NISTIR 7880-35

NIST Micronutrients Measurement Quality Assurance Program Winter, Spring, and Fall 1989 Comparability Studies

Results for Round Robins XV, XVI, and XVII Fat-Soluble Vitamins and Carotenoids in Human Serum

Neal E. Craft (Former Employee)
David L. Duewer
Margaret C. Kline
Willie E. May
Jeanice B. Thomas

This publication is available free of charge from http://dx.doi.org/10.6028/NIST.IR.7880-35

NIST Micronutrients Measurement Quality Assurance Program Winter, Spring, and Fall 1989 Comparability Studies

Results for Round Robins XV, XVI, and XVII Fat-Soluble Vitamins and Carotenoids in Human Serum

Neal E. Craft (Former Employee)
David L. Duewer
Jeanice B. Thomas
Chemical Sciences Division,
Materials Measurement Laboratory

Margaret C. Kline Biomolecular Measurement Division, Materials Measurement Laboratory

Wille E. May

Under Secretary of Commerce for Standards and Technology and Director

This publication is available free of charge from http://dx.doi.org/10.6028/NIST.IR.7880-35

August 2016

U.S. Department of Commerce *Penny Pritzker, Secretary*

Abstract

The National Institute of Standards and Technology coordinates the Micronutrients Measurement Quality Assurance Program (MMQAP) for laboratories that measure fat -soluble vitamins and carotenoids in human serum and plasma. This report describes the design of and results for the Winter, Spring and Fall 1989 MMQAP measurement comparability improvement studies: 1) Round Robin XV Fat-Soluble Vitamins and Carotenoids in Human Serum, 2) Round Robin XVI Fat-Soluble Vitamins and Carotenoids in Human Serum, and 3) Round Robin XVII Fat-Soluble Vitamins and Carotenoids in Human Serum. The materials for Round Robin XV were shipped to participants in January 1989; participants were requested to provide their measurement results by February 6, 1989. The materials for Round Robin XVI were shipped to participants in April 1989; participants were requested to provide their measurement results by May 15, 1989. The materials for Round Robin XVII were shipped to participants in August 1989; participants were requested to provide their measurement results by October 1, 1989.

Keywords

Human Serum Retinol, α-Tocopherol, Total and *Trans*-β-Carotene

Table of Contents

Abstract	i
Keywords	
Table of Contents	
Introduction	
Round Robin XV: Fat-Soluble Vitamins and Carotenoids in Human Serum	
Round Robin XVI: Fat-Soluble Vitamins and Carotenoids in Human Serum	2
Round Robin XVII: Fat-Soluble Vitamins and Carotenoids in Human Serum	
References	
Appendix A. Shipping Package Inserts for RR15	A1
Appendix B. Final Report for RR15	
Appendix C. Revised "All-Lab Report" for RR15	
Appendix D. Shipping Package Inserts for RR16	
Appendix E. Final Report for RR16	
Appendix F. Revised "All-Lab Report" for RR16	
Appendix G. Shipping Package Inserts for RR17	
Appendix H. Final Report for RR17	
Annendix I. Revised "All-Lah Report" for RR17	

Introduction

Beginning in 1984, the National Institute of Standards and Technology (NIST), formerly the National Bureau of Standards (NBS), has coordinated the Micronutrients Measurement Quality Assurance Program (MMQAP) for laboratories that measure fat-soluble vitamins and carotenoids in human serum and plasma. The MMQAP provides participants with measurement comparability assessment through use of interlaboratory studies, Standard Reference Materials (SRMs) and control materials, and methods development and validation. Serum-based samples with assigned values for the target analytes (retinol, alpha-tocopherol, gamma/beta-tocopherol, *trans*- and total beta-carotene, and ascorbic acid) and performance-evaluation standards are distributed by NIST to laboratories for analysis.

Participants use the methodology of their choice to determine analyte content in the control and study materials. Participants provide their data to NIST, where it is compiled and evaluated for trueness relative to the NIST value, within-laboratory precision, and concordance within the participant community. NIST provides the participants with a technical summary report concerning their performance for each exercise and suggestions for methods development and refinement. Participants who have concerns regarding their laboratory's performance are encouraged to consult with the MMQAP coordinators.

All MMQAP interlaboratory studies consist of individual units of batch-prepared samples that are distributed to each participant. For historical reasons these studies are referred to as "Round Robins". The MMQAP program and the nature of its studies are described elsewhere. [1]

Round Robin XV: Fat-Soluble Vitamins and Carotenoids in Human Serum

Participants in the MMQAP Fat-Soluble Vitamins and Carotenoids in Human Serum Round Robin XV comparability study (hereafter referred to as RR15) received three lyophilized human serum test samples for analysis. Unless multiple vials were previously requested, participants received one vial of each serum. These sera were shipped on dry ice to participants in January 1989. The communication materials included in the sample shipment are described in Appendix A.

Participants were requested to report values for retinol, α -tocopherol, and total and *trans*- β -carotene. Not all participants reported values for the target analytes, and some participants reported values for non-target analytes.

The final report delivered to every participant in RR15 is reproduced as Appendix B. This report included:

- An individualized letter that discussed the participant community's results and a summary analysis of the individual participant's results.
- Tabular presentations of all results and several summary values.
- Graphical presentations of the community's interlaboratory precision over time.
- Graphical presentations of the individual participant's results.

Appendix C lists all of the measurement results reported for RR15 in a more accessible format.

Round Robin XVI: Fat-Soluble Vitamins and Carotenoids in Human Serum

Participants in the MMQAP Fat-Soluble Vitamins and Carotenoids in Human Serum Round Robin XVI comparability study (hereafter referred to as RR16) received four lyophilized human serum test samples and one ethanolic solution of retinol, α -tocopherol, and trans- β -carotene for analysis. Unless multiple vials were previously requested, participants received one vial of each material. These sample materials were shipped on dry ice to participants in April 1989. The communication materials included in the sample shipment are described in Appendix D.

Participants were requested to report values for retinol, α -tocopherol, and total and *trans*- β -carotene. Not all participants reported values for the target analytes, and some participants reported values for non-target analytes.

The final report delivered to every participant in RR16 is reproduced as Appendix E. This report included:

- An individualized letter that discussed the participant community's results and a summary analysis of the individual participat's results.
- Tabular presentations of all results and several summary values.
- Graphical presentations of the community's interlaboratory precision over time.
- Graphical presentations of the individual participant's results.

Appendix F lists all of the measurement results reported for RR16 in a more accessible format.

Round Robin XVII: Fat-Soluble Vitamins and Carotenoids in Human Serum

Participants in the MMQAP Fat-Soluble Vitamins and Carotenoids in Human Serum Round Robin XVII comparability study (hereafter referred to as RR17) received five lyophilized human serum test samples and one ethanolic solution of retinol, α -tocopherol, and a complex mixture of β -carotene isomers for analysis. Unless multiple vials were previously requested, participants received one vial of each material. These sample materials were shipped on dry ice to participants in August 1989. The communication materials included in the sample shipment are described in Appendix G.

Participants were requested to report values for retinol, α -tocopherol, and total and *trans*- β -carotene. Not all participants reported values for the target analytes, and some participants reported values for non-target analytes.

The final report delivered to every participant in RR17 is reproduced as Appendix H. This report included:

- An individualized letter that discussed the participant community's results and a summary analysis of the individual participant's results.
- Tabular presentations of all results and several summary values.
- Graphical presentations of the community's interlaboratory precision over time.
- Graphical presentations of the individual participant's results.

Appendix I lists all of the measurement results reported for RR17 in a more accessible format.

References

1 Duewer DL, Brown Thomas J, Kline MC, MacCrehan WA, Schaffer R, Sharpless KE, May WE, Crowell JA. NIST/NCI Micronutrients Measurement Quality Assurance Program: Measurement Repeatabilities and Reproducibilities for Fat-Soluble Vitamin-Related Compounds in Human Sera. Anal Chem 1997;69(7):1406-1413.

Appendix A. Shipping Package Inserts for RR15

Two items were included in each package shipped to an RR15 participant:

- Cover letter. The original letter has been lost. It would have described the three lyophilized sample materials (sera 100 to 102) distributed for the study, given guidance on reconstituting the serum samples and use of the calibration solutions, stated that results were due in February 6, 1989 and to whom they should be sent, and who to contact with technical questions.
- **Datasheets**. Page A2 reproduces the form.

These items were attached to the shipping box.

REPORT ON NI	ST/NCI SAMPLES	FROM LABORATORY #	
DA'	TE OF ANALYSIS		
	RESULTS	IN mg/L	
SAMPLE #	ANALYTE	Result	
SERUM 100	RETINOL		
VIAL #	B-CAROTENE	Trans	Total
	A-TOCOPHEROL		
SERUM 101	RETINOL		
VIAL #	B-CAROTENE	Trans	Total
	A-TOCOPHEROL		
SERUM 102	RETINOL		
VIAL #	B-CAROTENE	Trans	Total
	A-TOCOPHEROL		

Reconstitute the Serum Sample with 1.00 mL water.

Please return results by 6 February 1989.

Appendix B. Final Report for RR15

The following twelve pages are the available components of the final report for RR15 as provided to all participants. The original report consisted of:

- An individualized cover letter and discussion. The pages reproduced here are for participant FSV-BA.
- Tables 1 to 3 list all of the participants' results and several summary values for retinol, α-tocopherol, and total β-carotene. These tables do not report any NIST results nor participant results for other analytes.
- Graphical presentations of interlaboratory precision over time for retinol, α-tocopherol, and total β-carotene.
- Graphical presentations of the individual participant's bias relative to an assigned value over time for retinol, α -tocopherol, and total β -carotene. The pages reproduced here are for participant FSV-BA.

Due to the complex formatting used in the Tables, the originally listed laboratory codes have been deleted without replacement. However, Appendix C provides a complete listing of the RR15 results where the original codes have been altered to ensure confidentiality. Appendix C also provides more relevant summary statistics.

UNITED STATES DEPARTMENT OF COMMERCE National Institute of Standards and Technology [formerly National Bureau of Standards] Gaithersburg, Maryland 20899

March 1, 1989

Personalized letters were sent to participants. This block contained their formal name and address. -

Dear (Personal name),

Enclosed is our statistical summary of the results from Round-Robin XV. As usual, results are presented in both tabular and graphical form. Tables 1-3 provide data submitted by each laboratory for retinol, $\alpha\text{-tocopherol},$ and $\beta\text{-carotene},$ respectively. These tables also provide the laboratory grand average, standard deviation (SD), and relative standard deviation (RSD) for interlaboratory measurements of each analyte along with data representing each laboratory's bias on a sample-by-sample basis for each analyte. Two types of graphical data are provided. Figures A-C demonstrate the improvement in interlaboratory precision that has been accomplished over the past three years. The three additional figures are Control Charts which represent summaries of your lab's performance vs. the assigned value for each analyte over the past two years.

Over the past two years, individual laboratory performance on each sample has been judged against an assigned value derived from the laboratory grand average (33%) and data from two separate NIST measurement procedures (67%). At last year's workshop, we reviewed data that documented the improvement of interlaboratory measurement capabilities to the extent that value assignment for round-robin samples based solely on laboratory grand means is now This is being implemented. We also agreed to tighten laboratory possible. performance standards. In the past, deviation's of 0-15% from the assigned value was deemed to represent acceptable performance; a bias of >15-30% was deemed to represent marginal performance; bias of >30% represented unacceptable performance. Under our new performance standards, 0-5% bias from the assigned value will represent exceptional performance (AA); >5-10% bias from the assigned value will represent acceptable performance (A); >10-20% bias from the assigned value will represent marginal performance (M); and >20% bias will represent unacceptable performance (U). Keep in mind that these descriptors are meant only to inform you of your performance relative to the state of the practice for these analyses.

Your laboratory's performance in RRXV was:

Retinol	AA
α -tocopherol	AA
Total 8-Carotene	Δ Δ

Interlaboratory measurement capabilities continue to improve both in terms of accuracy and precision. The level of interlaboratory measurement comparability is now approaching what we had hoped for when the program began. The data presented in Figures A-C show a threefold improvement in interlaboratory precision over the past three years. The most dramatic improvement came approximately one year ago, upon the development and distribution on Control Materials for use in validating and trouble shooting your methods. A dramatic improvement in the accuracy of individual laboratory measurements has accompanied the increase in interlaboratory precision. One year ago, in RRXII, only 9 of 31 labs (29%) reported values for retinol that were within 10% of the assigned value. Now 40% of the labs measure retinol to within 5% of the assigned value; 72% accurate to within 10%; and all to within In RRXII, 11 of 28 labs (39%) reported values for α -tocopherol that were accurate to within 10%. In RRXV, 50% of the labs report data accurate to within 5%; 73% accurate to within 10%; 95% accurate to within 20%. In RRXII, 4 of 20 labs (20%) reported data for total β -carotene accurate to within 10%. In RRXV, 46% reported data accurate to within 5%; 69% accurate to within 10%; and 92% accurate to within 20%.

Our experiences over the past year have clearly demonstrated the efficacy of the use of reference materials for improving accuracy and interlaboratory precision. The Control Materials that you have been using as reference materials for the past year were designed for a pilot effort to demonstrate the benefits that could be derived through proper use of reference materials. The supply of those samples has been depleted. However, measurements are nearing completion for the certification of three pools of serum for distribution through the NIST Office of Standard Reference Materials as SRM 968, "Fat Soluble Vitamins in Serum", at a cost of \$150 per unit. Each unit will consist of two vials each of three levels. Preliminary analysis of these materials indicate that the certified concentrations (μ g/mL), upon reconstitution of the freeze-dried samples with 1.00 mL water, will be approximately:

	RETINOL	α - TOCOPHEROL	TOTAL β -CAROTENE
Low Level	0.31	5.0	0.11
Medium Level	0.48	7.8	0.69
High Level	1.15	12.6	1.53

The concentrations of the three analytes will be certified with an uncertainty of approximately 5%. Information values will be provided for γ -tocopherol, all-trans β -carotene and additional carotenoids.

The SRM should be available by May 1. We strongly recommend that you incorporate its use into your normal QC and QA protocols. Data acquired through our round-robin studies demonstrate that use of this SRM will assist you in achieving accuracy, and thus ensure interlaboratory comparability of data.

Samples for RRXVI will be shipped during the first week of April. Further information regarding that exercise will be forthcoming within the next three weeks.

Sincerely,

Willie E. May

Chief

Organic Analytical Research Division Center for Analytical Chemistry

Enclosure

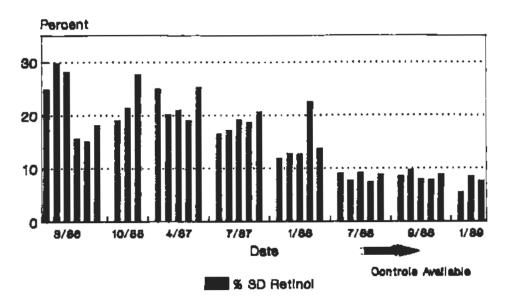
Table 1.

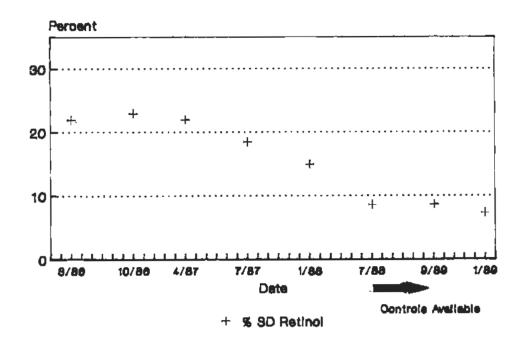
R P	Results Round Ro Retinol	Robin XV		Percent Retin	Bias from inol	Grand Average	
Lab#	Serum 100	Serum 101	Serum 102	Lab#	Serum 100	Serum 101	Serum 102
	F	2	1,139		0.7	•	-2.7
	0.291	0.472	1.046		-7.2	0.7	-10.7
	30	0.47	1.150			1.0	-1.8
	32	50	1.250		3.9	•	_
	08	44	1.176		•	4.	_
	24	5	1.201			·	_
	32	00 M	1.098		4.5 C	-18.0	_
	34	43	1.066		10.2	7	
	.30	46	1.160		'n	0.1	_
	28	44	1.400		9.6-	5.9	_
	28	43	1.075		-9.2	9	_
. 1	32	4	1.152		3.2	8	
	100	46	1.143		-0.4	-1.3	
	5	47	1.137		0.0	1.8	
	3	48	1.170		1.3	'n	
	2	ונו נו	1.236		6.7	18.5	
	32	49	1.238		3.2	6.3	-
	200	43	1.073		-2.6	9	
	м М	54	1.372		9	15.9	
NC	36	52	1.180	NC NC	ı.	11.0	
	.30	47	1.161		-2.2	0,5	
	. 28	45	1.141		-7.6	-2.7	
N N	. 32	48	1.121	N.	5.1	м. Т.	•
	. 26	4.2	1.030	J N	-16.9	-10.3	-12.0
N	.31	כש	1.306	N	ं	10	11.6
900	~	4	1,171				
ט אָנוּ מ	0.017	4	60.				
450 RSD	•	. 33	,				
! !							

 $NC = No\ Controls,$ Values not included in the Grand Average. $NL = New\ Laboratories,$ Values not included in the Grand Average.

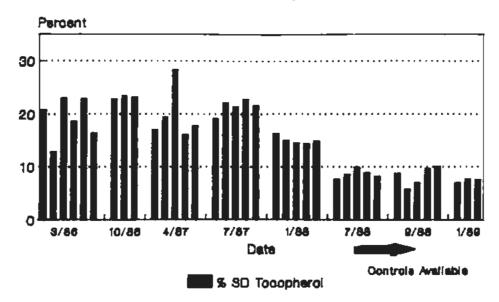
Table 2.

