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Abstract 

The legislation included in the middle class tax relief and job creation act of 2012 [1] 

established the First Responder Network Authority (FirstNet) for the purpose of 

deploying and running a nationwide Long Term Evolution (LTE) network for Public 

Safety called the National Public Safety Broadband Network (NPSBN). This network has 

unique characteristics that distinguish it from other commercial networks, such as user 

applications, coverage, and reliability. In this document, we present the modeling method 

developed by the National Institute of Standards and Technology (NIST) to evaluate the 

performance of LTE networks for Public Safety. By using sampling techniques and a 

flexible design, we are able to quickly investigate multiple assumptions and report their 

impact at a national scale. The results presented in this document focus on the impact of 

coverage objectives, reliability, and high power user equipment (UE). 
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1. Introduction 

The evolution of the communication networks used by Public Safety users toward a 

broadband wireless technology such as Long Term Evolution (LTE) (as mandated in [1] ) 

has the potential to provide users with better coverage, while offering additional capacity 

and enabling the use of new applications that make their work safer and more efficient. 

Designing such a network presents several challenges due to the uniqueness of the 

deployment (there is no previous nationwide Public Safety network to build upon), the 

requirements (e.g., it must provide reliable coverage in rural areas and inside buildings, 

while supporting loads ranging from day to day traffic all the way up to large scale 

disasters), and the scale, which is national. 

The objective of this document is to describe the work carried out to facilitate the 

deployment of the National Public Safety Broadband Network (NPSBN) by providing 

insights into the performance of LTE networks for Public Safety under various scenarios. 

While analyzing a few selected areas across the nation may provide insights on specific 

aspects or situations, their relevance may be limited when looking at a nationwide 

deployment. Because of the scaling problems associated with trying to analyze the entire 

area of the United States, we developed a modeling tool to select, configure, and 

automatically perform the analysis of representative areas and then extrapolate the results 

nationwide. This tool makes use of commercial off-the-shelf tools, and extends their core 

functionalities to handle the particularities of the task at hand. 

The rest of the document is organized as follows: Section 2 describes the modeling 

method to perform a Radio Frequency (RF) planning of a given geographical area. It 

highlights the type of input information needed for accurate modeling and defines the 

performance metrics used in the nationwide modeling. Section 3 depicts the approach 

used to address the scaling issues related to the analysis of the entire nation. Section 4 

presents the results of sensitivity analyses and Section 5 provides concluding remarks. 

This document updates and expends a previous publication by the authors [2].  

2. Radio Frequency Network Planning 

RF Planning tools facilitate network designs and optimizations by modeling the behavior 

of the networks. They allow network operators to adapt their network configurations by 

testing potential scenarios without disrupting their current network. This section 

describes the inputs used to represent the RF conditions and assumptions about the 

network operations because they impact the accuracy of the models. In addition, it 

defines the performance metrics used in the calculation of the coverage status. While the 

work was performed using InfoVista Planet, other tools may provide similar 

functionalities; by using the same inputs, assumptions and performance metrics it shall be 

possible to compare the results of different network plans or RF tools.  
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2.1. Inputs and Assumptions 

2.1.1. Geo data 

Computerized geographical/geospatial data, commonly known as geodata, describes the 

area to cover in terms of parameters such as the elevation, clutter (i.e., land cover), or 

buildings. The data provides information about obstacles that will affect how the signal 

propagates from the eNodeB to the user equipment (UE) and vice versa. Table 1 provides 

a description of the different types of geodata that can be provided. 

 
Table 1: Types of geodata 

Geodata type Description 

Elevation Provides elevation data throughout the map as a function of 
geospatial coordinates (e.g., latitude and longitude), and is 
typically given in units of meters above sea level. This will 
describe natural elements such as mountains or plains.  

Clutter Describes how the land is covered, such as forest, roads, or 
airports. Each clutter type impacts the signal propagation 
differently and as such a clutter loss can be assigned to each type. 

Clutter height Provides the height of the clutter as a function of geospatial 
coordinates, for example the building height. Without this 
information, a fixed height per clutter type must be assumed. 

Building 
morphologies 

Defines the location and shape of the buildings. This information 
further enhances the accuracy of the RF predictions in urban 
areas. However, it is not sufficient to model precise in-building 
coverage, which requires detailed knowledge of interior floor 
plans and the materials used in constructing walls and ceilings.  

 

The accuracy of the model is affected by both the type of geodata provided as well as its 

resolution (i.e., the spacing between grid points). A higher resolution (tighter spacing) 

will usually lead to more accurate predictions, especially in areas where the signal 

encounters many obstacles, e.g., urban areas. This is illustrated in Figure 1 for downtown 

Chicago. With a 30 m resolution, it is not possible to distinguish the buildings, whereas a 

5 m resolution provides sufficient information to identify streets and buildings. 
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 Figure 1 (a) Clutter maps of Chicago – 30 m resolution, (b) 5 m resolution 

 

2.1.2. Propagation Models 

Propagation models are essential for wireless network planning. Their purpose is to 

characterize the RF channel between a transmitter and receiver, specifically how the 

channel distorts a transmitted signal on its path to the receiver. There are a number of 

environmental factors which affect an RF channel. One of the most important factors is 

the terrain of the environment. As explained in Section 2.1.1, the terrain is useful to 

describe for example whether the environment is flat (e.g., the Great Plains) or whether 

there are mountains (e.g., Rocky Mountains). Terrain is specified by elevation geodata in 

terms of a grid-based terrain map; each grid point has an associated elevation value. 

Figure 2 shows the terrain map for the United States. 



 

4 

 

 
Figure 2: Shaded relief image of the United States  

  

If the direct path from the transmitter to the receiver is unobstructed, the transmitted 

power will arrive with an attenuation equivalent to that of free space. If the terrain, 

however, obstructs, or “shadows”, the direct path, additional power will be absorbed. 

Besides the effects of shadowing, terrain can also cause fading by reflecting and 

diffracting radiated power, say off hills or a mountain, so that it arrives at the receiver 

through other paths in addition to the direct path. In some cases, the multiple signals 

arriving at the receiver combine constructively, boosting the signal strength; in other 

cases, the signals interfere with each other, reducing the signal strength. The combination 

of these effects (attenuation over distance, shadowing, and fading) will result in an 

overall signal degradation known as pathloss. Given the fixed location of a transmitter, 

pathloss values are generated from the terrain map; each grid point will then have an 

associated pathloss value. 

The other most important environmental factor which affects an RF channel is the clutter 

in the environment. As explained in Section 2.1.1, like the terrain, the clutter is defined 

through a grid-based clutter map; each grid point is associated to a discrete clutter class. 

Figure 3 shows a clutter map for the United States. Typical clutter classes are urban, 

suburban, rural, industrial, water, etc. Just as the terrain contributes to the pathloss 

experienced at a receiver, the clutter causes additional shadowing and fading effects. The 

purpose of a clutter map is to characterize the incremental clutter pathloss, or simply the 
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clutter loss, in addition to the terrain. For example, consider the urban clutter class:  

Urban environments are typically characterized by the presence of tall buildings, which 

shadow, reflect, and diffract power, hence complementing the effects of the terrain on the 

pathloss. Another example is the suburban class. In it, there will typically be lower, 

residential buildings and so the clutter loss will be less than the typical urban class loss, 

conversely, the suburban clutter loss is typically greater than the loss associated with the 

rural class, which is characterized by sparse buildings and many trees. 

 
Figure 3: Clutter map of United States 

The amount of clutter loss per class will vary from environment to environment. For 

example, the kinds of trees (height, shape, density, etc.) found on the East Coast will be 

different than those found on the West Coast. Likewise, the construction materials used 

for housing in various parts of the country will also differ. As a result, the clutter losses 

for the same suburban class will, in turn, vary. In order to determine the clutter loss for a 

specific area, it is customary to perform a drive test in that area. In a drive test, the 

received power from a fixed transmitter is collected throughout the area; knowing the 

transmitted power, the pathloss can be calculated. The measured pathloss values are used 

to tune the clutter loss per area. A pathloss model resulting from the tuning process is 

known as tuned model. In order to design their networks, commercial carriers obtain 

tuned pathloss models, often through secondary vendors. The number of tuned models to 

achieve accuracy similar to what commercial providers use numbers in the hundreds, 

with the specific amount being dependent on the specific provider. 
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2.1.2.1. Propagation Model Mapping 

During the course of our work, we were able to obtain 26 tuned models from a secondary 

vendor. They were generated in four separate regions of the country with varying 

numbers of models per region: Arkansas (AR) (5 models), Chicago (CHI) (3 models), 

Northern California (NCA) (11 models), and Washington-Baltimore (WABA) 

(7 models). Consider Arkansas, in which the 5 models were generated from 

measurements in the forested area of the state (AR_FOREST), the mixed East and West 

areas of the state (AR_MIX_E and AR_MIX_W respectively), the mountainous North 

and South (AR_MTN_N_S), and the suburban area of the East (AR_SU_E).  

