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Abstract

We studied the effects of factors on the false accept rate
(FAR) for three modern video face recognition algorithms.
We examined the effects of environment (location), video-
(imagery-) based, and demographic factors. The study is
performed on the handheld video in the Point and Shoot
Face Recognition Challenge (PaSC), which consists of 1401
handheld videos of 265 subjects. The results of our analy-
sis are consistent across the three algorithms. Our anal-
ysis shows that FAR can significantly vary. Surprisingly,
for environment and video-based factors, there was a clear
relationship between verification rate (VR) and FAR. An in-
crease (resp. decrease) in the FAR results in an increase
(resp. decrease) in the VR. We looked at the shape of the
marginal impostor distributions for each level of a factor.
In most cases these impostor distributions for a given algo-
rithm moved according to a simple affine transform, trans-
lation and scaling, when moving between factor levels.

1. Introduction

Faces are highly variable. A face can be smiling or
angry; a face can be in bright sunlight or in a poorly lit
room; a face can be viewed in a still image or a YouTube
video. Attributes of people may also matter. Are they Cau-
casian or East Asian, old or young, or healthy or ill? All of
these changes can combine to make face recognition easier
or harder. The challenge is knowing which of these fac-
tors most influence performance. By identifying the factors
with the greatest impact, it is possible to focus algorithm
research and understand how algorithms will respond when

being used. The research community currently tends to fo-
cus attention on three factors: pose, expression and illumi-
nation [6], and these are clearly important. Recently, how-
ever, environment, the combination of location and sensor,
has been shown to strongly effect verification rate (VR) [&].
The analysis presented here quantifies how environmen-
tal, video-based and demographic factors effect the impos-
tor distribution, i.e. the likelihood of falsely matching pairs
of faces of different people. Studying the impact of factors
on the impostor distribution, and thus the false accept rate
(FAR), allows us to ask a series of questions. Do changes in
factors effect FAR? Is there a relationship between VR and
FAR? Are some environments (locations) easier than oth-
ers? Are larger faces easier to recognize? How do changes
in a factor effect the impostor distribution? Do these effects
alter the shape of the tail of the impostor distribution? All of
these questions are addressed in the results presented below.
The key contributions of this work are:

1 The first comprehensive study of how factors effect the
impostor distribution and FAR for video face recog-
nition algorithms. We examine environment, video-
based (imagery-based), and demographic factors.

2 The FAR varies significantly. For the environment fac-
tor, the FAR varies from 0.01 to 0.43 for one algorithm,
and from 0.03 to 0.27 and from 0.04 to 0.24 for the two
other algorithms.

3 For environment and video-based factors, there was a
clear relationship between verification rate (VR) and
FAR. An increase (resp. decrease) in the FAR results
in an increase (resp. decrease) in the VR.



4 A study of how changes in the environment and video-
based factors effect the impostor distribution.

The video-based factors are computed by an algorithm.
Since these factors are computational, the results in model
key conditions in real-world scenarios and the results in this
paper could be tested in these scenarios.

In prior work, how factors, covariates, effect the match
distribution and consequently verification rates has been
studied, and a mature protocol is in place for analyzing face
recognition performance based upon match-pairs [1],[5]. In
contrast, the impostor distribution has been less studied. In
the Good, the Bad and the Ugly (GBU) Challenge problem
the impostor distribution was examined and shown to be
relatively stable across the three partitions of varying dif-
ficulty [12]; thus it was not emphasized. However, more
recently O’Toole et al. [1 1] looked at the effect of race and
gender on the impostor distribution. They found that perfor-
mance changes when the impostor distribution is restricted
to people of the same gender or race. Sgori et al. [13] cre-
ated a version of the GBU based on the impostor distribu-
tion.

