NISTIR 8032

Dietary Supplement Laboratory Quality Assurance Program: Exercise K Final Report

Melissa M. Phillips Catherine A. Rimmer Laura J. Wood

This publication is available free of charge from: http://dx.doi.org/10.6028/NIST.IR.8032

NISTIR 8032

Dietary Supplement Laboratory Quality Assurance Program: Exercise K Final Report

Melissa M. Phillips Catherine A. Rimmer Laura J. Wood

Chemical Sciences Division Material Measurement Laboratory

This publication is available free of charge from: http://dx.doi.org/10.6028/NIST.IR.8032

November 2014

U.S. Department of Commerce Penny Pritzker, Secretary

National Institute of Standards and Technology Willie May, Acting Under Secretary of Commerce for Standards and Technology and Acting Director

TABLE OF CONTENTS

ABSTRACT1
INTRODUCTION1
OVERVIEW OF DATA TREATMENT AND REPRESENTATION
Statistics
Individualized Data Table
Summary Data Table
Graphs
Data Summary View (Method Comparison Data Summary View)4 Sample/Sample Comparison View5
NUTRITIONAL ELEMENTS (P, FE) IN CRANBERRY AND BLUEBERRY
Study Overview6
Sample Information6
Cranberry6
Blueberry
Study Results
Technical Recommendations
Table 1. Individualized data summary table (NIST) for nutritional elements in cranberry and blueberry
Table 2. Data summary table for phosphorus in cranberry and blueberry 10
Table 3. Data summary table for iron in cranberry and blueberry 11
Figure 1. Phosphorus in SRM 3281 Cranberry (Fruit) (data summary view – digestion method)
Figure 2. Phosphorus in SRM 3287 Blueberry (Fruit) (data summary view – digestion method)
Figure 3. Iron in SRM 3281 Cranberry (Fruit) (data summary view – digestion method)14
Figure 4. Iron in SRM 3287 Blueberry (Fruit) (data summary view – digestion method)
Figure 5. Phosphorus in SRM 3281 Cranberry (Fruit) (data summary view – instrumental method)
Figure 6. Phosphorus in SRM 3287 Blueberry (Fruit) (data summary view – instrumental method)
Figure 7. Iron in SRM 3281 Cranberry (Fruit) (data summary view – instrumental method)
Figure 8. Iron in SRM 3287 Blueberry (Fruit) (data summary view – instrumental method)
Figure 9. Phosphorus in SRM 3287 Blueberry (Fruit) and SRM 3281 Cranberry (Fruit)
(sample/sample comparison view)20 Figure 10. Iron in SRM 3287 Blueberry (Fruit) and SRM 3281 Cranberry (Fruit) (sample/sample comparison view)

TOXIC ELEMENTS (Hg) IN EPHEDRA AND GINKGO DIETARY SUPPLEMENTS 22
Study Overview
Sample Information
Ephedra Aerial Parts22
Ginkgo Leaves22
Study Results
Technical Recommendations
Table 4. Individualized data summary table (NIST) for mercury in Ephedra and Ginkgo
dietary supplements
Table 5. Data summary table for mercury in Ephedra and Ginkgo dietary supplements
Figure 11. Mercury in SRM 3240 Ephedra sinica Stapf Aerial Parts (data summary view
– digestion method)26
Figure 12. Mercury in SRM 3246 Ginkgo biloba (Leaves) (data summary view - digestion
method)
Figure 13. Mercury in SRM 3240 Ephedra sinica Stapf Aerial Parts (data summary view
– instrumental method)
Figure 14. Mercury in SRM 3246 Ginkgo biloba (Leaves) (data summary view -
instrumental method)
Figure 15. Mercury in SRM 3240 Ephedra sinica Stapf Aerial Parts and SRM 3246
Ginkgo biloba (Leaves) (sample/sample comparison view)
WATER-SOLUBLE VITAMINS (B1, B2, B3) IN DIETARY SUPPLEMENTS
Study Overview
Sample Information
Sample Information 31 Multivitamin/Multielement Tablets 31 Protein Powder 31 Study Results 32 Technical Recommendations 33 Table 6. Individualized data summary table (NIST) for water-soluble vitamins in dietary supplements. 34 Table 7. Data summary table for vitamin B1 (thiamine hydrochloride) in dietary
Sample Information 31 Multivitamin/Multielement Tablets 31 Protein Powder 31 Study Results 32 Technical Recommendations 33 Table 6. Individualized data summary table (NIST) for water-soluble vitamins in dietary supplements 34 Table 7. Data summary table for vitamin B1 (thiamine hydrochloride) in dietary supplements 35
Sample Information 31 Multivitamin/Multielement Tablets 31 Protein Powder 31 Study Results 32 Technical Recommendations 33 Table 6. Individualized data summary table (NIST) for water-soluble vitamins in dietary supplements 34 Table 7. Data summary table for vitamin B1 (thiamine hydrochloride) in dietary supplements 35 Table 8. Data summary table for vitamin B2 (riboflavin) in dietary supplements 37
Sample Information 31 Multivitamin/Multielement Tablets 31 Protein Powder 31 Study Results 32 Technical Recommendations 33 Table 6. Individualized data summary table (NIST) for water-soluble vitamins in dietary supplements 34 Table 7. Data summary table for vitamin B1 (thiamine hydrochloride) in dietary supplements 35 Table 8. Data summary table for vitamin B2 (riboflavin) in dietary supplements 37 Table 9. Data summary table for vitamin B3 (niacinamide) in dietary supplements 39
Sample Information 31 Multivitamin/Multielement Tablets 31 Protein Powder 31 Study Results 32 Technical Recommendations 33 Table 6. Individualized data summary table (NIST) for water-soluble vitamins in dietary supplements. 34 Table 7. Data summary table for vitamin B1 (thiamine hydrochloride) in dietary supplements. 35 Table 8. Data summary table for vitamin B2 (riboflavin) in dietary supplements 37 Table 9. Data summary table for vitamin B3 (niacinamide) in dietary supplements 39 Figure 16. Thiamine hydrochloride in SRM 3280 Multivitamin/Multielement Tablets 31
Sample Information 31 Multivitamin/Multielement Tablets 31 Protein Powder 31 Study Results 32 Technical Recommendations 33 Table 6. Individualized data summary table (NIST) for water-soluble vitamins in dietary supplements 34 Table 7. Data summary table for vitamin B1 (thiamine hydrochloride) in dietary supplements 35 Table 8. Data summary table for vitamin B2 (riboflavin) in dietary supplements 37 Table 9. Data summary table for vitamin B3 (niacinamide) in dietary supplements 39 Figure 16. Thiamine hydrochloride in SRM 3280 Multivitamin/Multielement Tablets (data summary view – sample preparation method) 41
Sample Information 31 Multivitamin/Multielement Tablets 31 Protein Powder 31 Study Results 32 Technical Recommendations 33 Table 6. Individualized data summary table (NIST) for water-soluble vitamins in dietary supplements 34 Table 7. Data summary table for vitamin B1 (thiamine hydrochloride) in dietary supplements 35 Table 8. Data summary table for vitamin B2 (riboflavin) in dietary supplements 37 Table 9. Data summary table for vitamin B3 (niacinamide) in dietary supplements 39 Figure 16. Thiamine hydrochloride in SRM 3280 Multivitamin/Multielement Tablets (data summary view – sample preparation method) 41 Figure 17. Thiamine hydrochloride in SRM 3252 Protein Drink Mix (data summary view – sample preparation method) 42
Sample Information 31 Multivitamin/Multielement Tablets 31 Protein Powder 31 Study Results 32 Technical Recommendations 33 Table 6. Individualized data summary table (NIST) for water-soluble vitamins in dietary supplements 34 Table 7. Data summary table for vitamin B1 (thiamine hydrochloride) in dietary supplements 35 Table 8. Data summary table for vitamin B2 (riboflavin) in dietary supplements 37 Table 9. Data summary table for vitamin B3 (niacinamide) in dietary supplements 39 Figure 16. Thiamine hydrochloride in SRM 3280 Multivitamin/Multielement Tablets (data summary view – sample preparation method) 41 Figure 18. Riboflavin in SRM 3280 Multivitamin/Multielement Tablets (data summary view – sample preparation method) 42 Figure 18. Riboflavin in SRM 3280 Multivitamin/Multielement Tablets (data summary view – sample preparation method) 43
Sample Information 31 Multivitamin/Multielement Tablets 31 Protein Powder 31 Study Results 32 Technical Recommendations 33 Table 6. Individualized data summary table (NIST) for water-soluble vitamins in dietary supplements 34 Table 7. Data summary table for vitamin B1 (thiamine hydrochloride) in dietary supplements 35 Table 8. Data summary table for vitamin B2 (riboflavin) in dietary supplements 37 Table 9. Data summary table for vitamin B3 (niacinamide) in dietary supplements 39 Figure 16. Thiamine hydrochloride in SRM 3280 Multivitamin/Multielement Tablets (data summary view – sample preparation method) 41 Figure 17. Thiamine hydrochloride in SRM 3252 Protein Drink Mix (data summary view – sample preparation method) 42 Figure 18. Riboflavin in SRM 3280 Multivitamin/Multielement Tablets (data summary view 42
Sample Information 31 Multivitamin/Multielement Tablets 31 Protein Powder 31 Study Results 32 Technical Recommendations 33 Table 6. Individualized data summary table (NIST) for water-soluble vitamins in dietary supplements 34 Table 7. Data summary table for vitamin B1 (thiamine hydrochloride) in dietary supplements 35 Table 8. Data summary table for vitamin B2 (riboflavin) in dietary supplements 37 Table 9. Data summary table for vitamin B3 (niacinamide) in dietary supplements 39 Figure 16. Thiamine hydrochloride in SRM 3280 Multivitamin/Multielement Tablets (data summary view – sample preparation method) 41 Figure 18. Riboflavin in SRM 3280 Multivitamin/Multielement Tablets (data summary view – sample preparation method) 42 Figure 18. Riboflavin in SRM 3280 Multivitamin/Multielement Tablets (data summary view – sample preparation method) 43
Sample Information 31 Multivitamin/Multielement Tablets 31 Protein Powder 31 Study Results 32 Technical Recommendations 33 Table 6. Individualized data summary table (NIST) for water-soluble vitamins in dietary supplements 34 Table 7. Data summary table for vitamin B1 (thiamine hydrochloride) in dietary supplements 35 Table 8. Data summary table for vitamin B2 (riboflavin) in dietary supplements 37 Table 9. Data summary table for vitamin B3 (niacinamide) in dietary supplements 39 Figure 16. Thiamine hydrochloride in SRM 3280 Multivitamin/Multielement Tablets (data summary view – sample preparation method) 41 Figure 17. Thiamine hydrochloride in SRM 3252 Protein Drink Mix (data summary view – sample preparation method) 42 Figure 18. Riboflavin in SRM 3280 Multivitamin/Multielement Tablets (data summary view – sample preparation method) 43 Figure 19. Riboflavin in SRM 3252 Protein Drink Mix (data summary view – sample 43
Sample Information 31 Multivitamin/Multielement Tablets 31 Protein Powder 31 Study Results 32 Technical Recommendations 33 Table 6. Individualized data summary table (NIST) for water-soluble vitamins in dietary supplements 34 Table 7. Data summary table for vitamin B1 (thiamine hydrochloride) in dietary supplements 35 Table 8. Data summary table for vitamin B2 (riboflavin) in dietary supplements 37 Table 9. Data summary table for vitamin B3 (niacinamide) in dietary supplements 39 Figure 16. Thiamine hydrochloride in SRM 3280 Multivitamin/Multielement Tablets (data summary view – sample preparation method) 41 Figure 17. Thiamine hydrochloride in SRM 3252 Protein Drink Mix (data summary view – sample preparation method) 42 Figure 18. Riboflavin in SRM 3280 Multivitamin/Multielement Tablets (data summary view – sample preparation method) 43 Figure 19. Riboflavin in SRM 3252 Protein Drink Mix (data summary view – sample preparation method) 43

Figure 21. Niacinamide in SRM 3252 Protein Drink Mix (data summary view – sample
preparation method)46
Figure 22. Thiamine hydrochloride in SRM 3280 Multivitamin/Multielement Tablets
(data summary view – instrumental method)47
Figure 23. Thiamine hydrochloride in SRM 3252 Protein Drink Mix (data summary view
– instrumental method)48
Figure 24. Riboflavin in SRM 3280 Multivitamin/Multielement Tablets (data summary
view – instrumental method)49
Figure 25. Riboflavin in SRM 3252 Protein Drink Mix (data summary view – instrumental
method)
Figure 26. Niacinamide in SRM 3280 Multivitamin/Multielement Tablets (data summary
view – instrumental method)51
Figure 27. Niacinamide in SRM 3252 Protein Drink Mix (data summary view -
instrumental method)
Figure 28. Thiamine hydrochloride in SRM 3280 Multivitamin/Multielement Tablets
(data summary view – calibration method)
Figure 29. Thiamine hydrochloride in SRM 3252 Protein Drink Mix (data summary view
– calibration method)
Figure 30. Riboflavin in SRM 3280 Multivitamin/Multielement Tablets (data summary
view – calibration method)
Figure 31. Riboflavin in SRM 3252 Protein Drink Mix (data summary view – calibration
method)
Figure 32. Niacinamide in SRM 3280 Multivitamin/Multielement Tablets (data summary
view – calibration method)
Figure 33. Niacinamide in SRM 3252 Protein Drink Mix (data summary view –
calibration method)
Figure 34. Thiamine HCl in SRM 3280 Multivitamin/Multielement Tablets and SRM
3252 Protein Drink Mix (sample/sample comparison view)
Protein Drink Mix (sample/sample comparison view)
Figure 36. Niacinamide in SRM 3280 Multivitamin/Multielement Tablets and SRM 3252
Protein Drink Mix (sample/sample comparison view)
Trotem Drink with (sample/sample comparison view)
VITAMIN K IN DIETARY SUPPLEMENTS
Study Overview
Sample Information
Multivitamin/Multielement Tablets
Protein Powder
Study Results
Technical Recommendations
Table 10. Individualized data summary table (NIST) for vitamin K1 in dietary
supplements
Table 11. Data summary table for vitamin K1 in dietary supplements
Figure 37. Phylloquinone in SRM 3280 Multivitamin/Multielement Tablets (data
summary view – sample preparation method)

Figure 38. Phylloquinone in SRM 3280 Multivitamin/Multielement Tablets (data
summary view – instrumental method)67
Figure 39. Phylloquinone in SRM 3280 Multivitamin/Multielement Tablets (data
summary view – calibration method)68
Figure 40. Phylloquinone in SRM 3252 Protein Drink Mix (data summary view)69
Figure 41. Phylloquinone in SRM 3280 Multivitamin/Multielement Tablets and SRM
3252 Protein Drink Mix (sample/sample comparison view)
ACRYLAMIDE IN CHOCOLATE AND COFFEE
Study Overview
Sample Information
Baking Chocolate
Study Results
Technical Recommendations
Table 12. Individualized data summary table (NIST) for acrylamide in chocolate and
coffee
Table 13. Data summary table for acrylamide in chocolate and coffee 73 74
Figure 42. Acrylamide in SRM 2384 Baking Chocolate (data summary view – sample
preparation method)
Figure 43. Acrylamide in SRM 2384 Baking Chocolate (data summary view –
instrumental method)
Figure 44. Acrylamide in SRM 2384 Baking Chocolate (data summary view – calibration
method)
Figure 45. Acrylamide in roasted coffee beans (data summary view)
Figure 46. Acrylamide in SRM 2384 Baking Chocolate and roasted coffee beans
(sample/sample comparison view)
PHYTOSTEROLS IN SAW PALMETTO80
Study Overview80
Sample Information80
Saw Palmetto Fruit80
Saw Palmetto Extract80
Study Results
Technical Recommendations
Table 14. Individualized data summary table (NIST) for phytosterols in saw palmetto
dietary supplements
Table 15. Data summary table for campesterol in saw palmetto dietary supplements84
Table 16. Data summary table for β -sitosterol in saw palmetto dietary supplements85
Table 17. Data summary table for stigmasterol in saw palmetto dietary supplements86
Figure 47. Campesterol in SRM 3250 Serenoa repens Fruit (data summary view – sample
preparation method)
Figure 48. Campesterol in SRM 3251 Serenoa repens Extract (data summary view –
sample preparation method)
Figure 49. β -sitosterol in SRM 3250 <i>Serenoa repens</i> Fruit (data summary view – sample
preparation method)

Figure 50. β -sitosterol in SRM 3251 <i>Serenoa repens</i> Extract (data summary view – sample
preparation method)
Figure 51. Stigmasterol in SRM 3250 <i>Serenoa repens</i> Fruit (data summary view – sample
preparation method)
Figure 52. Stigmasterol in SRM 3251 <i>Serenoa repens</i> Extract (data summary view – sample preparation method)
Figure 53. Campesterol in SRM 3250 Serenoa repens Fruit (data summary view -
instrumental method)
Figure 54. Campesterol in SRM 3251 Serenoa repens Extract (data summary view -
instrumental method)
Figure 55. β-sitosterol in SRM 3250 Serenoa repens Fruit (data summary view -
instrumental method)
Figure 56. β-sitosterol in SRM 3251 Serenoa repens Extract (data summary view -
instrumental method)96
Figure 57. Stigmasterol in SRM 3250 Serenoa repens Fruit (data summary view -
instrumental method)
Figure 58. Stigmasterol in SRM 3251 Serenoa repens Extract (data summary view -
instrumental method)
Figure 59. Campesterol in SRM 3250 Serenoa repens Fruit (data summary view -
calibration approach)
Figure 60. Campesterol in SRM 3251 Serenoa repens Extract (data summary view -
calibration approach)
Figure 61. β-sitosterol in SRM 3250 Serenoa repens Fruit (data summary view -
calibration approach)101
Figure 62. β-sitosterol in SRM 3251 Serenoa repens Extract (data summary view -
calibration approach)
Figure 63. Stigmasterol in SRM 3250 Serenoa repens Fruit (data summary view -
calibration approach)
Figure 64. Stigmasterol in SRM 3251 Serenoa repens Extract (data summary view –
calibration approach)
Figure 65. Campesterol in SRM 3250 Serenoa repens Fruit and SRM 3251 Serenoa
repens Extract (sample/sample comparison view)
Figure 66. β-sitosterol in SRM 3250 <i>Serenoa repens</i> Fruit and SRM 3251 <i>Serenoa repens</i>
Extract (sample/sample comparison view)
Figure 67. Stigmasterol in SRM 3250 Serenoa repens Fruit and SRM 3251 Serenoa
repens Extract (sample/sample comparison view)
Figure 68. Comparison of results for campesterol in SRM 3250 Saw Palmetto Fruit from 100
Exercise H (left) and Exercise K (right)
Figure 69. Comparison of results for β -sitosterol in SRM 3250 Saw Palmetto Fruit from
Exercise H (left) and Exercise K (right)109

ABSTRACT

The NIST Dietary Supplement Laboratory Quality Assurance Program (DSQAP) was established in collaboration with the National Institutes of Health (NIH) Office of Dietary Supplements (ODS) in 2007 to enable members of the dietary supplements community to improve the accuracy of measurements for demonstration of compliance with various regulations including the dietary supplement current good manufacturing practices (cGMPs). Exercise K of this program offered the opportunity for laboratories to assess their in-house measurements of nutritional elements (P and Fe), contaminants (mercury and acrylamide), water-soluble vitamins (vitamins B₁, B₂, and B₃), fat-soluble vitamins (vitamin K₁), and phytosterols in foods and/or botanical dietary supplement ingredients and finished products.

INTRODUCTION

The dietary supplement industry in the US is booming, with two-thirds of adults considering themselves to be supplement users.¹ Consumption of dietary supplements, which includes vitamin and mineral supplements, represents an annual US expenditure of more than \$25 billion. These figures represent an increasing American and worldwide trend, and as a result, it is critically important that both the quality and safety of these products are verified and maintained.

The Dietary Supplement Health and Education Act of 1994 (DSHEA) amended the Federal Food, Drug, and Cosmetic Act to create the regulatory category called dietary supplements. The DSHEA also gave the FDA authority to write current Good Manufacturing Practices (cGMPs) that require manufacturers to evaluate the identity, purity, and composition of their ingredients and finished products. In addition, the DSHEA authorized the establishment of the Office of Dietary Supplements at the National Institutes of Health (NIH ODS). To enable members of the dietary supplements community to improve the accuracy of the measurements required for compliance with these and other regulations, NIST established the Dietary Supplement Laboratory Quality Assurance Program (DSQAP) in collaboration with the NIH ODS in 2007.

The program offers the opportunity for laboratories to assess their in-house measurements of active or marker compounds, nutritional elements, contaminants (toxic elements, pesticides, mycotoxins), and fat- and water-soluble vitamins in foods as well as botanical dietary supplement ingredients and finished products. Reports and certificates of participation are provided and can be used to demonstrate compliance with the cGMPs. In addition, NIST and the DSQAP assist the ODS Analytical Methods and Reference Materials program (AMRM) at the NIH in supporting the development and dissemination of analytical tools and reference materials. In the future, results from DSQAP exercises could be used by ODS to identify problematic matrices and analytes for which an AOAC INTERNATIONAL Official Method of Analysis would benefit the dietary supplement community.

NIST has experience in the administration of quality assurance programs, but the DSQAP takes a unique approach. In other NIST quality assurance programs, a set of analytes is measured repeatedly over time in the same or similar matrices to demonstrate and improve laboratory

¹ Walsh, T. (2012) *Supplement Usage, Consumer Confidence Remain Steady According to New Annual Survey from CRN.* Council for Responsible Nutrition, Washington, DC.

performance. In contrast, the wide range of matrices and analytes under the "dietary supplement" umbrella means that not every laboratory is interested in every sample or analyte. The constantly changing dietary supplement market, and the enormous diversity of finished products, makes repeated determination of a few target compounds in a single matrix of little use to participants. Instead, participating laboratories are interested in testing in-house methods on a wide variety of challenging, real-world matrices to demonstrate that their performance is comparable to that of the community and that their methods provide accurate results. In an area where there are few standard methods, the DSQAP offers a unique tool for assessment of the quality of measurements, provides feedback about performance, and can assist participants in improving laboratory operations.

This report summarizes the results from the eleventh exercise of the DSQAP, Exercise K. Eightyone laboratories responded to the call for participants distributed in December 2013. Samples were shipped to participants in February 2014, and results were returned to NIST by May 2014. This report contains the final data and information that was disseminated to the participants in November 2014.

OVERVIEW OF DATA TREATMENT AND REPRESENTATION

Individualized data tables and certificates are provided to the participants that have submitted data in each study, in addition to this report. Examples of the data tables using NIST data are also included in each section of this report. Community tables and graphs are provided using randomized laboratory codes, with identities known only to NIST and individual laboratories. The statistical approaches are outlined below for each type of data representation.

Statistics

Data tables and graphs throughout this report contain information about the performance of each laboratory relative to that of the other participants in this study and relative to a target around the expected result, if available. The consensus mean and standard deviation are calculated according to the robust algorithm outlined in ISO 13528:2005(E), Annex C.² The algorithm is summarized here in simplified form.

Initial values of the consensus mean, x^* , and consensus standard deviation, s^* , are estimated as

$x^* = $ median of x_i	(i = 1, 2,, n)
$s^* = 1.483 \times \text{median of } x_i - x^* $	(i = 1, 2,, n).

These initial values for x^* and s^* are updated by first calculating the expanded standard deviation, δ , as

$$\delta = 1.5 \times s^*.$$

Then each x_i is compared to the expanded range and adjusted to x_i^* as described below to reduce the effect of outliers.

If $x_i < x^* - \delta$, then $x_i^* = x^* - \delta$.

² ISO 13528:2005(E), *Statistical methods for use in proficiency testing by interlaboratory comparisons*, pp 14-15.

If $x_i > x^* + \delta$, then $x_i^* = x^* + \delta$. Otherwise, $x_i^* = x_i$.

New values of x^* , s^* , and δ are calculated iteratively until the process converges. Convergence is taken as no change from one iteration to the next in the third significant figure of s^* and in the equivalent digit in x^* :

$$x^* = \frac{\sum_{i=1}^n x_i^*}{n}$$

s^* = 1.134 × $\sqrt{\frac{\sum_{i=1}^n (x_i^* - x^*)}{n-1}}$.

Individualized Data Table

The data in this table is individualized to each participating laboratory and is provided to allow participants to directly compare their data to the summary statistics (consensus or community data as well as NIST certified, reference, or estimated values). The upper left of the data table includes the randomized laboratory code. Tables included in this report are generated using NIST data to protect the identity and performance of participants.

Section 1 of the data table contains the laboratory results as reported, including the mean and standard deviation when multiple values were reported. A blank indicates that NIST does not have data on file for that laboratory for a particular analyte or matrix. An empty box for standard deviation indicates that only a single value was reported and therefore that value was not included in the calculation of the consensus data.²

Also in Section 1 are two Z-scores. The first Z-score, Z_{comm} , is calculated with respect to the community consensus value, using x* and s*:

$$Z_{comm} = \frac{x_i - x^*}{s^*}.$$

The second Z-score, Z_{NIST} , is calculated with respect to the target value (NIST certified, reference, or estimated value), using x_{NIST} and U_{95} (the expanded uncertainty) or s_{NIST} (the standard deviation of NIST measurements):

$$Z_{NIST} = \frac{x_i - x_{NIST}}{U_{95}}$$

or

$$Z_{NIST} = \frac{x_i - x_{NIST}}{s_{NIST}}$$

The significance of the Z-score is as follows:

- |Z| < 2 indicates that the laboratory result is considered to be within the community consensus range (for Z_{comm}) or NIST target range (for Z_{NIST}).
- 2 < |Z| < 3 indicates that the laboratory result is considered to be marginally different from the community consensus value (for Z_{comm}) or NIST target value (for Z_{NIST}).

• |Z| > 3 indicates that the laboratory result is considered to be significantly different from the community consensus value (for Z_{comm}) or NIST target value (for Z_{NIST}).

Section 2 of the data table contains the community results, including the number of laboratories reporting more than a single value for a given analyte¹, the mean value determined for each analyte, and a robust estimate of the standard deviation of the reported values.³ Consensus means and standard deviations are calculated using the laboratory means; if a laboratory reported a single value, the reported value is not included.³ Additional information on calculation of the consensus mean and standard deviation can be found in the previous section.

Section 3 of the data table contains the target values for each analyte. When possible, the target value is a certified or reference value determined at NIST. Certified values and the associated expanded uncertainty (U_{95}) have been determined with two independent analytical methods at NIST, by collaborating laboratories, or in some combination. Reference values are assigned using NIST values obtained from the average and standard deviation of measurements made using a single analytical method or by measurements obtained from collaborating laboratories. For both certified and reference values, at least six samples have been tested and duplicate preparations from the sample package have been included, allowing the uncertainty to encompass variability due to inhomogeneity within and between packages. For samples in which a NIST certified or reference value is not available, the analytes are measured at NIST using an appropriate method. The NIST-assessed value represents the mean of at least three replicates. For materials acquired from another proficiency testing program, the consensus value and uncertainty from the completed round is used as the target range.

Summary Data Table

This data table includes a summary of all reported data for a particular analyte in a particular study. Participants can compare the raw data for a single laboratory to data reported by the other participating laboratories or to the consensus data. A blank indicates that the laboratory signed up and received samples for that particular analyte and matrix, but NIST does not have data on file for that laboratory.

Graphs

Data Summary View (Method Comparison Data Summary View)

In this view, individual laboratory data are plotted with the individual laboratory standard deviation (error bars). Data points that are unfilled represent laboratories that reported a single value for that analyte and therefore were not included in the consensus mean. The black solid line represents the consensus mean, and the black dotted lines represent the consensus variability calculated as one standard deviation about the consensus mean. Where appropriate, two consensus means may be calculated for the same sample if bimodality is identified in the data. In this case, two consensus means and ranges will be displayed in the data summary view. The gray shaded region represents the target zone for "acceptable" performance, which encompasses the NIST certified, reference, or estimated value bounded by twice its uncertainty (U_{95}) or standard deviation. For the purpose of the DSQAP, a target range spanning twice the uncertainty in the NIST value is selected because participants are only asked to make a limited number of observations. The size of the y-axis on the data summary view graph represents the consensus

³ ISO 13528:2005(E), *Statistical methods for use in proficiency testing by interlaboratory comparisons*, Annex C.

mean bounded by 2δ . In this view, the relative locations of individual laboratory data and consensus zones with respect to the target zone can be compared easily. In most cases, the target zone and the consensus zone overlap, which is the expected result. The major program goals are to reduce the size of the consensus zone and center the consensus zone about the target value. Analysis of an appropriate reference material as part of a quality control scheme can help to identify sources of bias for laboratories reporting results that are significantly different from the target zone. In the case in which a method comparison is relevant, different colored data points may be used to indicate laboratories that used a specific approach to sample preparation, analysis, or quantitation.

Sample/Sample Comparison View

In this view, the individual laboratory results for one sample (NIST SRM with a certified or reference value) are compared to the results for another sample (another NIST SRM with a more challenging matrix, a commercial sample, etc.). The error bars represent the individual laboratory standard deviation. The solid red box represents the target zone for the first sample (x-axis) and the second sample (y-axis). The dotted blue box represents the consensus zone for the first sample (x-axis) and the second sample (y-axis). The axes of this graph are centered about the consensus mean values for each sample or control, to a limit of zero and twice the consensus mean. Depending on the variability in the data, the axes may be scaled proportionally to better display the individual data points for each laboratory. In some cases, when the consensus and target ranges have limited overlap, the solid red box may only appear partially on the graph. If the variability in the data is high (greater than 100 % relative standard deviation (RSD)), the dotted blue box may also only appear partially on the graph. This view emphasizes trends in the data that may indicate potential calibration issues or method biases. One program goal is to identify such calibration or method biases and assist participants in improving analytical measurement capabilities. In some cases, when two equally challenging materials are provided, the same view (sample/sample comparison) can be helpful in identifying commonalities or differences in the analysis of the two materials.

NUTRITIONAL ELEMENTS (P, Fe) IN CRANBERRY AND BLUEBERRY

Study Overview

In this study, participants were provided with two NIST SRMs, SRM 3281 Cranberry (Fruit) and SRM 3287 Blueberry (Fruit). Participants were asked to use in-house analytical methods to determine the mass fractions of two nutritional elements (phosphorus and iron) in each of the matrices and report values on an as-received basis.

Sample Information

Cranberry. Participants were provided with one packet containing approximately 6 g of freezedried, powdered cranberries. The cranberry powder was blended, aliquotted, and heat-sealed inside 4 mil polyethylene bags, which were then sealed inside nitrogen-flushed aluminized plastic bags along with two packets of silica gel. Before use, participants were instructed to thoroughly mix the contents of each packet and use a sample size of at least 0.5 g. Participants were asked to store the material at controlled room temperature, 10 °C to 30 °C, and to prepare three samples and report three values from the single packet provided. Approximate analyte levels were not reported to participants prior to the study. The reference values in SRM 3281 Cranberry (Fruit) were determined at NIST using inductively coupled plasma optical emission spectroscopy (ICP-OES). The reference values and uncertainties for P and Fe are provided in the table below, both on a dry-mass basis and on an as-received basis accounting for moisture of the material (2.39 %).