Because the tuned models are recommended for application only in those tuned areas in 

which they were generated, this leaves a void in the rest of the country. Rather than use 

generic, untuned models to fill that void, we mapped the 26 models to the untuned areas. 

The mapping was determined through the terrain and clutter properties of the analyzed 

area. We first consider the terrain properties of an area, which we define through the 

cumulative distribution function (CDF) of the elevations in its terrain map1. A similarity 

metric is computed between a tuned (T) area and an untuned (U) area by comparing the 

aforementioned terrain CDFs of the respective tuned and untuned areas.  Specifically, the 

similarity metric is given through the Kolmogorov-Smirnov (K-S) test [3]. The test yields 

the maximum distance, 𝑑(𝑇, 𝑈), between the two CDFs across all values of the random 

variable. We define the terrain similarity metric to be: 

𝑓𝑇𝐸𝑅𝑅𝐴𝐼𝑁(𝑇, 𝑈) = 1 − 𝑑(𝑇, 𝑈) 
The metric value ranges between 0 and 1, the former indicating the worst possible fit 

(𝑑(𝑇, 𝑈)  =  1 (i.e., the CDFs have no values in common)) and the latter indicating the 

best possible fit (𝑑(𝑇, 𝑈)  =  0 (i.e., the CDFs are equal at all values)). 

Similar to the terrain properties, the clutter properties of an area are defined by the 

distribution of the clutter throughout the area. Because the clutter classes have no 

numeric value, as opposed to the terrain elevation, a CDF is not computed. Rather, an 

area is defined by a clutter vector, v, indexed according to the clutter class. The indexed 

vector entry is the ratio of the area in the class to the whole area. The clutter similarity 

metric between a tuned (T) model and an untuned (U) area is then given by Pearson’s 

correlation coefficient [3] of the respective clutter vectors v𝑇 and v𝑈 as: 

𝑓𝐶𝐿𝑈𝑇𝑇𝐸𝑅(𝑇, 𝑈) =
𝐸[(v𝑇 − 𝜂v𝑇

)(v𝑈 − 𝜂v𝑈
)]

√𝐸[(v𝑇 − 𝜂v𝑇
)

2
]𝐸[(v𝑈 − 𝜂v𝑈

)
2

]

 

where 𝜂x indicates the mean of the vector x. The clutter similarity metric ranges between 

0 and 1, the former indicating the worst possible fit (the two areas have no clutter classes 

in common) and the latter indicating the best possible fit (the two areas have the same 

distribution of clutter classes). 
When comparing a tuned model to an untuned model, both the terrain and clutter 

properties are considered jointly. This is accomplished by weighting the terrain and 

clutter similarity metrics equally through a joint similarity metric: 

𝑓𝐽𝑂𝐼𝑁𝑇(𝑇, 𝑈) = 0.5 ·  𝑓𝑇𝐸𝑅𝑅𝐴𝐼𝑁(𝑇, 𝑈) + 0.5 ·  𝑓𝐶𝐿𝑈𝑇𝑇𝐸𝑅(𝑇, 𝑈) 

Finally, in order to determine the mapping for an untuned area, the untuned area is 

compared against the 26 tuned models. The tuned model that produces the largest joint 

                                                 
1 The CDF 𝐹𝑋(𝑥) gives the fraction of a set of values 𝑋 that is less than or equal to 𝑥. 
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similarity metric is selected. Figure 4 shows the largest joint similarity metric for all 

subdivisions in the United States. Note that two-thirds of the area has a similarity metric 

in excess of 0.75, which indicates that there will be a very good fit in many subdivisions. 

Poorer fits tend to be concentrated in the coastal regions, including the Florida Keys and 

the shores of the Great Lakes. Figure 5 shows the mapping of the 26 untuned models to 

the full set of subdivisions in the US.  

 
Figure 4: Correlation factor 
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Figure 5: Mapping of the propagation models 

2.1.3. User Distribution 

The location of the users in the network is another important aspect to consider. When 

coupled with the traffic models, it determines the distribution of the demand in the 

network and therefore where the cellular base station sites should be located.  

2.1.3.1. Estimation of Public Safety users  

The purpose of the NPSBN is to provide a reliable network to Public Safety users. In this 

document, we assume that it includes law enforcement officers, firefighters, and 

Emergency Medical Services (EMS) employees at the federal, state, and local 

jurisdictions. There are an estimated 2.73 million Public Safety employees nationwide 

and Table 2 provides the breakdown per category.  

 
Table 2: Summary of Public Safety user count 

Categories NIST Estimate 

Law Enforcement 1.3 million 

Fire 1.2 million 

EMS 227 thousand 

Total 2.73 million 

2.1.3.1.1. Law Enforcement Agencies 

A good source to determine the number and distribution of law enforcement officers is 

the census data collected by the Bureau of Justice Statistics at the federal [4], state, and 

local [5] levels.  
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2.1.3.1.1.1. Federal Law Enforcement users 

The report on Federal Law Enforcement Officers from 2008 [4] presents data from 73 

federal law enforcement agencies. According to the report, there were approximately 

120 000 full-time law enforcement officers in September 2008. The raw data used in that 

report is not publicly available so it is limited to a breakdown of the number of officers 

per state. Employment information from OPM [6] is an alternative to refine the 

geographical distribution of federal law enforcement users as it provides the county of 

employment. Eight out of the 690 occupations listed by OPM identify law enforcement 

functions representing 110 000 employees. Those occupations are as follows: “General 

inspection, investigation, enforcement and compliance”, “Park Ranger”, “Criminal 

investigation”, “United State Marshals”, “Police”, “Correctional officers”, “Border patrol 

enforcement”, and “Customs and border protection”. Table 3 shows the nationwide 

employee count per occupation while Figure 6 shows the distribution of those users per 

county. 

 
Table 3: Federal employment per occupation 

Occupation Employment 

1811-CRIMINAL INVESTIGATION 23 627 

1896-BORDER PATROL ENFORCEMENT SERIES 21 207 

1895-CUSTOMS AND BORDER PROTECTION 20 141 

0007-CORRECTIONAL OFFICER 17 586 

0083-POLICE 14 323 

1801-GENERAL INSPECTION, INVESTIGATION, ENFORCEMENT, AND 
COMPLIANCE SERIES 

6455 

0025-PARK RANGER 5113 

0082-UNITED STATES MARSHAL 898 

TOTAL 109 350 
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Figure 6: Federal law enforcement employment per county 

 

2.1.3.1.1.2. State law enforcement 

The Bureau of Justice Statistics collects data about state and local law enforcement every 

4 years; the latest available data is from 2008 [5]. Unlike the Census of Federal Law 

Enforcement, the raw data is available and allows access to the information reported by 

each responding agency. The employment information for the states is extracted by 

querying all agencies where the type of agency is “Primary state law enforcement 

agency”. Figure 7 shows the number of full time and part time employees for sworn 

officers as well as civilians reported by each state. 

 

 

Employee 

count: 

0 – 25 

25 – 50 

50 – 100 

100 – 250 

250 – 500 

500 – 1 k 

1 k – 2.5 k  

2.5 k – 5 k  

5 k – 10 k 



 

11 

 

 
Figure 7: State-level law enforcement employment (officers + civilians) 

 

2.1.3.1.1.3. Local Law Enforcement 

Law enforcement data at the local levels, including Tribes, is also extracted from the 

Census of State and Local law enforcement agencies that was published in 2008 [5]. The 

address of the agency, including the county name, is used to generate a distribution of the 

employee count per county, as shown in Figure 8. The census contains information from 

17 935 local agencies reporting 748 482 sworn officers and 391 678 civilian employees. 
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Figure 8: Local-level law enforcement employment (officers + civilians) 

 

2.1.3.1.2. Firefighters 

The Government Employment data from the U.S. Census Bureau is not sufficient to 

determine the number of firefighters because there are many firefighters who are either 

volunteers or paid per call. More accurate information is published via the National Fire 

Department Census [7], made available by the U.S. Fire Administration. This data 

contains staffing information from over 26 000 fire departments nationwide. Because it 

would be difficult to know the jurisdiction of each department, the analysis aggregated 

the number of active firefighters (career, volunteer, and paid per call) located within each 

county. We note that the data covered 3093 counties out of 3153 in the U.S. Nationwide, 

the total number of active firefighters is 1.05 million and the distribution of firefighters 

per county is shown in Figure 9. 
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Figure 9: Distribution of active firefighters per county 

 

2.1.3.1.3. Emergency Medical Services 

Statewide employment information for Emergency Medical Technicians and Paramedics 

is available on the Bureau of Labor’s statistics’ website [8] [9] and is shown in Figure 10. 