Adding to the evidence that the impostor distribution
does matter, in this paper we present a detailed analysis of
impostor distributions for the video portion of the Point and
Shoot Face Recognition Challenge (PaSC) [2]. The PaSC
contains video taken with handheld video cameras that are
typical of those in cell phones. The PaSC is a designed
data set which systematically varied imaging factors includ-
ing camera, location and subject action. Also, included in
our analysis are subject and imagery factors. The imagery
factors are based on distributional analysis of a video se-
quence [8]. This allows us to compute measures of yaw and
face size for a video that are predictive of performance. To
the best of our knowledge, this is the first comprehensive
study of factors that effect the impostor distribution for un-
constrained face recognition.

2. PaSC Challenge and Data Set

The analysis presented here is carried out for three algo-
rithms applied to the handheld video portion of the Point-
and-Shoot Challenge (PaSC) [2]. Section 2.1 summarizes
the data including details about the video data. Section 2.2
summarizes the evaluation protocol and algorithms.

2.1. Video Data

The PaSC handheld video data was collected at the Uni-
versity of Notre Dame over seven weeks in the Spring
semester 2011. In a given week, all videos were collected
at the same location. The videos show people carrying out
tasks rather than looking into a camera. Collection was car-
ried out according to a plan - a script - in which generally
a person entered a scene, approached some designated spot,

carried out an action, and then left the scene. The videos
typically begin as the person is moving into the scene and
terminate as the person is leaving. Video length ranges
roughly between 50 and 400 frames with most videos con-
taining between 200 and 250 frames. There are a total of
1401 videos of 265 different people. Each person appears
in between 4 and 7 videos. Videos were acquired at 6 differ-
ent locations using one of five different cameras at resolu-
tions ranging between 640x480 to 1280x720. Thus, each
video represents one person at a specific location captured
with one handheld video camera. Table | summarizes the
camera/location/action combinations'.

Table 1. Location, camera and action combinations. The abbrevi-
ations for the environment is in the right column.

Sensor Location  Action Abbrev.
Flip Mino F360B canopy golf swing Ca
Kodak Zi8 canopy bag toss Ca
Samsung M. CAM  office pickup newspaper  Pa
Sanyo Xacti lab 1 write on easel Ea
Sanyo Xacti lawn blow bubbles Bu
Nexus Phone hallway  ball toss Ba
Kodak Zi8 lab 2 pickup phone Ph

In the findings below, the influence that location and ac-
tion combinations exert over performance is strong, and the
abbreviations introduced in Table 1 will be used when re-
porting results. Therefore here, briefly, is a bit more infor-
mation about each. The canopy (Ca) was a white pop-up
material structure setup outside in bad weather. Two actions
were carried out on different days. The first was swinging a
golf club and the second tossing a bean bag. The office (Pa)
was a large well lit room where a subject picked up and
looked at a newspaper. In Lab 1 (Ea) each subject wrote on
a large floor standing easel set out in a large open lab space.
The lawn (Bu) was an open grassy area in a plaza with
bright sun. Subjects approached a table and blew bubbles.
The hallway (Ba) was an interior space of an older building
with relatively dark stone walls where subjects threw a toy
basketball. In lab 2 (Ph) a subject picked up a phone in a
relatively cluttered lab area.

Figure 1 shows four zoomed-in clips from four different
videos. The upper left clip is from the office. The upper
right is from the canopy. The lower left is from lab 2, and
the lower right is from the lawn. These frames are charac-
teristic in several respects, for example suggesting the range
of lighting conditions and also the fact that in general sub-
jects are not attending to the camera.

IThe identification of any commercial product or trade name does not
imply endorsement or recommendation by NIST.



Figure 1. Clips of two people sampled from four PaSC handheld
videos. All four videos were taken at different locations: two out-
doors and two indoors.

