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STABLE EXPLICIT TIME MARCHING IN WELL-POSED OR
 
ILL-POSED NONLINEAR PARABOLIC EQUATIONS
 

ALFRED S. CARASSO∗ 

Abstract. This paper analyzes an effective technique for stabilizing pure explicit time dif
ferencing in the numerical computation of multidimensional nonlinear parabolic equations. The 
method uses easily synthesized linear smoothing operators at each time step to quench the instabil
ity. Smoothing operators based on positive real powers of the negative Laplacian are helpful, and 
(−Δ)p can be realized efficiently in rectangular domains using FFT algorithms. The stabilized ex
plicit scheme requires no Courant restriction on the time step Δt, and is of great value in computing 
well-posed parabolic equations on fine meshes, by simply lagging the nonlinearity at the previous 
time step. Such stabilization leads to a distortion away from the true solution. However, that error 
is often small enough to allow useful results in many problems of interest. 

The stabilized explicit scheme is also stable when run backward in time. This allows for rel
atively easy and useful computation of a significant class of multidimensional nonlinear backward 
parabolic equations, and complements the quasi-reversibility method. In the canonical case of linear 
autonomous selfadjoint backward parabolic equations, with solutions satisfying prescribed bounds, 
it is proved that the stabilized explicit scheme can produce results that are nearly best-possible. Such 
backward reconstructions are of increasing interest in environmental forensics, where contaminant 
transport is often modeled by advection dispersion equations. 

The paper uses fictitious mathematically blurred 512 × 512 pixel images as illustrative examples. 
Such images are associated with highly irregular jagged intensity data surfaces that can severely chal
lenge ill-posed nonlinear reconstruction procedures. Instructive computational experiments demon
strate the capabilities of the method in 2D rectangular regions. 

Key words. FFT Laplacian stabilization, forward or backward nonlinear parabolic equations; 
non-integer power Laplacian; nonlinear image deblurring; quasi-reversibility method; stabilized ex
plicit scheme; Van Cittert iteration. 

AMS sub ject classifications. 35K55, 35R25, 65M06, 65M30, 68U10. 

1. Introduction. This paper develops an effective technique for stabilizing pure 
explicit time differencing in the numerical computation of multidimensional nonlinear 
parabolic equations. As is well-known [21, p. 208], while explicit schemes are highly 
desirable because of their simplicity, such schemes are seldom used as they entail pro
hibitive Courant stability restrictions on the time step Δt. Rather, unconditionally 
stable implicit schemes are commonly used, even though such schemes require sophis
ticated and computationally intensive solutions of the resulting algebraic systems of 
difference equations at each time step. The present stabilized explicit scheme requires 
no Courant restriction on Δt, and hence would be of great value in computing mul
tidimensional, well-posed, nonlinear parabolic equations on fine meshes, by simply 
lagging the nonlinearity at the previous time step. 

For ill-posed backward parabolic equations, classical stepwise time marching al
gorithms, whether explicit or implicit, are necessarily unconditionally unstable, [21, p. 
59]. However, remarkably, the stabilized explicit scheme is stable even when run back
ward in time. As will be shown in the examples below, this scheme opens the door 
to relatively easy and useful computation of multidimensional nonlinear backward 
parabolic equations, a category of problems that is widely believed to be intractable. 
The method complements the quasi-reversibility method [13], whose formulation is 
primarily oriented toward linear problems. There is considerable interest in such 
backward reconstructions, notably in the developing field of environmental forensics 
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2 A. S. CARASSO 

[3], [4], [17], [23], where contaminant transport is often modeled by parabolic advec
tion dispersion equations [14], [22]. However, the class of nonlinear problems that can 
be handled by the present method is limited, although it is significant. 

Stabilization of the explicit scheme is accomplished by applying an easily synthe
sized linear smoothing operator at each time step to quench the instability. Smoothing 
operators based on positive non-integer powers of the negative Laplacian have been 
found helpful. Inevitably, such intervention leads to a distortion away from the true 
solution. This is the stabilization penalty. The scheme is useful on a given problem 
only to the extent that the accompanying distortion is sufficiently small. When this 
is the case, the method is an effective preliminary exploration tool that can produce 
valuable information in quite difficult problems. Such information can subsequently 
be confirmed using more elaborate computational methods. As noted below, the 
method assumes the validity of Eq. (2.4). That hypothesis appears to be verified in 
numerous computational experiments. 

While the computation of nonlinear problems is the principal aim of this work, 
as well as the focus of the illustrative examples, valuable insight is provided by the 
analysis in Sections 2 through 5, which addresses a companion class of linear problems. 
Consideration of the transparent linear case enables isolating the stabilization penalty, 
evaluating its significance, and interpreting it as a form of regularization. In the 
canonical case of linear autonomous selfadjoint backward parabolic equations with 
solutions satisfying prescribed bounds [10], [15], a sharp estimate for the uncertainty in 
reconstruction can be obtained using logarithmic convexity arguments. The analysis 
in Eqs. (3.18–3.19) shows that the error in the stabilized explicit scheme differs from 
that fundamental uncertainty only by the stabilization penalty. Moreover, it is shown 
that that penalty can be expected to be small in a wide class of parabolic problems. 

The present paper complements and extends earlier work discussed in [7], by 
providing the analytical justification not included in [7], by considering the well-
posed forward problem as well as the backward problem, and by exhibiting successful 
computation of nonlinear problems for which the competing Van Cittert method, 
previously developed and applied in [7], fails. 

