

NISTIR 8094

Analysis and Optimization based on Reusable

Knowledge Base of Process Performance

Models

Alexander Brodsky

Guodong Shao

Mohan Krishnamoorthy

Anantha Narayanan

Daniel Menascé

Ronay Ak

This publication is available free of charge from:

http://dx.doi.org/10.6028/NIST.IR.8094

http://dx.doi.org/10.6028/NIST.IR.8094
http://dx.doi.org/10.6028/NIST.IR.8094

NISTIR 8094

Analysis and Optimization based on Reusable

Knowledge Base of Process Performance

Models

Alexander Brodsky

Computer Science Department

George Mason University

Guodong Shao

System Integration Division
Engineering Laboratory

Mohan Krishnamoorthy
Computer Science Department

George Mason University

Anantha Narayanan
Department of Mechanical Engineering

University of Maryland

Daniel Menascé
Computer Science Department

George Mason University

Ronay Ak

System Integration Division

Engineering Laboratory

This publication is available free of charge from:

http://dx.doi.org/10.6028/NIST.IR.8094

December 2015

U.S. Department of Commerce

Penny Pritzker, Secretary

National Institute of Standards and Technology

Willie May, Under Secretary of Commerce for Standards and Technology and Director

1

Analysis and Optimization based on Reusable

Knowledge Base of Process Performance

Models

Alexander Brodsky
1
, Guodong Shao

2
, Mohan Krishnamoorthy

1
, Anantha Narayanan

3
, Daniel

Menascé
1
, Ronay Ak

2

Abstract: In this paper, we propose an architectural design and software framework for fast development of

descriptive, diagnostic, predictive, and prescriptive analytics solutions for dynamic production processes.

The proposed architecture and framework will support the storage of modular, extensible, and reusable

Knowledge Base (KB) of process performance models. The approach requires developing automated

methods that can translate the high-level models in the reusable KB into low-level specialized models

required by a variety of underlying analysis tools, including data manipulation, optimization, statistical

learning, estimation, and simulation. We also propose an organization and key structure for the reusable

KB, composed of atomic and composite process performance models and domain-specific dashboards.

Furthermore, we illustrate the use of the proposed architecture and framework by performing diagnostic

tests on a composite process performance model.

Keywords: smart manufacturing; data analytics; domain specific user interface;

optimization; reusable knowledge base; process performance models

1 Introduction

Smart Manufacturing (SM) requires the collaboration of advanced manufacturing

capabilities and digital technologies to create highly customizable products faster,

cheaper, and greener. According to [1], “Next-generation software and computing

architectures are needed to effectively mine data and use it to solve complex problems

and enable decision-making based on a wide range of technical and business parameters.”

These software and computing architectures need to support developing analysis

capabilities and optimization solutions. These capabilities and solutions need to be

designed for multiple operational levels, including manufacturing units, cells, production

lines, factories, and supply chains [2].

The required analysis and optimization capabilities can be broadly classified as

descriptive, diagnostic, predictive, and prescriptive analytics [3]. Descriptive analytics

typically involves manipulation of streams of data at different aggregation levels,

continuously over time. Some examples of descriptive analytics and its associated data

can be found in [4, 5]. Diagnostic analytics includes such tasks as continuous testing for a

significant statistical difference between the estimated vs. observed values of metrics, and

direct application of fault classifiers to detect failures on the manufacturing floor.

1
Computer Science Department, George Mason University Fairfax, VA 22030, U.S.A.

2
System Integration Division Engineering Laboratory National Institute of Standards and

Technology, Gaithersburg, MD 20899, U.S.A.

3 Department of Mechanical Engineering, University of Maryland, College Park, MD 20742,

U.S.A.

2

Research in diagnostic analytics in manufacturing can be found in [6, 7]. Predictive

analytics include techniques of stochastic simulation and statistical learning for

regression, classification, and what-if estimation. Examples of predictive analytics for

manufacturing can be found in [8, 9]. Prescriptive analytics typically involves decision

optimization techniques, such as mathematical and constraint programming. Examples of

research in prescriptive analytics in manufacturing can be found in [10, 11].

The current manufacturing analytics practice is that analytical tasks are often

implemented from scratch, following a linear methodology. This leads to high-cost and

long-duration development, and results in models and algorithms that are difficult to

modify, extend, and reuse. A key contributor to these deficiencies is the diversity of

computational tools, each designed for a different task such as data manipulation,

statistical learning, data mining, optimization, and simulation. Because of this diversity,

modeling using each computational tool typically requires the use of specialized low-

level mathematical abstractions and languages. As a result, the same manufacturing

knowledge is often modeled multiple times using different specialized abstractions,

instead of being modeled only once using uniform abstraction. Furthermore, the

modeling expertise required for the low-level abstractions and languages is typically not

within the realm of knowledge of manufacturing users, e.g., operators and process

engineers.

Addressing the described limitations of current practice is the focus of this paper.

More specifically, the contributions of this paper are as follows. First, we propose an

architectural design and framework for fast development of software solutions for

descriptive, diagnostic, predictive, and prescriptive analytics of dynamic production

processes. The architecture adopts (1) the top layer of domain-specific modeling and

analytics’ graphical user interface (GUI); and (2) the low-level layer of computational

tools. The uniqueness and novelty of the proposed architectural design and framework is

its middleware layer, which is based on a reusable, modular, and extensible Knowledge

Base (KB) of process performance models. Reusability of modular KB models could lead

to considerable reduction in the development cost, time, and the required level of

expertise. The key technical challenge lies in the development of a middleware Analytics

Engine. This engine comprises algorithms and automatic methods that translate high-

level uniform representations of performance models in the reusable KB into low-level

specialized models required by each of the aforementioned underlying tools.

Second, we propose the organization and the key structure of the Reusable KB, which

consists of (1) a pre-built library of atomic process performance models of a variety of

unit manufacturing processes, (2) a library of composite process performance models,

which can be constructed from the atomic process performance models using a GUI, and

(3) a library of analytical views and dashboards designed for specific types of analysis for

domain-specific users.

Third, to illustrate the use of the proposed design and framework, we prototype a

decision-support system that allows process engineers to (1) compose hierarchically

dynamic production processes via a GUI and (2) perform deterministic and stochastic

optimization of dynamic production processes. Users can pose optimization queries

against atomic or composite process performance models without the need of

mathematical or optimization modeling. The deterministic optimization is implemented

by automatic translation of performance process models into formal optimization models

3

expressed in Optimization Modeling Language (OPL) and solved using the International

Business Machines (IBM) Corporation CPLEX Mixed Integer Linear Programming

(MILP) solver, as described in [12]. The stochastic optimization is implemented by a

heuristic algorithm from [13] based on a series of deterministic approximations, which

significantly outperforms a number of more popular algorithms based on stochastic

simulation. The graphical domain-specific modeling environment is implemented using

the Generic Modeling Environment (GME) [14].

The paper is organized as follows. Section 2 discusses the needs and challenges

encountered in implementing analytics and optimization solutions. Section 3 provides the

design of the architecture and framework that is based on reusable KB of process

performance models. Section 4 extends the previous section by exemplifying the reusable

KB. Section 5 introduces the prototype for the domain-specific SM decision support

system. Section 6 discusses the implementation architecture for the prototype. Finally,

Section 7 concludes and discusses the future work.

2 Need and Challenges in Implementing Analytics and Optimization Solutions

To discuss the required analysis and optimization capabilities in more detail, we use

the diagram of the Tesla Car Manufacturing process example as depicted in Figure 1.

Aluminum coils are the input of the manufacturing process and are fed into two uncoiling

machines that work in parallel to flatten the coils into aluminum plates. The plates are

then sent to four different cutting machines to prepare for the four parts of a car: the left

side, the underbody, the front, and the right side. After being cut, the aluminum plates are

sent to die press machines after which they will be reinforced and welded. After

assembly, the finished body is then washed, coated, and painted before the final

operations are performed to produce a car.

4

Figure 1: Tesla Car Manufacturing

2.1 Descriptive, Predictive, Diagnostic and Prescriptive Analytics

Different analysis and optimization capabilities are required to analyze the

performance of the production line and to achieve smart manufacturing goals. These

capabilities can be classified as descriptive, diagnostic, predictive, and

prescriptive/optimization analytics.