Data at a more refined level was not found.  
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Figure 10: Employment of Emergency Medical Service personnel per state 

2.1.3.2. Traffic map generation for analysis 

By combining the employment data collected for law enforcement, firefighters, and EMS 

in Federal, State, and Local governments, it is possible to create a nationwide distribution 

of Public Safety users. When only state level data is available, users in that state are 

distributed proportionally to the county population in order to provide an estimation of 

the employee count for each county (e.g., a county whose population comprises half the 

state’s population would receive half of the pool of users for that state). Furthermore, it is 

unlikely that users are distributed uniformly within a county and this is especially true 

due to disparities between urban and rural areas (i.e., more Public Safety personnel will 

be concentrated in urban areas). When the population is a coverage target of the region 

being analyzed, the users are distributed according to the population density in the 

county. In our analyses, the population distribution is based on LandScan data developed 

by Oakridge National Laboratory [10].  

For analysis where population is not part of the target coverage, a different user 

distribution is used as appropriate. For example, when the target is to cover the highways, 

users are distributed solely along those roads.  

2.1.3.3. User mobility 

The users of wireless networks are mobile by nature. The NPSBN is no different and it is 

expected that the users will move throughout the day. It was shown in [11] that the 

network design needs to take transient users into consideration; otherwise, coverage is 

not guaranteed at all times. Another limitation of using night time information (e.g., the 
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census data) is that some areas that contain no residences yet are heavily populated 

during work hours, such as commercial centers and industrial parks, would appear not to 

have any users in them. In our work the user mobility issue was solved by creating a peak 

traffic map with the highest user density from both day and night time user distributions. 

An example of the resulting density map is shown in Figure 11. While this overestimates 

the number of users, it simplifies the modeling approach and guarantees that the network 

deployment will provide coverage at any time of the day.  

 

 

Night time user density map 
Count = 12 524 
 
Density (user/km2) 

 

 

Day time user density map 
Count = 13 549 
 
 
Density (user/km2) 

 

 

Peak user density map 
Count = 20 512 
 
 
Density (user/km2) 

 

Figure 11: User distributions around Detroit, MI 
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2.1.4. Traffic Model 

The traffic model defines the network utilization patterns of the users. It specifies how 

many users are using each application, how often, as well as the data rate requirements 

for each application. While there has been an ongoing effort to characterize the user 

traffic [12] [13], it is still difficult to find accurate and detailed reports because there is no 

historical data available, and the range of possible applications (current and future) and 

configurations (e.g., video resolutions) is vast. An additional issue is that, given the 

novelty of the NPSBN, practitioners often do not know how the network will be used or 

how it will change current Public Safety operational practices. Furthermore, Public 

Safety users respond to different types of incidents differently, therefore requiring 

different traffic estimations and plans for each type and size of these situations: There are 

small scale, day to day activities that occur millions of times every year (e.g., motor 

vehicle incidents, traffic stops, fires) and large scale, infrequent incidents (e.g., natural 

disasters, active shooters). For the first type of incident, the network is typically 

operational, while the latter incident types may involve site unavailability. For the 

modeling of the NPSBN, the day to day traffic shown in Table 4 is a modified version of 

the incident traffic based on the 2007 collapse of the Interstate 35 bridge in Minneapolis, 

Minnesota [14]. The traffic is composed of 7 applications and contains a mix of voice, 

video, and data applications. It is also assumed that 1/3 of the Public Safety users are 

active at any given time to simulate 8 hour shifts. 

 
Table 4: Day to day Public Safety traffic 

Type of 

device 

PS users 

carrying 

device (%) 

Uplink data 

rate (kbit/s) 

Downlink 

data rate 

(kbit/s) 

Time device 

transmits 

(%) 

Time device 

receives (%) 

Mobile Video 

Camera  25 256 12 5 2.5 

Data File 

Transfer 

CAD/GIS  87 50 300 7.5 2.5 

VoIP  100 27 27 2.5 7.5 

Secure File 

Transfer  12 93 93 2.5 2.5 

EMS Patient 

Tracking  6 30 50 5 2.5 

EMS Data 

Transfer  6 20 25 12.5 2.5 

EMS Internet 

Access  6 10 90 5 2.5 



 

17 

 

 

2.1.5. Network Configuration 

Assumptions also have to be made regarding the network configuration, including the site 

locations, antenna configuration (antenna type, azimuth, tilt), transmit power for both the 

eNodeBs and the UEs, multiple-input and multiple-output (MIMO) configuration, etc. 

The list includes hundreds of parameters, though not all of them have the same impact on 

the network performance. The results shown in Section 4 are accompanied by the 

configuration used for our analyses and highlight some key parameters.  

2.2. Performance Analysis 
Once the necessary inputs have been collected and the assumptions have been set, it is 

possible to perform an RF analysis following the process illustrated in Figure 12. Since 

there is no existing network to evaluate, the first step of the analysis is to find a set of 

sites that would meet the desired coverage. The next step consists of running Monte 

Carlo simulations to compute the number of subscribers served and the load for each 

sector. Finally a network analysis is performed to verify the area and population 

coverage. The following sections describe each step in more details using an area in the 

vicinity of Detroit, MI as an example. 

 

 
Figure 12: Performance analysis overview 

2.2.1. Site Placement/Site Selection 

The goal of the site placement algorithm is to select a subset of the available sites that 

meets a certain criterion. In the NPSBN modeling, the criterion used is the Reference 
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Signal Received Power (RSRP). A location is covered by a site if the predicted RSRP 

value is above a given threshold. 

To reduce the computation time, a tiling algorithm [15] discretizes the user density map 

into demand points, each of which represents aggregated demand from a fraction of the 

user population. Because the tiling algorithm partitions the area so that equal populations 

are in each tile, the offered load from each demand point is the same. As an illustration of 

the tiling process, Figure 13 (a) shows user density map in Detroit, MI with a resolution 

of 30 m, and Figure 13 (b) shows the result of the tiling algorithm. Each demand point is 

located at the centroid of its tile. An iterative greedy algorithm with site swapping [16] is 

used to select a set of sites so that each demand point is covered by a site, while 

minimizing the total number of sites.  

 

 
 

 
 

Figure 13 (a) User density map in Detroit, MI. (b) Discretized user density map with 1024 demand points 

The site selection considers three types of sites: existing Public Safety sites, existing 

commercial sites, and greenfield sites. The list of existing sites is compiled using 

information from the Federal Communications Commission (FCC) [17] and other 

providers of wireless infrastructures (e.g., American Tower, TowerCo, AT&T). The sites 

in the FCC database with a service code value equal to 'GE', 'GF', 'GP', 'PA', 'PW', 'QM', 

'SG', 'SL', 'SP', 'SY', 'YE', 'YF', 'YP' or 'YW’ are used to identify the Public Safety sites. 

The remaining existing sites are deemed to be commercial. Candidate green field sites are 

added throughout the area of analysis and will be used to extend the coverage when 

needed. Each site type has an associated weight to prioritize the selection, with a higher 

weight meaning that the site is more likely to be chosen for the deployment. By default, a 

weight of 1 is used for Public Safety sites, 0.75 for commercial sites, and 0.5 for green 

field sites. The site selection algorithm uses the number of unique demand points a site 

can provide service for, multiplied by the appropriate weight, to sort the candidate sites. 

This means that a green field site will be preferred to an existing Public Safety site if it 

covers at least twice as many demand points; if the greenfield site covers fewer demand 

points, the Public Safety site will be preferred. 

Since the criterion is based on a downlink metric that considers neither interference nor 

uplink conditions, the effective coverage can be determined only after running the Monte 

Carlo simulations and network analyses. Therefore, the algorithm is an iterative process 

that increases the required RSRP threshold, which effectively increases the number of 
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sites selected, until the coverage criterion is met. The initial value for the RSRP threshold 

is based on the target application data rate and coverage reliability. 

2.2.2. Monte Carlo Simulations 

Once the predictions have been generated and sites have been selected, Monte Carlo 

simulations estimate the uplink and downlink sector loads. To do so, users are first 

randomly distributed based on the user density maps. The coverage of each user and its 

impact on the sector loads and interference is computed based on the required data rate, 

coverage reliability, and resources available. This is an iterative process where the cell 

loads of an iteration is used to estimate the user coverage and loads on the next iteration 

until the results converge. 

A key parameter is the coverage reliability. A higher reliability requires a larger Signal to 

Interference and Noise Ratio (SINR) margin to sustain a certain Modulation and Coding 

Scheme (MCS) and associated spectral efficiency. For 95 % coverage reliability, the 

SINR level needs to be 11.5 dB higher than that required by a given application, 

assuming a 7 dB shadowing standard deviation. At 50 % coverage reliability, the margin 

is 0 dB. 