2.2. Algorithms

Our analysis is performed on three of the top performers
in the Face and Gesture 2015 Person Recognition Evalua-
tion [3]. The algorithms were developed independently by
three groups. This independence provides evidence that our
conclusion will generalize to algorithms not included in this
study. Several other conditions were adopted to make sure
the results were not tuned to the PaSC data set. First, the
algorithms were not trained on subjects in the PaSC chal-
lenge. Second, the algorithms were not trained on imagery
from locations that are included in the PaSC challenge.
Third, cohort or gallery normalization using the PaSC im-
agery was not allowed.

Face detection and associated eye coordinates estimated
by the Pittsburgh Pattern Recognition (PittPatt) face recog-
nition SDK 5.2.2 were made available to algorithms used in
this study. The three algorithms represent relatively distinct
approaches as summarized below.

The Chinese Academy of Science (CAS) algorithm uses
two convolutional neural networks, one for larger and one
for smaller faces [7]. Network features are pooled and fed to
three kernel linear discriminant analysis based-algorithms
operating over sets of video frames. Similarity is the
weighted sum of the cosine angle between query and tar-
get videos feature vectors.

The University of Ljubljana (Ljub) algorithm combines
four feature types with a probabilistic principal component

analysis [15]. The four feature types are Gabor wavelets,
local binary patterns, local phase quantization histograms,
and pixel intensity. Fixed sized templates are then generated
for each video and finally compared using a linear logistic
regression weighting scheme.

The Stevens Institute of Technology (SIT) algorithm
combines scale-invariant feature transform (SIFT) features
with a probabilistic modeling procedures and principal
component analysis based dimensionality reduction pro-
cess [9], [10]. The probabilistic modeling is realized
through a mixture of Gaussians. Fixed sized templates re-
sult, one template per video, and these are compared using
a joint Bayesian classifier.

3. Methodology for Analysis

Video meta-data divides into three basic categories.
First, environment-pair factors arising from the combina-
tion of locations, sensors, and actions summarized above in
Table 1. Second, video-based factors such as the size of
the face as it appears in the videos or the degree the face
image is frontal. Third, there is demographic information
about the person in the video, in particular gender and race.
The methodology set forth below allows us to quantify how
changes in factors associated with this meta-data influence
the likelihood of generating a false match.

3.1. Measuring Performance

Performance is measured for a verification task. In a ver-
ification task, two faces are presented to an algorithm, and
the algorithms responses with a measure of the degree of
similarity of the two faces. In this paper all faces are in
videos. Formally, algorithm A produces a similarity score
sa(z,y) between two faces in videos = and y. The two
videos are referred to as face-pair (x,y). We assume that
there is one prominent face in each video. A larger similar-
ity score indicates a higher likelihood that the faces in the
image are the same.

Performance is computed over a set of face-pairs F' with
the face-pairs divided into two sets: match-pairs M and
impostor-pairs I. A face-pair is a match-pair if the videos
are of the same person and an impostor-pair otherwise. A
verification decision is made by thresholding a similarity
score and declaring the faces are the same if s4(x,y) > 7
and different otherwise. Note the similarity scores s 4 (z, y)
for an Algorithm A are contained in the similarity matrix
produced by algorithm A. The verification rate (VR) for
an algorithm is the fraction of match-pairs that are correctly
declared to be the same person at a set threshold 7; formally,

VR(SA(F)7T) = #{SA(x’ii(Zx ;)aned A(]\.j"}y> < M}

The false accept rate (FAR) is the fraction of impostor-pairs

(1




that are incorrectly declared the same person; formally,

PAR(s4(F),r) = AR 2 Tt (0] € 1)

To quantify how changing a factor alters performance
these equations need to be extended. Let us illustrate using
gender as an example. The subject in one video must be
either male of female: a two-level factor. Therefore, the
first step is to create a gender factor with three levels: both-
female, both-male, or female-male. Note female-male only
arises for impostor-pairs. The next step is to establish a
global threshold 7,. In this paper, 7, is usually chosen so
that FAR(s4(F), 7,) = 0.1.2

Now, given a global threshold 7, and factor levels E;,
the marginal VR and FAR broken out by factor levels are:

2

#{sa(x,y) > 14 and (z,y) € E; N M}

VR(sa(E:), 79) = #{(z,y) € E;N M}
3)

and

FAR(sa(E;), 1q) =

o #{SA(I7y) > Tg and (Ivy) € E’L mI}

#{(z,y) € E; NI}

“4)
Thus, for the gender example, there are separate marginal
VR and FAR values for FEyom-females Fhboth-male, and
Elfemale-mate- These marginal rates quantify how VR and FAR
change when changing between factor levels.