1.1. Use of fictitious images as illustrative test examples. Images can pro
vide useful and challenging computational test examples for 2D nonlinear parabolic 
equations. Using a sharp image as initial data in a well-posed forward parabolic 
equation results in a fictitious blurred image, yet one in which the effects of vari
ous nonlinearities can be easily gauged with the naked eye. Using a mathematically 
blurred image as input data in the ill-posed backward parabolic problem, poses a 
severe test for an inverse reconstruction algorithm. As shown in Figure 1.1, highly 
complicated intensity data are typically associated with images of familiar ob jects. 
Such complex yet meaningful data are not easily generated analytically by combining 
mathematical formulae. Also, given a familiar ob ject, the degree of success in non
linear backward reconstruction is often immediately apparent. On the other hand, 
comparing the reconstructed intensity surface with the original intensity surface may 
not always be helpful; a slight blurring of the image, one that does not affect ob ject 
recognition, can cause nonintuitive changes in the original surface. 

Very little is known either analytically or computationally about nonlinear back
ward parabolic equations. Examples of physically plausible yet false reconstructions 
have been found [6]. Given a specific nonlinear equation, preliminary exploration 
of the associated fictitious image deblurring problem provides valuable information 
about that equation, even when the intended scientific or engineering application is 
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Images are associated with complicated
       surface plots of intensity values

Shirley Temple Plot of intensity values

Plot of intensity valuesPyramids at Giza

Fig. 1.1. Reconstruction of images requires recovery of highly irregular, jagged intensity data 
surfaces that severely chal lenge il l-posed computational algorithms. Accordingly, fictitious nonlin
early blurred images provide instructive test examples in this paper. 
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unrelated to imaging. Accordingly, images will be used as test examples to illustrate 
the merits of the stabilized explicit scheme. 

2. A companion class of autonomous linear second order parabolic 
equations. Useful insight into the nonlinear computations can be gained by con
sidering the following class of problems. Let L be a linear autonomous second order 
elliptic differential operator with smooth variable coefficients in a region Ω in Rn, with 
homogeneous Dirichlet or Neumann boundary conditions on ∂Ω. Let   2 denote the 
norm on L2(Ω). We assume that L has a complete set of orthonormal eigenfunctions 
{φm}∞ in L2(Ω), corresponding to eigenvalues {λm}∞ satisfying m=1 m=1 

(2.1) 0 ≤ |λ1| ≤ |λ2| ≤ · · · ≤ |λm| · · · ↑ ∞. 

The eigenvalues λm of L need not all be of the same sign, and the evolution equation 

(2.2) ut = −Lu, t > 0, u(0) = f, 

may not be well-posed. However, we assume that if a solution exists in Eq. (2.2), it 
is unique. 

We shall also consider the auxiliary well-posed parabolic equation on Ω 

(2.3) vt = Δv, t > 0, v(0) = f, 

with the same homogeneous boundary conditions on ∂Ω as in Eq. (2.2). The Lapla
cian operator is selfadjoint and isotropic, whereas this may not be the case with the 
differential operator L. Let L∗ denote the adjoint of L. With real p, q > 1, we 
make the following assumption regarding the semigroups generated by −(−Δ)p and 
−(L∗L)q/2 : Given any ω > 0, and q with 1 < q ≤ 3, there exist constants Γ, E > 0, 
and p ≥ q, such that for all g ∈ L2(Ω) and sufficently small time step Δt,

(2.4)  exp{−EΔt(−Δ)p}g  2≤ Γ  exp{−ωΔt(L ∗ L)q/2}g  2 .   
The linear operator H = (exp{−EΔt(−Δ)p}) exp{ωΔt(L∗L)q/2} is well-defined on   
the range of exp{−ωΔt(L∗L)q/2} , which is dense in L2(Ω). The inequality in Eq. 
(2.4) would follow if it can be shown that H can be extended to a bounded operator 
on all of L2(Ω), with  H  2≤ Γ. 

Eq. (2.4) appears to be validated in numerous computational experiments. Re
sults of a similar nature are known in the theory of Gaussian estimates for heat kernels. 
See e.g. [1], [2], [18], [19], and the references therein. 

3. Stabilizing the pure explicit scheme. The discussion here will focus ex
clusively on time discretizations, and the space variables will remain continuous in 
all the equations below. For the equation ut = −Lu, 0 ≤ t ≤ T , in Eq. (2.1), the 

n+1pure explicit scheme, u = un − ΔtLun , n = 0, 1, 2, · · · , NT − 1, Δt = T /NT , is 
a first order accurate scheme, requiring a stringent stability restriction on the time 
step Δt, when Eq. (2.1) represents a forward, well-posed, multidimensional parabolic 
equation [21]. For this reason, the pure explicit scheme is seldom used. If u(x, t) 

n+1 nis the exact unique solution of ut = −Lu, then u = u − ΔtLun + τn, where 
τ n = 1/2(Δt)2(L2u)(t̃), with the intermediate time value t̃ lying between nΔt and 
(n + 1)Δt. The quantity τn is the truncation error. 

With fixed ω, Δt, and q, 1 < q ≤ 3, let S and A denote the linear operators in 
L2(Ω) defined by 

(3.1) S = exp{−ωΔt(L ∗ L)q/2}, A = S(I − ΔtL). 
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We shall consider a compensated pure explicit scheme for ut = −Lu, t > 0, u(0) = f,
defined as follows

w0 = f,

wn+1 = Awn ≡ S{wn −∆tLwn}, n = 0, 1, 2, · · · , NT − 1, ∆t = T/NT .
(3.2)

Lemma 1. Let {λm}∞m=1 be the eigenvalues of L satisfying Eq. (2.1). With real
q > 1, fix a positive integer Q such that |λQ| > 0, and choose ω ≥ |λQ|1−q. Then,

(1 + ∆t|λm|) exp{−ω∆t|λm|q} ≤ 1 + ∆t|λQ|, m ≥ 1.(3.3)

Proof : The inequality in Eq. (3.3) is valid for 1 ≤ m ≤ Q in view of Eq. (2.1). For
m > Q,

exp{−ω∆t|λm|q} ≤ exp{−ω∆t|λm||λQ|q−1} ≤ exp{−∆t|λm|},(3.4)

since ω|λQ|q−1 ≥ 1. Also, exp{−∆t|λm|} ≤ (1 + ∆t|λm|)−1, since 1 + x ≤ ex for real
x. Hence, for m > Q, (1 + ∆t|λm|) exp{−ω∆t|λm|q} ≤ 1. QED.

