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i FRV T 

Executive Summary
 
Introduction 

Facial gender classification is an area studied in the Face Recognition Vendor Test (FRVT) Still Facial Images Track. While 
peripheral to automated face recognition, it has become a growing area of research, with potential use in various appli­
cations. The motivation for gender classification systems has grown in recent years, with rise of the digital age and the 
increase in human-computer interaction. Gender-based indexing of face images, gender-targeted surveillance (e.g., moni­
toring gender-restricted areas), gender-adaptive targeted marketing (e.g., displaying gender-specific advertisements from 
digital signage), and passive gender demographic data collection are potential applications of automated gender classifi­
cation. 

NIST performed a large scale empirical evaluation of facial gender classification algorithms, with participation from five 
commercial providers and one university, using large operational datasets comprised of facial images from visas and law 
enforcement mugshots, leveraging a combined corpus of close to 1 million images. NIST employed a lights-out, black-box 
testing methodology designed to model operational reality where software is shipped and used ”as-is” without subse­
quent algorithmic training. Core gender classification accuracy was baselined over a large dataset composed of images 
collected under well-controlled pose, illumination, and facial expression conditions, then assessed demographically by 
gender, age group, and ethnicity. Analysis on commonly benchmarked ”in the wild” (i.e., unconstrained) datasets was 
conducted and compared with those from the constrained dataset. The impact of number of image samples per subject was 
captured and assessments of classification performance on sketches and gender verification accuracy were documented. 

Key Results 

Core Accuracy and Speed: Gender classification accuracy depends strongly on the provider of the core technology. 
Broadly, there is a threefold difference between the most accurate and the least accurate algorithm in terms of gender 
classification error, which is the percentage of images classified incorrectly. The most accurate algorithm (E32D from 
NEC) can correctly classify the gender of a person over a constrained database of approximately 1 million images 96.5% of 
the time. All algorithms can perform gender classification on a single image in less than 0.25 seconds with one server-class 
processor. The most accurate algorithm, on average, performs classification in 0.04 seconds. Section 3.1. 

Impact of Demographic Data on Accuracy: For a dataset of 240 thousand visa images, it is empirically observed that, 
overall, gender classification is more accurate in males than females. All of the algorithms show a significant decrease in 
gender classification accuracy as age increases for adult females, with an empirically decreasing trend in accuracy seen in 
females past age 50. Gender classification is more accurate in adult males (ages 21-60) than young boys (ages 0-10) for all 
of the algorithms. For females, gender classification is the most accurate in young adults (ages 21-30). A majority of the 
algorithms demonstrate the lowest gender classification accuracy on subjects from Taiwan and Japan, with males being 
more often misclassified than females. Section 3.2 and 3.3. 

These results state empirical observations for the particular dataset, but they do not determine cause. The impact of factors 
potentially driving the observed results between age and ethnicity, such as facial features innate to certain ethnic groups, 
facial changes with age, and hairstyles are not studied in this report. Further research would be required to objectively 
verify these conjectures. 

Gender Verification Accuracy: In addition to a binary male or female decision, algorithms provide a real-valued score 
of maleness-femaleness. This score can be used to tradeoff the type 1 error versus type 2 error. For a system with an 
objective to verify that a person is female (e.g., in gender-restricted scenarios), to ensure that 99% of the time, the subject 
is indeed a female would result in 10% of the true female population being falsely classified as males, or inconveniently 
rejected as being female. The same Detection Error Tradeoff (DET) analysis can be done by gender and for different veri­
fication thresholds to support specific applications. Section 3.7.1. 

Impact of Number of Image Samples on Accuracy: The FRVT Application Programming Interface (API) [12] supports 
multiple still image input to the algorithm software for gender classification, which enables the analysis of gender classifi­
cation performance versus the number of image samples of the same person. For contemporaneous mugshot images of the 
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FRV T ii 

same subject collected within a one year period, the results show gender classification accuracy monotonically increasing 
as the number of image samples provided increased for most of the algorithms. Misclassification rates drop by as much as 
50% between one and four input images, depending on the algorithm. Gender classification times increase linearly with 
respect to the number of image samples, which is the expected behavior. Section 3.4. 

Comparison against Academic Methods: A performance evaluation was done with two commonly benchmarked in 
the wild datasets composed of face images that show a large range of variation in factors such as pose, illumination, fa­
cial expression, and background. The study attempts to compare FRVT gender classification participants with published 
methods from the academic literature. The top performing FRVT participants achieved comparable or higher overall gen­
der classification accuracy when compared to the published methods that tested their algorithms with the same number 
of images for both datasets. 

Straight comparison of performance results between the FRVT participants and published methods remains to be a chal­
lenge given some methods are tested on only a subset of the images and others use different testing protocols, which in all 
cases, allowed the implementation to train on a set of images through every iteration of testing. For the FRVT participant 
results documented, all images from the datasets were used for testing, and NIST employed a lights-out, black-box testing 
methodology that did not involve any type of algorithm training during evaluation. This is designed to model operational 
reality where software is shipped and used as-is without algorithmic training. Section 3.5. 

Constrained versus In the Wild: Comparison of algorithmic performance on constrained versus in the wild images indi­
cate that the qualities of in the wild images (e.g., variations in pose, illumination, facial expression, and background) does 
have a negative impact on algorithm certainty of gender classification. Greater average gender classification certainty 
differences are observed in males between constrained and in the wild images. Section 3.6. 

Sketches: By running the algorithms through a set of 856 non-operational sketch images that were derived from a set 
of photographs, the most accurate algorithm (B31D from Cognitec) achieves an overall classification accuracy of 93.8%. 
An important caveat is that gender classification on sketches was never declared to be part of this FRVT study and better 
algorithms may be available from the providers. That said, automated face recognition algorithms are being used to rec­
ognize sketches operationally, and gender classification on sketches may help reduce the search space for face recognition 
in those scenarios. Section 3.7.2. 