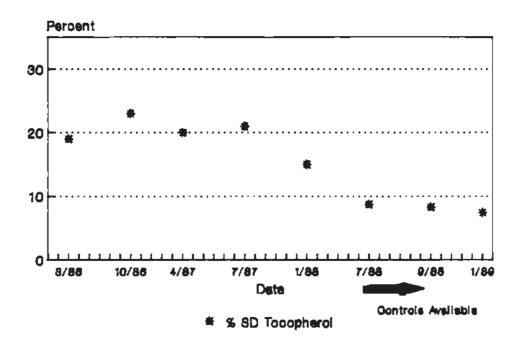
2 7.53 11.81 -4.0	Res	Results Round Robin Alpha-Tocopherol	ıbin XV		Percent B Alpha	Bias from ha-Tocopher	Averag	:
7.5.7 7.5.5 11.81		erum 1	erum 1	erum 10	T	Serum 100	Serum 101	Serum 102
4.67 4.73 4.73 4.73 5.10 7.95 11.03 5.10 7.97 12.32 4.50 6.75 11.18 6.75 11.18 6.75 12.50 4.93 7.89 12.50 12.50 4.94 5.26 8.10 12.90 4.95 5.15 8.10 12.90 12.71 4.94 7.82 12.99 12.71 4.94 7.82 12.99 12.71 4.94 7.82 12.99 12.71 12.99 12.71 12.99 12.71 12.99 12.71 12.99 12.71 12.99 12.71 12.99 12.71 12.99 12.71 12.99 12.70 12		Γ.	7	18		4	-3.6	-4.5
7.23 7.14 11.03 5.10 5.03 7.97 12.32 4.50 6.75 11.18 8.02 12.53 4.75 7.66 12.63 4.75 7.66 12.63 4.75 7.66 12.90 6.70 8.10 12.71 4.94 7.82 12.29 5.28 9.53 12.99 6.70 12.71 6.70 8.09 6.70 8.09 7.43 11.86 6.70 8.09 6.70 12.70 NL 35.5 6.70 10.40 NL 35.5 7.80 12.70 NL 35.5 6.70 6.94 0.60 0.94		• •		12.21		4	-4.0	
5.10 5.10 7.97 12.32 4.50 6.75 11.18 6.75 11.18 6.75 12.50 4.93 7.97 12.32 12.63 4.75 7.66 12.63 4.75 7.66 13.45 6.81 13.45 6.81 13.45 6.81 12.71 6.94 4.75 6.82 12.99 12.71 11.86 6.70 6.83 12.94 12.77 10.40 12.70 12.70 12.70 12.70 12.77 10.40 12.77 12.		ατ		: -		14.	-8.7	-10.8
5.10 7.77 5.03 4.56 6.75 11.18 6.75 12.63 4.75 4.29 6.81 6.82 6.83 6.83 6.83 6.83 6.84 6.84 6.85		·4 •				M G	1.7	5.1
5.03 4.50 6.75 6.75 6.81 6.82 6.81 6.81 6.81 6.81 6.81 6.81 6.81 6.81 6.81 6.81 6.81 6.81 6.82 6.81 6.82 6.83 6.83 6.83 6.83 6.83 6.83 6.83 6.83 6.83 6.84 6.84 6.85		⊸ <		00000		2.0	2.0	-0.4
4,50 8,73 12.50 4,93 7,89 12.63 4,93 7,66 13.45 4,29 6,81 9,74 5,15 7,80 12.90 6,15 7,80 12.90 6,79 12.71 0.0 6,79 12.29 7.7 6,70 8,09 12.70 6,70 5,30 10.40 6,70 5,30 10.42 7,90 12.70 NL 7,90 12.70 NL 7,90 12.70 NL 7,90 12.70 NL 7,0 7,90 12.70 7,0 7,90 12.37 6,34 0.60 0.94 7,0 7,6		D 1		11 10		-8.7	-13.6	9.6-
5.51 8.02 4.93 7.89 12.63 4.75 7.66 13.45 5.26 8.20 13.40 4.95 8.10 12.71 4.75 9.53 12.94 12.17 8.09 12.17 8.09 12.17 8.09 12.17 8.19 8.09 12.17 8.10 8.29 12.17 8.10 8.29 12.37 4.93 7.82 12.37 4.93 7.82 12.37 4.93 7.90		כו		01.11		. a	2.6	
4.93 7.89 12.63 4.75 7.66 13.45 4.29 6.81 9.74 5.26 8.20 13.40 6.91 12.90 4.94 7.82 12.29 6.95 12.37 6.90 12.94 6.70 6.30 10.40 6.70 6.90 12.37 6.30 7.82 12.37 6.34 0.60 0.94		כע	_	12.50	-	0.4		6
4.75 7.66 13.45 -3. 4.29 6.81 9.74 -12. 5.26 8.20 13.40 -12.90 5.15 7.80 12.90 4. 4.95 8.10 12.71 9. 5.28 9.53 13.09 3. 5.29 8.03 12.94 3. 6.70 8.09 12.17 NC 5.30 7.90 12.17 NL 5.30 7.90 12.70 NL 4.93 7.82 12.37 0.94 7.0 7.7 7.6 7.7		o.		12.63		10.		4 0
4.29 6.81 9.74 -12. 5.26 8.20 13.40 4.95 8.10 12.71 4.95 8.10 12.71 5.28 9.53 13.09 5.29 8.29 13.52 6.70 5.30 10.40 NC 35.50 5.30 7.90 12.70 NL 7 7.0 6.060 0.94 7.0 7.7 7.6 7.82		\sim	_	13.45		-3.6	1 1	
26 8.20 13.40 6.50 6.50 6.50 6.50 6.50 6.50 6.50 6.5		4.2		9.74		12.	-12.9	0.12-
15 7.80 12.90 4. 95 8.10 12.71 94 7.82 12.29 28 9.53 13.09 10 8.03 12.94 75 7.43 11.86 70 5.30 10.40 NC 35. 19 8.09 12.70 NL 7. 19 8.01 10.42 NL -3. 34 0.60 0.94 7.7 7.6		[_	M		6.7	4.9	20 4
95 8.10 12.71 0.0 94 7.82 12.29 7.82 13.09 10 8.03 12.94 11.86 75 7.43 11.86 29 8.29 13.52 NC 35.7 19 8.09 12.17 NL 77 30 7.90 12.70 NL 77 30 7.82 12.37 NL -3.3 34 0.60 0.94		-	_	Ci		4.5	-0.2	ა. ა. ი
94 7.82 12.29 0. 28 9.53 13.09 7. 10 8.03 12.94 7. 75 7.43 11.86 7. 29 8.29 13.52 NC 35. 70 5.30 10.40 NC 35. 30 7.90 12.70 NL 7. 30 7.90 12.70 NL 7. 30 0.60 0.94 7.7 7.6		- 15	_	Ċ.		0.4	, b	N o
28 9.53 13.09 7.10 8.03 12.94 75 7.43 11.86 29 8.29 13.52 70 5.30 10.40 8.09 12.17 7.90 12.70 NL 7.91 10.42 NL 7.82 12.37 34 0.60 0.94 7.7 7.6		ന	_	12.29		0.2	0.0	0 (0 (
75		٠,		13.09		7.1	21.9	5.4
75 7,43 11.86 29 8.29 13.52 70 5.30 10.40 NC 35.7 19 8.09 12.17 NL 7.90 7.90 12.70 NL 7.7 7.8 8.01 10.42 NL 7.3 93 7.82 12.37 NL -3.3 94 7.7 7.6		4 -		12.94		4.0	2.8	4.6
7. 59 8.29 13.52 NC 35. 70 5.30 10.40 NC 35. 19 8.09 12.17 NL 7. 30 7.90 12.70 NL 7. 78 8.01 10.42 NL -3. 93 7.82 12.37 NL -3.		• 1		11.86		-3.6	0.5.	•
70 5.30 10.40 NC 35. 19 8.09 12.17 NL 7. 30 7.90 12.70 NL 7. 78 8.01 10.42 NL -3. 93 7.82 12.37 NL -3. 94 0.60 0.94		,		13.52		7.3	0.9	· .
19 8.09 12.17 NL 5. 30 7.90 12.70 NL 7. 78 8.01 10.42 NL -3. 93 7.82 12.37 NL -3. 94 0.60 0.94		4 1		0	NC	35.9	-32.2	-15.9
30 7.90 12.70 NL 7. 30 8.01 10.42 NL -3. 93 7.82 12.37 0.60 0.94 34 0.60 0.94		-				ы. М	n	•
78 8.01 10.42 NL -3. 93 7.82 12.37 34 0.60 0.94 50 7.7 7.6		1.		•	N.F.	7.5		· 1
93 7.82 12. 34 0.60 0.		, ,-		ં	NF	-3.0	2.5	-15.7
.93 7.82 12. .34 0.60 0.		•						
.93 7.82 12. .34 0.60 0. 7.7 7								
.34 0.60 0.9 7.7 7.7 7.7		6.	8	ં				
7 7.7 7		M.	9	0.94				
			7.7					

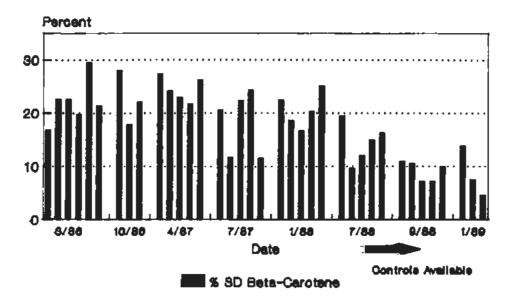

NC = No Controls, Values not included in the Grand Average. NL = New Laboratories, Values not included in the Grand Average.

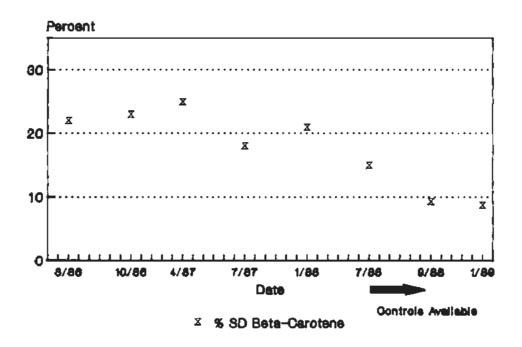

Table 3.

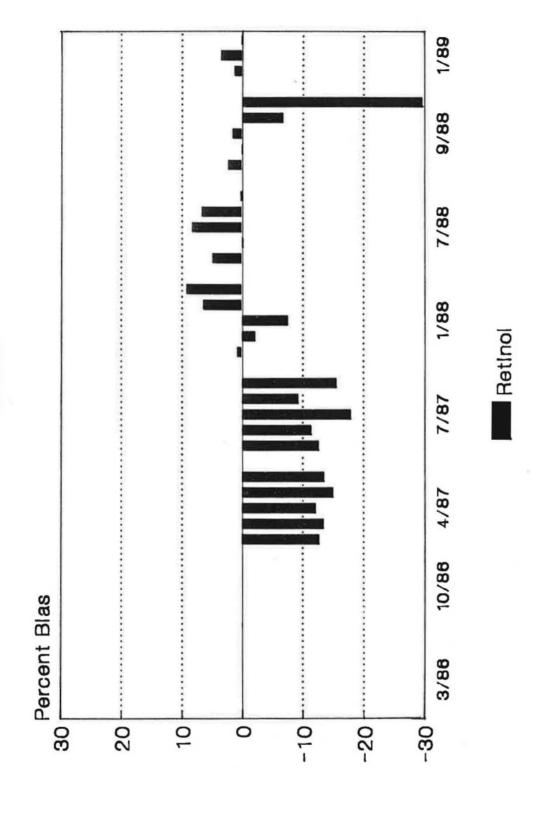
	Serum 102	-1.2	-0.2	-3.1	0.8	10.5	3,5	-0.4	-9.1	1.7	-2.7	-2.1	2.3	-6.3			
and Average ene	Serum 101	1.7	-4.0	4.0	B.0	m. M	-0.3	-0.2	7.1	4.5	6.0-	-2.0	-21.1	-9.4			
Bias from Gr 11 Beta-Carot	Serum 100	-2.1	-5.8	-3.0	18.9	28.5	-8.0	-3.9	-1.2	ი. ი	4.2	0.2	-28.3	-14.3			
Percent B	rab#													N N			
	Serum 102	1,505	1.520	1.476	1.537	1.684	1.577	1,518	1.385	1.550	1.482	1.491	1.559	1.427	1.524	0.071	4.7
oin XV ene	Serum 101	0.687	0.649	0.703	0.730	0.698	0.674	0.674	0.724	0.706	0.670	0.663	0.533	0.612	0.676	0.051	7.6
Results Round Robin XV Total Beta-Carotene	Serum 100	0.112	0.108	0.111	0.136	0.147	0.105	0.110	0.113	0.115	0.119	0.115	0.082	0.098	0.114	0.016	13.9
Res Tot	Lab#													N.	AVG	SD	RSD


NL = New Laboratories, Values not included in the Grand Average.

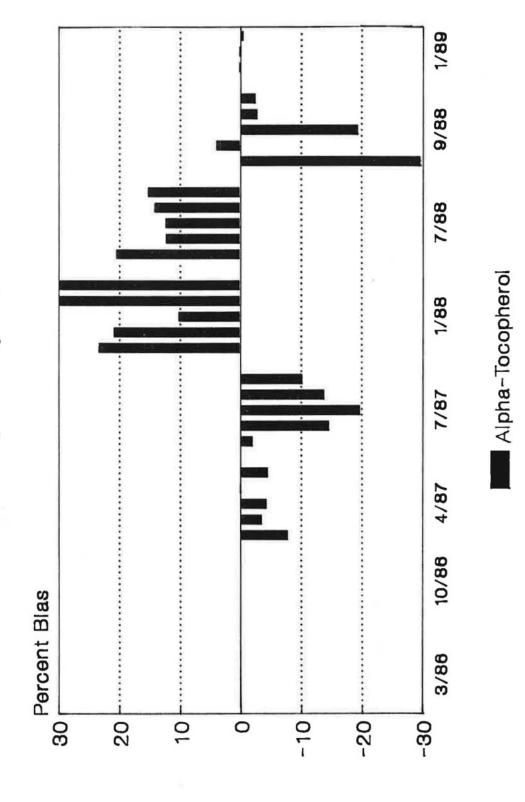

Interlaboratory Precision vs Time Retinol



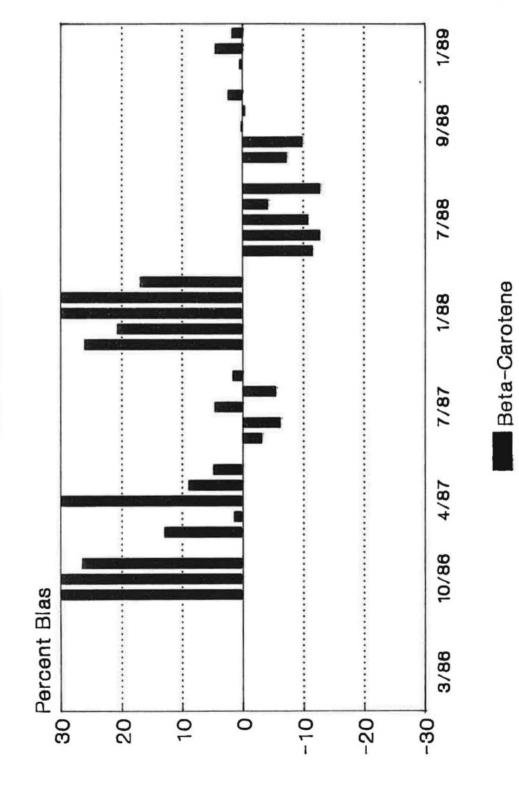

Interlaboratory Precision vs Time Alpha-Tocopherol



Interlaboratory Precision vs Time Beta-Carotene



Laboratory FSV-BA Retinol


% Blas from Assigned Values

Laboratory FSV-BA Alpha-Tocopherol

% Blas from Assigned Values

Laboratory FSV-BA Beta-Carotene

% Blas from Assigned Values

Appendix C. Updated "All-Lab Report" for RR15

The following three pages are a revised version of an "All-Lab" report for RR15. This report has three parts:

- Page 1 lists results for all analytes reported at least twice, counting both participants and NIST analysts. When the isomeric form of an analyte was not specified, it is likely that most participants reported "total" (the sum of all isomers.) Since resolution of γ -tocopherol and β -tocopherol is challenging, results reported as γ -tocopherol can be confidently assumed to be γ/β -tocopherol
- Page 2 lists results reported by only one participant and provides the legend for page 1.
- Page 3 summarizes each participants' performance for retinol, α-tocopherol, and total β-carotene. These summaries are compatible with the percent bias evaluation advice given in the original RR15 Report. However, the current bias summaries are estimated relative to the median of all reported values for each analyte in each serum rather than to the "Grand Average" used in the original and detailed in Appendix B.

To ensure confidentiality, the laboratory identifiers used in this "All-Lab Report" have been altered from those used in RR15. The only attributed results are those reported by NIST. The NIST results are not used in the assessment of the consensus summary results of the study.