To account for possible interference and coverage provided by adjacent sectors, a margin 

area is added to the area of interest to take into account the neighboring users and sites. 

The optimum size of the margin is based on the type of region: in urban areas, sites 

usually have smaller coverage footprint and the margin area can be reduced to improve 

the performance; in rural areas with limited obstacles, however, the coverage can be 30 

km or more, so larger margins are required. The users in the margin areas are served with 

50 % reliability to prevent the site placement mechanism from targeting the coverage of 

those users, and only consider them in the estimation of their impact on the interference 

level.  

Figure 14 (a) shows an example of an area to analyze with 12 sites selected during the 

site placement stage. The red line represents the boundary of the area of interest, where 

the target coverage must be met, while the blue line located at the figure boundary 

represents the outer edge of the margin area. Figure 14 (b) shows the users deployed 

along with their statuses for a single Monte Carlo iteration. The users that can be served 

are shown in green while other colors indicate failure: red indicates failure due to uplink 

power limitation, pink indicates failure due to lack of uplink resources, and blue indicates 

failure due to lack of downlink resources. 
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 Figure 14 (a) Example of analysis area near Detroit, MI. (b) Deployed subscribers (green = served, other = not 

served) 

 

The process uses two sets of Monte Carlo simulations: In the first set, the user coverage 

reliability is set to the target value (e.g., 95 %) and the percentage of users served is 

checked against the target user coverage. If the percentage is below the target threshold, it 

is assumed that more sites are needed and the performance analysis is repeated with a 

higher RSRP value threshold for the site placement. If the percentage exceeds the 

threshold, the second set of Monte Carlo simulations runs with the target user coverage 

reliability set to 50 % to obtain the estimated sector loads. 

2.2.3. Network Analysis 

With the sector loads estimated from the Monte Carlo simulations, a network analysis 

computes downlink and uplink coverage and capacity information. This step excludes the 

margin area used in the Monte Carlo simulations, which we showed in Figure 14. The 

results of the network analysis depend on assumptions being made regarding both the 

quantity of resources available to the user and the data rates. We define the cell edge data 

rate requirement based on the traffic model being used. Since the cell can contain a 

variety of applications with different usage, we compute the cell edge data rate by taking 

the maximum value of (a) the average user data rate and (b) the maximum data rate of 

any single application. For example, using the traffic model of Table 4, the average user 

data rate is 18.303 kbit/s in the downlink and 15.373 kbit/s in the uplink. The low values 

are mainly due to small activity factors. The maximum data rate is 300 kbit/s in the 

downlink and 256 kbit/s in the uplink. Those data rates correspond to data transfers and 

video transmissions, respectively. Since the maximum values are higher, they will be 

used as required cell edge data rate thresholds for deciding if the user can be covered.  

The output information available from the RF modeling tool does not directly give us the 

area and population coverages. Instead, the information indicates the maximum 

achievable data rate at any given location for both the uplink and the downlink. Examples 

of those outputs are shown on the leftmost side of Figure 15. Using the data rate 

thresholds, we can derive downlink and uplink coverage maps. Because the coverage 
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gaps in the downlink and uplink may occur at different locations, area coverage is 

derived by computing the areas where coverage is available in both directions, shown in 

the center of Figure 15. Finally, the area coverage is overlaid on the population 

distribution to compute the percentage of population covered.  

If the area coverage or population coverage does not meet the target criteria, the 

performance analysis is executed with different thresholds in order to increase the 

number of sites. 

 

 
Figure 15: Process to determine area and population coverage 

 

2.2.4. Sample Results 

As mentioned previously, searching for a set of sites that meets a target coverage value is 

an iterative process. Figure 16 shows the results of the performance analysis in the 

sample area near Detroit, MI. The objectives were to obtain 95 % user coverage and 95 % 

population coverage. The 𝑥-axis shows the RSRP threshold used during the site 

placement. As the threshold increases, the number of sites selected also increases. The 

user coverage also increases with the number of sites selected, except when comparing 

the data points for the RSRP threshold of -130 dBm and -125 dBm. Even though both of 

these thresholds produced outcomes with the same number of sites, the selected sites 

were different and thus produced different user coverage values. We also observe that for 

RSRP thresholds above -110 dBm, the benefit of adding more sites diminished due to 

interference. Once the user coverage is above 95 %, the network analyses are also 

performed, which occurs when more than 30 sites are selected. For this particular 

example, the coverage objectives were met with 39 sites.  
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Figure 16: Example of the iterative process to find the set of sites that achieves the coverage requirements 

3. Tackling Nationwide Scale Modeling 

The computational time required to perform an RF analysis grows exponentially with the 

area to analyze. To handle the complexity associated with modeling a nationwide 

network, we analyzed a subset of areas throughout the nation and extrapolated the results 

following the process shown in Figure 17. This Section describes the mechanisms by 

which the nation is split into smaller areas called subdivisions, the areas to analyze are 

selected, and the results from the studied areas are extrapolated to obtain meaningful 

nationwide results.  
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Figure 17: Nationwide modeling workflow 

 

3.1. Partitioning the United States Area 
When tackling the problem of analyzing the performance and behavior of a wireless 

network across such a great and diverse space as the whole United States area, it is soon 

apparent that the wide variety of user distributions and terrain characteristics make it ill-

advised to uniformly define parameters and requirements for the whole analysis region. 

Areas with high population density and high-rise buildings, like major urban centers, will 

not present the same propagation characteristics as the farmlands of the Great Plains, 

which in turn exhibit completely different characteristics than the Rocky Mountains. As 

the equipment used in these areas is likely to differ, it does not make sense to analyze 

them uniformly. Similarly, and because of the different population and Public Safety user 

densities in these areas, the coverage requirements are likely to be different from those in 

the downtown area of a major city and both will be different from the coverage 

requirements in a heavily forested National Park. 

In order to account for these idiosyncrasies, we characterized the whole area of the 

United States and defined the following criteria to distinguish the areas where different 

conditions, configurations and requirements may be defined for the analysis: 

 Urban areas: Those defined by the Census 2010 to be of type ‘Urban’, ‘Urbanized 

Area’ or ‘Urban Cluster’ (“Urban”).  

• Partition the entire US in areas with common network 
configurations and target coveragesPartitioning

• Divide each partition into small subdivisions and group 
subdivisions with similar characteristics together to form 
classes

Classification

• Sample each class and obtain subdivisions to analyze; 
conduct a detailed analysis of the selected subdivisions 
combining commercial off-the-shelf network planning 
tools and in–house models.

Sampling and 
Analysis

• Use results of detailed analyses to compute the site count 
and coverage for subdivisions meeting the nationwide 
coverage objectives.

Extrapolation
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 Rural areas with an average population density over 5 people per square mile: 

Areas that, while not considered urban, still present a meaningful population 

(“Rural populated”). 

 Rural areas with an average population density less than 5 people per square mile: 

The rest of the United States area (“Rural low population”). 

These three partitions together fully enclose the whole area of the United States. 

However, a fourth category was identified as being a coverage target while having some 

particular configurations and requirements: 

 Highway areas: Rural areas of the United States with one of the highways defined 

in the National Highway System (“Highways”) [18].  

This fourth partition overlaps with the three previous ones, but as we will see in Section 

3.4.2, only part of each of the different types of areas will be considered for coverage, 

depending on the target coverage for the nationwide analysis. Having this fourth type will 

ensure that we can target the National Highway System for coverage even if the areas the 

highways go through are not targeted themselves. The areas belonging to these four 

partitions are shown in Figure 18. In Figure 19 the map shows the three partitions that 

comprise the full area of the US, and Figure 20 shows the same map with the areas 

covering the highway partition overlaid. 

 

 

Urban Areas 

 

Rural Areas with More than 5 People per 
Square Mile 
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Rural Areas with Less than 5 People per 
Square Mile 

 

Areas with part of the National Highway 
System 

Figure 18: Maps of the different partitions defined 

 

 
Figure 19: Map with the urban and rural partitions 
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Figure 20: Map with the highway partition overlaid over the urban and rural partitions 

 

3.2. Classification of the Analysis Areas 
The complexity of the RF analysis described in Section 2 of this document is dependent 

on the number of users in the area and the number of sites. As both of these parameters 

increase with the area (either due to the increased population comprised in the area or to 

the additional number of sites required to provide coverage), analyzing large areas 

requires a significant amount of resources and time. In some cases, small areas with large 

user densities will also demand large amounts of CPU, memory and time to complete the 

analysis. Therefore, it is not feasible to perform an analysis of the whole United States 

area using a traditional approach. 

