
 

 
 

    
 
 

 
  
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 

 

NISTIR 8037 

NEURBT: A Program for 
Computing Neural Networks for 

Classification using Batch Learning 

Javier Bernal 

This publication is available free of charge from: 
http://dx.doi.org/10.6028/NIST.IR.8037 

http://dx.doi.org/10.6028/NIST.IR.8037


 
 
 
 
 

  
 
 

 
 
 
 
 
 
 
 

 
 
 
 

 
 
 

 
 
 
 
 
 
 
 

 
 
 
 
 

  
   

NISTIR 8037 

NEURBT: A Program for 
Computing Neural Networks for 

Classification using Batch Learning 

Javier Bernal 
Applied and Computational Mathematics Division 

Information Technology Laboratory 

This publication is available free of charge from: 
http://dx.doi.org/10.6028/NIST.IR.8037 

February 2015 

U.S. Department of Commerce 
Penny Pritzker, Secretary 

National Institute of Standards and Technology 
Willie May, Acting Under Secretary of Commerce for Standards and Technology and Acting Director 

http://dx.doi.org/10.6028/NIST.IR.8037


NEURBT: A Program for Computing Neural
 

Networks for Classification using Batch
 

Learning
 

Javier Bernal 

National Institute of Standards and Technology,
 

Gaithersburg, MD 20899, USA
 

Abstract 

NEURBT, a Fortran 77 program for computing neural networks 
for classification using batch learning, is discussed. NEURBT is based 
on Møller’s scaled conjugate gradient algorithm which is a variation of 
the traditional conjugate gradient method, better suited for the non-
quadratic nature of neural networks. Different aspects of the imple­
mentation are discussed such as the efficient computation of gradients 
and multiplication of vectors by Hessian matrices that are required by 
Møller’s algorithm, and the stochastic (re)initialization of weights. 

1 Introduction 

Neural networks are computational models that work by simulating the way 
the brain processes information. They are often used to recognize patterns 
in a data set. Once the neural network is trained on sample patterns of the 
data, it can then be used for attempting to recognize other patterns as they 
are fed through the network. 

Let A be a set of points or pattern vectors in Euclidean d−dimensional 
space that is partitioned into n classes. The basic structure of a neural 
network consists of layers or columns of mostly computing nodes, or neurons, 
arranged from left to right (see Figure 1) in such a way that the result of a 

1 



Figure 1: A 3−layer neural network. The leftmost layer is the input layer. 
From left to right in the network, the middle layer is the first layer with 
computing neurons and as such is called the first layer of the network. It is 
a hidden layer as well. The rightmost layer is the output layer. The input 
layer and the first layer have bias neurons (bottom neurons). 

computation at each neuron in a layer contributes to the input of neurons 
in the next layer. The layer at the extreme left of the network is called the 
input layer of the network (see Figure 1) and consists of d + 1 neurons. A 
pattern vector in A, say a = {ak}, k = 1, . . . , d, is introduced into the network 
through the input layer as follows: a is augmented to be of dimension d + 1 
by setting ad+1 equal to 1; neurons in the input layer are labeled with integers 
from 1 to d + 1; and for each k, k = 1, . . . , d + 1, coordinate ak is assigned 
to neuron k (neuron with label k) and as such interpreted to be the output 
of neuron k (neuron d + 1 is called a bias neuron and its output is 1 for 
all patterns). The layer immediately to the right of the input layer, unlike 
the input layer, consists of computing neurons (except for the last neuron 
which is a bias neuron), and is called the first layer of the network. Like 
the input layer, it has d + 1 neurons which are then labeled with integers 
from d + 2 to 2d + 2. Given integer i, d + 2 ≤ i ≤ 2d + 1, a number xi is 
designated the input to neuron i (in the first layer) which is a weighted 

2 



� 

sum of the outputs of the input layer (the coordinates of the augmented 
�d+1 pattern a) expressed as xi = k=1 wki ak. Here for each k, k = 1, . . . , d + 1, 

wki is the weight modifying the pattern coordinate ak before it is fed into 
neuron i (as part of xi). In order to make neuron i into a computing neuron, 
the sigmoid activation function σ(x) = 1/(1 + e−x) is assigned to it. σ is a 
function with derivatives of all orders and values between 0 and 1. yi = σ(xi) 
is then designated the ouput of neuron i, d + 2 ≤ i ≤ 2d + 1, while y2d+2 = 1 
is designated the output of neuron 2d + 2 (the bias neuron). Inductively, 
given layers M and L, consecutive layers in the network from left to right; 
{ym}, the set of outputs of neurons in layer M ; l1, l2, l1 < l2, integers such 
that neurons in layer L are labeled with integers from l1 to l2; and neuron l, 
a neuron in layer L, l1 ≤ l ≤ l2 − 1; then a number xl is designated the input 
to neuron l which is a weighted sum of the outputs of layer M expressed as 
xl = m wml ym. In addition the same sigmoid activation function σ defined 
above is assigned to neuron l and yl = σ(xl) is designated the output of 
neuron l, l1 ≤ l ≤ l2 − 1, while yl2 = 1 is designated the ouput of neuron l2 