Caveats 
Nature of the data: The main dataset used for overall accuracy assessment is comprised of close to 1 million images col­
lected under well-controlled pose, illumination, and facial expression conditions. Although image collection was subject 
to the guidelines published by the Department of State (DoS) [3] and the Federal Bureau of Investigation (FBI), the images 
are compressed JPEG files which exhibit artifacts of JPEG compression causing reduction in image detail. With more detail 
available in less compressed images, gender classification accuracy may improve, but errors will still likely exist due to 
variation driven by intrinsic and extrinsic factors. 

Failure to compute: The results presented in this document are for cases where gender classification computation did 
not fail. That is, metrics did not include a penalty for cases where algorithms failed to generate a gender classification 
decision and score. As such, the algorithms were evaluated based on the goodness of the results that they were able to 
generate, which might make an algorithm with a high failure-to-compute or no-attempt-to-compute rate seem to be more 
effective than a robust algorithm that has a zero failure-to-compute rate. 
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1 FRV T 

1 Introduction 

1.1 Purpose 

Gender classification of a face in one or more images is an area investigated in the Face Recognition Vendor Test (FRVT) 
with Still Images Track. Similar to age, gender is viewed as a soft biometric trait [17], and its automated characterization 
has become a growing area of study that has applications in surveillance, human-computer interaction, and image retrieval 
systems. Some of the earliest attempts to perform gender classification using computer vision techniques occurred over 
two decades ago, and a number of methods have been published in the literature over the years addressing the problem 
of gender classification using facial images. In recent years, gender classification on ”in the wild” (i.e., unconstrained) 
images has been investigated given an increased attention to face recognition in the wild and commercial applications of 
gender classification. 

The main goals of this evaluation are to: 

- Provide an objective, independent, open, and free assessment of current automated gender classification technology. 

- Leverage massive operational corpora. The availability of images from large populations (around one million) sup­
ports statistical significance and repeatability of the studies. The use of operational images brings greater operational 
relevance to the test results. 

- Investigate gender classification accuracy across various factors, including age, ethnicity, and constrained versus in 
the wild facial images. 

1.2 Application Scenarios 

The motivation for gender classification has grown in the last few decades given the rise of the digital age and the in­
crease in human-computer interaction. The process of gender determination has potential application in at least the areas 
described below: 

Gender as criterion for indexing into large-scale biometric databases for faster retrieval has been discussed [26] and can 
also apply to automatic sorting and image retrieval from digital photo albums and the internet. For example, gender can 
be used for one-to-many search partitioning where given thresholds for male and female scores that represent a certain 
level of gender classification certainty, a schema can be employed where if a score falls within the certainty threshold, it 
performs a search only on the partition specific to that gender, thereby reducing the search space. For gender scores that 
don’t fall within a particular gender certainty threshold (representing less certainty in gender classification), the entire 
database can be searched. 

Gender-targeted surveillance can assist with monitoring gender-restricted areas and elevated threat levels that might be 
associated with a specific gender. [18]
 

Gender-adaptive human-computer interaction is on the rise given the popularity of digital signage and the opportunity
 
for targeted digital marketing. Targeted advertisements can be displayed based on the gender of the audience walking
 
past a digital sign.
 

Passive gender demographic data collection [16] can be achieved and used to support decisions relating to, for example, 
the ratio of female versus male product offerings in a store. 

2 Methodology 

2.1 Test Environment 

The evaluation was conducted offline at a NIST facility. Offline evaluations are attractive because they allow uniform, 
fair, repeatable, and large-scale statistically robust testing. However, they do not capture all aspects of an operational 
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2.2 ALG O R I T HM S FRV T 2 

system. While this evaluation is designed to mimic operational reality as much as possible, it does not include a live 
image acquisition component or any interaction with real users. Testing was performed on high-end server-class blades 
running the Linux operating system. Most of the blades were 12-core machines with dual processors running at 3.47 GHz 
with 192 GB of main memory. The test harness used concurrent processing to distribute workload across dozens of blades. 

2.2 Algorithms 

The FRVT program was open to participation worldwide. The participation window opened on July 25, 2012, and submis­
sion to the final phase for gender classification algorithms closed on October 4, 2013. There was no charge to participate. 
The process and format of algorithm submissions to NIST was described in the FRVT Still Face Image and Video Concept, 
Evaluation Plan and Application Programming Interface (API) document [12]. Participants provided their submissions 
in the form of libraries compiled on a specified Linux kernel, which were linked against NIST’s test harness to produce 
executables. NIST provided a validation package to participants to ensure that NIST’s execution of submitted libraries 
produced the expected output on NIST’s test machines. 

FRVT had three submission phases where participants could submit algorithms to NIST. This report documents the results 
of all algorithms submitted in the final phase or the most recent submission for participants who only submitted in prior 
phases. 

Table 1 lists the FRVT participants who submitted algorithms for gender classification, and the alphanumeric code associ­
ated with each of their submissions. For each participant, the algorithms are labeled numerically by chronological order 
of submission. The letter codes assigned to the participants are also located at the bottom of each page for reference. 

Participant Letter Code Submissions 

Aug. 2012 Mar. 2013 Oct. 2013 

Cognitec B B10D B20D B30D,B31D 

Neurotechnology C C30D 

NEC E E10D E30D,E31D,E32D 

Tsinghua University F F10D F30D 

MITRE K K10D 

Zhuhai-Yisheng P P30D 

Table 1: FRVT Gender Classification Participants 

2.3 Image Dataset 

This report documents the use of the following datasets1: 

- Mugshot images: This dataset consists of facial images collected by various law enforcement (LEO) agencies and 
transmitted to the FBI as part of various criminal record checks. 

- Visa images: This dataset consists of facial images for visa applicants. 

- LFW: This is a public dataset composed of unconstrained facial images collected from the web [15]. 

- GROUPS: This is a public dataset, which is a collection of unconstrained images of groups of people from Flickr [10]. 