Descriptive capabilities are needed to create a temporal sequence of sensor data

automatically or semi-automatically. In the Car Manufacturing process, examples of

sensor data include (a) line speeds of the Uncoiling machines; (b) CO2 emissions, water

consumption, energy consumption, and temperature of the individual machines or the

entire plant; and (c) levels of the work-in-progress inventories. This collected data may

be filtered and aggregated over time and manufacturing levels. In addition, some

preprocessing or transformation of certain sensor data may be performed to improve

visualization.

Diagnostic capabilities are needed to detect undesirable deviations from what is

considered normal behavior. Detecting such deviations requires continuous testing for

any significant statistical difference between the predicted and observed values of

important metrics. The data needed for this testing comes from the descriptive tasks

described above. For instance, after determining the minimum and maximum acceptable

values of a metric, such as total energy consumed for the Uncoiling machine, the testing

can detect if the observed value obtained from sensor data is within these bounds. If it is

not, then the process operator will be notified and asked to find the causes of the problem

and take corrective actions to eliminate them.

Predictive capabilities are needed to estimate and learn the values of various

performance metrics as a function of machine and process controls. These capabilities

often come in the form of statistical learning techniques such as regression analysis. For

example, a production engineer may want to learn the energy consumption of a Die-Press

5

machine as a function of its pressing speed and nominal pressure. The engineer may use

the learned results to predict future performance of the process. The engineer might also

use this result together with a stochastic simulation to predict the increase in the energy

consumption of the Die-Press machine if, for example, the pressing speed is increased by

15 %.

Prescriptive capabilities, which include optimization techniques such as mathematical

programming (MP) and constraint programming (CP), are needed to choose among

alternative actions. For instance, upon discovering a spike in total energy consumed and

fixing the machine’s parameters, the operator may need to (1) determine new machine

settings that get the energy consumption within the stated bounds and (2) rebalance the

workload distribution to meet the production schedule.

As depicted in Figure 2, a typical software architecture to implement the analysis and

optimzaiton capabilities includes (1) a top layer of a domain-specific GUI for

manufacturing users, (2) a bottom layer of specialized tools and languages. The core

implementation challenge, however, lies in the translation of the top-layer tasks into the

low level of abstractions of the tools at the bottom layer (the question mark in Figure 2).

In the next subsection, we describe a variety of tools and then discuss the core

implementation challenge in more detail.

Figure 2: Challenges in implementing analytics functionality using tools

6

2.2 Computational Tools and Languages That Support Analytics

The implementation of the analysis and optimization capabilities typically uses a

variety of computational tools, which are shown at the bottom layer in Figure 2. They

include

 Domain-specific end-user-oriented tools; e.g., strategic sourcing optimization

modules within procurement applications [15]

 Data manipulation languages, such as Structured Query Language (SQL) [16, 17],

XQuery [18, 19], and JSONiq [20]

 Simulation tools and languages including discrete event simulation, system dynamics

simulation, such as Jmodelica (based on Modelica), AnyLogic, and Simulink [21, 22]

 Optimization modelling languages, such as A Modeling Language for Mathematical

Programming (AMPL) [23], The General Algebraic Modeling System (GAMS) [24],

and OPL [25] for MP and CP

 Statistical learning languages and interfaces, such as Predictive Model Markup

Language (PMML) [26, 27, 28] and the Portable Format for Analytics (PFA) [29]

 Modeling languages for complex physical systems, such as Modelica [21]

Discussion on the strengths and weaknesses of these categories of tools follows.

Domain-specific tools are designed for, and usually do a good job in executing, a

particular well-defined task in a particular industry sector. For example, tools that support

manufacturing scheduling would not be used to schedule visits to a doctor’s office. Nor

do these domain-specific tools support compositionality, which is defined to be the

ability to make optimal system-wide performance predictions from optimal predictions of

the systems components.

Simulation tools, on the other hand, are usually applicable to many different tasks in

many different industry sectors
3
. They have this advantage because of their modeling

expressivity, flexibility, and object-oriented (OO) modularity. While simulation models

and tools cannot solve optimization problems by themselves, they can be used in a

heuristically guided, trial-and-error optimization technique. However, for problems
expressed in closed analytical forms, such simulation-based optimization techniques are

inferior to optimization techniques based on MP or CP; e.g., mixed-integer linear

programming (MILP) [30]. Furthermore, simulation languages were not designed for

easy data manipulation the way data manipulation languages such as SQL, XQuery, and

JSONiq [14] are.

MP and CP optimization models are built using modeling languages such as AMPL,

GAMS or OPL [23, 24, 25]. These languages and techniques use a range of sophisticated

algorithms that leverage the mathematical structure of optimization problems. As a result,

they significantly outperform simulation-based optimization, in terms of optimality and

execution time. However, MP and CP optimization models are not modular, extensible,

reusable, and do not support compositionality. They also do not support low-level

granularity of simulation models. Furthermore, some MP- or CP-based optimization

algorithms have high worst-case computational complexity. Therefore, these algorithms

may not scale up for large-size optimization problems.

3 Individual simulation models, however, do not possess this capability.

7

The Sustainable Process Analytics Formalism (SPAF) [10] was proposed to make

optimization modeling more modular and extensible, akin an OO simulation model.

However, SPAF was not designed to be easily integrated with tools that perform data

manipulation, statistical learning or predictive analytics.

Similarly, the statistical learning languages and tools were not designed for easy data

manipulation; others such as SQL, XQuery, and JSONiq are significantly better. A recent

standardization effort by the Data Mining Group (DMG) to address this deficiency is

their development of PMML [27]. PMML is an XML-based standard language used to

represent predictive and descriptive models, as well as pre- and post-processed data.

PMML allows for the interchange of data models among different tools and

environments, mostly by avoiding proprietary issues and incompatibilities. Besides

neural networks and decision trees, PMML allows for the representation of many other

data-mining models.

PFA [29], similar to PMML, is a JSON-based specification for statistical models; but,

whereas PMML’s focus is on statistical models in the abstract, PFA’s focus is on the

scoring procedure itself. PMML can only express a fixed set of pre-defined model types

whereas PFA represents models and analytic procedures more generally by providing

generic programming constructs.

Modeling languages for complex physical systems are designed to reuse knowledge.

Modelica, for example, allows a detailed level of abstraction, including OO code and

differential equations [20]. Modelica by itself is not a language for performing

optimization, learning, or prediction. But there are tools such as JModelica for

simulation, and Optimica for simulation-based optimization [21]. However, because of

the low level of abstraction allowed in Modelica, general Modelica models cannot be

reduced automatically to MP or CP models that can be solved by MP or CP solvers.

2.3 Challenge in Developing SM Analysis and Optimization Solutions

Using the aforementioned tools and languages can improve diverse analysis and

optimization tasks. Achieving these improvements, however, will be difficult because

each analytics task

 is implemented from scratch, as a one-off effort

 is not modular or reusable

 requires mathematical, operations research (OR), and domain expertise that are not

within the realm of manufacturing users

 is high cost

 requires a long development cycle

 is difficult to modify or extend

We believe there are two key factors causing these deficiencies. The first is due to the

fact that today, in manufacturing analytics practice, analytical tasks are typically

implemented following a waterfall methodology of gathering requirements, identifying

data sources, developing a model or an algorithm using a range of modeling languages

and tools to perform analysis (see Figure 3). Using this linear task-centric methodology,

models and algorithms are difficult to develop, modify, and extend because they are not

designed for reusability.

8

The second, and perhaps the more important factor is the diversity of computational

tools that are required to meet our needs. Because of such diversity, developing models

using any one of these computational tools typically requires both the knowledge of, and

the use of, the specialized, low-level, vendor-specific, mathematical abstractions and

languages. As a result, the same manufacturing knowledge is often modeled multiple

times using several different specialized abstractions, one for each tool that either

generates or consumes that knowledge. Furthermore, the mathematical and modeling

expertise required to use these low-level abstractions and languages is not available in the

typical factory manufacturing environment.