	Reference Mass Fraction in SRM 3281 (mg/kg						
<u>Analyte</u>	<u>(dry-mass basis)</u>	(as-received basis)					
Phosphorus (P)	835 ± 17	815 ± 17					
Iron (Fe)	27.7 ± 0.7	$27.0~\pm~0.7$					

Blueberry. Participants were provided with one packet containing approximately 5 g of freezedried, powdered blueberries. The blueberry powder was blended, aliquotted, and heat-sealed inside 4 mil polyethylene bags, which were then sealed inside nitrogen-flushed aluminized plastic bags along with two packets of silica gel. Before use, participants were instructed to thoroughly mix the contents of each packet and use a sample size of at least 0.5 g. Participants were informed that this material was packaged as a powder; however, over time the powder may have become a solid mass, and for hardened samples, an appropriate test portion should be removed and subdivided using a knife. Participants were asked to store the material at controlled room temperature, 10 °C to 30 °C, and to prepare three samples and report three values from the single packet provided. Approximate analyte levels were not reported to participants prior to the study. The certified values in SRM 3287 Blueberry (Fruit) were determined at NIST using ICP-OES in combination with data from numerous collaborating laboratories. The certified values and uncertainties for P and Fe are provided in the table below, both on a dry-mass basis and on an asreceived basis accounting for moisture of the material (1.41 %).

	Certified Mass Fraction in SRM 3287 (mg					
<u>Analyte</u>	<u>(dry-mass basis)</u>	(as-received basis)				
Phosphorus (P)	$671 \pm \ 21$	$662 \pm \ 21$				
Iron (Fe)	12.2 ± 0.7	12.0 ± 0.7				

Study Results

- Fifty-one laboratories enrolled in this exercise and received samples. Thirty-eight laboratories reported results for phosphorus (75 % participation). Forty-two laboratories reported results for iron (82 % participation).
- The consensus means for phosphorus in both materials and for iron in the cranberries were below the target range.
 - The between-laboratory variability for phosphorus determination was acceptable in both materials (14 % to 16 % RSD).
 - The between-laboratory variability for iron determination was high in the cranberry material (22 % RSD).
- The consensus mean for iron in the blueberry material was at the upper limit of the target range with a high between-laboratory variability (32 % RSD).
- A majority of the laboratories reported using either microwave digestion (63 %) or openbeaker digestion (28 %) for sample preparation. The remaining laboratories reported using hot block digestion or dry ashing. Two laboratories did not report the type of sample preparation technique that was used.
- A majority of the laboratories reported using either ICP-MS (52 %) or ICP-OES (42 %) as their analytical method. Three laboratories reported using atomic absorption spectroscopy (AAS, 7 %), and one laboratory did not report the type of analytical technique that was used.
- A majority of the laboratories reported using an external standard approach to calibration (88 %). Four laboratories reported using a standard addition approach (10 %), and two laboratories reported using an internal standard approach (5 %). One laboratory did not report the type of calibration approach that was used.

Technical Recommendations

The following recommendations are based on results obtained from the participants in this study.

- No difference was apparent between results obtained using either open beaker or microwave digestion for phosphorus or iron. Too few results were reported by other methods to identify any additional trends.
- No difference was apparent in the iron results based on analytical method used (ICP-OES or ICP-MS).
 - As shown in **Figure 10**, some laboratories reported acceptable or high values for one sample but low values for the second sample.
 - This may indicate more difficulty in the digestion of one material over the other. Laboratories that reported using a more aggressive digestion, using high heat and concentrated acid, generally had values in the middle of the consensus range or target range.

- This may also be an indicator of a larger matrix interference with one material versus the other during analysis. The use of an internal standard may alleviate this problem, especially when using ICP-OES.
- A slight difference in phosphorous results based on analytical method was identified.
 - In **Figure 9**, results that are low for phosphorous for both materials were analyzed using ICP-MS.
 - Phosphorous may be difficult to analyze by ICP-MS. Since there is only one mass available for phosphorous the use of a collision cell or reaction cell is needed to eliminate polyatomic interferences.
 - There may also be calibration issues for phosphorus that were not evident for iron. To avoid calibration problems, be sure to include the lowest and highest expected values in the calibration curve, plus one or two intermediate concentration points.
 - Ensure that the calibration curve is linear and surrounds expected sample concentrations following digestion and/or dilution. Samples should not go beyond the linear range of the calibration curve, as this results in extrapolation of calibration curves and the possibility of obtaining false values.
- Quality assurance samples should always be used. These can be commercially available reference materials (CRMs, SRMs, or RMs) or prepared in-house, but need to be of known concentration.
 - They are used to ensure that your method is performing as expected.
 - They are useful in finding where errors are occurring, including calculation errors.
 - After checking for calculation errors, make sure results are reported correctly.

Table 1. Individualized data summary table (NIST) for nutritional elements in cranberry and blueberry.

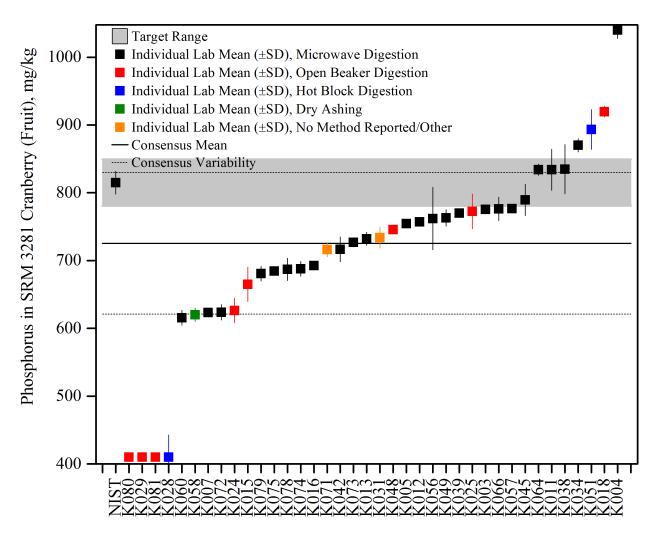
National Institute of Standards & Technology

	Lab Code:	NIST		1. Your	Results		2. Co	mmunity F	Results	3. Ta	ırget
Analyte	Sample	Units	x _i	s _i	Z _{comm}	Z _{NIST}	Ν	x*	s*	X _{NIST}	U_{95}
Р	Cranberries	mg/kg	815	17	0.8	0.0	38	726	105	815	17
Р	Blueberries	mg/kg	662	21	0.7	0.0	38	593	94	662	33
Fe	Cranberries	mg/kg	27.0	0.7	0.4	0.0	42	24.7	5.4	27.0	0.7
Fe	Blueberries	mg/kg	12.0	0.7	-0.3	0.0	42	13.5	4.3	12.0	0.7

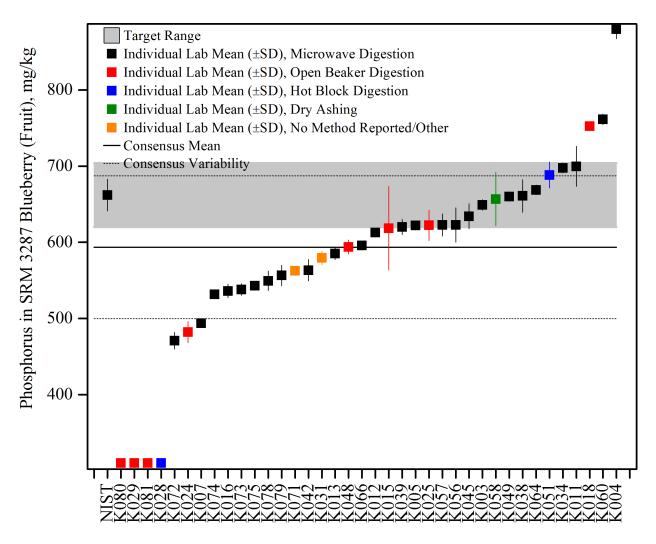
Exercise K - February 2014 - Nutritional Elements

- x_i Mean of reported values
- s_i Standard deviation of reported values
- Z_{NIST} Z-score with respect to NIST value
- N Number of quantitative values reported
- x* Robust mean of reported values
- s* Robust standard deviation

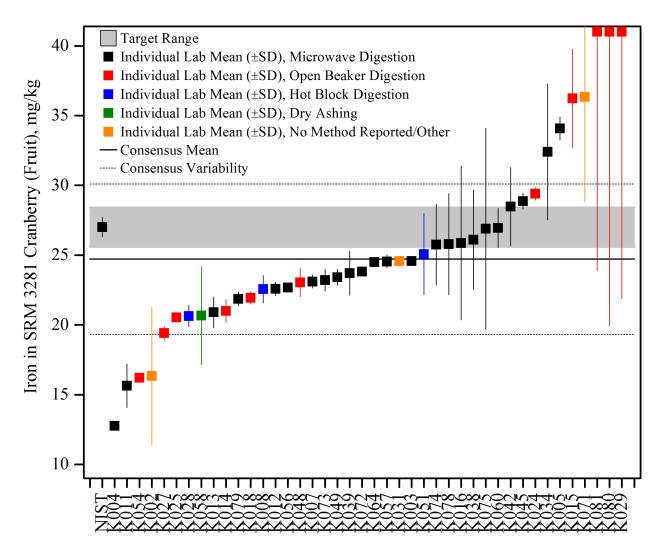
x_{NIST} NIST-assessed value

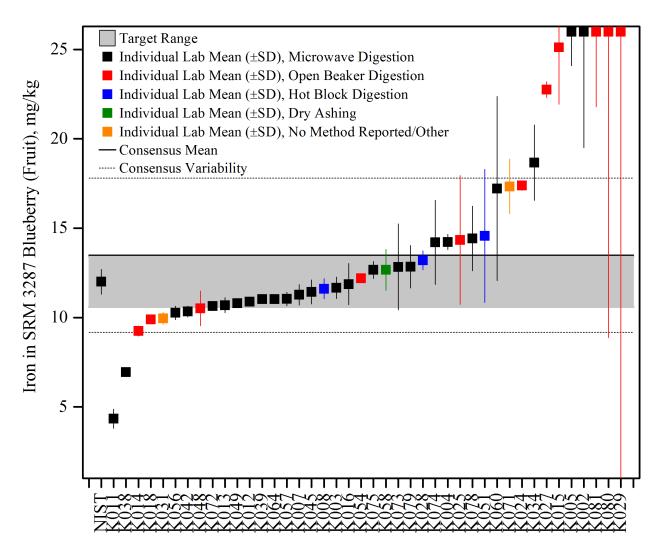

- $U_{95} \pm 95\%$ confidence interval about the assessed value or
 - standard deviation (s_{NIST})

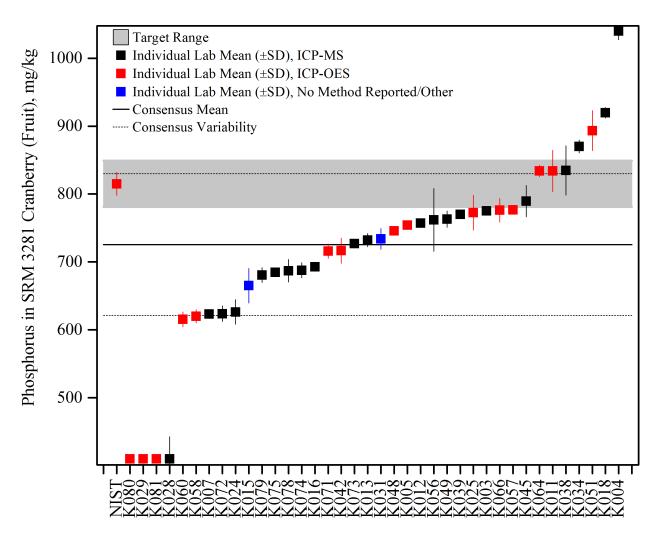
		Phosphorus									
_			SRM 3281	l Cranberr	ies (mg/kg)			SRM 328	7 Blueberri	es (mg/kg)	
	Lab	Α	В	С	Avg	SD	Α	В	С	Avg	SD
	NIST				815	17				662	21
	K002										
	K003	776	774	776	775	1	654	652	641	649	7
	K004	1035	1060	1043	1046	13	1028	1010	1003	1014	13
	K005	756	755	752	754	2	623	618	625	622	4
	K007	623	621	626	623	2	494	491	497	494	3
	K008										
	K010										
	K011	828	867	807	834	30	723	671	705	700	26
	K012	757	755	759	757	2	611	610	617	613	4
	K013	739	721	737	732	10	577	593	586	585	8
	K014										
	K015	647	694	654	665	25	556	658	642	618	55
	K016	698	686	694	693	6	546	533	529	536	9
	K018	913	918	928	920	8	755	749	753	752	3
	K024	630	642	606	626	18	468	482	496	482	14
	K025	786	789	743	773	26	628	639	600	622	20
	K027	700	105	745	115	20	020	057	000	022	20
	K027	226	259	292	259	33	213	215	221	216	4
	K029	21	21	20	21	1	11	10	10	10	0
	K031	718	735	749	734	16	578	589	571	579	9
	K034	859	874	877	870	10	690	701	702	698	7
	K034 K038	839	802	874	835	36		637	679	661	21
ts				770		0	666				
esu	K039	770	770	//0	770	0	610	630	620	620	10
al R	K040	707	710	702	217	10	570	550	5.00	5.62	14
idua	K042	737	710	702	717	18	578	550	562	563	14
Individual Results	K045	796	764	809	790	23	628	653	622	634	16
Ц	K046										
	K048	751	741	745	746	5	598	600	583	594	9
	K049	749	768	772	763	12	659	659	662	660	2
	K051	861	919	900	893	30	676	708	681	688	17
	K054										
	K056	791	786	709	762	46	622	646	601	623	23
	K057	775	779	776	777	2	608	638	622	623	15
	K058	610	630	620	620	10	620	660	690	657	35
	K060	617	604	626	616	11	768	754	762	761	7
	K061		_						_		
	K064	828	844	830	834	8	665	676	665	669	6
	K066	775	759	794	776	17	598	589	599	596	6
	K068										
	K069										
	K071	706	727	715	716	11	563	559	565	562	3
	K072	617	637	617	624	12	483	462	467	471	11
	K073	722	731	728	727	5	531	546	537	538	8
	K074	677	688	699	688	11	528	537	531	532	4
	K075	682	684	688	685	3	543	543	544	543	1
	K076										
	K077	706	670	(7)	697	17	ECA	540	541	540	12
	K078 K079	706 687	679 687	676 668	687 681	17 11	564 551	543 572	541 547	549 556	13 14
	K079 K080	21	19	20	20	1	11	10	10	10	0
	K081	24	24	25	20	1	13	10		14	1
5		Consensus			726		Consensu			593	
Community Results			Standard De	eviation	105		Consensu	s Standard De	eviation	94	
ommuni Results		Maximum			1046		Maximum			1014	
Col R		Minimum			20		Minimum			10	
		N			38		N			38	

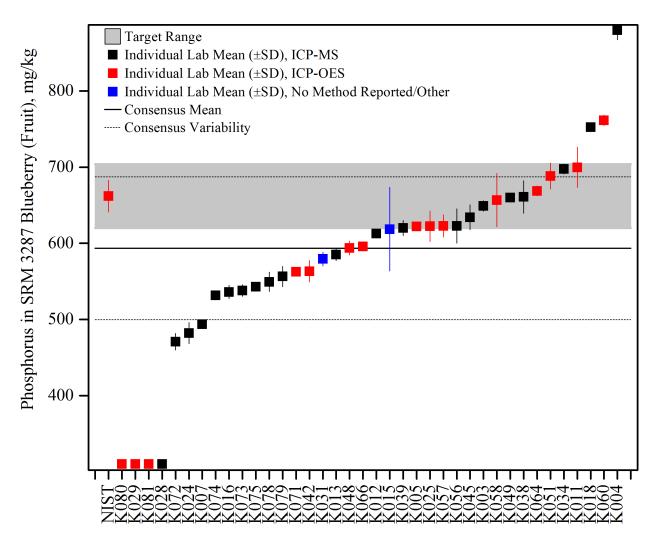

Table 2. Data summary table for phosphorus in cranberry and blueberry.