Lemma 2. Let q, Q, ω, be as in Lemma 1. Then, ‖ A ‖2≤ 1 + ∆t|λQ|, the
compensated pure explicit scheme Eq. (3.2) is unconditionally stable, and wn satisfies

‖ wn ‖2≤ exp{|λQ|n∆t} ‖ f ‖2, n = 0, 1, 2, · · · , NT .(3.5)

Proof : Expanding in the orthonormal eigenfunctions {φm(x, y)}∞m=1 of L, let
wn

m =< wn, φm >. Then,

wn+1 =
∞∑

m=1

exp{−ω∆t|λm|q} (1−∆tλm)wn
mφm.(3.6)

Hence, from Parseval’s relation and Lemma 1,

‖ wn+1 ‖2 ≤ sup
m
{(1 + ∆t|λm|) exp[−ω∆t|λm|q]} ‖ wn ‖2,

≤ (1 + ∆t|λQ|)n+1 ‖ f ‖2≤ exp{|λQ|(n+ 1)∆t} ‖ f ‖2 .(3.7)

QED.

Lemma 3. Let |||h|||2,∞ denote

|||h|||2,∞ = sup
0≤t≤T

{‖ h(., t) ‖2} ,(3.8)

and let u(t) be the unique solution of ut = −Lu, u(0) = f, on 0 ≤ t ≤ T . Then, with
S as in Eq.(3.1),

‖ τn ‖2 ≤ 1/2(∆t)2 |||L2u|||2,∞,

‖ (I − S)un ‖2 ≤ ω∆t |||(L∗L)q/2u|||2,∞,

∆t ‖ (I − S)Lun ‖2 ≤ ω(∆t)2 |||(L∗L)q/2Lu|||2,∞.(3.9)
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Proof : The inequality for the truncation error τn in Eq. (3.9) follows from Taylor’s
formula. Expanding in the orthonormal eigenfunctions {φm(x, y)}∞m=1 of L, and using
1− ex ≤ −x for real x, we have, with un

m =< un, φm >

‖ (I − S)un ‖22 =
∞∑

m=0

(
1− e−ω∆t|λm|q

)2

|un
m|2 ≤

∞∑
m=0

(ω∆t|λm|q)2|un
m|2

= (ω∆t)2 ‖ (L∗L)q/2un ‖22≤ (ω∆t)2 |||(L∗L)q/2u|||22,∞.(3.10)

This proves the second inequality in Eq. (3.9), as well as the last inequality which is
a corollary of the second. QED.

Theorem 1. Let un be the unique solution of ut = −Lu, u(0) = f, at t = n∆t.
Let wn be the corresponding solution of the S-compensated scheme in Eq. (3.2), and
let ES(t) ≡ un − wn, denote the error at t = n∆t, n = 0, 1, 2, · · · , NT . Then, with
q, Q, ω, as in Lemma 1, and |||h|||2,∞ as in Eq. (3.8),

‖ ES(t) ‖2 ≤ e|λQ|t ‖ ES(0) ‖2 +
{

(e|λQ|t − 1)/|λQ|
}
×{

ω |||(L∗L)q/2u|||2,∞ + ω∆t |||(L∗L)q/2Lu|||2,∞ + (∆t/2) |||L2u|||2,∞

}
.(3.11)

Proof : Let gn = τn + (I − S)un + ∆t(I − S)Lun. Then, un+1 = Aun + gn, while
wn+1 = Awn. Therefore

ESn+1 = un+1 − wn+1 = Anen + gn = An+1ES0 + ∆t
n∑

j=0

An−jgj/(∆t).(3.12)

Hence, using Lemma 2 with t = (n+ 1)∆t,

‖ ES(t) ‖2 ≤ e|λQ|t ‖ ES(0) ‖2 + {|||g|||2,∞/∆t}∆t
n∑

j=0

‖ An−j ‖2,

≤ e|λQ|t ‖ ES(0) ‖2 + {|||g|||2,∞/∆t}
∫ t

0

e|λQ|(t−u)du

= e|λQ|t ‖ ES(0) ‖2 + {|||g|||2,∞/∆t} (e|λQ|t − 1)/|λQ|.(3.13)

Next, using Lemma 3 to estimate {|||g|||2,∞/∆t}, we obtain Eq. (3.11) from Eq.
(3.13). QED.

3.1. The stabilization penalty in the well-posed forward problem. Con-
sider the case of the well-posed forward parabolic problem ut = −Lu, t > 0, u(0) = f ,
with L a non-negative autonomous selfadjoint elliptic operator, and the given initial
data f(x) known exactly, or with high accuracy. Then, ES(0) = 0 in Eq. (3.11).
Choosing ω = |λQ|1−q, there remains a non-vanishing residual in Eq. (3.11), the
stabilization penalty, as ∆t ↓ 0,

‖ ES(t) ‖2≤ (e|λQ|T − 1) |||(L∗L)q/2u|||2,∞/|λQ|q + O(∆t), 0 ≤ t ≤ T.(3.14)

Clearly, if T is large, the accumulated distortion may become unacceptably large as
t ↑ T , and the stabilized explicit scheme is not useful in that case. On the other



STABLE EXPLICIT TIME-MARCHING IN NONLINEAR PARABOLIC EQUATIONS 7

hand, if T is small, as is the case in many multidimensional problems of interest
involving small values of t, it may be possible to choose q > 2 and large |λQ|, with
small enough |λQ|T such that (e|λQ|T − 1)/|λQ|q is quite small. In that case, the
stabilization penalty remains acceptably small on 0 ≤ t ≤ T . We give several such
examples below.