Round Robin XV Laboratory Results

This publication is available free of charge from: http://dx.doi.org/10.6028/NIST.IR.7880-35

17.0 17.0	tal Retinol		α-Tocopherol	0	Total	Total β-Carotene	ene	trans-β-Carotene	Carote	ne 102	Total ci	Total cis-β-Carotene	otene
0.327 0.344 1.708 4.94 7.82 12.29 0.115 0.706 1.550 0.111 0.664 1.480 0.004 0.002 0.033 0.427 1.152 5.15 7.80 12.99 0.115 0.706 1.550 0.111 0.664 1.480 0.004 0.002 0.033 0.427 1.152 5.15 7.80 12.99 0.115 0.663 1.481 0.115 0.034 0.504 1.104 0.115 0.663 1.481 0.115 0.034 0.504 1.104 0.115 0.034 0.504 1.104 0.115 0.034 0.504 1.104 0.115 0.034 0.504 1.104 0.115 0.034 0.504 1.104 0.115 0.034 0.504 1.104 0.115 0.034 0.504 1.104 0.115 0.034 0.504 1.104 0.115 0.034 0.504 1.104 0.115 0.034 0.504 1.104 0.115 0.034 0.504 1.104 0.115 0.034 0.504 0.438 1.124 0.115 0.034 0.504 0.438 1.124 0.115 0.034 0.504 0.438 1.124 0.115 0.034 0.504 0.438 1.124 0.115 0.034 0.504 0.438 1.124 0.115 0.034 0.504 0.438 1.124 0.115 0.034 0.504 0.438 1.124 0.115 0.034 0.504 0.438 1.124 0.115 0.034 0.504 0.438 1.124 0.115 0.034 0.504 0.438 1.124 0.115 0.034 0.504 0.438 1.124 0.115 0.034 0.504 0.438 1.124 0.115 0.034 0.034 0.504 0.438 1.124 0.115 0.034 0.034 0.504 0.438 1.124 0.115 0.034 0.03	101 001			102	100	101	70Z	001		102	100	101	102
0.323 0.427 1.128	0.317 0.485 1			12.29	0.115	0.706	1.550	0.111 0.		480	0.004	0.042	0.070
0.313 0.469 1.160	0.323 0.427 1			12.90									
0.302 0.473 1.150 4.23 7.14 11.03 0.111 0.703 1476 0.603 1.401 0.030 0.473 1.150 4.23 7.14 11.03 0.111 0.703 1476 0.603 1.401 0.030 0.403 0.302 0.438 1.103 4.75 7.53 11.81 0.112 0.663 1.401 0.030 0.640 0.501 1.500 0.302 0.401 0.103 0.503 1.500 0.302 0.401 0.103 0.503 1.500 0.302 0.401 0.103 0.503 1.500 0.303 0.503 1.302 0.503 1.302 0.303 0.503 1.302 0.303 0.503 1.203 0.303 0.503 1.203 0.303 0.503 1.203 0.303 0.503 1.203 0.303 0.503 1.203 0.303 0.503 1.103 0.303 0.503 1.203 0.303 0.	0.303 0.469 1			12.63	0.105	0.674	1.577						
0.312 0.533 1.306 4.75 1.318 0.115 0.663 1.491 0.094 0.504 1.506 0.301 0.303 0.4048 1.073 4.75 7.43 11.88 0.112 0.687 1.505 0.240 0.312 0.533 1.306 4.78 0.104 0.209 0.505 1.130 6.50 1.201 0.420 0.320 0.446 1.176 6.10 7.59 1.300 0.330 0.519 1.400 6.51 0.529 0.201 0.300 0.420 1.000 6.51 0.201 0.400 0.100 0.501 1.207 0.300 0.400 0.	0.308 0.473 1			11.03	0.111	0.703	1.476						
0.291 0.472 0.649 1.520 0.649 1.520 0.641 0.108 0.649 1.520 0.641 0.108 0.649 1.520 0.641 0.108 0.649 1.520 0.641 0.108 0.649 1.520 0.641 0.641 1.506 0.641 0.644 <th< td=""><td>0.305 0.438</td><td></td><td></td><td>11.86</td><td>0.115</td><td>0.663</td><td>1.491</td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	0.305 0.438			11.86	0.115	0.663	1.491						
0.312 0.533 1.306 4.78 8.01 10.42 0.687 1.505 0.394 0.504 1.104 0.396 0.520 1.180 0.755 1.181 0.112 0.687 1.505 0.300 0.510 1.409 5.82 8.48 13.39 0.110 0.661 1.297 0.334 0.543 1.372 5.30 7.90 1.2.70 0.147 0.688 1.629 0.147 0.688 1.629 0.400 1.003 0.401 1.104 0.094 0.504 1.104 0.094 0.004	0.291 0.472			12.41	0.108	0.649	1.520						
0.315 0.450 1.139 4.73 7.53 11.81 0.112 0.687 1.505 0.300 0.520 1.140 0.520 0.440 0.520 0.440 0.520 0.440 0.520 0.440 0.520 0.445 0.45	0.312 0.533			10.42									
0.360 0.520 1.180	0.315 0.450 1			11.81	0.112	0.687	1.505						
0.302 0.446 1.176 5.10 7.95 13.00 0.034 0.561 1.297 0.034 0.504 1.104 0.034 0.504 1.104 0.034 0.543 1.375 5.29 8.29 13.29 0.044 0.420 1.030 5.30 7.90 12.75 0.034 0.505 1.620 0.345 0.420 1.030 5.30 7.90 12.75 0.044 0.505 1.400 0.345 0.457 1.104 0.044 0.505 1.205 0.045 0.450 1.104 0.045 0.450 1.104 0.054 0.450 1.106 0.	0.360 0.520 1			10.40									
0.330 0.519 1.409	0.302 0.446			13.00									
0.334 0.543 1.372 5.29 8.29 1.3.50 20.094 ≥0.094 ≥0.504 ≥0.104 0.094	0.330 0.519			13.39	0.110	0.661	1.297						
0.260 0.420 1.030 5.30 7.90 12.70 0.147 0.698 1.684 0.073 0.639 1.670 0.073 0.639 1.670 0.073 0.639 1.670 0.073 0.639 1.670 0.073 0.639 1.670 0.073 0.639 1.670 0.073 0.639 1.670 0.073 0.639 1.670 0.073 0.639 1.670 0.073 0.639 1.670 0.073 0.639 1.670 0.073 0.639 1.670 0.073 0.639 1.670 0.073 0.639 1.670 0.073 0.639 1.670 0.073 0.639 1.670 0.073 0.639 1.670 0.073 0.639 1.670 0.073 0.639 1.670 0.073 0	0.334 0.543			13.52			>1 104	0 094 0	504	104			
0.345 0.435 1.050 0.725 1.529 0.073 0.639 1.670 0.073 0.639 1.670 0.034 0.0345 0.435 1.670 0.072 1.529 0.033 0.141 0.052 1.529 0.003 0.0345 0.435 1.670 0.072 1.529 0.003 0.143 0.725 1.529 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.035 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.035 0.034 <	0.000 0.000			10.01			- - - - -		-	- - -			
0.345 0.435 0.436 0.146 0.034 0.156 0.147 0.034 0.156 0.146 0.034 0.157 1.034 0.147 0.034 0.146 0.034 0.147 1.034 0.146 0.047 0.146 0.047 0.146 0.047 0.146 0.047 0.146 0.047 0.040 0.040 0.040 0.041 0.072 0.063 1.670 0.073 0.639 1.670 0.073 0.063 1.670 0.073 0.063 1.670 0.073 0.063 1.670 0.073 0.063 1.670 0.073 0.063 1.670 0.073 0.063 0.073 0.063 0.073 0.063 0.073 0.063 0.073 0.063 0.073 <th< td=""><td>0.420 0.420</td><td></td><td></td><td></td><td>7</td><td></td><td>700</td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	0.420 0.420				7		700						
0.334 0.517 1.191 5.03 7.93 12.23 0.136 0.725 1.529 0.0073 0.639 1.670 0.023 0.441 1.400 4.75 7.66 13.45 20.073 20.639 21.670 0.013 0.620 1.400 0.313 0.477 1.137 5.26 8.20 13.40 0.113 0.724 1.385 0.001 1.250 0.438 1.025 0.403 1.025 0.403 1.200 1.250 0.438 1.025 0.403 1.200 1.250 0.483 1.234 0.555 1.241 0.032 0.483 1.241 0.032 0.484 1.030 0.471 1.161 0.228 0.456 1.141 0.028 0.456 1.441 0.093 0.602 1.418 0.093 0.602 1.418 0.004 0.042 0.428 0.	0.345 0.435 1			12.50	0.147	0.698	1.684						
0.283 0.441 1.400 4.75 7.66 13.45 ≥0.073 ≥0.639 ≥1.670 0.073 0.639 1.670 0 <t< td=""><td>0.334 0.517 1</td><td></td><td></td><td>12.23</td><td></td><td></td><td>1.529</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	0.334 0.517 1			12.23			1.529						
0.290 0.450 1.160 4.91 7.53 12.60 \$6.1 0.020 1.420 8.60 1.420 9.724 1.385 9.81 9.82 9.83 9.84 9.83 9.84	0.283 0.441			13.45			≥1.670			670			
0.313 0.477 1.137 5.26 8.20 13.40 0.113 0.724 1.385 8.89 1.148 4.95 8.10 12.71 0.110 0.674 1.518 8.89 1.148 9.74 0.103 0.620 1.330 8.89 1.148 9.74 0.118 0.620 1.330 8.89 1.279 0.118 0.670 1.487 9.89 1.129 0.119 0.670 1.482 9.89 1.284 9.89 0.611 1.487 9.89 0.612 1.487 9.89 0.612 1.487 9.89 0.612 1.482 9.89 1.294 0.098 0.612 1.482 9.89 1.484 0.670 1.482 9.89 1.484 0.670 1.482 9.89 1.484 0.670 1.482 9.89 1.484 0.682 1.482 9.89 1.484 0.682 1.482 9.89 1.484 0.682 1.482 9.89 1.483 1.483 1.483 1.484 0.693 0.602	0.290 0.450	4		12.60	≤0.1	0.620	1.420						
0.312 0.463 1.143 5.26 8.20 13.40 0.0110 0.674 1.518 9.89 0.133 0.620 1.330 9.89 0.133 0.620 1.330 9.89 0.133 0.620 1.330 9.89 0.612 1.427 9.89 0.681 9.74 9	0.313 0.477				0.113	0.724	1.385						
0.312 0.463 1.143 4.95 8.10 12.71 0.110 0.674 1.518 9.79 1.330 9.620 1.330 9.620 1.330 9.620 1.330 9.620 1.330 9.620 1.330 9.620 1.330 9.620 1.330 9.620 1.330 9.620 1.330 9.620 1.320 9.620 1.320 9.620 1.427 9.620 1.427 9.620 1.427 9.620 1.427 9.620 1.427 9.620 1.427 9.620 1.427 9.620 1.427 9.620 1.427 9.620 1.427 9.620 1.427 9.620 1.427 9.620 1.427 9.620 1.427 9.620 1.427 9.620 9.620 1.427 9.620 9.620 1.427 9.620 9.620 1.427 9.620 9.620 1.427 9.620 9.620 1.427 9.620 9.620 1.427 9.620 9.620 1.427 9.620 9.620 9.620 1.427 9.				13.40									
0.307 0.483 1.290 4.73 7.60 12.25 0.103 0.620 1.330 8 0.620 1.330 8 0.620 1.330 8 0.0284 0.438 1.026 0.103 0.620 1.330 8 0.620 1.330 8 0.620 1.330 8 0.620 1.330 8 0.620 1.330 8 0.033 1.020 0.033 0.032 0.034 0.034 0.035 1.020 0.033 1.030 1.030 0.033 1.030 1.030 0.042 0.033 1.030 1.042 0.042 0.033 1.030 0.042 0.042 0.053 1.050 0.042 0.042 0.053 1.030 0.042 0.042 0.053 1.042 0.004 <td>0.312 0.463</td> <td></td> <td></td> <td>12 71</td> <td>0 110</td> <td>0 674</td> <td>1.518</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	0.312 0.463			12 71	0 110	0 674	1.518						
0.325 0.500 1.250 0.326 0.438 1.075 0.329 0.483 1.075 0.329 0.483 1.075 0.324 0.555 1.230 0.334 0.555 1.236 0.328 0.498 1.234 0.329 0.483 1.214 0.334 0.555 1.236 0.328 0.498 1.234 0.328 0.498 1.234 0.329 0.498 1.234 0.320 0.471 1.161 0.320 0.471 1.659 1.32 1.482 0.082 0.328 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.415 2.90 0.771 1.2.27 0.331 0.473 1.484 0.034 0.044 0.093 0.34 0.555 1.484 0.34 0.571 1.2.27 0.34	0.307 0.483			12.25	0 103	0.620	1 330						
0.329 0.438 1.25 0.098 0.612 1.427 0.098 0.612 1.427 0.098 0.612 1.427 0.098 0.612 1.427 0.098 0.612 1.427 0.098 0.612 1.427 0.098 0.612 1.427 0.098 0.612 1.427 0.098 0.612 1.427 0.098 0.613 1.427 0.098 0.613 1.482 0.098 0.614 0.670 1.482 0.098 0.614 0.670 1.482 0.098 0.614 0.670 1.482 0.098 0.614 0.670 1.482 0.670 0.673 1.569 0.670 0.783 1.569 0.098 0.671 0.664 1.484 0.093 0.602 1.418 0.004	0.325 0.500			7.	5	0.020	2						
0.329 0.483 1.121 0.098 0.612 1.427 0.098 0.612 1.427 0.098 0.612 1.427 0.098 0.612 1.427 0.098 0.612 1.427 0.098 0.612 1.427 0.098 0.613 1.482 0.098 0.619 0.670 1.482 0.093 0.670 1.482 0.093 0.608 0.673 1.559 0.082 0.533 1.559 0.094 0.093 0.602 1.418 0.004 0.004 0.004 0.004 28 28 26 26 26 26 26 16 16 3 3 1 1 28 28 26 26 26 16 15 16 16 3 3 3 1 1 28 28 26 26 26 16 174 0.082 0.533 1.297 0.033 0.602 1.418 0.004 0.004 0.004 0.021	0.323 0.300		ò	,									
0.329 0.483 1.121 5.28 9.53 13.09 0.098 0.612 1.427 1.427 8.03 1.294 0.019 0.670 1.482 1.482 8.03 12.94 0.019 0.670 1.482 1.482 3 3 3 1 1 1 1 1 1	0.284 0.438		0.81	9.7	0	0							
0.334 0.555 1.236 5.28 9.53 13.09 0.019 0.670 1.482 3 3 3 3 1 1 0.289 0.456 1.141 5.19 8.09 12.17 0.082 0.533 1.559 3 3 3 1 1 28 28 28 26 26 26 26 26 26 26 15 1.84 0.082 0.533 1.297 0.260 0.384 1.030 4.15 5.30 9.74 0.082 0.533 1.297 0.260 0.384 1.030 4.15 5.30 9.74 0.082 0.533 1.297 0.360 0.384 1.030 4.15 5.30 9.74 0.082 0.147 0.725 1.684 0.093 0.602 1.418 0.004 0.042 0.313 0.475 1.160 4.96 8.1 13.3 7.4 6.5 1.348 0.190 0.093 0.004 0.004 0.004 0.315 0.469 1.160 0.955 </td <td>0.329 0.483</td> <td></td> <td></td> <td></td> <td>0.098</td> <td>0.612</td> <td>1.427</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	0.329 0.483				0.098	0.612	1.427						
0.323 0.498 1.238 5.10 8.03 12.94 0.0119 0.670 1.482 8.69 1.297 9.09 12.17 9.082 0.533 1.559 3 3 3 1 1 0.386 0.471 1.161 4.15 7.15 12.41 0.082 0.533 1.297 3 3 1 1 1 28 28 28 26 26 26 26 16 1.297 3 3 3 1 1 1 0.260 0.384 1.030 4.15 5.30 9.74 0.082 0.533 1.297 3 3 1 1 1 0.380 0.555 1.409 6.70 9.53 13.52 0.147 0.725 1.684 0.093 0.062 1.418 0.004 <td< td=""><td>0.334 0.555</td><td></td><td></td><td>13.09</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	0.334 0.555			13.09									
0.289 0.456 1.141 5.19 8.09 12.17 0.082 0.533 1.559 3 3 3 1 1 0.306 0.471 1.161 4.15 7.15 12.41 0.082 0.533 1.559 3 3 3 1 1 28 28 28 26 26 26 26 26 15 1.241 0.082 0.533 1.297 1.297 1.227 0.112 0.664 1.484 0.093 0.602 1.418 0.094 0.042 0.055 1.484 0.093 0.602 1.418 0.096 0.042 0.042 0.056 1.484 0.093 0.604 0.042 0.042 0.096 0.042 0.043 0.096 0.042 0.096 <td>0.323 0.498</td> <td></td> <td></td> <td>12.94</td> <td>0.119</td> <td>0.670</td> <td>1.482</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	0.323 0.498			12.94	0.119	0.670	1.482						
0.306 0.471 1.161 4.15 7.15 12.41 0.082 0.533 1.559 3 3 3 3 1 1 28 28 28 26 26 26 26 15 16 16 3 3 3 3 1 1 0.260 0.384 1.030 4.15 5.30 9.74 0.082 0.533 1.297 0.093 0.602 1.418 0.004 0.004 0.042 0.313 0.473 1.181 5.00 7.71 12.27 0.112 0.664 1.484 0.093 0.602 1.418 0.004 0.042 0.021 0.040 0.55 1.044 9.6 8.1 13.3 7.4 6.5 1.684 0.004 0.004 0.042 0.313 0.479 1.160 4.98 8.1 1.33 7.4 6.5 1.349 0.119 0.513 1.115 0.004 0.004 0.004 0.004 </td <td>0.289 0.456</td> <td></td> <td></td> <td>12.17</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	0.289 0.456			12.17									
28 28 28 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 27 15 16 16 3 3 3 3 1 1 1 0.260 0.384 1.030 4.15 5.30 9.74 0.082 0.533 1.297 0.093 0.602 1.418 0.093 0.602 1.418 0.004 <td>0.306 0.471</td> <td>_</td> <td></td> <td></td> <td>0.082</td> <td>0.533</td> <td>1.559</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	0.306 0.471	_			0.082	0.533	1.559						
28 28 28 26 26 26 15 16 16 3 3 3 1 1 0.260 0.384 1.030 4.15 5.30 9.74 0.082 0.533 1.297 0.313 0.473 1.181 5.00 7.71 12.27 0.112 0.664 1.484 0.093 0.602 1.418 0.004 0.042 0.360 0.555 1.409 6.70 9.53 13.52 0.147 0.725 1.684 0.093 0.602 1.418 0.004 0.042 6.8 8.5 1.04 9.6 8.1 13.3 7.4 6.5 6.5 1.348 0.004 0.004 0.042 0.313 0.479 1.160 4.98 7.32 11.97 0.160 0.655 1.348 0.119 0.513 1.115 0.003 0.003 0.004 0.004 0.315 0.469 1.176 4.96 7.36 11.82 0.110	×	4.15		12.41									
0.260 0.384 1.030 4.15 5.30 9.74 0.082 0.533 1.297 0.093 0.602 1.418 0.004 0.042 0.042 0.533 1.297 0.004 0.	28 28		26	26	15	16	16	ဗ	ဗ	က	1	_	_
0.313 0.473 1.181 5.00 7.71 12.27 0.112 0.664 1.484 0.093 0.602 1.418 0.004 0.042 0.042 0.360 0.555 1.409 6.70 9.53 13.52 0.147 0.725 1.684 0.021 0.040 0.101 0.52 0.74 0.99 0.015 0.049 0.096 6.8 8.5 10.4 9.6 8.1 13.3 7.4 6.5 0.313 0.479 1.160 4.98 7.32 11.97 0.112 0.660 1.450 0.119 0.513 1.115 0.003 0.0078 0.315 0.469 1.175 4.77 7.26 11.82 0.110 0.655 1.348 0.119 0.513 1.115 0.003 0.0078 0.313 0.472 1.160 4.95 7.86 12.46 0.111 0.672 1.498 0.119 0.513 1.115 0.003 0.004 0.004 0.020 0.041 0.075 0.54 0.066 0.043 0.084 <	0.260 0.384		5.30	9.74	0.082	0.533	1.297						
0.360 0.555 1.409 6.70 9.53 13.52 0.147 0.725 1.684 0.021 0.040 0.101 0.52 0.74 0.99 0.015 0.049 0.096 6.8 8.5 8.5 10.4 9.6 8.1 13.3 7.4 6.5 0.313 0.479 1.160 4.95 7.32 11.97 0.110 0.655 1.348 0.119 0.513 1.115 0.041 0.078 0.313 0.472 1.160 4.95 7.86 12.46 0.111 0.672 1.498 0.314 0.427 0.744 0.006 0.043 0.084 6.4 8.6 6.5 6.9 5.4 6.1 5.3 6.3 5.6 8.3 5.6	0.313 0.473			12.27	0.112	0.664	1.484	0.093	602 1.	418	0.004	0.042	0.070
0.021 0.040 0.104 0.096 0.049 0.049 0.096 6.8 8.5 8.5 10.4 9.6 8.1 13.3 7.4 6.5 0.313 0.479 1.160 4.98 7.32 11.97 0.112 0.660 1.450 0.109 0.582 1.340 0.003 0.078 0.315 0.469 1.175 4.77 7.26 11.82 0.110 0.655 1.348 0.119 0.513 1.115 0.047 0.047 0.142 0.313 0.472 1.160 4.95 7.86 12.46 0.111 0.672 1.498 0.020 0.041 0.075 0.043 0.084 6.4 8.6 6.5 6.9 5.4 6.1 5.3 6.3 5.6 5.6 5.6 6.3 5.6 6.3 5.6 6.3 5.6 6.3 5.6 6.3 5.6 6.3 5.6 6.3 5.6 6.3 5.6 6.3 5.6 6.3 6.3 6.3 6.3 6.3 6.3 6.3	0.360 0.555			13.52	0.147	0.725	1.684						
6.8 8.5 8.5 10.4 9.6 8.1 13.3 7.4 6.5 0.313 0.479 1.160 4.98 7.32 11.97 0.112 0.660 1.450 0.109 0.582 1.340 0.003 0.078 0.315 0.469 1.175 4.77 7.26 11.82 0.110 0.655 1.348 0.119 0.513 1.115 0.041 0.047 0.142 0.313 0.472 1.160 4.95 7.86 12.46 0.111 0.672 1.498 0.020 0.041 0.075 0.043 0.084 0.084 6.4 8.6 6.5 6.9 5.4 6.1 5.3 6.3 5.6	0.021 0.040			66.0	0.015	0.049	960 0						
0.313 0.479 1.160 4.98 7.32 11.97 0.112 0.660 1.450 0.109 0.582 1.340 0.003 0.078 0.315 0.469 1.175 4.77 7.26 11.82 0.116 0.655 1.348 0.119 0.513 1.115 0.041 0.047 0.142 0.313 0.472 1.160 4.95 7.86 12.46 0.111 0.672 1.498 0.020 0.041 0.075 0.341 0.427 0.764 0.006 0.043 0.084 6.4 8.6 6.5 6.9 5.4 6.1 5.3 6.3 5.6	200		. o) «	13.3	7.4	9 6						
0.313 0.479 1.160 4.98 7.32 11.97 0.112 0.660 1.450 0.109 0.582 1.340 0.003 0.078 0.315 0.469 1.175 4.77 7.26 11.82 0.116 0.655 1.348 0.119 0.513 1.115 0.041 0.041 0.313 0.472 1.160 4.95 7.86 12.46 0.111 0.672 1.498 0.020 0.041 0.075 0.043 0.084 6.4 8.6 6.5 6.9 5.4 6.1 5.3 6.3 5.6			9	- 5	2	:) ;						
0.315 0.469 1.175 4.77 7.26 11.82 0.160 0.655 1.348 0.119 0.513 1.115 0.041 0.041 0.142 0.313 0.472 1.160 4.95 7.86 12.46 0.111 0.672 1.498 0.020 0.041 0.075 0.341 0.427 0.764 0.006 0.043 0.084 6.4 8.6 6.5 6.9 5.4 6.1 5.3 6.3 5.6	0.313 0.479			11.97	0.112	0.660	1.450			340	0.003	0.078	0.110
0.313 0.472 1.160 4.95 7.86 12.46 0.111 0.672 1.0020 0.021 0.075 0.341 0.427 0.764 0.006 0.043 0.064 8.6 6.5 6.9 5.4 6.1 5.3 6.3	0.315 0.469	_		11.82	0.160	0.655	1.348			115	0.041	0.142	0.233
0.020 0.041 0.075 0.341 0.427 0.764 0.006 0.043 0.0 6.4 8.6 6.5 6.9 5.4 6.1 5.3 6.3	0.313 0.472			12.46	0.111	0.672	1.498						
6.4 8.6 6.5 6.9 5.4 6.1 5.3 6.3	0.020 0.041	Ö		0.764	900.0	0.043	0.084						
	6.4 8.6		5.4	6.1	5.3	6.3	2.6						