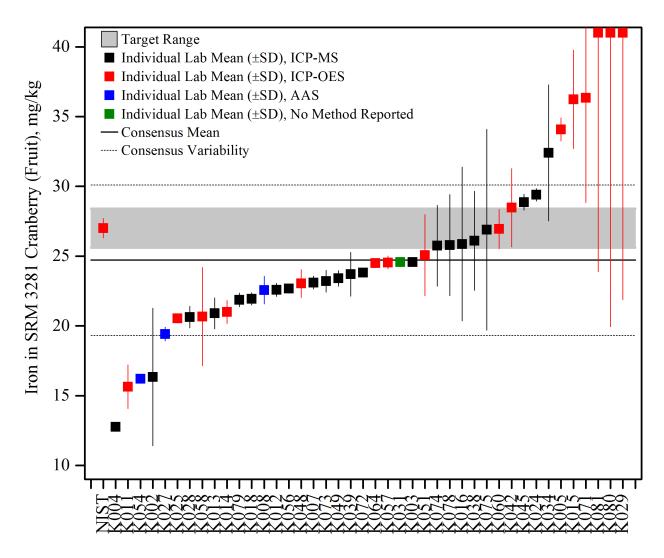
SRM 3281 Cranbertises (mg/kg) SRM 3287 Bluebertises (mg/kg) Lab A B C Avg SD A B C Avg K002 14.0 13.0 22.0 16.3 4.9 38.0 45.0 32.0 38.3 K003 24.9 24.5 24.3 24.6 0.3 11.2 11.1 11.6 11.7 K004 12.9 12.8 0.3 11.9 14.0 14.0 14.0 K005 33.5 35.0 33.7 34.1 0.8 28.6 31.0 27.2 28.9 K006 23.4 22.6 22.6 1.0 11.7 10.6 11.5 11.3 11.1 10.6 K011 15.4 17.3 14.2 15.6 1.6 4.6 3.7 4.7 4.3 K014 21.9 20.6 20.9 1.1 10.3 10.6 11.1 10.7 K014 21.9 20.6 <th colspan="5">Iron</th> <th colspan="7"></th>	Iron											
NIST 27.0 0.7 38.0 45.0 32.0 13.0 K002 14.0 13.0 22.0 16.3 4.9 38.0 45.0 32.0 38.3 K004 12.9 12.5 12.9 12.8 0.3 11.3 11.1 11.6 11.7 K004 12.9 12.5 12.9 12.8 0.3 13.9 14.7 14.0 14.2 K005 33.5 35.0 33.7 34.1 0.8 28.6 31.0 27.2 28.9 K010 22.6 22.1 15.6 1.6 4.6 3.7 4.7 4.3 K012 22.6 22.1 23.0 22.6 0.5 10.7 10.7 11.2 10.9 K013 20.0 22.1 23.3 22.2 21.5 20.9 11.1 10.3 10.6 11.1 10.7 K018 21.6 21.8 22.4 21.9 0.4 19.9 9.9												
VIST 27.0 0.7 38.0 45.0 32.0 38.3 K002 14.0 13.0 22.0 16.3 4.9 38.0 45.0 32.0 38.3 K004 12.9 12.5 12.9 12.8 0.3 11.1 11.6 11.7 K005 33.5 35.0 33.7 34.1 0.8 28.6 31.0 27.2 28.9 K007 23.3 22.6 23.5 12.1 10.6 11.7 10.6 11.5 11.3 K008 23.4 22.8 21.5 22.6 10.7 10.7 11.2 10.9 K014 21.9 0.3 0.8 21.0 0.8 9.5 8.9 9.4 9.3 K018 21.6 0.3 12.8 22.4 21.9 0.4 9.9 9.9 9.9 9.9 9.9 9.9 9.9 9.9 9.9 9.9 9.9 9.9 9.9 9.9 9.9 9.9<		T		Α	SD				А	Lab		
FUND K003 24.9 24.5 24.3 24.6 0.3 12.3 11.1 11.6 11.7 K004 12.9 12.5 12.9 12.8 0.3 13.9 14.7 14.0 14.2 K007 23.3 22.6 23.5 23.1 0.5 11.7 10.6 11.5 11.3 K008 23.4 22.8 22.6 1.0 11.7 10.6 11.5 11.3 K011 15.4 17.3 14.2 15.6 1.6 4.6 3.7 4.7 4.3 K012 22.6 0.21 10.8 10.0 8.9 8.9 9.4 9.3 K014 21.9 0.3 20.4 21.0 0.8 9.5 8.9 9.4 9.3 K016 32.2 22.1 23.3 25.9 5.5 13.1 11.7 10.8 14.9 K016 32.2 22.1 23.3 23.4 21.9 0.4	-				0.7	-				NIST		
Form Kood 12.9 12.8 0.3 13.9 14.7 14.0 14.2 Koos 33.5 35.0 33.7 34.1 0.8 28.6 31.0 27.2 28.9 Koos 23.3 22.6 23.5 22.6 1.0 11.7 10.6 11.5 11.3 Koos 23.4 22.8 21.5 22.6 1.0 11.7 12.1 11.0 11.6 Kool 22.6 22.1 23.0 22.6 0.5 10.7 10.7 11.2 10.9 Kol14 21.9 20.4 20.8 21.0 0.8 95 8.9 9.4 93 Kol15 40.3 34.1 34.3 36.2 3.5 26.2 21.5 27.6 25.1 Kol16 32.2 22.1 23.3 25.9 5.5 13.1 11.7 10.8 11.9 Kol2 20.9 20.3 20.4 20.5 0.3 17.8	38.3 6.5	32.0	45.0	38.0	4.9	16.3	22.0	13.0	14.0	K002		
FUND 33.5 35.0 33.7 34.1 0.8 28.6 31.0 27.2 28.9 K007 23.3 22.6 23.5 23.1 0.5 11.7 10.6 11.5 11.3 K008 23.4 22.8 21.5 22.6 1.0 11.7 10.6 11.5 11.6 K011 15.4 17.3 14.2 15.6 1.6 4.6 3.7 4.7 4.3 K012 22.6 0.21 20.6 20.9 1.1 10.3 10.6 11.1 10.7 K014 21.9 20.3 20.8 22.1 0.8 9.5 8.9 9.4 9.3 K015 21.6 21.8 22.4 21.9 0.4 19.9 9.9	11.7 0.6	11.6	11.1	12.3	0.3	24.6	24.3	24.5	24.9	K003		
Nor 23.3 22.6 23.1 0.5 11.7 10.6 11.5 11.3 K008 23.4 22.8 21.5 22.6 1.0 11.7 12.1 11.0 11.6 K011 15.4 17.3 14.2 15.6 1.6 4.6 3.7 4.7 4.3 K012 22.6 22.1 23.0 22.6 0.5 10.7 10.7 11.2 10.9 K014 21.9 20.3 20.8 21.0 0.8 9.5 8.9 9.4 9.3 K015 40.3 34.1 34.3 36.2 3.5 26.2 21.5 27.6 25.1 K016 32.2 22.1 23.3 25.9 5.5 13.1 11.7 10.8 11.9 K024 29.0 29.4 29.8 29.4 0.4 17.1 17.5 17.4 K022 21.5 20.0 20.4 20.6 0.8 13.0 10.8 <	14.2 0.4	14.0	14.7	13.9	0.3	12.8	12.9	12.5	12.9	K004		
FORM 23.4 22.8 21.5 22.6 1.0 11.7 12.1 11.0 11.6 K010 1 15.4 17.3 14.2 15.6 1.6 4.6 3.7 4.7 10.9 K012 22.6 22.1 23.0 22.6 0.5 10.7 10.7 11.2 10.9 K013 20.0 22.1 23.0 22.6 0.5 10.7 10.7 11.2 10.9 K015 40.3 3.41 34.3 36.2 3.5 26.2 21.5 27.6 23.1 K016 32.2 22.1 23.3 25.9 5.5 13.1 11.7 10.8 11.9 K028 20.9 20.3 20.4 20.4 20.4 20.4 23.1 23.2 22.7 22.3 22.8 K027 18.9 19.4 19.9 19.4 0.5 13.0 12.8 13.8 13.4 18.6 13.7 27.9 26.6	28.9 1.9	27.2	31.0	28.6	0.8	34.1	33.7	35.0	33.5	K005		
K010 K011 15.4 17.3 14.2 15.6 1.6 4.6 3.7 4.7 4.3 K012 22.6 22.1 23.0 22.6 0.5 10.7 11.2 10.9 K013 20.0 22.1 20.0 20.9 1.1 10.3 10.6 11.1 10.7 K014 21.9 20.3 20.8 21.0 0.8 9.5 8.9 9.4 9.3 K016 32.2 22.1 23.3 25.9 5.5 13.1 11.7 10.8 11.6 10.6 14.3 K018 21.6 21.8 22.4 21.9 0.4 9.9 9.9 9.9 9.9 K024 29.0 29.4 29.4 0.4 17.1 17.5 17.4 K025 20.9 20.3 20.4 20.6 0.8 13.0 12.8 13.8 13.2 K024 21.5 20.0 20.4 20.6 0.8	11.3 0.6	11.5	10.6	11.7	0.5	23.1	23.5	22.6	23.3	K007		
Figure 1 15.4 17.3 14.2 15.6 1.6 4.6 3.7 4.7 4.3 K012 22.6 22.1 23.0 22.6 0.5 10.7 10.7 11.2 10.9 K014 21.9 20.3 20.8 21.0 0.8 95 8.9 9.4 9.3 K015 40.3 34.1 34.3 36.2 3.5 26.2 21.5 27.6 25.1 K016 32.2 22.1 23.3 25.9 5.5 13.1 11.7 10.8 11.9 K024 29.0 29.4 29.4 0.4 17.1 17.7 17.4 K025 20.9 20.3 20.4 20.5 0.3 17.8 14.6 10.6 14.3 K024 29.0 20.4 20.6 0.8 13.0 12.8 13.8 13.2 K031 24.3 24.5 24.9 24.6 0.3 9.6 9.9 10.3	11.6 0.6	11.0	12.1	11.7	1.0	22.6	21.5	22.8	23.4	K008		
Note 22.6 22.1 23.0 22.6 0.5 10.7 10.7 11.2 10.9 K013 20.0 22.1 20.6 20.9 1.1 10.3 10.6 11.1 10.7 K014 21.9 20.3 20.8 21.0 0.8 9.5 8.9 9.4 9.3 K016 32.2 22.1 23.3 25.9 5.5 13.1 11.7 10.8 11.9 K018 21.6 21.8 22.4 21.9 0.4 9.9 10.3 10.0 10.0										K010		
VIPUTION K013 20.0 22.1 20.6 20.9 1.1 10.3 10.6 11.1 10.7 K014 21.9 20.3 20.8 21.0 0.8 9.5 8.9 9.4 9.3 K016 32.2 22.1 23.3 25.9 5.5 13.1 11.7 10.8 11.9 K018 21.6 21.8 22.4 21.9 0.4 9.9 9.9 9.9 9.9 K024 29.0 20.4 29.8 29.4 0.4 17.1 17.5 17.5 17.4 K027 18.9 19.4 0.5 23.2 22.7 22.3 22.8 22.4 22.3 23.2 22.7 22.3 23.4 13.0 12.8 13.8 13.2 13.0 12.8 13.8 13.2 13.0 12.8 13.8 13.2 14.6 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10	4.3 0.5	4.7	3.7	4.6	1.6	15.6	14.2	17.3	15.4	K011		
NUMP K014 21.9 20.3 20.8 21.0 0.8 9.5 8.9 9.4 9.3 K015 40.3 34.1 34.3 36.2 3.5 26.2 21.5 27.6 25.1 K016 32.2 22.1 23.3 25.9 5.5 13.1 11.7 10.8 11.9 K012 20.0 29.4 29.8 29.4 0.4 9.9 9.9 9.9 9.9 K024 29.0 29.4 29.8 29.4 0.4 17.1 17.5 17.5 17.4 K025 20.0 20.4 20.6 0.8 13.0 12.8 13.8 13.2 K029 758.7 769.1 732.0 753.2 19.1 579.1 581.7 537.0 5659 K038 23.2 30.1 25.0 26.1 3.6 7.1 6.8 7.0 6.9 K044 21.7 27.0 26.7 28.5 2.8	10.9 0.3	11.2	10.7	10.7	0.5	22.6	23.0	22.1	22.6	K012		
K015 40.3 34.1 34.3 36.2 3.5 26.2 21.5 27.6 25.1 K016 32.2 22.1 23.3 25.9 5.5 13.1 11.7 10.8 11.9 K018 21.6 21.8 22.4 21.9 0.4 9.9	10.7 0.4	11.1	10.6	10.3	1.1	20.9	20.6	22.1	20.0	K013		
NUMP K016 32.2 22.1 23.3 25.9 5.5 13.1 11.7 10.8 11.9 K018 21.6 21.8 22.4 21.9 0.4 9.9 9.9 9.9 9.9 9.9 K024 29.0 29.4 20.4 20.5 0.3 17.8 14.6 10.6 14.3 K027 18.9 19.4 19.9 19.4 0.5 22.2 22.3 22.8 K028 21.5 20.0 20.4 20.6 0.8 13.0 12.8 13.8 13.2 K038 23.2 30.1 25.0 26.1 3.6 7.1 6.8 7.0 6.9 K038 23.2 30.1 25.0 26.1 3.6 7.1 6.8 7.0 6.9 K038 23.2 30.1 25.0 28.5 2.8 10.0 10.4 10.6 10.3 K040 31.7 27.0 26.7 28.5	9.3 0.3	9.4	8.9	9.5	0.8	21.0	20.8	20.3	21.9	K014		
Normal 21.6 21.8 22.4 21.9 0.4 9.9 17.1 17.1 17.5 17.4 17.4 17.4 17.4 17.4 17.4 13.8 13.1 13.2 13.2 13.2 13.2 13.2 13.2 13.2 13.2 13.2 13.2 13.2 13.2 13.2 13.2 13.2 13.2 13.2 13.2	25.1 3.2	27.6	21.5	26.2	3.5	36.2	34.3	34.1	40.3	K015		
K024 29.0 29.4 29.8 29.4 0.4 17.1 17.5 17.5 17.4 K025 20.9 20.3 20.4 20.5 0.3 17.8 14.6 10.6 14.3 K027 18.9 19.4 19.9 19.4 0.5 23.2 22.7 22.3 22.8 K028 21.5 20.0 20.4 20.6 0.8 13.0 13.8 13.8 13.2 K029 758.7 769.1 753.2 19.1 579.1 581.7 657.0 66.9 K031 24.3 24.5 24.9 24.6 0.3 9.6 9.9 10.3 10.0 K033 25.4 23.1 25.0 26.1 3.6 7.1 6.8 7.0 6.9 K042 31.7 27.0 26.7 28.5 2.8 10.0 10.4 10.6 10.3 K045 29.5 28.7 28.4 28.9 0.6 11.2	11.9 1.2	10.8	11.7	13.1	5.5	25.9	23.3	22.1	32.2	K016		
K025 20.9 20.3 20.4 20.5 0.3 17.8 14.6 10.6 14.3 K027 18.9 19.4 19.9 19.4 0.5 23.2 22.7 22.3 22.8 K028 21.5 20.0 20.4 20.6 0.8 13.0 12.8 13.8 13.2 K029 758.7 769.1 732.0 753.2 19.1 579.1 581.7 537.0 655.9 K034 31.7 27.9 37.6 32.4 4.9 16.7 20.9 18.4 18.7 K038 23.2 30.1 25.0 26.1 3.6 7.1 6.8 7.0 6.9 K040 10.0 10.0 11.0 11.0 K044 21.7 27.0 26.7 28.5 2.8 10.0 10.4 10.6 10.3 K045 29.5 28.7 28.4 28.9 0.6	9.9 0.0	9.9	9.9	9.9	0.4	21.9	22.4	21.8	21.6	K018		
NUMPORT 18.9 19.4 19.9 19.4 0.5 23.2 22.7 22.3 22.8 K028 21.5 20.0 20.4 20.6 0.8 13.0 12.8 13.8 13.2 K029 758.7 769.1 732.0 753.2 19.1 579.1 581.7 537.0 565.9 K031 24.3 24.5 24.9 24.6 0.3 9.6 9.9 10.3 10.0 K034 31.7 27.9 37.6 32.4 4.9 16.7 20.9 18.4 18.7 K038 23.2 30.1 25.0 26.1 3.6 7.1 6.8 7.0 6.9 K039 25.4 22.3 23.4 23.7 1.6 11.2 10.9 11.0 11.0 K040	17.4 0.3	17.5	17.5	17.1	0.4	29.4	29.8	29.4	29.0	K024		
K028 21.5 20.0 20.4 20.6 0.8 13.0 12.8 13.8 13.2 K029 758.7 769.1 732.0 753.2 19.1 579.1 581.7 537.0 565.9 K031 24.3 24.5 24.9 24.6 0.3 9.6 9.9 10.3 10.0 K034 31.7 27.9 37.6 32.4 4.9 16.7 20.9 18.4 18.7 K038 23.2 30.1 25.0 26.1 3.6 7.1 6.8 7.0 6.9 K040 23.7 1.6 11.2 10.9 11.0 K042 31.7 27.0 26.7 28.5 2.8 10.0 10.4 10.6 10.3 K044 22.8 23.7 23.4 23.0 1.0 11.5 10.5 9.5 10.5 K044 16.1 16.3 16.2 16.1 12.1 12.3 12.2					0.3	20.5	20.4			K025		
K029 758.7 769.1 732.0 753.2 19.1 579.1 581.7 537.0 565.9 K031 24.3 24.5 24.9 24.6 0.3 9.6 9.9 10.3 10.0 K034 31.7 27.9 37.6 32.4 4.9 16.7 20.9 18.4 18.7 K038 23.2 30.1 25.0 26.1 3.6 7.1 6.8 7.0 6.9 K039 25.4 22.3 23.4 23.7 1.6 11.2 10.9 11.0 11.0 K040				23.2					18.9	K027		
K031 24.3 24.5 24.9 24.6 0.3 9.6 9.9 10.3 10.0 K034 31.7 27.9 37.6 32.4 4.9 16.7 20.9 18.4 18.7 K038 23.2 30.1 25.0 26.1 3.6 7.1 6.8 7.0 6.9 K039 25.4 22.3 23.4 23.7 1.6 11.2 10.9 11.0 11.0 K040 7 27.0 26.7 28.5 2.8 10.0 10.4 10.6 10.3 K045 29.5 28.7 28.4 28.9 0.6 11.2 12.2 10.9 11.4 K046 22.8 23.9 23.5 23.4 0.6 10.9 10.6 10.8 K045 28.4 23.7 23.1 25.1 2.9 18.8 11.8 13.1 14.6 K045 22.8 22.7 22.7 0.2 10.7 10.0 <									21.5			
K034 31.7 27.9 37.6 32.4 4.9 16.7 20.9 18.4 18.7 K038 23.2 30.1 25.0 26.1 3.6 7.1 6.8 7.0 6.9 K039 25.4 22.3 23.4 23.7 1.6 11.2 10.9 11.0 11.0 K040	565.9 25.1	537.0	581.7	579.1				769.1	758.7	K029		
Figure K038 23.2 30.1 25.0 26.1 3.6 7.1 6.8 7.0 6.9 K039 25.4 22.3 23.4 23.7 1.6 11.2 10.9 11.0 11.0 K040 1 25.7 28.4 28.9 0.6 11.2 12.2 10.9 11.4 K046 22.1 22.9 24.1 23.0 1.0 11.5 10.5 9.5 10.5 K046 22.1 22.9 24.1 23.0 1.0 11.5 10.5 9.5 10.5 K046 22.1 22.9 24.1 23.0 1.0 11.5 10.5 9.5 10.5 K049 22.8 23.7 23.1 25.1 2.9 18.8 11.8 13.1 14.6 K057 25.0 24.6 24.1 24.5 0.5 10.6 11.4 11.1 11.0 K058 21.0 24.0 17.0 20.7												
Figure 1 K039 25.4 22.3 23.4 23.7 1.6 11.2 10.9 11.0 11.0 K040 31.7 27.0 26.7 28.5 2.8 10.0 10.4 10.6 10.3 K045 29.5 28.7 28.4 28.9 0.6 11.2 12.2 10.9 11.4 K046												
K048 22.1 22.9 24.1 23.0 1.0 11.5 10.5 9.5 10.5 K049 22.8 23.9 23.5 23.4 0.6 10.9 10.9 10.6 10.8 K051 28.4 23.7 23.1 25.1 2.9 18.8 11.8 13.1 14.6 K054 16.1 16.3 16.2 16.2 0.1 12.1 12.3 12.2 12.2 K056 22.8 22.7 22.5 22.7 0.2 10.7 10.0 10.1 10.3 K057 25.0 24.6 24.1 24.5 0.5 10.6 11.4 11.1 11.0 K058 21.0 24.0 17.0 20.7 3.5 14.0 12.0 12.0 12.7 K060 27.8 25.3 27.7 26.9 1.4 21.7 11.6 18.3 17.2 K061 24.5 0.3 1											s	
K048 22.1 22.9 24.1 23.0 1.0 11.5 10.5 9.5 10.5 K049 22.8 23.9 23.5 23.4 0.6 10.9 10.9 10.6 10.8 K051 28.4 23.7 23.1 25.1 2.9 18.8 11.8 13.1 14.6 K054 16.1 16.3 16.2 16.2 0.1 12.1 12.3 12.2 12.2 K056 22.8 22.7 22.5 22.7 0.2 10.7 10.0 10.1 10.3 K057 25.0 24.6 24.1 24.5 0.5 10.6 11.4 11.1 11.0 K058 21.0 24.0 17.0 20.7 3.5 14.0 12.0 12.0 12.7 K060 27.8 25.3 27.7 26.9 1.4 21.7 11.6 18.3 17.2 K061 3.3 17.2 1	11.0 0.2	11.0	10.9	11.2	1.6	23.7	23.4	22.3	25.4		esult	
K048 22.1 22.9 24.1 23.0 1.0 11.5 10.5 9.5 10.5 K049 22.8 23.9 23.5 23.4 0.6 10.9 10.9 10.6 10.8 K051 28.4 23.7 23.1 25.1 2.9 18.8 11.8 13.1 14.6 K054 16.1 16.3 16.2 16.2 0.1 12.1 12.3 12.2 12.2 K056 22.8 22.7 22.5 22.7 0.2 10.7 10.0 10.1 10.3 K057 25.0 24.6 24.1 24.5 0.5 10.6 11.4 11.1 11.0 K058 21.0 24.0 17.0 20.7 3.5 14.0 12.0 12.0 12.7 K060 27.8 25.3 27.7 26.9 1.4 21.7 11.6 18.3 17.2 K061 3.3 17.2 1											I R.	
K048 22.1 22.9 24.1 23.0 1.0 11.5 10.5 9.5 10.5 K049 22.8 23.9 23.5 23.4 0.6 10.9 10.9 10.6 10.8 K051 28.4 23.7 23.1 25.1 2.9 18.8 11.8 13.1 14.6 K054 16.1 16.3 16.2 16.2 0.1 12.1 12.3 12.2 12.2 K056 22.8 22.7 22.5 22.7 0.2 10.7 10.0 10.1 10.3 K057 25.0 24.6 24.1 24.5 0.5 10.6 11.4 11.1 11.0 K058 21.0 24.0 17.0 20.7 3.5 14.0 12.0 12.0 12.7 K060 27.8 25.3 27.7 26.9 1.4 21.7 11.6 18.3 17.2 K061 3.3 17.2 1											idua	
K048 22.1 22.9 24.1 23.0 1.0 11.5 10.5 9.5 10.5 K049 22.8 23.9 23.5 23.4 0.6 10.9 10.9 10.6 10.8 K051 28.4 23.7 23.1 25.1 2.9 18.8 11.8 13.1 14.6 K054 16.1 16.3 16.2 16.2 0.1 12.1 12.3 12.2 12.2 K056 22.8 22.7 22.5 22.7 0.2 10.7 10.0 10.1 10.3 K057 25.0 24.6 24.1 24.5 0.5 10.6 11.4 11.1 11.0 K058 21.0 24.0 17.0 20.7 3.5 14.0 12.0 12.0 12.7 K060 27.8 25.3 27.7 26.9 1.4 21.7 11.6 18.3 17.2 K061 3.3 17.2 1	11.4 0.7	10.9	12.2	11.2	0.6	28.9	28.4	28.7	29.5		idivi	
K049 22.8 23.9 23.5 23.4 0.6 10.9 10.9 10.6 10.8 K051 28.4 23.7 23.1 25.1 2.9 18.8 11.8 13.1 14.6 K054 16.1 16.3 16.2 16.2 0.1 12.1 12.3 12.2 12.2 K056 22.8 22.7 22.5 22.7 0.2 10.7 10.0 10.1 10.3 K057 25.0 24.6 24.1 24.5 0.5 10.6 11.4 11.1 11.0 K058 21.0 24.0 17.0 20.7 3.5 14.0 12.0 12.0 12.7 K060 27.8 25.3 27.7 26.9 1.4 21.7 11.6 18.3 17.2 K061 12.0 12.0 12.0 12.0 12.0 12.0 12.0 1	10.5 1.0	0.5	10.5	11.5	1.0	22.0	24.1	22.0	22.1		П	
K051 28.4 23.7 23.1 25.1 2.9 18.8 11.8 13.1 14.6 K054 16.1 16.3 16.2 16.2 0.1 12.1 12.3 12.2 12.2 K056 22.8 22.7 22.5 22.7 0.2 10.7 10.0 10.1 10.3 K057 25.0 24.6 24.1 24.5 0.5 10.6 11.4 11.1 11.0 K058 21.0 24.0 17.0 20.7 3.5 14.0 12.0 12.0 12.7 K060 27.8 25.3 27.7 26.9 1.4 21.7 11.6 18.3 17.2 K061 12.0 12.0 12.0 12.0 12.0 K061 10.1 10.9 11.0 K066												
K054 16.1 16.3 16.2 16.2 0.1 12.1 12.3 12.2 12.2 K056 22.8 22.7 22.5 22.7 0.2 10.7 10.0 10.1 10.3 K057 25.0 24.6 24.1 24.5 0.5 10.6 11.4 11.1 11.0 K058 21.0 24.0 17.0 20.7 3.5 14.0 12.0 12.0 12.7 K060 27.8 25.3 27.7 26.9 1.4 21.7 11.6 18.3 17.2 K061 11.0 10.9 11.0 K064 24.4 24.8 24.3 24.5 0.3 11.2 11.0 10.9 11.0 K066 11.0 10.9 11.0 K068 23.8 24.0 23.6												
K056 22.8 22.7 22.5 22.7 0.2 10.7 10.0 10.1 10.3 K057 25.0 24.6 24.1 24.5 0.5 10.6 11.4 11.1 11.0 K058 21.0 24.0 17.0 20.7 3.5 14.0 12.0 12.0 12.7 K060 27.8 25.3 27.7 26.9 1.4 21.7 11.6 18.3 17.2 K061 K064 24.4 24.8 24.3 24.5 0.3 11.2 11.0 10.9 11.0 K066 K066												
K057 25.0 24.6 24.1 24.5 0.5 10.6 11.4 11.1 11.0 K058 21.0 24.0 17.0 20.7 3.5 14.0 12.0 12.0 12.7 K060 27.8 25.3 27.7 26.9 1.4 21.7 11.6 18.3 17.2 K061 11.2 11.0 10.9 11.0 K064 24.4 24.8 24.3 24.5 0.3 11.2 11.0 10.9 11.0 K066 </td <td></td>												
K058 21.0 24.0 17.0 20.7 3.5 14.0 12.0 12.0 12.7 K060 27.8 25.3 27.7 26.9 1.4 21.7 11.6 18.3 17.2 K061 14.0 12.0 12.0 12.7 K061 14.0 11.0 10.9 11.0 K064 24.4 24.8 24.3 24.5 0.3 11.2 11.0 10.9 11.0 K066 11.0 10.9 11.0 K066 36.3 7.5 17.0 16.0 19.0 17.3 K072 23.8 24.0 23.6 23.8 0.2 10.8 10.8 10.												
K060 27.8 25.3 27.7 26.9 1.4 21.7 11.6 18.3 17.2 K061 11.6 18.3 17.2 K064 24.4 24.8 24.3 24.5 0.3 11.2 11.0 10.9 11.0 K066												
K061 K064 24.4 24.8 24.3 24.5 0.3 11.2 11.0 10.9 11.0 K066 K068 K069 K069 K060 K060 K060 K060 K060 K060 K060 K060 K071 29.0 36.0 44.0 36.3 7.5 17.0 16.0 19.0 17.3 K072 23.8 24.0 23.6 23.8 0.2 10.8 10.8 10.4 10.6 K073 22.3 23.6 23.7 23.2 0.8 12.2 15.5 10.8 12.8 K074 28.8 25.3 23.1 25.7 2.9 13.7 12.2 16.8 14.2 K075 22.2 23.3 35.2 26.9 7.2 12.4 13.2 12.4 12.7 K076 K077 K076 K078 22.9 24.6 29.9 25.8 3.6 13.8 13.0 16.5 14.4 K079<												
K064 24.4 24.8 24.3 24.5 0.3 11.2 11.0 10.9 11.0 K066 K068 K069 Image: Constraint of the state of the stat	17.2 5.2	10.5	11.0	21.7	1.4	20.9	27.7	20.0	27.0			
K066 K068 K069 K069 K071 29.0 36.0 44.0 36.3 7.5 17.0 16.0 19.0 17.3 K071 29.0 36.0 44.0 36.3 7.5 17.0 16.0 19.0 17.3 K072 23.8 24.0 23.6 23.8 0.2 10.8 10.8 10.4 10.6 K073 22.3 23.6 23.7 23.2 0.8 12.2 15.5 10.8 12.8 K074 28.8 25.3 23.1 25.7 2.9 13.7 12.2 16.8 14.2 K075 22.2 23.3 35.2 26.9 7.2 12.4 13.2 12.4 12.7 K076 K077 K076 K077 K078 22.9 24.6 29.9 25.8 3.6 13.8 13.0 16.5 14.4 K079 21.7 22.4 21.5 21.9 0.5 12.5 14.2 11.9 </td <td>11.0 0.2</td> <td>10.9</td> <td>11.0</td> <td>11.2</td> <td>03</td> <td>24.5</td> <td>24.3</td> <td>24.8</td> <td>24.4</td> <td></td> <td></td>	11.0 0.2	10.9	11.0	11.2	03	24.5	24.3	24.8	24.4			
K068 K069 Image: Constraint of the system o	1110 012	10.5	11.0	11.2	0.0	2110	21.0	20	2			
K069 K071 29.0 36.0 44.0 36.3 7.5 17.0 16.0 19.0 17.3 K072 23.8 24.0 23.6 23.8 0.2 10.8 10.8 10.4 10.6 K073 22.3 23.6 23.7 23.2 0.8 12.2 15.5 10.8 12.8 K074 28.8 25.3 23.1 25.7 2.9 13.7 12.2 16.8 14.2 K075 22.2 23.3 35.2 26.9 7.2 12.4 13.2 12.4 12.7 K076 K077 K076 K077 K078 22.9 24.6 29.9 25.8 3.6 13.8 13.0 16.5 14.4 K079 21.7 22.4 21.5 21.9 0.5 12.5 14.2 11.9 12.8 K080 714.0 681.3 720.6 705.3 21.1 578.1 544.4 555.8 559.4												
K071 29.0 36.0 44.0 36.3 7.5 17.0 16.0 19.0 17.3 K072 23.8 24.0 23.6 23.8 0.2 10.8 10.8 10.4 10.6 K073 22.3 23.6 23.7 23.2 0.8 12.2 15.5 10.8 12.8 K074 28.8 25.3 23.1 25.7 2.9 13.7 12.2 16.8 14.2 K075 22.2 23.3 35.2 26.9 7.2 12.4 13.2 12.4 12.7 K076 14.2 K077 13.7 12.2 16.8 14.2 K076 13.2 12.4 12.7 K077 13.8 13.0 16.5 14.4												
K072 23.8 24.0 23.6 23.8 0.2 10.8 10.8 10.4 10.6 K073 22.3 23.6 23.7 23.2 0.8 12.2 15.5 10.8 12.8 K074 28.8 25.3 23.1 25.7 2.9 13.7 12.2 16.8 14.2 K075 22.2 23.3 35.2 26.9 7.2 12.4 13.2 12.4 12.7 K076 K077 K078 22.9 24.6 29.9 25.8 3.6 13.8 13.0 16.5 14.4 K079 21.7 22.4 21.5 21.9 0.5 12.5 14.2 11.9 12.8 K080 714.0 681.3 720.6 705.3 21.1 578.1 544.4 555.8 559.4	17.3 1.5	19.0	16.0	17.0	7.5	36.3	44.0	36.0	29.0			
K073 22.3 23.6 23.7 23.2 0.8 12.2 15.5 10.8 12.8 K074 28.8 25.3 23.1 25.7 2.9 13.7 12.2 16.8 14.2 K075 22.2 23.3 35.2 26.9 7.2 12.4 13.2 12.4 12.7 K076 14.2 K076 13.7 12.2 16.8 14.2 K076 12.4 12.7 K076 12.4 12.7 K077 14.2 K078 22.9 24.6 29.9 25.8 3.6 13.8 13.0 16.5 14.4 K079 21.7 22.4 21.5												
K074 28.8 25.3 23.1 25.7 2.9 13.7 12.2 16.8 14.2 K075 22.2 23.3 35.2 26.9 7.2 12.4 13.2 12.4 12.7 K076 14.2 14.2 K076 12.4 13.2 12.4 12.7 K076 14.2 K077 14.2 11.7 12.4 12.7 K078 22.9 24.6 29.9 25.8 3.6 13.8 13.0 16.5 14.4 K079 21.7 22.4 21.5 21.9 0.5 12.5 14.2 11.9 12.8 K080 714.0 681.3 720.6 705.3 21.1 578.1 544.4 555.8 559.4	12.8 2.4											
K075 22.2 23.3 35.2 26.9 7.2 12.4 13.2 12.4 12.7 K076	14.2 2.4											
K077 K078 22.9 24.6 29.9 25.8 3.6 13.8 13.0 16.5 14.4 K079 21.7 22.4 21.5 21.9 0.5 12.5 14.2 11.9 12.8 K080 714.0 681.3 720.6 705.3 21.1 578.1 544.4 555.8 559.4	12.7 0.5											
K078 22.9 24.6 29.9 25.8 3.6 13.8 13.0 16.5 14.4 K079 21.7 22.4 21.5 21.9 0.5 12.5 14.2 11.9 12.8 K080 714.0 681.3 720.6 705.3 21.1 578.1 544.4 555.8 559.4												
K079 21.7 22.4 21.5 21.9 0.5 12.5 14.2 11.9 12.8 K080 714.0 681.3 720.6 705.3 21.1 578.1 544.4 555.8 559.4	14.4 1.9	165	12.0	12.0	26	25.9	20.0	24.6	22.0			
K080 714.0 681.3 720.6 705.3 21.1 578.1 544.4 555.8 559.4												
	12.8 1.2 559.4 17.1											
1001 002.1 115.4 070.4 17.1 554.0 557.7 502.4 550.0	558.0 4.2	562.4	557.7	554.0	17.1	696.4	715.4	682.1	691.7	K081		
Consensus Mean 24.7 Consensus Mean 13.5	13.5										ity	
Consensus Standard Deviation 5.4 Consensus Standard Deviation 4.3		tion					viation	Standard De			ults	
Consensus Mean 24.7 Consensus Mean 15.5 Consensus Standard Deviation 5.4 Consensus Standard Deviation 4.3 Maximum 753.2 Maximum 565.9 Minimum 12.8 Minimum 4.3	565.9 4 3										omn Rest	
											ບົ	

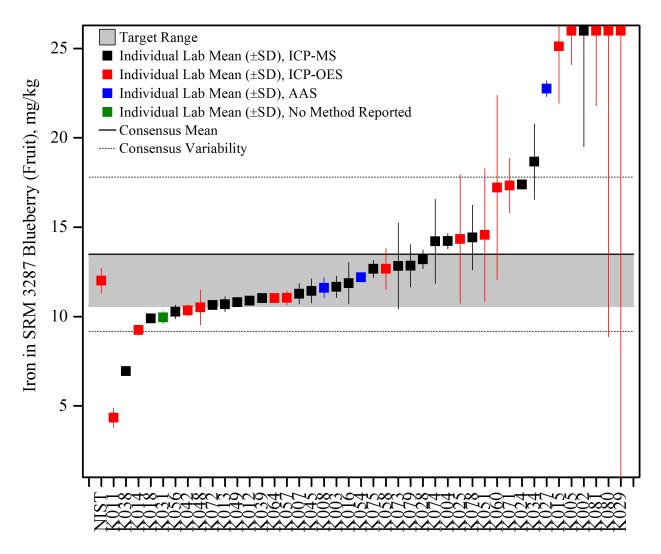

Table 3. Data summary table for iron in cranberry and blueberry.

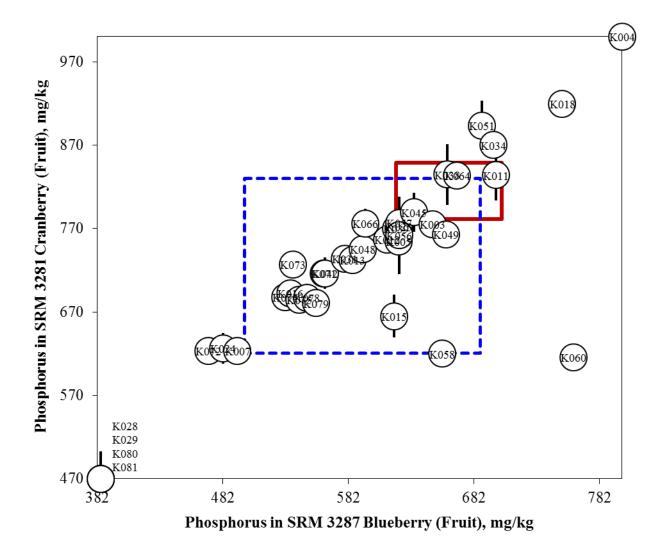

Figure 1. Phosphorus in SRM 3281 Cranberry (Fruit) (data summary view – digestion method). In this view, individual laboratory data are plotted with the individual laboratory standard deviation (error bars). The color of the data point represents the sample preparation (digestion) procedure employed. The black solid line represents the consensus mean, and the black dotted lines represent the consensus variability calculated as one standard deviation about the consensus mean. The gray shaded region represents the target zone for "acceptable" performance, which encompasses the NIST reference value bounded by twice its uncertainty (U_{95}).


Figure 2. Phosphorus in SRM 3287 Blueberry (Fruit) (data summary view – digestion method). In this view, individual laboratory data are plotted with the individual laboratory standard deviation (error bars). The color of the data point represents the sample preparation (digestion) procedure employed. The black solid line represents the consensus mean, and the black dotted lines represent the consensus variability calculated as one standard deviation about the consensus mean. The gray shaded region represents the target zone for "acceptable" performance, which encompasses the NIST certified value bounded by twice its uncertainty (U_{95}).


Figure 3. Iron in SRM 3281 Cranberry (Fruit) (data summary view – digestion method). In this view, individual laboratory data are plotted with the individual laboratory standard deviation (error bars). The color of the data point represents the sample preparation (digestion) procedure employed. The black solid line represents the consensus mean, and the black dotted lines represent the consensus variability calculated as one standard deviation about the consensus mean. The gray shaded region represents the target zone for "acceptable" performance, which encompasses the NIST reference value bounded by twice its uncertainty (U_{95}).


Figure 4. Iron in SRM 3287 Blueberry (Fruit) (data summary view – digestion method). In this view, individual laboratory data are plotted with the individual laboratory standard deviation (error bars). The color of the data point represents the sample preparation (digestion) procedure employed. The black solid line represents the consensus mean, and the black dotted lines represent the consensus variability calculated as one standard deviation about the consensus mean. The gray shaded region represents the target zone for "acceptable" performance, which encompasses the NIST certified value bounded by twice its uncertainty (U_{95}).


Figure 5. Phosphorus in SRM 3281 Cranberry (Fruit) (data summary view – instrumental method). In this view, individual laboratory data are plotted with the individual laboratory standard deviation (error bars). The color of the data point represents the instrumental method employed. The black solid line represents the consensus mean, and the black dotted lines represent the consensus variability calculated as one standard deviation about the consensus mean. The gray shaded region represents the target zone for "acceptable" performance, which encompasses the NIST reference value bounded by twice its uncertainty (U_{95}).


Figure 6. Phosphorus in SRM 3287 Blueberry (Fruit) (data summary view – instrumental method). In this view, individual laboratory data are plotted with the individual laboratory standard deviation (error bars). The color of the data point represents the instrumental method employed. The black solid line represents the consensus mean, and the black dotted lines represent the consensus variability calculated as one standard deviation about the consensus mean. The gray shaded region represents the target zone for "acceptable" performance, which encompasses the NIST certified value bounded by twice its uncertainty (U_{95}).

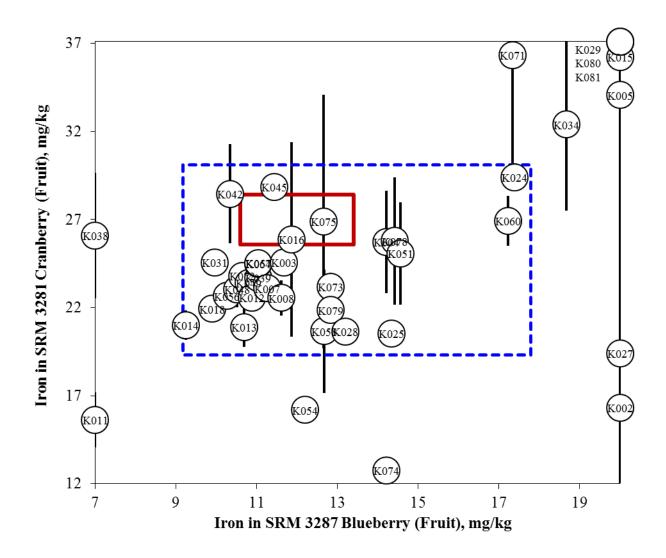

Figure 7. Iron in SRM 3281 Cranberry (Fruit) (data summary view – instrumental method). In this view, individual laboratory data are plotted with the individual laboratory standard deviation (error bars). The color of the data point represents the instrumental method employed. The black solid line represents the consensus mean, and the black dotted lines represent the consensus variability calculated as one standard deviation about the consensus mean. The gray shaded region represents the target zone for "acceptable" performance, which encompasses the NIST reference value bounded by twice its uncertainty (U_{95}).

Figure 8. Iron in SRM 3287 Blueberry (Fruit) (data summary view – instrumental method). In this view, individual laboratory data are plotted with the individual laboratory standard deviation (error bars). The color of the data point represents the instrumental method employed. The black solid line represents the consensus mean, and the black dotted lines represent the consensus variability calculated as one standard deviation about the consensus mean. The gray shaded region represents the target zone for "acceptable" performance, which encompasses the NIST certified value bounded by twice its uncertainty (U_{95}).

Figure 9. Phosphorus in SRM 3287 Blueberry (Fruit) and SRM 3281 Cranberry (Fruit) (sample/sample comparison view). In this view, the individual laboratory results for one sample (blueberry) are compared to the results for a second sample (cranberry). The solid red box represents the target zone for the two samples, blueberry (x-axis) and cranberry (y-axis). The dotted blue box represents the consensus zone for blueberry (x-axis) and cranberry (y-axis).

Figure 10. Iron in SRM 3287 Blueberry (Fruit) and SRM 3281 Cranberry (Fruit) (sample/sample comparison view). In this view, the individual laboratory results for one sample (blueberry) are compared to the results for a second sample (cranberry). The solid red box represents the target zone for the two samples, blueberry (x-axis) and cranberry (y-axis). The dotted blue box represents the consensus zone for blueberry (x-axis) and cranberry (y-axis).

TOXIC ELEMENTS (Hg) IN EPHEDRA AND GINKGO DIETARY SUPPLEMENTS

Study Overview

In this study, participants were provided with two NIST SRMs, SRM 3240 *Ephedra sinica* Stapf Aerial Parts and SRM 3246 *Ginkgo biloba* (Leaves). Participants were asked to use in-house analytical methods to determine the mass fractions of mercury (Hg) in each of the matrices and report values on an as-received basis.

Sample Information

Ephedra Aerial Parts. Participants were provided with one bottle containing approximately 5 g of dried *Ephedra sinica* Stapf aerial parts. The dried leaves were ground, homogenized, and packaged under nitrogen inside amber high-density polyethylene bottles with polypropylene screw caps. Before use, participants were instructed to thoroughly mix the contents of the bottle and use a sample size of at least 0.2 g. Participants were asked to store the material at controlled room temperature, 10 °C to 30 °C, and to prepare three samples and report three values from the single bottle provided. Approximate analyte levels were not reported to participants prior to the study. The certified value for mercury in SRM 3240 *Ephedra sinica* Stapf Aerial Parts was determined at NIST using cold-vapor generation isotope dilution inductively coupled plasma mass spectrometry (CV-ID-ICP-MS) and at the US Food and Drug Administration (FDA) using ICP-MS. The certified value and uncertainty for Hg are provided in the table below, both on a drymass basis and on an as-received basis accounting for moisture of the material (4.52 %).

	Certified Mass Fractio	n in SRM 3240 (ng/g)
<u>Analyte</u>	<u>(dry-mass basis)</u>	(as-received basis)
Mercury (Hg)	16.7 ± 0.5	15.9 ± 0.5

Ginkgo Leaves. Participants were provided with one bottle containing approximately 3 g of dried *Ginkgo biloba* leaves. The dried leaves were ground, homogenized, and packaged under nitrogen inside amber high-density polyethylene bottles with polypropylene screw caps. Before use, participants were instructed to thoroughly mix the contents of the bottle and use a sample size of at least 0.25 g. Participants were asked to store the material at controlled room temperature, 10 °C to 30 °C, and to prepare three samples and report three values from the single bottle provided. Approximate analyte levels were not reported to participants prior to the study. The certified value for mercury in SRM 3246 *Ginkgo biloba* (Leaves) was determined at NIST using CV-ID-ICP-MS. The certified value and uncertainty for Hg are provided in the table below, both on a dry-mass basis and on an as-received basis accounting for moisture of the material (4.82 %).

	Certified Mass Fraction in SRM 3246 (ng/g)						
<u>Analyte</u>	(dry-mass basis)	(as-received basis)					
Mercury (Hg)	$23.08 \hspace{0.1 in} \pm \hspace{0.1 in} 0.17$	$21.97~\pm~0.16$					

Study Results

• Fifty-four laboratories enrolled in this exercise and received samples. Forty-three laboratories reported results for mercury in Ephedra aerial parts (80 % participation). Forty-four laboratories reported results for mercury in Ginkgo leaves (82 % participation).

- The consensus means for mercury in both matrices were within the target range but with high variability (20 % and 30 % RSD for the Ephedra and Ginkgo, respectively).
- A majority of the laboratories reported using microwave digestion (68 %) for sample preparation. Ten laboratories reported using open beaker digestion (25 %). Hot block digestion (3 %) and thermal decomposition (3 %) were also reported as methods of sample preparation. One laboratory reported doing no sample preparation, and one laboratory did not report the type of sample preparation used.
- Most laboratories reported using ICP-MS as their analytical method for analysis (85 %). Laboratories also reported using AAS (7 %), cold vapor AAS (2 %), ICP-OES (2 %), and a direct mercury analyzer (2 %). One laboratory did not report the analytical method used.
- A majority of the laboratories reported using an external standard approach to calibration (90 %). One laboratory reported using a standard addition approach (2 %), and three laboratories reported using an internal standard approach (7 %). Two laboratories did not report the type of calibration approach that was used.