3.2. The stabilization penalty in the ill-posed backward problem. In the
ill-posed backward parabolic case where L is a non-positive self-adjoint operator, the
class of initial values for which there exists a solution is very restricted. Here, the given
initial data f is seldom a highly accurate approximation to that unknown restricted
data, and the input data error contribution in Eq. (3.11) cannot be neglected. With
ω = |λQ|1−q, this leads to

‖ ES(t) ‖2 ≤ e|λQ|t ‖ ES(0) ‖2
+ {(e|λQ|t − 1)/|λQ|q} |||(L∗L)q/2u|||2,∞ + O(∆t), 0 ≤ t ≤ T.(3.15)

Again, with large T , the non-vanishing residual in Eq. (3.15) will lead to large errors
as t ↑ T , and the backward scheme is not useful in such cases. For problems with
small T , Eq. (3.15) is more interesting. Let the given initial data f(x) approximate
the unknown true data u(x, 0) to within δ > 0 in the L2 norm, and let the exact
solution u(., t) of the backward problem satisfy a known prescribed L2 bound M at
t = T . Thus,

‖ ES(0) ‖2≤ δ, ‖ u(., T ) ‖2≤M.(3.16)

A judicious choice for |λQ| is then

|λQ| = (1/T ) log(M/δ)(3.17)

This leads to

‖ ES(t) ‖2 ≤M t/T δ(T−t)/T

+ {(e|λQ|t − 1)/|λQ|q} |||(L∗L)q/2u|||2,∞ + O(∆t), 0 ≤ t ≤ T.(3.18)

The first term on the right in Eq. (3.18) is best-possible, and represents the fundamen-
tal uncertainty in solutions of autonomous selfadjoint backward parabolic equations,
satisfying a prescribed L2 bound M , given initial data with L2 error at most δ, [10],
[15]. The stabilization penalty augments this basic logarithmic convexity error bound
by the addition of the second term in Eq. (3.18). In many problems of interest
this added term can be quite small. For example, with parameter values such as
T = 10−3, M = 102, δ = 10−4, q = 2.5, we have M/δ = 106, log(M/δ) = 13.816.
From Eq. (3.17), e|λQ|T = 106, |λQ| = 13816. Hence, |λQ|q = 2.244 × 1010, ω =
|λQ|1−q = 6.16× 10−7. We then obtain from Eq. (3.18),

‖ ES(t) ‖2 < M t/T δ(T−t)/T

+ (4.46× 10−5) |||(L∗L)q/2u|||2,∞ + O(∆t), 0 ≤ t ≤ T.(3.19)

Remark 1. The above analysis is valid in general domains Ω ∈ Rn, and is helpful
in the computation of nonlinear problems in the following way. If L is a useful linear
representative for the nonlinear spatial differential operator L̃, one may synthesize the
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compensating operator S in Eq. (3.1) by precomputing a sufficiently large number K
of eigenpairs {λm, φm} of the linear elliptic operator L, spanning a subspace VK in
L2(Ω). See e.g. [5], [8], [20]. Such a time-consuming task may pay large dividends if
the resulting stabilized explicit scheme can actually be successfully applied to multidi-
mensional nonlinear parabolic equations, equations with solutions well-approximated
by elements of VK . Expanding in the K precomputed eigenfunctions of L, we may
approximate the compensating operator S in Eq. (3.1) as follows for v ∈ VK ⊂ L2(Ω),

Sv =
K∑

m=1

exp{−ω∆t|λm|q}
(∫

Ω

v(x)φm(x)dx
)
φm(x).(3.20)

In a practical application, the parameters ω > 0 and q > 1 in Eq. (3.20) must first
be selected and adjusted interactively, based on prior knowledge about the solution.
Such adjustment is similar to the manual tuning of an FM station, or the focusing of
binoculars. A priori knowledge about the solution is a fundamental requirement in ill-
posed reconstruction, and such knowledge is often found valuable even in well-posed
computations.

Having located a successful pair (ω, q), define |λQ| = ω1/(1−q). In the well-posed
forward problem, one may then use Eq. (3.14) to estimate the stabilization penalty
as ∆t ↓ 0, in the successfully completed computation. However, that penalty is the
one that would have been incurred with the linear representative operator L, rather
than the actual nonlinear operator L̃.

In the ill-posed backward problem, interactive adjustment of the parameter pair
(ω, q) based on prior knowledge, is even more crucial in obtaining useful reconstruc-
tions as the values of M and δ in Eq. (3.16) are seldom known accurately. Again,
after locating an optimal pair, define |λQ| = ω1/(1−q). One may then use the second
term in Eq. (3.18) to evaluate the stability penalty deviation from the best-possible
result as ∆t ↓ 0. As before, this is the deviation that would have been incurred with
L rather than the actual L̃.

4. Laplacian stabilization of the explicit scheme for ut = −Lu. Closed
form expressions for the eigenfunctions of the Laplacian are known for specific domains
that are important in applications, including rectangles, circles, and spheres [11], [16].
On such domains, the use of smoothing operators based on the Laplacian, rather than
L∗L, to stabilize the explicit scheme for ut = −Lu, is of considerable interest. Such
stabilization is feasible for parabolic problems ut = −Lu for which the inequality in
Eq. (2.4) holds.