Round Robin XV Laboratory Results

Analytes Reported By One Laboratory Values in µg/mL

Analyte	Code	100	101	102
γ/β-Tocopherol	FSV-DE	2.163	2.218	2.860

Table Legend

Symbol	Interpretation
italics	Value calculated from reported results
n	Number of non-NIST laboratories reporting quantitative results
Min	Minimum non-NIST reported value.
Mean	Average over all non-NIST reported values.
Max	Maximum non-NIST reported value.
SD	Standard deviation over all non-NIST values.
CV	Coefficient of Variation (% relative standard deviation): 100*SD/Mean
Median	Median over all non-NIST reported values
eSD	Robust estimate of SD based on the adjusted median absolute
	difference from the median (MADe)
eCV	Robust estimate of CV, 100*eSD/Median
	•
≤x	Concentration at or below the limit of quantification, x
≥x	Concentration greater than or equal to x

Round Robin XV Laboratory Results

%Bias Summary

Lab	TR	аТ	bC
FSV-BA	2±1	-1±1	4±1
FSV-BD	-6±12	-11±3	
FSV-BE	-2±7	2±3	
FSV-BF	-1±2	1±1	0±5
FSV-BG	-1±1	-12±3	1±3
FSV-BH	-6±3	-5±1	0±2
FSV-BI	-6±5	-3±3	-2±3
FSV-BL	8±7	-6±9	
FSV-BY	-2±3	-5±1	1±1
FSV-BZ	9±7	-5±36	
FSV-CA	-2±3	3±2	
FSV-CJ	12±8	11±6	-5±7
FSV-CK	13±6	7±1	-22±6
FSV-CM	-13±3	3±3	
FSV-CN	-2±11	5±6	16±15
FSV-CO	6±4	0±2	11±11
FSV-CQ	2±17	1±7	-9±23
FSV-CY	-4±4	-1±3	-6±2
FSV-DC	0±2		1±8
FSV-DE		6±2	
FSV-DG	-1±1	2±2	0±1
FSV-DN	4±7	-3±1	-9±2
FSV-DO	6±2		
FSV-DT	-8±1	-16±5	
FSV-DY	1±4		-8±3
FSV-DZ	10±6	11±9	
FSV-ED	5±2	3±1	2±5
FSV-EF	-4±3	2±4	
FSV-FE	-1±1		-14±16
FSV-FX		-8±8	
NISTa	1±1	-3±4	-1±2
NISTd	1±1	-5±2	11±29

Label	Definition
Lab	Participant code
TR	Total Retinol
	a-Tocopherol
bC	Total b-Carotene
% Bias	(Mean ± SD) of individual serum biases
Mean	Average of (x _i -Median _i)/Median _i
SD	Standard deviation of (x _i -Median _i)/Median _i
x_i	Result for analyte in serum _i
Median _i	Median of non-NIST results in serum _i
	•

The original analysis listed % Bias for each result for each serum calculated relative to the trimmed "Avg" of that analyte in the serum. The summary values reported here are the (arithmetic mean ± standard deviation) of each laboratory's reported results for the analyte estimated relative to each serum's median-based reference value.

Appendix D. Shipping Package Inserts for RR16

The following two items were attached to each package shipped to an RR16 participant:

- Cover letter
- Datasheet

UNITED STATES DEPARTMENT OF COMMERCE National Institute of Standards and Technology [formerly National Bureau of Standards] Gaithersburg, Maryland 20899

April 3, 1989

Dear Colleague,

Samples for RR-XVI are enclosed. The sample set is composed of four serum pools and a ready-to-inject ethanol solution. The serum samples are to be analyzed for retinol, α -tocopherol and total β -carotene as usual. The ethanol solution contains retinol, α -tocopherol and a complex mixture of β -carotene isomers. We request that you provide data for the concentration of retinol, α -tocopherol and all-trans β -carotene in the solution on the enclosed form. We also request that you provide us with a copy of the chromatogram from your analysis of the solution. Results are due by May 15.

Over the past year, we have observed that the use of a common pool of value assigned "Control Materials" to validate your in-house methods, has led to dramatic improvements in the accuracy of results submitted by individual laboratories and interlaboratory precision. The limited supply of those materials has been exhausted but is being replaced by Standard Reference Material 968. SRM 968 should be available for sale at \$150.00 per unit by May 1, 1989. SRM 968 will contain two vials of lyophilized serum for each of three concentration levels of retinol, $\alpha\text{-tocopherol}$, and total $\beta\text{-carotene}$. Information values will be provided for $\gamma\text{-tocopherol}$ and all-trans $\beta\text{-carotene}$. SRM 968 is intended for use in validating the accuracy of methods used for the determination of these three fat-soluble vitamins in human serum and plasma samples. Employment as a benchmark for value assigning your inhouse controls would represent a cost effective use of SRM 968.

The certified values for SRM 968 are given below:

ANALYTE	LOW LEVEL	MEDIUM LEVEL	HIGH LEVEL
Retinol α -tocopherol Total β -carotene	0.313 ± .010	0.477 ± .019	1.15 ± .05
	4.94 ± .16	7.67 ± .29	12.4 ± .5
	0.124 ± .017	0.677 ± .022	1.49 ± .06

The uncertainties listed represent two standard deviations of the certified values and include allowances for analytical imprecision, bottle-to-bottle variability, as well as imprecision associated with the reconstitution process.

Inquiries concerning this SRM should be placed through the NIST (formerly NBS) Office of Standard Reference Materials. They may be reached at 301/975-6776.

3XXXIV

Sincerel

Willie E. May, Ph.D.

Chief

Organic Analytical Research Division Center for Analytical Chemistry

cc: R. Schaffer

REPORT ON NI	ST/NCI SAMPLES	FROM LABORATORY #	
DA'	TE OF ANALYSIS		
	RESULTS	IN mg/L	
SAMPLE #	ANALYTE	Result	
SERUM 109	RETINOL	All Trans	
VIAL #	B-CAROTENE	All Trans	Total
	A-TOCOPHEROL		
SERUM 110	RETINOL		
	B-CAROTENE	All Trans	Total
	A-TOCOPHEROL		
SERUM 111	RETINOL		
VIAL #	B-CAROTENE		Total
	A-TOCOPHEROL		
SERUM 112	RETINOL		
VIAL #	B-CAROTENE	All Trans	Total
	A-TOCOPHEROL		
SERUM 113	RETINOL		
	B-CAROTENE	All Trans	
	A-TOCOPHEROL		

Reconstitute the Serum Sample 109 - 112 with 1.0 mL water.

Serum 113 is and Ethanolic solution of retinol, alpha-tocopherol and beta-carotene. It is to be directly injected for the determination of retinol, alpha-tocopherol and all-trans beta-carotene.

Appendix E. Final Report for RR16

The following nineteen pages are the final report for RR16 as provided to all participants. This report consisted of:

- An individualized cover letter and discussion. The pages reproduced here are for participant FSV-BA.
- Tables 1 to 3B list all of the participants' results and several summary values for retinol, α-tocopherol, total β-carotene, and *trans*-β-carotene. These tables do not report any NIST results nor participant results for other analytes.
- Graphical presentations of interlaboratory precision over time for retinol, α-tocopherol, and total β-carotene.
- Graphical presentations of the indiviual participant's bias relative to an assigned value over time for retinol, α -tocopherol, and total β -carotene. The pages reproduced here are for participant FSV-BA.
- Graphical presentations of the indiviual participant's assays of "Control B" over time for retinol, α -tocopherol, and total β -carotene. The pages reproduced here are for participant FSV-BA.

Due to the complex formatting used in the Tables, the originally listed laboratory codes have been deleted without replacement. However, Appendix C provides a complete listing of the RR16 results where the original codes have been altered to ensure confidentiality. Appendix C also provides more relevant summary statistics.

UNITED STATES DEPARTMENT OF COMMERCE National Institute of Standards and Technology [formerly National Bureau of Standards] Gaithersburg, Maryland 20899

July 13, 1989

Personalized letters were sent to partiipants.

This block contained their formal name and address.

Dear (Personall name):

Enclosed is our statistical summary of the results of your analysis of the four serum samples provided to you in Round Robin XVI. The results from the analysis of the ethanolic solution (Serum #113) are not included. It became apparent as we received results, that our instructions for its analysis were not clear. We will provide more precise instructions and ask that it be reanalyzed in Round Robin XVII. As usual, results are presented in both tabular and graphical form. Tables 1-3 provide data submitted by each laboratory for retinol, α -tocopherol, and β -carotene, respectively. These tables also provide the laboratory grand average, standard deviation (SD), and relative standard deviation (RSD) for interlaboratory measurements of each analyte, along with data representing each laboratory's bias on a sample-by-sample basis for each analyte.

The tables also provide data documenting the stability of the Grand Averages from recent Round Robins. Each of the four serum samples used in Round Robin XVI has been analyzed in previous Round Robins. The grand average, date of the previous analyses, and difference between this and previous grand averages are provided at the bottom of each table. The agreement among the grand average values from this and previous Round Robins support data that has been acquired from NIST measurements regarding the stability of retinol, α -tocopherol, and β -carotene in freeze-dried serum stored at -80°C.

Three types of graphical data are provided.

- Figures A-C which demonstrate the improvement in interlaboratory precision for the measurement of retinol, α -tocopherol, and β -carotene, that has been accomplished in our program over the past three years.
- Control Charts for retinol, α -tocopherol, and β -carotene, respectively, which represent a summary of each lab's performance vs. the assigned value for each analyte over the past three years.
- A comparison of the values that each lab has reported for "Control B" the three times that it has been distributed as an unknown. Note that "Control B" was run as a blind duplicate in Round Robin XIV.

As mentioned in our last communication with you, the interlaboratory Grand Average has been determined to be an acceptable approximation of the true value for each sample, and will be used as the assigned value except in rare cases. NIST measurements will continue to be performed to verify that no significant bias exists. Under our new performance standards, 0-5% bias from the assigned value will represent exceptional performance (AA); >5-10% bias from the assigned value will represent acceptable performance (A); >10-20% bias from the assigned value will represent marginal performance (M); and >20% bias will represent unacceptable performance (U). Keep in mind that these descriptors are meant only to inform you of your performance relative to the state of the practice for these analysis.

Your laboratory's performance in Round Robin XVI was

Our experiences over the past year have clearly demonstrated the efficacy of the use of reference materials for improving accuracy and interlaboratory precision. The Control Materials provided to you a year ago were developed as a pilot effort to demonstrate the benefits that could be derived through proper use of reference materials. The supply of those samples has been depleted. These Control Materials have been replaced with Standard Reference Material 968, "Fat-Soluble Vitamins in Freeze-Dried Human Serum." A copy of the SRM certificate is enclosed for your information. This SRM can be ordered from the NIST Office of Standard Reference Materials (301/975-6776) at a cost of \$185 per unit, including shipping.

Samples for Round Robin XVII will be shipped during the third week of August. Further information regarding that exercise will be forthcoming within the next three weeks along with a preliminary agenda for this years Workshop. The dates for the Workshop are October 31-November 1.

Sincerely,

Willie E. May

Chief

Organic Analytical Research Division Center for Analytical Chemistry

Enclosures

Tabular Data for Interlaboratory Analyses of Retinol, $\alpha ext{-}Tocopherol$ and $\beta ext{-}Carotene$

Retinol					Retinol % E	Retinol % Bias from Grand Average	ınd Average	
	Serum	Serum	Serum	Serum	Serum	Serum	Serum	Serum
Lab#	109	110	111	112	109	110	111	112
	0.371	0.335	0.747	0.412	- 5.3	-5.7	-2.7	-48
	0.381	0.344	0.781	0.434	-2.7	-3.2	1.7	0.3
	0.398	0.373	0.756	0.435	1.6	5.0	-1.5	0.5
	0.368	0.339	0.799	0.456	-6.0	-4.6	4.1	5.3
	0.397	0.380	0.730	0.444	1.4	7.0	6.4-	2.6
	0.399	0.355	0.765	0.437	1.9	-0.1	-0.4	1.0
	0.429	0.391	0.767	0.443	9.5	10.1	-0.1	2.3
	0.484	0.408	0.732	0.502	23.6	14.9	7.4.7	16.0
	0.376	0.327	0.754	0.407	-4.0	-7.9	-1.8	-6.0
	0.511	1.105	0.475	0.576	30.5	211.1	-38.1	33.1
	0.387	0.355	0.747	0.431	-1.2	-0.1	-2.7	-0.4
	0.418	0.374	0.850	0.474	2.9	5.3	10.7	9.5
	0.390	0.355	0.755	0.410	4.0-	-0.1	-1.7	-5.3
	0.378	0.355	0.756	0.404	-3.5	-0.1	-1.5	-6.7
	0.418	0.397	0.999	0.513	6.7	11.8	30.1	18.5
		0.377	0.765	0.454	4.7	6.1	-0.4	4.9
\\		0.344	0.702	0.392	4.6-	-3.2	-8.6	4.6-
	0.435	0.371	0.799	0.465	1.11	4.4	4.1	7.4
	0.383	0.329	0.763	0.433	-2.2	-7.5	-0.7	-0.1
	0.855	0.837	1.723	1.015	118.3	135.6	124.4	134.5
	0.337	0.322	0.711	0.387	-14.0	-9.3	4.7-	-10.6
	0.370	0.320	0.760	0.410	-5.5	6.6-	-1.0	-5.3
	0.369	0.322	0.797	0.411	-5.8	-9.3	3.8	-5.0
	0.390	0.370	0.720	0.410	4.0-	4.2	-6.2	-5.3
	0.366	0.327	0.704	0.392	9.9-	6.7-	-8.3	-9.4
	0.374	0.315	0.713	0.392	-4.5	-11.3	-7.1	-9.4
-	0.390	0.360	0.770	0.430	-0.4	1.4	0.3	-0.7
AVG	0.392	0.355	0.768	0.433				
SD	0.031	0.026	0.061	0.033				
RSD	7.9	7.3	7.9	7.7				
* - Value Bemoved	Posto Cuo							
NL = New Laboratory Values not included in the Average	aboratory Va	dues not incl	uded in the	Average.				
Previons				-				
Value	968.0	0.361	0.750	0.431 0.	0.421			
% Bias		-1.6	2.4		2.8			
Previous								
Date	2/88	1/88	7/88	7/88 1	1/88			
Analyzed								
r.								

