b EIA 31.0 22.3 15.7 249 LC-MS/MS 33.3 21.7 12.6 251 LC-MS/MS 35.5 21.0 13.1 255 LC-MS/MS 32.9 20.2 12.8 256 CLIA 30.4 17.3 18.5 257 CLIA 32.8 17.5 11.4 258 CLIA 32.8 17.5 14.8 260 EIA 32.0 22.0 18.2 261 CLIA 32.3 1	220a 231		30.2	21.5	85
242 LC-MS/MS 31.1 18.7 12.2 243a LC-UV 27.8 19.6 11.5 243b LC-WS/MS 28.2 21.1 12.4 244 LC-MS/MS 33.0 25.0 13.0 247a CLIA 31.9 16.7 11.7 247b EIA 31.0 22.3 15.7 249 LC-MS/MS 33.3 21.7 12.6 251 LC-MS/MS 34.4 21.6 n/r 253 LC-MS/MS 32.9 20.2 12.8 256 CLIA 30.4 17.3 18.5 257 CLIA 31.9 22.4 6.2 258 CLIA 32.8 17.5 11.4 259 LC-MS/MS 26.1 25.5 14.8 260 EIA 32.0 22.0 18.2 261 CLIA 32.3 16.2 10.3 262 CLIA 34.1 52.1	241	LC-MS/MS	28.7	17.2	12.3
243a LC-UV 27.8 19.6 11.5 243b LC-WS/MS 28.2 21.1 12.4 244 LC-MS/MS 33.0 25.0 13.0 247a CLIA 31.9 16.7 11.7 247b EIA 31.0 22.3 15.7 249 LC-MS/MS 33.3 21.7 12.6 251 LC-MS/MS 34.4 21.6 n/r 253 LC-MS/MS 35.5 21.0 13.1 255 LC-MS/MS 32.9 20.2 12.8 256 CLIA 30.4 17.3 18.5 257 CLIA 31.9 22.4 6.2 258 CLIA 32.8 17.5 11.4 259 LC-MS/MS 26.1 25.5 14.8 260 EIA 32.0 22.0 18.2 261 CLIA 32.3 16.2 10.3 262 CLIA 34.1 52.1	242	LC-MS/MS	31.1	18.7	12.2
24:50 LC-MS/MS 28.2 21.1 12.4 244 LC-MS/MS 33.0 25.0 13.0 247a CLIA 31.9 16.7 11.7 247b EIA 31.0 22.3 15.7 249 LC-MS/MS 33.3 21.7 12.6 251 LC-MS/MS 34.4 21.6 n/r 253 LC-MS/MS 35.5 21.0 13.1 255 LC-MS/MS 32.9 20.2 12.8 256 CLIA 30.4 17.3 18.5 257 CLIA 31.9 22.4 6.2 258 CLIA 32.8 17.5 11.4 259 LC-MS/MS 26.1 25.5 14.8 260 EIA 32.0 22.0 18.2 261 CLIA 32.3 16.2 10.3 262 CLIA 34.1 52.1 16.5 263 CLIA 28.7 13.4	243a	LC-UV	27.8	19.6	11.5
2474 LC+MS/MS 33.0 23.0 13.0 247a CLIA 31.9 16.7 11.7 247b EIA 31.0 22.3 15.7 249 LC-MS/MS 33.3 21.7 12.6 251 LC-MS/MS 34.4 21.6 n/r 253 LC-MS/MS 35.5 21.0 13.1 255 LC-MS/MS 32.9 20.2 12.8 256 CLIA 30.4 17.3 18.5 257 CLIA 31.9 22.4 6.2 258 CLIA 32.8 17.5 11.4 259 LC-MS/MS 26.1 25.5 14.8 260 EIA 32.0 22.0 18.2 261 CLIA 32.3 16.2 10.3 262 CLIA 34.1 52.1 16.5 263 CLIA 28.7 13.4 12.5 264 LC-MS/MS 41.4 29.0	243b		28.2	21.1	12.4
247b EIA 31.0 22.3 15.7 249 LC-MS/MS 33.3 21.7 12.6 251 LC-MS/MS 34.4 21.6 n/r 253 LC-MS/MS 35.5 21.0 13.1 255 LC-MS/MS 32.9 20.2 12.8 256 CLIA 30.4 17.3 18.5 257 CLIA 31.9 22.4 6.2 258 CLIA 32.8 17.5 11.4 259 LC-MS/MS 26.1 25.5 14.8 260 EIA 32.0 22.0 18.2 261 CLIA 32.3 16.2 10.3 262 CLIA 34.1 52.1 16.5 263 CLIA 28.7 13.4 12.5 264 LC-MS/MS 41.4 29.0 11.4 265 LC-MS/MS 41.4 29.0 14.0	∠44 247a	CLIA	31.9	25.0	11.7
249 LC-MS/MS 33.3 21.7 12.6 251 LC-MS/MS 34.4 21.6 n/r 253 LC-MS/MS 35.5 21.0 13.1 255 LC-MS/MS 32.9 20.2 12.8 256 CLIA 30.4 17.3 18.5 257 CLA 31.9 22.4 6.2 258 CLIA 32.8 17.5 11.4 259 LC-MS/MS 26.1 25.5 14.8 260 EIA 32.0 22.0 18.2 261 CLIA 32.3 16.2 10.3 262 CLIA 34.1 52.1 16.5 263 CLIA 28.7 13.4 12.5 264 LC-MS/MS 41.4 29.0 11.4 265 LC-MS/MS 41.4 29.0 11.4 264 LC-MS/MS 41.4 29.0 11.4 265 LC-MS/MS 41.4 29.0 </td <td>247b</td> <td>EIA</td> <td>31.0</td> <td>22.3</td> <td>15.7</td>	247b	EIA	31.0	22.3	15.7
251 LC-MS/MS 34.4 21.6 n/r 253 LC-MS/MS 35.5 21.0 13.1 255 LC-MS/MS 32.9 20.2 12.8 256 CLIA 30.4 17.3 18.5 257 CLIA 31.9 22.4 6.2 258 CLIA 32.8 17.5 11.4 259 LC-MS/MS 26.1 25.5 14.8 260 EIA 32.0 22.0 18.2 261 CLIA 32.3 16.2 10.3 262 CLIA 34.1 52.1 16.5 263 CLIA 28.7 13.4 12.5 264 LC-MS/MS 41.4 29.0 11.4 265 LC-MS/MS 41.4 29.0 11.4 264 LC-MS/MS 41.4 29.0 11.4 265 LC-MS/MS 41.4 29.0 14.0	249	LC-MS/MS	33.3	21.7	12.6
25-3 LC-MS/MS 35.5 21.0 13.1 255 LC-MS/MS 32.9 20.2 12.8 256 CLIA 30.4 17.3 18.5 257 CLIA 31.9 22.4 6.2 258 CLIA 32.8 17.5 11.4 259 LC-MS/MS 26.1 25.5 14.8 260 EIA 32.0 22.0 18.2 261 CLIA 32.3 16.2 10.3 262 CLIA 34.1 52.1 16.5 263 CLIA 28.7 13.4 12.5 264 LC-MS/MS 41.4 29.0 11.4 265 LC-MS/MS 41.4 29.0 11.4 264 LC-MS/MS 41.4 29.0 11.4 265 LC-MS/MS 41.4 29.0 14.0	251	LC-MS/MS	34.4	21.6	n/r
256 CLIA 30.4 17.3 18.5 257 CLIA 31.9 22.4 6.2 258 CLIA 32.8 17.5 11.4 259 LC-MS/MS 26.1 25.5 14.8 260 EIA 32.0 22.0 18.2 261 CLIA 32.3 16.2 10.3 262 CLIA 34.1 52.1 16.5 263 CLIA 34.1 52.1 16.5 263 CLIA 34.1 52.1 16.5 263 CLIA 28.7 13.4 12.5 264 LC-MS/MS 41.4 29.0 11.4 265 LC-MS/MS 41.4 29.0 14.0	253 255	LC-MS/MS	35.5	21.0	13.1 12.9
257 CLIA 31.9 22.4 6.2 258 CLIA 32.8 17.5 11.4 259 LC-MS/MS 26.1 25.5 14.8 260 EIA 32.0 22.0 18.2 261 CLIA 32.3 16.2 10.3 262 CLIA 34.1 52.1 16.5 263 CLIA 28.7 13.4 12.5 264 LC-MS/MS 41.4 29.0 11.4 265 LC-MS/MS 41.4 29.0 14.0 265 LC-MS/MS 41.4 29.0 14.0	256	CLIA	30.4	17.3	18.5
258 CLIA 32.8 17.5 11.4 259 LC-MS/MS 26.1 25.5 14.8 260 EIA 32.0 22.0 18.2 261 CLIA 32.3 16.2 10.3 262 CLIA 34.1 52.1 16.5 263 CLIA 28.7 13.4 12.5 264 LC-MS/MS 41.4 29.0 11.4 265 LC-MS/MS 41.4 29.0 14.0	257	CLIA	31.9	22.4	6.2
259 LC-MS/MS 26.1 25.5 14.8 260 EIA 32.0 22.0 18.2 261 CLIA 32.3 16.2 10.3 262 CLIA 34.1 52.1 16.5 263 CLIA 34.1 52.1 16.5 264 LC-MS/MS 41.4 29.0 11.4 264 LC-MS/MS 41.4 29.0 11.4 265 Dependent option 39.0 24.0 14.0	258	CLIA	32.8	17.5	11.4
ZOU EIA 32.0 22.0 18.2 261 CLIA 32.3 16.2 10.3 262 CLIA 34.1 52.1 16.5 263 CLIA 34.1 52.1 16.5 264 LC-MS/MS 41.4 29.0 11.4 265 LC-MS/MS 39.0 24.0 14.0	259	LC-MS/MS	26.1	25.5	14.8
261 CLIA 32.5 10.2 10.3 262 CLIA 34.1 52.1 16.5 263 CLIA 28.7 13.4 12.5 264 LC-MS/MS 41.4 29.0 11.4 265 LC-MS/MS 39.0 24.0 14.0	260	EIA	32.0	22.0	18.2 10.3
263 CLIA 28.7 13.4 12.5 264 LC-MS/MS 41.4 29.0 11.4 265 LC-MS/MS 39.0 24.0 14.0	262	CLIA	34.1	52.1	16.5
264 LC-MS/MS 41.4 29.0 11.4 265 LC-MS/MS 39.0 24.0 14.0 267 Descripted of participant 14.0 14.0	263	CLIA	28.7	13.4	12.5
265 LC-MS/MS 39.0 24.0 14.0	264	LC-MS/MS	41.4	29.0	11.4
	265	LC-MS/MS	39.0	24.0	14.0