With fixed constants Γ, ε, ∆t, and p, 1 < p ≤ 3, let R and B denote the linear
operators in L2(Ω) defined by

R = exp{−ε∆t(−∆)p}, B = R(I −∆tL)/Γ.(4.1)

As in Eq. (3.20), let {σm, ψm}K
m=1 denote a sufficiently large set of known eigenpairs

of (−∆) on Ω, with the same boundary conditions on ∂Ω as prescribed for L. Let the
subspace VK ⊂ L2(Ω) spanned by {ψm}K

m=1 be large enough to well-approximate the
solutions of ut = −Lu. We may then approximate the compensating operator R on
VK by

Rv =
K∑

m=1

exp{−ε∆t|σm|p}
(∫

Ω

v(x)ψm(x)dx
)
ψm(x), v ∈ VK .(4.2)
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Using R and B leads to a new compensated explicit scheme for ut = −Lu, u(0) =
f, on 0 ≤ t ≤ T ,

v0 = f,

vn+1 = Bvn ≡ R{vn −∆tLvn}/Γ, n = 0, 1, 2, · · · , NT − 1, ∆t = T/NT .
(4.3)

Lemma 4. Let q, Q, ω, be as in Lemma 1, and let R and B be the operators in
Eq. (4.1). Choose Γ, ε > 0, and p ≥ q, such that for g ∈ L2(Ω)

‖ exp{−ε∆t(−∆)p}g ‖2≤ Γ ‖ exp{−ω∆t(L∗L)q/2}g ‖2,(4.4)

as postulated in Eq. (2.4). Then, ‖ B ‖2≤ 1 + ∆t|λQ|, the compensated explicit
scheme Eq. (4.3) is unconditionally stable, and vn satisfies

‖ vn ‖2≤ exp{|λQ|n∆t} ‖ f ‖2, n = 0, 1, 2, · · · , NT .(4.5)

Proof : From Eq. (4.4) and Lemma 2, with A as in Eq. (3.1),

‖ vn+1 ‖2 = ‖ Bvn ‖2≤‖ S(vn −∆tLvn) ‖2=‖ Avn ‖2
≤ exp{|λQ|(n+ 1)∆t} ‖ f ‖2, n = 0, 1, 2, · · · , NT .(4.6)

QED. Using the analog of Lemma 3 for the compensating operator R, together with
the argument in Theorem 1, leads to the corresponding result for the explicit scheme
in Eq. (4.3).

Theorem 2. Let un be the unique solution of ut = −Lu, u(0) = f, at t = n∆t.
Let vn be the corresponding solution of the R-compensated scheme in Eq. (4.3), and
let ER(t) ≡ un − vn, denote the error at t = n∆t, n = 0, 1, 2, · · · , NT . Then, with
p, q, Q, Γ, ε as in Lemma 4, and ω = |λQ|1−q,

‖ ER(t) ‖2 ≤ e|λQ|t ‖ ER(0) ‖2 +
{

(e|λQ|t − 1)/|λQ|
}
×{

ε |||(−∆)pu|||2,∞ + ε∆t |||(−∆)pLu|||2,∞ + 1/2(∆t) |||L2u|||2,∞
}

= e|λQ|t ‖ ER(0) ‖2 +{(e|λQ|t − 1)/|λQ|q} (ε/ω) |||(−∆)pu|||2,∞ + O(∆t).(4.7)

Analogously to Eqs. (3.14), (3.18), we have the following Corollaries to Theorem 2.

Corollary 1. In Theorem 2, let ut = −Lu, u(0) = f, be a well-posed forward
problem with data f known exactly. Then, Eq. (4.7) reduces to

‖ ER(t) ‖2≤ {(e|λQ|t − 1)/|λQ|q} (ε/ω) |||(−∆)pu|||2,∞ + O(∆t).(4.8)

Corollary 2. In Theorem 2, let ut = −Lu, u(0) = f, 0 ≤ t ≤ T, be an
ill-posed backward problem with approximate input data f and solution u(t) satisfying

‖ ES(0) ‖2≤ δ, ‖ u(., T ) ‖2≤M,(4.9)
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with known M, δ. Then, choosing |λQ| = (1/T ) log(M/δ), Eq. (4.7) reduces to

‖ ER(t) ‖2 ≤M t/T δ(T−t)/T

+ {(e|λQ|t − 1)/|λQ|q} (ε/ω) |||(−∆)pu|||2,∞ + O(∆t), 0 ≤ t ≤ T.(4.10)

Remark 2. Laplacian stabilization and the operator R requires the selection of
ε > 0, p > 1 in Eq. (4.2), and Γ > 0 in Eq. (4.3), together with subsequent inter-
active adjustment of these parameters based on prior knowledge about the solution.
Having located a useful triple (ε, p,Γ), an estimate of the stabilization penalty as
∆t ↓ 0 is not immediate in Eqs. (4.8), (4.10). Knowledge of the key parameters ω
and q in the governing inequality in Eq. (2.4) is needed to define |λQ| = ω1/(1−q),
and evaluate the necessary terms in Eqs. (4.8), (4.10).

5. Fourier space Laplacian stabilization on rectangular regions. For sim-
plicity of exposition we restrict attention to R2 and functions h(x, y), but the discus-
sion is valid in higher dimensions. Define the 2D Fourier transform of an L1(R2)
function h(x, y) by

ĥ(ξ, η) ≡
∫

R2
h(x, y)e−2πi(ξx+ηy)dxdy.(5.1)

For fixed p > 1, and small ε > 0, consider the well-posed forward diffusion initial
value problem on the whole space R2, involving possibly non-integer powers of the
negative Laplacian,

wt = −ε(−∆)pw, t > 0, w(x, y, 0) = h(x, y).(5.2)

This has the unique Fourier space solution

ŵ(ξ, ε, t) = exp{−εt[(2πξ)2 + (2πη)2]p}ĥ(ξ, η), t > 0,(5.3)

from which w(x, y, t) can be found by inverse Fourier transformation

w(x, y, t) =
∫

R2
exp{2πi(ξx+ ηy)} exp{−εt[(2πξ)2 + (2πη)2]p}ĥ(ξ, η)dξdη.(5.4)

Next, consider the parabolic initial value problem ut = −Lu, t > 0, u(0) = f, on all
of R2, with the explicit scheme un+1 = un−∆tLun, n ≥ 0. Analogously to Eq. (4.2),
we may define the compensating operator R acting on g(x, y) ∈ L1(R2) ∩ L2(R2) by

Rg =
∫

R2
exp{2πi(ξx+ ηy)} exp{−ε∆t[(2πξ)2 + (2πη)2]p}ĝ(ξ, η)dξdη.(5.5)