(the bias neuron of layer L). 
With the exclusion of the layer at the extreme right of the network, layers 

to the right of the input layer are called hidden layers (in Figure 1 the middle 
layer, i.e., the first layer, is the only hidden layer), and hidden layers to the 
right of the first layer (there are none in the network of Figure 1) are assumed 
to consist of the same number of neurons, a number greater than 1 and 
preferably greater than d and n. The layer at the extreme right of the network 
is called the output layer of the network (see Figure 1). For consistency with 
definitions above involving consecutive layers L and M we assume at first 
that the output layer contains a bias neuron besides n computing neurons. As 
it will become apparent below there is a one-to-one correspondence between 
the n computing neurons in this layer and the classes into which the set A 
of patterns is partitioned. Reducing the number of neurons in the output 
layer to n by dropping the dummy bias neuron in the layer and letting nq 
be the total number of neurons in the network, neurons in the output layer 
are then labeled with integers from nq − n + 1 to nq. Additionally, letting 
nw be the total number of weights in the network, a natural order can be 
established for weights so that any given set of nw weights can be uniquely 
identified with a vector, a weight vector, in weight space, the Euclidean space 
of dimension nw, and vice versa. 

Given a pattern a in A, then for some q, 1 ≤ q ≤ n, a is in class q, and 
an n−dimensional vector r(a) = {r(a)m}, m = 1, . . . , n, called the desired 

3
 



response for a, is defined by setting r(a)q equal to 1 and r(a)m equal to 0 
for m = 1, . . . , n, m  q. Another n−dimensional vector o(a) = },= {o(a)m 

m = 1, . . . , n, called the actual output for a, is defined by setting o(a)m equal 
to the output of the mth neuron in the output layer (neuron with label nq − 
n+m) for each m, m = 1, . . . , n. The total squared error between the desired 
responses r(a) and the actual outputs o(a), a in A, is then 

n 
L L L

E(w) = 1/2 |r(a) − o(a)|2 = 1/2 (r(a)m − o(a)m)2 , 
a∈A a∈A m=1 

where w is the unique vector in weight space corresponding to the current set 
of weights in the network. As E is implicitly defined in terms of the activation 
functions assigned to the neurons in the network, E has partial derivatives of 
all orders at any w. The training of the neural network on sample patterns in 
A is then accomplished in a batch learning manner by adjusting the weights 
between layers in the network using differential calculus so that a minimum 
to the error E as a function of the weights is obtained. With batch learning 
all weights are adjusted only after all patterns in A are processed as opposed 
to on-line learning with which all weights are adjusted each time a pattern 
in A is processed. 

In this paper we discuss NEURBT, a Fortran 77 program for computing 
neural networks for classification using batch learning. NEURBT is based on 
Møller’s scaled conjugate gradient algorithm [7] which is a variation of the 
traditional conjugate gradient method [5], better suited for the nonquadratic 
nature of neural networks. In what follows an outline of Møller’s algorithm 
is presented that closely resembles the implementation of the algorithm in 
program NEURBT. In addition, other aspects of the implementation are 
discussed such as the efficient computation of gradients and multiplication 
of vectors by Hessian matrices that take place in Møller’s algorithm, and the 
stochastic (re)initialization of weights. A copy of NEURBT can be obtained 
from http://math.nist.gov/~JBernal 

2 Scaled Conjugate Gradient Algorithm 

Program NEURBT is based on Møller’s scaled conjugate gradient algo­
rithm [7] for minimizing the total squared error E as a function of weights. 
Møller’s algorithm, an outline of which is presented below, is based on the 
well-known conjugate gradient method [5] which works well for quadratic or 

4
 

http://math.nist.gov/~JBernal


nearly-quadratic functions. Since the Hessian matrix E ′′ (w) of the squared 
error function E at w may not be positive definitive for w in certain areas 
of weight space, Møller modified the conjugate gradient method based on 
the approach of the Levenberg-Marquardt algorithm [2]. If at some point 
during the execution of the conjugate gradient method for some p and w in 
nw−dimensional Euclidean space δ = ptE ′′ (w)p is computed resulting in a 
nonpositive δ, one makes δ positive by adding ptλp to it for some λ > 0, i.e., 
by scaling the Hessian matrix E ′′ (w) with the appropriate λ > 0 so that δ 