To overcome this limitation, we developed an approached based on the Divide and 

Conquer principle, in which the total area of analysis (i.e., the whole area for one of the 

partitions defined in Section 3.1) is divided into smaller subdivisions. These subdivisions 

are then classified and grouped into clusters based on their characteristics, analyzed 

independently, and the individual results are later aggregated to provide the aggregated 

values for the original area. By combining these subdivisions with the sampling and 

extrapolation techniques described in Section 3.3 and Section 3.4, it is possible to 

significantly reduce the total number of RF analyses needed and allow for the 

parallelization of the study, while still obtaining results with the required confidence and 

precision. 

The rest of this Section describes the parameters used for classifying the subdivisions, the 

process and parameters used for dividing the total analysis area in smaller subdivisions, 

and the classification process itself. 
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3.2.1. Input Characteristics 

The classification of subdivisions in clusters or groups of subdivisions with similar 

characteristics is interesting for our approach because, if done properly, it will enable us 

to analyze a small number of these subdivisions in a given cluster, and then extrapolate 

the results to the rest of the subdivisions in the cluster, thus greatly reducing the number 

of analyses. For this assumption to be true, each subdivision has to be characterized with 

the parameters that may affect the analysis results, so subdivisions can be grouped based 

on the similarity of these aspects.  

The goal of the RF analysis is to obtain information about the number of sites required in 

the study area and the associated coverage, so we will use attributes of a subdivision that 

may affect either one of these aspects. In particular, we identified two major features that 

will affect the analysis results: 

 The topology of the terrain, as it will affect the propagation of the signal. 

 The number of users in the network, as the load and interference increase with the 

number of users. 

To characterize the terrain we considered in each subdivision the elevation and the clutter 

height using the following specific metrics: 

 Average terrain elevation in an area. 

 Minimum and maximum elevation, to provide information about the elevation 

gradient. 

 Standard deviation of the elevation, to represent the variability of the terrain, (i.e., 

whether the terrain in the subdivision is mostly flat, hilly, or highly variable). 

 Average clutter height, to complement the average terrain elevation. 

 Standard deviation of the clutter height, to account for the variability of the 

clutter. 

Similarly, the number of users of the network in an area is described using the following 

parameters: 

 Average population density. 

 Minimum and maximum population density. 

 Standard deviation of the population density. 

 Average Public Safety user density. 

 Minimum and maximum Public Safety user density. 

 Standard deviation of the Public Safety user density. 

The reason for considering both the population and Public Safety user density is that, as 

we will describe in detail in Section 4.1.2, both the Public Safety user coverage and the 

population coverage are targets of the analysis and therefore the subdivisions must be 

characterized with both of these attributes to allow for adequate identification of similar 

subdivisions. Although Public Safety users are deployed for the analysis based on the 

population densities, the Public Safety user to population ratio varies, so we cannot 

assume that these features are redundant. 
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The information for each of these parameters in each subdivision is collected from the 

same sources as previously described in Section 2.1. 

3.2.2. Subdivisions 

In order to create a set of subdivisions that covers the whole area of the United States 

while minimizing the overlap between partitions, the process of creating the subdivisions 

is agnostic of the partitions, and considers only the total area to cover. Once this process 

is finished, the subdivisions are assigned to one of the partitions described previously 

according to the appropriate criteria. 

The size of the subdivisions was chosen considering the propagation characteristics for 

LTE, so that they would be large enough to account for the maximum area a site can 

cover, while still being small enough that the cases in which a large number of users and 

sites are deployed in a single analysis are minimal. As a result of these conditions, we 

found the size of 20 km x 20 km to be the most appropriate across the nation. However, 

we noticed that in the Great Plains area it is possible for a single site to provide coverage 

for even larger areas if the network load is low, since the terrain presents minimal 

obstructions to the signal. Given that this is true only for the rural areas in the Great 

Plains (as urban areas require more sites due to the higher number of users deployed), the 

subdivision size is calculated as follows: 

 If the subdivision is in the Great Plains and more than 90 % of its area is 

considered rural, the subdivision size is 40 km x 40 km. 

 Otherwise, the subdivision size is 20 km x 20 km. 

With this information, the process of creating the subdivisions begins by processing the 

whole US area, starting at the northwest corner and creating adjacent subdivisions first 

following the appropriate parallel (constant latitude). Once the process reaches the 

northeast corner it goes back to the west border of the area and creates another set of 

subdivisions right below the previous one. For each subdivision created, the input files 

are read to acquire the values for the elevation, clutter height, Public Safety user density, 

and population density with a resolution of one arc-second.  

When all the values of a subdivision are read, we discard those subdivisions with less 

than 5 % of United States land, thus disposing of subdivisions over the oceans, or mostly 

across the Canada or Mexico borders. The final result of the subdivision creation process 

for the contiguous states can be seen in Figure 21. 
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Figure 21: Subdivisions created over the contiguous states 

Finally these subdivisions are assigned to one of the partitions described above according 

to the following process: 

If at least 10 % of the subdivision is urban area, then the subdivision belongs to 

the “Urban” partition; 

 

Else, the subdivision is rural: 

If the average population density is greater or equal to 1.93 people per 

square km (i.e., 5 people per square mile), then the subdivision is allocated 

in the “Rural populated” partition; 

 

Else, the subdivision is assigned to the “Rural low population” partition. 

 

In any of these two cases, if the subdivision intersects with any of the 

highways in the National Highway System, the subdivision is also 

assigned to the “Highways” partition. 

 

Once the subdivisions have been assigned to the appropriate partitions, we can proceed to 

classify the subdivisions in each of those partitions. 

3.2.3. Classification 

The classification of the subdivisions is performed by an unsupervised clustering 

algorithm: K-Means [19] using the K-Means++ initialization method [20]. This algorithm 

is capable of identifying items that have similar characteristics without previous training, 

through a series of iterations that associate each one of the items being classified to those 

that have the most similar set of characteristics. 

One drawback of this classification method is that, as defined, it cannot identify on its 

own what is the best number of clusters to represent the diversity of subdivisions, as the 

number of clusters is an input to the algorithm. This problem can be solved by running 

series of classifications with an increasing number of clusters, until the gain (measured as 

the reduction of the total error in the classification over the total classification error) from 

adding additional clusters is negligible (in our case, we set the threshold to be 0.1 %, 
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which was found through experimentation to be the limit under which the error became 

asymptotic). Once we find the case where adding an additional cluster does not provide 

significant improvements in the classification (C + 1 clusters), we use the classification 

with one less cluster (C clusters), as that is the last classification in which all the clusters 

were meaningful. Therefore, a single classification process now consists of the following 

steps: 

  

 Initialize C, the number of clusters: 𝐶 = 0. 

 Set the previous classification error to a large value. 

 Set the improvement to 1. 

 Do: 

  Classify the subdivisions using 𝐶 + 1 clusters. 

  Compute the total classification error. 

  Compute the improvement. 

  If the improvement is greater than 0.1 %: 

   Increment C: 𝐶 = 𝐶 + 1. 

  Else 

   Discard the classification results. 

  End If 

 While the improvement is greater than 0.1 % 

  

As we have characterized each subdivision with a comprehensive set of parameters, we 

can improve the classification results by applying weights to these parameters, in order to 

emphasize some of those parameters while deemphasizing others. For example, while the 

minimum and maximum elevation provide a first indication of the variability of the 

terrain elevation in a subdivision, they are not as significant to the signal propagation as 

the combined average elevation and its standard deviation. Therefore, the weights applied 

to these parameters should be lower for the minimum and maximum elevation than for 

the average and standard deviation. After experimentation with different weights, the set 

chosen, which provided the best results regarding granularity of the results and 

differentiation of the different areas, were those shown in Table 5. 

 
Table 5: Attribute weights used for the classification 

Elevation Weights 

Average Minimum Maximum Std. Deviation 

1 0.5 0.5 0.8 

Population Weights 

Average Minimum Maximum Std. Deviation 

0.5 0.1 0.1 1 

User Weights 

Average Minimum Maximum Std. Deviation 

1 0.1 0.1 0.5 
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Clutter Weights 

Average 

  

Std. Deviation 

1 

  

1 

 

 

However, it is not possible to directly classify the subdivisions without considering the 

nature of the parameters being classified and the way K-Means works: In each iteration, 

K-Means computes the Euclidean distance between the items being classified, with each 

classification attribute being one dimension in an 18-dimensional space. This means that 

K-Means assumes that all the attributes have a similar scale, and therefore contribute 

equally to the distance. However, this is not the case for the subdivisions, as, for example, 

the elevation attribute ranges from -67 m to 6168 m, while the population density varies 

from 0 to 16 337 people per square kilometer. If we classified using these values directly, 

we would see how the different population densities are clearly identified by the 

classification algorithm, but the terrain features are lost. Adjusting the weights to 

compensate for the scale difference provides exactly the opposite result, as can be seen in 

Figure 22, where only the highest populated urban areas can be identified. 