Assume the inequality in Eq. (2.4) holds for g(x, y) ∈ L1(R2) ∩ L2(R2). With Γ > 0
as in Eq. (2.4), this leads to the compensated explicit scheme on 0 ≤ t ≤ T ,

v0 = f,

vn+1 = R{vn −∆tLvn}/Γ, n = 0, 1, 2, · · · , NT − 1, ∆t = T/NT .
(5.6)



  

STABLE EXPLICIT TIME-MARCHING IN NONLINEAR PARABOLIC EQUATIONS 11 

5.1. FFT periodized Laplacian stabilization and I M × I M images. Con
sider now the parabolic problem ut = −Lu, t > 0, u(0) = f , defined on the unit 
square Ω in R2, with u(x, y, t) an 8-bit I M × I M pixel image. We may discretize 
the elliptic spatial operator L using centered finite differencing, with homogeneous 
Dirichlet or Neumann conditions on ∂Ω. With pre-selected Γ, E, p, we then apply 
the compensated explicit scheme in Eq. (5.6) above as follows. At each time step, 
direct and inverse Fast Fourier Transform (FFT) algorithms are used to synthesize 
Rg in Eq. (5.5), where g is the I M × I M pixel image g = (vn − ΔtLvn}/Γ. How
ever, the FFT algorithm assumes g to be extended by periodicity to all of R2, and 

n+1returns an I M ×I M array v = Rg satisfying periodic boundary conditions. At the 
next time step, application of the discretized operator L to vn+1 restores the original 
Dirichlet or Neumann boundary conditions. In practice, in many problems of interest, 
such alternating erroneous boundary conditions are found to cause spurious artifacts 
at the very edges of the image, without impairing the results away from the edges. 
Such incovenience is a small price to pay for the highly efficient FFT synthesis of the 
compensator R, which enables consideration of 512 × 512 or 1024 × 1024 arrays. This 
technique can clearly be extended to nonlinear parabolic equations on hyperrectangles 
in Rn . 

6. Van Cittert iteration and backward continuation in ut = −Lu. As 
originally formulated [24], the Van Cittert iterative procedure was intended for solving 
1D linear convolution integral equations P w = f with explicitly known kernels, by 
means of the iterative procedure 

(6.1) w m+1(x) = w m(x) + λ {f(x) − P [w m(x)]} , m ≥ 1. 

Here, λ > 0 is a fixed relaxation parameter, w1(x) = λf(x), and the expectation is 
mthat w → w. In reality, ill-posedness of the integral equation leads to error am

plification at high frequencies which prevents convergence. However, in spectroscopy 
and image processing applications [9], [12], the Van Cittert method is often found to 
produce useful results after finitely many iterations, even though it may not converge. 

Application of the Van Cittert iteration to nonlinear parabolic backward con
tinuation is discussed in [7]. Consider the well-posed forward nonlinear problem 
ut = −Lu, u(0) = f, 0 ≤ t ≤ T , in a domain Ω ∈ Rn . Let ΛT be the nonlinear 
solution operator at time T so that ΛT [u(0)] = u(T ). The Van Cittert procedure 
would seek to recover the initial value f = u(0), from approximate data g for u(T ), 
through the iteration 

m+1(6.2) w = w m + λ g − ΛT [w m] , m ≥ 1, 

1with w = λg, and fixed relaxation parameter λ, 0 < λ < 1. By discretizing the 
forward problem ut = −Lu, u(0) = f, 0 ≤ t ≤ T , using a stable computational 
method, we may define a corresponding discrete nonlinear solution operator ΛT , and d 
use it in Eq. (6.2) to implement the procedure computationally. Several examples of 
successful nonlinear backward recovery using this technique are presented in [7]. 

7. 2D nonlinear computational examples. The illustrative examples below 
involve two nonlinear second order parabolic equations on the unit square Ω ≡ {0 ≤ 
x, y ≤ 1} in R2, with homogeneous Neumann boundary conditions. The initial values 
w(x, y, 0) = g(x, y), are 8 bit grey scale images with intensity values ranging from 0 
to 255, leading to sizeable nonlinearities involving w. All images are of size 512 × 512 
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pixels, and are associated with complicated intensity surface plots such as are shown 
in Figure 1.1. One equation has the form t 

wt = κs(w)\.{q(x, y, t)\w} + c |w|wx + d(w cos2 w)wy, Ω × (0, T ), 
(7.1) 

w(x, y, 0) = g(x, y), 

where κ = 8.5 × 10−4 , c > 0, d > 0, and 

s(w) = exp(0.002w), 
(7.2) 

q(x, y, t) = exp(10t)(1 + 5 sin πx sin πy) ≥ 1, Ω × (0, T ). 

The other equation used differs from the above by having the term cwwx in place t 
of the term c |w|wx . Clearly, the nonlinear elliptic operator LL in Eq. (7.1) is very 
far from the linear L contemplated in the assumed inequality Eq. (2.4). Numerous 
other interesting nonlinear parabolic equations remain to be explored. 

Discretization of Eq. (7.1) uses centered finite differencing for the space variables 
with Δx = Δy = 1/512, together with pure explicit time differencing, with Δt > 0 
chosen so as to yield useful results. 

8. Well-posed forward experiment. The first experiment illustrates the use
fulness of the stabilized explicit scheme in forward solving Eq. (7.1) up to time 
T = 0.004, with c = 0.0625, d = 0.075. With Δt = 0.0002, the uncompensated pure 
explicit scheme applied to the 512 ×512 pixel Sydney and B2 Bomber images develops 
instabilities, as shown in the middle images in Figure 8.1. However, applying FFT 
Laplacian stabilization as discussed in Section 5, using Γ = 1.0, E = 4.0 × 10−6 , p = 
2.5, produces useful results with the same value of Δt. This is shown in the rightmost 
images in Figure 8.1. This particular (E, p, Γ) triple was arrived at after very few 
trials. Note the FFT-induced edge effects at top and bottom of the stabilized images. 