′′ (w)becomes pt(E + λI)p, I the identity matrix. Once λ is initialized it is 
used and adjusted appropriately throughout the execution of the algorithm 
so that each δ computed as above remains positive. However, since the accu­
racy of the conjugate gradient method depends on approximating E(w) with 
a quadratic function that involves E′′ (w), care must be taken that the scaled 
E ′′ (w) does not produce a bad approximation. This is again taken care of 
by appropriately raising and lowering λ. The outline of the scaled conjugate 
gradient algorithm below includes the manipulations for raising and lower­
ing λ. Here the column vector E ′(w) is the gradient of E at weight vector w. 
The outline closely resembles the implementation of Møller’s algorithm in 
program NEURBT. 

1. Stochastically initialize weight vector w0,
 
¯
k = 0, ǫ1 = 10−6 , ǫ2 = 10−4 , λ0 = ǫ2, λ0 = 0, r0 = p0 = −E ′(w0), 

success = true. 

′′ (wk)pk, δk 
t2. Calculate second-order information: sk = E = pksk. 

¯3. Scale Hessian matrix: δk = δk + (λk − λk)|pk|
2 . 

4. If δk ≤ 0 then scale Hessian matrix to make it positive definite:
 
¯ ¯
λk = 2(λk − δk/|pk|

2), δk = −δk + λk|pk|
2 , λk = λk. 

5. Calculate the step size: µk = pk 
t rk, αk = µk/δk. 

6. Calculate the comparison parameter Δk: w̄k+1 = wk + αkpk, 
t ′′ (wk)αkpk + λk|αkpk|

2), E q = E(wk) + E ′ (wk)
tαkpk + 1/2(αkpkE

Δk = [E(wk) − E(w̄k+1 )]/[E(wk) − E q] = 2δk[E(wk) − E(w̄k+1)]/µ
2 
k. 

7. Test for error reduction:
 
If Δk ≥ 0 then a successful error reduction can be made:
 
wk+1 = w̄k+1 , rk+1 = −E ′(wk+1 ).
 

5
 



 

� � 

� 

If |rk+1 | < ǫ1 then terminate and return wk+1 as desired minimum. 
If success = false or k mod nw = 0 then restart: pk+1 = rk+1 , λk+1 = 

¯ǫ2, λk+1 = 0, k = k + 1, success = true, and go to step 2.
 
Else (if success = true and k mod nw = 0) then create new conjugate
 
direction: βk = rt rk)/µk, pk+1 = rk+1 + βkpk.
(|rk+1|

2 − k+1 

If Δk ≥ 0.75 then reduce the scale parameter: λk = 1/2λk. 
Else (if Δk < 0) error reduction is not possible: 
λ̄k = λk, success = false. 

8. If Δk < 0.25 then increase the scale parameter: λk = 4λk. 

9. if success = false then go to step 3.
 
¯
Else set λk+1 = 0, λk+1 = λk, k = k + 1, and go to step 2. 

3 Computing the Gradient 

In order to attempt to minimize the error E as a function of w using the scaled 
conjugate gradient algorithm as described above, the capability must exist for 
the efficient computation of the gradient E ′ (w) of E at w and multiplication 
of a vector by the Hessian matrix E ′′ (w) of E at w. In this section we develop 
the formulas used in program NEURBT for the computation of the gradient 
E ′(w) as presented in [4]. 

Given a ∈ A, w in weight space, the error at w due to a is Ea(w) = 
1/2 n (r(a)m − o(a)m)2 . Thus, E(w) = (w). Writing w as m=1 a∈A Ea 

{wk}, k = 1, . . . , nw, it follows that ∂E/∂wk = a∈A ∂Ea/∂wk for each k, 
k = 1, . . . , nw. Therefore, by fixing a in A, in what follows it will suffice to 
develop only the formulas associated with Ea. 

As it will become apparent from the formulas below the calculations of 
the partial derivatives of Ea with these formulas must take place in a specific 
order, from right to left in the network. This is because each calculation 
corresponding to a given weight depends on calculations corresponding to 
other weights in the network to the right of the given weight. Computing 
in this manner is called backpropagation. However, it is an implementation 
issue that is taken care of in program NEURBT and not necessary for the 
development of the formulas. 