 

 
Figure 22: Classification result after using weights to adjust the scale differences between parameters 

The explanation for this behavior can be found by looking at the distribution of the data 

for each of the attributes. In Figure 23 we can see the CDF of the four average attributes 

for the subdivisions (average elevation, average clutter height, average population density 

and average Public Safety user density). In this graph each series shows how many 

subdivisions we need to select (assuming they are sorted low to high value) to account for 

a given percentage of the maximum value for that series. For example, if we sort the 

subdivisions according to the average elevation, we will need to select 20 000 

subdivisions to get an average elevation that is 50 % of the maximum value for that 

metric. Figure 23 shows that the data distribution varies greatly, with the population and 

Public Safety user density attributes having very low values in the vast majority of the 
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subdivisions; the steep increase in the CDF shows that there is a very small group of 

subdivisions that have high values of these attributes (i.e., the highest populated areas). 

On the other hand, the clutter height and the elevation attributes present more uniform 

distributions of values.  

 
Figure 23 CDF of the average attributes of the subdivisions  

In order to overcome the aforementioned problem, we treat each “set” of attributes 

(elevation, clutter height, population density, and Public Safety user density) 

independently, aggregating the results according to the following algorithm: 

 For each set of attributes: 

  If the population in the subdivision is 0, assign a special cluster ID; 

  Else classify the subdivisions based only on these attributes. 

  Store the resulting cluster ID for each subdivision. 

 End of for loop 

 

Classify the subdivisions once more, this time using the cluster IDs of each of the 

previous classifications as the attributes, and redefining the distance function as 

follows: 

  If the cluster ID is the same, the distance is 0; 

  Else the distance is 1. 

 

The subdivisions with population 0 are separated from the rest to avoid running RF 

analysis on them unless it is necessary to achieve the intended area coverage. Otherwise 
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they would be assigned to clusters with the rest of the subdivisions and would distort the 

results in the sampling and extrapolation stages. 

With all these adjustments to the algorithm, conditions and processes, the results of the 

whole classification process can be seen in Table 6, Figure 24 (for the Urban partition); 

Table 7, Figure 25 (for the Rural Populated partition); Table 8, Figure 26 (for the Rural 

Low Population partition); and Table 9, Figure 27 (for the Highways partition). 

 
Table 6: Cluster details for the Urban partition 

Cluster 

ID 

Number of 

subdivisions 

Percent 

of total 

area 

Mean 

Population 

Density 

(people per 

km2) 

Mean 

Elevation 

(m) 

Mean 

Elevation 

Std Dev. 

(m) 

Legend 

Color 

1 332 19.774 744.45 151.32 41.12   

2 632 37.641 223.14 158.75 34.58   

3 254 15.128 226.91 257.88 64.06   

4 248 14.771 684.32 148.2 47.84   

5 38 2.263 305.3 1392.42 230.71   

6 75 4.467 175.83 1128.95 151.74   

7 40 2.382 553.64 40.09 25.6   

8 13 0.774 2166.79 60.65 34.46   

9 47 2.799 581.29 1089.86 213.58   

 

 
Figure 24: Classification results for the Urban partition 
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Table 7: Cluster details for the Rural Populated partition 

Cluster 

ID 

Number of 

subdivisions 

Percent 

of total 

area 

Mean 

Population 

Density 

(people per 

km2) 

Mean 

Elevation 

(m) 

Mean 

Elevation 

Std Dev. 

(m) 

Legend 

Color 

1 1663 18.855 30.35 324.14 51.73   

2 3135 35.544 22.65 309.98 73.24   

3 1563 17.721 9.11 431.72 96.32   

4 1189 13.481 17.32 494.49 55.65   

5 1270 14.399 29.41 620.61 59.85   

 

 
Figure 25: Classification results for the Rural Populated partition 

 
Table 8: Cluster details for the Rural Low Population partition 

Cluster 

ID 

Number of 

subdivisions 

Percent 

of total 

area 

Mean 

Population 

Density 

(people per 

km2) 

Mean 

Elevation 

(m) 

Mean 

Elevation 

Std Dev. 

(m) 

Legend 

Color 

1 1262 10.773 0.18 347.62 92.33   

2 2168 18.508 0.17 1581.96 189.19   

3 1248 10.654 0.25 631.5 133.68   

4 1823 15.563 0.16 579.59 233.12   
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5 1399 11.943 0.24 1782.75 324.98   

6 1638 13.983 0.24 651.98 117.62   

7 1328 11.337 0.85 956.52 125.31   

8 848 7.239 1.04 822.18 145.54   

 

 
Figure 26: Classification results for the Rural Low Population partition 

 
Table 9: Cluster details for the Highways partition 

Cluster 

ID 

Number of 

subdivisions 

Percent 

of total 

area 

Mean 

Population 

Density 

(people per 

km2) 

Mean 

Elevation 

(m) 

Mean 

Elevation 

Std Dev. 

(m) 

Legend 

Color 

1 1483 17.71 6.57 566.09 130.55   

2 1434 17.124 39.57 475.12 54.74   

3 2315 27.645 29.13 291.46 66.89   

4 1171 13.984 9.51 743.99 126.6   

5 1971 23.537 5.83 974.93 91.63   
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Figure 27: Classification results for the Highways partition 

 

3.3. Sampling and Analysis  
We use random sampling to develop an estimate of the number of sites required at the 

national level. Because a nationwide random sample may miss areas with high population 

counts, we rely on a stratified sampling approach that uses the subdivision classification 

technique described in Section 3.2. As we do not know the number of samples to take 

from each class a priori, we developed an iterative algorithm that operates on each class, 

which we show in Figure 28. In this Section, we describe the algorithm in detail. 

 
Figure 28: Sampling and analysis algorithm. 

When we perform a random sample from a population of 𝑁 objects, we choose 𝑛 of the 

objects at random. In this case, the objects that compose the population are the 
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subdivisions. We measure some quantity of interest 𝑦 (in our case, the number of cell 

sites in a subdivision) in each sampled object, and we define 𝑦𝑖 to be the observed value 

of 𝑦 in the 𝑖th subdivision in the sample. The sample average is 𝜇̂ = ∑ 𝑦𝑖
𝑛
𝑖=1 /𝑛. The 

sample mean is an unbiased estimator, meaning that its expected value, E{𝜇̂}, is equal to 

𝜇, the true mean of 𝑦. 

The primary performance metric for the estimate 𝜇̂ is the mean squared error (MSE), 

which is also the variance of 𝜇̂: MSE = E{(𝜇̂ − 𝜇)2} = E{𝜇̂2} − 𝜇2. If the observed 

values of 𝑦 in different samples are independent, then 𝐸{𝑦𝑖𝑦𝑗} = 𝜇2 when 𝑖 ≠ 𝑗; when 

𝑖 = 𝑗, we get 𝐸{𝑦𝑖
2} = 𝜎2 + 𝜇2, where 𝜎2 is the variance of 𝑦. Since 𝜇̂2 =

∑ ∑ 𝑦𝑖𝑦𝑗/𝑛2𝑛
𝑗=1

𝑛
𝑖=1 , we get 

MSE =
(𝑛2 − 𝑛)𝜇2 + 𝑛(𝜎2 + 𝜇2)

𝑛2
− 𝜇2 =

𝜎2

𝑛
. 

The MSE shrinks as the number of samples increases. Also, if 𝑛 is sufficiently large, the 

Central Limit Theorem tells us that 𝜇̂’s distribution converges to a normal distribution 

with mean 𝜇 and whose variance is equal to the MSE. Thus, the 𝑝-confidence interval 

centered on 𝜇̂ is [𝜇̂ − 𝑡𝜎, 𝜇̂ + 𝑡𝜎]; the probability that the true mean 𝜇 lies in the interval 

is  𝑝 = Pr{𝜇̂ − 𝑡√MSE ≤ 𝜇 ≤ 𝜇̂ + 𝑡√MSE}, since the MSE is the variance of 𝜇̂. If we 

know 𝑝, 𝑡 is the quantity that solves 

𝑝 = 1 −
2

√2𝜋
∫ exp (−𝑤2/2) d𝑤

∞

𝑡

. 

For a 95 % confidence interval, 𝑡 = 1.96.  

Once we have our estimate of the average value of the quantity of interest, 𝑦, we can 

estimate 𝑌, the total amount of 𝑥 in the entire population, by computing 𝑌̂ = 𝑁𝜇̂. This is 

also an unbiased estimate, since its mean is 𝐸{𝑌̂} = 𝑁𝜇 = 𝑌. The MSE of the estimate of 

the total is 𝑁2MSE, which we can use to generate a confidence interval as described 

above. 