Technical Recommendations

The following recommendations are based on results obtained from the participants in this study.

- Mercury is volatile, so care must be taken to not lose Hg during sample preparation. Microwave digestion is the best method for sample preparation.
- Plant materials can be difficult to digest without the use of HF.
- Low concentrations of Hg are not stable in solution over long periods of time. Samples are best prepared close to the time of analysis.
- Samples containing low concentrations of Hg may be more stable in dilute HCl than in dilute HNO₃.
- Mercury is at very low levels in both materials and may be close to method detection limits.
 - Use a good calibration curve with low concentrations to help with accuracy.
 - Mercury blanks and backgrounds may be large, making it difficult to determine low-level samples.
 - Use a sufficient number of blanks so an accurate method detection limit and limit of quantitation can be determined.
- Values reported at the higher end of the range had more within-laboratory variability. This was most likely due to contamination issues, or problems with sample analysis such as memory effects.
- Mercury has a poor washout (long memory effect) and can give erratic answers if an adequate washout time is not used after each measurement. Use of dilute HCl may decrease the length of necessary washout time.
- The sensitivity of Hg is low when using ICP-MS or ICP-OES. Using cold vapor mercury generation increases sensitivity allowing for lower levels of Hg to be measured.
- Run a quality assurance sample of known concentration to ensure your method is performing as expected. An appropriate control is one that will mirror both the sample matrix and the mass fraction levels expected to be found in the sample.
- Double-check all calculations for any errors.

Table 4. Individualized data summary table (NIST) for mercury in Ephedra and Ginkgo dietary supplements.

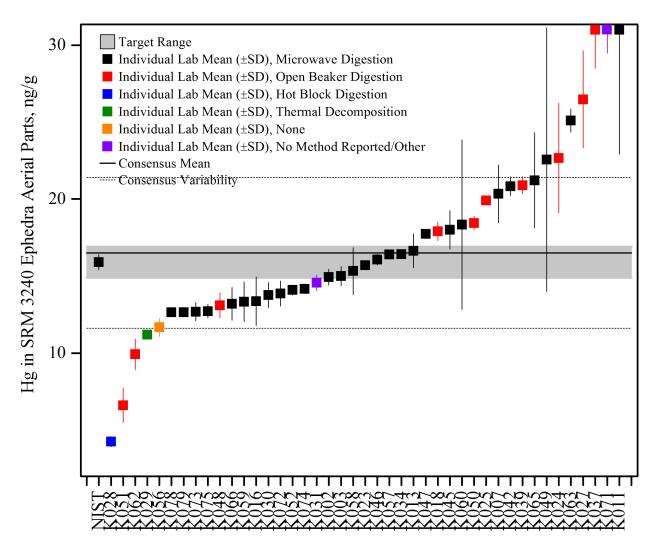
National Institute of Standards & Technology

	Lab Code:	NIST	IST 1. Your Results				2. Community Results			3. Target	
Analyte	Sample	Units	Xi	$\mathbf{s}_{\mathbf{i}}$	Z _{comm}	Z _{NIST}	Ν	x*	s*	X _{NIST}	U_{95}
Hg E	Hg Ephedra Aerial Parts		15.9	0.5	-0.1	0.0	43	16.5	4.9	15.9	0.5
Hg Ginkgo Leaves		ng/g	22.0	0.2	-0.1	0.0	44	22.3	4.6	22.0	0.2

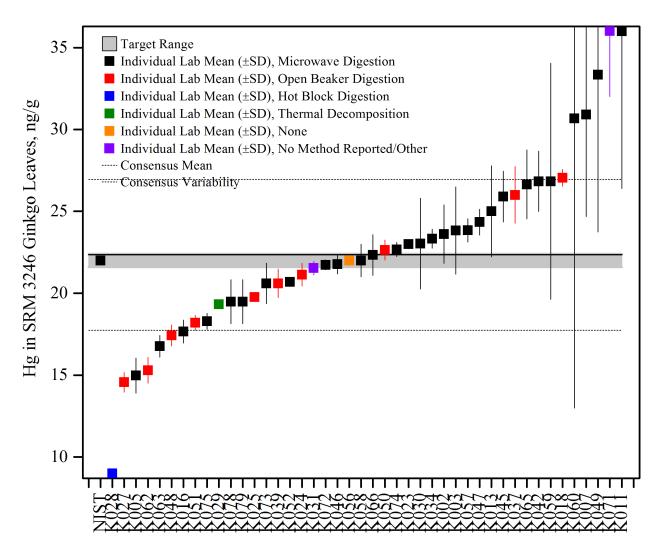
Exercise K - February 2014 - Toxic Elements

x_i Mean of reported values

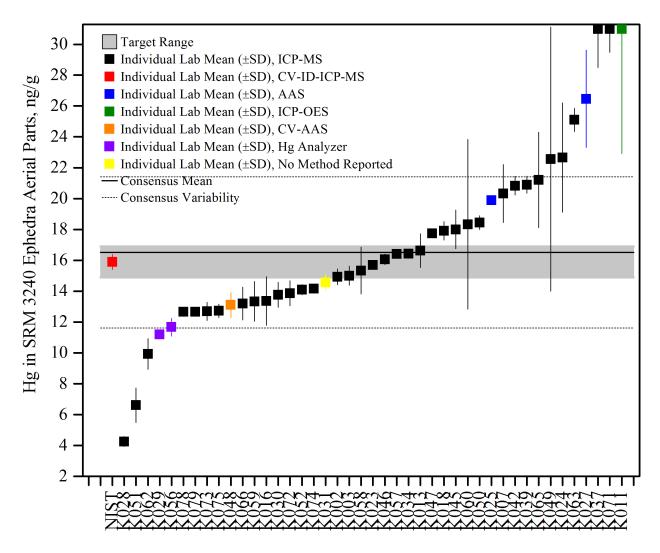
s_i Standard deviation of reported values

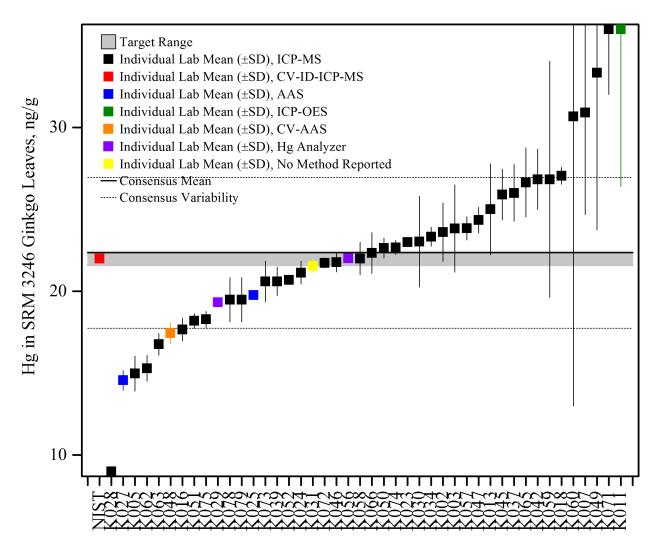

Z_{comm} Z-score with respect to community consensus

Z_{NIST} Z-score with respect to NIST value


N Number of quantitative values reported
 x* Robust mean of reported values
 s* Robust standard deviation

		1									
		SD	M 2240 E	ahadra Aar	ial Darts (na		rcury SRM 3246 Ginkgo Leaves (ng/g)				
I	Lab	A	в В	C	ial Parts (ng	g) SD	Α	SKW 5240 B	C C		SD
	NIST	A	D	t	Avg 15.9	0.5	A	D	t	Avg 22.0	0.2
	K002	15.3	14.3	15.2	13.9	0.5	25.4	23.6	21.9	23.6	1.8
	K002 K003	15.5	14.3	15.2	14.9	0.5	25.4	23.0	20.9	23.8	2.7
		15.5	14.5	13.2	15.0	0.0	20.1	24.3	20.9	23.8	2.7
	K004						160	14.1	147	15.0	
	K005	10.1	22.5	10.4	20.2	1.0	16.2	14.1	14.7	15.0	1.1
	K007	19.1	22.5	19.4	20.3	1.9	25.5	37.7	29.5	30.9	6.2
	K010	205.0	295.0	071.0	200.2	0.1	214.0	202.0	205.0	202.7	0.6
	K011	285.0	285.0	271.0	280.3	8.1	314.0	302.0	295.0	303.7	9.6
	K013	17.9	15.9	16.1	16.6	1.1	24.2	28.1	22.7	25.0	2.8
	K016	15.1	13.0	12.0	13.4	1.6	18.4	17.0	17.6	17.7	0.7
	K018	18.1	17.2	18.4	17.9	0.6	27.4	26.5	27.3	27.1	0.5
	K023	15.7	15.8	15.6	15.7	0.1	23.1	22.7	23.2	23.0	0.3
	K024	26.2	22.8	19.1	22.7	3.6	21.6	21.5	20.3	21.1	0.7
	K025 K027	19.8 24.7	19.9 24.6	20.0 30.1	19.9 26.5	0.1 3.2	19.7 14.5	19.9 15.2	19.7 14.0	19.8 14.6	0.1
	K027	4.6	4.2	4.0	4.3	0.3	4.5	4.5	4.6	4.5	0.0
	K029	11.4	10.9	11.4	11.2	0.3	19.3	19.3	19.4	19.3	0.1
	K030	13.2	14.7	13.4	13.8	0.8	22.6	20.5	26.0	23.0	2.8
	K031	14.0	15.0	14.7	14.6	0.5	21.2	21.4	22.0	21.5	0.4
	K034	16.4	16.4	16.4	16.4	0.0	23.0	23.0	24.0	23.3	0.6
	K037 K039	42.0 20.4	37.0 20.8	40.0 21.5	39.7 20.9	2.5 0.6	28.0 19.6	25.0 21.2	25.0 21.0	26.0 20.6	1.7 0.9
	K040	20.4	20.8	21.3	20.9	0.0	19.0	21.2	21.0	20.0	0.9
	K042	21.5	20.3	20.7	20.8	0.6	24.8	28.4	27.3	26.8	1.8
sult	K045	16.8	17.9	19.3	18.0	1.3	24.4	27.5	25.8	25.9	1.6
Individual Results	K046	16.1	15.7	16.4	16.1	0.4	22.2	22.0	21.1	21.8	0.6
lual	K047	17.6	17.9	12.4	17.7	0.2	24.9	23.8 17.9	167	24.3	0.8
livic	K048 K049	12.9 32.4	14.0 18.6	12.4	13.1 22.6	0.8 8.6	17.7 44.2	29.8	16.7 26.0	17.4 33.3	0.6 9.6
Inc	K050	18.0	18.9	18.4	18.4	0.5	23.3	22.1	20.0	22.6	0.6
	K050	5.4	7.0	7.5	6.6	1.1	17.8	18.7	18.1	18.2	0.4
	K051	14.5	13.8	14.0	14.1	0.3	20.5	21.0	20.6	20.7	0.4
	K052 K056	14.5	13.8	14.0	14.1	0.5	20.3	21.0	20.0	20.7	0.0
	K050	16.4	16.6	16.3	16.4	0.0	22.0	22.0	24.3	23.8	0.7
	K058	14.0	15.0	17.0	15.3	1.5	23.0	21.0	22.0	22.0	1.0
	K059	14.4	13.7	11.9	13.3	1.3	34.9	21.0	24.6	26.8	7.2
	K060	18.0	13.0	24.0	18.3	5.5	22.0	19.0	51.0	30.7	17.7
	K061	10.0	0.0	10.0	0.0	1.0		15.0	15.4	15.0	0.0
	K062 K063	10.9 25.8	8.9 25.2	10.0 24.3	9.9 25.1	1.0 0.8	14.4 17.1	15.9 16.0	15.6 17.2	15.3 16.8	0.8
	K063 K064	23.0	23.2	24.3	23.1	0.0	17.1	10.0	17.2	10.0	0.7
	K065	18.1	21.3	24.3	21.2	3.1	25.3	25.6	29.1	26.6	2.1
	K066	12.0	13.7	14.0	13.2	1.1	22.9	23.2	20.9	22.3	1.2
	K067										
	K069										
	K070 K071	45.0	43.0	42.0	43.3	1.5	48.0	44.0	40.0	44.0	4.0
	K071 K072	14.8	13.3	13.5	13.9	0.8	21.4	21.8	22.0	21.7	0.3
	K073	12.1	13.3	12.7	12.7	0.6	21.0	21.6	19.2	20.6	1.2
	K074	14.0	14.3	14.1	14.2	0.2	23.0	22.2	22.9	22.7	0.4
	K075	12.5	13.2	12.4	12.7	0.4	18.3	17.8	18.8	18.3	0.5
	K076 K077										
	K077 K078	12.5	12.6	12.9	12.7	0.2	21.0	19.0	18.5	19.5	1.3
	K078 K079	12.5	12.6	12.9	12.7	0.2	21.0	19.0	18.5	19.5	1.3
Ŷ		Consensus Mean			16.5		Consensus			22.3	
umit Its		Consensus Standard Deviation			4.9		Consensus Standard Deviati			4.6	
Community Results		Maximum			280.3	Maximum				303.7	
C ₀		Minimum			4.3		Minimum			4.5	
		Ν			43		N			44	


Table 5. Data summary table for mercury in Ephedra and Ginkgo dietary supplements.


Figure 11. Mercury in SRM 3240 *Ephedra sinica* Stapf Aerial Parts (data summary view – digestion method). In this view, individual laboratory data are plotted with the individual laboratory standard deviation (error bars). The color of the data point represents the sample preparation (digestion) procedure employed. The black solid line represents the consensus mean, and the black dotted lines represent the consensus variability calculated as one standard deviation about the consensus mean. The gray shaded region represents the target zone for "acceptable" performance, which encompasses the NIST certified value bounded by twice its uncertainty (U_{95}).

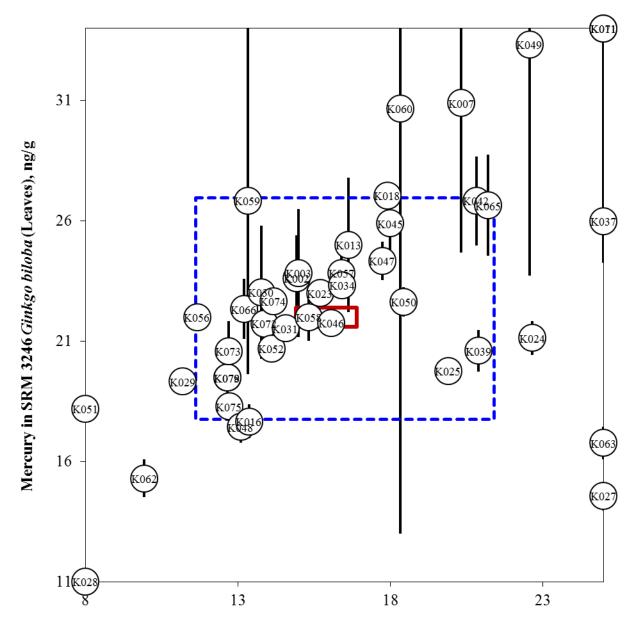

Figure 12. Mercury in SRM 3246 *Ginkgo biloba* (Leaves) (data summary view – digestion method). In this view, individual laboratory data are plotted with the individual laboratory standard deviation (error bars). The color of the data point represents the sample preparation (digestion) procedure employed. The black solid line represents the consensus mean, and the black dotted lines represent the consensus variability calculated as one standard deviation about the consensus mean. The gray shaded region represents the target zone for "acceptable" performance, which encompasses the NIST certified value bounded by twice its uncertainty (U_{95}).

Figure 13. Mercury in SRM 3240 *Ephedra sinica* Stapf Aerial Parts (data summary view – instrumental method). In this view, individual laboratory data are plotted with the individual laboratory standard deviation (error bars). The color of the data point represents the instrumental method employed. The black solid line represents the consensus mean, and the black dotted lines represent the consensus variability calculated as one standard deviation about the consensus mean. The gray shaded region represents the target zone for "acceptable" performance, which encompasses the NIST certified value bounded by twice its uncertainty (U_{95}).

Figure 14. Mercury in SRM 3246 *Ginkgo biloba* (Leaves) (data summary view – instrumental method). In this view, individual laboratory data are plotted with the individual laboratory standard deviation (error bars). The color of the data point represents the instrumental method employed. The black solid line represents the consensus mean, and the black dotted lines represent the consensus variability calculated as one standard deviation about the consensus mean. The gray shaded region represents the target zone for "acceptable" performance, which encompasses the NIST certified value bounded by twice its uncertainty (U_{95}).

Mercury in SRM 3240 Ephedra sinica Stapf Aerial Parts, ng/g

Figure 15. Mercury in SRM 3240 *Ephedra sinica* Stapf Aerial Parts and SRM 3246 *Ginkgo biloba* (Leaves) (sample/sample comparison view). In this view, the individual laboratory results for one sample (Ephedra leaves) are compared to the results for a second sample (Ginkgo leaves). The solid red box represents the target zone for the two samples, Ephedra leaves (x-axis) and Ginkgo leaves (y-axis). The dotted blue box represents the consensus zone for Ephedra leaves (x-axis) and Ginkgo leaves (y-axis).

WATER-SOLUBLE VITAMINS (B1, B2, B3) IN DIETARY SUPPLEMENTS

Study Overview

In this study, participants were provided with one NIST SRM, SRM 3280 Multivitamin/ Multielement Tablets, and one NIST candidate SRM, SRM 3252 Protein Drink Mix. Participants were asked to use in-house analytical methods to determine the mass fractions of vitamins B_1 , B_2 , and B_3 in each of the matrices and report values on an as-received basis. Participants were asked to report the vitamin B_1 , B_2 , and B_3 content as thiamine hydrochloride, riboflavin, and niacinamide, respectively.

Sample Information

Multivitamin/Multielement Tablets. Participants were provided with one bottle containing 30 multivitamin/multielement tablets. Before use, participants were instructed to grind all 30 tablets, mix the resulting powder thoroughly, and use a sample size of at least 0.25 g. Participants were asked to store the material at controlled room temperature, 10 °C to 30 °C, prepare three samples, and report three values from the single bottle provided. Approximate analyte levels were not reported to participants prior to the study. The NIST certified values and uncertainties for vitamins B₁ and B₃ in SRM 3280 were determined at NIST by LC with absorbance detection (LC-Abs) and isotope dilution liquid chromatography with mass spectrometric detection (ID-LC-MS) following solvent extraction, in combination with data from numerous collaborating laboratories. The NIST certified value and uncertainty for vitamin B₂ in SRM 3280 were determined at NIST by LC-Abs and LC-MS following solvent extraction, in combination in combination with data from numerous collaborating laboratories. The certified values and uncertainties are reported in the table below, both on a drymass basis and on an as-received basis accounting for moisture of the material (1.37 %).

	Certified Mass Fraction in SRM 3280 (mg/g)	Certified Mass Fraction in SRM 3280 (mg/g)
Analyte	(dry-mass basis)	(as-received basis)
Thiamine Hydrochloride (B ₁)	1.06 ± 0.12	1.05 ± 0.12
Riboflavin (B ₂)	1.32 ± 0.17	1.30 ± 0.17
Niacinamide (B ₃)	$14.10 ~\pm~ 0.23$	$13.91 \ \pm \ 0.23$

Protein Powder. Participants were provided with one packet containing approximately 10 g of protein powder. A mixture of commercially available chocolate protein drink mix powders was blended and heat-sealed inside nitrogen-flushed 4-mil plastic bags, which were heat-sealed inside nitrogen-flushed aluminized plastic bags along with two packets of silica gel. Before use, participants were instructed to thoroughly mix the contents of the packet, and a sample size of at least 0.5 g was recommended. Participants were asked to store the material at controlled room temperature, 10 °C to 30 °C, prepare three samples, and report three values from the single packet provided. Approximate analyte levels were not reported to participants prior to the study. Certified values are not available for this material at the time of the report; NIST provided values for vitamins B₁, B₂, and B₃ based on duplicate analysis from 10 packets using ID-LC-MS/MS. The NIST values in SRM 3252 Protein Drink Mix are reported in the table below with an estimated uncertainty based on twice the method standard deviation.

	Estimated Mass	Fraction
Analyte	in SRM 3252 Protein Dr	rink Mix (mg/kg)
Thiamine Hydrochloride (B ₁)	$15.81 \pm$	0.66
Riboflavin (B ₂)	26.9 \pm	2.9
Niacinamide (B ₃)	258.1 \pm	8.7

Study Results

- Sixty laboratories enrolled in this exercise and received samples. Forty-one laboratories reported results for vitamins B₁ and B₃ in SRM 3280 (68 % participation) and 46 laboratories reported results for vitamin B₂ in SRM 3280 (77 % participation). For the protein powder, the results of 25 laboratories were used in consensus calculations for vitamin B₁ (42 % participation), 30 laboratories for vitamin B₂ (50 % participation), and 29 laboratories for vitamin B₃ (48 % participation).
- The consensus mean was within the target range for vitamins B₁ and B₂ in SRM 3280. The variability in these measurements was excellent, with approximately 12 % RSD for both vitamins in the multivitamin sample.
- The consensus mean for vitamin B₃ in the multivitamin was above the target range, but with excellent variability at 4 % RSD.
- A number of significantly outlying results were reported for the vitamins in the protein powder. These values varied from twice up to 100 times the expected value based on NIST data. As a result, target ranges were compared only to consensus means determined after these outlying data points had been excluded.
 - Consensus means for vitamins B₂ and B₃ in the protein powder were within the target ranges. The between-laboratory variability for vitamin B₃ was excellent (12 % RSD); the variability for vitamin B₂ was significantly higher (31 % RSD).
 - The consensus mean for vitamin B_1 in the protein powder was slightly higher than the target range, with high between-laboratory variability (48 % RSD).
 - The consensus means for the outlying data points were 18 times, 10 times, and 23 times greater than the target means for vitamins B₁, B₂, and B₃, respectively.
 - The consensus means for the outlying data points included 4 to 6 laboratory results, and had high to extremely high between-laboratory variability (23 % RSD, 57 % RSD, and more than 100 % RSD for vitamins B₁, B₂, and B₃, respectively).
- A majority of the laboratories reported using solvent extraction (71 %) as the sample preparation method. Laboratories also reported using acid hydrolysis (19 %), base hydrolysis (7 %), and enzymatic hydrolysis (2 %). Two laboratories did not report the type of sample preparation used.
- A majority of the laboratories reported using LC-Abs (87 %) as their instrumental method for analysis. Use of spectrophotometry (8 %), LC-FL (3%), and LC/MS (3 %) were also reported. Two laboratories did not report the type of instrumental method used.
- A majority of the laboratories reported using an external standard approach to calibration (91 %). Laboratories also reported using standard addition (7 %) and internal standard (2 %) approaches to quantitation. Four laboratories did not report the quantitation approach used.

Technical Recommendations

The following recommendations are based on results obtained from the participants in this study.

- Results for the multivitamin tablet were excellent. No methods presented as significantly better or worse than any other. No systematic biases were noted.
- For the laboratories included in the determination of consensus mean for the protein drink mix, no methods presented as significantly better or worse than any other. No systematic biases were noted.
- Extreme outliers in the measurement of vitamins B_1 , B_2 , and B_3 are likely a result of lack of specificity in the instrumental method.
 - All of the outlying laboratories used LC-Abs for all three analytes.
 - Some laboratories using LC-Abs may be experiencing a co-elution that would cause a high bias in the results.
 - No specific wavelengths were identified as being problematic; because this is likely a coelution, the problem can likely be corrected by alteration of the chromatographic conditions.
 - The following recommendations can help identify and avoid potential coelutions.
 - A chromatographic method with alternate selectivity (different retention order) can be used as a check for each new sample type that is run. Ideally, the retention of coeluting compounds would also be affected and the results from the two chromatographic systems would be different. Two different responses would indicate a possible bias in one approach.
 - A different detector can be used in series with an absorbance detector (as confirmation), such as a fluorescence detector or mass spectrometer. If a coeluting compound is present, the response from these detectors would be different than the response from the absorbance detector. Two different responses would indicate a possible bias in one approach.
 - Considerations of potential interferences can assist in troubleshooting. For example, on many C₁₈ systems, caffeine and thiamine have similar retention characteristics. Understanding the matrix that is being tested and possible coeluting compounds can be evaluated before a sample is analyzed for additional confidence in the result.

Table 6. Individualized data summary table (NIST) for water-soluble vitamins in dietary supplements.

National Institute of Standards & Technology

	Lab Code:	NIST		1. Your	Results		2. Co	mmunity R	3. Ta	3. Target			
Analyte	Sample	Units	X _i	$\mathbf{s}_{\mathbf{i}}$	Z _{comm}	Z _{NIST}	Ν	x*	s*	X _{NIST}	U_{95}		
B1	Multivitamin	mg/kg	1050	118	-0.6	0.0	41	1140	145	1045	118		
B1	Protein Drink	mg/kg	15.8	0.7	-0.6	0.0	25.0	37.2	36.3	15.8	0.7		
B2	Multivitamin	mg/kg	1300	168	-0.4	0.0	46	1370	164	1302	168		
B2	Protein Drink	mg/kg	26.9	2.9	-0.3	0.0	30	30.4	13.0	26.9	2.9		
B3	Multivitamin	mg/kg	13900	227	-1.5	0.0	41	14800	615	13907	227		
B3	Protein Drink	mg/kg	258	9	-0.6	0.0	29	291	55	258	9		

Exercise K - February 2014 - Water-Soluble Vitamins

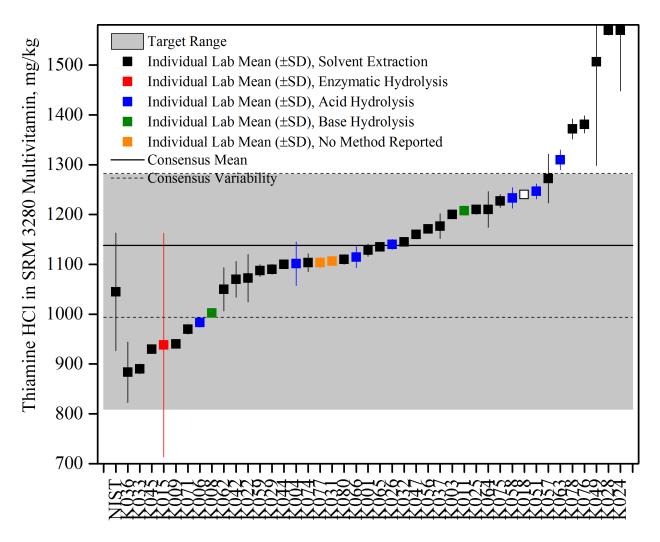
- x_i Mean of reported values
- $\boldsymbol{s}_i \;\; \mbox{Standard} \; \mbox{deviation} \; \mbox{of reported values}$
- Z_{comm} Z-score with respect to community
 - consensus
- Z_{NIST} Z-score with respect to NIST value
- N Number of quantitative values reported
- x* Robust mean of reported values
- s* Robust standard deviation
- x_{NIST} NIST-assessed value
- $U_{95} \pm 95\%$ confidence interval about the assessed value or
 - standard deviation (s_{NIST})

						Thiamine	mine CI HCI						
		SRM 328	0 Multivitar	nin/Multiele	ement Tablet	s (mg/kg)) SRM 3252 Protein Drink Mix (mg/kg)						
	Lab	Α	В	С	Avg	SD	Α	В	С	Avg	SD		
	NIST				1045	118				15.8	0.7		
	K001	1124	1119	1143	1129	13							
	K002												
	K003	1200	1200	1200	1200	0							
	K004	1136	1052	1116	1101	44							
	K006	994	975	981	983	10							
	K008	998	1009	1000	1002	6	285.0	250.0	255.0	263.3	18.9		
	K003	939	945	937	940	4	205.0	250.0	255.0	203.3	10.9		
		939	945	931	940	4							
	K010	1210	1202	1202	1209	0	227.5	202.5	226.2	210.1	12.5		
	K011	1218	1203	1202	1208	9	327.5	303.5	326.3	319.1	13.5		
	K012												
	K013												
	K014												
	K015	710	1159	946	938	224		19.1	39.1	29.1	14.2		
	K016												
	K018	1240			1240		40.0			40.0			
	K019												
	K020												
	K022	1109	1090	1018	1072	48	13.8	13.8	12.8	13.5	0.6		
	K024	2262	2132	2018	2137	122	118.1	143.0	125.2	128.8	12.8		
	K025	1200	1220	1210	1210	10	28.4	27.4	29.9	28.6	1.3		
	K026	1150	1140	1130	1140	10	16.6	15.8	15.0	15.8	0.8		
	K028	1809	1800	1790	1800	10	355.0	350.0	350.0	351.7	2.9		
	K029	1080	1090	1100	1090	10	12.1	11.7	10.7	10.0	0.5		
	K031 K032	1110	1100	1110	1107	6 7	12.1	11.7 11.4	12.7 12.6	12.2	0.5		
	K032 K033	1152 890	1145 880	1139 900	1145 890	10	13.7 9.4	9.4	11.0	12.6 9.9	0.9		
ults	K034	070	000	200	070	10	2.1	2.1	11.0	7.5	0.9		
Individual Results	K035												
la	K036	954	848	849	884	61	23.3	16.4	25.7	21.8	4.8		
vidı	K037	1150	1180	1200	1177	25							
ibu	K040												
	K042	1060	1110	1040	1070	36							
	K043												
	K044	1100	1100	1100	1100	0	200.0	200.0	200.0	200.0	0.0		
	K045	930	930	930	930	0							
	K046												
	K047	1162	1161	1158	1160	2							
	K048												
	K049	1690	1550	1280	1507	208	14.0	10.0	13.0	12.3	2.1		
	K051	1230	1260	1250	1247	15	12.4	11.9	11.4	11.9	0.5		
1	K056	1163	1174	1177	1171	7	16.4	17.4	14.4	16.1	1.5		
1	K057	1319	1221	1277	1272	49							
1	K058	1210	1250	1240	1233	21	14.5	13.1	13.6	13.7	0.7		
	K059	1099	1089	1075	1088	12	265.0	303.0	313.0	293.7	25.3		
	K062	1100	1020	1030	1050	44	19.0	19.0	15.0	17.7	2.3		
1	K063	1330	1310	1290	1310	20							
1	K064	1250	1180	1200	1210	36							
1	K065	1130	1133	1143	1135	7	10.2	14.6	11.7	12.2	2.2		
	K066 K068	1101	1139	1103	1115	21	10.3	14.6	11.7	12.2	2.2		
	K068 K069												
	K00) K071	970	980	960	970	10							
	K073												
	K074	1109	1083	1118	1103	18	33.0	34.0	34.0	33.7	0.6		
1	K075	1223	1217	1242	1227	13	30.0	31.0	30.0	30.3	0.6		
	K076	1391	1361	1391	1381	17	35.0	33.0	31.0	33.0	2.0		
	K077	1098	1096	1116	1103	11	29.0	29.0	29.0	29.0	0.0		
	K078	1394	1368	1354	1372	20	28.0	28.0	27.0	27.7	0.6		
	K079	1100	1120	1110	1110	10	12.2			12.2			
L	K080	1100	1120	1110	1110	10	13.3			13.3			

Table 7. Data summary table for vitamin B_1 (thiamine hydrochloride) in dietary supplements.