Consider layers K, M , L, consecutive layers in the network from left to 
right, {yk}, the set of outputs of neurons in layer K, {ym}, the set of outputs 
of neurons in layer M , and {xl}, the set of inputs of computing neurons in 

6
 



� 

� 

� 

� 

� 

layer L. In particular consider yj, the output of some neuron in layer K, 
{xi}, {yi}, the input and output, respectively, of some computing neuron in 
layer M . In addition, for each yk as above let wki be the weight such that 
xi = k wkiyk; and for each ym and xl as above let wml be the weight such 
that xl = m wml ym. 

Case 1. Layer K is not the input layer and layer M is a hidden layer so 
that layer L is either a hidden layer or the output layer. 

Using the chain rule repeatedly we then get 

∂Ea ∂Ea ∂xi ∂Ea ∂( k wki yk) ∂Ea ∂(wj i yj) ∂Ea 
= = = = yj. 

∂wj i ∂xi ∂wj i ∂xi ∂wj i ∂xi ∂wj i ∂xi 

∂Ea ∂Ea ∂yi ∂Ea 
= = σ ′ (xi). 

∂xi ∂yi ∂xi ∂yi 

∂Ea L ∂Ea ∂xl L ∂Ea ∂( m wml ym) L ∂Ea ∂(wil yi) 
= = = = 

∂yi ∂xl ∂yi ∂xl ∂yi ∂xl ∂yil l l 

L ∂Ea 
wil . 

l ∂xl 

Thus, 

∂Ea ∂Ea ∂Ea L ∂Ea 
= yj = σ ′ (xi)yj = ( wil )σ ′ (xi)yj. 

∂wj i ∂xi ∂yi l ∂xl 

Case 2. Layer K is the input layer so that layer M is the first layer in 
the network. Then {yk} can be replaced by {ak}, the set of coordinates of 
input pattern a. 

Thus, xi = k wkiak, and 

∂Ea ∂Ea 
= aj . 

∂wj i ∂xi 

Once again 
∂Ea ∂Ea 

= σ ′ (xi)
∂xi ∂yi 

and 
∂Ea L ∂Ea 

= wil . 
∂yi l ∂xl 

7
 



� � 

Thus, 

∂Ea ∂Ea ∂Ea L ∂Ea 
= aj = σ ′ (xi)aj = ( wil )σ ′ (xi)aj . 

∂wj i ∂xi ∂yi l ∂xl 

Case 3. Layer M is the output layer of the network so that there is no 
layer L. 

Then once again 
∂Ea ∂Ea 

= yj
∂wj i ∂xi 

and 
∂Ea ∂Ea 

= σ ′ (xi). 
∂xi ∂yi 

With {ym} ordered so that for m = 1, . . . , n, ym = o(a)m then Ea(w) = 
1/2 n 

m=1 (r(a)m − o(a)m)2 = 1/2 n 
m=1 (r(a)m − ym)2, so that 

∂Ea 
= yi − r(a)i

∂yi 

and 
∂Ea ∂Ea ∂Ea 

= yj = σ ′ (xi)yj = (yi − r(a)i)σ ′ (xi)yj. 
∂wj i ∂xi ∂yi 

Note that in all cases σ′ (xi) = yi(1 − yi). 

4 Fast Exact Multiplication by the Hessian 

In this section we develop the formulas used in the implementation of the 
scaled conjugate gradient algorithm in NEURBT for the fast exact compu­

′′ (w)tation of the product of the Hessian matrix E with an nw−dimensional 
vector v in the context of Møller’s algorithm. With these formulas the cal­
culation of the complete Hessian matrix is avoided. These formulas were 
originally derived by Pearlmutter [8] and involve the so-called R{·} opera­
tor. As in the case of the gradient E′ (w), by fixing a in A, in what follows it 
will suffice to develop only the formulas associated with Ea. These formulas 
depend on the formulas developed above for the computation of the gradi­
ent E ′(w), thus simultaneously as E ′(w) is computed with backpropagation, 
the exact product of v and E ′′ (w) is computed with these formulas in either 
a feed-forward fashion or in the manner of backpropagation. But again this 

8
 



� 

� 

� 

� 

� 

is an implementation issue that is taken care of in program NEURBT and 
not necessary for the development of the formulas. 