For comparison, an uncompensated stable pure explicit calculation was also per
formed, with Δt chosen ten times smaller. Slightly different results were obtained at 
T = 0.004. These differences amounted to an L1 relative error of 9.26% for the Sydney 
image, and 3.87% for the B2 Bomber image. Such L1 errors indicate relatively small 
stabilization penalties in these two examples. 

It is noteworthy that the linear analysis provided in Sections 2 through 5, together 
with the assumed inequality in Eq. (2.4), appear to be applicable in this nonlinear 
case. The FFT compensated explicit scheme becomes ever more useful in well-posed 
forward 3D problems on finer spatial meshes. 

9. Ill-posed backward recovery experiments. While the forward computa
tional results are encouraging, successful backward reconstruction in nonlinear prob
lems is considerably more difficult, as the accuracy of the input data at time T 
plays a crucial role. For linear autonomous selfadjoint forward parabolic equations 
ut = −Lu, 0 ≤ t ≤ T , approximate data g at time T such that u(T ) − g 2≤ δ, 
for a solution u(t) known to satisfy u(0) 2≤ M , leads to an L2 uncertainty of 
M (T −t)/T δt/T in backward reconstruction at time t < T . See [10], [15]. 

However, if L is nonlinear, the corresponding L2 uncertainty at time t < T may 
be larger [10]. It is given by M1−µ(t)δµ(t), where the Hölder exponent µ(t) satisfies 
0 ≤ µ(t) ≤ 1, with µ(t) > 0, t > 0, µ(T ) = 1, µ(0) = 0, and µ(t) ↓ 0 monotonically 
as t ↓ 0. Rapid exponential decay of µ(t to zero as t ↓ 0, is possible in some cases. 
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For this reason, high quality nonlinear reconstructions from imprecise data are not 
generally feasible. See [6]. 

In the examples below, the input data at time T is obtained by a preliminary for
ward solution of the nonlinear parabolic equation, using a stable numerical method. 
That numerically obtained blurred image may not be a sufficiently accurate approxi
mation to the true solution of Eqs. (7.1) or (9.1), at time T . In some cases, recovering 
the finest details in the sharp image at t = 0 from such modestly accurate data at 
t = T , may lie beyond the capabilities of any method on theoretical grounds alone. 

Sagittal MRI brain scan. The original sharp MRI brain image in Figure 9.1 
was blurred by using it as initial data in Eq. (7.1) with c = 0.05, d = 0.06, and 
applying the stable uncompensated pure explicit scheme with Δt = 1.75 × 10−6, to 
march forward 2000 time steps up to the final time T = 3.5 × 10−3 . This produced 
the blurred image in Figure 9.1. While this is a reasonably accurate computation, a 
great deal of fine detail in the sharp image has been smoothed out by the nonlinear 
evolution, as becomes evident at high magnification. 

The numerically blurred image was used as input data in the FFT Laplacian
stabilized explicit scheme discussed in Section 5, using Γ = 1.0, E = 2.0 × 10−8 , p = 
2.75. With Δt = 1.75 × 10−6, the compensated scheme was marched 2000 time steps 
backward from T = 3.5 × 10−3, to produce the deblurred image shown at the bottom 
left of Figure 9.1. Clearly, significant deblurring was achieved, and the linear analysis 
in Sections 2 through 5, together with Eq. (2.4), again appear to be germane in this 
nonlinear situation. Here, the small stabilization penalty is added to the nonlinear 
L2 uncertainty, M1−µ(t)δµ(t), with an unknown µ(t). 

The Van Cittert iterative procedure discussed in Section 6 was succesfully applied 
to several nonlinear examples in [7], although at substantially higher computational 
costs. Significantly, this procedure fails in the present example, as shown at the 
bottom right image in Figure 9.1. Inverse reconstruction methods generally work well 
only in limited cases, and alternative approaches, when available, are valuable. 

It is instructive to view the above reconstruction process as it operates on the ac
tual image intensity data that is fed into the computational algorithm. This is shown 
in Figure 9.2. Clearly, quite complex data surfaces are involved, and accurate recov
ery would seem quite difficult. Inspection of the bottom two reconstructed surfaces 
in Figure 9.2 reveals how easily the process can go awry. 

Elizabeth Taylor image. A familiar face image makes a valuable test example. 
The original 512 ×512 pixel Elizabeth Taylor image in Figure 9.3 was blurred by using 
it as initial data in the following equation on the unit square Ω 

wt = κs(w)\.{q(x, y, t)\w} + cwwx + d(w cos2 w)wy, Ω × (0, T ), 
(9.1) 

w(x, y, 0) = g(x, y), 

with κ and q(x, y, t) as in Eq. (7.1), c = 0.05 and d = 0.06. The stable uncompensated 
pure explicit scheme was applied with Δt = 7.0 × 10−6 and 600 time steps up to the 
final time T = 4.2 × 10−3 . With this larger Δt, the resulting numerical solution at 
time T is a less accurate approximation to the true solution than was the case in 
Figure 9.1. 

The stronger nonlinearity associated with the wwx term leads to the striking 
transformation shown in the resulting blurred image in Figure 9.3. Such distortion 
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ORIGINAL MRI BRAIN SCAN               NONLINEARLY BLURRED IMAGE

   STABILIZED EXPLICIT DEBLUR           VAN CITTERT ITERATIVE  DEBLUR

STABILIZED  EXPLICIT  SCHEME  IN  BACKWARD
          NONLINEAR  PARABOLIC  EQUATIONS

Fig. 9.1. Backward recovery from nonlinearly blurred data in 512 ×512 MRI brain image, using 
stabilized explicit scheme with Γ = 1.0, E = 2.0 × 10−8 , p = 2.75. Van Cittert procedure develops 
instabilities after 30 iterations. 
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ORIGINAL MRI BRAIN SCAN               NONLINEARLY BLURRED IMAGE