						Thiamine	CI HCI				
		SRM 328	0 Multivitaı	min/Multiel	ement Table	ts (mg/kg)	SF	RM 3252 P	rotein Drin	k Mix (mg/k	g)
	Lab	Α	В	С	Avg	SD	Α	В	С	Avg	SD
		Consensus	Mean		1138		Consensus	Mean		37.2	
		Consensus	Standard Dev	viation	145		Consensus	Standard D	eviation	36.3	
		Maximum			2137		Maximum			351.7	
		Minimum			884		Minimum			9.9	
lts		Ν			41		Ν			25	
Results							Consensus	Mean		20.9	
						Consensus Group A	Consensus	Standard D	eviation	10.2	
niţ						onsens Group	Maximum			40.0	
m						5 J	Minimum			9.9	
Community)	Ν			19	
С						10	Consensus	Mean		286	
						nsu D B	Consensus	Standard D	eviation	66	
						Consensus Group B	Maximum			352	
						ලි ඊ Minimum				129	
						•	Ν			6	

	u sum				- (Riboflavin					
		SRM 328	0 Multivitar	nin/Multiele	ment Tablet	s (mg/kg)	SI	RM 3252 Pi	rotein Drinl	k Mix (mg/k	g)	
	Lab	Α	В	С	Avg	SD	Α	В	С	Avg	SD	
	NIST				1302	168				26.9	2.9	
	K001	1254	1291	1279	1275	19						
	K002											
	K003	1330	1370	1380	1360	26						
	K004	1466	1421	1268	1385	104						
	K006	1190	1190	1150	1177	23	12.5	12.1	10.3	11.6	1.2	
	K008	1117	1192	1156	1155	38	510.0	482.0	496.0	496.0	14.0	
	K009	1255	1219	1270	1248	26	256.1	199.0	205.4	220.2	31.3	
	K010											
	K011	1289	1310	1308	1302	12	31.3	31.6	31.1	31.3	0.3	
	K012											
	K013											
	K014	1420	1490	1400	1437	47						
	K015	1242	1291	1288	1274	27	49.4	34.3	47.0	43.5	8.1	
	K016											
	K018	1370			1370		50.0			50.0		
	K019							_	_			
	K020	1360	1360	1330	1350	17	227.0	233.0	232.0	230.7	3.2	
	K022	1283	1305	1317	1302	17	19.7	23.2	19.7	20.8	2.0	
	K024	4834	5313	5414	5187	310	224.0	64.6	87.4	125.3	86.2	
	K025 K026	1410 1450	1480 1520	1470 1440	1453 1470	38 44	24.7 24.0	28.8 23.9	31.4 24.6	28.3 24.2	3.4 0.4	
	K028	1590	1630	1590	1603	23	320.0	310.0	310.0	313.3	5.8	
	K029	1320	1290	1310	1307	15	15.2			15.2		
	K031	1350	1430	1350	1377	46	31.6	31.5	33.5	32.2	1.1	
	K032	1201	1227	1184	1204	22	25.0	29.1	23.5	25.9	2.9	
ults	K033 K034	1100	1200	1100	1133	58	25.0	22.0	18.0	21.7	3.5	
Individual Results	K034	1212	1184	1153	1183	29						
[] Iai	K036	1356	1261	1313	1310	48						
ividı	K037	1370	1360	1370	1367	6						
Indi	K040											
	K042	1430	1520	1620	1523	95						
	K043	1248	1263	1277	1263	15	24.1	25.5	28.4	26.0	2.2	
	K044	1300	1400	1400	1367	58	30.0	30.0	40.0	33.3	5.8	
	K045	1300	1300	1300	1300	0						
	K046	1597	1480	1504	1527	62	21.9	7.2	13.7	14.2	7.4	
	K047	1373	1429	1421	1408	30						
	K048	1000	1700	1570	1750	161	27.0	01.0	05.0	25.0	2.5	
	K049 K051	1890 1290	1790 1270	1570 1320	1750 1293	164 25	27.0 19.0	21.0 17.6	27.0 16.3	25.0 17.6	3.5 1.4	
	K051 K056	1290	1342	1320	1293	31	27.3	22.4	20.4	23.4	3.6	
	K057	1208	1285	1283	1258	44	15.1	15.9	19.2	16.7	2.2	
	K058	1460	1500	1450	1470	26	24.6	23.7	25.2	24.5	0.8	
	K059	1243	1243	1248	1245	3	26.6	26.2	25.9	26.2	0.4	
	K062	1450	1440	1510	1467	38	24.0	25.0	28.0	25.7	2.1	
	K063	2030	2020	2020	2023	6						
	K064 K065	1320 1594	1200 1581	1230 1609	1250 1595	62 14						
	K065 K066	1394	1169	1138	1173	36	27.6	23.0	21.8	24.1	3.1	
	K068											
	K069											
	K071	1250	1240	1190	1227	32						
	K073 K074	1447	1465	1483	1465	18	27.0	23.0	23.0	24.3	2.3	
	K074 K075	1447	1465	1485	1465	24	40.0	41.0	36.0	24.3 39.0	2.5	
	K076	2007	1980	1984	1990	15	41.0	39.0	35.0	38.3	3.1	
	K077	1302	1365	1303	1323	36	25.0	25.0	22.0	24.0	1.7	
	K078	1796	1779	1744	1773	27	39.0	43.0	39.0	40.3	2.3	
	K079 K080	1210	1220	1200	1210	10	22.0			22.0		
L	R000	1310	1320	1300	1310	10	22.0			22.0		


Table 8. Data summary table for vitamin B₂ (riboflavin) in dietary supplements.

		Riboflavin												
		SRM 328	80 Multivita	min/Multiel	ement Table	ts (mg/kg)	SF	RM 3252 Pi	rotein Drin	k Mix (mg/k	g)			
	Lab	Α	В	С	Avg	SD	Α	В	С	Avg	SD			
		Consensus	Mean		1372		Consensus	Mean		30.4				
		Consensus	Standard Dev	viation	164		Consensus	Standard De	eviation	13.0				
		Maximum			5187		Maximum			496.0				
		Minimum			1133		Minimum			11.6				
lts		Ν			46		Ν		30					
Results							Consensus	Mean		26.3				
						Consensus Group A	Consensus	Standard De	eviation	8.9				
niţ						onsens Group	Maximum			50.0				
m						වී යි	Minimum			11.6				
Community)	Ν			25				
С							Consensus	Mean		277				
						sus 9 B	Consensus	Standard De	eviation	158				
						onsensu: Group B	Maximum			496				
						Consensus Group B	Minimum			125				
						•	Ν			5				

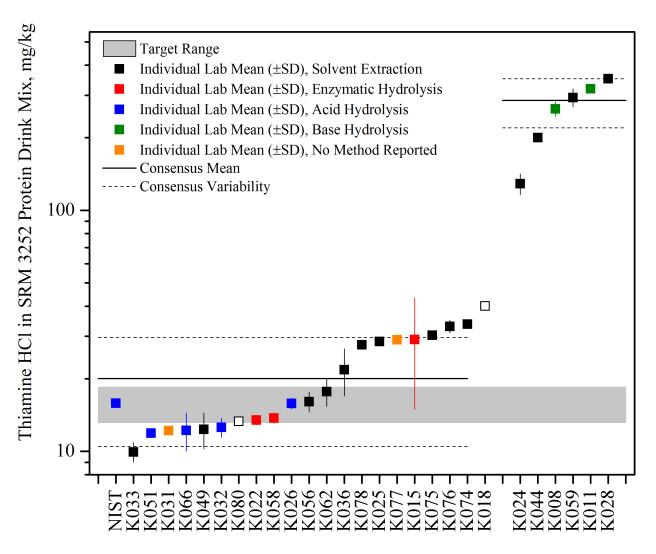
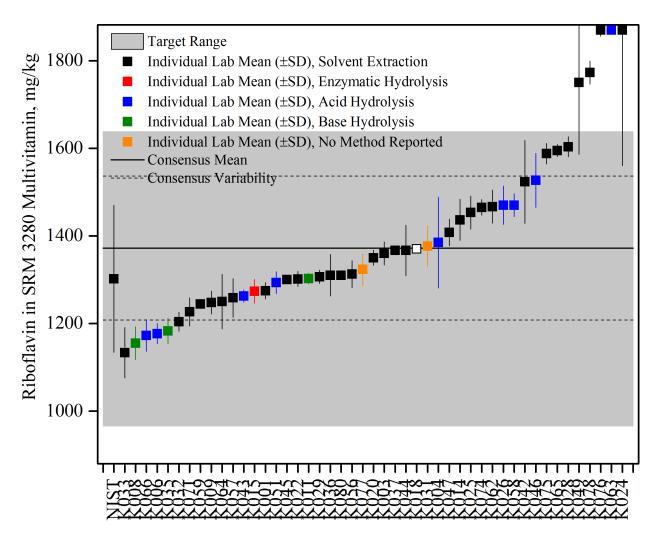
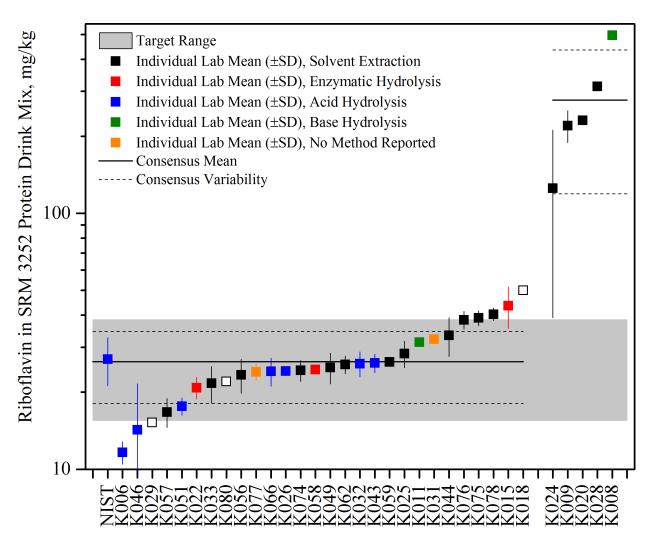
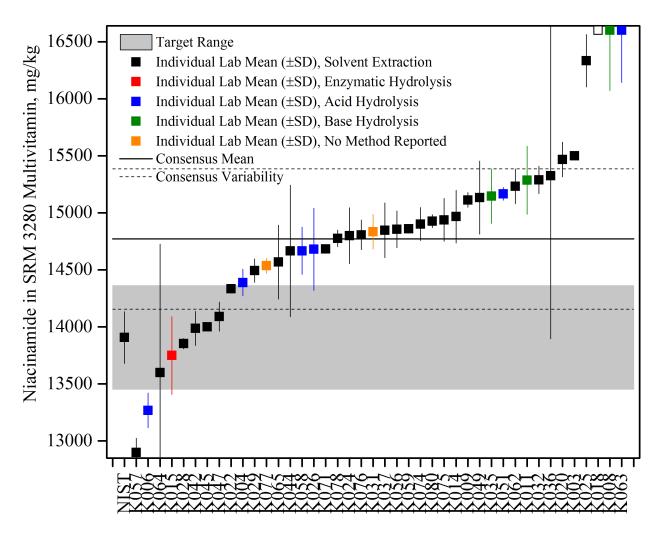
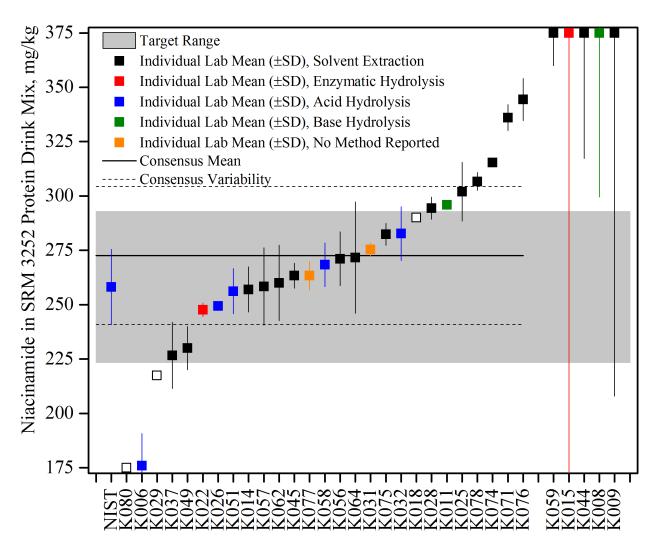

		SRM 328	0 Multivitar	nin/Multiele	ment Tablet	Niacina s (mg/kg)		RM 3252 P	rotein Drinl	k Mix (mg/k	g)
	Lab	Α	В	С	Avg	SD	Α	В	С	Avg	SD
	NIST				13907	227				258	9
	K001										
	K002										
	K003	15500	15500	15500	15500	0					
	K004	14521	14298	14346	14388	118					
	K006	13400	13100	13300	13267	153	163	192	173	176	15
	K008	19000	19800	20000	19600	529	5394	5540	5500	5478	75
	K009	15149	15036	15151	15112	66	31930	32186	31872	31996	167
	K010										
	K011	14980	15301	15577	15286	299	298	294	296	296	2
	K012										
	K013										
	K014	15100	14700	15100	14967	231	262	245	264	257	10
	K015	13448	14121	13679	13749	342	752	376	256	461	259
	K016										
	K018	18870			18870		290			290	
	K019										
	K020	15500	15600	15300	15467	153					
	K022	14375	14316	14312	14334	35	245	251	247	248	3
	K024	14570	15059	14770	14800	246	200	24.5	202	202	
	K025 K026	16600 14290	16200 15000	16200 14750	16333 14680	231 360	288 250	315 248	303 15	302 171	14 135
	K020 K028	13808	13000	13850	13853	46	293	300	290	294	5
	K029	14520	14380	14580	14493	103	217		-, .	217	-
	K031	15000	14700	14800	14833	153	279	273	274	275	3
	K032	15345	15149	15372	15289	121	275	276	297	283	12
ilts	K033 K034										
Individual Results	K034 K035	14883	15352	15202	15146	239					
al I	K036	16916	14916	14144	15325	1431					
vidt	K037	15120	14660	14760	14847	242	240	230	210	227	15
ibul	K040										
	K042	13900	13900	14160	13987	150					
	K043										
	K044	14000	15000	15000	14667	577	1300	1200	1200	1233	58
	K045	14000	14000	14000	14000	0	260	260	270	263	6
	K046										
	K047	14211	14102	13956	14090	128					
	K048										
	K049	15000	15500	14900	15133	321	230	220	240	230	10
	K051 K056	15100 15035	15200 14813	15200 14720	15167 14856	58 162	268 266	252 285	248 263	256 271	10 12
	K050 K057	3669	3834	3913	3805	102	238	269	268	258	12
	K058	14500	14900	14600	14667	208	280	262	263	268	10
	K059	14851	14826	14899	14859	37	439	469	458	455	15
	K062	15100	15200	15400	15233	153	270	240	270	260	17
	K063	22100	22400	21500	22000	458					
	K064	14300	12300	14200	13600	1127	250	300	265	272	26
	K065 K066	14333	14938	14432	14568	324					
	K000 K068										
	K069										
	K071	14710	14700	14640	14683	38	336	342	330	336	6
	K073	14700	150.00	14020	14002	145	214	21.6	21.6	215	
	K074 K075	14799 15106	15068 14734	14838 14973	14902 14938	145 189	314 287	316 277	316 283	315 282	1 5
	K075 K076	13100	14754	14973	14938	139	355	342	336	344	10
	K077	14583	14564	14460	14536	66	259	271	260	263	7
	K078	14832	14801	14693	14775	73	308	302	310	307	4
	K079	14050	1.4070	140.50	14627	50	20			20	
L	K080	14950	14970	14860	14927	59	20			20	

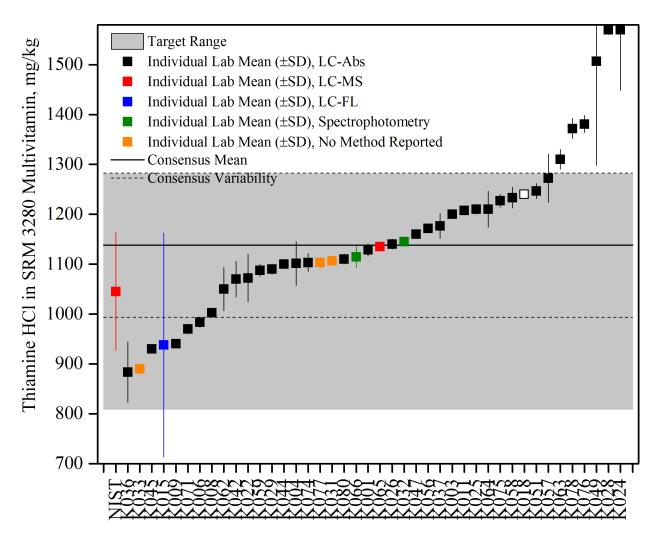
Table 9. Data summary table for vitamin B_3 (niacinamide) in dietary supplements.

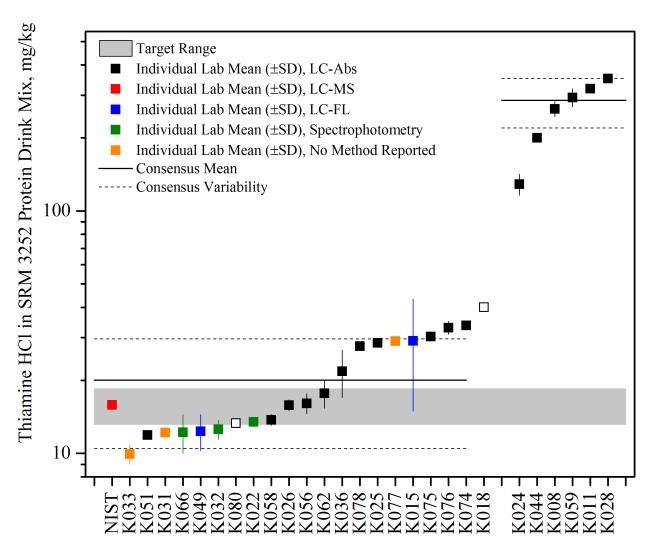

						Niacina	mide				
		SRM 328	0 Multivita	min/Multiel	ement Table	ts (mg/kg)	SF	RM 3252 Pi	rotein Drin	k Mix (mg/k	g)
	Lab	Α	В	С	Avg	SD	Α	В	С	Avg	SD
		Consensus l	Mean		14770		Consensus	Mean		290	
		Consensus S	Standard Dev	viation	615		Consensus	Standard De	eviation	61	
		Maximum			22000		Maximum			31996	
		Minimum			3805		Minimum			20	
lts		Ν			41		Ν			29	
Results							Consensus	Mean		273	
						Consensus Group A	Consensus	Standard De	eviation	32	
niţ						onsens Group	Maximum			455	
m						වී යි	Minimum			130	
Community)	Ν			25	
С							Consensus	Mean		6051	
						sus 9 B	Consensus	Standard De	eviation	8669	
						onsensu: Group B	Maximum			31996	
						Consensus Group B	Minimum			461	
)	Ν			4	

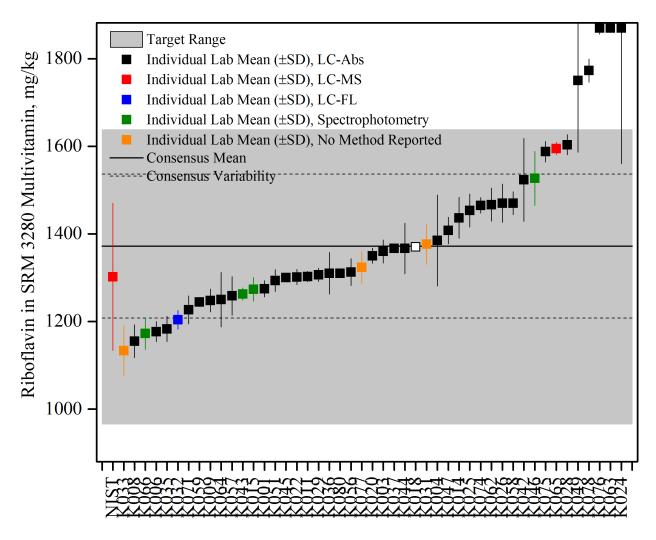

Figure 16. Thiamine hydrochloride in SRM 3280 Multivitamin/Multielement Tablets (data summary view – sample preparation method). In this view, individual laboratory data are plotted with the individual laboratory standard deviation (error bars). The color of the data point represents the sample preparation procedure employed. The black solid line represents the consensus mean, and the black dotted lines represent the consensus variability calculated as one standard deviation about the consensus mean. The gray shaded region represents the target zone for "acceptable" performance, which encompasses the NIST certified value bounded by twice its uncertainty (U_{95}).

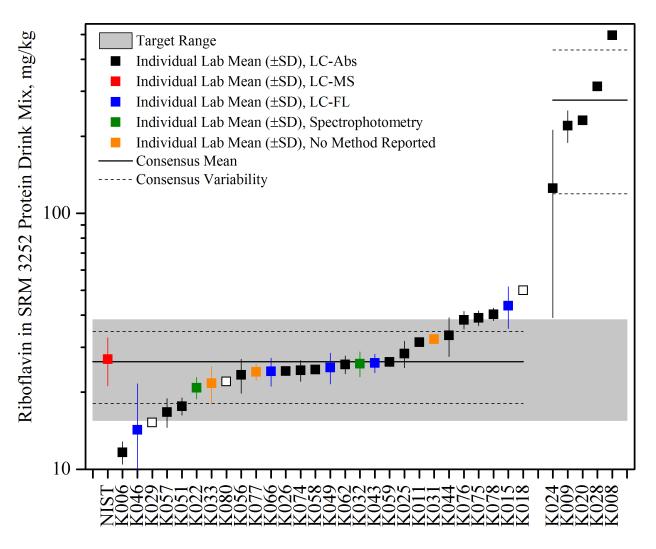

Figure 17. Thiamine hydrochloride in SRM 3252 Protein Drink Mix (data summary view – sample preparation method). In this view, individual laboratory data are plotted with the individual laboratory standard deviation (error bars). The color of the data point represents the sample preparation procedure employed. The black solid lines represents the consensus means, and the black dotted lines represent the consensus variability calculated as one standard deviation about each consensus mean. The gray shaded region represents the target zone for "acceptable" performance, which encompasses the NIST value determined by ID-LC-MS/MS from duplicate measurements of ten packets, bounded by an estimated uncertainty based on twice the method standard deviation.

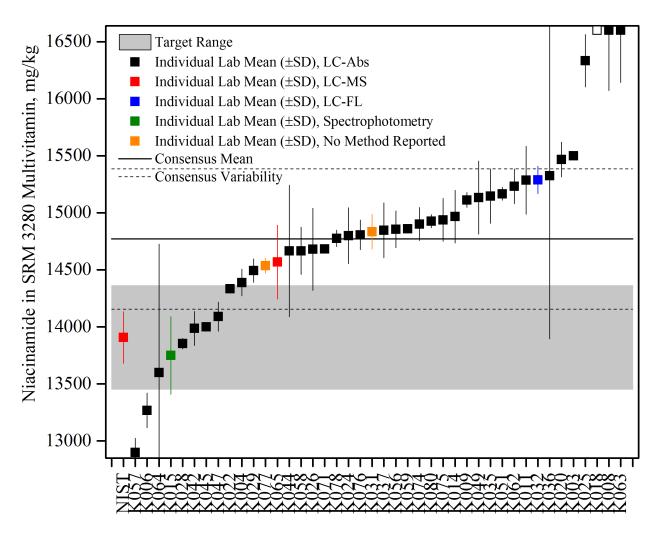

Figure 18. Riboflavin in SRM 3280 Multivitamin/Multielement Tablets (data summary view – sample preparation method). In this view, individual laboratory data are plotted with the individual laboratory standard deviation (error bars). The color of the data point represents the sample preparation procedure employed. The black solid line represents the consensus mean, and the black dotted lines represent the consensus variability calculated as one standard deviation about the consensus mean. The gray shaded region represents the target zone for "acceptable" performance, which encompasses the NIST certified value bounded by twice its uncertainty (U_{95}).

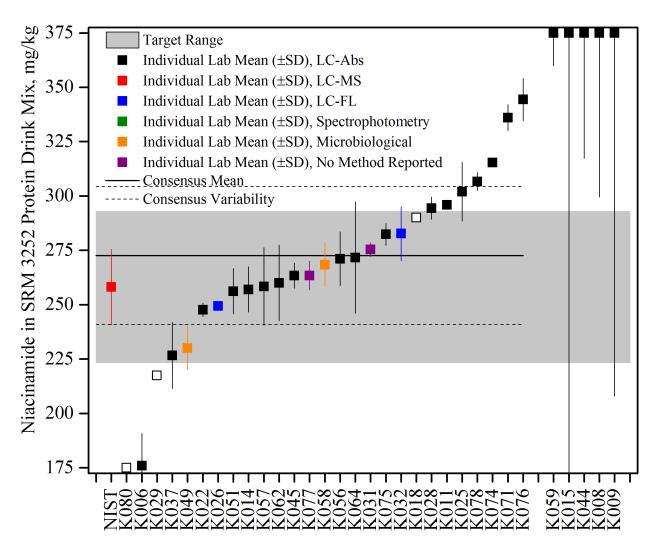

Figure 19. Riboflavin in SRM 3252 Protein Drink Mix (data summary view – sample preparation method). In this view, individual laboratory data are plotted with the individual laboratory standard deviation (error bars). The color of the data point represents the sample preparation procedure employed. The black solid lines represents the consensus means, and the black dotted lines represent the consensus variability calculated as one standard deviation about each consensus mean. The gray shaded region represents the target zone for "acceptable" performance, which encompasses the NIST value determined by ID-LC-MS/MS from duplicate measurements of ten packets, bounded by an estimated uncertainty based on twice the method standard deviation.

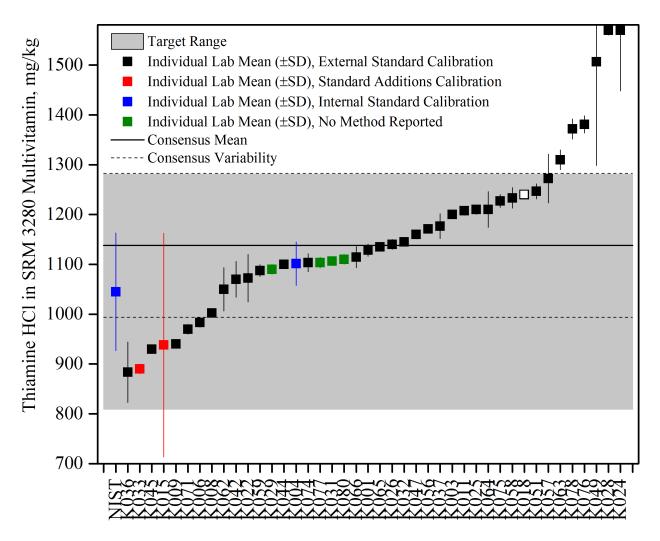

Figure 20. Niacinamide in SRM 3280 Multivitamin/Multielement Tablets (data summary view – sample preparation method). In this view, individual laboratory data are plotted with the individual laboratory standard deviation (error bars). The color of the data point represents the sample preparation procedure employed. The black solid line represents the consensus mean, and the black dotted lines represent the consensus variability calculated as one standard deviation about the consensus mean. The gray shaded region represents the target zone for "acceptable" performance, which encompasses the NIST certified value bounded by twice its uncertainty (U_{95}).

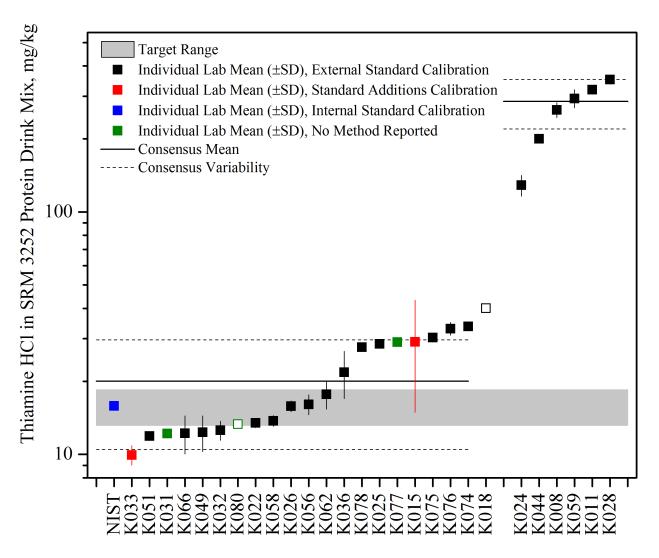

Figure 21. Niacinamide in SRM 3252 Protein Drink Mix (data summary view – sample preparation method). In this view, individual laboratory data are plotted with the individual laboratory standard deviation (error bars). The color of the data point represents the sample preparation procedure employed. The black solid lines represents the consensus means, and the black dotted lines represent the consensus variability calculated as one standard deviation about each consensus mean. The gray shaded region represents the target zone for "acceptable" performance, which encompasses the NIST value determined by ID-LC-MS/MS from duplicate measurements of ten packets, bounded by an estimated uncertainty based on twice the method standard deviation.

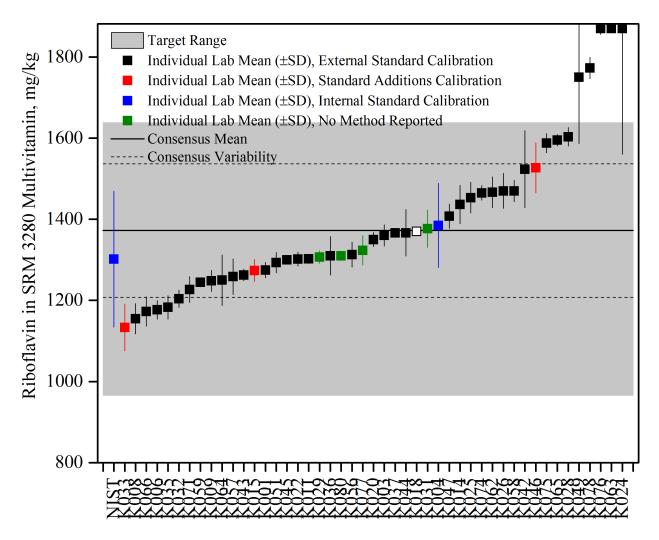

Figure 22. Thiamine hydrochloride in SRM 3280 Multivitamin/Multielement Tablets (data summary view – instrumental method). In this view, individual laboratory data are plotted with the individual laboratory standard deviation (error bars). The color of the data point represents the instrumental method employed. The black solid line represents the consensus mean, and the black dotted lines represent the consensus variability calculated as one standard deviation about the consensus mean. The gray shaded region represents the target zone for "acceptable" performance, which encompasses the NIST certified value bounded by twice its uncertainty (U_{95}).

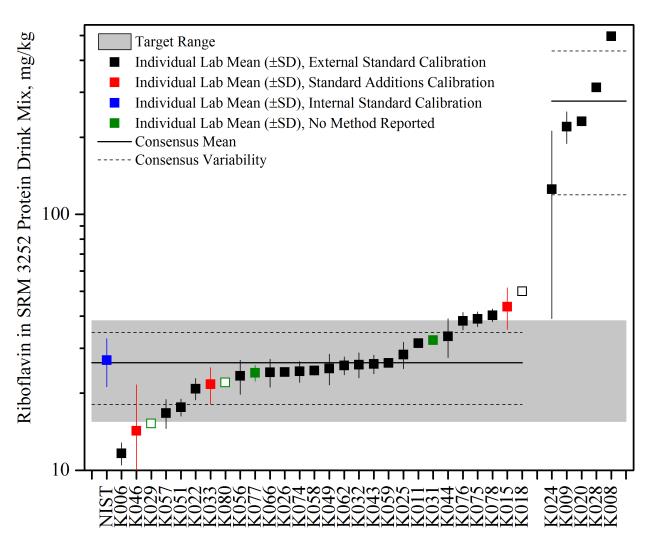

Figure 23. Thiamine hydrochloride in SRM 3252 Protein Drink Mix (data summary view – instrumental method). In this view, individual laboratory data are plotted with the individual laboratory standard deviation (error bars). The color of the data point represents the instrumental method employed. The black solid lines represents the consensus means, and the black dotted lines represent the consensus variability calculated as one standard deviation about each consensus mean. The gray shaded region represents the target zone for "acceptable" performance, which encompasses the NIST value determined by ID-LC-MS/MS from duplicate measurements of ten packets, bounded by an estimated uncertainty based on twice the method standard deviation.