Let f be a differentiable function from nw−dimensional Euclidean space 
into any other finite-dimensional Euclidean space. The Rv{·} operator or 
simply the R{·} operator is defined by 

d 
Rv{f(w)} ≡ f(w + rv)� = f ′ (w)v, 

dr � 

r=0 

where f ′(w) is the Jacobian matrix of f at w. In particular Rv{E
′(w)} = 

′′ (w)v.E Writing w as {wk}, k = 1, . . . , nw, it also follows that for each k, 
′′ (w)v.k = 1, . . . , nw, Rv{∂E/∂wk} is the kth component of E

Given g, a differentiable function with domain and range appropriately 
defined, c a real number, then some equations involving R{·} are satisfied: 

R{cf (w)} = cR{f(w)} 

R{f(w) + g(w)} = R{f(w)} + R{g(w)} 

R{f(w)g(w)} = R{f(w)}g(w) + f(w)R{g(w)} 

R{g(f(w))} = g ′ (f(w))R{f(w)} 

d d 
R{ f(w)} = R{f(w)}

dt dt
R{w} = v. 

With these equations and the formulas obtained in the previous section 
for the components of Ea 

′ (w), the formulas for the components of Ea 
′′ (w)v 

can be derived. In what follows weights are doubly indexed. Since there is 
a one-to-one correspondence between the components of w and v then the 
components of v will be similarly indexed. 

As in the previous section, consider layers K, M , L, consecutive layers in 
the network from left to right, {yk}, the set of outputs of neurons in layer K, 
{ym}, the set of outputs of neurons in layer M , and {xl}, the set of inputs of 
computing neurons in layer L. In particular consider yj, the output of some 
neuron in layer K, {xi}, {yi}, the input and output, respectively, of some 
computing neuron in layer M . In addition, for each yk as above let wki be 
the weight such that xi = k wki yk; and for each ym and xl as above let wml 

be the weight such that xl = m wml ym. 

Case 1. Layer K is not the input layer and layer M is a hidden layer so 
that layer L is either a hidden layer or the output layer. 

9
 



Applying R{·} on xi and yi, we get the feed-forward formulas: 

L L L 

R{xi} = R{ wkiyk} = R{wki yk} = (R{wki }yk + wkiR{yk}) = 
k k k 

L 

(vki yk + wkiR{yk}). 
k 

R{yi} = R{σ(xi)} = σ ′ (xi)R{xi}. 

Applying R{·} on ∂Ea/∂wj i , ∂Ea/∂xi, ∂Ea/∂yi, as computed in the pre­
vious section for case 1, we get the backpropagation formulas: 

∂Ea ∂Ea ∂Ea ∂Ea
R{ } = R{ yj} = R{ }yj + R{yj}. 

∂wj i ∂xi ∂xi ∂xi 

∂Ea ∂Ea ∂Ea ∂Ea
R{ } = R{ σ ′ (xi)} = R{ }σ ′ (xi) + R{σ ′ (xi)} = 

∂xi ∂yi ∂yi ∂yi 

∂Ea ∂Ea
R{ }σ ′ (xi) + σ ′′ (xi)R{xi}. 

∂yi ∂yi 

∂Ea L ∂Ea L ∂Ea
R{ } = R{ wil } = R{ wil } = 

∂yi l ∂xl l ∂xl 

L ∂Ea ∂Ea L ∂Ea ∂Ea
(R{ }wil + R{wil } = (R{ }wil + vil ). 

l ∂xl ∂xl l ∂xl ∂xl 

Case 2. Layer K is the input layer so that layer M is the first layer in 
the network. Then {yk} can be replaced by {ak}, the set of coordinates of 
input pattern a. 

Applying R{·} on xi and ∂Ea/∂wj i , as computed in the previous section 
for case 2, we get 

L L L L 

R{xi} = R{ wki ak} = R{wki ak} = R{wki }ak = vki ak, 
k k k k 

and 
∂Ea ∂Ea ∂Ea

R{ } = R{ aj } = R{ }aj,
∂wj i ∂xi ∂xi 

with the other formulas derived for case 1 above remaining the same. 

Case 3. Layer M is the output layer of the network so that there is no 
layer L. 

10
 



Applying R{·} on ∂Ea/∂yi, as computed in the previous section for case 3, 
we get 

∂Ea
R{ } = R{yi − r(a)i} = R{yi},

∂yi 

with the other formulas derived for case 1 above remaining the same. 

Note that in all cases σ′′ (xi) = (1 − 2yi)σ
′(xi), and σ′(xi) = yi(1 − yi). 