- FERET Sketch images: The FERET [20] database was collected in the 1990s and has been very widely studied. The 
City University of Hong Kong employed an artist to produce, for each person, ”a face photo with lighting variation 

1Operational datasets used in this study were shared with NIST only for use in biometric technology evaluations under agreements in which biometric 
samples were anonymously coded by the provider; code translations were never shared with NIST; and no personally identifiable information (PII) 
beyond the biometric sample was shared with NIST. 
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2.3 IMA G E DATA S E T FRV T 3 

and a sketch with shape exaggeration drawn by an artist when viewing this photo”, published as the CUHK Face 
Sketch FERET Database (CUFSF) [25]. 

The dataset properties are summarized in Table 2. 

Property MUGSHOT VISA LFW GROUPS CUFSF 

Collection 
Environment 

Law enforcement 
booking 

Visa application 
process 

Internet images Internet images Sketches 

Collection Era ˜1960s-2008 ˜1996-2010 Unknown Unknown 

Digital, Paper 
Scan 

Digital, few paper Mostly digital Unknown Unknown Paper Scan 

Documentation See NIST Special 
Database 32 [2] 

[3] See [15] See [10] See [25] 

Image size Various, 480x600, 
768x960 

Most 252x300 250x250 

Compression JPEG ˜20:1 JPEG, mean size: 
16.2kB 

JPEG JPEG JPEG 

Eye to eye 
distance 

Mean = 108 
pixels, SD = 40 
pixels 

Median = 71 
pixels 

Median = 18.5 
pixels 

Frontal pose Moderate control. 
Known profile 
images excluded. 

Well controlled Uncontrolled Uncontrolled 

Full frontal Mostly not. Yes, in most 
geometry Varying amounts 

of the torso are 
visible. 

cases. Faces are 
more cropped 
(i.e., smaller 
background) than 
ISO2 Full Frontal 
requires. 

Source Operational data Operational data Public dataset Public dataset Public dataset 

Table 2: Image dataset descriptions. 

The operational datasets are characterized by population sizes well in excess of all published gender classification tests. 
The number of images are given in Table 3. 

Quantity MUGSHOT VISA LFW GROUPS CUFSF 

Number of 587 680 364 086 13 233 28 231 856 
gender labeled 
face images 

Gender Male: 293 840 Male: 185 164 Male: 10 256 Male: 13 672 Male: 494 
Female: 293 840 Female: 178 922 Female: 2 977 Female: 14 559 Female: 363 

Table 3: Image dataset sizes. 

2The International Organization of Standardization, (ISO), is an international standard-setting body composed of representatives from various national 
standards organizations. 
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2.4 PER F OR M A NC E MET R I C S FRV T 4 

2.4 Performance Metrics 

The following performance measures will be reported in the assessment of gender classification: 

2.4.1 Classification Accuracy 

Male Accuracy is defined as the number of correctly classified male images, TM , divided by the total number of male 
images, M . i.e., 

Male accuracy = 
TM  

(1)
M 

Female Accuracy is defined as the number of correctly classified female images, TF , divided by the total number of female 
images, F . i.e., 

Female accuracy = 
TF  

(2)
F 

Overall accuracy is defined as the sum of correctly classified male and female images divided by the total number of 
images. i.e., 

TM  + TF
Overall accuracy = (3)

M + F 

2.4.2 Gender Verification Error 

Per the FRVT API [12], a real-valued measure of maleness-femaleness on [0,1] is provided by the gender classification 
algorithms, with a value of 0 indicating certainty that the subject is a male and 1 indicating certainty that the subject is 
a female. The maleness-femaleness values can be plotted as a Detection Error Tradeoff (DET) characteristic, where, for 
example, in a gender-based access control scenario that only allows female entry, the rate of males being granted access 
(i.e., the false female rate) is traded off against the rate of females being denied access (i.e., the false male rate). 

For gender verification, the fundamental error rates are defined as: 

Number of females with a maleness-femaleness value < threshold, T
False male rate(T ) =  (4)

Number of females 

Number of males with a maleness-femaleness value � threshold, T
False female rate(T ) =  (5)

Number of males 

3 Results 

3.1 Gender Classification on Large Constrained Dataset 

3.1.1 Accuracy 

Gender classification accuracy was baselined against a large dataset composed of visa and mugshot images collected under 
well-controlled pose, illumination, and facial expression conditions. The dataset consisted of 951 766 images (472 762 
females and 479 004 males) with a relatively balanced number of females and males. Gender classification performance 
for each algorithm is presented in Table 1a. Per the FRVT API [12], in addition to providing a binary male or female 
classification, the gender classification algorithms were asked to provide a real-valued measure of maleness-femaleness 
on [0,1], where a value of 0 indicates certainty that the subject is a male and 1 indicates certainty that the subject is 
a female. Figure 1b plots the distribution of maleness-femaleness values for the algorithms that provided continuous 
maleness-femaleness values. 
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Maleness−Femaleness Value 
(a) Classification accuracy	 (b) Distribution of maleness-femaleness value 

Figure 1: Table summarizing gender classification accuracy and density plots showing distribution of maleness-femaleness value. Table 
and plots were generated with 951 766 images. 

Results and notable observations: 

•	 The algorithm with the highest overall accuracy (E32D) can correctly classify gender 96.5% of the time over a dataset 
of 951 766 images. 

•	 For males, classification performance is closer between the algorithms, with participants B and E being the top 
performers, achieving accuracies of 97.9% (B31D) and 97.5% (E32D) respectively. For females, the leading participant 
(E32D) achieves accuracy of 95.6%, with the next most accurate participant (B30D) being 6.8% lower in accuracy for 
the same gender class. 

•	 Gender classification accuracy is empirically lower in females than males for all of the algorithms. Accuracy in 
females is 1.8% to 12.5% lower than males, depending on the algorithm. This could be a result of higher female 
misclassification rates observed in certain age groups, which is discussed in Section 3.2. 

•	 The distribution of the maleness-femaleness value for most of the algorithms shows clear separation of male and 
female classification. The higher misclassification rate seen in females is also supported in the density plots where 
overlapping past the implied male threshold value of 0.5 or less is visible. Algorithms F30D and K10D did not 
provide continuous values for maleness-femaleness. 