3.2. Environment, Video & Demographic Factors

The environment-factor arises because of the data acqui-
sition plan and specifically the seven distinct location, sen-
sor, and action combinations summarized Table 1. Also,
since the environment factor must describe pairs of videos,
there are a total of 22 pairs. In 15 environment-pairs, the
videos are from different environments and acquired on dif-
ferent weeks; in one pair, the videos are from the same en-
vironment (canopy) and acquired on different weeks. For 6
pairings the videos are from the same environment and col-
lected in the same week; these only include impostor pairs,
i.e. pairs of videos of different people.

Video-factors derive from single image properties, for
example the face size measured as the number of pixels be-
tween the eyes. Another is yaw, the degree to which the
face is turned to the side. Estimates of both are available
from the PittPatt SDK 5.2.2 software, as is one more factor,
the confidence of the algorithm that a true face has been
found. All three of these are of interest. To map these
factors computed on a per frame basis to a single value
characterizing a whole video we adopt the distributional

2FAR=0.01 is the standard for PaSC when reporting VR. However, our
goal is to quantify how factors alter FAR and VR; this shift in threshold
better leverages the available data.

method of Lee et al. [8]. To explain, if g;(z) is the fac-
tor for image x, then for a set of video frames { f1,..., fn}
and factor values {gr(f1),...,91(fn)} the video factor is
gv(x) = mean{g;(f1),...,91(fn)}. The prior work of
Lee et al. [8] showed this extension to video was useful.

The video-factors are extended to pairs of videos as fol-
lows. For yaw, the factor hyqw(x,y) = |gv(z) — gv(y)|
where gy (x) and gy (y) are the yaw factors for videos - and
y. The yaw factor is larger between pairs of videos when
they show, on average, faces from less similar viewpoints.
The extension to pairs for face size and confidence take the
smaller value from the pair: h(z,y) = min{gy (x), gv ()}
The assumption is the smaller of the two values is the dom-
inant predictor of recognition difficulty. The real-valued
factors are converted to levels by ordering video-pairs from
smallest to largest factor value and then dividing them into n
equal sized bins. The result is n levels ranging from small-
est to largest factor value.

The demographic-factors, specifically gender and race,
are encoded as already suggested above in the example
from Section 3.1. For gender the levels are female-male
(F/M), male-male (M/M) and female-female (F/F). For
race they are Caucasian-Asian (C/A), Caucasian-Caucasian
(C/C) and Asian-Asian (A/A).

4. Results for Environment-Pair Factors

It is well known that environment significantly effects al-
gorithm performance. The design of the PaSC data set en-
abled us to characterize the impact of environment on per-
formance. Previous studies have investigated the effect of
environment on verification rates [1], [8]. We proceed by
examining the effect of environment on the FAR and then
look at the relationship between FAR and VR.

Since comparisons are between two videos, we look
at performance for environment-pairs. For the three al-
gorithms in our study, we computed the FAR for the 22
environment-pairs as described in Section 3.1. Figure 2
summarizes how environment-factors effect FAR for the
three algorithms. Along the horizontal axis the 22 pairs
of environments described in Section 3.2 are enumerated.
The vertical axis shows the marginal FAR values, eq. 4,
using a 7, that corresponds to a global FAR = 0.10. The
environment-pairs are ordered by marginal FAR averaged
over the three algorithms. All environment-pairs to the
left of vertical line, from pairs Ba-Ca to CaDW-CaDW, are
cross-week pairs: CaDW signifies canopy videos taken in
different weeks. All pairs to the right consist of video-pairs
taken in the same week.