5 Stochastic (Re)Initialization of Weights 

Program NEURBT has the capability of restarting the scaled conjugate gra­
dient algorithm each time it detects insufficient progress in the training of 
the sample patterns. Based mostly on ideas in [6], the following stochas­
tic procedure is used to move away from the current position or solution in 
weight space (the last weight vector found with the scaled conjugate gradi­
ent algorithm) by randomly perturbing it several times as described below 
to obtain weight vectors in hopes that some are improvements over the cur­
rent solution. These weight vectors are obtained by randomly perturbing 
the current solution inside a ball (using the maximum norm in weight space) 
with center at the current solution and a relatively large radius, a radius 
which is gradually reduced. If at a given radius, some of the weight vectors 
obtained are improvements, the best one is then used as the center around 
which the next random perturbations for the next (reduced) radius will take 
place. Otherwise the current center continues to be used as such. Once all 
pertubations are done, if there have been any improvements, the weight vec­
tor that is the best improvement is used as the initial solution for the next 
training with the scaled conjugate gradient algorithm. Otherwise, if none of 
the weight vectors obtained through perturbations is an improvement, one 
is randomly selected as the new initial solution for the next training even 
though it is worse than the current solution. The procedure follows. 

1. Set K1, K2 to appropriate positive integers (e.g., K1 = 100, K2 = 5), 
a = 2.0, k2 = 0, rx = 2.0, flag = 1. 

2. If the scaled conjugate gradient algorithm has not been executed yet, 
i.e., it is the start of the execution of NEURBT, then set weight vector 
wc to the zero vector in weight space, wm = wc, Em = ∞. 
Else set wc to the current solution of the scaled conjugate gradient 
algorithm, wm = wc, Em = E(wm). 

11
 



 

 

3. Set k1 = 0, k2 = k2 + 1, a = 0.5 · a, wc = wm. 

4. Set k1 = k1 + 1. 
Generate weight vector wn of components random numbers in [−a, a]. 
Set w = wc + wn. 
If flag = 2 then 
if E(w) < Em then set wm = w, Em = E(wm); 
go to step 5. 
Else (flag = 2) 
if E(w) < Em then set wm = w, Em = E(wm), flag = 2, go to step 5; 
else (E(w) ≥ Em) generate random number rn in [0, 1], 
if rn < rx then set wt = w, rx = rn. 

5. If k1 ≤ K1 go to step 4. 

6. If k2 ≤ K2 go to step 3. 

7. If flag = 2 then set w0 = wm. 
Else (flag = 2) set w0 = wt. 
Use w0 as the initial solution for the next execution of the scaled con­
jugate gradient algorithm. 

6 Numerical Results 

6.1 Cushing Syndrome Classification 

Here we present results from program NEURBT on a small example associ­
ated with the so-called Cushing syndrome. This is an example used in [3] as 
an application of neural networks for classification. 

The Cushing syndrome is a disorder that occurs when the body is exposed 
to high levels of the hormone cortisol for a long time. Three types of the 
syndrome are recognized: adenoma, bilateral hyperplasia, and carcinoma. In 
the presence of the Cushing syndrome the following observations were made 
that represent urinary excretion rates (mg/24hr) of the steroid metabolites 
tetrahydrocortisone (in the second column below) and pregnanetriol (in the 
third column). Each line of observations has a label that appears in the first 
column, and each of the lines corresponds to an individual identified with 
each of the observations in the line, an individual with a known type of the 
syndrome. Accordingly, lines labeled a1, ..., a6 correspond to individuals 

12
 



with the adenoma type; lines labeled b1, ..., b10 correspond to individuals 
with the bilateral hyperplasia type; and lines labeled c1, ..., c5 correspond to 
individuals with the carcinoma type. Lines labeled u1, ..., u6 correspond to 
individuals with the syndrome, each individual with an unknown type of the 
syndrome. Finally, the fourth and fifth columns of the data below have the 
same data as the second and third columns, respectively, but on a log scale. 

a1 3.1 11.70 1.1314021 2.45958884 
a2 3.0 1.30 1.0986123 0.26236426 
a3 1.9 0.10 0.6418539 -2.30258509 
a4 3.8 0.04 1.3350011 -3.21887582 
a5 4.1 1.10 1.4109870 0.09531018 
a6 1.9 0.40 0.6418539 -0.91629073 
b1 8.3 1.00 2.1162555 0.00000000 
b2 3.8 0.20 1.3350011 -1.60943791 
b3 3.9 0.60 1.3609766 -0.51082562 
b4 7.8 1.20 2.0541237 0.18232156 
b5 9.1 0.60 2.2082744 -0.51082562 
b6 15.4 3.60 2.7343675 1.28093385 
b7 7.7 1.60 2.0412203 0.47000363 
b8 6.5 0.40 1.8718022 -0.91629073 
b9 5.7 0.40 1.7404662 -0.91629073 
b10 13.6 1.60 2.6100698 0.47000363 
c1 10.2 6.40 2.3223877 1.85629799 
c2 9.2 7.90 2.2192035 2.06686276 
c3 9.6 3.10 2.2617631 1.13140211 
c4 53.8 2.50 3.9852735 0.91629073 
c5 15.8 7.60 2.7600099 2.02814825 
u1 5.1 0.40 1.6292405 -0.9162907 
u2 12.9 5.00 2.5572273 1.6094379 
u3 13.0 0.80 2.5649494 -0.2231436 
u4 2.6 0.10 0.9555114 -2.3025851 
u5 30.0 0.10 3.4011974 -2.3025851 
u6 20.5 0.80 3.0204249 -0.2231436 