To do a stratified sample, we break the population of 𝑁 objects into 𝐿 classes and sample 

from each one. The number of objects in the ℎth class is 𝑁ℎ, and we define the ratio 

𝑊ℎ = 𝑁ℎ/𝑁 to be the weight of the ℎth class. Then the stratified estimate is 𝜇̂𝑠𝑡 =
∑ 𝑊ℎ𝜇̂ℎ

𝐿
ℎ=1 , where 𝜇̂ℎ = ∑ 𝑦ℎ,𝑖

𝑛ℎ
𝑖=1 /𝑛ℎ. In this estimate,  𝑛ℎ is the number of samples 

taken from the ℎth class, and 𝑦ℎ,𝑖 is the 𝑖th sample from the ℎth class. The resulting 

sampling fraction for the ℎth class is 𝑓ℎ = 𝑛ℎ/𝑁ℎ. This estimate is also unbiased, since 

𝐸{𝜇̂ℎ} = 𝐸{𝑦|ℎ} and 𝜇 = ∑ 𝐸{𝑦|ℎ}Pr {ℎ}𝐿
ℎ=1  by Bayes’ Theorem, and Pr{ℎ} = 𝑁ℎ/𝑁. 

The mean squared error of the estimate is 

𝜎𝜇̂𝑠𝑡

2 = ∑ 𝑊ℎ
2

𝐿

ℎ=1

𝐸{(𝜇̂ℎ − 𝑌̅ℎ)2} = ∑ 𝑊ℎ
2

𝐿

ℎ=1

𝑆ℎ
2

𝑛ℎ
(1 − 𝑓ℎ),  

Unfortunately, this expression for the mean squared error relies on 𝑆ℎ
2, which can’t be 

known without examining the entire population of the ℎth class. To compute the 

confidence intervals, we must use the following estimator of 𝜎𝑦̅𝑠𝑡

2 : 
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𝜍𝜇̂𝑠𝑡

2 = ∑ 𝑊ℎ
2

𝐿

ℎ=1

𝑠ℎ
2

𝑛ℎ
(1 − 𝑓ℎ), 

Where 𝑠ℎ is the sample standard deviation of 𝑦 within the ℎth class: 𝑠ℎ
2 = ∑ (𝑦ℎ,𝑖 −

𝑛ℎ
𝑖=1

𝜇̂ℎ)
2

/(𝑛ℎ − 1). The 𝑝-confidence interval is 𝜇̂𝑠𝑡 ± 𝑡(𝑝)𝜍𝜇̂𝑠𝑡
. Once we have the stratified 

estimate, the estimate of 𝑌 is 𝑌̂ = 𝑁𝜇̂𝑠𝑡, with 𝑝-confidence interval 𝑁𝜇̂𝑠𝑡 ± 𝑁𝑡(𝑝)𝜍𝜇̂𝑠𝑡
. 

If the statistics of the population being sampled are known, they can be used to compute 

what proportion of samples should be taken from each class; unfortunately, this is not the 

case here. Thus, we use the following iterative procedure, which is depicted in Figure 28. 

After taking a small pilot sample and generating site placements in each of the chosen 

subdivisions, we compute the sample mean and sample variance of the site counts from 

the pilot sample. We also use the sample standard deviation to generate the confidence 

interval for the estimated site count. Next, we choose additional subdivisions at random 

from within the class and update the sample statistics. Once the confidence interval is 

below a predefined target, we stop the sampling and return the mean site for the class. We 

multiply this quantity by the number of subdivisions in the class to get the total site count 

for the class. 

 

3.4. Extrapolation 
The results of detailed analyses are used to compute the site count and coverage for 

subdivisions not analyzed, meeting the nationwide coverage objectives. This process 

involves two steps, namely, class extrapolation and nationwide aggregation. 

3.4.1. Class Extrapolation 

The sampling and analyses performed in each class provides an estimation of the mean 

site density Sc with a given confidence interval and coverage reliability. The total number 

of sites needed to cover all the subdivisions in a class can then be computed as: 𝑇𝑐 =
∑ (𝑆𝑐 · 𝐴𝑛)𝑁

𝑛=1 , where 𝑁 is the number total number of subdivisions in the class and 𝐴𝑛 is 

the land area of subdivision 𝑛. Using the land area allows to adjust the site count in 

regions partially covered with water or near the borders. To some extent, the same 

formula can be applied to estimate the number of sites needed to cover a subset of the 

subdivisions in a class for a large subset. Using the average on a small subset will 

decrease the confidence of the estimated site count. 

3.4.2. Nationwide Aggregation 

In order to obtain an estimation of the number of sites for a nationwide coverage 

scenario, the results of different partitions are aggregated together. The first step is to 

select the configuration for each of the partition (Urban, Rural Populated, Rural Low 

Population, and highways). The second step is to define a nationwide coverage scenario 

that specifies the areas to cover, which can be based on population, Public Safety users, 

or area covered, and may also include minimum coverage per state or county. The 

selection method used is significant, as it will determine which areas are selected first, 

which areas require a minimum coverage, etc... 

The results presented in this document use the following selection method: 



 

39 

 

1. Sort the subdivisions by population, high to low. 

2. Select the subdivisions that meet the target population to cover, starting with the 

highest population. 

3. Add the subdivisions from the national highway systems that have not been 

selected in step 2. 

Figure 29 shows the areas selected to cover 99.9 % of the population and the national 

highway systems. With this target coverage, all the subdivisions in urban areas and rural 

areas with a population density of at least 5 people per square mile have been selected. 

The set of selected areas also includes a large portion of the Great Plains. We can also 

observe that the highways are covered in the rural areas with low population densities. 

The land area in this selection represents 64.6 % of the total land area.  

 
Figure 29: Coverage map for 99.9 % population coverage 

  

4. Sensitivity Analyses 

Several analyses were conducted to evaluate the impact of specific parameters on the 

performance of an LTE network for Public Safety, and more specifically, their impact on 

the number of sites required to achieve the target coverage criteria. 
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4.1. Nationwide Coverage 
To perform the nationwide sensitivity analyses, several sets of configuration parameters 

were considered for each partition, and then aggregated into possible nationwide 

deployment scenarios. The details of these sets are described below. 

4.1.1. Assumptions 

The results of the analyses presented are directly based on the assumptions described in 

this document and those assumptions should be kept in mind when interpreting the 

results. Changing assumptions will lead to different results; however, the overall trends 

highlighted in this document (e.g., effect of UE power on site count) will not change.  

 

4.1.1.1. Clutter configuration 

The results presented in this document use a 30 m resolution with no building 

information. As such, a single clutter height value was assigned to each class. In addition, 

a penetration loss was added to the clutter classes that are likely to represent buildings 

and are used to simulate the loss as the signal penetrates through the wall. This loss was 

added to the clutter losses used by the propagation model to compute the predictions. The 

sets of values used (both height and loss) are shown in Table 10. 

 
Table 10: Clutter configuration 

Class Height (m) Indoor Penetration Loss (dB) 

Airport 0 0 

Commercial - Industrial 10 10 

Forested - Dense Vegetation 7 0 

Grass - Agriculture 0.7 0 

High Density Urban 20 20 

Marsh - Wetland 1 0 

Open 1 0 

Residential with Few Trees 3 6 

Residential with Trees 4 6 

Transportation 1.4 0 

Water 0.5 0 

Shrubland - Woodland 1 0 

 

4.1.1.2. Network Configuration 

The assumptions made about the network configuration have a large impact on the 

performance of the network, such as the type of antenna used or interference coordination 

scheme. Table 11 shows the list of parameters common to all partitions while Table 12 

shows the list of configuration specific parameters applied to each partition. 
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Table 11: Common network parameters 

Parameter Value 

Propagation model CRC Predict 

Frequency bandwidth (MHz) 2x10 

Slow fade standard deviation (dB) 7 

eNodeB 

Transmit power per antenna (dBm) Configuration-based 

Uplink power control Fractional (P0=-32.6 dBm, alpha=0.4) 

Antenna model LNX-6515DS-VTM_0725 

Max antenna gain (dB) 16.7 

MIMO 2x2 

ICIC scheme Dynamic, RSRQ Threshold = 0 dB, 33 % outer cell 
resources  

Sector azimuths (degree) 0, 120, 240 

Sector downtilt (degree) 0 

Noise figure (dB) 2.5 

Subscriber 

Transmit power (dBm) Configuration-based 

Antenna gain (dBi) Configuration-based 

MIMO 1x2 

Noise figure (dB) 9 

Body loss (dB) 0 

User Distribution See Section 2.1.3 

Traffic Model See Section 2.1.4 

Number of RBs per user Configuration-based 

Site placement 

Weight PS sites 1 

Weight Commercial sites 0.75 

Weight green field sites 0.5 

Antenna height for green field sites 
(m) 

75 m in Great Plains 

30 m in urban areas and mountains 

50 m in rural areas not in the mountains or Great 
Plains 

Green field site spacing (km) 4 

Analysis 

Coverage reliability (%) Configuration-based 

Population coverage (%) 95 

Geodata resolution (m) 30 m in urban, 60 m in rural 
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Table 12: Configuration specific network parameters 