This publication is available free of charge from: http://dx.doi.org/10.6028/NIST.IR.7880-35

d Average	Serum	112	-5.6	6.9-	5.8	3.6	- C			18.4		-1.8	1.0	-6.3	1.3	-2.1	-1.7	4.4	8.8	8.0-	0.3	-10.4	-3.6	-5.1	-1.6	1.7	-15.6	-14.3	0.4				
is from Grand	Serum	11	-0.9	-6.1	16.0	4 0) i	9.6	2.1	-11.2	-3.5	17.8	-8.3	1.5 7.	6.0	1.6	3.4	-14.2	6.0-	1.7	-4.5	-3.1	-3.7	0.5	5.4	-28.7	-28.3	2.4		•		
herol % Bia	Serum	110	2.6	-4.2	, e.	. .		7.20	-5.0	4.6	-5.0	-5.9	4.6-	-6.1	1.5	-1.2	3.1	2.9	39.2	-1.0	-1.2	-5.2	-7.2	-5.9	-2.7	2.3	-29.4	-22.8	-16	!			
Alpha-Tocopherol % Bias from Grand Average	Serum	109	17	. ער ער	i K	9 14	5.0	0.0	4.0-	0.6	-7.3	1.2	0.2	-8.2	0.5	-2.4	3.2	4.9	9.0-	2.6	-0.1	-8.8	-8.6	1.7	11.2	6.0	-30.1	-13.0	1.9	<u>!</u>			
	Serum	112	F 74	77.11	0.00		6.30	6.19	6.01	7.20		5.97	6.14	5 69	6.16	7 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	86.5	6.35	9	6.03	6.10	5.45	5.86	5.77	5.98	6.18	5,13	5.21			6.08	0.37	6.1
	Senim	111	•	20.4	4.65	5.76	5.16	4.80	5.19	5.07	4.41	4 79	. r	4 F. F.	7.04	200		F 13	4 96	4 92	5 C	4 7 4	4 81	4.78	4 99	5.23	2 54	3.56	2 6	60.G	4.96	0.36	7.3
/I Results	Senim	110		0.18	5.77	97.9	6.13	5.90	5.72	6.30	5 79	5.67	F. 46	5	20.0	- u	20.33	2.2	0.20	10.00 R	7. F	F 71		5.67	78.7	6.16	40.5	4.65	3 i	5.93	6.02	0.57	9.5
Table 2. Round Robin XVI Results	Contra	109	1	81.7	6.60	7.47	7.02	7.10	7.03	69.7	6 54	7 14	7 0 7	6 40	0.70	60.7	7 20	7.40	7.70	7.02	7 05	. A4	0.44 C AB	21.0 81.7	7.05	7 19	20.4	25.7	0	7.14	7.06	0.37	5.3
Table 2. Round Ro		Lab#										,												-							AVG	SD .	RSD

 \star = Value Removed NL = New Laboratory Values not included in the Average.

5 5.99	8 1/88
6.05	7/88
4.96 0.1	7/88
5.84 3.1	1/88
7.02	2/88
Previous Value % Bias	Previous Date Analyzed

Table 3A. Round Robin XVI Results

Lab #						ו טומו חבום לכונות אל החום להיים אינים להיים ואינים להיים	1			
Lab#	Serum	Serum	Serum	Serum		Serum	Serum	Serum	Serum	
	109	110	111	112		109	110	111	112	
	0.083	2.838	0.341	0.210		-0.2	11.7	-5.4	2.9	
	990.0	2.157	0.299	0.165		-20.6	-15.1	-17.1	-19.1	
	0.059	2.580	0.318	0.179		-29.1	1.5	-11.8	-12.3	
	690.0	2.219	0.443	0.192		-17.0	-12.7	22.9	-5.9	
	0.087	2.369	0.374	0.205		4.6	-6.8	3.7	0.5	
	0.136	2.365	0.461	0.219		63.5	6.9-	27.9	7.4	
	0.075	2.876	0.323	0.252		8.6-	13.2	-10.4	23.5	
	0.108	2.390	0.374	0.261		29.9	-6.0	3.7	27.9	
	0.080	2.718	0.359	0.200		-3.8	6.9	-0.4	-2.0	
	060.0	3.050	0.455	0.222		8.2	20.0	26.2	8.8	
	0.094	2.470	0.330	0.209		13.0	-2.8	-8.5	2.5	
	0.087	2.277	0.304	0.199		4.6	-10.4	-15.7	-2.5	
	0.077	2.675	0.365	0.205		-8.0	5.2	1.1	0.5	
	090.0	2.380	0.320	0.180		-27.9	-6.4	-11.2	-11.8	
	0.077	2.760	0.342	0.162		4.7-	9.8	-5.1	-20.6	
	0.046	1.329	0.208	0.121		-44.3	7.74-	-42.3	-40.7	
7	0.130	4.200	0.610	0.380		56.3	65.3	69.2	86.3	
AVG	0.083	2.542	0.361	0.204						
SD	0.020	0.266	0.053	0.028						
RSD	23.6	10.5	14.8	13.6						
* = Value Removed	moved									
NL = New La	= New Laboratory Val	lues not inc	ues not included in the Average.	Average.						
Previous										
Value	0.085	2.479	0.343	0.206	0.205					
% Bias	-2.2	2.5	5.1	-1.0	-0.5					
Previous Date Analyzed	7/88	1/88	7/88	7/88	1/88					

Table 3B. F	Table 3B. Round Robin XVI Results	XVI Results							
Trans Beta-Carotene	-Carotene					Trans Beta-	Carolene %	Bias from (Trans Beta-Carotene % Bias from Grand Average
	Serum	Serum	Serum	Serum		Serum	Serum	Serum	Serum
Lab#	109	110	111	112		109	110	111	112
	0.053	0.395	2.000	0.145		-37.9	-83.9	510.4	-27.1
	0.105	2.495	0.330	0.205		23.0	2.0	0.7	3.0
	0.076	2.330	0.310	0.196		-10.9	7.4.7	-5.4	-1.5
	0.075	2.513	0.343	0.196		-12.1	2.7	4.7	-1.5
	0.078	2.194	0.293	0.164		-8.6	-10.3	-10.6	-17.6
AVG	0.085	2.446	0.328	0.199					
SD	0.017	0.101	0.017	0.005					
RSD	20.0	4.1	5.1	2.6					
* = Value Removed NL = New Laborator	* = Value Removed NL = New Laboratory Val	alues not inc	ues not included in the Average.	Average.					
Previous									
Value	0.061	2.746	0.261	0.163	0.206				
% Bias	39.9	-10.9	25.5	22.1	-3.4				
Previous Date	88//	1/88	7/88	7/88	1/88				
Analyzed									

Interlaboratory Precision vs Time

FIGURE A

Interlaboratory Precision vs Time Retinol

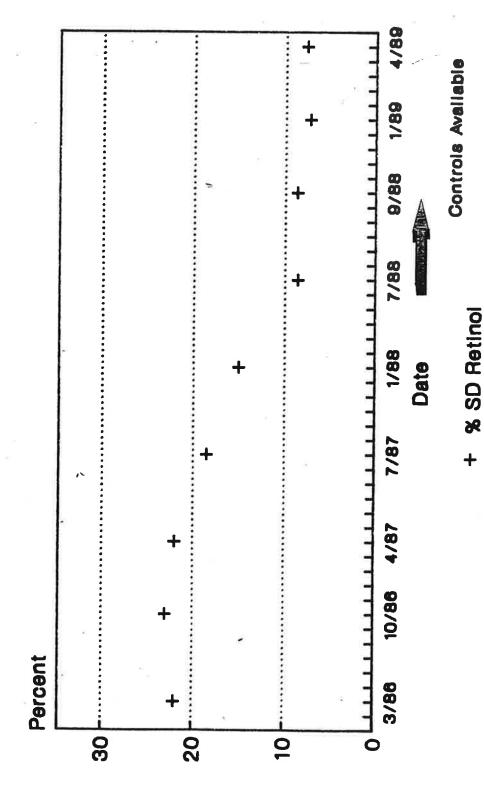
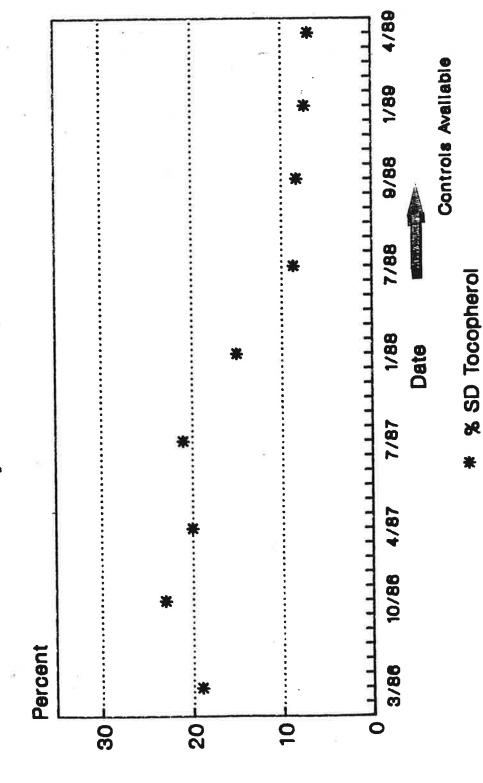
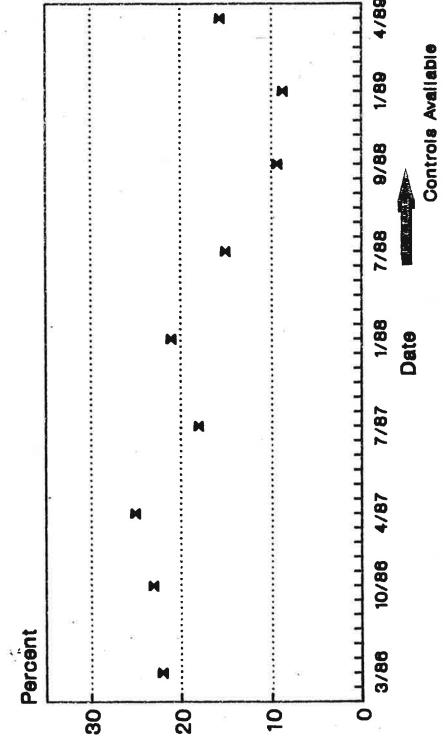
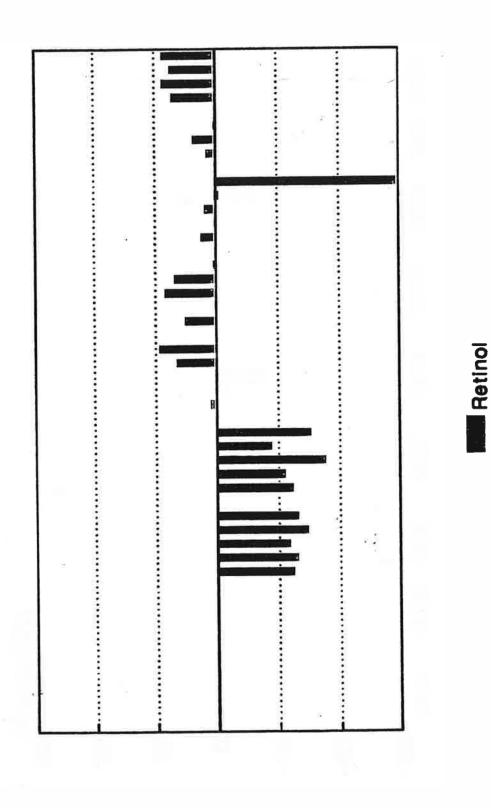



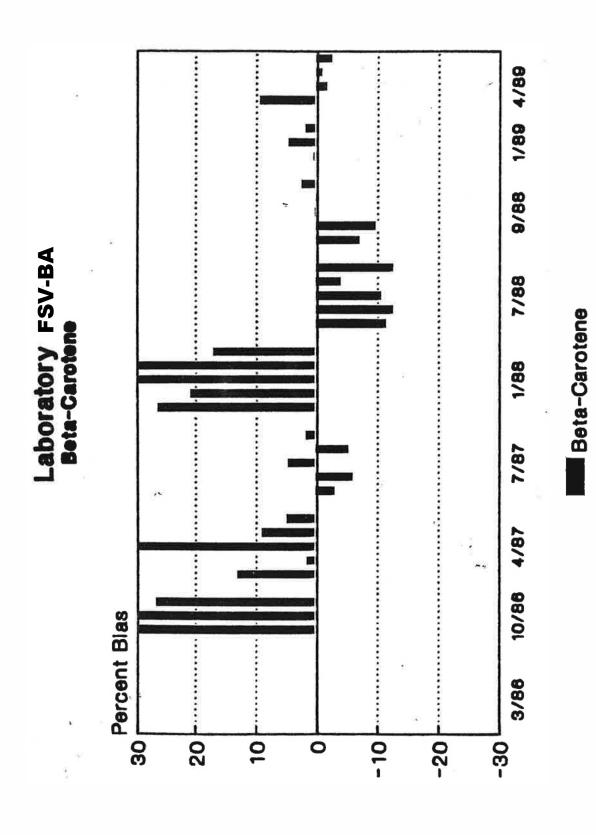
FIGURE B


Interlaboratory Precision vs Time Alpha-Tocopherol

E11

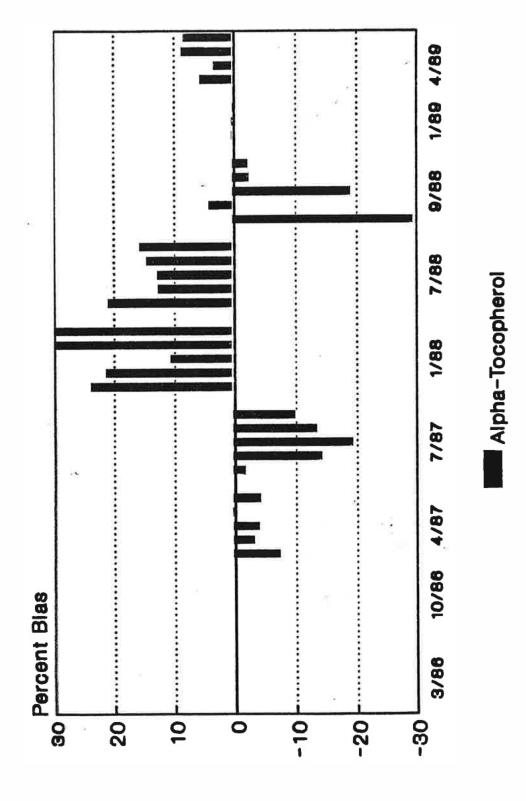
FIGURE C




x % SD Beta-Carotene

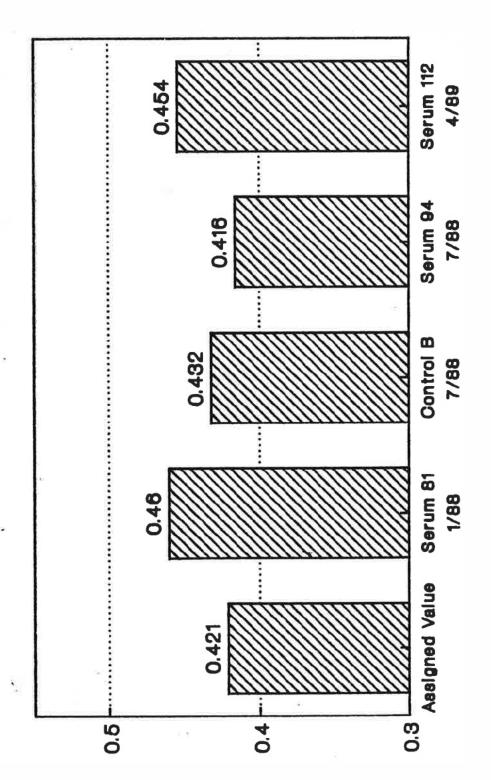
Individual Laboratory Accuracy vs Time

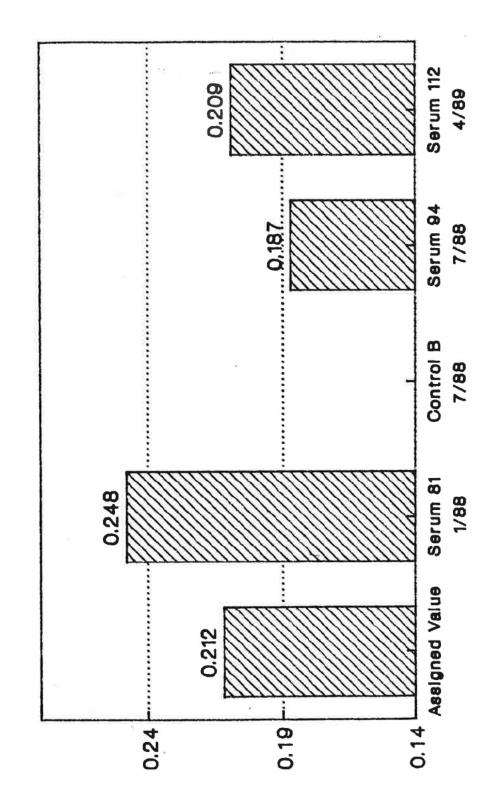
Laboratory FSV-BA Retinol



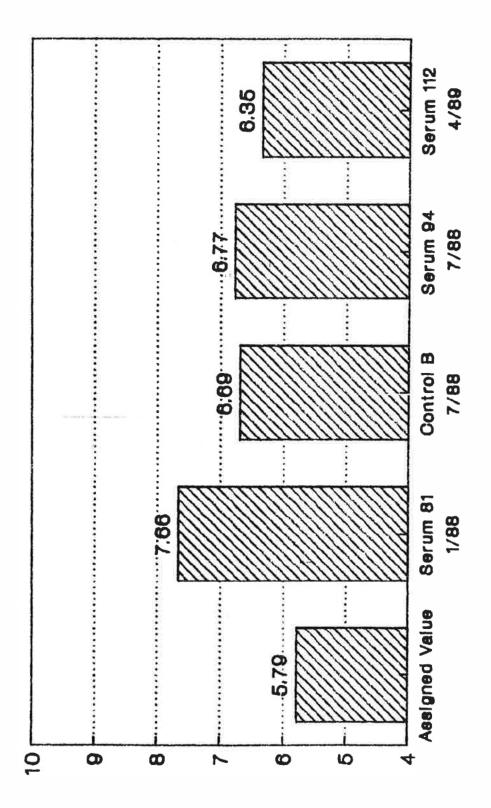
% Blas from Assigned Values

% Bias from Assigned Values


Laboratory FSV-BA Alpha-Tocopherol


% Bias from Assigned Values

Blind Relicate Analyses of "Control B" Over Time


Control Material B - Blind Comparison Retinol

Control Material B - Blind Comparison Laboratory FSV-BA Beta-Carotene

Laboratory FSV-BA Control Material B - Blind Comparison Alpha-Tocopherol

Appendix F. Updated "All-Lab Report" for RR16

The following three pages are an updated version of an "All-Lab" report for RR16. This report has three parts:

- page 1 lists results for all analytes that were reported at least twice, counting both participants and NIST analysts.
- page 2 provides a legend for page 1.
- page 3 summarizes each participants' performance for retinol, α-tocopherol, and total β-carotene. These summaries are compatible with the percent bias evaluation advice given in the RR16 Report. However, the current bias summaries are estimated relative to the median of all reported values for each analyte in each serum rather than to the trimmed average ("Avg") used in the original and detailed in Appendix E.