Log scale data above for observations in lines a1, ..., a6, b1, ..., b10, c1, ..., c5, 
was used as training data for NEURBT, and once training was completed on 

13
 



a 4−layer network associated with the data, log scale data for observations in 
lines u1, ..., u6, together with the trained network was used to identify with 
NEURBT the type (adenoma, bilateral hyperplasia, or carcinoma) corre­
sponding to each of these lines. The classification results from the execution 
of NEURBT follow for each line of unknown type. Here the first columm of 
numbers contains outputs from the ouput node of the neural network cor­
responding to the ademona type; the second column contains outputs from 
the output node corresponding to the bilateral hyperplasia type; and finally 
the third column contains outputs from the output node corresponding to 
the carcinoma type. 

u1 3.24477751E-05 0.999754658 2.89550184E-05 
u2 0.00229908955 0.00168873688 0.99732707 
u3 6.43877753E-06 0.999842854 0.000214464156 
u4 0.993283221 0.016642477 5.17611453E-10 
u5 9.02998701E-06 0.999543222 0.000649654443 
u6 1.69426598E-05 0.997179771 0.00402886012 

From these results it appears that adenoma is the type corresponding to line 
u4; bilateral hyperplasia is the type corresponding to lines u1, u3, u5, u6; 
and carcinoma is the type corresponding to line u2. This classification of 
these lines is consistent with the classification of the same lines in [3]. 

6.2 Wine Classification 

Data in [1] is the result of a chemical analysis of wines produced in the 
same region in Italy from three different cultivars. Each line in the data 
corresponds to a wine and contains quantities of 13 constituents in the wine 
that were determined through the chemical analysis. 

The 13 constituents were: 
1) Alcohol 
2) Malic acid 
3) Ash 
4) Alcalinity of ash 
5) Magnesium 
6) Total phenols 
7) Flavanoids 

14
 



8) Nonflavanoid phenols 
9) Proanthocyanins 
10)Color intensity 
11)Hue 
12)OD280/OD315 of diluted wines 
13)Proline 

Training data for program NEURBT was obtained from [1] as follows. 
The first 50 lines of data for wine from the first cultivar were extracted from 
the data and identified as Class 1 training data; the first 60 lines of data for 
wine from the second cultivar were extracted from the data and identified as 
Class 2 training data; and the first 40 lines of data for wine from the third 
cultivar were extracted from the data and indentified as Class 3 training 
data. In all cases each line of data consisted of 13 numbers corresponding in 
the same order to the quantities of constituents listed above. For example, 
the first line in the Class 1 training data appeared exactly as follows: 

4.23,1.71,2.43,15.6,127,2.8,3.06,.28,2.29,5.64,1.04,3.92,1065 

Using this data, NEURBT was then executed to train a 4−layer network 
associated with the data. For the purpose of testing the trained network the 
remaining 9 lines of data for wine from the first cultivar were extracted from 
the data and identified as Class 1 independent data; the remaining 11 lines 
of data for wine from the second cultivar were extracted from the data and 
identified as Class 2 independent data; and the remaining 8 lines of data for 
wine from the third cultivar were extracted from the data and indentified as 
Class 3 independent data. 

The classification results from the execution of NEURBT follow for each 
line of independent data. Here the first columm of numbers contains outputs 
from the ouput node of the neural network corresponding to wine from the 
first cultivar; the second column contains outputs from the output node 
corresponding to wine from the second cultivar; and finally the third column 
contains outputs from the output node corresponding to wine from the third 
cultivar. The first 9 lines correspond to the 9 lines in the Class 1 independent 
data in the same order; the next 11 lines correspond to the 11 lines in the 
Class 2 independent data in the same order; and the final 8 lines correspond 
to the 8 lines in the Class 3 independent data in the same order. 