3.1.2 Speed 

Speed could be an important performance factor in some gender classification applications where there exists a limited 
window of time for a decision based on the outcome, such as when a person walks past a digital sign. The use of gender as 
criterion for indexing into large-scale biometric databases would levy rapid speed requirements on gender classification 
algorithms to make it operationally viable. 

Figure 2 presents the distribution of gender classification times for each algorithm. Gender classification time is the amount 
of time elapsed computing the gender from pixel data of a face image. It does not include any pre-processing steps 
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performed by the test software such as loading the image from disk or extracting image data from a compressed JPEG file. 
The timing machine was a server-class blade with a CPU running at 3.47 GHz. For more details on the testing environment, 
see Section 2.1. 

Accuracy = 93.2% 
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Gender Classification Time (sec) 

Figure 2: Boxplots of the distribution of gender classification times. Plots were generated over 5 000 gender estimates. For reference, 
overall classification accuracy against a population of 951 766 is reported on the right. 

Results and notable observations: 

•	 Gender classification time varies considerably from one participant to another. K10D can perform classification in 
less than 0.025 seconds while B31D takes about nine times longer than that, on average. 

•	 No clear speed-accuracy tradeoff exists between the gender classification algorithms. While K10D has the fastest 
classification speeds, it is not the lowest in accuracy, and while participant B’s algorithms are the slowest, they do 
not achieve the highest accuracy. Partipant E’s algorithms are among the lowest in classification times, and they also 
attain the highest overall classification accuracy. 

•	 Participant E appears to have fixed gender classification times, while exhibiting evident variance in accuracy be­
tween its algorithms. Participant B shows observable differences in classification times between its two algorithms 
with nominal changes in accuracy. 

3.1.3 Failure to Compute Rate 

The accuracy results presented above were computed for cases where gender classification did not fail. The error metrics 
do not include a penalty for cases where an algorithm failed to generate a gender estimate. Per the FRVT API [12], a 
failure to compute occurs when an algorithm’s code returns a non-zero return value from a call to its gender classification 
function, and hence fails to generate an gender estimate. This can be a result of software issues (e.g., memory corruption), 
algorithmic limitations (e.g., failure to find eyes in small images), elective refusal to process the input (e.g., image is 
assessed to have insufficient quality), or specific vendor-defined failures. Table 4 presents the fraction of images for which 
algorithms failed to generate a gender estimate over 951 766 images. 
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Num Images B30D B31D E30D E31D E32D K10D P30D 

951766 0.0011 0.0011 0.0063 0.0063 0.0063 0.1554 0.0031 

Table 4: Table summarizing failure to compute ratio over 951 766 images. 

Results and notable observations: 

•	 Algorithms C30D and F30D did not produce any failures to generate a gender estimate on the dataset of 951 766 
images. 

•	 Eight out of nine of the algorithms have insignificant failure to compute ratios over the massive number of images 
processed. While the dataset used is comprised of visa and mugshot images collected under published collection 
guidelines, the existence of a small number of bad images is inevitable given the operational nature of the data. 
Issues with images included occlusion, closed eyes, and pathological quality. 

•	 Participant K fails on approximately 15% of the images, with the reason being ”involuntary failure to extract features 
from the image” (as indicated in the FRVT API). 

3.2 Age 

Age is a demographic trait that can impact gender perception. Studies from the anthropological literature have indicated 
that there are a number of skeletal structure differences between the faces of male and female adults. In contrast, claims 
have been made that the faces of boys and girls are very similar in skeletal facial structure, posing a challenge to gender 
classification in children [5,8]. Studies have also examined the impact of a person’s age on gender classification accuracy on 
limited amounts of data [13]. The dataset used in this experiment contains a large number of gender-labeled visa images 
collected under well-controlled pose, illumination, and facial expression conditions. The dataset contains a balanced 
number of males and females over each of the age ranges. Gender classification accuracy between males and females 
across age ranges is assessed and summarized in Figure 3 and Table 5. 
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Figure 3: Line plots showing the classification accuracy over age ranges (a) by algorithm and (b) by gender. Plots were generated with 
243 023 visa images. 

Age Range # Females # Males B30D B31D C30D E30D E31D E32D F30D K10D P30D 

0−10 11141 11442 77.0 | 82.8 77.1 | 82.6 90.2 | 20.3 68.1 | 72.9 68.5 | 74.1 68.0 | 72.1 78.0 | 34.0 87.8 | 25.3 93.6 | 16.3 

11−20 11067 10859 92.9 | 92.2 93.7 | 91.3 97.5 | 74.0 94.2 | 90.2 92.5 | 91.9 94.7 | 90.7 88.3 | 72.2 91.3 | 75.4 91.4 | 81.9 

21−30 32966 36786 97.3 | 97.9 97.5 | 97.9 98.5 | 93.5 96.4 | 98.3 95.1 | 98.7 97.3 | 98.7 92.2 | 79.4 90.8 | 93.2 94.6 | 95.9 

31−40 21848 27185 96.0 | 99.0 96.0 | 99.1 97.9 | 94.4 95.0 | 98.7 93.5 | 98.9 97.0 | 98.9 90.9 | 80.5 87.0 | 95.1 92.6 | 96.9 

41−50 16330 18145 92.2 | 99.4 92.5 | 99.5 95.8 | 94.3 92.0 | 98.9 90.0 | 98.9 96.4 | 98.8 88.5 | 78.9 82.8 | 95.4 87.2 | 97.3 

51−60 14376 12185 84.4 | 99.5 85.4 | 99.6 92.4 | 93.7 87.4 | 98.9 85.0 | 98.8 94.7 | 98.4 84.9 | 78.2 77.9 | 95.0 78.6 | 97.8 

61−70 7320  5960 74.4 | 99.4 75.1 | 99.5 86.4 | 93.1 79.7 | 98.5 78.2 | 98.3 90.7 | 97.4 77.7 | 78.9 67.7 | 94.5 66.4 | 97.6 

71−80 2579  1960 59.3 | 99.5 59.9 | 99.4 73.2 | 92.2 67.4 | 97.1 68.3 | 97.1 84.1 | 97.0 64.7 | 79.3 55.6 | 93.6 53.8 | 95.3 

81−90 457 355 49.2 | 97.6 49.7 | 97.9 61.3 | 91.7 66.1 | 94.8 64.7 | 95.5 82.5 | 92.0 53.3 | 81.7 48.1 | 90.6 47.0 | 93.5 

Table 5: Gender classification accuracy, in percent, by age range and gender (Female | Male). 