		VitDQAP-III	SRM 909c	SRM 968d L1
		Vial A	Vial B	Control
Is	N	71	71	70
= 2	Median	32.3	21.2	12.8
etha	MADe	3.1	4.3	1.4
E	CV%	9.5	20	11
Is	N	28	28	28
A DOL	Median	31.1	18.2	13.0
eth J	MADe	3.0	5.6	2.3
E	CV%	9.5	31	18
Is	N	43	43	42
ပဋိ	Median	33.4	21.7	12.8
ΒĻΓ	MADe	3.6	3.3	0.7
E	CV%	11	15	5.8
5.	N	37	37	36
WS	Median	33.8	21.6	12.8
ပုံ	MADe	3.1	2.1	0.7
_	CV%	9.0	9.6	5.3
	NIST Value	32.7	20.7	12.5
	U	0.7	0.7	0.4

This publication is available free of charge from: http://dx.doi.org/10.6028/NIST.IR.8133

For all participant datasets, the single reported values for $25(OH)D_{Total}$ in VitDQAP-III (Vial A), SRM 909c (Vial B), and SRM 968d L1 (Control) are plotted in **Figure 1**, **Figure 2**, and **Figure 3**, respectively. The results from immunoassay methods are displayed with open dark blue circles (\circ), and the results from the LC-based methods are displayed with open light blue circles (\circ). The results from the individual methods were sorted separately, as indicated by the x-axis labels.

From the single reported values for all datasets for a given technique (IA or LC), the consensus median and the consensus variability $(2 \times MADe)$ were determined. For both of the major techniques (IA or LC) in each figure, the solid lines (____) and (____) represent the consensus median, and the dashed lines (- - - -) and (- - -) represent the expanded uncertainty interval (2 × MADe). The laboratories with results that fall between the two dashed lines are within the consensus variability area for their technique (IA or LC).

For the IA data for SRM 909c (Vial B), the consensus variability based on MADe is an overestimation of the expanded uncertainty interval about the median (**Figure 2**). The large MADe is a result of the non-Gaussian data distribution that contributes to a relatively wide distribution of the central 50 % of the data.

The red lines (——) in each figure (**Figures 1** – 3) represent the NIST value and its associated uncertainty (i.e., value $\pm U$). NIST has confidence that the "true" value for each material lies within this interval. When these lines are not within the consensus ranges for each technique (IA or LC), then there may be method bias.

Specific results for each of the three study materials are summarized below. Note that the assessment is based on the actual reported values, not the lines and symbols, which have been enlarged to show detail and the laboratory number.

VitDQAP-III (Vial A): Figure 1

- For the IA results, three reported values are outside of the consensus variability range (two CLIA, one RIA).
- For the LC results, five reported values are outside of the consensus variability range (three LC-MSⁿ, two LC-UV).
- The consensus median value for the IA results is slightly lower than the NIST expanded uncertainty range (red lines).
- The consensus median value for the LC results is comparable to the NIST expanded uncertainty range (red lines).
- The NIST expanded uncertainty range (red lines) falls within the consensus variability ranges for both IA and LC.

SRM 909c (Vial B): Figure 2

- For the IA results, the data appear to be non-normally distributed, and the consensus variability is not well-described with a MADe estimation as described above.
- For the IA results, three reported values are outside the consensus variability range (two CLIA, one RIA).
- For the LC results, 10 reported values are outside the consensus variability range, including five from LC-MSⁿ and five of the six LC-UV results.
- The consensus median value for the IA results is slightly lower than the NIST expanded uncertainty range (red lines).
- The consensus median value for the LC results is comparable with the NIST expanded uncertainty range (red lines).
- The NIST expanded uncertainty range (red lines) falls within the consensus variability ranges for both IA and LC.