   STABILIZED EXPLICIT DEBLUR           VAN CITTERT ITERATIVE  DEBLUR

STABILIZED  EXPLICIT  RECONSTRUCTION OF
        MRI BRAIN SCAN INTENSITY SURFACE

Fig. 9.2. Reconstruction of highly irregular original intensity surface from blurred data in MRI 
brain image, using stabilized explicit scheme and Van Cittert procedure. 
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ORIGINAL LIZ TAYLOR  IMAGE                    NONLINEARLY  BLURRED  IMAGE

STABILIZED  EXPLICIT  DEBLUR               VAN CITTERT  ITERATIVE  DEBLUR

STABILIZED  EXPLICIT  SCHEME  IN  BACKWARD
           NONLINEAR  PARABOLIC  EQUATIONS

Fig. 9.3. Backward recovery from nonlinearly blurred data in 512 ×512 Liz Taylor image, using 
stabilized explicit scheme with Γ = 1.0, E = 7.5 × 10−8 , p = 2.735. Van Cittert procedure develops 
instabilities after 8 iterations 

. 
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    ORIGINAL LIZ TAYLOR  IMAGE                NONLINEARLY  BLURRED  IMAGE

STABILIZED  EXPLICIT  DEBLUR               VAN CITTERT  ITERATIVE  DEBLUR

  STABILIZED  EXPLICIT  RECONSTRUCTION  OF
LIZ  TAYLOR  IMAGE  INTENSITY  SURFACE

Fig. 9.4. Reconstruction of highly irregular original intensity surface from blurred data in Liz 
Taylor image, using stabilized explicit scheme and Van Cittert procedure. 

. 



STABLE EXPLICIT TIME-MARCHING IN NONLINEAR PARABOLIC EQUATIONS 19 

is not easily achieved using traditional convolution with a Gaussian point spread 
function. Recovery of the original from such a strongly blurred image, computed 
with only modest accuracy, seems less feasible than was possible in the MRI image. 
Surprisingly, using Γ = 1.0, E = 7.5 × 10−8 , p = 2.735, and marching back 600 time 
steps Δt = 7.0 × 10−6 from t = T in the stabilized explicit scheme, produced the 
reasonably good reconstruction shown in Figure 9.3. This is a significant example. 
Clearly, the stabilization penalty must be quite small to permit such useful recovery 
in the presence of the nonlinear L2 uncertainty M1−µ(t)δµ(t). 

The poor performance of the Van Cittert iteration in Figure 9.3 is a reflection of 
the particularly difficult backward continuation problem associated with the blurred 
Elizabeth Taylor image, due to the nonlinearity in Eq. (9.1). The reconstruction 
process on the corresponding intensity surface data is displayed in Figure 9.4. 

10. Relation to the quasi-reversibility method. With its emphasis on solv
ing multidimensional nonlinear problems using explicit schemes, the present method 
is a significant new approach that complements the quasi-reversibility (QR) method 
[13]. Applications of the QR method to backward parabolic equations are devel
oped in [13, Chapter 1]. There, linear equations in the form wt + A(t)w = 0, are 
considered, with A(t) a linear elliptic partial differential operator of order 2m with 
coefficients depending smoothly on space and time, and such that the forward prob
lem is well-posed. Backward continuation from given noisy data at time T > 0, is 
accomplished by numerically marching back from t = T in the modified equation 
wt + A(t)w − ωA∗(t)A(t)w = 0, with suitably pre-selected small ω > 0. This modified 
equation is well-posed backward in time, and a variety of stable difference schemes may 
be used. As formulated in [13, Chapter 1], the QR method is not applicable to non
linear problems in an obvious way, due to the difficulty of defining a suitable adjoint 
operator A∗(t). Indeed, linear problems are the primary focus in [13]. In addition, 
implicit Crank-Nicolson time differencing is contemplated for the numerical solution 
of the modified higher order equation involving A∗(t)A(t). In multidimensional prob
lems, this requires computationally intensive solution of the algebraic problem at each 
time step. This is avoided in the present method. 

A valuable feature of the stabilized explicit scheme is that it allows for efficient 
and simultaneous exploration of the parameter values (Γ, E, p), including non integer 
positive values of p in (−Δ)p, all within the same computational code. In the QR 
method for second order parabolic equations, the modified equation involves a fixed 
fourth order stabilizing elliptic operator, and there is no option for exploring other 
stabilizers. In this connection, it is noteworthy that in both the well-posed and ill-
posed test examples in Sections 8 and 9, values of p such that 2.5 ≤ p ≤ 2.75, were 
arrived at interactively. Apparently, a compensating pseudo-diffusion equation of 
order five or higher, seems to be necessary to control explicit scheme instability in 
computing second order nonlinear parabolic equations. 

11. Concluding Remarks. The unexpected success of the FFT Laplacian
stabilized explicit scheme on 2D nonlinear parabolic problems in rectangular regions, 
indicates that the use of Laplace stabilization in other special domains in Rn where 
Laplacian eigenfunctions are known in closed form, is worthy of active consideration. 
More generally, in arbitrary domains Ω ∈ Rn as envisaged in Eq. (3.20), preliminary 
computation of a sufficient number of the characteristic pairs of a variable coefficient 
linear elliptic operator L, believed to be representative of the given nonlinear ellip
tic operator LL, may provide the key to useful stabilized explicit solution of difficult 
nonlinear parabolic problems. 
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The apparent validity of Eq. (2.4) in the numerical experiments in Sections 8 and 
9, raises interesting analytical research problems. 

The failure of the Van Cittert method in the two examples in Section 9, despite 
its successful use in [7], indicates a continuing need for alternative reconstruction 
procedures, based on different analytical strategies. 

The use of fictitious images in exploring 2D nonlinear parabolic equations, to
gether with displays of the corresponding intensity surfaces, was particulary instruc
tive. 

Future work will explore the use of compensated explicit schemes in non-parabolic 
irreversible systems occurring in viscoelasticity, thermoelasticity, coupled sound and 
heat flow, and other areas of application discussed in [13]. 
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