The principal finding is that environment exerts a dra-
matic influence over the impostor distribution and hence
the marginal FAR. Algorithm Ljub has the greatest range in
FAR from 0.01 to 0.43, and algorithm CAS has the smallest
range from from 0.04 to 0.24. For cross-week environment-
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The two canopy events were separated different-week and same-week pairs.

pairs, the range for Ljub is 0.01 to 0.22, SIT is 0.03 to 0.24,
and CAS is 0.04 to 0.16. The FAR for the three algorithms
varies by a factor of 22, 8, and 4 respectively. Prior work
has already suggested the importance of environment [ 1],
[8], this is the first clear evidence of how significantly it
effects the impostor distribution.

A related finding is the importance of the cross-week ver-
sus same-week distinction. The mean cross-week marginal
FAR averaged over the algorithms was 0.09 compared to
0.22 for cross-week pairs. A recent related result on still
face image by Sgori et al. [13] also showed higher FAR
values for same day image-pairs compared to different day
image-pairs. One important conclusion is that the presence
of impostor pairs in a data set taken at the same time biases
upward the expected FAR for the data set as a whole.

4.1. Do VR and FAR Track Together?

We will now look at the relationship between the
environment-pair FARs and VRs for the cross-week pairs.
Scatterplots in Figure 3 relate marginal VR to marginal
FAR, egs. 3 and 4, for the 16 cross-week environment pairs.
The horizontal axis is the FAR on a log-scale, and the ver-
tical axis is the VR on a linear scale. The points represent
environment-pairs, and the line is a linear regressor. For all
three algorithms, the regression line suggests a linear rela-
tionship between log(FAR) and VR. In other words, an
environment-pair that has a higher marginal VR will likely
have a higher marginal FAR. Unfortunately, this linear re-
lationship suggests that finding an environment-pair that is
easier than others is unlikely. We say an environment-pair
is easier if it has both a higher VR and a lower FAR than
other pairs.

5. Results for Video-Based Factors

The impact of image- and video-based factors on veri-
fication rates have been extensively studied; however, their
impact on the FAR has not been examined. We first look
at the relationship between FAR and VR for three video-
based factors and then investigate if there is an interaction
between environment-pairs and the video-based factors.

Figure 4 shows the trade-off between FAR and VR for
face size. The procedure described in Section 3.2 for cre-
ating factor levels through sorting and binning was used to
create 10 face size factor levels: smallest faces to largest
faces. Each point in Figure 4 is plotted according to the
average marginal VR and FAR for all those video-pairs at
one face size level. A trend similar to that seen for environ-
ment factors is evident, changes in face size associated with
higher marginal VR correlate with higher marginal FAR.
There is a similar relationship for yaw and face size; see
Figure 9 in Supplemental Material for the corresponding
scatterplots.

Figure 5 highlights possible interactions between en-
vironment and video factors for Algorithm Ljub. Like
the scatterplots in Figure 3, each point corresponds to an
environment-pair. Unlike in Figure 3, in Figure 5 circle
size varies and is proportional the mean video factor for
an environment-pair. For the yaw-factor, all the circles are
about the same size, which means that yaw does not inter-
act with the environment-pair. In contrast, a clear interac-
tion effect between environment and face size is evident:
environment-pairs with smaller VR and FAR tend to have
small circle sizes and hence smaller mean face sizes. Fig-
ure 5 also suggests some interaction between environment
and face confidence.

This analysis was repeated for Algorithms SIT and CAS,
and the conclusions were the same. A complete set of plots
for this analysis are in Figure 10 in the Supplemental Mate-
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global FAR =0.10.

rial. Across all three algorithms for all three video factors,
we saw a trade-off between VR and FAR for different levels
of each factor. Further analysis suggested an interaction be-
tween environment and both face size and face confidence
with face size having a larger interaction.