SRM 968d L1 (Control): Figure 3

- For the IA results, six reported values are outside of the consensus variability range (four CLIA, two EIA).
- For the LC results, nine reported values are outside of the consensus variability range (six LC-MSⁿ, three LC-UV).
- The consensus median values for both the IA and LC results are comparable with the NIST expanded uncertainty range (red lines).
- The NIST expanded uncertainty range (red lines) falls within the consensus variability range for both IA and LC.

Figure 4 presents direct graphical comparisons of the $25(OH)D_{Total}$ results for a) VitDQAP-III (Vial A) and SRM 909c (Vial B), and b) SRM 909c (Vial B) and SRM 968d L1 (Control). In each plot, there are two blue consensus boxes, one for IA methods and one for LC methods (as indicated). Laboratory results that are within the consensus range for both study materials are within the blue consensus boxes. Conversely, laboratory results that fall outside of (or on the edge of) either of the consensus boxes are not included in the consensus ranges and are highlighted with their laboratory code numbers. In each plot, the NIST values for the materials are denoted with a red diamond symbol (\blacklozenge), and the Youden line (y=x) centered on the NIST value is illustrated by a red line (_____) across the magnitude of the y-axis and x-axis, respectively.

Specific results as assessed from the Youden comparison plots are summarized below.

VitDQAP-III (Vial A) and SRM 909c (Vial B): Figure 4 a

- IA results that are not included in the consensus ranges include numbers 030a, 185b, 210b, 214a, and 262
- LC results that are not included in the consensus ranges include numbers 030b, 110, 139, 185a, 189, 199, 221a, 221b, 225, 231, 259, and 264
- The Youden line runs through the center of both the IA and LC consensus boxes, illustrating that both the IA and LC results are in agreement with each other and with the NIST results for these materials.

SRM 909c (Vial B) and SRM 968d L1 (Control): Figure 4 b

- IA results that are not included in the consensus ranges include numbers 185b, 193, 213a, 214a, 256, 257, 260, and 262
- LC results that are not included in the consensus ranges include numbers 110, 119, 139, 185a, 189, 199, 220, 221a, 221b, 225, 231, 259, and 264
- The Youden line runs through the center of both the IA and LC consensus boxes, illustrating that both the IA and LC results are in agreement with each other and with the NIST results for these materials.

Figure 4. Youden comparison plot of the results for 25(OH)D_{Total} in a) VitDQAP-III (Vial A) and SRM 909c (Vial B) and b) 909c (Vial B) and SRM 968d L1 (Control) for all methods.

Discussion of Results for 25(OH)D_{Total}

The consensus variability of 11 % (all methods) for SRM 968d L1 (Control) is higher than the 7 % CV % obtained for this material in the last comparability study (Summer 2013), but it is consistent with participant performance for other materials containing predominantly 25(OH)D₃ that were evaluated in previous comparability studies of the VitDQAP.

The VitDQAP-III material (Vial A) is different from SRM 909c (Vial B) and SRM 968d L1 (Control) because it contains significant amounts of both 25(OH)D₂ and 25(OH)D₃ that contribute to 25(OH)D_{Total}. The metabolite 25(OH)D₂ represents 20 % of the 25(OH)D_{Total} concentration in VitDQAP-III (Vial A), based on the NIST values of 6.5 ng/mL \pm 0.2 ng/mL for 25(OH)D₂ and 32.7 ng/mL \pm 0.7 ng/mL for 25(OH)D_{Total}. When materials containing appreciable amounts of 25(OH)D₂ were evaluated in previous comparability studies of the VitDQAP, the results were bimodal, with the IA methods underrepresenting the 25(OH)D_{Total} concentration. In addition, the CV % (all methods) for those materials was relatively large (approximately 17 % to 28 %). The results for VitDQAP-III (Vial A), do not reveal those same trends: the CV % (all methods) is relatively low (9.5 %), and the IA method results overlap almost completely with the LC results. The difference in the observed results for the VitDQAP-III material (Vial A) is most likely attributable to both the relatively high concentration of 25(OH)D_{Total} and the relatively low concentration of 25(OH)D₂, which causes any effect from the 25(OH)D₂ contribution to be lost in the overall variability of the results. However, the median IA result for VitDQAP-III (Vial A) is biased 5 % and 7 % lower than the NIST and the LC median results, respectively, which could be partially attributable to the nonequivalent response of many IA methods to 25(OH)D₂.

Like SRM 968d L1, SRM 909c (Vial B) contains predominantly 25(OH)D₃. However, the allmethod consensus variability of 20 % for SRM 909c is somewhat large for a material with a relatively high $25(OH)D_3$ concentration (NIST value 20.7 ng/mL \pm 0.7 ng/mL). When SRM 909c was evaluated at NIST using the ID-LC/MS methodology, interferences from the matrix were observed near the retention times for both 25(OH)D₃ and the labeled internal standard that required method modifications to avoid a potential bias [1]. However, when SRM 909c was evaluated at NIST using the ID-LC-MS/MS methodology, interferences were observed only at the retention time for 3-epi-25(OH)D₃. Depending on the separation and detection parameters used by participants, the matrix peaks could interfere in the determination of 25(OH)D₃ and/or 3-epi-25(OH)D₃. The IA results had the largest variability (CV % of 31 %) for SRM 909c, but some of this is attributable to the non-normal distribution of the results; non-Gaussian distributions have also been observed for several materials previously evaluated in the VitDOAP. It is unclear if the IA methods are susceptible to the matrix interferences observed in SRM 909c or if these interferences contribute to the non-normal distribution. However, it is probable that the LC-UV methods were affected by the matrix interferences, as five of the six LC-UV results for 25(OH)D_{Total} were outliers and biased high (Figure 2), indicating potential coelution of the matrix peaks with the peak for $25(OH)D_3$.

Both of the Youden plots in **Figure 4** incorporate the results for SRM 909c (Vial B) and reveal a large number of outliers, more than has been typically observed in Youden comparisons in previous comparability studies. The large number of outliers is mostly attributable to the variability of the results for SRM 909c, further illustrating that there is something unique about the SRM 909c matrix that is influencing the results.

LC method results for 25(OH)D₃, 25(OH)D₂, and 3-epi-25(OH)D₃ in VitDQAP-III (Vial A)

Of the two major techniques IA and LC, only the LC methods can measure the individual vitamin D metabolites. Given that $25(OH)D_{Total}$ is the sum of $25(OH)D_2$ and $25(OH)D_3$, LC methods require accurate, unbiased measurements of both $25(OH)D_2$ and $25(OH)D_3$ to obtain the correct values for $25(OH)D_{Total}$. In the Winter 2014 comparability study, only VitDQAP-III (Vial A) contained a significant concentration of the $25(OH)D_2$ metabolite, and the results for the individual metabolites in that study material are detailed below.