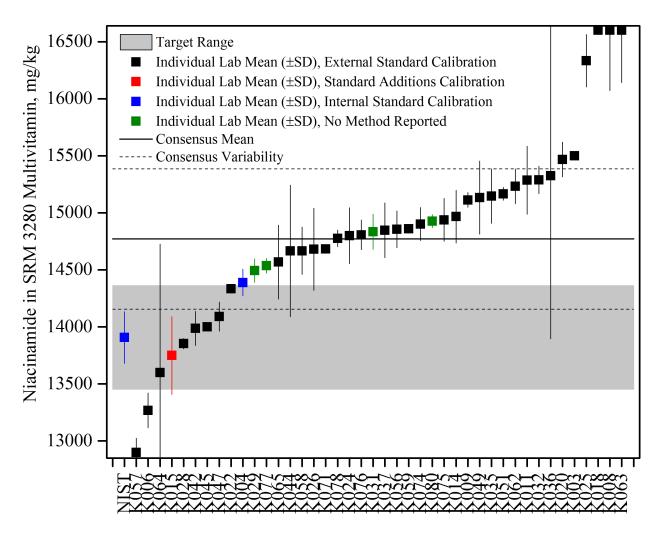

Figure 24. Riboflavin in SRM 3280 Multivitamin/Multielement Tablets (data summary view – instrumental method). In this view, individual laboratory data are plotted with the individual laboratory standard deviation (error bars). The color of the data point represents the instrumental method employed. The black solid line represents the consensus mean, and the black dotted lines represent the consensus variability calculated as one standard deviation about the consensus mean. The gray shaded region represents the target zone for "acceptable" performance, which encompasses the NIST certified value bounded by twice its uncertainty (U_{95}).

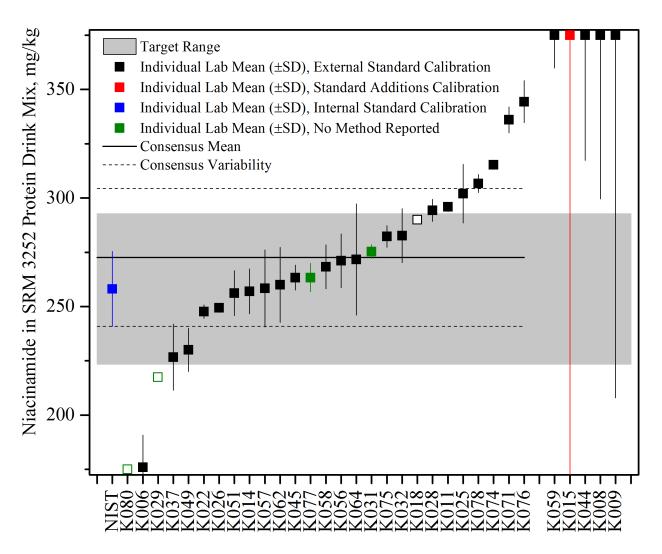

Figure 25. Riboflavin in SRM 3252 Protein Drink Mix (data summary view – instrumental method). In this view, individual laboratory data are plotted with the individual laboratory standard deviation (error bars). The color of the data point represents the instrumental method employed. The black solid lines represents the consensus means, and the black dotted lines represent the consensus variability calculated as one standard deviation about each consensus mean. The gray shaded region represents the target zone for "acceptable" performance, which encompasses the NIST value determined by ID-LC-MS/MS from duplicate measurements of ten packets, bounded by an estimated uncertainty based on twice the method standard deviation.

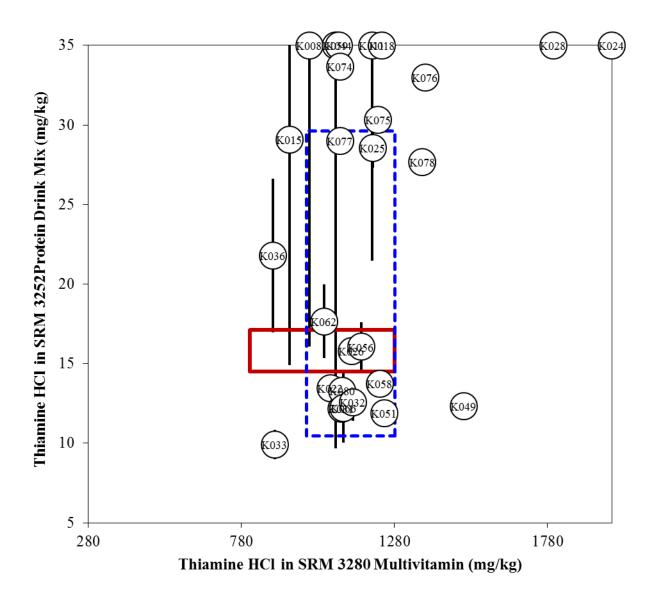

Figure 26. Niacinamide in SRM 3280 Multivitamin/Multielement Tablets (data summary view – instrumental method). In this view, individual laboratory data are plotted with the individual laboratory standard deviation (error bars). The color of the data point represents the instrumental method employed. The black solid line represents the consensus mean, and the black dotted lines represent the consensus variability calculated as one standard deviation about the consensus mean. The gray shaded region represents the target zone for "acceptable" performance, which encompasses the NIST certified value bounded by twice its uncertainty (U_{95}).

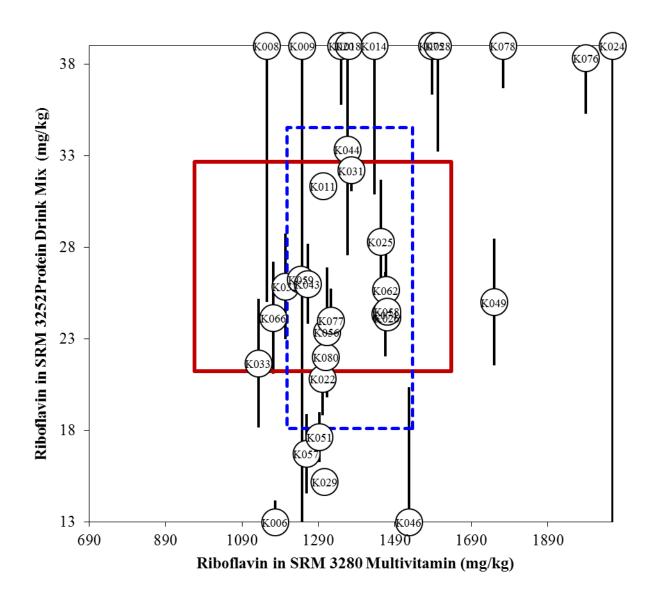

Figure 27. Niacinamide in SRM 3252 Protein Drink Mix (data summary view – instrumental method). In this view, individual laboratory data are plotted with the individual laboratory standard deviation (error bars). The color of the data point represents the instrumental method employed. The black solid lines represents the consensus means, and the black dotted lines represent the consensus variability calculated as one standard deviation about each consensus mean. The gray shaded region represents the target zone for "acceptable" performance, which encompasses the NIST value determined by ID-LC-MS/MS from duplicate measurements of ten packets, bounded by an estimated uncertainty based on twice the method standard deviation.


Figure 28. Thiamine hydrochloride in SRM 3280 Multivitamin/Multielement Tablets (data summary view – calibration method). In this view, individual laboratory data are plotted with the individual laboratory standard deviation (error bars). The color of the data point represents the calibration approach employed. The black solid line represents the consensus mean, and the black dotted lines represent the consensus variability calculated as one standard deviation about the consensus mean. The gray shaded region represents the target zone for "acceptable" performance, which encompasses the NIST certified value bounded by twice its uncertainty (U_{95}).


Figure 29. Thiamine hydrochloride in SRM 3252 Protein Drink Mix (data summary view – calibration method). In this view, individual laboratory data are plotted with the individual laboratory standard deviation (error bars). The color of the data point represents the calibration approach employed. The black solid lines represents the consensus means, and the black dotted lines represent the consensus variability calculated as one standard deviation about each consensus mean. The gray shaded region represents the target zone for "acceptable" performance, which encompasses the NIST value determined by ID-LC-MS/MS from duplicate measurements of ten packets, bounded by an estimated uncertainty based on twice the method standard deviation.


Figure 30. Riboflavin in SRM 3280 Multivitamin/Multielement Tablets (data summary view – calibration method). In this view, individual laboratory data are plotted with the individual laboratory standard deviation (error bars). The color of the data point represents the calibration approach employed. The black solid line represents the consensus mean, and the black dotted lines represent the consensus variability calculated as one standard deviation about the consensus mean. The gray shaded region represents the target zone for "acceptable" performance, which encompasses the NIST certified value bounded by twice its uncertainty (U_{95}).


Figure 31. Riboflavin in SRM 3252 Protein Drink Mix (data summary view – calibration method). In this view, individual laboratory data are plotted with the individual laboratory standard deviation (error bars). The color of the data point represents the calibration approach employed. The black solid lines represents the consensus means, and the black dotted lines represent the consensus variability calculated as one standard deviation about each consensus mean. The gray shaded region represents the target zone for "acceptable" performance, which encompasses the NIST value determined by ID-LC-MS/MS from duplicate measurements of ten packets, bounded by an estimated uncertainty based on twice the method standard deviation.


Figure 32. Niacinamide in SRM 3280 Multivitamin/Multielement Tablets (data summary view – calibration method). In this view, individual laboratory data are plotted with the individual laboratory standard deviation (error bars). The color of the data point represents the calibration approach employed. The black solid line represents the consensus mean, and the black dotted lines represent the consensus variability calculated as one standard deviation about the consensus mean. The gray shaded region represents the target zone for "acceptable" performance, which encompasses the NIST certified value bounded by twice its uncertainty (U_{95}).

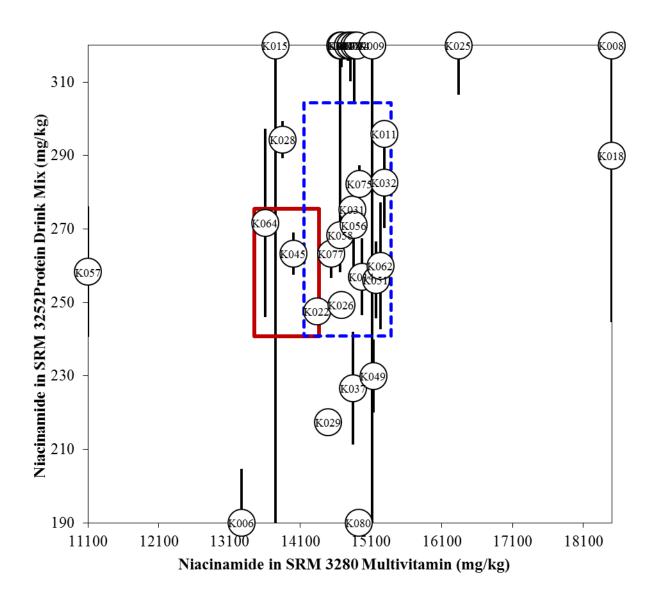

Figure 33. Niacinamide in SRM 3252 Protein Drink Mix (data summary view – calibration method). In this view, individual laboratory data are plotted with the individual laboratory standard deviation (error bars). The color of the data point represents the calibration approach employed. The black solid lines represents the consensus means, and the black dotted lines represent the consensus variability calculated as one standard deviation about each consensus mean. The gray shaded region represents the target zone for "acceptable" performance, which encompasses the NIST value determined by ID-LC-MS/MS from duplicate measurements of ten packets, bounded by an estimated uncertainty based on twice the method standard deviation.

Figure 34. Thiamine HCl in SRM 3280 Multivitamin/Multielement Tablets and SRM 3252 Protein Drink Mix (sample/sample comparison view). In this view, the individual laboratory results for one sample (SRM 3280) are compared to the results for another sample (SRM 3252). The solid red box represents the target zone for the control (x-axis) and unknown sample (y-axis). The dotted blue box represents the consensus zone for the control (x-axis) and the unknown sample (y-axis).

Figure 35. Riboflavin in SRM 3280 Multivitamin/Multielement Tablets and SRM 3252 Protein Drink Mix (sample/sample comparison view). In this view, the individual laboratory results for one sample (SRM 3280) are compared to the results for another sample (SRM 3252). The solid red box represents the target zone for the control (x-axis) and unknown sample (y-axis). The dotted blue box represents the consensus zone for the control (x-axis) and the unknown sample (y-axis).

Figure 36. Niacinamide in SRM 3280 Multivitamin/Multielement Tablets and SRM 3252 Protein Drink Mix (sample/sample comparison view). In this view, the individual laboratory results for one sample (SRM 3280) are compared to the results for another sample (SRM 3252). The solid red box represents the target zone for the control (x-axis) and unknown sample (y-axis). The dotted blue box represents the consensus zone for the control (x-axis) and the unknown sample (y-axis).

VITAMIN K IN DIETARY SUPPLEMENTS

Study Overview

In this study, participants were provided with one NIST SRM, SRM 3280 Multivitamin/ Multielement Tablets, and one NIST candidate SRM, SRM 3252 Protein Drink Mix. Participants were asked to use in-house analytical methods to determine the mass fraction of vitamin K_1 in each of the matrices and report values on an as-received basis as phylloquinone.

Sample Information

Multivitamin/Multielement Tablets. Participants were provided with one bottle containing 30 multivitamin/multielement tablets. Before use, participants were instructed to grind all 30 tablets, mix the resulting powder thoroughly, and use a sample size of at least 0.6 g. Participants were asked to store the material at controlled room temperature, 10 °C to 30 °C, prepare three samples, and report three values from the single bottle provided. Approximate analyte levels were not reported to participants prior to the study. The NIST certified value and uncertainty for vitamin K₁ (phylloquinone) in SRM 3280 was determined by LC/MS following solvent extraction, in combination with data from numerous collaborating laboratories. The certified value and uncertainty are reported in the table below as phylloquinone on a dry-mass basis and after correction for moisture of the material (1.37 %).

	Certified Mass Fraction	Certified Mass Fraction
	in SRM 3280 (mg/g)	in SRM 3280 (mg/g)
<u>Analyte</u>	<u>(dry-mass basis)</u>	(as-received basis)
Phylloquinone (K1)	22.8 ± 2.2	22.5 ± 2.2

Protein Powder. Participants were provided with one packet containing approximately 10 g of protein powder. A mixture of commercially available chocolate protein drink mix powders was blended and heat-sealed inside nitrogen-flushed 4-mil plastic bags, which were heat-sealed inside nitrogen-flushed aluminized plastic bags along with two packets of silica gel. Before use, participants were instructed to thoroughly mix the contents of the packet, and a sample size of at least 0.5 g was recommended. Participants were asked to store the material at controlled room temperature, 10 °C to 30 °C, prepare three samples, and report three values from the single packet provided. Approximate analyte levels were not reported to participants prior to the study. Certified values are not available for this material at the time of the report.

Study Results

- Forty-eight laboratories enrolled in this exercise and received samples. Nineteen laboratories reported results for vitamin K in the multivitamin (40 % participation) and 6 laboratories reported results for vitamin K in the protein powder (15 % participation).
- The consensus mean was within the target range for vitamin K in the multivitamin, but with high variability (43 % RSD).
- The limited results reported for vitamin K in the protein powder were widely varied, with values ranging from 0.020 mg/kg to 1.555 mg/kg (128 % RSD).
- A majority of the laboratories reported using solvent extraction (79 %) as the sample preparation method. Some laboratories also reported using saponification (16 %). One laboratory did not report a sample preparation technique.

- A majority of the laboratories reported using LC-Abs (68 %) as their instrumental method for analysis. LC-Fluorescence (LC-FL) was also reported by some laboratories (21 %). Two laboratories did not report an analytical method.
- External standard was the most popular calibration approach (79 %), with some laboratories reporting using an internal standard calibration approach (11 %). Two laboratories did not report the type of calibration method used.

Technical Recommendations

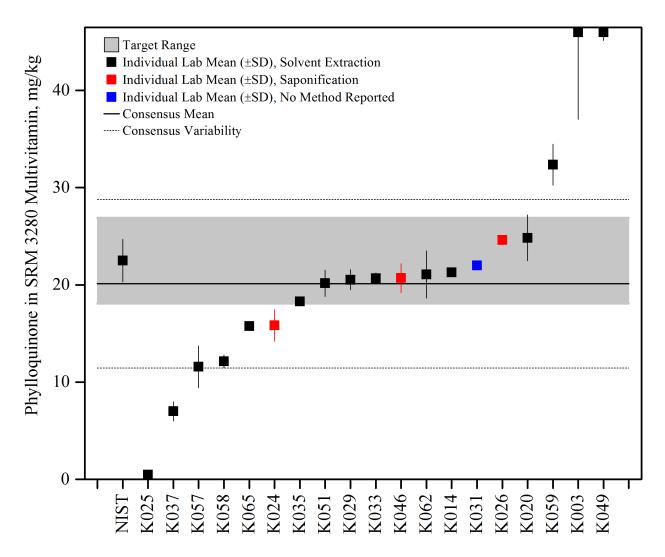
The following recommendations are based on results obtained from the participants in this study.

- Care should be taken to minimize losses during the extraction process, during solvent evaporation, and by carefully washing down container walls with several rinses during each step to ensure complete dissolution of any residues.
- In general, laboratories reporting more vigorous extraction procedures, i.e. those using hexanes and longer extraction times, reported results closer to the target value.
- Since loss by photodecomposition is possible, care should be taken to prevent such losses (use of amber vials, aluminum foil, and/or reduced lighting).
- When using LC-Abs, chromatographic coelutions may cause results to be biased high. This is particularly important if monitoring the absorbance in the UV where many other compounds may also have chromophores. To avoid a high bias, more selective detectors (fluorescence, mass spectrometry) or chromatography with alternate selectivity may be used.
- When making calibration solutions make sure they are of known quality. These may need to be tested before running samples, which may include determination of purity by chromatographic and spectroscopic methods.
- If using an internal standard, the internal standard must behave similarly to the analyte of interest in extraction, chromatographic analysis, and detection.

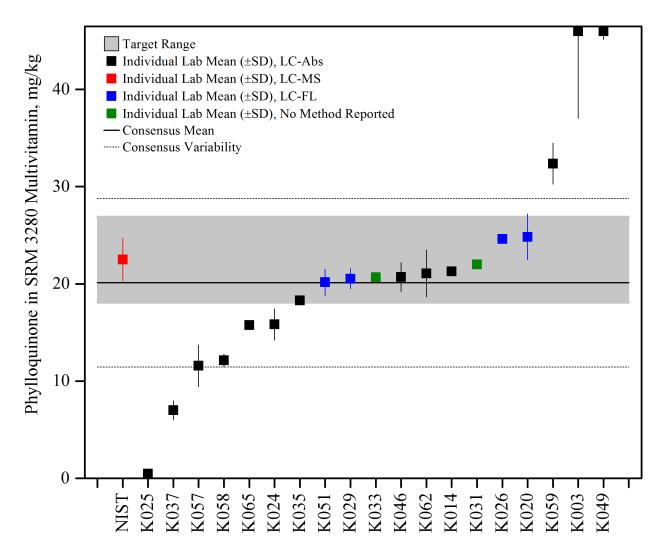
Table 10. Individualized data summary table (NIST) for vitamin K₁ in dietary supplements.

National Institute of Standards & Technology

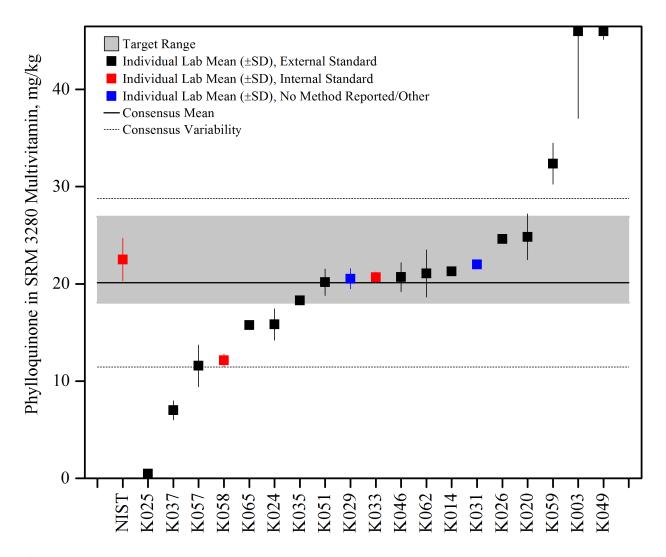
					v								
	Lab Code:	NIST	_	1. Your	Results			2. Co	mmunity F	Results		3. Ta	rget
Analyte	Sample	Units	x _i	$\mathbf{s}_{\mathbf{i}}$	Z _{comm}	Z _{NIST}		Ν	X*	s*		X _{NIST}	U_{95}
Vitamin K1	Multivitamin	mg/kg	22.5	2.2	0.3	0.0		19	20.1	8.7		22.5	2.2
Vitamin K1	Protein Drink	mg/kg						6	0.6	0.7			
		Xi	Mean of	reported v	alues		Ν	Number	of quantitat	ive	X _{NIST}	NIST-ass	essed value
		s _i	Standard	deviation	of reported	values		values re	ported		U_{95}	±95% cor	nfidence interval
		Z _{comm}	Z-score v	with respe	ct to comm	unity	x*	^a Robust m	nean of rep	orted		about the	assessed value
			consensu	S				values				standard o	deviation (s_{NIST})

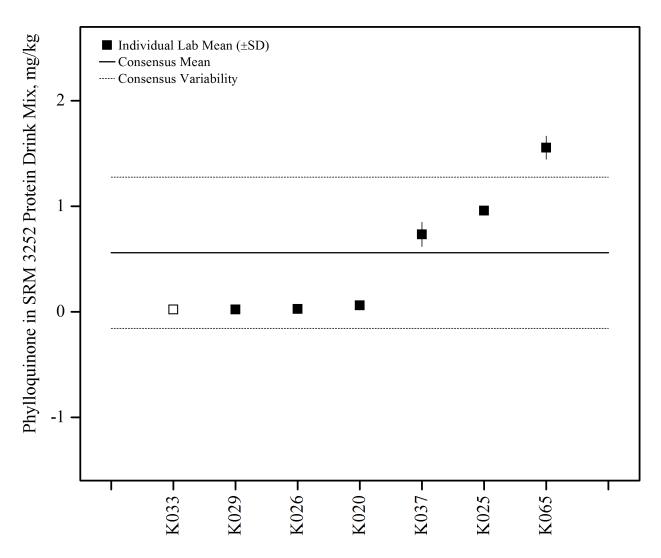

Exercise K - February 2014 - Vitamin K

Z_{NIST} Z-score with respect to NIST value


s* Robust standard deviation

					Phylloquinone							
_		SRM 328	0 Multivitar	nin/M ultie le	ment Tablet	s (mg/kg)	SI	RM 3252 P	rotein Drink	k Mix (mg/kg)		
[Lab	Α	В	С	Avg	SD	Α	В	С	Avg	SD	
	NIST				22.5	2.2						
	K001											
	K002											
	K003	70.3	71.2	55.2	65.6	9.0						
	K006											
	K010											
	K014	21.3	21.4	21.2	21.3	0.1						
	K016											
	K017											
	K019											
	K020	27.5	23.0	24.0	24.8	2.4	0.049	0.088	0.042	0.060	0.025	
	K024	17.2	16.3	14.0	15.8	1.6						
	K025	0.4	0.5	0.5	0.5	0.0	0.950	0.986	0.935	0.957	0.026	
	K026	24.8	24.6	24.4	24.6	0.2	0.027	0.026	0.028	0.027	0.001	
	K028											
	K029	21.6	20.5	19.5	20.5	1.1	0.022	0.023		0.023	0.001	
	K031	22.0	21.7	22.3	22.0	0.3						
	K033	20.0	21.0	21.0	20.7	0.6	0.020			0.020		
	K034											
	K035	18.3	17.9	18.7	18.3	0.4						
	K037	8.0	7.0	6.0	7.0	1.0	0.800	0.800	0.600	0.733	0.115	
ts.	K040											
esul	K042											
al R	K043											
iduŝ	K045											
Individual Results	K046	19.6	22.4	20.1	20.7	1.5						
1	K047											
	K048											
	K049	98.0	99.3	99.6	99.0	0.9						
	K051	21.0	18.6	20.9	20.2	1.4						
	K056											
	K057	13.3	12.3	9.2	11.6	2.2						
	K058	11.9	12.9	11.7	12.1	0.7						
	K059	31.4	30.9	34.8	32.4	2.1						
	K062	20.6	18.9	23.7	21.1	2.4						
	K063											
	K064											
	K065	15.5	16.1	15.7	15.8	0.3	1.661	1.563	1.441	1.555	0.110	
	K066											
	K068											
	K069											
	K071											
	K073											
	K074											
	K075											
	K076 K077											
	K077											
	K079											
ity		Consensus M			20.1		Consensus			0.559		
ults			standard Devi	iation	8.7			Standard De	viation	0.717		
Community Results		Maximum Minimum			99.0 0.5		Maximum Minimum			1.555 0.020		
Ŭ		N			19		N			6		
		11			17		11			U		


Table 11. Data summary table for vitamin K_1 in dietary supplements.


Figure 37. Phylloquinone in SRM 3280 Multivitamin/Multielement Tablets (data summary view – sample preparation method). In this view, individual laboratory data are plotted with the individual laboratory standard deviation (error bars). The color of the data point represents the sample preparation procedure employed. The black solid line represents the consensus mean, and the black dotted lines represent the consensus variability calculated as one standard deviation about the consensus mean. The gray shaded region represents the target zone for "acceptable" performance, which encompasses the NIST certified value bounded by twice its uncertainty (U_{95}).

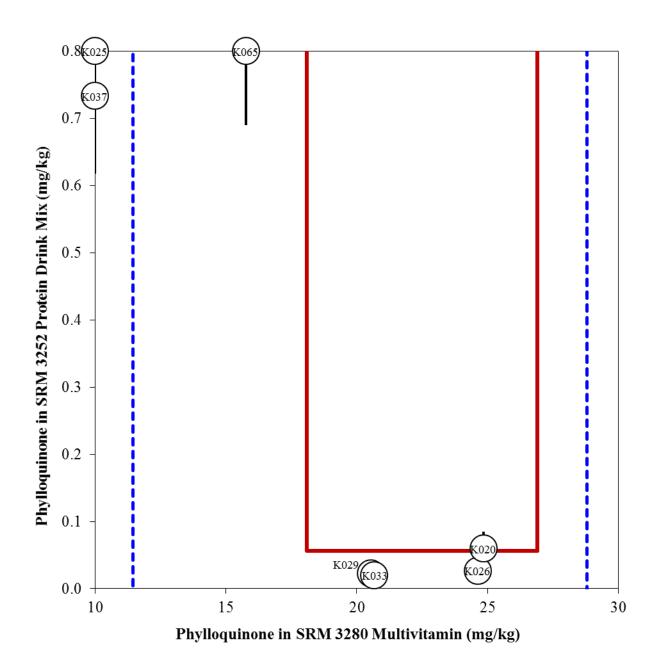

Figure 38. Phylloquinone in SRM 3280 Multivitamin/Multielement Tablets (data summary view – instrumental method). In this view, individual laboratory data are plotted with the individual laboratory standard deviation (error bars). The color of the data point represents the instrumental method employed. The black solid line represents the consensus mean, and the black dotted lines represent the consensus variability calculated as one standard deviation about the consensus mean. The gray shaded region represents the target zone for "acceptable" performance, which encompasses the NIST certified value bounded by twice its uncertainty (U_{95}).

Figure 39. Phylloquinone in SRM 3280 Multivitamin/Multielement Tablets (data summary view – calibration method). In this view, individual laboratory data are plotted with the individual laboratory standard deviation (error bars). The color of the data point represents the calibration approach employed. The black solid line represents the consensus mean, and the black dotted lines represent the consensus variability calculated as one standard deviation about the consensus mean. The gray shaded region represents the target zone for "acceptable" performance, which encompasses the NIST certified value bounded by twice its uncertainty (U_{95}).

Figure 40. Phylloquinone in SRM 3252 Protein Drink Mix (data summary view). In this view, individual laboratory data are plotted with the individual laboratory standard deviation (error bars). The black solid line represents the consensus mean, and the black dotted lines represent the consensus variability calculated as one standard deviation about the consensus mean.

Figure 41. Phylloquinone in SRM 3280 Multivitamin/Multielement Tablets and SRM 3252 Protein Drink Mix (sample/sample comparison view). In this view, the individual laboratory results for one sample (SRM 3280) are compared to the results for a second sample (SRM 3252). The solid red box represents the target zone for the control (x-axis). The dotted blue lines represents the bounds of the consensus zone for the control (x-axis).

ACRYLAMIDE IN CHOCOLATE AND COFFEE

Study Overview

In this study, participants were provided with one NIST SRM, SRM 2384 Baking Chocolate, and a sample of whole roasted coffee beans. Participants were asked to use in-house analytical methods to determine the mass fraction of acrylamide in each of the matrices and report values on an as-received basis.

Sample Information

Baking Chocolate. Participants were provided with one bar containing 91 g of baking chocolate prepared from 100 % cocoa beans from a single production lot. Participants were instructed to use a sample size of at least 10 g. Participants were asked to store the material under controlled room temperature, 10 °C to 30 °C, and prepare three samples and report three values from the single bar provided. Approximate analyte levels were not reported to participants prior to the study. The NIST reference value and uncertainty for acrylamide, determined by collaborating laboratories, are provided in the table below.

	Reference Mass Fraction
<u>Analyte</u>	<u>in SRM 2384 (ng/g)</u>
Acrylamide	138 ± 17

Coffee. Participants were provided with one packet containing 100 g of roasted coffee beans. Before use, participants were instructed to grind and thoroughly mix the contents of the packet, and a sample size of at least 5 g was recommended. Participants were asked to store the material under controlled room temperature, 10 °C to 30 °C, and prepare three samples and report three values from the single packet provided. Approximate analyte levels were not reported to participants prior to the study. The NIST target value for acrylamide determined by collaborating laboratories, and uncertainty (estimated as twice the standard deviation from 5 laboratories), are provided in the table below.

Study Results

- Nine laboratories enrolled in this exercise and received samples. Four laboratories reported results for acrylamide in the chocolate (44 % participation), and three laboratories reported results for acrylamide in the coffee (33 % participation).
- Limited conclusions can be drawn about the quality of the collaborative data from this study because very few laboratories returned results.
 - The consensus mean for acrylamide was within the target range for the chocolate sample, but with very high variability (111 % RSD).
 - The consensus mean for acrylamide was below the target range for the coffee sample, with high variability (46 % RSD).

- Two of the four laboratories reported using derivatization following sample extraction (50 %). One laboratory reported using only solvent extraction (25 %), and one laboratory reported using QuEChERS for sample cleanup (25 %).
- Two laboratories reported using gas chromatography with mass spectrometric detection (GC-MS) as their analytical method for analysis (50 %), and two laboratories reported using LC-MS or LC-MS/MS (50 %).
- Two laboratories reported using an external standard approach to quantitation (50 %), and two laboratories reported using an internal standard approach (50 %).