6. Results for Demographic Factors

It is known that gender and race effect the performance
of algorithms [11], [5]. Figure 6 shows the effect of gen-
der and race on the marginal FAR for Algorithm Ljub. The
corresponding results for all three algorithms are reported
in Figure 11 in the Supplemental Material. The results
show that cross-gender and cross-race impostor-pairs have
a lower FAR. This is consistent with O’ Toole et al. [11].

7. Subject Identities

Subject identity as a factor has been studied fairly exten-
sively, often under the heading “The Biometric Zoo” [4],
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Figure 6. FAR for demographic factors for Ljub. The FAR for
each factor-level is reported for a global FAR = 0.10. For gen-
der, there are three factor levels: female-male (F/M), male-male
(M/M), and female-female (F/F). For race, there are three factor-
levels: Caucasian-Asian (C/A), Caucasian-Caucasian (C/C), and
Asian-Asian (A/A).
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[16]. However, defining factor levels based upon identity is
problematic and so instead we move to the more interesting
question of whether the marginal VR for a person corre-
lates with the marginal FAR. In other words, do we see for
people the same connection between VR and FAR as found
for the other factors addressed above. To answer this ques-
tion, for each algorithm, the 265 subjects are rank ordered
by marginal FAR and marginal VR. Spearman’s rank corre-
lation coefficient for these tests are 0.15, 0.24 and 0.36 for
algorithms CAS, Ljub and SIT respectively. In short, un-
like the other factors studied, VR and FAR are not strongly
correlated for people. This finding is consistent with previ-
ous zoo studies on unconstrained face recognition [14].

8. Impostor Distributions and Normalization

The variability in the marginal FAR clearly shows vari-
ability in the impostor distributions. The next question to
ask: what type of variability? There are two distinct possi-
bilities. First, the distribution related by an affine transfor-
mation; e.g., a shift in the location parameter and a change
in the scale parameter. Alternatively, their differences are
arising in the tails of the distributions with one distribution’s
tail substantially heavier than another.

Figure 7 shows density estimates of the match and im-
postor distributions for two environment-pairs. It appears
that the tails of the impostor distributions are different. To
get a better sense of differences in the tails of the impostor
distributions, we will look at qg-plots.

A qg-plot is a graphical method to compare two distribu-
tions, particularly with respect to their skewness and tail be-
havior. In Figure 8, we compare the impostor distributions
for two environment-pairs for Algorithm CAS . When the
qq-plot shows a straight line, as it does for the left panel,
it means that the two distributions are merely shifted, and
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Figure 7. Density estimations of the match (solid blue) and
impostor (dashed red) distributions of the environment pairs
Ball/Canopy (Ba-Ca) and Paper/Bubble (Pa-Bu) for Algorithm

CAS.

possibly rescaled, versions of each other. The right panel
shows a very interesting result where the impostor distri-
butions for the Paper-Bubble (Pa-Bu) and the Ball-Canopy
(Ba-Ca) environment-pairs have very different shapes: the
upper (right) tail of the distribution for Ball-Canopy (Ba-
Ca) impostor distribution is heavier and extends further than
does the upper tail of the Paper-Bubble (Pa-Bu) impostor
distribution. The two impostor distributions have funda-
mentally different shapes: Ball-Canopy (Ba-Ca) has many
more large impostor scores and more extreme ones.

We found that the majority of qq-plots indicated an affine
relationship (i.e., shift and scale) among the impostor distri-
butions. There were a number of environment-pairs where
the impostor distribution shapes were different; e.g., not
affine. The generalizability across algorithms for affine
cases was unexpected.