Of the 43 LC participants in the Winter 2014 comparability study, all but one of the LC participants reported values for $25(OH)D_3$, and all but three reported values for $25(OH)D_2$ in VitDQAP-III (Vial A); the study results for $25(OH)D_3$ and $25(OH)D_2$ are presented in **Table 2**. Since VitDQAP-III (Vial A) contains appreciable amounts of $25(OH)D_3$ (NIST value 26.2 ng/mL \pm 0.7 ng/mL), the 3-epi-25(OH)D₃ metabolite is also measureable in this material. Ten LC participants reported values for the 3-epi-25(OH)D₃ metabolite, and the results are also presented in **Table 2**.

The community results are summarized at the bottom of **Table 2** for all LC methods and for the LC- MS^n methods only. These summarized results include N, the median value, the MADe, and the CV %. **Table 2** also presents the NIST values and the expanded uncertainties (*U*) for 25(OH)D₃, 25(OH)D₂, and 3-epi-25(OH)D₃ in VitDQAP-III (Vial A).

The single reported values for $25(OH)D_3$ and $25(OH)D_2$ in VitDQAP-III (Vial A) are plotted in **Figure 5 a** and **b**, respectively. The results from LC-MSⁿ and LC-UV were sorted separately, as indicated by the x-axis labels. In each plot, the consensus median is represented by the solid line (_____), and the expanded uncertainty interval (2 × MADe), is represented by the dashed lines (_____). The laboratories with results that fall between the two dashed lines are within the consensus variability range. The red lines (_____) in **Figures 5 a** and **b** represent the NIST value and its associated uncertainty (i.e., value ± U). NIST has confidence that the "true" value for each metabolite lies within this interval. When these lines are not within the consensus range, then there may be method bias.

Specific results for 25(OH)D₃ and 25(OH)D₂ in VitDQAP-III (Vial A) are summarized below:

25(OH)D₃ in VitDQAP-III (Vial A): Figure 5 a

- Four reported values are outside of the consensus variability range (two LC-MSⁿ, two LC-UV).
- The consensus median value is slightly higher than the NIST expanded uncertainty range (red lines).
- The NIST expanded uncertainty range (red lines) falls within the consensus variability range.

25(OH)D₂ in VitDQAP-III (Vial A): Figure 5 b

- Five reported values are outside of the consensus variability range including two from LC-MSⁿ and three of the four LC-UV results.
- The consensus median value is in good agreement with the NIST expanded uncertainty range (red lines).
- The NIST expanded uncertainty range (red lines) falls within the consensus variability range.

		25(OH)D ₃	25(OH)D ₂	3-epi-25(OH)D ₃
Lab	Method	Vial A	Vial A	Vial A
026	LC-MS/MS	26.6	7.1	1.5
056a	LC-MS/MS	27.8	6.7	0.5
056b	LC-MS/MS	26.8	7.2	n/r
060	LC-MS/MS	27.4	6.0	1.1
110	LC-UV	18.6	<2	n/r
116	LC-MS/MS	28.8	5.4	<4.0
119	LC-MS/MS	34.3	5.2	n/r
139	LC-UV	24.7	n/d	n/r
150	LC-MS/MS	25.1	6.1	<2
185a	LC-MS/MS	30.5	7.9	n/r
187	LC-MS/MS	24.1	6.2	n/r
189	LC-UV	21.4	6.2	n/r
194	LC-MS/MS	25.8	7.2	n/r
197	LC-MS/MS	27.2	7.0	n/r
198a	LC-MS/MS	24.5	6.3	n/r
199	LC-MS/MS	30.6	7.6	n/r
204h	LC-MS/MS	27.8	6.0	<25
209	LC-MS/MS	27.2	67	_2.0 n/r
211	LC-MS/MS	27.6	84	n/r
212	LC-MS/MS	27.0	85	n/r
21/c		26.1	5.6	n/r
2140		20.1	8.0	n/r
215		25.2	6.6	1 /
210 218h		20.4	0.0	n/r
2100		24.0	8.0	n/r
220		20.0	0.0	11/1 p/r
221a 221h		20.0	0.1	n/r
2210		20.0	10.7	n/r
220		24.7	0.3	n/r
2288		28.9	0.5	n/r
231		30.2	0.0	n/r
241		23.6	5.1	0.8
242	LC-MS/MS	25.3	5.8	1.3
243a	LC-UV	23.7	4.1	1.5
243b	LC-MS/MS	24.3	4.0	1.6
244	LC-MS/MS	27.0	6.0	n/r
249	LC-MS/MS	26.1	1.2	1.4
251	LC-MS/MS	28.4	6.0	n/r
253	LC-MS/MS	27.7	7.8	1.5
255	LC-MS/MS	27.3	5.6	n/r
259	LC-MS/MS	26.1	5.2	n/r
264	LC-MS/MS	30.0	11.4	n/r
265	LC-MS/MS	32.0	7.0	n/r
ds	N	42	40	10
ပုဋိ	Median	27.1	6.5	1.4
let	MADe	2.4	1.0	0.1
В	CV%	8.8	16	11
50	N	36	36	9
MS	Median	27.2	6.6	1.4
ບ່	MADe	1.9	1.0	0.1
	CV%	7.1	14	11
	NIST Value	26.2	6.5	1.6
	U	0.7	0.2	0.1

Table 2. Summary of LC participant and NIST results for 25(OH)D₃, 25(OH)D₂, and 3-epi-25(OH)D₃ (ng/mL) in VitDQAP-III (Vial A).

n/r = not reported or not determined; n/d = not detected

< X = less than a reported quantitation limit of X

Figure 5. Participant LC and NIST results for a) 25(OH)D₃ and b) 25(OH)D₂ in VitDQAP-III (Vial A).

Conclusions from the Winter 2014 Comparability Study of the VitDQAP

In the seven previous comparability studies of the VitDQAP, participant performance was consistent for study materials that contain predominantly $25(OH)D_3$; the CV was in the range from 7 % to 19 %, and the median values were biased slightly high relative to the NIST values. In the Winter 2014 comparability study, both SRM 909c (Vial B) and SRM 968d L1 (Control) also contain predominantly $25(OH)D_3$. Of these materials, SRM 968d (Control) follows the previously-observed trends. However, the results for SRM 909c (Vial B) exhibited larger variability than expected (all-method CV of 20 %) given the relatively high concentration of $25(OH)D_3$. In addition, the median IA result for $25(OH)D_{Total}$ in this material was biased 12 % lower than the NIST median value. It is unclear to what extent these observations are due to the potential matrix interferences that are present in SRM 909c (Vial B).

VitDQAP-III (Vial A) was the first study material evaluated in the VitDQAP that had an 'intermediate' concentration of $25(OH)D_2$ (NIST value 6.5 ng/mL \pm 0.2 ng/mL) in addition to a significant concentration of $25(OH)D_3$ (NIST value 26.3 ng/mL \pm 0.7 ng/mL). It was anticipated that the IA methods would underrepresent the $25(OH)D_{Total}$ concentration due to nonequivalent response to the $25(OH)D_2$ metabolite, which is the trend observed for other materials with relatively high concentrations of $25(OH)D_2$ that had been previously evaluated in the VitDQAP. To the contrary, the IA results overlapped almost completely with the LC results, and any effect from the $25(OH)D_2$ metabolite was lost in the overall variability of the results for the VitDQAP-III study material (Vial A). The median IA result for VitDQAP-III (Vial A) was biased lower than the median LC and NIST results, which is the only indication of potential non-equivalent response to the $25(OH)D_2$ metabolite. However, the IA median result for SRM 909c (Vial B), which does not contain significant $25(OH)D_2$, was also biased somewhat low in this comparability study, further blurring any conclusions about the IA response to $25(OH)D_2$ in the VitDQAP-III (Vial A) material.