Figure 3: Conventional Approach to Analytics Solutions

3 Architectural Design and Framework Based on Reusable Knowledge Base of

Process Performance Models

To overcome the challenges in developing SM analysis and optimization capabilities,

we advocate for a paradigm shift. The key idea is to move from the non-reusable, task-

centric, modeling approach to the approach more commonly used in Database

Management Systems (DBMS). In a DBMS, a central data repository is updated

continuously from multiple sources. DBMS users pose declarative data-manipulation

queries – using one of several query languages -against the database. The DBMS engine

translates the declarative queries into efficient, low-level, data-processing code. In the

case of SM analysis and optimization solutions, there is a need to manage not only the

data, but also the analytical knowledge. Rather than posing declarative data-manipulation

queries, our goal is to pose analytical queries needed to execute descriptive, diagnostic,

predictive, and prescriptive/optimization tasks.

To achieve this goal, we have developed the SM Analysis and Optimization

conceptual architecture shown in Figure 4. The uniqueness and novelty of the proposed

architecture is that it is centered on a reusable, modular, and extensible KB of process

performance models (the middle layer in Figure 4).

9

Figure 4: Proposed Conceptual Architecture

The key technical challenge in realizing a system based on this architecture lies in

developing specialized algorithms that automatically translate the high-level, uniform

representation of manufacturing models in the KB into the low-level, specialized models

required by each of the underlying tools. The analytical models (AM) in the KB are

mathematical models that represent data, schema, parameters, variables, functions,

constraints, and uncertainty. Using these models is easy and done through the

aforementioned analytical queries. However, creating these reusable models requires

multiple levels of knowledge and expertise. We classify these models in the KB into

three libraries of atomic process performance models, composite process performance

models, and analytical views, according to types of knowledge or expertise required for

developing these models.

3.1 Atomic Models
Atomic-models, i.e., Atomic process performance models (in the middle of KB in

Figure 4) require the most expertise and effort to build; however, they are also the most

reusable ones. The atomic-models library contains a classification hierarchy of prebuilt

performance models for atomic manufacturing processes. An atomic process is an end

process in which there is no sub-process. Each performance model contains the process

parameters, control variables, performance metrics, and feasibility constraints - as well as

quantification of uncertainty associated with metrics and constraints. For instance, for the

10

injection molding process, the metrics of energy consumption per part, cycle time, and

throughput can be expressed as a function of (1) parameters such as the number of

cavities, the volume of the part, and the material characteristics; and (2) control variables

such as injection pressure and flow rate.

Building atomic process performance models requires knowledge in process

engineering and data manipulation languages. Domain-specific, process-engineering

knowledge includes an understanding of the equations defining performance metrics and

constraints. The knowledge of data manipulation languages includes is needed to encode

data transformation and equations. However, building atomic process performance

models does not require expertise in optimization, MP, or statistical learning.

Once built, the atomic process performance models can be used by both end-users and

process engineers. Operational end-users will invoke analytics-core functions of compute,

predict, learn, simulate, and optimize to run the models. They will also use the various

analytical-views described later in this section to monitor the performance of the process,

against both the atomic process performance model and historical performance data.

Process engineers use these atomic process performance models as the basis for creating

composite performance models of composite processes.

3.2 Composite Models
A composite process is recursively composed of atomic processes and the associated

aggregators, information flows, and timing constraints. The composite process

performance model library contains performance models of such composite processes at

different levels of granularity, such units, cells, lines, factories, and enterprises.

Constructing composite process performance models is the usual task of manufacturing

process engineers (MPEs); to construct such models, an MPE only needs to specify the

processes involved in the design, and the rules for composition. Rules specify the flow of

materials, parts, products and information through the processes. Composite process

performance models can be constructed simply by using a drag-and-drop GUI. Figure 5

shows an example of such a model built using a GUI for the Tesla Car Manufacturing

(first explained in Figure 1).

11

Figure 5: Tesla Car Manufacturing Composite Process Performance Model Diagrams

System-level metrics and feasibility constraints can be determined from the metrics

and constraints of its sub-processes, recursively. The metric computation and feasibility

constraints evaluation are done by the system using the corresponding atomic and

composite process performance models that use the model composition template. Thus, a

composite process performance model, just like an atomic process performance model,

can be thought of as having the same characteristics, namely, parameters, control

variables, metrics, and feasibility constraints. It can be used recursively for analysis or as

a component of a higher-level process.

Once built, the operational use of composite process performance models is similar to

the use of atomic process performance models; i.e., end-users can use the analytics-core

functions or analytical views to perform analytical tasks on these models. Analytical

views are dashboard-like templates, which are implemented using the analytics-core

functions (compute, predict, learn, simulate, and optimize) together with a data

manipulation language. As noted above, this idea is similar to how relational database

views are constructed from database tables using SQL. We use the JSON (JavaScript

Object Notation) data model [31], which is becoming increasingly popular for analytical

data, and its data manipulating language JSONiq [32]. The following subsections

introduce JSON and JSONiq. Examples of JSON and JSONiq appear in Section 4.

3.2.1 JSON
JSON is a lightweight, data-interchange format that facilitates structured data

interchange between all programming languages. It defines a small set of structuring

12

rules for the portable representation of structured data. JSON format is text only, just like

XML. Therefore, JSON is not only easy for machines to parse and generate but also easy

for humans to read and write [31].

JSON Schema is a JSON media type for defining the structure of JSON data. It

provides a contract for what JSON data is required for a given application and how to

interact with data. JSON Schema can be used to validate if a given JSON document (an

instance) satisfies a certain number of criteria. At its core, the JSON schema is made up

of data structures such as object, array, number, string, boolean, and null. With these

simple data types, all kinds of structured data can be represented. JSON Schema itself is

written in JSON. JSON Schema is data itself, not a computer program.

Using JSON data schema, one is able to provide guidelines and data formats needed to

create a JSON data model for the inputs (parameters and control variables) of either an

atomic unit process or a composite process. In addition, through JSON data schema, one

can represent the input constraints for the values of the KB modules in the data model.

3.2.2 JSONiq
JSONiq is a query and processing language specifically designed for JSON data

models. The main source of inspiration behind JSONiq is XQuery, which has been

proven to be a successful and productive query language for semi-structured data such as

XML [31]. JSONiq, however, can do more than queries; it can describe data processing

programs created from transformations, selections, joins, data enrichment, information

extraction, information cleaning, and so on [32]. In addition, A JSONiq program is an

expression; the result of the program is the result of the evaluation of the expression [31].

3.3 Analytical Views
Analytical views can be implemented by a data analyst who has the required analytics

knowledge and can use a data manipulation language such as SQL or JSONiq. However,

the analyst does not need to have any expertise in mathematical modeling, domain

knowledge, or equation writing. Examples of analytical views include (1) dashboard of

the energy consumed over a period of time, (2) diagnosis of the statistical difference

between the expected and observed power consumption, (3) visualization of the

supervisory control and data acquisition (SCADA) data, (4) parameter calibration of the

power consumption as a function of machine controls, (5) composite process

performance model metric computation as a function of individual machine metrics, (6)

scheduling of a job to meet the demand, (7) optimizing the machine operations to

minimize the power consumption such that the demand is satisfied, and (8) what-if

analysis to find the impact on demand satisfaction and power consumption if one of the

machines were switched off.

The analytics-core methods (compute, predict, learn, simulate, and optimize) are part

of the Analytics Engine (see Figure 4). Implementing these methods involves and requires

reduction and compilation techniques, as well as specialized optimization and learning

algorithms. However, once implemented, the analytics-core methods will allow fast and

easy implementation of domain-specific analytical views, without the need to understand

the lower-level abstractions of the underlying computational tools. Furthermore, they

allow manufacturing end-users to directly pose analytical queries against the atomic and

composite process performance models, thus enabling their reusability. A more detailed

13

description of the reusable KB along with some guidelines to model the AMs is described

in the next section.

4 Reusable Knowledge Base

The proposed architecture contains a KB that contains multiple AMs, which may

include data, schema, parameters, variables, functions, constraints, and uncertainty.

Modules in the KB are of three types: atomic-model (atomic process performance

models) type, composite-model (composite process performance model) type, or

analytical-view type. The atomic process performance model (atomic-model) library will

map to the different types of manufacturing machines or processes. The atomic-model

library can be organized differently for different use-cases. In this section, we show one

such organization. In addition, we provide an example JSON input structure and JSONiq

physics equations for the injection-molding atomic process performance model. We also

describe general guidelines for developing and storing atomic process performance

models. Then, we provide an example for the composite process performance model

based on the Buffered Temporal Flow Processes (BTFP) by giving the JSON code

snippets of the different components of the composite processes. Finally, we give an

example for the analytical view of a deterministic optimization that can be used against

the atomic or composite process performance models in the KB.