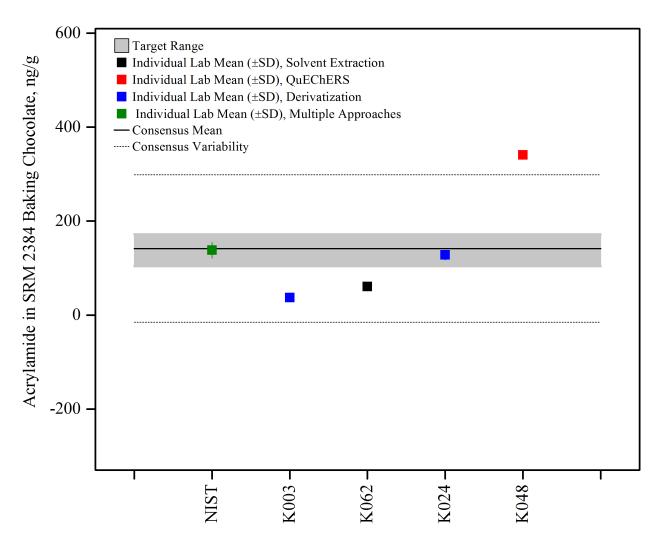
Technical Recommendations

The following recommendations are based on results obtained from the participants in this study.

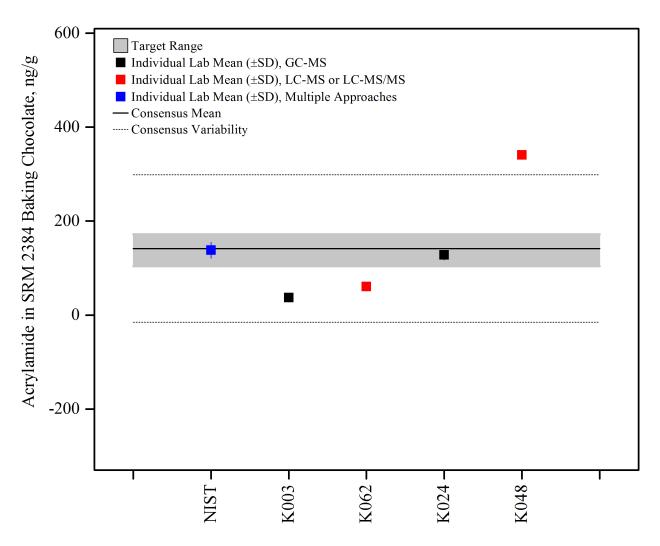
- Because the data for this study was very limited (only 3 or 4 laboratories reporting data), drawing extensive technical conclusions is difficult. Similarly, the high level of between-laboratory variability may be exaggerated as a result of the low number of participants.
- No trends were identified indicating that any particular sample preparation method or instrumental technique provided more accurate results than another.

Table 12. Individualized data summary table (NIST) for acrylamide in chocolate and coffee.

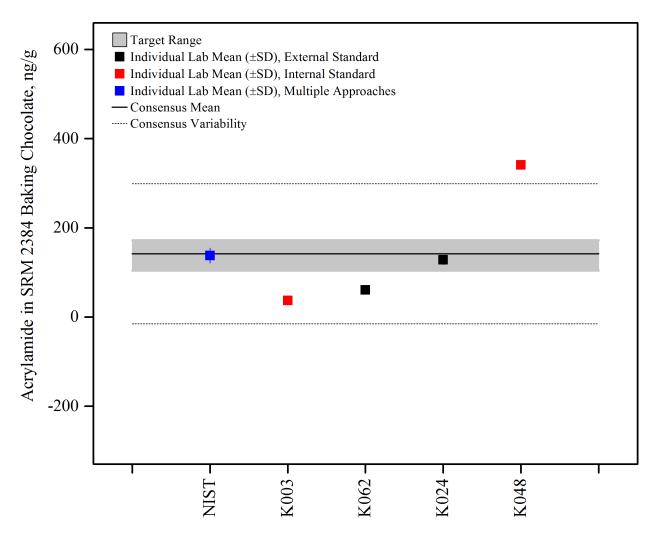
National Institute of Standards & Technology

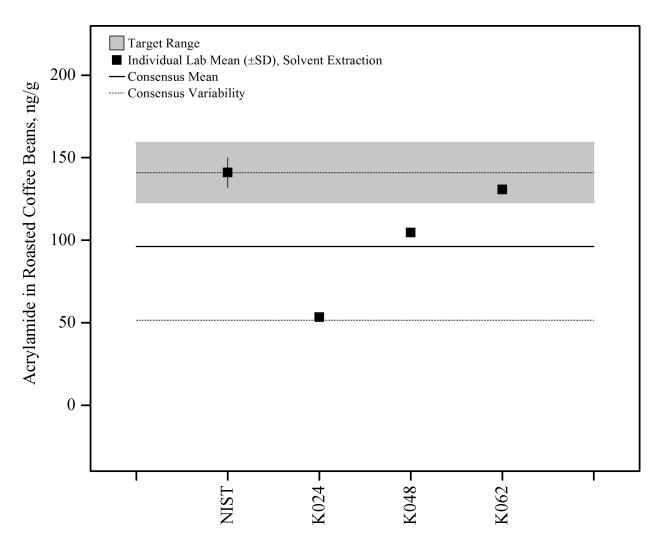

	Lab Code:	NIST		Results		2. Co	mmunity I	3. Target			
Analyte	Sample	Units	X _i	s _i	Z _{comm}	Z _{NIST}	Ν	x*	s*	X _{NIST}	U_{95}
Acrylamide	Chocolate	ng/g	138	17	0.0	0.0	4	142	157	138	17
Acrylamide	Coffee	ng/g	141	9	1.0	0.0	3	96	45	141	9

Exercise K - February 2014 - Acrylamide


X _i	Mean of reported values	N	Number of quantitative
$\mathbf{s}_{\mathbf{i}}$	Standard deviation of reported values		values reported
Z _{comm}	Z-score with respect to community	х*	Robust mean of reported
	consensus		values
Z _{NIST}	Z-score with respect to NIST value	s*	Robust standard deviation

						Acrylamide							
_		5	SRM 2384	Baking Cho	colate (ng/g)		Co	ffee (ng/g)				
	Lab	Α	В	С	Avg	SD	Α	В	С	Avg	SD		
	NIST				138	17				141	9		
	K002												
Individual Results	K003	34	38	39	37	3							
tesı	K010												
al F	K024	140	121	123	128	10	54	50	56	53	3		
idus	K040												
livi	K048	339	343	341	341	2	107	104	103	105	2		
Ind	K055												
	K061												
	K062	60	63	59	61	2	131	132	129	131	2		
ty		Consensus	Mean		142		Consensus Mea	ın		96			
uni lts		Consensus	Standard De	viation	157		Consensus Stan	dard Deviation		45			
ommuni Results		Maximum			341		Maximum			131			
Community Results		Minimum			37		Minimum			53			
`		Ν			4		Ν			3			


Table 13.	Data summary	table for acr	vlamide in	chocolate	and coffee.


Figure 42. Acrylamide in SRM 2384 Baking Chocolate (data summary view – sample preparation method). In this view, individual laboratory data are plotted with the individual laboratory standard deviation (error bars). The color of the data point represents the sample preparation method employed. The black solid line represents the consensus mean, and the black dotted lines represent the consensus variability calculated as one standard deviation about the consensus mean. The gray shaded region represents the target zone for "acceptable" performance, which encompasses the NIST reference value bounded by twice its uncertainty (U_{95}).

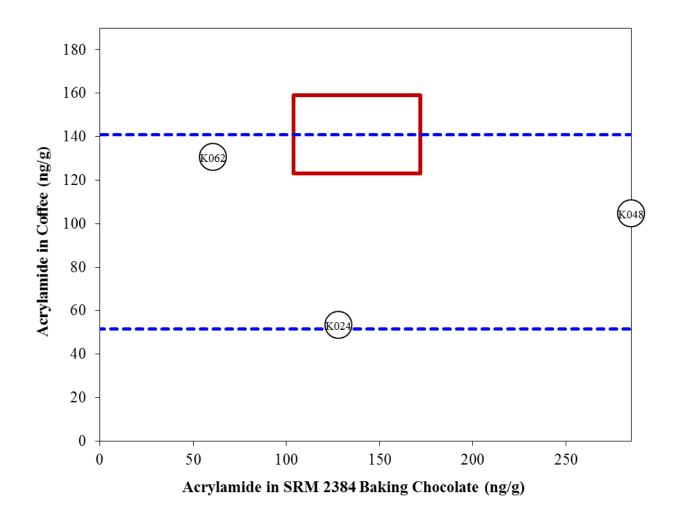

Figure 43. Acrylamide in SRM 2384 Baking Chocolate (data summary view – instrumental method). In this view, individual laboratory data are plotted with the individual laboratory standard deviation (error bars). The color of the data point represents the instrumental method employed. The black solid line represents the consensus mean, and the black dotted lines represent the consensus variability calculated as one standard deviation about the consensus mean. The gray shaded region represents the target zone for "acceptable" performance, which encompasses the NIST reference value bounded by twice its uncertainty (U_{95}).

Figure 44. Acrylamide in SRM 2384 Baking Chocolate (data summary view – calibration method). In this view, individual laboratory data are plotted with the individual laboratory standard deviation (error bars). The color of the data point represents the calibration approach employed. The black solid line represents the consensus mean, and the black dotted lines represent the consensus variability calculated as one standard deviation about the consensus mean. The gray shaded region represents the target zone for "acceptable" performance, which encompasses the NIST reference value bounded by twice its uncertainty (U_{95}).

Figure 45. Acrylamide in roasted coffee beans (data summary view). In this view, individual laboratory data are plotted with the individual laboratory standard deviation (error bars). The black solid line represents the consensus mean, and the black dotted lines represent the consensus variability calculated as one standard deviation about the consensus mean. The gray shaded region represents the target zone for "acceptable" performance, which encompasses the NIST estimated value (based on data from 5 collaborating laboratories) bounded by twice its uncertainty (twice the standard deviation of the data from collaborating laboratories).

Figure 46. Acrylamide in SRM 2384 Baking Chocolate and roasted coffee beans (sample/sample comparison view). In this view, the individual laboratory results for one sample (SRM 2384) are compared to the results for a second sample (roasted coffee beans). The solid red box represents the target zone for the control (x-axis). The dotted blue box represents the consensus zone for the control (x-axis) and the unknown sample (y-axis).

PHYTOSTEROLS IN SAW PALMETTO

Study Overview

In this study, participants were provided with two NIST SRMs, SRM 3250 *Serenoa repens* Fruit and SRM 3251 *Serenoa repens* Extract. Participants were asked to use in-house analytical methods to determine the mass fractions of phytosterols (campesterol, β -sitosterol, and stigmasterol) in each of the matrices and report values on an as-received basis.

Sample Information

Saw Palmetto Fruit. Participants were provided with one packet containing 6 g of Serenoa repens (saw palmetto) berries that had been freeze-dried, ground, and heat-sealed inside nitrogen-flushed 4-mil polyethylene bags, which were then sealed inside aluminized plastic bags with 2 packets of silica gel. Before use, participants were instructed to mix each packet thoroughly and a sample size of at least 0.5 g was recommended. Participants were asked to store the material at room temperature, 10 °C to 30 °C, and to prepare three samples, and report three measurements of each analyte from the single packet provided. Approximate analyte levels were not reported to participants prior to the study. The NIST certified values and uncertainties for phytosterols in SRM 3250 were determined using LC-MS following solvent extraction and basic hydrolysis, and by gas chromatography with flame ionization detection (GC-FID) following solvent extraction, basic hydrolysis, and after correction for moisture of the material (6.42 %).

	Certified Mass Fraction	Certified Mass Fraction
	in SRM 3250 (mg/g)	in SRM 3250 (mg/g)
<u>Analyte</u>	<u>(dry-mass basis)</u>	(as-received basis)
Campesterol	0.1175 ± 0.0025	0.1100 ± 0.0023
β-sitosterol	0.454 ± 0.018	$0.425 \hspace{0.2cm} \pm \hspace{0.2cm} 0.017$
Stigmasterol	0.0477 ± 0.0020	0.0446 ± 0.0019

Saw Palmetto Extract. Participants were provided with three ampoules, each containing 1 mL of a carbon dioxide extract of *Serenoa repens* (saw palmetto) berries. Before use, participants were instructed to mix each ampoule thoroughly and a sample size of at least 125 mg was recommended. Participants were asked to store the material at room temperature, 10 °C to 30 °C, and to prepare one sample and report one measurement of each analyte from each ampoule provided. Approximate analyte levels were not reported to participants prior to the study. The NIST certified values and uncertainties for phytosterols in SRM 3251 were determined using LC-MS following solvent extraction and basic hydrolysis, and by GC-FID following solvent extraction, basic hydrolysis, and uncertainties are reported in the table below.

	Certified Mass Fraction
	in SRM 3251 (mg/g)
Analyte	(as-received basis)
Campesterol	$0.533 ~\pm~ 0.031$
β-sitosterol	$1.666 ~\pm~ 0.064$
Stigmasterol	$0.247 ~\pm~ 0.040$

Study Results

- Twenty-six laboratories enrolled in this exercise and received samples. Ten laboratories reported data for phytosterols in the saw palmetto fruit (39 % participation), and eleven laboratories reported data for phytosterols in the saw palmetto extract (42 % participation).
- The consensus means were within the target ranges with acceptable between-laboratory variability for all three phytosterols in the saw palmetto extract (less than 15 % RSD for all analytes).
- The consensus mean for stigmasterol in the saw palmetto fruit was equivalent to the minimum of the target range, but the between-laboratory variability was high (30 % RSD).
- The consensus means were below the target ranges for campesterol and β -sitosterol in the saw palmetto fruit with acceptable between-laboratory variability (18 % and 12 % RSD, respectively).
- Laboratories reported using either solvent extraction with hydrolysis (37 %) or solvent extraction with hydrolysis and derivatization (55 %) as the sample preparation method. One laboratory did not report a sample preparation technique.
- A majority of the laboratories reported using GC-FID (82 %) for phytosterols determination. One laboratory reported using GC-MS (9 %) as their instrumental method, and one laboratory did not report the type of analytical method used.
- Laboratories reported using both external standard and internal standard approaches to quantitation of phytosterols (36 % and 55 %, respectively). One laboratory did not report the calibration approach used.

Technical Recommendations

The following recommendations are based on results obtained from the participants in this study.

- The low results for campesterol and β -sitosterol in the saw palmetto fruit are consistent with the results from Exercise H, conducted in 2012 (**Figure 68** and **Figure 69**). More details on Exercise H can be found in the final report, available at http://dx.doi.org/10.6028/NIST.IR.7903.
 - As shown in **Figure 68** and **Figure 69**, the consensus means from Exercise H and Exercise K are nearly identical. Between-laboratory precision has improved for both analytes. For both analytes in both exercises, the consensus means are below the target ranges.
 - The low results could be caused by incomplete extraction of these phytosterols from the saw palmetto berry matrix. All commercial saw palmetto products are sold as extracts, so laboratory protocols may not be developed to fully extract phytosterols from the plant material. In addition, many methods for phytosterols that involve the use of an internal standard suggest its addition after the extraction steps are complete. Addition of the internal standard this late will not compensate for extraction

inefficiencies. If an internal standard approach is used, it is best to add the internal standard at the earliest possible point (i.e., prior to extraction, saponification, and/or derivatization).

- The low results could also indicate instability of these analytes in this matrix. NIST will investigate this possible instability further.
- A slight calibration error is apparent in the sample/sample comparison graphs. Calibrant materials should be subjected to the same preparation procedure as the samples (derivatization, hydrolysis, etc.) to avoid calibration bias.

Table 14. Individualized data summary table (NIST) for phytosterols in saw palmetto dietary supplements.

National Institute of Standards & Technology

	Lab Code:	NIST		1. Your	Results		2. Co	mmunity I	Results	3. Target	
Analyte	Sample	Units	x _i	$\mathbf{s}_{\mathbf{i}}$	Z _{comm}	Z _{NIST}	Ν	x*	s*	X _{NIST}	U_{95}
Campesterol	SP Fruit	mg/g	0.110	0.002	1.8	0.0	10	0.083	0.015	0.110	0.002
Campesterol	SP Extract	mg/g	0.533	0.031	-0.4	0.0	11	0.568	0.078	0.533	0.031
β-sitosterol	SP Fruit	mg/g	0.425	0.017	4.0	0.0	10	0.285	0.035	0.425	0.017
β-sitosterol	SP Extract	mg/g	1.67	0.06	0.4	0.0	11	1.60	0.16	1.67	0.06
Stigmasterol	SP Fruit	mg/g	0.0446	0.0019	0.3	0.0	10	0.0410	0.0123	0.0446	0.0019
Stigmasterol	SP Extract	mg/g	0.247	0.040	-0.2	0.0	11	0.254	0.038	0.247	0.040

Exercise K - February 2014 - Phytosterols

 s_i Standard deviation of reported values

Z_{comm} Z-score with respect to community consensus

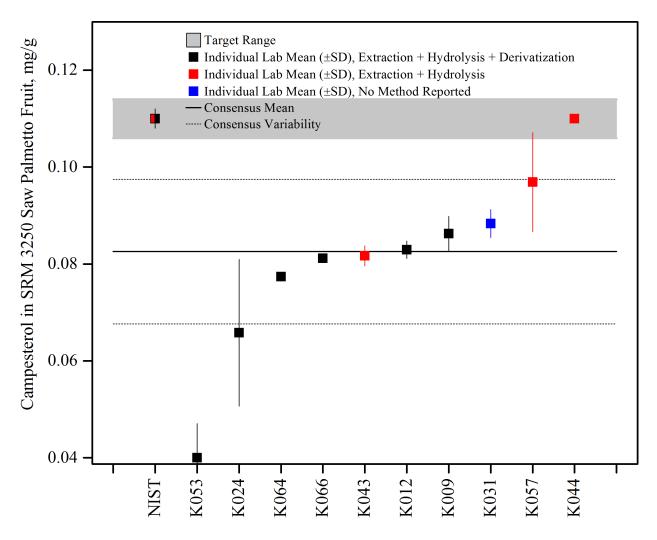
Z_{NIST} Z-score with respect to NIST value

values reported x* Robust mean of reported

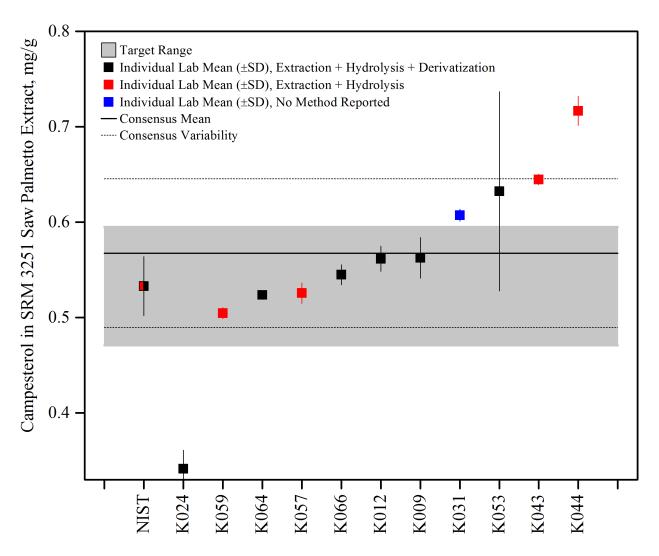
- values
- s* Robust standard deviation

 $U_{95} \pm 95\%$ confidence interval about the assessed value or standard deviation (s_{NIST})

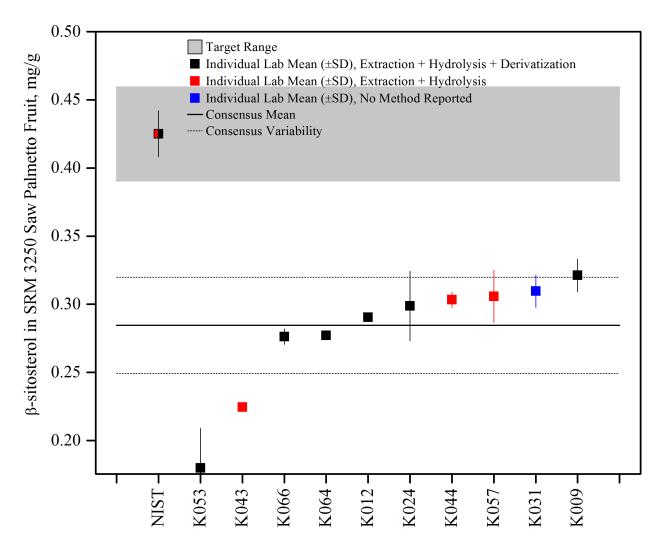
						Camp	esterol					
		SI	RM 3250 S	aw Palmette	o Fruit (mg/	g)	SR	M 3251 Sa	w Palmetto	Extract (mg	/g)	
_	Lab	Α	В	С	Avg	SD	Α	В	С	Avg	SD	
	NIST				0.1100	0.0020				0.533	0.031	
	K002											
	K006											
	K008											
	K009	0.0904	0.0841	0.0842	0.0862	0.0036	0.576	0.574	0.538	0.563	0.021	
	K010											
	K012	0.0850	0.0822	0.0816	0.0829	0.0018	0.571	0.568	0.547	0.562	0.013	
	K014											
	K015											
	K017											
	K019											
ults	K021											
Res	K024	0.0520	0.0634	0.0820	0.0658	0.0151	0.362	0.339	0.324	0.342	0.019	
ual	K031	0.0850	0.0900	0.0900	0.0883	0.0029	0.612	0.610	0.600	0.607	0.006	
Individual Results	K040											
Ind	K043	0.0810	0.0840	0.0800	0.0817	0.0021	0.650	0.645	0.639	0.645	0.006	
	K044	0.1100	0.1100	0.1100	0.1100	0.0000	0.720	0.730	0.700	0.717	0.015	
	K045											
	K053	0.0452	0.0316	0.0420	0.0396	0.0071	0.685	0.700	0.512	0.632	0.104	
	K055											
	K057	0.0910	0.1087	0.0909	0.0969	0.0102	0.538	0.523	0.517	0.526	0.011	
	K059						0.504	0.499	0.511	0.505	0.006	
	K062											
	K064	0.0771	0.0777		0.0774	0.0004	0.525	0.524	0.522	0.524	0.001	
	K066	0.0810	0.0813	0.0812	0.0812	0.0002	0.537	0.541	0.557	0.545	0.011	
	K067											
	K070											
x		Consensus	Mean		0.0826		Consensus	Mean		0.568		
umit lts		Consensus	Standard De	viation	0.0145		Consensus	Standard De	viation	0.078		
Community Results		Maximum			0.1100		Maximum			0.717		
		Minimum			0.0396		Minimum			0.342		
		Ν			10		Ν			11		

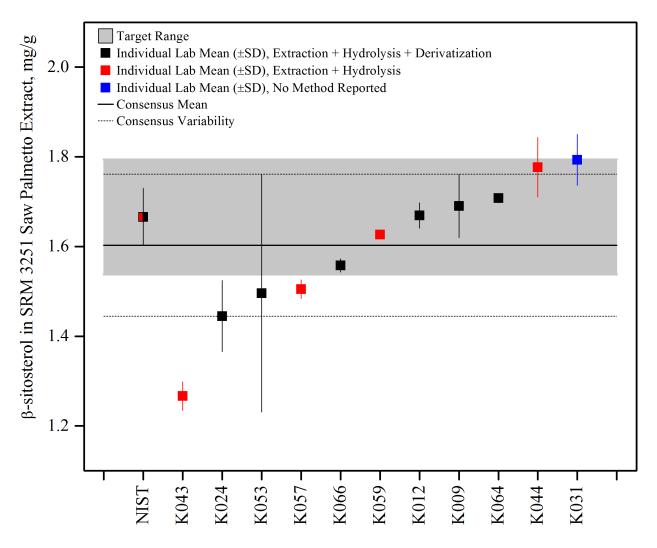

 Table 15. Data summary table for campesterol in saw palmetto dietary supplements.

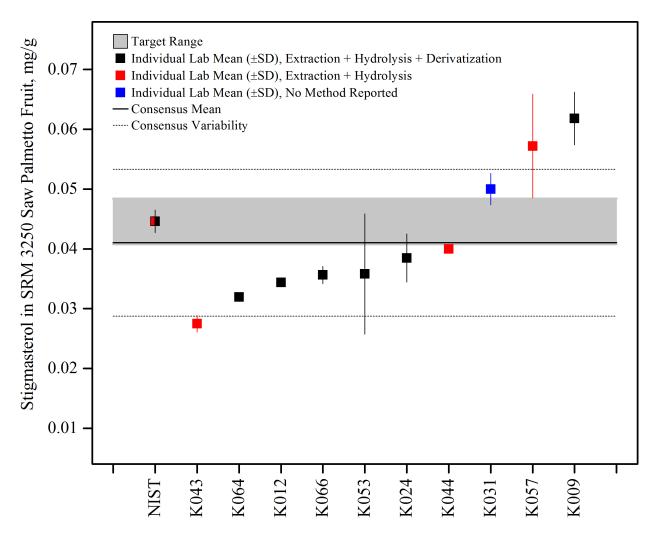
						β-sit	osterol					
		S	RM 3250 S	aw Palmett	o Fruit (mg/	g)	SR	M 3251 Sa	w Palmetto	Extract (mg	/g)	
	Lab	Α	В	С	Avg	SD	Α	В	С	Avg	SD	
	NIST				0.425	0.017				1.67	0.06	
	K002											
	K006											
	K008											
	K009	0.334	0.320	0.310	0.321	0.012	1.74	1.72	1.61	1.69	0.07	
	K010											
	K012	0.291	0.287	0.294	0.290	0.003	1.69	1.68	1.64	1.67	0.03	
	K014											
	K015											
	K017											
	K019											
sults	K021											
Res	K024	0.272	0.323	0.302	0.299	0.026	1.53	1.42	1.38	1.44	0.08	
lual	K031	0.296	0.318	0.315	0.310	0.012	1.84	1.81	1.73	1.79	0.06	
Individual Results	K040											
Ind	K043	0.225	0.226	0.223	0.225	0.002	1.29	1.28	1.23	1.27	0.03	
	K044	0.300	0.300	0.310	0.303	0.006	1.81	1.82	1.70	1.78	0.07	
	K045											
	K053	0.203	0.147	0.188	0.179	0.029	1.64	1.66	1.19	1.50	0.26	
	K055											
	K057	0.295	0.328	0.295	0.306	0.019	1.52	1.52	1.48	1.50	0.02	
	K059						1.62	1.62	1.64	1.63	0.01	
	K062											
	K064	0.277	0.277		0.277	0.000	1.70	1.71	1.71	1.71	0.01	
	K066	0.271	0.282	0.275	0.276	0.006	1.55	1.55	1.57	1.56	0.01	
	K067											
	K070											
Ń		Consensus	Mean		0.285		Consensus	Mean		1.60		
unit Its		Consensus	Standard De	viation	0.035		Consensus	Standard De	viation	0.16		
Community Results		Maximum			0.321		Maximum			1.79		
		Minimum			0.179		Minimum			1.27		
		Ν			10		Ν			11		

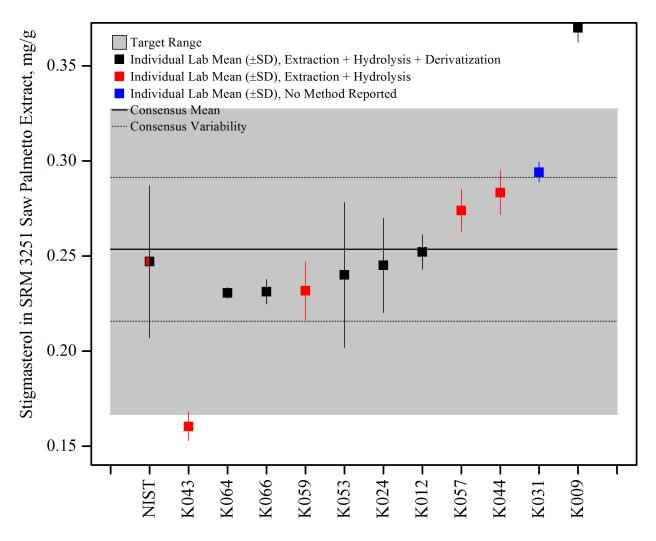

Table 16. Data summary table for β -sitosterol in saw palmetto dietary supplements.

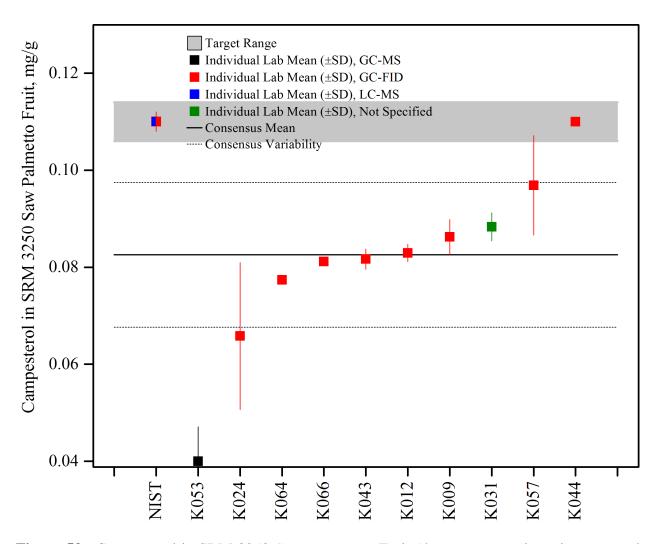
						Stigm	asterol				
		S	RM 3250 S	aw Palmette	o Fruit (mg/	g)	SR	M 3251 Sa	w Palmetto	Extract (mg	/g)
	Lab	Α	В	С	Avg	SD	Α	В	С	Avg	SD
	NIST				0.0446	0.0019				0.247	0.040
	K002										
	K006										
	K008										
	K009	0.0669	0.0591	0.0594	0.0618	0.0044	0.390	0.388	0.402	0.393	0.008
	K010										
	K012	0.0342	0.0339	0.0351	0.0344	0.0006	0.253	0.261	0.243	0.252	0.009
	K014										
	K015										
	K017										
	K019										
sults	K021										
Res	K024	0.0345	0.0426	0.0383	0.0385	0.0041	0.257	0.262	0.217	0.245	0.025
lual	K031	0.0470	0.0520	0.0510	0.0500	0.0026	0.298	0.296	0.288	0.294	0.005
Individual Results	K040										
Ind	K043	0.0291	0.0266	0.0268	0.0275	0.0014	0.168	0.160	0.153	0.160	0.008
	K044	0.0400	0.0400	0.0400	0.0400	0.0000	0.290	0.290	0.270	0.283	0.012
	K045										
	K053	0.0396	0.0244	0.0434	0.0358	0.0101	0.253	0.270	0.197	0.240	0.038
	K055										
	K057	0.0546	0.0669	0.0501	0.0572	0.0087	0.287	0.269	0.266	0.274	0.011
	K059						0.245	0.235	0.215	0.232	0.015
	K062										
	K064	0.0319	0.0320		0.0320	0.0001	0.234	0.229	0.229	0.231	0.003
	K066	0.0370	0.0358	0.0341	0.0356	0.0015	0.235	0.224	0.235	0.231	0.006
	K067										
	K070										
Ŷ		Consensus	Mean		0.0410		Consensus	Mean		0.254	
unit Its		Consensus	Standard De	viation	0.0123		Consensus	Standard De	viation	0.037	
Community Results		Maximum			0.0618		Maximum			0.393	
		Minimum			0.0275		Minimum			0.160	
		Ν			10		Ν			11	

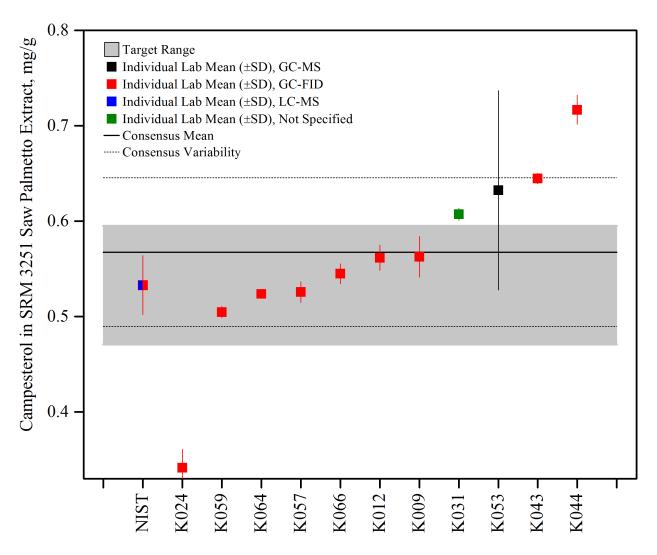

 Table 17. Data summary table for stigmasterol in saw palmetto dietary supplements.