To ensure confidentiality, the laboratory identifiers used in this "All-Lab Report" have been altered from those used in RR16. The only attributed results are those reported by NIST. The NIST results are not used in the assessment of the consensus summary results of the study.

F1

Round Robin XVI Laboratory Results

This publication is available free of charge from: http://dx.doi.org/10.6028/NIST.IR.7880-35

	113	0.561					0.729			1.230								1.389		1.110			0.454	1.260	0.619	1.096			0.306	2.400			11		1.014		0.587	28		1.096	0 544
arotene	1 112	0.196					0.196			0.164								35 0.145					0.330 0.205										5 5		34 0.181		39 0.026	12 14	59 0.149	30 0.196	30 0.013
trans-β-Carotene	110 111	2.330 0.310					2.513 0.343			2.194 0.293								2.000 0.395															2		2.306 0.334		0.215 0.039	6	2.208 0.259	2.330 0.330	0.245 0.030
	109	0.076 2					0.075 2			0.078 2								0.053 2					0.105 2.495										2		0.077 2		0.018 0	24	0.078 2	0.076 2	0 000
	113	1.289			1.328	1.275	≥0.729	1.372		>1.230						1.220	1.331	≥1.389		≥1.110	1.545		1.685	>1.260	1.464	≥1.096		1.178	≥0.306	>2.400			10	1.178	1.369	1.685	0.155	11		1.329	0.121
tene	112	0.209			0.252	0.179	0.205	0.165		≥0.164	0.210			0.192		0.219	0.205	≥0.145		0.180	0.200		≥0.205	0.121	0.261	0.162		0.199	0.222	0.380			17	0.121	0.709	0.380	0.055	26	0.177	0.205	0.075
Total β-Carotene	111	0.330			0.323	0.318	0.365	0.299		≥0.293	0.341			0.443		0.461	0.374	≥0.395		0.320	0.359		≥0.330	0.208	0.374	0.342		0.304	0.455	0.610			17	0.208	0.366	0.610	0.088	24	0.304	0.342	0.047
Tota	110	2.470			2.876	2.580	2.675	2.157		≥2.194	2.838			2.219		2.365	2.369	>2.000		2.380	2.718		≥2.495	1.329	2.390	2.760		2.277		4.200			17	1.329	2.568	4.200	0.570	22	2.447	2.470	0.368
	109	0.094			0.075	0.059	0.077	0.066		≥0.078	0.083			0.069		0.136	0.087	≥0.053		090'0	0.080		≥0.105	0.046	0.108	0.077		0.087	0.090	0.130			17	0.046	0.084	0.136	0.024	28	bu	0.080	0.016
	113	16.97	14.39	18.36	17.34	18.19	17.00	17.95			18.07	7.79	16.01		4.91	9.08		19.56		19.26		18.41	18.34	21.41	19.62			17.68				21	23	4.91	16.75		4.164	25		18.07	1 76
erol	112	6.35	7.20	5.92	5.97	6.43	6.10	5.66	6.18		5.74	5.45	6.19	6.30	5.98		6.01	6.14	2.84	5.77		6.16	5.98	6.11	5.69			6.03			5.86	5.17	25		5.91		0.750	13	5.37	6.01	0.30
α-Tocophero	111	5.13	5.07	5.01	4.79	5.76	5.02	4.66	5.23		4.92	4.74	4.80	5.16	4.99	4.41	5.19	5.46	3.36	4.78		5.04	5.05	5.09	4.55			4.92			4.81	3.55	26		4.84		0.510	11	4.37	4.96	0.26
α-T	110	6.20	6.30	5.92	5.67	6.26	5.92	5.77	6.16		6.18	5.71	5.90	6.13	5.86	5.72	5.72	5.85	5.42	5.67		6.11	6.21	5.93	5.66		8.39	5.96			5.59	4.45	26	4.45	5.95	8.39	0.618	10	5.59	5.91	0 34
	109	7.40	7.69	68.9	7.14	7.47	7.05	9.90	7.12		7.18	6.44	7.10	7.02	7.85	6.54	7.03	7.07	3.35	7.18		7.09	7.28	7.14	6.48		7.02	7.24			6.45	5.54	56	3.35	6.86	7.85	0.851	12	6.75	7.08	0.35
	113	0.888	0.721	1.090	1.023	0.985	0.958	0.983			0.987	0.889	0.908		0.430	0.416	1.014	1.334		0.950	1.057		0.924	0.930	1.076	0.719					0.859		25		0.913		0.190	21		0.930	
lon	112	0.454	0.443	0.474	0.407	0.435	0.433	0.434	0.392		0.412	1.015	0.444	0.456	0.410	0.502	0.437	0.576	0.483	0.410	0.404		0.410	0.392	0.431	0.411				0.430	0.387		28		0.459	1.015	0.117	25	0.381	0.433	0.034
al Retinol	111	0.765	0.767	0.850	0.754	0.756	0.763	0.781	0.704		0.747	1.723	0.730	0.799	0.720	0.732	\circ	1.105	0.652	0.760	0.756		0.755	0.713	0.747	0.797		0.799			0.711		28	0	0.808	\vdash	0.200	25	0.727	0.758	0.040
Total	110	0.377	0.391	0.374	0.327	0.373	0.329	0.344	0.327		0.335	0.837	0.380	0.339	0.370	0.408	0.355	0.475	0.356		0.355		0.355	0.315	0.355	0.322	0.344		0.397	0.360	0.322		28	0.315	0.375	0.837	0.096	26	0.334		
	109	0.410	0.429	0.418	0.376	0.398	0.383	0.381	0.366		0.371	0.855	0.397	0.368	0.390	0.484		0.511	0.437	0.370	0.378		0.390	0.374	0.387	0.369			0.418		0.337		28	Min 0.337	0.413		0.094	23		0.390	0.030.0.031
	Code	FSV-BA	FSV-BD	FSV-BE	FSV-BF	FSV-BG	FSV-BH	FSV-BI	FSV-BL	FSV-BX	FSV-BY	FSV-BZ	FSV-CA	FSV-CJ	FSV-CM	FSV-CN		FSV-CQ	FSV-CS	FSV-CY	FSV-DC	FSV-DE	FSV-DG	FSV-DH	FSV-DT	FSV-DY	FSV-DZ					FSV-FX	С	Min	Mean 0.413	Max	SD	S	NISTd 0.390	Median 0.390 0.355	OSD

Round Robin XVI Laboratory Results

Analytes Reported By One Laboratory Values in µg/mL

Analyte	Code	109	110	111	112	113
γ/β-Tocopherol	FSV-DE	2.720	1.740	2.440	3.07	nd

Table Legend

Symbol	Interpretation
italics	Value calculated from reported results
n	Number of non-NIST laboratories reporting quantitative results
Min	Minimum non-NIST reported value.
Mean	Average over all non-NIST reported values.
Max	Maximum non-NIST reported value.
SD	Standard deviation over all non-NIST values.
CV	Coefficient of Variation (% relative standard deviation): 100*SD/Mean
Median	Median over all non-NIST reported values
eSD	Robust estimate of SD based on the adjusted median absolute
	difference from the median (MADe)
eCV	Robust estimate of CV, 100*eSD/Median
nd	Not detected (i.e., no detectable peak for analyte)
nq	Detected but not quantitatively determined
≥x	Concentration greater than or equal to x

Round Robin XVI Laboratory Results

%Bias Summary

Lab	TR	аТ	bC
FSV-BA	4±2	5±1	4±9
FSV-BD	6±5	9±7	
FSV-BE	9±3	0±2	
FSV-BF	-5±3	-2±2	7±15
FSV-BG	2±2	9±5	-10±13
FSV-BH	-2±4	1±1	3±6
FSV-BI	-1±3	-5±2	-16±3
FSV-BL	-8±1	3±2	
FSV-BX			-12±7
FSV-BY	-4±2	0±4	5±7
FSV-BZ	129±8	-7±3	
FSV-CA	2±4	0±3	
FSV-CJ	0±6	3±3	0±20
FSV-CM	-2±5	3±6	
FSV-CN	13±12	-7±4	27±33
FSV-CO	1±1	0±3	4±7
FSV-CQ	36±7	3±5	-17±22
FSV-CS	2±12	-36±21	
FSV-CY	-5±4	-3±3	-7±4
FSV-DC	-3±3		3±6
FSV-DE		2±1	
FSV-DG	-1±3	2±2	7±16
FSV-DH	-8±3	1±1	-42±3
FSV-DT	-1±1	-7±2	17±17
FSV-DY	-4±6		-3±14
FSV-DZ	-7±3	9±24	
FSV-ED	7±3	1±1	-3±9
FSV-EO	17±11		19±11
FSV-FA	1±1		74±10
FSV-FE	-10±3	-5±3	
FSV-FX		-22±6	
NISTd	-6±5	-8±4	-9±7

Label	Definition
Lab	Participant code
TR	Total Retinol
аТ	a-Tocopherol
bC	Total b-Carotene
% Bias	(Mean ± SD) of individual serum biases
Mean	Average of (x _i -Median _i)/Median _i
SD	Standard deviation of (x _i -Median _i)/Median _i
X_i	Result for analyte in serum _i
Median _i	Median of non-NIST results in serum _i
	!

The original analysis listed % Bias for each result for each serum calculated relative to the trimmed "Avg" of that analyte in the serum. The summary values reported here are the (arithmetic mean ± standard deviation) of each laboratory's reported results for the analyte estimated relative to each serum's median-based reference value.

Appendix G. Shipping Package Inserts for RR17

The following two items were attached to each package shipped to an RR17 participant:

- Cover letter.
- Datasheet.

UNITED STATES DEPARTMENT OF COMMERCE National Institute of Standards and Technology [formerly National Bureau of Standards]

Gaithersburg, Maryland 20899

August 11, 1989

Dear Colleague:

Samples for RR-XVII are enclosed. The sample set is composed of four serum pools and an ethanol solution. The serum samples are to be analyzed for retinol, α -tocopherol and total β -carotene as usual. The ethanol solution contains retinol, α -tocopherol and a complex mixture of β -carotene isomers. We request that you provide data for the concentration of retinol, α -tocopherol and all-trans β -carotene in the solution by the procedure that you think most appropriate. We also request that you provide us with a copy of the chromatogram from your analysis of the solution; since the primary objective associated with the analysis of the solution is the resolution of β -carotene isomers. Results are due by October 1.

The 1989 NCI/NBS Micronutrient Analysis Workshop will be held on November 1 at the National Institute of Standards and Technology in the Metrology Building, Room A340. A copy of the preliminary agenda for the meeting is enclosed. Everyone involved in the QA Program is invited. Laboratories joining the program during the past year are strongly encouraged to attend. Please fill out the QA Workshop registration form and return it in the enclosed envelop indicating your intentions to attend or not to attend the meeting. Rooms have been reserved at the Gaithersburg Quality Inn (301/963-5900) at the rate of \$51/night. You must make your reservation before October 17 and mention that you are attending the "Micronutrient Analysis Workshop" to get this special rate. A fee of \$10 will be collected from each participant which will cover lunch and refreshments for the day.

Hands-on "Vitamins in Serum Measurement Workshops" are being held on October 31 and November 2 to assist laboratories that are experiencing problems with their analyses. Please contact Neal Craft (301/975-3111) to reserve space in one of these sessions.

I look forward to your participation in this year's Workshop.

Sincerely,

Willie E. May, Ph.D.

Chief

Organic Analytical Research Division Center for Analytical Chemistry

cc: R. Schaffer N. Craft

REPORT ON NIS	ST/NCI SAMPLES FROM LABORA	ATORY #	
RR XVII – I	DATE OF ANALYSIS		
	RESULTS IN μg/mL		
SAMPLE #	ANALYTE	RESULT	
SERUM 115	RETINOL		
VIAL #	B-CAROTENE	All Trans	Total
	A-TOCOPHEROL		
SERUM 116	RETINOL		
VIAL #	B-CAROTENE	All Trans	Total
	A-TOCOPHEROL		
SERUM 117	RETINOL		
VIAL #	D. CAROTENE	All Trans	Total
	A-TOCOPHEROL		
SERUM 118	RETINOL		
VIAL #	B-CAROTENE	All Trans	Total
	A-TOCOPHEROL		
SERUM 119	RETINOL		
VIAL #	B-CAROTENE	All Trans	Total
	A-TOCOPHEROL		
SOLUTION 114	RETINOL		
EtOH solution VIAL #	B-CAROTENE	All Trans	
	A-TOCOPHEROL		

Add 1.0 mL of Distilled water to samples 115-119.

Appendix H. Final Report for RR17

The following fourteen pages are the the available components of the final report for RR17 as provided to all participants. The samples distributed in RR17 were the same as had been distributed in RR09. The original report consisted of:

- An individualized cover letter and discussion. The available letters are the proof copies of mail-merge letter forms sent to:
 - o Experienced participants who sent in results for both RR09 and RR17.
 - Experienced participants who sent in results for RR17 but had not participanted in RR09.
 - o New participants who sent in results for RR17.
 - o Participants who did not send in results for RR17.
- Tables 1 to 4 list all of the participants' results and several summary values for retinol, α-tocopherol, total β-carotene, and *trans*-β-carotene. These tables do not report any NIST results nor participant results for other analytes.
- Graphical presentations of interlaboratory precision over time for retinol, α-tocopherol, and total β-carotene. Copies of these figures are no longer available, but would have been similar to those for RR16 in Appendix E.
- Graphical presentations of the indiviual participant's bias relative to an assigned value over time for retinol, α-tocopherol, and total β-carotene. Copies of these figures are no longer available, but would have been similar to those for RR16 in Appendix E.
- Graphical comparisons of the indiviual participant's assays of their RR09 and RR17 results for retinol, α-tocopherol, and total β-carotene. Copies of these figures are no longer available, but would have been similar in format to those for the "Control B" analyses in the RR16 report in Appendix E.

Due to the complex formatting used in the Tables, the originally listed laboratory codes have been deleted without replacement. However, Appendix C provides a complete listing of the RR17 results where the original codes have been altered to ensure confidentiality. Appendix C also provides more relevant summary statistics.

This letter was sent to experienced participants who sent in results for both RR09 and RR17.

January 2, 1990

^F1^ Individualized letters were sent to study participants. The " F1 " and " F2 " were mail-merge commands for inserting a participant's name and address.

HAPPY NEW YEAR!!

A statistical summary of the results from your measurements of retinol, α -tocopherol and β -carotene in the four serum samples sent to you as RR-XVII is provided to you in both graphical and tabular form. Tables 1-4 (section A) provide a summary of the data submitted for retinol, α -tocopherol, total β -carotene, and all-trans β -carotene, respectively, in the four serum samples. These tables also provide assigned values (based on the laboratory grand averages), standard deviations (SD), relative standard deviations (RSD) for the interlaboratory measurement of each analyte, and data representing each laboratory's bias on a sample-by-sample basis for each analyte.

The tables also provide data documenting the "ruggedness" of the grand average values derived through our study group. Each of the serum samples used in RR-XVII had been analyzed in previous Round Robins. The current grand averages, grand averages from each previous round robin, and the differences between them are provided at the bottom left side of each table. The agreement among the grand averages from the most recent and past round robins along with data from NIST analyses of these and other sera similarly stored, document the stability of retinol, α -tocopherol, and β -carotene in freeze-dried sera stored at -80°C.

Three types of graphical data are provided:

- Figures A-C (in Section B) which demonstrate the improvement in interlaboratory precision for the measurement of retinol, α -tocopherol, and β -carotene, that has been achieved in our program over the past three years.
- Control Charts (in Section C) for retinol, α -tocopherol, and β -carotene, respectively, which represent a summary of your lab's performance vs. the assigned value for each analyte over the past three years.
- A comparison (in Section A) of the values that your lab has reported for a single sample for each of the three times that it has been distributed as an unknown.