4.1 Example of Atomic Model Library:

Figure 6 shows an example organization of the atomic models. These models may

include a range of manufacturing processes such as casting, forming, joining, machining,

molding, and additive manufacturing. Casting process involves pouring a liquid material

into a mold, which contains a hollow cavity of the desired shape, and then allowing the

liquid to solidify. Examples of casting include die-casting and sand casting. Forming

process uses suitable stresses to deform plastic materials to produce different shapes.

Examples of forming include bending, pressing, and rolling. Joining process connects

metals together to create parts, assemblies, or large-scale structures. Examples of joining

include sintering and soldering. Machining process removes material from a workpiece to

produce parts based on NC programs. Examples of machining include milling and

drilling. Molding is the process of shaping liquid or pliable raw material using a mold.

Examples of molding include foam molding and injection molding. Additive

manufacturing is a process that fabricates products by adding layer-upon-layer of

material. Examples of this process include 3D printing and powder-based fusion. To

understand how the processes are modeled and stored in the KB, we use injection

molding as an example next.

14

Figure 6: An Illustration of the Atomic-Model Classification Hierarchy

4.2 Example of Atomic process performance Model: Injection Molding

We use JSON and JSONiq to describe the atomic process performance models. An

example JSON input structure and JSONiq physics equations are provided for the

Injection molding machine. The injection molding process consists of heating

thermoplastic material until it melts, then forcing this molten material into a mold (die)

where it cools and solidifies [33]. Consequently, the injection molding process consists of

three major sub-processes: (1) Melting, Injecting, or filling, (2) Cooling, (3) Ejection and

resetting. The resulting cycle time, 𝑡𝑐𝑦𝑐𝑙𝑒 can be formulated as according to [33-35]:
tcycle = tinj + tcool + treset , (1)

15

where tinj is the injection time, tcool is the cooling time, and treset is the reset time.

Using process parameters, machine parameters, and material parameters, one can

estimate a number of key performance metrics including cycle time, energy use, water

consumption, and part throughput. For example, the energy required for melting (𝐸�𝑒�𝑡)
one-shot volume of plastic is as follows:

𝐸�𝑒� = 𝑃�𝑒�𝑡 ×

 𝑉� ℎ 𝑜 , (2)

𝑄

where 𝑃�𝑒�𝑡 is the power consumed by melting, Vshot is the shot volume, and Q is the
flow rate of plastic.

The JSON structure defined for the atomic process performance model contains all the

process parameters, control variables, constraints, and coefficients. Figure 5 shows the

JSONiq code for computing Key Performance Indicators (KPIs) of the injection molding

process using the JSON input data. For instance, Equation (2) is encoded as a variable,

$E_melt, in JSONiq and illustrated in the figure as $E_melt:= ($P_melt * $V_shot) div

$Q. Note that values defined by the function sample in Figure 5 including $T_inj, $T_ej,

and $Q are random variables, and so are all the derived variables such as $E_melt. The

JSONiq structure includes three parts: top, middle, and bottom. At the top, there is a

query header where we define namespace and import the relevant modules; in the middle,

we extract and transform the data from the JSON document into JSONiq, and at the

bottom, we define the functions, FLWOR (For, Let, Where, Order By, Return)

expressions and the equations to compute the quantity of interests.

Each process may have dependent variables including metrics and KPIs such as total

cycle time, energy consumption, and cost. Using the JSON document, we create the

inputs, the functions, and the equations needed to compute these dependent variables for

each sub-process. Note that computations and equations are encoded in JSONiq with

parameters and inputs imported from the JSON data model; the process-dependent

variables, as a function of parameters and control variables are encoded in JSONiq.

16

Figure 7: Injection Molding Atomic Process Performance Model (a) JSON data

representation (b) JSONiq formulation

4.3 Example of Composite process performance Model: Tesla Prep

In this subsection, we provide an example composite process performance model

based on the BTFP Tesla Car Manufacturing described in Section 2. BTFP is a class of

…

…

…

…

17

processes where the states of the machines, inventories and the whole process change

over time until process completion. BTFP can be used to model either atomic machines

or an entire manufacturing floor. In the latter case, BTFP processes need to capture the

variables, metrics, and constraints of all the entities on the manufacturing floor. Figure 8

shows the associated JSON structure including all the parameters, variables, metrics, and

temporal information for both atomic and composite processes.

The JSON structure is an analytical module object for the prep composite process.

This structure contains the Tesla time setting and defines the temporal setting for the

Tesla prep process. In BTFP processes, time is divided into time intervals of duration Δt,

where time intervals start and end at time points (t). A time interval (also known as a

period) is denoted by pi+1 = (ti, ti+1). In this example, there are 18 periods (noPeriods)

and the time starts from time point 0 (lastTP).

The JSON structure also contains the subprocess for the Uncoiling 1 machine. This

structure provides the parameters, variables, and metrics for the Uncoiling 1 machine.

They are inputs (I), outputs (O), machine capacity, metric type (i_metrics), metric values

(i_metricValues), number of inputs required per output produced (ii_inputPerOutput), the

incoming and outgoing flow objects (itemFlows), the speed (control variable) of the

machine at each period (pi_throughputControl), the amount of items accumulated in each

period (pi_accumulateAmount), and the number of items left over in each period

(ti_leftOver). The atomic process performance model may also have coefficients such as

those for piecewise linear functions for calculating the cost metric

(i_metricPWLcoefficients). The speed of the machines may be stochastic and the

parameters to the random value function are a part of the machine model

(i_throughputDistribution). Although only the structure of the Uncoiling 1 machine is

shown here, the other sub processes have a similar structure with different parameter,

variable, and metric values.

Finally, the JSON structure contains the composite process performance model for the

Prep process (lines 3 to 19 in Figure 8) that encapsulates the reference to the time settings

and the sub processes discussed above. The structure also contains the parameters,

variables, and metrics for the composite Tesla prep process such as its inputs (I), outputs

(O), the process demand (i_demand), metric type (i_metrics), metric values

(i_metricValues), and the incoming and outgoing flow objects (itemFlows). Additionally,

the prep process also contains the structures for the storage and distribution aggregators

(inventoryAggr), e.g., a2 in Figure 5, input distribution aggregator (inputAggr), e.g., a5 in

Figure 1, and output distribution aggregator (outputAggr). Due to lack of space, these

structures have been left out in Figure 8. However, more details about these and other

BTFP components can be found in [12].

18

Figure 8: JSON structure for the Tesla Prep Composite process performance model

4.4 Example of Analytical View: Deterministic Optimization

Analytical views allow users to perform analytical tasks on all of the models described

above. Figure 9 shows the deterministic-optimization analytical view in the JSON

structure for the teslaPrepOptimizationInput., which is similar to the one described in

Figure 8. The difference is that the control variables (e.g., throughputControl of the

19

Uncoiling 1 process) and the dependent variables (e.g., periodQty of the itemFlows) are

annotated to be determined by the optimization engine. Using this structure, the analytical

view defines the type of analysis to be performed on the Tesla Prep process. In this

example, it is MILP deterministic optimization. This JSON structure may also contain

other parameters pertaining to the selected analysis type, such as the objective function

(objective). Analytical views may have additional parameters relevant to a specific

analysis.

Figure 9: JSON structure for the Deterministic Optimization Analytical View

In the next section, we describe the details of how an end-user can create a composite

process performance model using a GUI and then pose analytical tasks on the model.

5 Prototype of Domain-Specific Smart Manufacturing Decision Support System
Before discussing the design and implementation of the proposed system (the How),

we first discuss the system functions (the What). “What” is based on the needs of the

user. In this section, we discuss users’ needs and roles, and the system’s functions and

semantics. In some sense, functions are associated with the roles and semantics expresses

the needs. We also describe a typical case scenario that involves users’ needs, roles,

system’s functions and semantics.