15
 



0.997898696 1.55894382E-05 0.000718329838 
0.997899514 1.56570618E-05 0.000714938256 
0.997899491 1.5655163E-05 0.000715033071 
0.997822451 9.83061807E-06 0.00118815891 
0.9978991 1.56227882E-05 0.000716653417 
0.997898055 1.565808E-05 0.000716251607 
0.9978995 1.56561285E-05 0.000714986862 
0.997897986 1.55308256E-05 0.000721294412 
0.997899439 1.56508964E-05 0.000715246206 
0.0325602964 0.968719073 0.00263130889 
0.0324685933 0.968772038 0.00263806428 
0.0324681146 0.968772314 0.00263809963 
0.0324681071 0.968772309 0.00263810103 
0.0324703628 0.968770996 0.00263793516 
0.0324683634 0.968772171 0.00263808125 
0.0324681146 0.968772314 0.00263809963 
0.0324681146 0.968772314 0.00263809963 
0.0324681142 0.968772314 0.00263809969 
0.0324681146 0.968772314 0.00263809963 
0.0324595001 0.968764647 0.00263979697 
0.00210771733 0.00323003576 0.997239526 
0.00210756517 0.00322870149 0.997240864 
0.00210756559 0.00322870516 0.997240861 
0.74630825 6.64272561E-05 0.480445691 
0.00210756568 0.00322870595 0.99724086 
0.00210763918 0.00322858059 0.997240827 
0.00210756512 0.00322870101 0.997240865 
0.00210756528 0.00322870247 0.997240863 

From these results it appears that only the wine corresponding to the 4th 

line in the Class 3 independent data was classified incorrectly. Additional 
output from NEURBT confirms this: 

Independent patterns classification results:
 
Class = 1 Total = 9 Correct = 9 Percentage = 100.
 
Class = 2 Total = 11 Correct = 11 Percentage = 100.
 
Class = 3 Total = 8 Correct = 7 Percentage = 87.5
 

16
 



7 Summary 

NEURBT, a Fortran 77 program for computing neural networks for classifi­
cation using batch learning, was discussed. Since program NEURBT is based 
on Møller’s scaled conjugate gradient algorithm which is a variation of the 
traditional conjugate gradient method, better suited for the nonquadratic 
nature of neural networks, an outline of Møller’s algorithm was presented 
that resembles its implementation in program NEURBT. Important aspects 
of the implementation were discussed such as the efficient computation of 
gradients and multiplication of vectors by Hessian matrices that are required 
by Møller’s algorithm. Accordingly, formulas for the product of vectors by 
Hessian matrices depending on those for the gradients used in NEURBT were 
developed. Because of this dependence it was pointed out that calculations 
with these formulas of the gradient at a vector and the product of the Hessian 
at the same vector with another vector in the context of Møller’s algorithm 
occur simultaneously and take place in either a feed-forward fashion or in 
the manner of backpropagation. Finally, another aspect of the implementa­
tion was discussed which is the stochastic (re)initialization of weights, the 
main purpose of which is to restart the scaled conjugate gradient algorithm 
each time NEURBT detects insufficient progress in the training of the sam­
ple patterns. With this capability NEURBT has a better chance of reaching 
a global optimal solution. However if at some point during its execution it 
detects that it has either climbed the wrong mountain or gotten stuck in 
a valley one too many times it will stop while producing what it considers 
to be the best current solution. A copy of NEURBT can be obtained from 
http://math.nist.gov/~JBernal 

References 

[1] Bache, K., Lichman, M.: UCI Machine Learning Repository. Irvine, CA: 
University of California, School of Information and Computer Science. 
http://archive.ics.uci.edu/ml (2013). 

[2] Fletcher, R.: Practical Methods of Optimization. John Wiley & Sons 
(1975). 

17
 

http://archive.ics.uci.edu/ml
http://math.nist.gov/~JBernal


6601 
[3] Gongwer, G., Iyer, M., Kong, M.: Stat 6601 Classification: Neural 

Networks V&R 12.2. www.sci.csueastbay.edu/˜jkwon/classes/stat 
/PROJECT/6601 presentation Classification NeuralNetwork.ppt (2010). 

[4] Gonzalez, R. C., Woods, R. E.: Digital Image Processing. Pearson Pren­
tice Hall (2008). 

[5] Hestenes, M. R., Stiefel, E. L.: Methods of Conjugate Gradients for Solv­
ing Linear Systems. Journal of Research of the National Bureau of Stan­
dards 49(6) (1952) 409–436. 

[6] Masters, T.: Practical Neural Network Recipes in C++. Academic Press 
(1993). 

[7] Møller, M. F.: A Scaled Conjugate Gradient Algorithm for Fast Super­
vised Learning. Neural Networks 6(4) (1993) 525–533. 

[8] Pearlmutter, B. A.: Fast Exact Multiplication by the Hessian. Neural 
Computation 6(1) (1994) 147–160. 

18
 

www.sci.csueastbay.edu/�jkwon/classes/stat

	cover ir 8037
	NIST.IR.8037