Results and notable observations: 

•	 All of the algorithms show a significant decrease in gender classification accuracy as age increases for adult females. 
There is an empirically decreasing trend in accuracy seen in females past age 50, which implies algorithms are 
misclassifying females as males more often as age increases. Accuracy for males across increasing age groups does 
not demonstrate such evident decrease but remains comparatively stable. The correlation between age and gender 
classification error observed in older females presents an opportunity where gender classification could be used 
in conjunction with age estimation to mitigate the loss in accuracy in older women, for example, by moving the 
minimum ”femaleness” threshold to a lower value if the person’s estimated age is above a certain threshold. Figure 
4 shows examples of misclassifications in females above age 50. 

•	 For females, gender classification is the most accurate in young adults (ages 21-30) as seen across all algorithms. 
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Contrastingly, the highest accuracy is observed in older adult age groups (ages 31-60) for males. Gender classification 
is more accurate in adult males (ages 21-60) than young boys (ages 0-10) for all of the algorithms. 

Figure 4: Examples of misclassifications in females above age 50 extracted from the FERET database, which are representative of image 
qualities from misclassifications observed in the operational dataset. 

3.3 Ethnicity 

While the effects of racial features on gender classification have been studied [9, 19] in the academic literature, the ex­
perimental results were derived using small datasets with a limited set of ethnicity groups. The visa dataset was used to 
investigate the effect of ethnicity on gender classification as it contains a respectable number of visa images across multiple 
ethnic proxies. The term ethnic proxy is used, because an individual could be a citizen of a country but not necessarily be 
of that country’s ethnic descent. Ethnic proxy groups with a minimum of at least 1 800 images of subjects between ages 
11-40 and a relatively balanced number of males and females were extracted and used in the analysis captured in Tables 6 
and Figure 5. 

ARG BRZL CHIN COL DF IND ISRL JPN KOR PERU PHIL POL RUS TWAN 

B30D 95.0 97.7 96.4 96.4 99.0 97.2 97.8 90.0 94.4 97.2 97.9 98.1 97.6 94.1 

B31D 95.3 97.8 96.7 96.7 99.0 97.7 98.0 90.1 94.3 97.6 98.1 98.2 97.7 94.0 

C30D 93.3 95.0 89.2 94.6 96.7 98.1 96.4 82.9 83.6 95.4 92.8 97.3 96.8 81.5 

E30D 91.2 96.6 96.4 95.0 97.2 97.8 96.6 95.1 95.6 96.8 97.7 97.5 96.9 96.1 

E31D 89.8 97.0 94.4 94.7 96.1 96.9 95.8 96.7 94.9 96.9 97.6 97.7 96.6 96.8 

E32D 93.9 97.2 96.6 95.5 97.6 98.4 97.3 95.8 95.8 97.5 98.0 98.1 97.6 97.1 

F30D 80.9 86.4 80.8 86.2 83.6 82.5 87.1 84.3 81.7 86.2 78.6 89.8 87.8 76.1 

K10D 86.8 91.2 89.6 87.0 88.1 94.6 94.5 85.5 86.0 90.1 90.9 92.6 91.4 88.4 

P30D 90.8 95.0 93.2 93.8 96.1 96.0 95.3 89.2 90.5 95.0 95.3 94.5 94.8 88.9 

Table 6: Overall gender classification accuracy, in percentage, by ethnic proxy group3. For each algorithm, the lowest accuracy number 
is highlighted in yellow, and the highest accuracy number is highlighted in green. 

3DF is Mexico City. 
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Maleness−Femaleness Value 

Figure 5: Density plots showing distribution of maleness-femaleness value across various ethnic proxies3 . Plots were generated for 
ethnic proxy groups with at least 1 800 images of subjects between ages 11-40. Gender classification accuracy for male and female are 
shown in the upper left and right of each graph, respectively. 
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Results and notable observations: 

•	 A majority of the algorithms show the lowest gender classification accuracy on subjects from Taiwan and Japan. It 
can be observed from Figure 5 that males are more often misclassified as females on people from these east Asian 
countries, which is a consistent trend between most of the algorithms. Algorithms F30D and K10D did not provide 
continuous values for maleness-femaleness. 

•	 The higher misclassification rates observed in males from the Taiwan and Japan may anecdotally be related to slim­
mer and more defined face shapes seen in Asian men, facial hair being an uncommon trait, and the popularity 
of longer hairstyles, especially in Japanese men, but further research would be required to objectively verify these 
conjectures. 

3.4 Multiple Image Samples 

In certain applications, there are opportunities for multi-sampling of images, such as imagery being captured from video 
of people walking past a digital sign. For such scenarios, the question arises of whether accuracy improves if the gender 
classification implementation is provided multiple contemporaneous images of the same subject. This could drive whether 
a system, for example, used for targeted digital marketing, could set a minimum threshold on the number images of 
a person to process, based on some time-accuracy tradeoff, prior to making a decision on the type of advertisement to 
display. 

The FRVT API [12] supports multiple still image input to the algorithm software for gender classification, which enables 
the analysis of gender classification performance versus the number of image samples of the same person. The mugshot 
dataset includes K > 1 contemporaneous images for some subjects, with contemporaneous, here, being defined as images 
of the same subject collected within a twelve month span. This allows for the modeling of a scenario where gender 
classification implementations can exploit multiple images. 11 920 subjects with at least four contemporaneous mugshot 
images were extracted. Figure 6 shows the effects of the number of image samples on classification accuracy for the 
algorithms that supported multiple image input. 
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Figure 6: Line plots showing gender classification accuracy vs. the number of image samples per subject. Plots were generated with 
11 920 subjects. 
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Figure 7: Boxplots summarizing gender classification time vs. the number of image samples per subject. Plots were generated with 
11 920 subjects. 