Laboratory Number	IA Method	Sample Preparation	Vendor/kit*
17	CLIA	n/r	А
30a	RIA	Samples were extracted with acetonitrile	В
161	CLIA	n/r	А
180	RIA	Samples were extracted with acetonitrile	В
185b	CLIA	n/r	A
188	CLIA	n/r	С
193	EIA	n/r	D
196	CLIA	No sample preparation required	A
198c	CLIA	n/r	E
200	RIA	Samples were extracted	В
204a	CLIA	n/r	A
210a	RIA	Sample was extracted with acetonitrile	В
210b	CLIA	n/r	E
213a	CLIA	Sample was thawed and gently mixed prior to analysis	E
213b	EIA	Samples, calibrators, and controls processed per manufacturer's protocol	D
214a	RIA	n/r	F
214b	CLIA	n/r	А
218a	CLIA	Direct analysis	n/r
222	CLIA	n/r	С
247a	CLIA	No pretreatment was used	С
247b	EIA	No pretreatment was used	D
256	CLIA	n/r	А
257	CLIA	Sample was thawed at room temperature until analysis	E
258	CLIA	n/r	G
260	EIA	n/r	n/r
261	CLIA	No sample preparation required	G
262	CLIA	n/r	Н
263	EIA	On board displacement	1

Appendix A-1. Summary of immunoassay methods as reported by the study participants.

n/r = not reported

*NIST cannot endorse or recommend commercial products, therefore individual vendors/kits are indicated with a unique letter but not identified

Laboratory Number	Internal Standard (IS)	Sample Preparation	Chromatographic Conditions	Detection: MRM ions	
26	25(OH)D ₂ -d ₆ and 25(OH)D ₃ -d ₆	Liquid-liquid extraction method	PFP column (100 mm x 3.2 mm); isocratic elution with 82 % methanol/18 % water; flow 0.4 mL/min	25(OH)D ₃ 401/365; 25(OH)D ₂ 413/355; 3-epi-25(OH)D ₃ 401/365	
30b	25(OH)D ₃ -d ₆	Samples were prepared with disposable pipette extraction	C18 column; isocratic elution with 85 % acetonitrile/15 % methanol; flow 0.5 mL/min	25(OH)D ₃ 383/211	
56a	25(OH)D ₂ -d _{3;} 25(OH)D ₃ -d _{6;} 3-epi-25(OH)D ₃ -d ₃	Samples were extracted with hexane, evaporated, then reconstituted with 69 % methanol	PFP column (100 mm × 2.1 mm; 1.9 μm); isocratic elution; flow 0.4 mL/min	25(OH)D ₃ 383/365; 25(OH)D ₃ -d ₆ 389/371; 25(OH)D ₂ 395/377; 25(OH)D ₂ -d ₃ 398/380; 3-epi-25(OH)D ₃ 383/365; 3-epi-25(OH)D ₃ -d ₃ 386/368	
56b	n/r	n/r	n/r	n/r	
60	25(OH)D ₃ -d ₆	IS was added, and then samples were extracted with acetonitrile, evaporated, and reconstituted with 90 % methanol/10 % water	PFP column (100 mm × 3.0 mm; 2.6 μm); gradient with water, methanol and acetonitrile (0.05 % formic acid)	APPI 25(OH)D ₃ 383/211; 25(OH)D ₃ -d ₆ 389/211; 25(OH)D ₂ 413/355; 3-epi-25(OH)D ₃ 401/383	
116	25(OH)D ₃ -d ₆	Serum proteins were precipitated with methanol	Online SPE; reversed-phase column; isocratic elution with 95 % methanol/5 % water; flow 0.6 mL/min	25(OH)D ₃ 383/211; 25(OH)D ₃ - <i>d</i> ₆ 389/211; 25(OH)D ₂ 395/269	
119	25(OH)D ₃ -d ₆	Samples were mixed with ethanol containing the IS, equilibrated, mixed, extracted with hexane, evaporated, and reconstituted in methanol	C18 column (150 mm × 3.0 mm; 2.7 μm); Gradient with water and methanol (0.1 % formic acid)	25(OH)D ₃ 401/383; 25(OH)D ₃ -d ₆ 407/371 and 407/389; 25(OH)D ₂ 395/209 and 395/251	
150	25(OH)D ₂ -d ₆ and 25(OH)D ₃ -d ₃	Sample (200 µL) was mixed with IS solution, liquid-liquid extracted, centrifuged, supernatant evaporated, and reconstitued in mobile phase	PFP column (100 mm x 3.0 mm; 2.6 μm); isocratic separation with 74 % methanol/26 % water (2 mmol/L ammonium acetate, 0.1 % formic acid); flow 0.5 mL/min	25(OH)D ₃ 401/383, 401/365; 25(OH)D ₂ 413/395, 413/365	
185a	n/r	Liquid-liquid extraction	PFP column (50 mm × 2.1 mm)	n/r	
187	n/r	SPE	C18 column (50 mm × 2.1 mm; 3 µm); gradient with methanol and water	25(OH)D ₂ 413/395; 25(OH)D ₃ 401/383	
194	25(OH)D ₃ -d ₆	Proteins precipitated with acetonitrile, top layer removed, evaporated, and reconstituted with methanol	C8 column (50 mm × 2 mm); isocratic elution with 70 % acetonitrile/ 30 % water; flow 0.7 mL/min	25(OH)D ₂ 395/119; 25(OH)D ₃ 383/211	
197	25(OH)D ₃ -d ₆	Precipitating agent added (200 μ L with 20 ng IS) to each serum sample (200 μ L), calibrator and control sample followed by mixing, centrifugation, and analysis	C18 column (50 mm × 4.6 mm; 5 μm); column temp 45 °C; gradient with water and methanol; flow 1.0 mL/min	n/r	
198a	25(OH)D ₃ -d ₆	Proteins precipitated with methanol, followed by hexane extraction, centrifugation, evaporation under N ₂ , and reconstitution in methanol with 0.1 % formic acid	C18 column (50 mm × 2.1 mm; 3.5 μm); isocratic elution with 85 % methanol (0.1 % formic acid); flow 0.5 mL/min	25(OH)D ₃ 401/383, 401/365; 25(OH)D ₂ 413/395, 413/355; 25(OH)D ₃ - <i>d</i> ₆ 407/389, 407/371	
199	proprietary	proprietary	proprietary	proprietary	

Appendix A-2.	Summary of LC-M	S ⁿ methods as repo	orted by the study	y participants.
---------------	-----------------	--------------------------------	--------------------	-----------------