As mentioned in the two most recent reports, interlaboratory Grand Averages have been determined to be acceptable approximations of the true values for each sample, and will be used as assigned values except in rare cases. NIST measurements will continue to be performed to verify that no significant bias exists. Under our new performance standards, 0-5% bias from the assigned value will represent exceptional performance (AA); >5-10% bias from the assigned value will represent acceptable performance (A); >10-20% bias from the assigned value will represent marginal performance (M); and >20% bias will represent unacceptable performance (U).

Your laboratory's performance in round-robin XVII was deemed to be:

RETINOL	
α -TOCOPHEROL	
TOTAL β -CAROTENE	
TRANS β -CAROTENE	

Our experiences over the past year have clearly demonstrated the efficacy of the use of reference materials for improving accuracy and interlaboratory precision. The Control Materials provided to the group in the spring of 1988 were developed as a pilot effort to demonstrate the benefits that could be derived through proper use of reference materials. The supply of those samples has been depleted. These Control Materials have been replaced with Standard Reference Material 968, "Fat-Soluble Vitamins in Freeze-Dried Human Serum." This SRM can be ordered from the NIST Office of Standard Reference Materials (301/975-6776) at a cost of \$185 per unit, including shipping.

If your lab's performance is consistently marginal or unsatisfactory for any analyte, please feel free to contact me (301/975-3108) or Neal Craft (301/975-3111) for discussions regarding possible sources of bias in your methodology.

In addition to serum samples, you have been asked to analyze a solution containing retinol, α -tocopherol, and β -carotene isomers in the past two round robins. Our intentions were two fold. First, we wanted to determine the relative contributions of sample preparation (extraction, solvent exchange, etc.) and chromatographic analysis to the ~7-10 % interlaboratory variability that we now consistently observe for retinol, α -tocopherol and β -carotene. We felt the ready-to-analyze solution, would effectively avoid the variability associated with sample preparation, leaving only that associated with chromatographic analysis. The results provided in Table 5 are far worse than those provided for serum, indicating that the purpose and protocols for conducting our "simple" experiment were perhaps not clearly explained to you.

Secondly, we wanted labs to see the need to modify their chromatographic systems (stationary phase/mobile phase combinations) for resolution of individual β -carotenoid isomers. We asked you to provide data for both total-and all trans- β -carotene. The results for total β -carotene were only slightly worse than we normally see for serum. The limited data reported for trans- β -carotene were, as we expected, very variable.

ROUND ROBIN XVIII will consist of three serum samples and another ethanol solution of the retinol, α -tocopherol, and β -carotene. These samples will be shipped to you on January 15, 1990. Analyze the serum samples as you normally do. We also invite you to provide us with data on retinol palmitate, lycopene, and γ -tocopherol in these samples.

We wish to give the solution experiment one additional try with what we hope are more clear instructions. Please complete your serum analyses before you analyze the unknown solution. For analysis of the unknown solution, we ask that you calibrate your system with the set of solution standards provided. Quantitation should be accomplished by comparing the response from the unknown with that from the calibration solutions. No extractions, additions of internal standards, or solvent exchanges should be required for labs using reversed-phase systems. The assigned values for the target analytes in calibration solutions to be used for analysis of the unknown solution follows:

$(\mu g/mL)$

	RETINOL	α -TOCOPHEROL	TRANS β -CAROTENE
Solution 10	0.195	2.22	0.135
Solution 11	0.977	11.1	0.945
Solution 12	1.95	22.2	1.62

These solutions should be allowed to equilibrate at room temperature for at least 4 hours, but no more than 24 hours prior to use.

Results from the analysis of RR-XVIII are due by March 5, 1990.

Sincerely,

Willie E. May, Ph.D. Chief Organic Analytical Research Division Center for Analytical Chemistry

cc: Robert Schaffer Winfred Malone This letter was sent to experienced participants who sent in results for RR17 January 2, 1990 but had not participanted in RR09.

^F1^ Individualized letters were sent to study participants. The "^F1^" and "^F2^" were mail-merge commands for inserting a participant's name and address.

HAPPY NEW YEAR!!

A statistical summary of the results from your measurements of retinol, α -tocopherol and β -carotene in the four serum samples sent to you as RR-XVII is provided to you in both graphical and tabular form. Tables 1-4 (section A) provide a summary of the data submitted for retinol, α -tocopherol, total β -carotene, and all-trans β -carotene, respectively, in the four serum samples. These tables also provide assigned values (based on the laboratory grand averages), standard deviations (SD), relative standard deviations (RSD) for the interlaboratory measurement of each analyte, and data representing each laboratory's bias on a sample-by-sample basis for each analyte.

The tables also provide data documenting the "ruggedness" of the grand average values derived through our study group. Each of the serum samples used in RR-XVII had been analyzed in previous Round Robins. The current grand averages, grand averages from each previous round robin, and the differences between them are provided at the bottom left side of each table. The agreement among the grand averages from the most recent and past round robins along with data from NIST analyses of these and other sera similarly stored, document the stability of retinol, α -tocopherol, and β -carotene in freeze-dried sera stored at -80°C.

Two types of graphical data are provided:

- Figures A-C (in Section B) which demonstrate the improvement in interlaboratory precision for the measurement of retinol, α -tocopherol, and β -carotene, that has been achieved in our program over the past three years.
- Control Charts (in Section C) for retinol, α -tocopherol, and β -carotene, respectively, which represent a summary of your lab's performance vs. the assigned value for each analyte over the past three years.

As mentioned in the two most recent reports, interlaboratory Grand Averages have been determined to be acceptable approximations of the true values for each sample, and will be used as assigned values except in rare cases. NIST measurements will continue to be performed to verify that no significant bias exists. Under our new performance standards, 0-5% bias from the assigned value will represent exceptional performance (AA); >5-10% bias from the assigned value will represent acceptable performance (A); >10-20% bias from the assigned value will represent marginal performance (M); and >20% bias will represent unacceptable performance (U).

Your laboratory's performance in round-robin XVII was deemed to be:

	731	73E
RETINOL		
lpha-TOCOPHEROL		
TOTAL β -CAROTENE		
TRANS β -CAROTENE		

Our experiences over the past year have clearly demonstrated the efficacy of the use of reference materials for improving accuracy and interlaboratory precision. The Control Materials provided to the group in the spring of 1988 were developed as a pilot effort to demonstrate the benefits that could be derived through proper use of reference materials. The supply of those samples has been depleted. These Control Materials have been replaced with Standard Reference Material 968, "Fat-Soluble Vitamins in Freeze-Dried Human Serum." This SRM can be ordered from the NIST Office of Standard Reference Materials (301/975-6776) at a cost of \$185 per unit, including shipping.

If your lab's performance is consistently marginal or unsatisfactory for any analyte, please feel free to contact me (301/975-3108) or Neal Craft (301/975-3111) for discussions regarding possible sources of bias in your methodology.

In addition to serum samples, you have been asked to analyze a solution containing retinol, α -tocopherol, and β -carotene isomers in the past two round robins. Our intentions were two fold. First, we wanted to determine the relative contributions of sample preparation (extraction, solvent exchange, etc.) and chromatographic analysis to the ~7-10 % interlaboratory variability that we now consistently observe for retinol, α -tocopherol and β -carotene. We felt the ready-to-analyze solution, would effectively avoid the variability associated with sample preparation, leaving only that associated with chromatographic analysis. The results provided in Table 5 are far worse than those provided for serum, indicating that the purpose and protocols for conducting our "simple" experiment were perhaps not clearly explained to you.

Secondly, we wanted labs to see the need to modify their chromatographic systems (stationary phase/mobile phase combinations) for resolution of individual β -carotenoid isomers. We asked you to provide data for both total-and all trans- β -carotene. The results for total β -carotene were only slightly worse than we normally see for serum. The limited data reported for trans- β -carotene were, as we expected, very variable.

ROUND ROBIN XVIII will consist of three serum samples and another ethanol solution of the retinol, α -tocopherol, and β -carotene. These samples will be shipped to you on January 15, 1990. Analyze the serum samples as you normally do. We also invite you to provide us with data on retinol palmitate, lycopene, and γ -tocopherol in these samples.

We wish to give the solution experiment one additional try with what we hope are more clear instructions. Please complete your serum analyses before you analyze the unknown solution. For analysis of the unknown solution, we ask that you calibrate your system with the set of solution standards provided. Quantitation should be accomplished by comparing the response from the unknown with that from the calibration solutions. No extractions, additions of internal standards, or solvent exchanges should be required for labs using reversed-phase systems. The assigned values for the target analytes in calibration solutions to be used for analysis of the unknown solution follows:

$(\mu g/mL)$

	RETINOL	α -TOCOPHEROL	TRANS β -CAROTENE
Solution 10	0.195	2.22	0.135
Solution 11	0.977	11.1	0.945
Solution 12	1.95	22.2	1.62

These solutions should be allowed to equilibrate at room temperature for at least 4 hours, but no more than 24 hours prior to use.

Results from the analysis of RR-XVIII are due by March 5, 1990.

Sincerely,

Willie E. May, Ph.D. Chief Organic Analytical Research Division Center for Analytical Chemistry

cc: Robert Schaffer Winfred Malone This letter was sent to new participants who sent in results for RR17.

January 2, 1990

^F1 $^{^{\circ}}$ Individualized letters were sent to study participants. The " $^{^{\circ}}$ F1 $^{^{\circ}}$ " and " $^{^{\circ}}$ F2 $^{^{\circ}}$ " were mail-merge commands for inserting a participant's name and address.

HAPPY NEW YEAR!!

A statistical summary of the results from your measurements of retinol, α -tocopherol and β -carotene in the four serum samples sent to you for analysis as part of the NIST/NCI QA program is provided to you in Tables I-III. These tables also provide the NIST assigned value for each sample, the grand average for measurements made by six new laboratories joining the studies, standard deviation (SD) and relative standard deviation (RSD) for the interlaboratory measurement of each analyte, and data representing each laboratory's bias, vs the NIST assigned value, on a sample-by-sample basis for each analyte. Tables IV-VII represent data provided by the regular participants in our program for the most recent round robin study. Figures A-C demonstrate the improvement in interlaboratory precision for the measurement of retinol, α -tocopherol, and β -carotene, that have been accomplished in our program over the past three years.

It has been demonstrated that the interlaboratory Grand Average for measurements made by regular participants in our program is an acceptable approximation of the true value for each sample. This value will be used as the assigned value except in rare cases. NIST measurements will be performed to verify that no significant bias exists. Under our current performance standards, 0-5% bias from the assigned value represents exceptional performance (AA); >5-10% bias from the assigned value represents acceptable performance (A); >10-20% bias from the assigned value represents marginal performance (M); and >20% bias represents unacceptable performance (U).

Your laboratory's performance on the four samples provided to you was deemed to be:

RETINOL	
α -TOCOPHEROL	
TOTAL β -CAROTENE	

These descriptors are subjective, and are intended only to provide you with information concerning your performance relative to labs that have been active in our program for three or more years. We anticipate that your performance will follow the trend shown for regular participants shown in the Figures A-C.

Our experiences over the past year have clearly demonstrated the efficacy of the use of reference materials for improving accuracy and interlaboratory precision. Standard Reference Material 968, "Fat-Soluble Vitamins in Freeze-Dried Human Serum" can be ordered from the NIST Office of Standard Reference Materials (301/975-6776) at a cost of \$185 per unit, including shipping. A copy of the Certificate of Analysis for this SRM is provided for your information.

If your lab's performance is marginal or unsatisfactory for any analyte, please feel free to contact me (301/975-3108) or Neal Craft (301/975-3111) for discussions regarding possible sources of bias in your methodology.

In addition to serum samples, we asked the regular participants in our studies to analyze an ethanol solution containing retinol, $\alpha\text{-tocopherol},$ and $\beta\text{-carotene}$ isomers in each of the last two round robins. Our intentions were two-fold. First, we wanted to determine the relative contributions of sample preparation (extraction, solvent exchange, etc.) and chromatographic analysis to the ~7-8 % interlaboratory variability that we now consistently observe for retinol and $\alpha\text{-tocopherol},$ and 10% for $\beta\text{-carotene}.$ We felt that by providing a ready-to-analyze solution, we could effectively remove variability associated with sample preparation, leaving only that associated with chromatographic analysis of a simulated solvent exchanged extract. The results obtained were far worse that those provided for serum, indicating that our "simple" experiment was perhaps not adequately explained.

Secondly, we wanted the labs to see the need for labs to modify their chromatographic systems (stationary phase/mobile phase combinations) for resolution of individual β -carotenoid isomers. We asked labs to provide data for both total- and all trans- β -carotene. The results for total β -carotene were only slightly worse than we normally see for serum. The results for trans- β -carotene were, as we expected, very variable.

ROUND ROBIN XVIII will consist of three serum samples and another ethanol solution of the retinol, α -tocopherol, and β -carotene. These samples will be shipped to you on January 15, 1990. Analyze the serum samples as you normally do. We also invite you to provide us with data on retinol palmitate, lycopene, and γ -tocopherol in these samples.

We wish to give the solution experiment one additional try with what we hope are more clear instructions. Please complete your serum analyses before you analyze the unknown solution. For analysis of the unknown solution, we ask that you calibrate your system with the set of solution standards provided. Quantitation should be accomplished by comparing the response from the unknown with that from the calibration solutions. No extractions, additions of internal standards, or solvent exchanges should be required for labs using reversed-phase systems. The assigned values for the target analytes in calibration solutions to be used for analysis of the unknown solution follows:

$(\mu g/mL)$

	RETINOL	α -TOCOPHEROL	TRANS β -CAROTENE
Solution 10	0.195	2.22	0.135
Solution 11	0.977	11.1	0.945
Solution 12	1.95	22.2	1.62

These solutions should be allowed to equilibrate at room temperature for at least 4 hours, but no more than 24 hours prior to use.

Results from the analysis of RR-XVIII are due by March 5, 1990.

Sincerely,

Willie E. May, Ph.D. Chief Organic Analytical Research Division Center for Analytical Chemistry

cc: Robert Schaffer Winfred Malone This letter was sent to participants who did not send in results for RR17.

January 4, 1990

^F1 $^{\text{F1}^{\text{o}}}$ Individualized letters were sent to study participants. The " $^{\text{F1}^{\text{o}}}$ " and " $^{\text{F2}^{\text{o}}}$ " were mail-merge commands for inserting a participant's name and address.

HAPPY NEW YEAR!

Samples for analysis of ROUND ROBIN XVIII will be shipped to you on January 16, 1990, and will include three serum samples and an ethanol solution of retinol, γ -tocopherol and β -carotene. Analyze the serum samples as you normally do. We also invite you to provide us with data on retinyl palmitate, lycopene, and γ -tocopherol in these samples.

Please complete your serum analyses before you analyze the unknown solution. For analysis of the unknown solution, we ask that you calibrate your system using the set of solution standards provided. Quantitation should be accomplished by comparing the response from the unknown with that from the calibration solutions. No extractions, additions of internal standards, or solvent exchanges should be required for labs using reversed-phase systems. The assigned values for the target analytes in calibration solutions to be used for analysis of the unknown solution follows:

$(\mu g/mL)$

	RETINOL	α -TOCOPHEROL	TRANS β -CAROTENE
Solution 10	0.195	2.22	0.135
Solution 11	0.977	11.1	0.945
Solution 12	1.95	22.2	1.62

These solutions should be allowed to equilibrate at room temperature for at least 4 hours, but no more than 24 hours prior to use.

Results from the analysis of RR-XVIII samples are due by March 5, 1990.

Sincerely,

Willie E. May, Ph.D. Chief Organic Analytical Research Division Center for Analytical Chemistry

cc: Robert Schaffer Winfred Malone

Table 1. Round Robin XVII Results

Retinol	# 2 0	n 4	#	#	± 200 €	Retinol % B	Retinol % Bias from Grand Average	ind Average	# 22 22 22 32 32 32 32 32 32 32 32 32 32	# 22 20 00
Lab #	115	116	117	118	119	115	116	117	118	
	0400	7700	0.575	007.0	a c	r T	id C	Ľ	ra C	0
	0.360	0 999	0.677	0.501	0 917	. T	5.7	- 00 - 00	2 00	9.6
	0.374	1.111	0.675	0.573	1.053	4.9	12.4	2.9	10.6	17.8
	0.334	1.193	0.643	0.515	1.113	-6.3	20.7	-2.0	9.0-	24.5
	0.380	1.050	0.550	0.650		9.9	6.2	-16.2	25.4	
	0.327	0.949	0.623	0.486	0.850	- B	-4.0	0.8-	-6.2	6.4
	0.345	1 099	0.110	0.488	0.855	10.00 10.00	0.7-	8. G	10 C	4 6
: *	0.350	0.971	0.680	0.560	098.0	-1.8	-1.7	3.7	8.1	8.67
	0.393	1.157	0.702	0.560	0.999	10,3	17.1	7.0	8.1	11.7
	0.296	0.919	0.663	0.491	0.848	-17.0	0.7-	1.1	-5.2	-5.1
	0.315	0.936	0.613	0.469	0.858	-11.6	-5.3	-6.5	-9.5	-4.0
	0.380	0.920	0.650	0.530	0.860	9.9	6.9-	6.0-	2.3	3.8
	0.387	1.002	0.621	0.543	0.914	8.6	1.4	5.3	4.8	2.2
	0.413	1.141	0.793	0.585	0.936	15.9	15.5	20.9	12.9	4.7
	0.325	0.940	0.682	0.473	0.742	18.8	1. C. C. R. C. R. C. R.	4. C	-8./	0.71-
	0.347	0.908	0.596	0.486	0.869	7.6-	5.3	. 6-1	- 6 9	000
	*0.845	*1.874	*1.379	*0.875	*1.745	137.1	9.68	110.2	6.89	95.2
	0.320	0.950	0.610	0.490	0.820	-10.2	-3.9	-7.0	-5.4	-8.3
	0.280	0.930	0.660	0.450	0.820	-21.4	-5.9	9.0	-13.2	-8.3
	0.430	0.950	0.710	0.520	0.890	20.6	-3.9	8.2	0.4	-0.4
	0.390	0.750	0.580	0.380	0.780	9.4	-24.1	-11.6	-26.7	-12.8
	0.350	1.100	099'0	0.640	1.080	-1.8	11.3	9.0	23.5	20.8
	0.400	996.0	0.740	0.543	0.932	12.2	-2.3	12.8	4.8	4.3
	0.340	0.997	0.671	0.497	0.911	-4.6	6.0	2.3	-4.1	1.9
	*0.740	1.070	0.665	0.490	0.840	107.6	8.3	1.4	-5.4	0.9-
	0.322	1.128	0.718	0.535	0.971	7.6-	14.1	9.5	3.2	9.6
	0.530	*1.920	0.830	0.650	0.910	48.7	94.3	26.5	25.4	1.8
	0.375	1.021	0.676	0.556	0.931	5.2	3.3	ω T	7.3	4.1
AVG	0.356	0.988	0.656	0.518	0.894					
SD	0.037	0.098	0.053	0.059	0.092					
RSD	10.4	6.6	8.1	11.3	10.3					
* Value Removed	oved									
NL = New La	NL = NewLaboratoryValuesnotincludedintheAverage	ues not incl	ded in the	lverage.						
4/87 Value	0.359	1.027	0.648	0.528	0.930					
% Bias	0.7	3.9	-1.2	1.9	4.0					
7/87 Value % Bias		1.049		0.540						
9/88 Value	0.355		0.633		0.905					