5.1 Functions (in general)

The key system function is to enable all analytical tasks such as what-if analyses and

performance optimizations to be executed timely and accurately. The idea is that new

analytical tasks will not need to be implemented entirely from scratch every time a user

requests one. Rather, new tasks will be implemented using pre-existing, reusable,

“component” models of all machines and all processes. These component models are

stored in a prebuilt model library and used to construct the composite process models.

The same composite process models can be used by different users performing different

roles for different analytical tasks.

The Roles - From the previous discussion, it is clear that functions are executed by

users with different roles. There are, as shown in Figure 10, four roles: analytical-view

modeler, atomic process performance modeler, composite process performance modelers,

and manufacturing end users.

An analytical-view modeler designs and describes analytical views in terms of the

core analytical functions. Analytical view modelers can develop different descriptive,

diagnostic, predictive, and prescriptive analytical views.

An atomic process performance modeler creates physics-based models that describe

the operations of machines and atomic process performance models that predict the

20

outputs of the machines. Both model types must be based on either expert knowledge of

the domain or the knowledge from other atomic process performance models.

A composite process performance modeler must understand the process plan to (1)

determine the required atomic or composite process performance models and (2) the

materials and information that flow among those models. Composite performance

modelers have access to a pre-built library that contains atomic process performance

model components as well as higher-level composite process performance models.

A manufacturing end user must submit a request to the system in the form of

declarative analysis queries against previously constructed process models. Of course,

manufacturing users can fill some or all these roles. For example, manufacturing process

engineers can play all the roles, whereas manufacturing operators and business managers

can only play the role of manufacturing end users. Manufacturing end users can perform

various analyses of the manufacturing processes that have been defined by other

modelers.

Figure 10: Potential roles of a domain-specific SM DSS

21

5.3 Functions (More detail)

To describe the functionality of the system in more detail, consider GUI screen captures

of the system depicted in Figures 11 and Figure 12. The screen is split into 4 parts. The

left part is a window for a library of manufacturing models, organized into folders by

analytical views, atomic process performance model, and composite process performance

model. In the middle is the workspace window used for constructing composite processes

and performing analytical tasks. The right part is a window used to input data for the

component selected in the workspace or display the results of the component selected.

The top part contains buttons to dispatch the manufacturing processes and analytics view

to the analysis engine. We now describe each of these parts and the corresponding

functionality.

Figure 11: Drag and drop screen capture of the proposed system showing composition of

Tesla Prep

22

Figure 12: Drag and drop screen capture showing composition of Tesla Assembly

5.3.1The Library ((left window in Figure 11) - The library includes analytical views,

core analytical functions, models of machines available at a manufacturing facility, and

models of composite manufacturing processes. Note that manufacturing process models

may be complex and involve an arbitrary hierarchy of sub-processes. At the end of that

process will be an atomic process for every machine within the manufacturing facility.

There is a one-to-one correspondence between the library described here and the SM

KB described in Section 3. There are folders containing analytical views, the analytical

core, atomic-models (i.e., atomic process performance models), and composite-models

(i.e., composite process performance models). The analytic-views folder contains

analytical-views functions such as monitors, dashboard, and scheduling. The analytical-

core folder contains functions such as compute, predict, learn, simulate, and optimize.

The atomic-models folder contains a classification hierarchy of prebuilt performance

models for atomic UMP. Finally, the composite-models folder contains performance

models of composite processes at different levels of granularity - manufacturing units,

cells, lines, factories, and supply chains.

While implementation of performance models for atomic and composite processes

may be complex, their meaning for manufacturing modelers and end-users is much

simpler. Here is what manufacturing users need to understand.

1. Correspondence between models and their physical counterparts - machines or

processes - There will be a computational model, either atomic or composite,

for every physical machine and process used in a manufacturing facility.

23

2. Input and output flows - Output flows correspond to things produced by

machines and processes; input flows correspond to things consumed by the

machines and processes. Each machine and process may have multiple input

and output flows. These flows act as interfaces and can be either informational

or physical.

3. Process parameters and controls. Each atomic process performance model of a

machine will include a number of parameters. Some parameters describe the

machine’s behavior and other parameters describe the machine’s direct control

capabilities.

4. Process-dependent variables as a function of parameters and controls. Each

process may have dependent variables including metrics and KPIs. Users need

to understand what the metrics mean, but are not required to understand the

mathematics behind it.

5. Process feasibility constraints. Each process may have real feasibility

constraints that limit their capabilities and performance. Atomic models capture

these constraints, which are only an approximation of their real-world

counterparts.

5.3.2Composite Process Performance Modelers - To determine what users need to

understand about composite processes performance models, we focus on the Tesla Prep

composite process and a related performance objective: find the speed of different

machines that minimizes cost. The atomic-model folders of the model library include a

built-in model template for the machines that enable the production of the Tesla Car.

Using these atomic process performance models and aggregators, a composite process

performance modeler can easily be created to minimize the production cost. Below is a

typical case scenario to define a new composite process by a composite process

performance modeler:

1. The modeler (1) identifies the required sub-processes according to the process

plan, (2) selects their appropriate models from the library, and (3) drags and drops

them on the workspace using the GUI. For example, in Figure 11, there are ten

sub-processes: two uncoiling, four cutting, and four-die press. Note that the

modeler can use these atomic process performance models to formulate composite

process performance models or s/he can use an existing relevant composite

process performance model to build a larger model. For example, if the modeler

wanted to show the entire Tesla car-manufacturing floor in a composite process

performance model, then the modeler would use the composite process

performance models of Tesla Prep (Figure 11) and Tesla Assembly (Figure 12) as

sub-processes.

2. The modeler identifies the input flows to the sub-processes and the output flows

from them. In the example, all processes incur a cost, and here are the material

inputs and outputs for each process:

a. Uncoiling process: The input is aluminum coil and the output is an

uncoiled aluminum plate

b. Cutting process: The input is the uncoiled aluminum plate and the output

is a cut aluminum part for the left, right, front or the underbody.

c. Die-press process: The input is the aluminum part and the output is the

aluminum part of appropriate shape

24

3. If the composite process performance model is of BTFP type (as shown in Figure

11), then the modeler identifies the aggregators (buffers) required between the

processes. There are typically two types of physical aggregators: inventory and

transportation. For instance, in Figure 11, a1 a transportation aggregator

distributing the aluminum coils among the uncoiling machines; a2 is inventory

aggregator storing coiled and uncoiled aluminum plates.

4. The user connects sub-processes in the workspace using the Connector

components (directed arcs). Each connector signifies the flow of a particular Item

(material, part, product, energy, etc.). Implicitly, they also signify the balance of

the input and output flows. Figure 11 shows the workspace after the completion of

this step for the example process.

5. The modeler creates a uniquely named module (with a unique namespace) for the

created composite process and stores it in the library under a selected folder for

future use.

5.3.3Component Data and Display - The panel to the right of Figure 11 is where the

data and the parameters of the existing sub processes, aggregators, and flows can be

instantiated or modified. This can be done by clicking the appropriate icon and

instantiating or modifying its associated data structure, displayed in right window panel.

Some of these parameters may be decision variables in an optimization problem; they

would be marked as “dvars” in the atomic process performance model data structure.

This window panel also serves as a display for the results when the analytics task

succeeds. To view the results, the end-user can click on the sub-process of interest and

the associated value will be shown in this window panel.

5.4 Performing Analytics tasks
The user can perform different analytics tasks such as compute, predict, learn, simulate,

and optimize by selecting the process models of interest and clicking the buttons at the

top of Figure 11. In addition, the user can perform what-if analysis, diagnostics, and

optimization using an analytical-view created by the analytical view modeler in the KB.

To do this, the user drags the appropriate analytics view into the workspace and then

presses the “Run” button on the top panel in Figure 11. Here we discuss two key

functionalities that are available to the manufacturing user: compute and optimize.

5.4.1Compute - The user invokes the “compute” function against a predefined process

model. To perform computation, all parameters, control variables, and sub-processes

must be instantiated. For the Tesla example, the only control variables are the speeds of

uncoiling, cutting, and die-press machines. The “compute” function performs the

following actions:

1. Compute each process-dependent variable from the process parameters and

controls

2. Evaluate each process feasibility constraint to True or False from the process

parameters and controls. If all feasibility constraints evaluate to True, we say

that the process instance is feasible.