204b	25(OH)D ₂ -d ₃ ; 25(OH)D ₃ -d ₆ ; 3-epi-25(OH)D ₃ -d ₃	Protein crash with 73 % methanol followed by liquid-liquid extraction with hexane, centrifugation, evaporation, and reconstitution in mobile phase	PFP column (100 mm × 2.1 mm; 1.9 μm); column temperature 30 °C; isocratic elution with 73 % methanol/27 % water; flow 0.4 mL/min	APCI 25(OH)D ₃ 383/365, 383/257; 25(OH)D ₂ 395/377, 395/209; 3-epi-25(OH)D ₃ 383/365, 383/257
209	25(OH)D ₃ - d ₆	Proteins were precipitated with 5 % ZnSO₄ in methanol	C8 column (50 mm × 2 mm; 5 μm); gradient with water/methanol; flow 0.7 mL/min	APCI 25(OH)D ₃ 383/229,383/211; 25(OH)D ₃ -d ₆ 389/211; 25(OH)D ₂ 395/269, 395/119
211	25(OH)D ₃ -d ₆	Proteins precipitated with acetonitrile containing IS followed by centrifugation	Turbulent flow column (32mm x 4.6mm; 3 μm)	25(OH)D ₃ 383/365 (quant), 383/257 (qual); 25(OH)D ₂ 395/209 (quant), 395/377 (qual)
212	25(OH)D ₃ -d ₆	Serum (100 µL) proteins precipitated using 5 % methanol/95 % acetonitrile containing the IS (350 µL)	C8 column (50 mm × 2 mm; 3 µm); gradient of 60% to 98% acetonitrile (0.1% formic acid)	25(OH)D ₃ 383/229, 383/211; 25(OH)D ₂ 395/269, 395/119
214c	25(OH)D ₃ -d ₆	Samples were extracted with hexane, centrifuged, evaporated, and filtered	Column (50 mm × 2.1 mm); isocratic elution with 85 % methanol/ 15 % water/ 0.1 % formic acid; flow 0.3 mL/min	25(OH)D ₃ 401/383; 25(OH)D ₃ -d ₆ 407/389; 25(OH)D ₂ 413/395
215	25(OH)D ₃ -d ₆	Protein precipitation with methanol/isopropanol and ZnSO₄; supernatant extracted using SPE	C18 column (50 mm × 2.1 mm; 2.6 μ m) column; gradient with water (0.1 % formic acid, 5 mmol/L ammonium formate) and methanol (0.05 % formic acid)	ESI 25(OH)D ₃ 401/383; 25(OH)D ₂ 413/395; 25(OH)D ₃ -d ₆ 407/389
216	Derivatized deuteriated standard	Samples extracted using liquid- liquid extraction then labeled with a derivatization reagent	Revered-phase column (150 mm × 2.1 mm); gradient from 25 % water (0.05 % formic acid) to 50 % acetonitrile (0.05 % formic acid); flow 0.2 mL/min	n/r
218b	25(OH)D ₂ -d ₃ and 25(OH)D ₃ -d ₃	Sample was extracted, filtered, centrifuged, etc.	Phenyl column (50 mm × 2.1 mm; 1.7 μ m); flow 0.45 mL/min	25(OH)D ₃ 401; 25(OH)D ₂ 413
220	25(OH)D ₂ - d_3 and 25(OH)D ₃ - d_6	Protein crash with 90 % methanol/ 10 % ZnSO ₄ and then acetonitrile/ 1 % formic acid; sample filtered; phospholipids removed with SPE	C18 column (20 mm × 2.1mm, 2.7 μ m); gradient with water and acetonitrile; flow 1 mL/min; column 40 °C	MRM with dehydrated precursor and product ions
221a	25(OH)D ₃ -d ₆	Protein crash with 1% methanol in acetonitrile containing the IS	CN column (50 mm × 3.0 mm; 1.8 μm); methanol/water gradient at 50 °C	APCI 25(OH)D ₃ 383/211; 25(OH)D ₃ -d ₆ 389/211; 25(OH)D ₂ 395/209
225	25(OH)D ₃ -d ₆	Liquid-liquid extraction	C8 column (50 mm × 2.1 mm; 1.7 μm); gradient with methanol/water; flow 0.4 mL/min	25(OH)D ₃ 401/107; 25(OH)D ₂ 413/83
228a	D8-labeled compound	Proteins precipitated	n/r	n/r
241	25(OH)D ₃ -d ₆	Acetonitrile containing the IS (100 μ L) added to sample (200 μ L) to precipate proteins, followed by extraction with hexane, centrifugation, removal of supernatant, evaporation, and reconstitution in methanol solution	PFP column (100 mm × 2.1 mm; 2.6 μ m); gradient starting with 50 % methanol (0.1 % formic acid), 50 % water (0.1 % formic acid)	APCI 25(OH)D ₃ 383/211 (quant), 383/229 (qual); 25(OH)D ₂ 395/119 (quant), 395/211 (qual); 25(OH)D ₃ -d ₆ 389/211

242	25(OH)D ₃ -d ₆	Water with 0.1 % formic acid (500 μ L) and the IS (400 μ L) were added to the sample (400 μ L), followed by centrifugation and dilution of supernatant with water	PFP column (150 mm \times 2 mm; 3 µm); isocratic elution with 18 % water/ 82 % methanol/ 0.1 % formic acid; flow 0.35 mL/min	APCI 25(OH)D ₃ 383/257; 25(OH)D ₂ 395/269; 25(OH)D ₃ - <i>d</i> ₆ 389/263; 3-epi-25(OH)D ₃ 383/257; 3-epi-25(OH)D ₂ 395/269
243b	25(OH)D ₃ -d ₆	Samples (400 μ L) were mixed with solution containing the IS (400 μ L), precipitation reagent was added (500 μ L), and portion of upper layer (50 μ L) was injected	PFP column (150 mm × 2 mm); isocratic separation with 85 % methanol/15 % water; flow 0.3 mL/m	25(OH)D ₃ 383/257; 25(OH)D ₃ - <i>d</i> ₆ 389/269; 25(OH)D ₂ 395/269
244	25(OH)D ₃ -d ₆	Protein precipitation followed by filtration	CN column; mobile phase consisting of distilled water (formic acid) and methanol	25(OH)D ₃ 383/211; 25(OH)D ₃ - <i>d</i> ₆ 389/211; 25(OH)D ₂ 395/269
249	25(OH)D ₂ -d _{3;} 25(OH)D ₃ -d _{6;} 3-epi-25(OH)D ₃ -d ₃	Serum was deproteinated with NaOH and 90 % acetonitrile/ 10 % methanol followed by SPE	PFP column (100 mm × 2.1 mm; 1.8 μm); gradient separation with water (2 mmol/L ammonium acetate) and methanol; flow 0.35 mL/min	25(OH)D ₃ 401/159; 25(OH)D ₂ 413/159
251	25(OH)D ₂ -d ₃ and 25(OH)D ₃ -d ₃	Protein precipitation followed by SPE	Phenyl column (50 mm × 2.1 mm; 1.7 μ m); gradient with water and methanol (0.1 % formic acid, 2 mmol/L ammonium acetate); flow 0.45 mL/min	25(OH)D ₃ 401/159 (quant), 401/365 (qual); 25(OH)D ₂ 413/83 (quant), 413/355 (qual); 25(OH)D ₃ -d ₃ 404/162; 25(OH)D ₂ -d ₃ 416/358
253	25(OH)D ₂ -d ₃ and 25(OH)D ₃ -d ₃	The sample was extracted, centrifuged, and derivatized	C18 column (150 mm × 2.1 mm); isocratic separation with 77.5 % methanol/22.5 % water; flow 0.2 mL/min	25(OH)D ₂ 588; 25(OH)D ₃ 576
255	deuterium labeled compound	Samples were extracted and derivatized with 4-phenyl-1,2,4-triazoline-3,5-dione	Reversed-phase column (50 mm × 2.1 mm); gradient with methanol; flow 0.5 mL/min	25(OH)D ₃ 607/298; 25(OH)D ₂ 619/298
259	deuterium labeled 25(OH)D ₃	n/r	C8 column; gradient with methanol/water/0.1 % formate	n/r
264	clozapine	Samples were extracted with tert- butyl methyl ether, evaporated, and derivatized with 4-phenyl- 1,2,4-triazoline-3,5-dione	Reversed-phase column (150 mm × 4.6 mm); isocratic separation with 85 % methanol/15 % water/0.3 % formic acid; flow 1.4 mL/min	n/r
265	n/r	n/r	n/r	n/r