Table 2. Round Robin XVII Results

Alpha-Tocopherol	oherol					Alpha Toco	Alpha Tocopherol % Bias from Grand Average	s from Graf	nd Average	
	Serum #	Serum #	Serum #	Serum #	Serum #	Serum #	Serum #	Serum #	Serum #	Serum #
Lab#	115	116	117	118	119	115	116	117	118	119
	11.65	7.18	5.09	9.88	8.84	-0.2	- 5.8	-4.1	-3.8	-6.4
	11.43	7.37	5.07	9.92	90.6	-2.1	-3.3	-4.4	-3.4	-4.0
	12.84	8.45	4.70	12.60	*5.47	10.0	10.9	-11.4	22.7	-42.1
	12.06	8.21	5.54	10.71	9.64	3.3	7.7	4.4	4.3	2.1
	*4.80	*4.80	4.60	*4.60	*0.12	-58.9	-37.0	-13.3	-55.2	-98.7
	12.11	7.65	5.44	10.13	9.41	3.8	0.4	2.6	-1.3	-0.3
	11.92	7.56	5.38	10.21	9.54	2.1	8.0-	1.4	-0.5	1.1
	12.20	7.50	5.10	9.40	8.80	4.5	-1.6	-3.9	-8.4	8.9-
	11.10	7.73	5.23	9.72	8.73	-4.9	1.4	4.1-	-5.3	-7.5
	11.92	8.61	5.27	10.84	10.00	2.1	13.0	9.0-	5.6	5.9
	11.60	7.01	5.97	10.51	11.88	9.0-	-8.0	12.5	2.4	25.8
	12.53	7.95	5.56	10.72	9.82	7.4	4.3	4.8	4.4	4.0
	12.06	7.92	5.54	10.01	9.45	3.3	3.9	4.4	-2.5	0.1
	12.04	7.43	5.75	10.45	9.36	3.2	-2.5	8.4	1.8	6.0-
	10.04	8.11	5.61	9.75	9.28	-14.0	6.4	5.8	-5.0	7.1-
	12.52	7.65	5.61	10.52	9.70	7.3	0.4	5.8	2.5	2.7
	11.80	7.60	5.50	10.30	9.80	T	-0.3	3.7	0.3	3.8
	11.02	6.72	4.64	8.89	8.91	-5.6	-11.8	-12.5	-13.4	-5.6
	11.28	7.07	5.19	10.00	8.52	13.3	-7.2	-2.2	-2.6	-9.8
	9.60	7.10	5.30	10.50	9.20	-17.7	-6.8	-0.1	2.3	-2.6
	12.40	8.20	9.60	11.00	9.90	6.3	9.2	5.6	7.1	4.9
	10.73	7.16	5.94	9.18	8.19	-8.0	-6.1	12.0	-10.6	-13.2
	13.50	8.32	5.84	11.30	9.92	15.7	9.2	10.1	10.1	5.1
	12.30	7.95	5.71	10.86	10.03	5.4	4.3	7.6	5.8	6.2
1		1	i i	1	e c					
AVG	11.6/	7.62	05.30	10.27	9.44					
SD RSD	18.0 P. A	00.0	75.0	0./5	7.8					- -
			3	?	2					
* Value Removed	oved									
NL = New Laboratory Values not included in the Average	sboratory Val	lues not incl	uded in the	Average.						
4/87 Value	13.00	8.53	5.83	11.34	10.62					
% Bias	11.4	11.9	9.9	10.4	12.5					
onley 7877		8 91		11 09						
% Bias		7.7		B.0						
9/88 Value	11.74		5.39		9.26					
% Bias	9.0		1.6		6:1-					

Table 3. Round Robin XVII Results

Total Beta-Carotene	arotene					Total Beta-	Total Beta-Carotene % Bias from Grand Average	Bias from (arand Avera	90
	Serum #	Serum #	Serum #	Serum #	Serum #	Serum #	Serum #	Serum #	Serum #	Serum #
Lab#	115	116	117	118	119	115	116	117	118	119
	0.169	1.089	0.067	0.473	1.649	-10.0	0.4	-14.3	-4.1	-1.7
	0.161	1.022	0.069	0.441	1.534	-14.3	-5.8	-11.8	-10.5	-8.6
	0.175	1.154	0.069	0.509	1.682	8.9~	6.4	-11.8	3.2	0.3
	0.181	1.005	0.073	0.480	1.642	-3.6	-7.3	9.9-	-2.6	-2.1
	0.193	1.079	0.090	0.491	1.526	2.7	-0.5	15.1	-0.4	0.6-
	0.226	1.090	*0.158	0.569	1.920	20.3	0.5	102.1	15.4	14.4
	0.197	1.048	680.0	0.446	1.666	4.9	13.4	13.8	-9.5	-0.7
	0.200	1.080	060.0	0.520	1.600	6.5	-0.4	15.1	5.5	-4.6
	0.177	1.120	0.069	0.517	1.690	-5.8	33	-11.8	4.9	0.7
	0.220	1.261	0.100	0.540	2.084	17.1	16.3	27.9	9.5	24.2
	0.178	1.049	680.0	0.466	1.604	-5.2	53.3	14.2	-5.5	-4.4
4	0.175	1.082	0.073	0.487	1.723	-6.8	-0.2	9.9-	1.2	2.7
	0.190	1.020	0.060	0.470	1.490	-	0.9-	-23.3	7.4-	-11.2
	*0.500	1.160	*0.440	*0.730	1.600	166.2	7.0	462.7	48.1	-4.6
	*0.340	*0.760	*0.290	0.420	1.140	81.0	-29.9	270.9	-14.8	-32.0
	0.194	1.030	0.089	0.559	1.660	3.3	-5.0	13.8	13.4	1.1
	0.222	0.988	*0.199	669.0 *	1.729	18.2	-8.9	154.5	33.7	3.1
	0.185	1.461	0.083	0.543	1.745	-1.5	34.7	6.1	10.1	4.0
AVG	0.188	1.085	0.078	0.493	1.678					
SD	0.019	0.067	0.013	0.037	0.163					
RSD	10.2	6.2	16.2	7.5	9.7					
* Value Removed	bave									
NL = New Laboratory Values not included in the Average.	boratory Va	lues not incl	uded in the	Average.						

1.789		1.687
0.487	0.502	
0.080		0.088
1.152	1.144	
0.186		0.177
4/87 Value % Bias	7/87 Value % Bias	9/88 Value % Bias

Table 4. Round Robin XVII Results

ige Serum # 119		5.1	-11.2	6.5			
Grand Avera Serum # 118		10.3					
% Bias from Serum # 117	1544.1	18.6	-3.4	33.9			
Trans Beta-Carotene % Bias from Grand Average Serum # Serum # Serum # Ser 115 116 117 118	9.6	6.6	-18.5	12.9			
Trans Beta- Serum # 115	115.2	11.0	-31.4	16.4			
Serum # 119	, , , , , , , , , , , , , , , , , , ,	1.606	1.357	1.627	T.528	9.148	7.6
Serum # 118	0.250	0.455	0.448	0.5	0.413	0.110	26.8
Serum # 117	*0.970	0.050	0.057	0.079	0.059	0.010	17.2
Serum # 116	1.040	1.012	0.773	1.071	0.949	0.121	12.7
Sarotene Serum # 115	*0.320	0.165	0.102	0.173	0.149	0.041	27.6
Trans Beta-Carotene Serum Lab# 115					AVG	SD	RSD

 * Value Removed NL = New Laboratory Values not included in the Average.

Appendix I. Updated "All-Lab Report" for RR17

The following three pages are an updated version of an "All-Lab" report for RR17. This report has three parts:

- Page 1 lists results for all analytes that were reported at least twice, counting both participants and NIST analysts.
- Page 2 lists values for all analytes reported by only once. This page also provides a legend for page 1.
- Page 3 summarizes each participants' performance for total retinol, α-tocopherol, and total β-carotene. These summaries are compatible with the percent bias evaluation advice given in the RR17 Report. However, the current bias summaries are estimated relative to the median of all reported values for each analyte in each serum rather than to the "AVG" used in the original and detailed in Appendix H.

To ensure confidentiality, the laboratory identifiers used in this "All-Lab Report" have been altered from those used in RR17. The only attributed results are those reported by NIST. The NIST results are not used in the assessment of the consensus summary results of the study.

All Lab Report

This publication is available free of charge from: http://dx.doi.org/10.6028/NIST.IR.7880-35

Round Robin XVII Laboratory Results

		1.627 0.222					0.882		_	_		_				7 1.620 0.793				_	0.400	0.675		1.000		_		_	_	_	7	1.135/ 1.111	5 4 8	1.357	1.553	1.627 1.111	0.131 0.3	1 8 46	7 1.325 0.289	
trans-β-Carotene	117 118	0.079 0.500				0.070 0.455 1.606										0.050 0.497								0.320 1.040 0.970 0.250							1	0.05/ 0.448	5 5	0.050	0.245	0.970 0.500	0.405 0.1	165 24	0.071 0.337	
	115 116	0.173 1.071				0.165 1.012										0.179 0.971								0.320 1.040								0.102 0.773	5 5	0.102 0.773		0.320 1.071	0.1	43 12	0.141 0.941	
	114	0.619		0 744	0.589	≥0.409	≥0.882					0.799		1.800	0.258	≥0.793					0.810	≥0.675	1.200	≥1.000		0.870				,	0.144		11	0.144	0.813	1.800	0.454	26	0.837	
40	119	1.745		1 666		1.723	1.534		1.649			1.642		1.920		≥1.620			1.690		1.600	1.660	1.630			1.600	1.140		1.604		2.084		19	1.140		2.084	0.1	7	1.360	
Total β-Carotene		3 0.543		0.446		3 0.487	9 0.441		7 0.473			3 0.480		3 0.569		>0.497			9 0.517		0.520	0.559	0.522) ≥0.250		0.730	0.420		0.466			0.659	9 19				0.0	14	1 0.395	
Total β-	117	1 0.083		8 0 0 8		2 0.073	2 0.069		9 0.067			5 0.073		0 0.158		1 ≥0.050			0.069		060.0		0.100	/\l			0.290		680.0		0.100		9 19				0.0	2 79	2 0.074	
	116	5 1.461		7 1 048		5 1.082	1 1.022		9 1.089			1 1.005		060.1 9		9 ≥0.971			7 1.120		0 1.080	4 1.030	3 1.190	0 ≥1.040			0 0.760		8 1.049		1.261		9 19	1 0.760		0 1.461	0.1	7 12	3 0.972	
		0.185		0 197			0.161		0.169			0.181				≥0.179			0.177		0.200	0.194	0.203	≥0.320		0.500	0.340		0.178		0.220	0.77	19				0.0	37	0.153	
			0 8.40 5 13.03			0 9.80	6 11.11		4	1 4.33	1 9.46	4 11.10	0 10.80	3 3.44		8 13.21		2 9.47		2 11.80	6 9.82		0 9.70	0.12	5 10.56				$\overline{}$.20 8.60			25 25			$\overline{}$	რ	12 34	2 8.37	
	8 119	_	9.40 8.80	_						8.89 8.91	10.13 9.41		11.00 9.90	9.72 8.73		0.51 11.88		0.00 8.52		0.72 9.82	10.45 9.36	11.30 9.92	9.60	4.60	11.15 10.25				52 9	20			25 2			12.60 11.88	-	14	10.09 9.22	
α-Tocopherol			5.10 9. 5.54 10			_			5.09 9.	4.64 8.	5.44 10.	5.54 10.71	5.60 11.		.38	5.97 10.		5.19 10.		_			5.30		5.91 11.				.61	5.30 10.			26				0.38 1.	7	5.30 10.	
	116	7.95	7.50	. 6	8.45	7.60	7.37	7.16	7.18	6.72	7.65	8.21	8.20	7.73	7.56	7.01		7.07		7.95	7.43	8.32	8.20	4.80	8.51			8.11	7.65	7.10			3 26	4.80	7.61	8.61	0.77	10	7.51	
			12.20			11.80	11.43		11.65	11.02	12.11	12.06		11.10		11.60		11.28	_	12.53		13.50			13.06	_			12	09.6	~ (26				-	14	11.98	
			38 0.521 58 0.686				o.					13 0.472	30 0.420						14 0.600		30 0.400	11 0.472		0.750		90 0.500						71 0.510 40 0.510					77 0.159	19	76 0.538	
	118 119		0.514 0.868 0.469 0.858			0.486 0.869	0.501 0.917		0.492 0.809	0.875 1.745	0.486 0.850	0.515 1.113	0.640 1.080	0.560 0.860				0	0.543 0.914		0.530 0.860		0.454 0.752	0.650	0.480 0.799							0.535 0.971 0.490 0.840				0.875 1.745	0.086 0.177		.495 0.976	
Total Retinol			0.710 0.9			0.596 0.			0.646 0.4	1.379 0.8	0.623 0.4	0.643 0.	0.660 0.0						0.621 0.		0.650 0.4	0.671 0.4	0.656 0.4	0.550 0.0								0.718 0.8 0.665 0.4				1.379 0.8	0.139 0.0	70	0.659 0.	
	116		1.029 0 0.936 0				0.999 0			1.874 1	0.949 0	1.193 0	1.100 0	0.971 0					1.002 0		0.920 0	0.997 0	1.020 0									1.070 0	32					23	1.060 0	
	115	0.375	0.376	0.393	0.374	0.347	0.360		0.352	0.845	0.327		0.350		0.343	0.296	0.530	0.320	0.387		0.380	0.340	0.292	0.380	0.323	0.430	0.390	0.325	0.333	0.280	0.413	0.322		0.280	0.385	0.845	0.118	31	0.363	
	Lab	FSV-BA	FSV-BD FSV-BE	FSV-RF	FSV-BG	FSV-BH	FSV-BI	FSV-BL	FSV-BY	FSV-BZ	FSV-CA	FSV-CJ	FSV-CM	FSV-CN	FSV-CO	FSV-CQ	FSV-CS	FSV-CY	FSV-DC	FSV-DE	FSV-DG	FSV-DH	FSV-DN	FSV-DO	FSV-DT	FSV-DY	FSV-DYa	FSV-DZ	FSV-ED	FSV-EF	7.7.7. 7.7.7.7.	FSV-FA FSV-FV		Min	Mean	Max	SD	S	NISTa	

Round Robin XVII Laboratory Results

Table Legend

Symbol	Interpretation
italics	Value calculated from reported results
n	Number of non-NIST laboratories reporting quantitative results
Min	Minimum non-NIST reported value.
Mean	Average over all non-NIST reported values.
Max	Maximum non-NIST reported value.
SD	Standard deviation over all non-NIST values.
CV	Coefficient of Variation (% relative standard deviation): 100*SD/Mean
Median	Median over all non-NIST reported values
eSD	Robust estimate of SD based on the adjusted median absolute difference from the median (MADe)
eCV	Robust estimate of CV, 100*eSD/Median
≥x	Concentration greater than or equal to x
	ı

Round Robin XVII Laboratory Results

%Bias Summary

Lab	TR	аТ	bC
FSV-BA	6±3	5±1	7±17
FSV-BD	4±3	-4±5	
FSV-BE	-6±3	1±2	
FSV-BF	12±4	4±6	-2±6
FSV-BG	11±7	-3±25	-5±12
FSV-BH	-5±4	1±2	-5±9
FSV-BI	2±2	-5±2	-13±7
FSV-BL	8±6	-6±9	
FSV-BY	-3±3	-5±2	-9±10
FSV-BZ	103±25	-11±4	
FSV-CA	-5±2	0±1	
FSV-CJ	9±15	3±3	-7±6
FSV-CM	12±13	5±2	
FSV-CN	2±5	-5±3	27±35
FSV-CO	-4±2	-1±1	-2±4
FSV-CQ	-6±6	5±13	-13±18
FSV-CS	41±34		
FSV-CY	-6±2	-6±3	-14±13
FSV-DC	4±6		-5±11
FSV-DE		4±1	
FSV-DG	1±6	1±3	1±2
FSV-DH	0±3	9±3	1±5
FSV-DN	-8±9	1±4	6±6
FSV-DO	7±18	-42±20	250±495
FSV-DT	-7±1	9±1	
FSV-DY	6±10		120±166
FSV-DYa	-12±15		45±111
FSV-DZ	-6±6	-3±8	
FSV-ED	-2±3	2±2	-4±4
FSV-EF	-9±8	-6±8	
FSV-EO	15±5		15±7
FSV-FA	6±9		33±53
FSV-FV	23±50		
NISTa	4±6	-2±1	-18±5

Label	Definition		
Lab	Participant code		
TR	Total Retinol		
аТ	a-Tocopherol		
bC	Total b-Carotene (Magn + SD) of individual corum biases		
% Bias	(Mean ± SD) of individual serum biases		
	Average of (x _i -Median _i)/Median _i		
SD	Standard deviation of (x _i -Median _i)/Median _i		
X_i	Result for analyte in serum _i		
Median _i	Median of non-NIST results in serum _i		
·!			

The original analysis listed % Bias for each result for each serum calculated relative to the trimmed "Avg" of that analyte in the serum. The summary values reported here are the (arithmetic mean \pm standard deviation) of each laboratory's reported results for the analyte estimated relative to each serum's median-based reference value.