Results and notable observations: 

•	 Figure 6 shows most of the algorithms demonstrate an increasing trend in gender classification accuracy as the 
number of image samples increases. Algorithms exhibit a decrease in misclassification rate of up to 50% between 
one and four images, depending on the provider. Algorithm K10D did not support multiple image input. 

•	 Figure 7 shows gender classification durations increasing linearly with respect to the number of image samples, as 
expected. 

3.5 In the Wild 

In recent years, the study of gender classification on face databases acquired in the wild (i.e., unconstrained face images 
that show a large range of variation in factors such as pose, illumination, facial expression, and background) has gained 
popularity in the published literature. Among such unconstrained datasets are Images of Groups (GROUPS) [10] and 
Labeled Faces in the Wild (LFW) [15]. GROUPS consists of images of groups of people collected from Flickr, and in all, the 
dataset consists of 28 231 (14 559 females and 13 672 males) largely low resolution faces that are labeled with gender. The 
LFW dataset consists of 13 233 images (2 977 females and 10 256 males) of famous people collected over the Internet. See 
Section 2.3 for more details on these datasets. 

Tables 7 and 8 tabulate the performance of FRVT participants on the GROUPS and LFW datasets, alongside results of 
methods published from the academic literature. 
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Algorithm Overall 
Accuracy (%) 

B30D 86.3 

B31D 86.2 

C30D 68.7 

E30D 90.3 

E31D 90.2 

E32D 90.4 

F30D 71.1 

K10D 71.3 

P30D 83.5 

Publication Overall 
Accuracy (%) 

# Images 

Gallagher and Chen 
(2009) [10] 

74.1 25 099 

Shan (2010) [22] 77.4 12 080 

Dago-Casas et al. 
(2011) [6] 

86.6 14 760 

Han and Jain 
(2014) [14] 

87.1 28 231 

Bekios-Calfa et al. 
(2014) [4] 

80.5 Faces of children  
age 12 were 
excluded. 

(a) FRVT participants, using lights-out, black-box (b) Published methods, 
testing protocol over entire dataset (28 231 images) using various testing protocols and images 

Table 7: Tables summarizing overall gender classification accuracy on the GROUPS dataset. 

Algorithm Overall 
Accuracy (%) 

B30D 94.4 

B31D 94.4 

C30D 84.5 

E30D 95.0 

E31D 95.2 

E32D 94.9 

F30D 79.1 

K10D 76.2 

P30D 93.9 

Publication Overall 
Accuracy (%) 

# Images 

Dago-Casas et al. 
(2011) [6] 

94.0 13 233 

Shan (2012) [23] 94.8 7 443 

Tapia and Perez 
(2013) [24] 

98.0 7 443 

Bekios-Calfa et al. 
(2014) [4] 

79.5 13 233 

Shaefey et al. 
(2014) [7] 

94.6 13 233 

Ren and Li (2014) [21] 98.0 6 840 

(a) FRVT participants, using lights-out, black-box (b) Published methods, 
testing protocol over entire dataset (13 233 images) using various testing protocols and images 

Table 8: Tables summarizing overall gender classification accuracy on the LFW dataset. 

Results and notable observations: 

•	 For both datasets, the top performing FRVT participants achieved comparable or higher overall gender classification 
accuracy when compared to published methods that tested their algorithms with the same number of images. 

•	 While standard evaluation protocols for gender classification have been proposed for these datasets [1], straight 
comparison between performance results remains to be a challenge given some methods are tested on only a subset 
of the images (e.g. excluding non-frontal images or children) and others using single versus cross-database valida­
tion, which in all cases, allowed the implementation to train on a set of images through every iteration of testing. For 
the FRVT participant results documented, all images from the datasets were used for testing, and NIST employed 
a lights-out, black-box testing methodology that did not involve any type of algorithm training during evaluation. 
This is designed to model operational reality where software is shipped and used ”as-is” without subsequent algo­
rithmic training. 
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3.6 Constrained versus In the Wild 

The performance of gender classification over constrained and in the wild datasets are presented in Sections 3.1 and 3.5, re­
spectively. Figure 8a contains sample photos extracted from the publicly available Multiple Encounter Dataset (MEDS) [2], 

which are representative of image qualities from 
the constrained dataset. Figure 8b contains sample 
photos from the public in the wild datasets used in 
this study, which contain images that exhibit a large 
range of variation in pose, illumination, facial ex­
pression, and background. Comparative analysis of 
the performance on the two different types of im­
ages would reveal whether gender classification is 
affected by factors such as pose, illumination, facial 
expression, and background. Figure 9 compares the 
distribution of the maleness-femaleness value, and 
Table 9 presents the average maleness-femaleness 
value, by gender for constrained versus in the wild 
images. The constrained dataset discussed in Section 
3.1, and the aggregate of the two in the wild datasets 
discussed in Section 3.5 were used in this study. 

(a) Constrained (b) In the Wild 

Figure 8: Examples of constrained images extracted from the MEDS 
dataset and in the wild images extracted from LFW and GROUPS. 
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Maleness−Femaleness Value 

Figure 9: Density plots showing distribution of maleness-femaleness value, by gender and image type (constrained versus in the wild 
images). 

Algorithm Male Female 

Constrained In the wild Constrained In the wild 

B30D 0.14 0.27 0.77 0.76 

B31D 0.14 0.28 0.76 0.75 

C30D 0.18 0.37 0.71 0.60 

E30D 0.07 0.16 0.83 0.84 

E31D 0.07 0.15 0.84 0.82 

E32D 0.07 0.17 0.88 0.85 

P30D 0.31 0.38 0.63 0.66 

Table 9: Average maleness-femaleness value, by gender and image type (constrained versus in the wild). 
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Results and notable observations: 

•	 A majority of the algorithms show visible shifting of the distribution of maleness-femaleness value towards the 
middle and, the increase in overlap between male and female values is indicative that the qualities of the in the wild 
images are causing a decrease in algorithm certainty of gender classification. This observation is further supported 
by the comparison of average maleness-femaleness value where for all of the algorithms, the average maleness 
value is lower in constrained images (more certainty of maleness) and for a majority of the algorithms, the average 
femaleness value is higher in constrained images (more certainty of femaleness). 