We now proceed with a quantitive experiment to test the
conclusions of our exploratory data analysis on the shape of
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the impostor distributions. If the impostor distributions for
the 16 cross-week environment-pairs are all affine transfor-
mations of each other, then it should be possible to nor-
malize the distributions to be the same. If the normal-
ized distributions were the same, then the FAR over the 16
environment-pairs should be the same. We experimented
with two normalization methods. Independently, for each
environment-pair, we z-normed its impostor distribution to
have mean 0 and standard deviation 1. From all 16 z-
normed impostor distributions, we computed a threshold 7,
for a global FAR = 0.10. Using the new threshold, we cal-
culated the FAR for the environment-pairs and then com-
puted the standard deviation over the 16 FARs. If the stan-
dard deviation for the z-normed distribution was substan-
tially smaller than the standard deviation for the unnormal-
ized distributions, then we assume that the impostor dis-
tributions were affine transformations of each other. The
results of this experiment are in Table 2. We repeated the
experiment with a robust normalization that shifted the dis-
tributions by the median and scaled by the median absolute
deviation (MAD).

Table 2. The standard deviation (SD) of the FAR for the 16 cross-
week environment-pairs. The standard deviation is reported for
three conditions. Unnormalized: the impostor distribution is not
normalized; z-norm: the distribution is shifted by the mean and
scaled by the SD; and robust norm: the distribution is shifted by
the median and scaled by the MAD.

Algorithm Unnormalized z-norm Robust norm

CAS 0.034 0.047 0.012
Ljub 0.051 0.003 0.005
SIT 0.050 0.004 0.005

For Algorithms Ljub and SIT, the z-norm was effec-

tive, which suggests that the impostor distribution are affine
translations of each other. The z-norm and robust normal-
ization were equally effective for Algorithms Ljub and SIT.
For Algorithm CAS, robust normalization was substantially
better than the z-norm, but did not reduce the standard de-
viations as much as for the other two algorithms. This sug-
gests that there is variability in the tails of the impostor dis-
tribution.

9. Conclusions

We have shown that environment and video factors ef-
fect the FAR for three algorithm on the video portion of
the PaSC face recognition challenge. Surprisingly, for en-
vironment and video-based factors there was a clear rela-
tionship between VR and FAR. For these factors, one level
is not better than another; there is a trade-off between VR
and FAR. An increase (resp. decrease) in the FAR results
in an increase (resp. decrease) in the VR. Also, unexpect-
edly, impostor distributions in most cases undergo simple
translation and scaling when shifting between factor lev-
els. In only a few cases is the change more complex. Our
results illuminate a path for better understanding the per-
formance of face recognition algorithms in unconstrained
scenarios. The results underscore a need to better control a
tendency of current algorithms to increase impostor scores
in favorable settings as defined by higher true-match scores.
These results also establish a foundation for better modeling
of distributional changes conditioned on measurable, know-
able, attributes of target application environments, and con-
sequently bring us closer to the goal of predicting perfor-
mance in new settings.
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Figure 9. Scatterplots of VR vs FAR for video-based factors, fitted with a linear regressor for each algorithm. There are nine scatterplots,
one for each algorithm and video-based factor. One column for each video factor and one row for each algorithm. All video-based factors
are divided into 10 bins. Thresholds set to global FAR = 0.10.
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Figure 10. Interactions between environment-pairs and video-based factors. There are nine scatterplots, one for each algorithm and video-
based factor. One column for each video factor and one row for each algorithm. Each panel looks at the interaction for an algorithm
between environment-pairs and the factor in its title. The size of each circle is proportional to the mean of the video factor for each
environment-pair.
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Figure 11. FAR for demographic factors for Algorithms CAS, Ljub, and SIT. The FAR for each factor-level is reported for a global FAR
=0.10. For gender, there are three factor levels: female-male (F/M), male-male (M/M), and female-female (F/F). For race, there are three
factor-levels: Caucasian-Asian (C/A), Caucasian-Caucasian (C/C), and Asian-Asian (A/A).
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