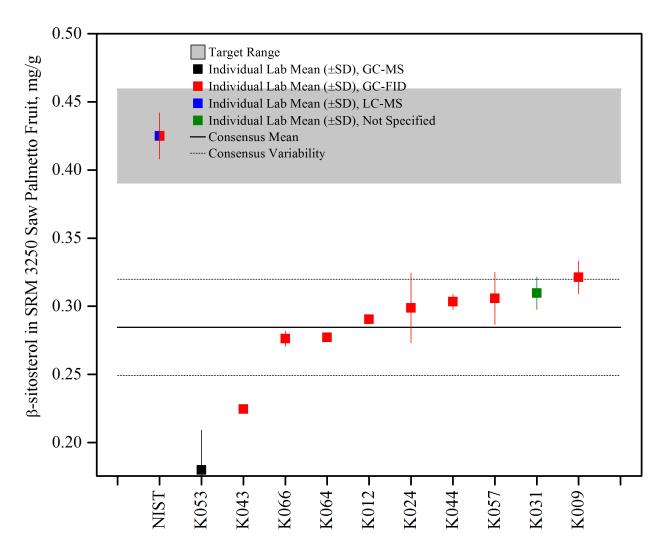

Figure 47. Campesterol in SRM 3250 *Serenoa repens* Fruit (data summary view – sample preparation method). In this view, individual laboratory data are plotted with the individual laboratory standard deviation (error bars). The color of the data point represents the sample preparation method employed. The black solid lines represent the consensus means for each sample preparation method, and the black dotted lines represent the consensus variability calculated as one standard deviation about the consensus mean for that sample preparation method. The gray shaded region represents the target zone for "acceptable" performance, which encompasses the NIST certified value bounded by twice its uncertainty (U_{95}).

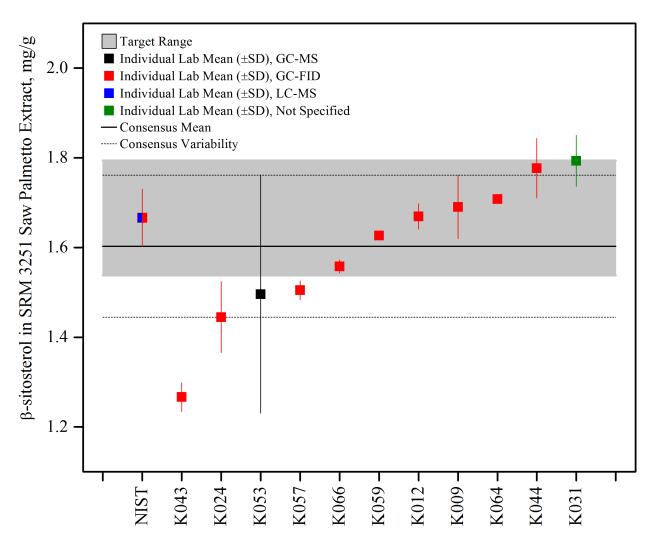

Figure 48. Campesterol in SRM 3251 *Serenoa repens* Extract (data summary view – sample preparation method). In this view, individual laboratory data are plotted with the individual laboratory standard deviation (error bars). The color of the data point represents the sample preparation method employed. The black solid lines represent the consensus means for each sample preparation method, and the black dotted lines represent the consensus variability calculated as one standard deviation about the consensus mean for that sample preparation method. The gray shaded region represents the target zone for "acceptable" performance, which encompasses the NIST certified value bounded by twice its uncertainty (U_{95}).

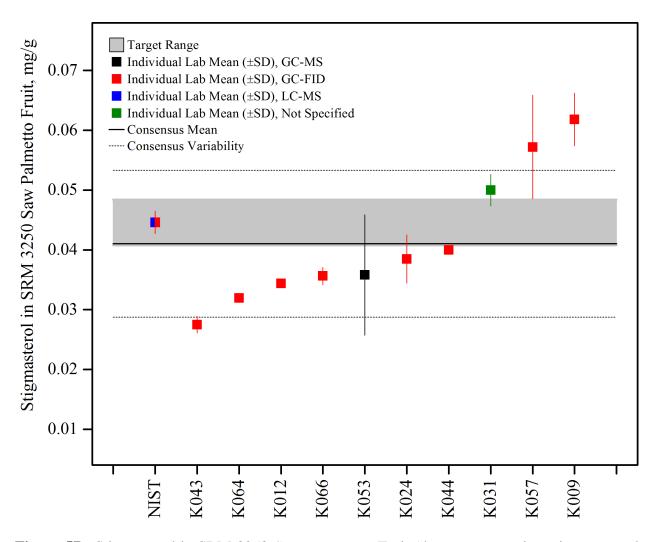

Figure 49. β -sitosterol in SRM 3250 *Serenoa repens* Fruit (data summary view – sample preparation method). In this view, individual laboratory data are plotted with the individual laboratory standard deviation (error bars). The color of the data point represents the sample preparation method employed. The black solid lines represent the consensus means for each sample preparation method, and the black dotted lines represent the consensus variability calculated as one standard deviation about the consensus mean for that sample preparation method. The gray shaded region represents the target zone for "acceptable" performance, which encompasses the NIST certified value bounded by twice its uncertainty (U_{95}).

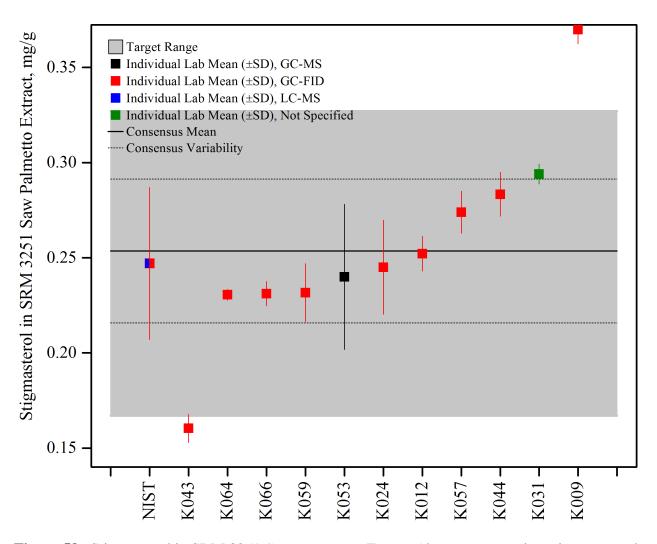

Figure 50. β -sitosterol in SRM 3251 *Serenoa repens* Extract (data summary view – sample preparation method). In this view, individual laboratory data are plotted with the individual laboratory standard deviation (error bars). The color of the data point represents the sample preparation method employed. The black solid lines represent the consensus means for each sample preparation method, and the black dotted lines represent the consensus variability calculated as one standard deviation about the consensus mean for that sample preparation method. The gray shaded region represents the target zone for "acceptable" performance, which encompasses the NIST certified value bounded by twice its uncertainty (U_{95}).

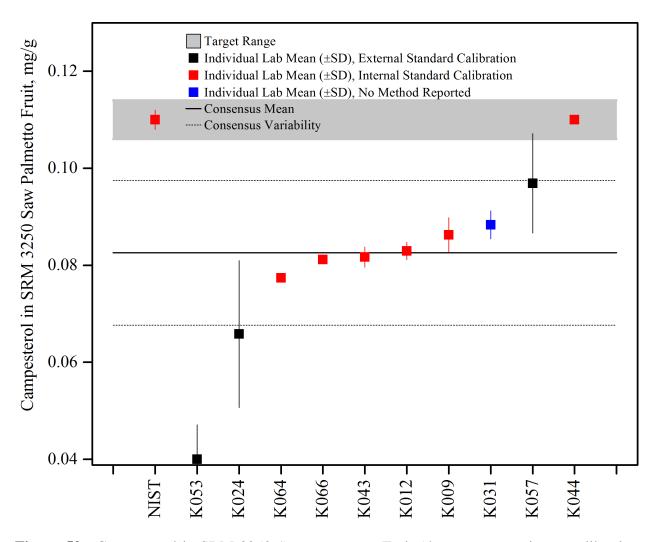

Figure 51. Stigmasterol in SRM 3250 *Serenoa repens* Fruit (data summary view – sample preparation method). In this view, individual laboratory data are plotted with the individual laboratory standard deviation (error bars). The color of the data point represents the sample preparation method employed. The black solid lines represent the consensus means for each sample preparation method, and the black dotted lines represent the consensus variability calculated as one standard deviation about the consensus mean for that sample preparation method. The gray shaded region represents the target zone for "acceptable" performance, which encompasses the NIST certified value bounded by twice its uncertainty (U_{95}).

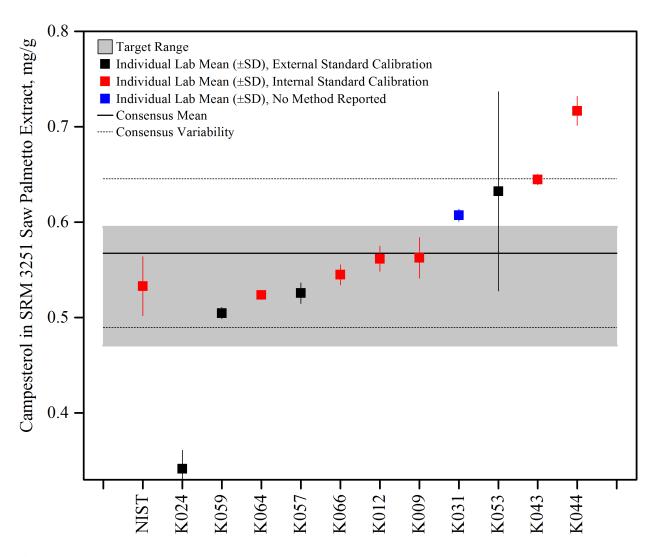

Figure 52. Stigmasterol in SRM 3251 *Serenoa repens* Extract (data summary view – sample preparation method). In this view, individual laboratory data are plotted with the individual laboratory standard deviation (error bars). The color of the data point represents the sample preparation method employed. The black solid lines represent the consensus means for each sample preparation method, and the black dotted lines represent the consensus variability calculated as one standard deviation about the consensus mean for that sample preparation method. The gray shaded region represents the target zone for "acceptable" performance, which encompasses the NIST certified value bounded by twice its uncertainty (U_{95}).

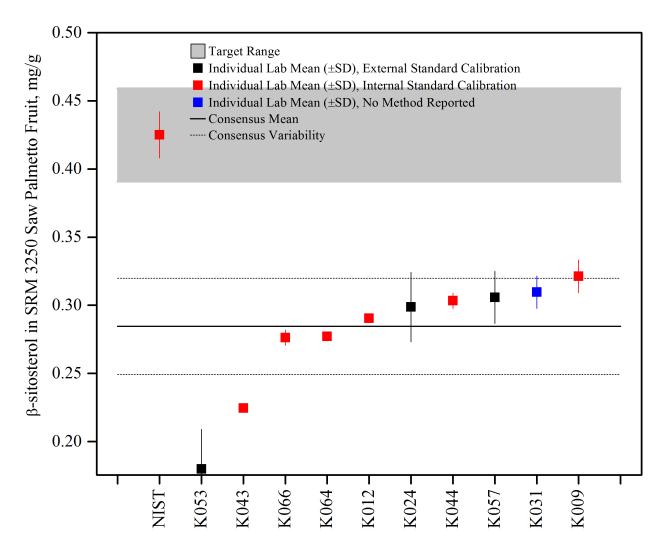

Figure 53. Campesterol in SRM 3250 *Serenoa repens* Fruit (data summary view –instrumental method). In this view, individual laboratory data are plotted with the individual laboratory standard deviation (error bars). The color of the data point represents the instrumental method employed. The black solid lines represent the consensus means for each sample preparation method, and the black dotted lines represent the consensus variability calculated as one standard deviation about the consensus mean for that sample preparation method. The gray shaded region represents the target zone for "acceptable" performance, which encompasses the NIST certified value bounded by twice its uncertainty (U_{95}).

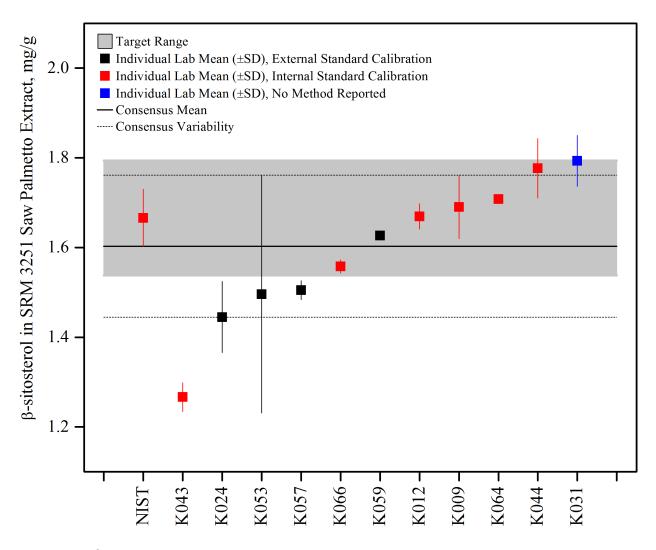

Figure 54. Campesterol in SRM 3251 *Serenoa repens* Extract (data summary view –instrumental method). In this view, individual laboratory data are plotted with the individual laboratory standard deviation (error bars). The color of the data point represents the instrumental method employed. The black solid lines represent the consensus means for each sample preparation method, and the black dotted lines represent the consensus variability calculated as one standard deviation about the consensus mean for that sample preparation method. The gray shaded region represents the target zone for "acceptable" performance, which encompasses the NIST certified value bounded by twice its uncertainty (U_{95}).

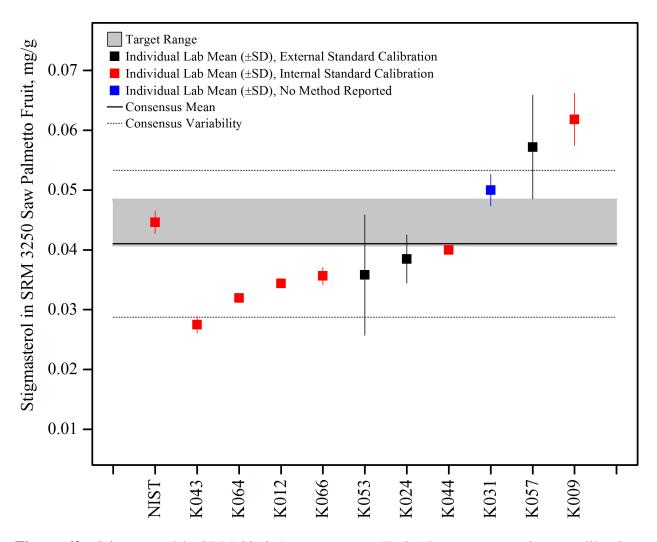

Figure 55. β -sitosterol in SRM 3250 *Serenoa repens* Fruit (data summary view –instrumental method). In this view, individual laboratory data are plotted with the individual laboratory standard deviation (error bars). The color of the data point represents the instrumental method employed. The black solid lines represent the consensus means for each sample preparation method, and the black dotted lines represent the consensus variability calculated as one standard deviation about the consensus mean for that sample preparation method. The gray shaded region represents the target zone for "acceptable" performance, which encompasses the NIST certified value bounded by twice its uncertainty (U_{95}).

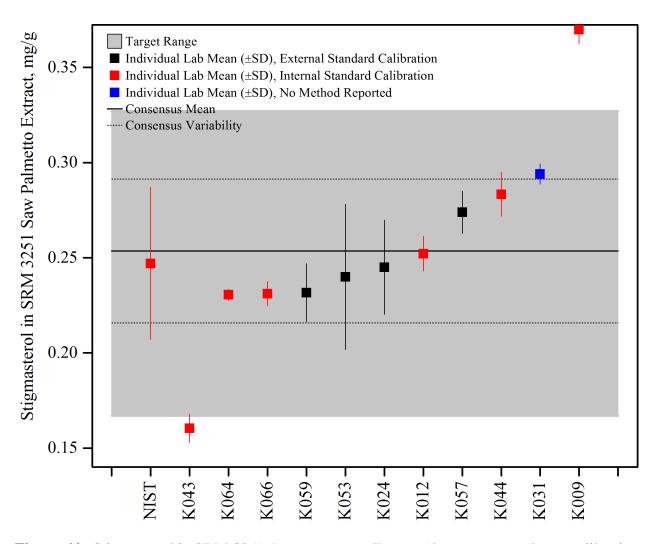

Figure 56. β -sitosterol in SRM 3251 *Serenoa repens* Extract (data summary view –instrumental method). In this view, individual laboratory data are plotted with the individual laboratory standard deviation (error bars). The color of the data point represents the instrumental method employed. The black solid lines represent the consensus means for each sample preparation method, and the black dotted lines represent the consensus variability calculated as one standard deviation about the consensus mean for that sample preparation method. The gray shaded region represents the target zone for "acceptable" performance, which encompasses the NIST certified value bounded by twice its uncertainty (U_{95}).

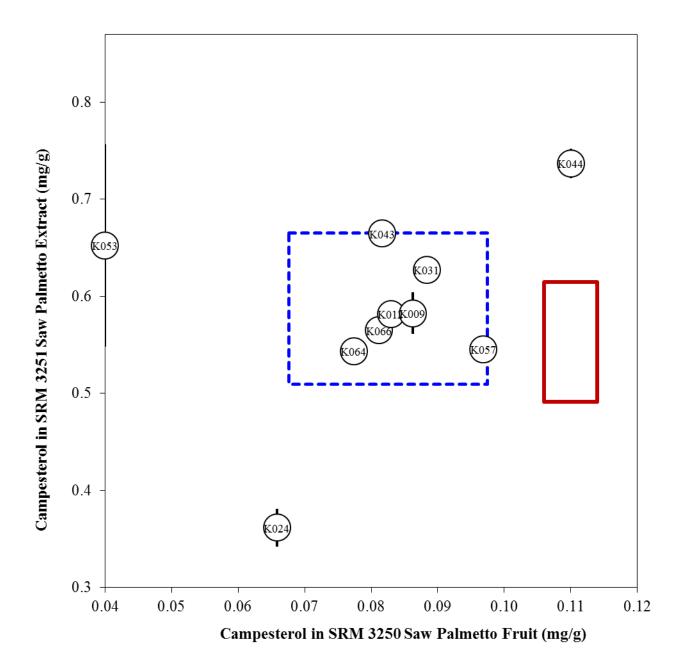

Figure 57. Stigmasterol in SRM 3250 *Serenoa repens* Fruit (data summary view –instrumental method). In this view, individual laboratory data are plotted with the individual laboratory standard deviation (error bars). The color of the data point represents the instrumental method employed. The black solid lines represent the consensus means for each sample preparation method, and the black dotted lines represent the consensus variability calculated as one standard deviation about the consensus mean for that sample preparation method. The gray shaded region represents the target zone for "acceptable" performance, which encompasses the NIST certified value bounded by twice its uncertainty (U_{95}).

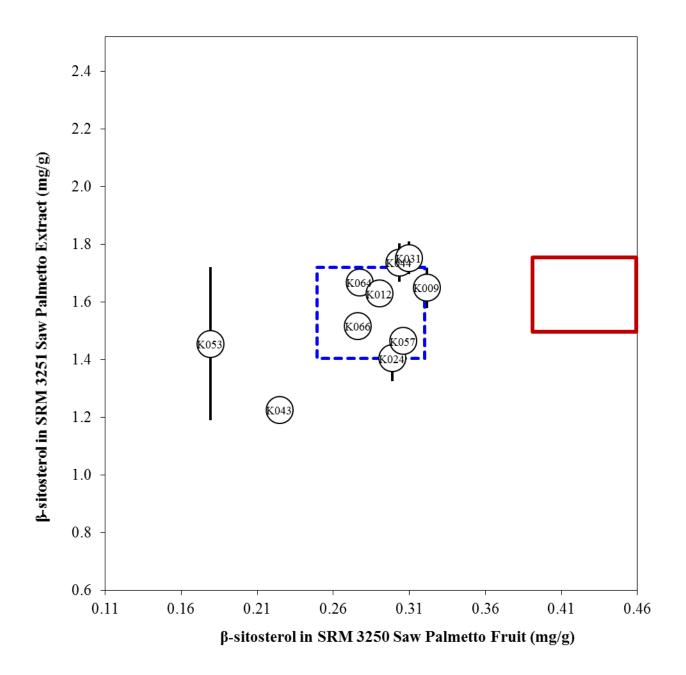

Figure 58. Stigmasterol in SRM 3251 *Serenoa repens* Extract (data summary view –instrumental method). In this view, individual laboratory data are plotted with the individual laboratory standard deviation (error bars). The color of the data point represents the instrumental method employed. The black solid lines represent the consensus means for each sample preparation method, and the black dotted lines represent the consensus variability calculated as one standard deviation about the consensus mean for that sample preparation method. The gray shaded region represents the target zone for "acceptable" performance, which encompasses the NIST certified value bounded by twice its uncertainty (U_{95}).

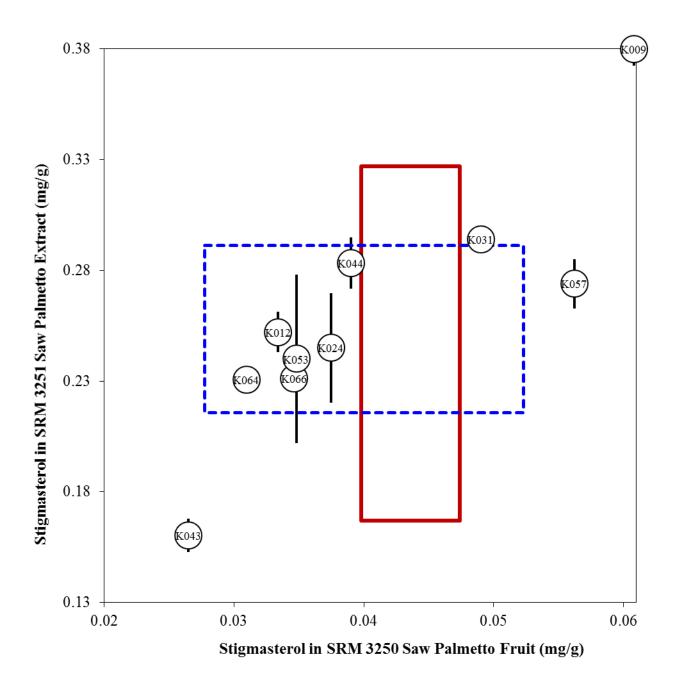

Figure 59. Campesterol in SRM 3250 *Serenoa repens* Fruit (data summary view – calibration approach). In this view, individual laboratory data are plotted with the individual laboratory standard deviation (error bars). The color of the data point represents the calibration approach employed. The black solid lines represent the consensus means for each sample preparation method, and the black dotted lines represent the consensus variability calculated as one standard deviation about the consensus mean for that sample preparation method. The gray shaded region represents the target zone for "acceptable" performance, which encompasses the NIST certified value bounded by twice its uncertainty (U_{95}).

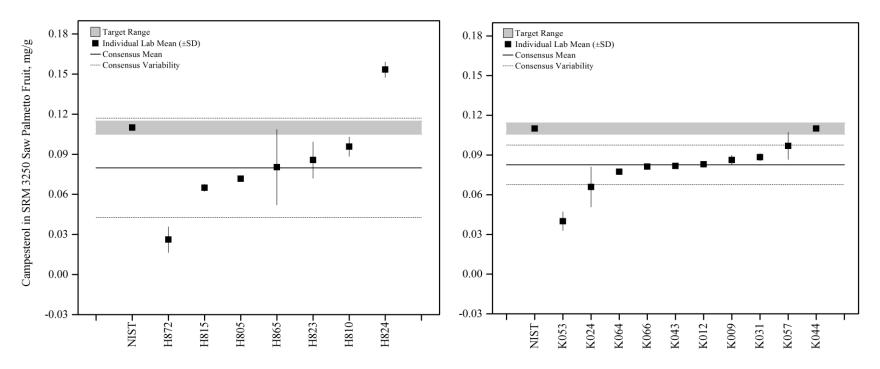

Figure 60. Campesterol in SRM 3251 *Serenoa repens* Extract (data summary view – calibration approach). In this view, individual laboratory data are plotted with the individual laboratory standard deviation (error bars). The color of the data point represents the calibration approach employed. The black solid lines represent the consensus means for each sample preparation method, and the black dotted lines represent the consensus variability calculated as one standard deviation about the consensus mean for that sample preparation method. The gray shaded region represents the target zone for "acceptable" performance, which encompasses the NIST certified value bounded by twice its uncertainty (U_{95}).


Figure 61. β -sitosterol in SRM 3250 *Serenoa repens* Fruit (data summary view – calibration approach). In this view, individual laboratory data are plotted with the individual laboratory standard deviation (error bars). The color of the data point represents the calibration approach employed. The black solid lines represent the consensus means for each sample preparation method, and the black dotted lines represent the consensus variability calculated as one standard deviation about the consensus mean for that sample preparation method. The gray shaded region represents the target zone for "acceptable" performance, which encompasses the NIST certified value bounded by twice its uncertainty (U_{95}).


Figure 62. β -sitosterol in SRM 3251 *Serenoa repens* Extract (data summary view – calibration approach). In this view, individual laboratory data are plotted with the individual laboratory standard deviation (error bars). The color of the data point represents the calibration approach employed. The black solid lines represent the consensus means for each sample preparation method, and the black dotted lines represent the consensus variability calculated as one standard deviation about the consensus mean for that sample preparation method. The gray shaded region represents the target zone for "acceptable" performance, which encompasses the NIST certified value bounded by twice its uncertainty (U_{95}).


Figure 63. Stigmasterol in SRM 3250 *Serenoa repens* Fruit (data summary view – calibration approach). In this view, individual laboratory data are plotted with the individual laboratory standard deviation (error bars). The color of the data point represents the calibration approach employed. The black solid lines represent the consensus means for each sample preparation method, and the black dotted lines represent the consensus variability calculated as one standard deviation about the consensus mean for that sample preparation method. The gray shaded region represents the target zone for "acceptable" performance, which encompasses the NIST certified value bounded by twice its uncertainty (U_{95}).


Figure 64. Stigmasterol in SRM 3251 *Serenoa repens* Extract (data summary view – calibration approach). In this view, individual laboratory data are plotted with the individual laboratory standard deviation (error bars). The color of the data point represents the calibration approach employed. The black solid lines represent the consensus means for each sample preparation method, and the black dotted lines represent the consensus variability calculated as one standard deviation about the consensus mean for that sample preparation method. The gray shaded region represents the target zone for "acceptable" performance, which encompasses the NIST certified value bounded by twice its uncertainty (U_{95}).


Figure 65. Campesterol in SRM 3250 *Serenoa repens* Fruit and SRM 3251 *Serenoa repens* Extract (sample/sample comparison view). In this view, the individual laboratory results for one sample (SRM 3250) are compared to the results for a second sample (SRM 3251). The solid red box represents the target zone for the control (x-axis) and unknown sample (y-axis). The dotted blue box represents the consensus zone for the control (x-axis) and the unknown sample (y-axis).

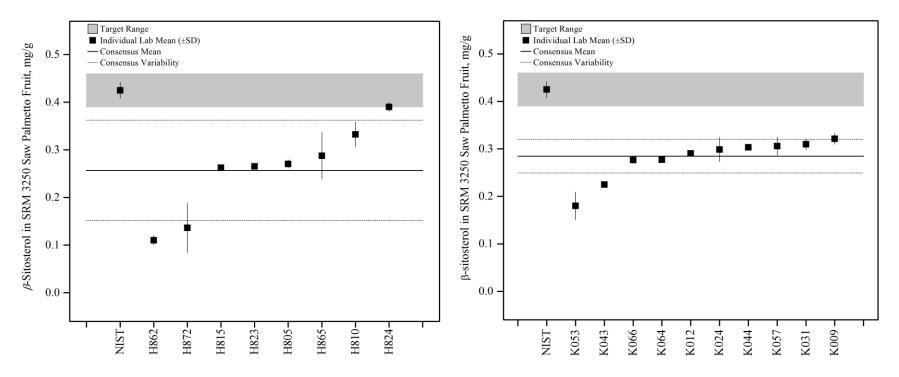

Figure 66. β -sitosterol in SRM 3250 *Serenoa repens* Fruit and SRM 3251 *Serenoa repens* Extract (sample/sample comparison view). In this view, the individual laboratory results for one sample (SRM 3250) are compared to the results for a second sample (SRM 3251). The solid red box represents the target zone for the control (x-axis) and unknown sample (y-axis). The dotted blue box represents the consensus zone for the control (x-axis) and the unknown sample (y-axis).

Figure 67. Stigmasterol in SRM 3250 *Serenoa repens* Fruit and SRM 3251 *Serenoa repens* Extract (sample/sample comparison view). In this view, the individual laboratory results for one sample (SRM 3250) are compared to the results for a second sample (SRM 3251). The solid red box represents the target zone for the control (x-axis) and unknown sample (y-axis). The dotted blue box represents the consensus zone for the control (x-axis) and the unknown sample (y-axis).

Figure 68. Comparison of results for campesterol in SRM 3250 Saw Palmetto Fruit from Exercise H (left) and Exercise K (right). In both graphs, individual laboratory data are plotted with the individual laboratory standard deviation (error bars). The black solid lines represent the consensus means for each sample preparation method, and the black dotted lines represent the consensus variability calculated as one standard deviation about the consensus mean for that sample preparation method. The gray shaded region represents the target zone for "acceptable" performance, which encompasses the NIST certified value bounded by twice its uncertainty (U_{95}). NOTE: The participant laboratory numbers are changed for each exercise, so no correlation can be made between laboratory numbers from Exercise H and Exercise K.

Figure 69. Comparison of results for β -sitosterol in SRM 3250 Saw Palmetto Fruit from Exercise H (left) and Exercise K (right). In both graphs, individual laboratory data are plotted with the individual laboratory standard deviation (error bars). The black solid lines represent the consensus means for each sample preparation method, and the black dotted lines represent the consensus variability calculated as one standard deviation about the consensus mean for that sample preparation method. The gray shaded region represents the target zone for "acceptable" performance, which encompasses the NIST certified value bounded by twice its uncertainty (U_{95}). NOTE: The participant laboratory numbers are changed for each exercise, so no correlation can be made between laboratory numbers from Exercise H and Exercise K.