•	 Based on the average maleness-femaleness value, the impact of the qualities of images collected in the wild appear 
to have a bigger impact on males than females, given the larger differences observed in the average values for males. 

3.7 Specific Applications 

3.7.1 Gender Verification 

Gender-targeted surveillance can assist with monitoring gender-restricted areas and potentially aid in filtering subjects 
of interest - for example, in the event where elevated threat levels may be associated with a specific gender. Consider a 

surveillance system with an automated gender clas­
B30D B31D C30D E30D E31D E32D P30D 

sification system that has the ability to filter and 
highlight subjects based on gender. In a scenario 
where areas restricted to females (e.g., entrance to 
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female restrooms or locker rooms) are being moni­
tored, an operator may be alerted when a male is de­
tected in view. In this case, one might set the cost of 
falsely classifying a female as a male (i.e., the false 
male rate) to the inconvenience of having to review 
the alert. The cost of falsely classifying a male as a 
female (i.e., the false female rate) could result in al­
lowing suspicious or threatening activity to be con­
ducted. Given it would be reasonable to argue that 
the costs are asymmetric in this scenario, i.e., the 
cost of a false female is greater than that of a false 
male, tighter confidence levels could be set to min­
imize false females. Figure 10 presents DET accu­0.
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Figure 10: DET curve plotting false male rate against false female rate for 
gender classification. Plot was generated over 218,525 images of subjects 

racy for gender classification for algorithms that sup­
plied continuous maleness-femaleness values (F30D 
and K10D did not provide continuous maleness-

between age 11-90. femaleness values). A false female rate of 0.01 would 
impose a false male rate of 0.10 for the most accurate 

algorithm (E32D) at that threshold. In other words, if a system were to ensure that 99% of monitored subjects entering a 
female locker room were indeed female, it would mean that 10% of the time, the operator is falsely alerted of a male being 
detected in view. The same Detection Error Tradeoff (DET) analysis can be done by gender and for different verification 
thresholds to support specific applications. While the results documented are generated from single image input, analy­
sis with multiple image input (i.e., sequential frames from video) may further solidify the results observed and be more 
representative of surveillance systems running in video mode. 

3.7.2 Sketches 

Sketches have long been used in criminal investigations. Historically the most common occurrence is for a forensic artist 
to interview an eye-witness and, iteratively, produce a likeness of the individual recollected by the witness. That sketch 
could then be used to try and match against photographs resident in a mugshot database. Given gender can be utilized 
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as an indexing technique to reduce the search space for automatic face recognition, the accuracy of gender classification 
algorithms on sketches has an interesting niche application. 

The City University of Hong Kong published the CUHK Face Sketch FERET Database (CUFSF), which is composed of 
sketch images of subjects from the FERET dataset. A set of 856 sketches from CUFSF was used for this study. Figure 11 
shows examples of the sketches, alongside the original FERET image, and Table 10 presents the gender classification accu­
racy of algorithms on sketches, alongside the performance on the corresponding photographs from the FERET database. 

Figure 11: Images and sketches of subjects from the FERET database. This production of a sketch is atypical operationally given it is 
unusual for an artist to have access to an image of the individual. 

Algorithm Accuracy on 
sketches (%) 

Failure to compute 
on sketches (%)

Accuracy on 
photos (%) 

B30D 90.9 0.0 97.5 

B31D 93.8 0.0 98.0 

C30D 85.6 0.0 96.3 

E30D 82.2 87.5 96.3 

E31D 85.0 87.5 96.1 

E32D 84.1 87.5 96.5 

F30D 68.8 0.0 85.5 

K10D N/A 100.0 87.3 

P30D 85.1 0.1 92.2 

Table 10: Table summarizing overall gender classification accuracy on sketches, failure to compute percentages on sketches, and accu­
racy on original FERET photos. 

As gender classification on sketches was never declared to be a part of the study, the algorithms are being used in a manner 
not expressly intended by the providers. Operationally though, automated face recognition algorithms are being used to 
recognize sketches in many police departments [11], and gender classification on sketches may help reduce the search 
space for face recognition in this scenario. 

The use of this image set probably does reveal differences in algorithmic capability. Variation will in part depend on what 
facial information is represented. Participant E and K’s algorithms exhibit very high failure to compute percentages on the 
sketch images, with the reason being ”involuntary failure to extract features from the image” (as indicated in the FRVT 
API). All of the algorithms perform better on the FERET photographs than their corresponding sketches, which is a likely 
indication that there is information in the photographs used for gender classification that may not be represented in the 
sketch images. While many of the algorithms give very high classification accuracy on the FERET photographs, the most 
accurate algorithm on sketches (B31D) classifies gender correctly 93.8% of the time, which is better than some algorithms 
even on the good quality photographs. 

B = Cognitec C = Neurotechnology E = NEC F = Tsinghua University K = MITRE P = Zhuhai-Yisheng 



17 REFERENCES	 FRV T 

References 

[1] BeFIT - Benchmarking Facial Image Analysis Technologies. http://fipa.cs.kit.edu/412.php. 

[2] NIST Special Database 32 - Multiple Encounter Dataset 2 (MEDS-II), NISTIR 7807.	 http://www.nist.gov/itl/ 
iad/ig/sd32.cfm. 

[3] U.S. Department of State, Bureau of Consular Affairs, Visa Photo Requirements.	 http://travel.state.gov/ 
content/visas/english/general/photos.html. 

[4] J. Bekios-Calfa, J. M. Buenaposada, and L. Baumela. Robust gender recognition by exploiting facial attributes depen­
dencies. Pattern Recogn. Lett., 36:228–234, January 2014. 

[5] Y. D. Cheng, A. J. O’Toole, and H. Abdi. Classifying adults’ and children’s faces by sex: computational investigations 
of subcategorical feature encoding. In Cognitive Science, number 25, pages 819–838, September 2001. 