3. Create a copy of the instantiated process where all dependent variables and

feasibility constraints are instantiated to constants computed in 1 and 2.

25

4. Optionally store the resulting instantiated process model with a new unique

name in the manufacturing model library under a folder of users’ choice.

5.4.2Optimize - The user invokes the “optimize” function against a predefined process

model. To perform optimization, all model parameters, except control variables, must be

instantiated. For each model, its parameters will be displayed at the right hand side of the

window. In addition, control variables and dependent variables are displayed along with

their minimum and maximum bounds, which by default are negative and positive infinity

if the variable is not constrained. The user can choose bounds by adding constraints on

any or all variables. The user can also assign a particular variable to be constant by

setting both minimum and maximum bounds to be the same value. Then, the system

performs the following tasks:

1. If there does NOT exist a feasible instantiation of process control variables, an

instantiation that would make all feasibility constraints evaluate to True, the

system reports status Infeasible to the user. For example, if the throughput

demands on the output flow are too high for the limited production capacity of

the machines in the composite process performance models, it is infeasible.

2. Otherwise, if a feasible instantiation exists, the system finds the optimal

instantiation of all control variables for the given optimization problem. For

example, for the process in Figure 11, a problem is to find the values for all

control variables that minimize the cost while meeting all feasibility and

demand constraints.

3. The system computes the instantiated process instance with the instantiation of

control variables as described in the “compute” function.

4. The user can then store the resulting instantiated (optimal) process instance,

under a new unique name, in the manufacturing model library for future use.

The instantiated model has the process controls with optimal values.

Next, we describe the overall system architecture, explain all the system components

(what’s under the hood), and briefly discuss the implementation of the domain-specific

SM KB in the next section.

6 Implementation Architecture
The implementation architecture for the domain-specific SM DSS is shown in Figure 13.

As described in Section 3, the proposed architecture allows the manufacturing end-users

to pose and solve manufacturing problems using a GUI that provides a standardized view

of the SM KB. The GUI is based on the Generic Modeling Environment (GME) and

contains the SM KB. End-users will use the GUI to build models and perform analytics

on the model using an analytical view. GME contains the meta-model that defines the

rules and constraints for building the model. Additionally, GME will also contain existing

atomic and composite process performance models that the user can use to build new

models. A number of analytical views such as deterministic optimization, stochastic

optimization, estimation, learning, and simulation in the SM KB are available for users to

use.

26

Figure 13: Overall Implementation Architecture

The left half of the architecture in Figure 13 describes dispatching of the job to

the underlying tools and the right half shows the results returned from the tools to GME.

The GME components of the model built using the GUI and the analytical view are

translated into a standard data format such as JSON. The models are then dispatched via

27

the web services to the backend JSONiq engine. The JSONiq engine determines the type

of analytics to be performed and converts the JSON model and analytics parameters into

the input required by the analytical tools. After the analytical tools derive a solution to the

problem, this solution is translated back into JSON via the JSONiq analytics engine. The

JASON is then converted into GME components for display at the GME frontend. We

now describe the system components in greater detail.

6.1 Domain-Specific Modeling Environment (User Interface)
A “Domain-Specific Modeling Environment” (DSME) is a visual interface that a domain

expert can use to build computable representations of systems in their domain. The

DSME provides (1) visually intuitive icons pointing to models that represent elements

from the domain, (2) the ability to graphically arrange and connect these models when

needed, and (3) a library of models that can be used to represent a wide range of systems

within the domain. The DSME is designed to be intuitive for domain experts who only

understand how systems in their domain are constructed. This means that users do not

need a deep understanding of the analytics performed on these systems.

Figure 14: A portion of the BTFP meta-model

The DSME for BTFP was designed using GME, a tool for creating custom

DSMEs. A DSME is specified in GME by constructing a unique meta-model, which

describes the various objects, properties, and relationships in the domain. The meta-

model for BTFP defines objects such as Processes, Aggregators, and Flowports, which

can be used to build models of manufacturing systems. Figure 14 shows a portion of the

BTFP meta-model. This portion of the meta-model specifies that a Process can be of two

types, atomic and composite. Composite processes can contain atomic or other composite

processes. The figure also shows that processes can contain Flowports, which can be of

28

type input or output. Flowports can be connected to Aggregators to form connections that

model the flow of material or parts between Processes and Aggregators. Other details of

the meta-model are omitted for brevity.

Once the meta-model has been built, GME can be used to build the actual models

of real world objects in the domain. This is possible because GME can be reconfigured to

function as a DSME for the BTFP domain. Manufacturers can build representations of

their systems by constructing an instance model in the BTFP domain within GME. GME

provides a palette of the objects that are defined in the meta-model. The user can use

these objects to construct the instance models. Figure 15 shows an instance model

constructed in the BTFP domain in GME. This model shows an input port called

“plywood_in” at the top. The material flows through this port to the input aggregator

“a1”. The aggregator allocates the material to the two processes “sand1” and “cut1”. The

visual model makes it easy for users to understand how the overall system looks and

operates. After constructing the instance model, the user may invoke a variety of

analytical tools and perform analytical tasks to derive further insights about the system.

6.2 Model translation
The instance model in GME provides a generic graphical representation of the system.

Before this representation can be used as the basis for executing analytical algorithms, it

is translated into a format that will be understood by the analytical software applications.

The BTFP instance models in GME are translated into a JSON representation, which can

then be input to the analytics algorithms on the back-end server. This translation is

executed at the click of a button on the GME interface. In addition to specifying the

instance model, the domain-specific environment for BTFP in GME also allows users to

specify their analytics objectives and the type of analytics they would like to perform.

The JAVA program that handles the model translation (1) packages all the

information into a single JSON file and (2) sends it to the analytics engine. The response

from the analytics engine is also in the form of a JSON file. This is translated back into a

GME model and shown visually to the end user.

Figure 15: An instance model constructed in the BTFP domain in GME

29

6.3 JSONiq Analytics Engine
The JSONiq analytics engine takes the JSON model as input, interprets it into the

required tasks, and transforms each task to the appropriate input for the underlying tool.

The JSONiq interpreter uses the configuration object provided in the input of JSON

analytics task to decide the kind of composition to use for the composite process

performance model. The composition takes all the parameters, variables, metrics, and

constraints and embeds them into a standardized JSONiq data structure. The JSONiq

engine will then use the configuration object to decide the type of analytics tool to use

and convert this data structure and analytics parameters as inputs for that tool. For

instance, if IBM CPLEX is used for MILP deterministic optimization, the JSONiq engine

will convert the data structure into the OPL model and data files. After the optimization

result is derived, the JSONiq engine will do the opposite transformation, i.e., from the

tool output to the result JSONiq data structure. Finally, the engine will convert the

resulting data structure into the output JSON file and send it back to the user via the web

service interface.

6.4 Analytical Tools
As described in section 2, there are a number of tools available to solve analytical

problems and we describe two such tools as follows.

6.4.1 Tool 1: Deterministic Optimization using IBM CPLEX MILP Solver
The first tool is IBM CPLEX (OPL studio) for deterministic MILP optimization. The

BTFP processes’ composition is used. Figure 16 shows the transformation of the

incoming analytical task to the input generation for IBM CPLEX. A number of different

optimization problems can be formulated and solved as a MILP. The model parameters

are translated into an OPL data file. The decision variables, constraints, physics

equations, and objective function are translated into an OPL model file. There are two

possible results of the optimization: no feasible solutions or the optimal solution.

Figure 16: Deterministic MILP Optimization using CPLEX (OPL Studio)

30

6.4.2 Tool 2: Stochastic Optimization using Iterative Heuristic Optimization Simulation

Algorithm

The second tool is the Iterative Heuristic Optimization Simulation (IHOS) algorithm for

stochastic optimization discussed in [11]. An overview of this algorithm is given in

Figure 17. To model and query a manufacturing process in the real world, it is critical to

consider the stochastic nature of the variables of the process model. In this algorithm, the

JSON data from the JSONiq engine is fed to a two-phase IHOS algorithm. Using this

data, the algorithm approximates the total cost of running the entire hierarchical process

when the actual throughput of the machines is stochastic. The main idea behind these

algorithms is multiple iterations of optimization through a series of stochastic

simulations.