C18 = octadecyl; C8 = octyl; PFP = pentafluorophenyl; SPE = solid phase extraction; CN = cyano;

 $MRM = multiple \ reaction \ monitoring; \ quant/qual = quantitative/qualitative \ ions; \ n/r = not \ reported;$

APPI = atmospheric pressure photoionization; APCI = atmospheric pressure chemical ionization; ESI = electrospray ionization

Appendix A-3.	Summary	of LC-UV	methods as	s reported b	y the study	particip	oants.
---------------	---------	----------	------------	--------------	-------------	----------	--------

Laboratory Number	Internal Standard (IS)	Sample Preparation	Chromatographic Conditions	Wavelength
110	n/a	Samples (500 μ L) were mixed with ethanol (500 μ L), extracted twice with hexane/methylene chloride (5:1), evaporated, and reconstituted	C18 column (2.1 mm × 100 mm; 1.8 μm); gradient with acetonitrile/methanol (85:15) and isopropanol (100 %)	267 nm
139	proprietary	The sample was extracted, centrifuged, and injected	Reversed-phase column heated to 40 °C, isocratic separation with proprietary mobile phase; flow 1 mL/min	264 nm
189	unidentified	Protein precipitation followed by SPE	Reversed-phase column (150 mm × 4.6 mm); isocratic separation; flow 0.7 mL/min	265 nm
221b	laurophenone	Protein crash with acetonitrile solution containing IS, followed by SPE, elution with methanol/acetonitrile solution, evaporation, and reconstitution with acetonitrile	CN column (150 mm × 5 mm; 3.5 μm); elution with methanol/water/formic acid; column temperature 47 °C	275 nm
231	1-alpha-hydroxy- vitamin D ₃	Samples were extracted with hexane/dichloromethane, evaporated, and reconstituted with mobile phase (phosphate buffer/acetonitrile)	Reversed-phase column (250 mm × 4.5 mm; 5µm), isocratic separation with 14 % phosphate buffer, 86 % acetonitrile; flow 1.2 mL/min	265 nm
243a	laurophenone	Samples (400 µL) were mixed with solution containing the IS (400 µL), precipitation reagent was added (500 µL), and portion of upper layer (50 µL) was injected	Reversed-phase column (150 mm × 3 mm); isocratic separation with 63 % acetonitrile/37 % water; flow 1 mL/min	264 nm

n/a = not applicable; SPE = solid phase extraction

Appendix B. Raw participant data and NIST results for 25(OH)D₂, 25(OH)D₃, 25(OH)D_{Total}, and 3-epi-25(OH)D₃, in VitDQAP-III (Vial A), SRM 909c (Vial B), and SRM 968d L1 (Control).