[6] P. Dago-Casas, D. Gonz ́alez-Jim ́enez, L. Long-Yu, and Jos ́e Luis Alba Castro. Single- and cross- database benchmarks 
for gender classification under unconstrained settings. In ICCV’11 -BeFIT 2011, November 2011. 

[7] Laurent El Shafey, Elie Khoury, and S ́ebastien Marcel. Audio-visual gender recognition in uncontrolled environment 
using variability modeling techniques. In International Joint Conference on Biometrics, 2014. 

[8] D. Enlow. Handbook of facial growth. W. B. Saunders, Philadelphia, PA, 1982. 

[9] G. Farinella and J. Dugelay.	 Demographic classification: Do gender and ethnicity affect each other? In Informatics, 
Electronics Vision (ICIEV), 2012 International Conference on, pages 383–390, May 2012. 

[10] A. Gallagher and T. Chen. Understanding images of groups of people. In Proc. CVPR, 2009. 

[11] P. Grother and M. Ngan. Face Recognition Vendor Test (FRVT) Performance of Face Identification Algorithms. NIST 
Interagency Report 8009, National Institute of Standards and Technology, 2014. http://biometrics.nist.gov/ 
cs_links/face/frvt/frvt2013/NIST_8009.pdf. 

[12] P. Grother, G. W. Quinn, and M. Ngan. FRVT Still Face Image and Video Concept, Evaluation Plan and API Version 
1.4, 2013. http://www.nist.gov/itl/iad/ig/frvt-2012.cfm. 

[13] G. Guo, C. R. Dyer, Y. F., and T. S. Huang. Is gender recognition affected by age. In In ICCV (Workshops), 2009. 

[14] H. Han and A. K. Jain. Age, gender and race estimation from unconstrained face images. MSU Technical Report 
MSU-CSE-14-5, Michigan State University, 2014. 

[15] Gary B. Huang, Manu Ramesh, Tamara Berg, and Erik Learned-Miller.	 Labeled faces in the wild: A database for 
studying face recognition in unconstrained environments. Technical Report 07-49, University of Massachusetts, 
Amherst, October 2007. 

[16] A. Jain and J. Huang. Integrating independent components and linear discriminant analysis for gender classification. 
Proceedings of the Sixth IEEE International Conference on Automatic Face and Gesture Recognition (FGR04), pages 159–163, 
2004. 

[17] A. K. Jain, S. C. Dass, and K. Nandakumar.	 Soft biometric traits for personal recognition systems. In Proc. Intl Conf. 
Biometric Authentication (ICBA 04) LNCS 3072, pages 731–738, 2004. 

[18] S. A. Khan, M. Ahmad, M. Nazir, and N. Riaz. A comparative analysis of gender classification techniques.	 Interna­
tional Journal of Bio-Science and Bio-Technology, 5(4):223–244, 2013. 

[19] O. Ozbudak, M. Kirc, Y. Cakir, and E.O. Gunes. Effects of the facial and racial features on gender classification. In 
MELECON 2010 - 2010 15th IEEE Mediterranean Electrotechnical Conference, pages 26–29, April 2010. 

[20] P. Jonathon Phillips, Hyeonjoon Moon, Syed A. Rizvi, and Patrick J. Rauss. The feret evaluation methodology for 
face-recognition algorithms. IEEE Trans. Pattern Anal. Mach. Intell., 22(10):1090–1104, October 2000. 

B = Cognitec C = Neurotechnology E = NEC F = Tsinghua University K = MITRE P = Zhuhai-Yisheng 

http://fipa.cs.kit.edu/412.php
http://www.nist.gov/itl/iad/ig/sd32.cfm
http://www.nist.gov/itl/iad/ig/sd32.cfm
http://travel.state.gov/content/visas/english/general/photos.html
http://travel.state.gov/content/visas/english/general/photos.html
http://biometrics.nist.gov/cs_links/face/frvt/frvt2013/NIST_8009.pdf
http://biometrics.nist.gov/cs_links/face/frvt/frvt2013/NIST_8009.pdf
http://www.nist.gov/itl/iad/ig/frvt-2012.cfm


18 REFERENCES FRV T 

[21] Haoyu Ren and Ze-Nian Li. Gender recognition using complexity-aware local features. In Pattern Recognition (ICPR), 
2014 22nd International Conference on, pages 2389–2394, Aug 2014. 

[22] C. Shan. Learning local features for age estimation on real-life faces. In Proc. ACM Workshop on MPVA, 2010. 

[23] Caifeng Shan. Learning local binary patterns for gender classification on real-world face images. Pattern Recognition 
Letters, 33(4):431 – 437, 2012. Intelligent Multimedia Interactivity. 

[24] J.E. Tapia and C.A. Perez. Gender classification based on fusion of different spatial scale features selected by mutual 
information from histogram of lbp, intensity, and shape. Information Forensics and Security, IEEE Transactions on, 
8(3):488–499, March 2013. 

[25] Xiaogang Wang and Xiaoou Tang. Face photo-sketch synthesis and recognition. Pattern Analysis and Machine Intelli­
gence, IEEE Transactions on, 31(11):1955–1967, Nov 2009. 

[26] J. L. Wayman. Large-scale civilian biometric systems - issues and feasibility. In Card Tech / Secur Tech ID, 1997. 

[27] Hadley Wickham. ggplot2: Elegant Graphics for Data Analysis. Springer, New York, 2009. ISBN 978-0-387-98141-3. 

B = Cognitec C = Neurotechnology E = NEC F = Tsinghua University K = MITRE P = Zhuhai-Yisheng 


	Executive Summary
	Caveats
	Acknowledgements
	Disclaimer
	Release Notes
	Introduction
	Purpose
	Application Scenarios

	Methodology
	Test Environment
	Algorithms
	Image Dataset
	Performance Metrics
	Classification Accuracy
	Gender Verification Error


	Results
	Large Constrained Dataset
	Accuracy
	Speed
	Failure to Compute Rate

	Age
	Ethnicity
	Multiple Image Samples
	In the Wild
	Constrained versus In the Wild
	Specific Applications
	Gender Verification
	Sketches