Figure 17: Stochastic Optimization using Iterative Heuristic Optimization Simulation

Algorithm

For the example, the optimization solver finds the expected throughputs of the

machines such that the demand is satisfied at each period while minimizing the cost. The

stochastic simulation adds noise to the mean throughputs and checks whether the

probability of satisfying the demand at each period lies within a predetermined

confidence interval. A heuristic is used to vary the demands such that the optimizer can

give more realistic mean throughputs in the following iteration. A number of candidate

mean throughputs are simulated to ensure (1) the probability of satisfying the demand

remains within the desired confidence interval and (2) the cost is approximately minimal.

In this way, the algorithm uses the model knowledge in both optimization and stochastic

simulation to provide an optimal setting for the throughputs of the machines. The process

operator can then apply the optimal setting in production.

The authors conducted an initial experimental study to compare the proposed

algorithm with four simulation-based optimization algorithms: Nondominated Sorting

31

Genetic Algorithm 2 (NGSA2) [36], Indicator Based Evolutionary Algorithm (IBEA)

[37], Strength Pareto Evolutionary Algorithm 2 (SPEA2) [37], and Fast Pareto Genetic

algorithm (FastPGA) [38]. The study shows that IHOS significantly outperforms the

other algorithms in terms of optimality of results and computation time; in particular, in

64 seconds the cost achieved by IHOS is 5 % of the cost achieved by competing

algorithms. For the total run time, 1500 seconds, the cost achieved by IHOS is 80 % of

the cost realized by the competing algorithms. More details about the results can be found

in [12].

7 Conclusions
In this paper, we proposed an architectural design and framework for fast

development of software solutions for descriptive, predictive, diagnostic, and prescriptive

analytics of dynamic production processes. We also proposed an organization of, and key

structure of, a Reusable KB, which consists of three libraries: atomic process

performance models, composite performance models, and analytical views and

dashboards. Finally, we also showed a prototype of a decision support system to

demonstrate the principles of the proposed architectural framework.

The proposed architectural framework and the Analytics engine follow the ideas from

the Decision Guidance Analytics Language (DGAL) and framework proposed in [39]

which, in turn, build on prior work on decision guidance and optimization languages. In

particular, the unification of computation and equation syntax comes from CoJava [40],

SC-CoJava [41], and DGQL [42]; CoReJava [43, 44], and DGAL and DG-Query [45].

These languages are designed to add deterministic optimization and machine learning to

Java, SQL, and XQuery code, respectively. Additions are implemented via automatic

reduction to MP, CP or specialized algorithms. In addition, DGAL fits into the

framework of, but is more general than, Decision Guidance Management Systems

proposed in [46]. Finally, the concept of centralized Analytical KB (AKB) is borrowed

from our previous work on SPAF [10], which was limited to MP or CP optimization

only.

The results reported in this paper are only a first step toward reusability and

modularity in SM analysis and optimization. We plan to work on extending the Analytics

Engine with reduction algorithms, stochastic simulation, statistical learning, and

uncertainty quantification based on the recent advances in these areas. We also plan to

extend optimization algorithms for dynamic production processes with more refined unit-

process performance models. Furthermore, we plan to prototype an AKB on an industry

case study for process performance models and systematic guidelines for its creation,

extension, and reusability for the diverse analytics tasks. Finally, we plan to work on case

studies with industrial partners to demonstrate the productivity gains of the proposed

architectural design and framework.

DISCLAIMER

No approval or endorsement of any commercial product by the National Institute of

Standards and Technology is intended or implied. Certain commercial software systems

32

are identified in this paper to facilitate understanding. Such identification does not imply

that these software systems are necessarily the best available for the purpose.

ACKNOWLEDGMENT

This effort has been sponsored in part under the Cooperative Agreement No.70NANB12H277

between NIST and George Mason University, and Cooperative Agreement No. 70NANB14H250

between NIST and University of Maryland, College Park. The work described was funded by the

United States Government and is not subject to copyright.

References

[1] SMLC, “Implementing 21 Century Smart Manufacturing, workshop summary report,” 2011. [Online].
Available:
https://smartmanufacturingcoalition.org/sites/default/files/implementing_21st_century_smart_manufac
turing_report_2011_0.pdf. [Accessed: June 2015].

[2] Salvendy, G. 2001. Handbook of Industrial Engineering: Technology and Operations Management,
Third Edition. John Wiley & Sons, Inc. ISBN: 9780471330578.

[3] J. Richardson., “Gartner BI: Analytics Moves to the Core,” 2013. [Online]. Available:
http://timoelliott.com/blog/2013/02/gartnerbi-emea-2013-part-1-analytics-moves-to-the-core.html.
[Accessed: Sept. 2015].

[4] C. Undey, S. Ertun, T. Mistretta, and B. Looze, “Applied advanced process analytics in
biopharmaceutical manufacturing: Challenges and prospects in real-time monitoring and control,”
Journal of Process Control, vol. 20, no. 9, Oct. 2010, pp. 1009 – 1018, doi:
doi:10.1016/j.jprocont.2010.05.008.

[5] G. C. Gilvan, “Supply chain analytics,” Business Horizons, vol. 57, no. 5, Sep. 2014, pp. 595 – 605,
doi: 10.1016/j.bushor.2014.06.004.

[6] G. Shao, S. Shin, and S. Jain, “Data analytics using simulation for smart manufacturing,” Proc. 2014
Winter Simulation Conference, ser. WSC ’14. Piscataway, NJ, USA: IEEE Press, Dec. 2014, pp.
2192–2203, doi: 10.1109/WSC.2014.7020063.

[7] D. Lechevalier, A. Narayanan, and S. Rachuri, “Towards a domain-specific framework for predictive
analytics in manufacturing,” Proc. IEEE International Conference on Big Data,, Oct 2014, pp. 987–
995, doi: 10.1109/BigData.2014.7004332.

[8] S. Shin, J. Woo, and S. Rachuri, “Predictive analytics model for power consumption in
manufacturing,” Proc. 21st CIRP Conference on Life Cycle Engineering, vol. 15, no. 0, 2014, pp. 153
– 158, doi: 10.1016/j.procir.2014.06.036.

[9] J. Lee, E. Lapira, B. Bagheri, and H. Kao, “Recent advances and trends in predictive manufacturing
systems in big data environment,” Manufacturing Letters, vol. 1, no. 1, Oct. 2013, pp. 38 – 41, doi:
10.1016/j.mfglet.2013.09.005.

[10] A. Brodsky, G. Shao, and F. Riddick, “Process analytics formalism for decision guidance in
sustainable manufacturing,” Journal of Intelligent Manufacturing, Mar. 2014, pp. 1–20, doi:
10.1007/s10845-014-0892-9.

[11] C. Groger, F. Niedermann, H. Schwarz, and B. Mitschang, “Supporting manufacturing design by
analytics, continuous collaborative process improvement enabled by the advanced manufacturing
analytics platform,” Proc. IEEE 16th International Conference on Computer Supported Cooperative
Work in Design, May 2012, pp. 793–799, doi: 10.1109/CSCWD.2012.6221911.

[12] M. Krishnamoorthy, A. Brodsky, and D. Menasce, “Temporal manufacturing query language (tMQL)
for domain specific composition, what-if analysis, and optimization of manufacturing processes with
inventories,” Department of Computer Science, George Mason University, Fairfax, VA, 22030, Tech.
Rep. GMU-CS-TR-2014-3, 2014. [Online]. Available: http://cs.gmu.edu/ tr-admin/papers/GMU-CS-
TR-2014-3.pdf

[13] M. Krishnamoorthy, A. Brodsky, and D. Menasce, “Optimizing stochastic temporal manufacturing
processes with inventories: An efficient heuristic algorithm based on deterministic approximations,” in
Proceedings of the 14th INFORMS Computing Society Conference, 2015, pp. 30–46.

[14] A. Ledeczi, M. Maroti, A. Bakay, G. Gabor Karsai, J. Garrett, C. Thomason, G. Nordstrom, J.
Sprinkle, and P. Volgyesi, “The generic modeling environment,” in Workshop on Intelligent Signal
Processing, 2001 IEEE 2nd International Conference on, May 2001.