		25(OH)D ₂ (ng/i	mL)	25(OH)D ₃ (ng/mL)		25(OH)D _{Total} (ng/mL)			3-epi-25(OH)D ₃ (ng/mL)			
<u> </u>		VitDQAP-III	SRM 909c	SRM 968d L1	VitDQAP-III	SRM 909c	SRM 968d L1	VitDQAP-III	SRM 909c	SRM 968d L1	VitDQAP-III	SRM 909c	SRM 968d L1
Lab	Method	Vial A	Vial B	Control	Vial A	Vial B	Control	Vial A	Vial B	Control	Vial A	Vial B	Control
017		n/a 7 1	n/a	n/a 0.2	n/a 26.6	n/a 21.3	n/a 13.2	31.0	16.2	13.9	n/a 1.5	n/a 1 7	n/a 1.0
030a	RIA	n/a	n/a	n/a	n/a	n/a	n/a	40.5	24.8	15.3	n/a	n/a	n/a
030b	LC-MS/MS	n/r	n/r	n/r	n/r	n/r	n/r	24.5	23.9	13.2	n/r	n/r	n/r
056a	LC-MS/MS	6.7	0.6	0.6	27.8	19.7	12.2	34.5	20.3	12.8	0.5	0.5	0.5
056b	LC-MS/MS	7.2	0.3	0.1	26.8	20.0	12.6	34.0	20.3	12.7	n/r	n/r	n/r
060	LC-MS/MS	6.0	0.9	0.2	27.4	21.1	12.8	33.4	22.0	13.0	1.1	0.9	0.8
110	LC-UV	<2	<2	<2	18.6	76.0	11.9	21.8	79.6	12.8	n/r	n/r	n/r
110	LC-MS/MS	5.4	<3.3 n/d	<3.3 n/d	20.0	20.7	12.0	39.5	20.7	12.0	<4.0 n/r	<4.0 n/r	<4.0 n/r
139	LC-UV	n/d	n/d	n/d	24.7	51.9	13.1	24.7	51.9	13.1	n/r	n/r	n/r
150	LC-MS/MS	6.1	<2	<2	25.1	17.7	12.1	31.2	17.7	12.1	<2	<2	<2
161	CLIA	n/a	n/a	n/a	n/a	n/a	n/a	30.6	14.4	11.8	n/a	n/a	n/a
180	RIA	n/a	n/a	n/a	n/a	n/a	n/a	29.1	19.5	14.9	n/a	n/a	n/a
185a	LC-MS/MS	7.9	0.0	0.0	30.5	36.4	17.3	38.4	36.4	17.3	n/r	7.0	n/r
185b	CLIA	n/a	n/a	n/a	n/a	n/a	n/a	16.4	33.3	14.5	n/a	n/a	n/a
187		0.2 n/a	0.0	0.0	24.1 n/a	19.0 n/a	13.1 n/a	30.3	19.0	13.1	n/r	n/r	n/r n/a
189	LC-UV	6.2	23.4	0.0	21.4	14.8	16.5	27.6	38.2	16.5	n/r	n/r	n/r
193	EIA	n/a	n/a	n/a	n/a	n/a	n/a	33.9	22.3	18.6	n/a	n/a	n/a
194	LC-MS/MS	7.2	<7.0	<7.0	25.8	15.8	13.0	33.0	15.8	13.0	n/r	n/r	n/r
196	CLIA	n/a	n/a	n/a	n/a	n/a	n/a	30.7	15.1	14.1	n/a	n/a	n/a
197	LC-MS/MS	7.0	<5	0.1	27.2	22.0	13.0	34.2	22.0	13.1	n/r	n/r	n/r
1988	LC-MS/MS	6.3	<5	<5	24.5	18.5	12.6	30.8	18.5	12.6	n/r	n/r	n/r
1960		7.6	2.1	11/a	30.6	27.5	13.7	29.1	29.6	0.3	n/a	n/a	n/a
200	RIA	n/a	n/a	n/a	n/a	n/a	n/a	27.7	18.0	13.8	n/a	n/a	n/a
204a	CLIA	n/a	n/a	n/a	n/a	n/a	n/a	27.5	14.0	12.2	n/a	n/a	n/a
204b	LC-MS/MS	6.0	n/d	n/d	27.8	20.2	12.8	33.8	20.2	12.8	<2.5	<2.5	<2.5
209	LC-MS/MS	6.7	<1.0	<1.0	27.2	22.9	12.5	33.9	22.9	12.5	n/r	n/r	n/r
210a	RIA	n/a	n/a	n/a	n/a	n/a	n/a	31.4	17.9	12.4	n/a	n/a	n/a
210b	CLIA	n/a	n/a	n/a	n/a	n/a	n/a	38.7	25.0	9.1	n/a	n/a	n/a
211	LC-IVIS/IVIS	0.4 8.5	<5	<5	27.0	22.3	12.0	35.0	22.3	12.0	n/r	n/r	n/r
213a	CLIA	n/a	0.0 n/a	0.0 n/a	n/a	n/a	n/a	30.4	19.4	6.5	n/a	n/a	n/a
213b	EIA	n/a	n/a	n/a	n/a	n/a	n/a	26.3	17.3	12.9	n/a	n/a	n/a
214a	RIA	n/a	n/a	n/a	n/a	n/a	n/a	27.5	31.3	11.5	n/a	n/a	n/a
214b	CLIA	n/a	n/a	n/a	n/a	n/a	n/a	31.2	14.4	13.0	n/a	n/a	n/a
214c	LC-MS/MS	5.6	<0.5	<0.5	26.1	20.5	12.2	31.7	20.5	12.2	n/r	n/r	n/r
215	LC-MS/MS	8.0	<2	<2	29.2	21.2	13.6	37.2	21.2	13.6	n/r	n/r	n/r
2189		0.0 n/a	0.3	0.1	20.4 p/a	21.5 n/a	12.7 n/a	32.9	21.9	12.8	1.4 n/a	1.1 n/a	0.6
218b	LC-MS/MS	7.2	0.1	0.0	24.6	23.7	12.2	31.8	23.8	12.2	n/r	n/r	n/r
220	LC-MS/MS	8.0	n/d	n/d	28.0	23.0	15.0	36.0	23.0	15.0	n/r	n/r	n/r
221a	LC-MS/MS	8.1	<5.0	<5.0	28.6	31.7	15.0	36.7	31.7	15.0	n/r	n/r	n/r
221b	LC-UV	10.7	15.1	<5.0	26.8	21.2	10.7	37.5	36.3	10.7	n/r	n/r	n/r
222	CLIA	n/a	n/a	n/a	n/a	n/a	n/a	35.2	23.5	11.1	n/a	n/a	n/a
225	LC-MS/MS	6.3	<5	<5	24.7	14.8	10.4	31.0	14.8	10.4	n/r	n/r	n/r
220a 231		0.5	0.0	0.0	20.9	21.5	85	30.2	21.5	85	n/r	n/r	n/r
241	LC-MS/MS	5.1	0.0	0.1	23.6	17.0	12.2	28.7	17.2	12.3	0.8	0.4	0.6
242	LC-MS/MS	5.8	n/d	n/d	25.3	18.7	12.2	31.1	18.7	12.2	1.3	2.2	0.6
243a	LC-UV	4.1	n/d	n/d	23.7	19.6	11.5	27.8	19.6	11.5	1.5	2.4	n/d
243b	LC-MS/MS	4.0	n/d	n/d	24.3	21.1	12.4	28.2	21.1	12.4	1.6	2.5	n/d
244	LC-MS/MS	6.0	<5	<5	27.0	25.0	13.0	33.0	25.0	13.0	n/r	n/r	n/r
247a	CLIA	n/a	n/a	n/a	n/a	n/a	n/a	31.9	16.7	11.7	n/a	n/a	n/a
247D 249	LC-MS/MS	n/a 7.2	n/a 0.3	n/a 0.2	n/a 26.1	n/a 21.4	n/a 12.4	31.0	22.3	15.7	n/a 1.4	n/a 1.4	n/a 0.4
251	LC-MS/MS	6.0	<4	n/r	28.4	21.4	n/r	34.4	21.6	n/r	n/r	n/r	0.4 n/r
253	LC-MS/MS	7.8	0.3	0.1	27.7	20.7	13.0	35.5	21.0	13.1	1.5	1.1	0.6
255	LC-MS/MS	5.6	0.3	0.1	27.3	19.9	12.7	32.9	20.2	12.8	n/r	n/r	n/r
256	CLIA	n/a	n/a	n/a	n/a	n/a	n/a	30.4	17.3	18.5	n/a	n/a	n/a
257	CLIA	n/a	n/a	n/a	n/a	n/a	n/a	31.9	22.4	6.2	n/a	n/a	n/a
258	CLIA	n/a	n/a	n/a	n/a	n/a	n/a	32.8	17.5	11.4	n/a	n/a	n/a
259 260	LU-INS/MS FIA	5.2 n/s	<2 n/9	<2 n/9	∠6.1 p/a	∠0.3 n/s	14.8 n/9	26.1	25.5 22.0	14.8	1/n e/a	n/r	n/r n/9
261	CLIA	n/a	n/a	n/a	n/a	n/a	n/a	32.3	16.2	10.2	n/a	n/a	n/a
262	CLIA	n/a	n/a	n/a	n/a	n/a	n/a	34.1	52.1	16.5	n/a	n/a	n/a
263	CLIA	n/a	n/a	n/a	n/a	n/a	n/a	28.7	13.4	12.5	n/a	n/a	n/a
264	LC-MS/MS	11.4	0.7	0.1	30.0	28.3	11.3	41.4	29.0	11.4	n/r	n/r	n/r
265	LC-MS/MS	7.0	0.0	0.0	32.0	24.0	14.0	39.0	24.0	14.0	n/r	n/r	n/r
n/a = not	applicable (for in	nmunoassay me	ethods); n/r = n	ot reported or n	ot determined; r	n/d = not detec	ted; < X = less t	han a reported q	uantitation limit	of X			

NIST Value	6.49	n/r	0.10	26.2	20.7	12.4	32.7	20.7	12.5	1.6	n/r	0.65
U	0.17	n/r		0.6	0.7	0.4	0.7	0.7	0.4	0.1	n/r	0.03
estimated value (no uncer	stimated value (no uncertainty determined)											