Partition Configuration eNodeB 
Tx 
Power 
(dBm) 

UE Tx 
Power 
(dBm) 

UE 
Gain 
(dBi) 

Coverage 
Reliability 
(%) 

Uplink 
RBs 

Down-
link 
RBs 

Urban 95 % reliability, 
indoor 

46 23 -4 95 1 to 5 5 

95 % reliability, 
outdoor 

46 23 -4 95 1 to 5 5 

Rural ≥ 5 
people per 
mile2 

95 % reliability, 
outdoor 

46 23 0 95 1 to 5 5 

85 % reliability, 
outdoor 

47 31 0 85 1 to 5 7 

Rural < 5 
people per 
mile2 

85 % reliability, 
outdoor 

47 31 0 85 1 to 5 7 

Highways 95 % reliability, 
outdoor 

46 23 0 95 1 to 5 5 

85 % reliability, 
outdoor 

47 31 0 85 1 to 5 7 

 

4.1.2. Results 

Various configurations have been studied to investigate potential nationwide deployment 

scenarios, and Table 13 shows the values used in each of those configurations. The first 

scenario provides an indoor environment for the urban areas (using the penetration losses 

described in Section 4.1.1.1), with 95 % reliability except in rural areas with low 

population, and is considered the baseline. In the second scenario, the urban coverage is 

changed to be outdoor only. The third scenario mainly considers a lower reliability in all 

the rural areas, while the last scenario combines an outdoor coverage for the urban areas 

and a lower reliability in the rural areas. 

 
Table 13: Nationwide scenarios 

Scenario Urban areas Rural areas with 

pop. density ≥ 5 

people  per mile2 

Rural areas with 

pop. density < 5 

people  per mile2 

National 

Highway 

System 

Urban indoor 

and 95 % rural 

reliability 

(except very 

rural) 

95 % 

reliability 

Indoor 

environment 

95 % reliability 

Outdoor 

environment 

85 % reliability 

Outdoor 

environment 

95 % 

reliability 

Outdoor 

environment 
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Urban outdoor 

and 95 % rural 

reliability 

(except very 

rural) 

95 % 

reliability 

Outdoor 

environment 

95 % reliability 

Outdoor 

environment 

85 % reliability 

Outdoor 

environment 

95 % 

reliability 

Outdoor 

environment 

Urban indoor 

and 85 % rural 

reliability  

95 % 

reliability 

Indoor 

environment 

85 % reliability 

Outdoor 

environment 

85 % reliability 

Outdoor 

environment 

85 % 

reliability 

Outdoor 

environment 

Urban outdoor 

and 85 % rural 

reliability 

95 % 

reliability 

Outdoor 

environment 

85 % reliability 

Outdoor 

environment 

85 % reliability 

Outdoor 

environment 

85 % 

reliability 

Outdoor 

environment 

 

The population and area coverage that can be achieved for each scenario based on the 

number of sites available, assuming that the most populated areas are selected first, is 

shown in Figure 30 and Figure 31 respectively. These figures also compare the number of 

sites needed to achieve a particular population or area coverage with the different 

configurations. The sampling was configured to estimate the site count with a margin of 

error of ± 10 % at an 85 % level of confidence. We observe that the baseline scenario 

requires the highest number of sites for any population target with 39 000 sites to cover 

95 % of the population and 50 % of the US land area. This is to be expected, since it has 

the most stringent coverage criteria (indoor and high reliability). By providing outdoor 

coverage in urban areas or reducing the coverage reliability the number of sites needed is 

lower, estimated at 33 600 and 27 800 sites respectively. Reducing the coverage 

requirements in both urban and rural areas further decreases the number of sites, down to 

22 000 for 95 % population coverage. In all cases, we notice that the number of sites 

needed increases exponentially when targeting more than 99 % population coverage. 

Figure 31 shows that the last 1 % of the population is spread through 38 % of the US 

land.  
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Figure 30: Nationwide population coverage 

 
Figure 31: Nationwide area coverage 

 

4.2. Impact of High Power devices 
The use of high power devices by Public Safety in Band 14 has been proposed in order to 

extend the coverage [22], with the assumption that the communication is more likely to 

be limited by the uplink transmissions. However, increasing the transmit power of the 

user devices also creates challenges because it potentially increases the interference to the 
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neighboring sectors, thus reducing the SINR values for the users on those sectors, which 

in turns limit the MCS that can be used by the UEs, resulting in an increase of the sector 

loads to maintain the user data rates. Since the level of interference generated is based on 

the number of users transmitting in a sector, an analysis was performed to characterize 

the limitations of using a higher transmit power. In this analysis, a site plan was 

generated for various regions with increasing user densities. The site plans were 

generated using two UE power configurations, 23 dBm and 31 dBm. To take full 

advantage of the additional power, the fractional uplink power control settings were also 

adjusted, changing the target received power P0 and keeping the compensation factor 

Alpha the same, as shown in Table 14.  

 
Table 14: Fractional power control settings 

UE Power 
(dBm) 

UE Power 
(W) 

P0 Alpha 

23 0.2 -32.6 0.4 

31 1.2 -27.8 0.4 
 

Figure 32 plots the differences in the number of sites required when using a UE transmit 

power of 0.2 W compared to 1.2 W as a function of the user density of that area, i.e., 

Difference = 𝑁0.2 W − 𝑁1.2 W. Each area analyzed has unique features, leading to 

different number of sites even for similar user densities. For the same reason, one 

configuration is not always going to be better than the other one and we need to look at 

the trend (dashed red line on the graph). The fit curve shows that for areas with low user 

densities, the number of sites with 0.2 W UEs is higher than the one with 1.2 W UEs. 

However the benefit decreases as the user density increases and beyond a user density of 

1.35 users per km2, on average, more sites are required when using the higher power 

UEs. 

 

 
Figure 32 Differences in the number of sites required between 0.2 W and 1.2 W 

Figure 33 shows the Cumulative Distribution Functions (CDF) of the user density for all 

the subdivisions in the US and in various nationwide coverage criteria. We observe that 

about 92 % of the US territory has a user density less than 1.35 users per km2. However, 

-15

-10

-5

0

5

10

15

20

25

0
0

.0
5

0
.1

0
.1

5
0

.2
0

.2
5

0
.3

0
.3

5
0

.4
0

.4
5

0
.5

0
.5

5
0

.6
0

.6
5

0
.7

0
.7

5
0

.8
0

.8
5

0
.9

0
.9

5 1
1

.0
5

1
.1

1
.1

5
1

.2
1

.2
5

1
.3

1
.3

5
1

.4
1

.4
5

Si
te

 d
if

fe
re

n
ce

 

User density (people/km2)

Difference 0.2 W vs 1.2 W



 

46 

 

not all of that area will be covered, and it is necessary to look at the actual selection 

method (as described in Section 3.4.2) to determine how much of the area selected will 

benefit from the high power UEs. For example, if we consider target population 

coverages of 99.9 % and 99 %, respectively 88 % and 85 % of the coverage area can 

benefit from the high power UEs.  

 

 

Figure 33: CDF of user density 

5. Conclusion 

This document described a method for modeling site deployments for the future NPSBN. 

We discussed the types of inputs that must be provided for accurate RF modeling, such as 

elevation and clutter data, as well as assumptions regarding the network configurations 

and the traffic models. We also described the steps involved in performing an area 

analysis, starting with the site selection and continuing up to the validation of the network 

performance. To resolve the scalability issues caused by modeling the entire United 

States, our approach performs detailed analysis of sample areas and then extrapolates the 

results nationwide. The statistical selection of those samples ensures that the extrapolated 

results are correct and precise within known limits, and quantifies the uncertainty of the 

results.  

The nationwide results presented demonstrate the impact of a few key parameters, 

namely indoor coverage and reliability. Intuitively, it is clear that trying to provide indoor 

coverage or increasing the coverage reliability will increase the number of sites needed. 

The benefit of the model is to be able to quantify the impact associated with varying the 

parameters in order to perform cost-benefit analyses. We also looked at the use of high 

power UEs to increase the cell coverage, thus reducing the number of sites needed. 

However, we observed that there are some limitations and the improvements are 

noticeable only in rural areas.  
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As LTE networks are being deployed, data usage will be collected and used to refine the 

traffic models. Additionally, the LTE standard is still evolving and will affect the 

operations of the network by providing new capabilities (e.g., higher modulation, 

advanced interference coordination, carrier aggregation). For all these reasons, the actual 

figures obtained may change in the future, as further analyses are run to ascertain the 

impact of these new or updated inputs to the process. The method presented, on the other 

hand, is resilient to these changes and will remain unmodified.  
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