[15] Katz, Y. Labrou, M. Kanthanathan, and K. Rudin, “Method for managing a workflow process that
assists users in procurement, sourcing, and decision-support for strategic sourcing,” US Patent number
US20020174000 A1, Nov. 2002.

[16] S. Harkins and M. P. Reid, “Structured query language,” in SQL: Access to SQL Server, 2002, pp. 1–
5.S.

https://smartmanufacturingcoalition.org/sites/default/files/implementing_21st_century_smart_manufacturing_report_2011_0.pdf
https://smartmanufacturingcoalition.org/sites/default/files/implementing_21st_century_smart_manufacturing_report_2011_0.pdf
https://smartmanufacturingcoalition.org/sites/default/files/implementing_21st_century_smart_manufacturing_report_2011_0.pdf
http://timoelliott.com/blog/2013/02/gartnerbi-emea-2013-part-1-analytics-moves-to-the-core.html
http://cs.gmu.edu/

33

[17] S. Harkins and M. P. Reid, “Structured query language,” SQL: Access to SQL Server, 2002, pp. 1–5,
doi: 10.1007/978-1-4302-1573-8_1.

[18] D. D. Chamberlin and R. F. Boyce, “Sequel: A structured english query language,” in Proceedings of
the 1974 ACM SIGFIDET (Now SIGMOD) Workshop on Data Description, Access and Control, ser.
SIGFIDET ’74, New York, NY, USA, 1974, pp. 249–264.

[19] M. Rys, D. Chamberlin, and D. Florescu, “XML and relational database management systems: The
inside story,” Proc. International Conference on Management of Data, ser. ACM SIGMOD,May 2005,
pp. 945–947, doi: 10.1145/1066157.1066298.

[20] D. Florescu and G. Fourny, “JSONiq: The history of a query language,” IEEE Internet Computing vol.
17, no. 5, Sept. 2013, pp. 86–90, doi: 10.1109/MIC.2013.97.

[21] P. Fritzson and V. Engelson, “Modelica – a unified object-oriented language for system modeling and
simulation,” Proc. European Conference on Object-Oriented Programming, Jul. 1998, pp. 67–90, doi:
10.1007/BFb0054087.

[22] J. Akesson, K. E. Arzen, M. Gafvert, T. Bergdahl, and H. Tummescheit, “Modeling and optimization
with optimica and JModelica.org languages and tools for solving large-scale dynamic optimization
problems,” Computers & Chemical Engineering, vol. 34, no. 11, pp. 1737 – 1749, 2010.

[23] R. Fourer, D. M. Gay, and B. W. Kernighan, “AMPL: A mathematical programming language,”
AT&T Bell Laboratories, Murray Hill, NJ 07974, Tech. Rep., 1987.

[24] A. Brook, D. Kendrick, and A. Meeraus, “GAMS, a user’s guide,” SIGNUM Newsl., vol. 23, no. 3-4,
pp. 10–11, Dec. 1988.

[25] P. Van Hentenryck, L. Michel, L. Perron, and J.-C. Rgin, “Constraint programming in OPL,” in
Principles and Practice of Declarative Programming, ser. Lecture Notes in Computer Science, G.
Nadathur, Ed. Springer Berlin Heidelberg, 1999, vol. 1702, pp. 98–116.

[26] A. Guazzelli, M. Zeller, W. C. Lin, and G. Williams, “PMML: An open standard for sharing models.”
The R Journal, vol. 1, no. 1, pp. 60 – 65, 2009.

[27] The Data Mining Group (DMG), “The predictive model markup language (PMML) 4.2,” [Online].
Available: http://www.dmg.org/, 2014, [Accessed: June 2015].

[28] A. Guazzelli, W.-C. L., and T. J., PMML in action: unleashing the power of open standards for data
mining and predictive analytics. North Charleston, South Carolina: CreateSpace, 2012.

[29] J. Pivarski, “PFA: Portable format for analytics (version 0.6),” [Online]. Available:
http://scoringengine.org/, 2015. [Accessed: June 2015].

[30] V. Jain and I. E. Grossmann, “Algorithms for hybrid MILP/CP models for a class of optimization
problems,” INFORMS Journal on Computing, vol. 13, no. 4, pp. 258–276, 2001.

[31] G. Fourny, M. Brantner, and F. Cavalieri, “Jsoniq the sql of nosql,” CreateSpace Independent
Publishing Platform, 2013.

[32] J. Robie, G. Fourny, M. Brantner, D. Florescu, T. Westmann, and M. Zaharioudakis, “Jsoniq the
complete reference,” 2015. [Online]. Available: http://www.jsoniq.org/docs/JSONiq/html-single/.
[Accessed: June 2015].

[33] J. Madan, M. Mani, J. H. Lee, and K. W. Lyons, “Energy performance evaluation and improvement of
unit-manufacturing processes: injection molding case study,” Journal of Cleaner Production, vol. 1, no.
1, pp. 1–13, 2014.

[34] J. Madan, M. Mani, and K. W. Lyons, “Characterizing energy consumption of the injection molding
process,” in ASME 2013 International Manufacturing Science and Engineering Conference, vol. 2, no.
1. Manufacturing Engineering Division, 2013, pp. 1–13.

[35] S. Nannapaneni and S. Mahadevan, “Uncertainty quantification in performance evaluation of
manufacturing processes,” in Big Data (Big Data), 2014 IEEE International Conference on, Oct 2014,
pp. 996–1005.

[36] E. Zitzler and S. Kunzli, “Indicator-based selection in multiobjective search,” in Proceedings of the 8th
International Conference on Parallel Problem Solving from Nature, 2004. Springer, 2004, pp. 832–842.

[37] E. Zitzler, M. Laumanns, and L. Thiele, “SPEA2: Improving the strength pareto evolutionary
algorithm,” Computer Engineering and Networks Laboratory (TIK), Swiss Federal Institute of
Technology (ETH), Zurich, Switzerland, Tech. Rep. 103, 2001.

[38] H. Eskandari, C. D. Geiger, and G. B. Lamont, “FastPGA: A dynamic population sizing approach for
solving expensive multiobjective optimization problems,” in 4th International Conference on
Evolutionary Multi-Criterion Optimization, 2007, ser. Lecture Notes in Computer Science, vol. 4403.
Springer, 2007, pp. 141–155.

[39] A. Brodsky and J. Luo, “Decision guidance analytics language (DGAL) - toward reusable knowledge
base centric modeling,” in Proceedings of the 17th International Conference on Enterprise Information
Systems, 2015.

[40] A. Brodsky and H. Nash, “CoJava: Optimization modeling by nondeterministic simulation,” in
Principles and Practice of Constraint Programming-CP 2006. Springer, 2006, pp. 91–106.

[41] A. Brodsky, M. Al-Nory, and H. Nash, “Service composition language to unify simulation and
optimization of supply chains,” in Hawaii International Conference on System Sciences, Proceedings
of the 41st Annual, Jan 2008, pp. 74–74.

http://www.dmg.org/
http://scoringengine.org/
http://scoringengine.org/
http://www.jsoniq.org/docs/JSONiq/html-single/

34

[42] A. Brodsky, S. Mana, M. Awad, and N. Egge, “A decision-guided advisor to maximize ROI in local
generation amp; utility contracts,” in Innovative Smart Grid Technologies (ISGT), 2011 IEEE PES,
Jan 2011, pp. 1–7.

[43] A. Brodsky, J. Luo, and H. Nash, “CoReJava: Learning functions expressed as object-oriented
programs,” in Machine Learning and Applications, 2008. ICMLA ’08. Seventh International
Conference on, Dec 2008, pp. 368–375.

[44] J. Luo and A. Brodsky, “Piecewise regression learning in CoReJava framework,” International Journal
of Machine Learning and Computing, vol. 1, no. 2, pp. 163–169, 2011.

[45] A. Brodsky, S. G. Halder, and J. Luo, “DG-Query, XQuery, mathematical programming,” in 16th
International Conference on Enterprise Information Systems (ICEIS 2014), 2014.

[46] A. Brodsky and X. Wang, “Decision-guidance management systems (DGMS): Seamless integration of
data acquisition, learning, prediction and optimization,” in Hawaii International Conference on System
Sciences, Proceedings of the 41st Annual, Jan 2008, pp. 71–71.

