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1. Abstract: 

In this report, we provide an overview of various performance evaluation metrics for 

object detection and tracking for robot safety applications in smart manufacturing. We 

present three different types of performance evaluation metrics based on detection, 

tracking, and perimeter intrusion. The basis for comparing the strengths and weaknesses 

of different object detection and tracking algorithms is to evaluate their results on a set of 

tasks with known ground-truth data using the same performance metrics. The tasks, the 

ground-truth data, and performance evaluation metrics and test procedures can help 

vendors justify claims about the performance of their systems and assist users and 

manufacturers to compare systems for their particular automation tasks. They will also 

allow researchers to fully understand the strengths and limitations of different 

approaches. This is an essential step towards establishing the credibility of object 

detection and tracking for real time manufacturing and robotic applications. The 

performance metrics and evaluation methods are an essential first step towards providing 

scientific foundations for developing robot safety standards that enable the use of 

perception systems in manufacturing applications and particularly in providing 

confidence in systems to be used for safety-critical applications. 

2. Introduction 

Next generation robotic systems are expected to perform highly complex tasks in 

dynamic manufacturing environments. Collaboration between humans and robots can 

take advantage of their complementary strengths. Humans can perform complex and 

precise tasks that require intelligence, while robots can do dangerous and repetitive tasks 

well. However, human-robot interaction in a manufacturing environment can be 

dangerous for workers because of possible collisions with robots or other objects. To 

mitigate the risks, the robot system must know the location of people and objects at all 

times. This situational awareness requires the use of perception systems that can 

recognize, localize, and track objects in their environment. This is a challenging task 

because a manufacturing environment can be cluttered, there may be objects occluding 

each other, and there could be illumination and viewpoint variations. While prototypes of 

such perception algorithms are being developed, a science-based methodology for their 

performance evaluation does not exist. We are currently developing the necessary metrics 

and methods, with an initial focus on the ability to detect people and objects as they move 

about the workspace. We will build test-beds and conduct experiments to assess the 

methodology. The results can be used to develop new standards that will help enable the 

use of perception systems in manufacturing applications. Our previous efforts are 

reported in [24][25].   

 

In our methodology, the strengths and weaknesses of different object detection and 

tracking algorithms are compared using known ground-truth data on a common set of 

tasks using a common set of performance metrics. The tasks, the known ground-truth 

data, and the performance metrics and test procedures will help vendors justify claims 

about the performance of their systems and assist users and manufacturers to evaluate the 

systems for their specific automation tasks. They will also allow researchers to fully 

understand the strengths and limitations of different approaches for different tasks. This 
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is a first step towards establishing the credibility of perception systems used for object 

detection, recognition, and tracking for manufacturing and robotic applications. The 

results are planned to lead to the development of safety standards. 

 

Object detection and localization are important for many other practical applications such 

as manufacturing automation, navigation, part inspection, and computer aided 

design/computer aided manufacturing (CAD/CAM). Our main interest is evaluating 

algorithms used to detect and track objects for robot safety applications and for smart 

manufacturing applications in a dynamic indoor factory environment. We emphasize the 

detection of position and orientation, motion, and classification of objects. The following 

scenarios are examples of those for which we will evaluate perception systems. 

 Human and object detection and tracking  

 Articulated human motion tracking 

 Tracking of robots, automated guided vehicles (AGVs), and industrial parts 

 Human-robot Interactions 

In most previous work, the ground-truth was created in the sensor coordinate system by 

manually annotating the objects, for example by drawing a bounding box around each 

object in a sequence of images. In our case the 3D ground-truth is captured in world 

coordinates with the help of a tracking sensor (for more details, see [24][25]). In the 

annotation-based case, matches are evaluated using the area of intersection of bounding 

boxes in the ground truth data and data from the system being evaluated. For our case 

(3D ground-truth), the matches are evaluated based on the Euclidean distance between 

the 3D ground-truth data and the data from the system being evaluated.  Other 

performance evaluation metrics for our study are similar to performance evaluation 

metrics used for video surveillance systems. Hence, a review of that work is presented. 

 

During the last decade, several performance evaluation projects for video surveillance 

systems have been developed Error! Reference source not found.[2][3][4][5][6][9], 

each with different emphasis and motivation. The PETS workshops [8] focused on 

algorithm development and performance evaluation of tasks such as multiple object 

detection, event detection, and recognition. Nascimento and Marques[22] proposed a 

novel way to evaluate the performance of object detection systems by comparing 

algorithm results to ground-truth data and calculating performance metrics such as 

correct detections, false alarms, detection failure, and splitting and merging errors.  

CLEAR [3]provides performance evaluation of people, faces, cars, and object tracking 

and ETISEO [7]was a video understanding and evaluation project for tracking systems 

that used an event detection algorithm. The i-LIDS [4] is a United Kingdom government 

initiative that conducts performance evaluations of vision-based detection systems to 

ensure that they meet Government requirements. Other papers specific to tracking-based 

metrics are Brown et al [12] who suggest a motion tracking evaluation framework that 

estimates the number of True Positive, False Positive and False Negative, Merged, and 

Split trajectories. Yin et al.  [11] proposed a large set of metrics to assess different aspects 

of the performance of motion tracking and to help identify shortcomings of motion 

trackers under specific conditions. Lazarevic-McManus et al [13] developed a tracking 

metric to enable evaluation of motion detection based on Receiver Operating 

Characteristic (ROC)-like curves and the F-measure. Bashir and Porikli [10] presented 
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metrics based on the spatial intersection of ground-truth and system generated bounding 

boxes and then calculated a number performance metrics, which they then averaged for 

all the sampled frames. Black et al. [21] used synthetic video to evaluate tracking 

performance. They varied the scene complexity of the tracking task by adding occlusions 

and clutter and increasing the number of objects and people in the scene and presented 

results based on a number of metrics.  Several other performance evaluation metrics were 

developed and discussed in [16][17][18][19][20][23]. 

 

The National Institute of Standards and Technology (NIST) has a long history in this 

field, having helped to develop performance metrics for object and human detection in a 

number of different applications, ranging from videoconferences through surveillance to 

counting and tracking people in stores and commercial establishments. NIST has worked 

with the United States (US)  Department of Homeland Security, with the British Home 

Office, and with the European CHIL [14] program and the CLEAR [3] evaluations. NIST 

has also worked with the US Army Collaborative Technology Alliance (CTA) on 

Robotics to evaluate systems that locate and track human pedestrians from a moving 

vehicle [15]. 

 

In this report we describe performance evaluation metrics that can be used for evaluating 

the performance of a number of tasks, including object detection, tracking, and perimeter 

intrusion detection, and also mention some of the factors that affect performance. The 

performance metrics allow us to quantitatively compare different systems and measure 

performance improvements over time. With the ROC curve and Precision Recall curve, 

tradeoffs between performance and other parameters can be determined. 

3. Performance Evaluation Metrics 

 

The performance evaluation should be quantitative. It should report how many objects 

were detected correctly and how many false positives (false alarms) were produced. It 

should support one-to-one matches, one to many matches, and many to one matches, and 

the evaluation should scale up to larger test areas or multiple 3D scenes without losing its 

tracking capability (Figure 1 and Figure 2).  There are three main types of performance 

metrics in our system: detection-based metrics; tracking-based metrics;  and perimeter 

intrusion detection metrics. The detection-based metrics are used to evaluate the 

performance of a System Under Test (SUT) on individual frames from video sensor data. 

They do not monitor the identities of objects over the life of the test. All the objects are 

individually tested to see if there is a match between the SUT and the Ground-truth (GT) 

system for each video frame. The performance on each individual frame is then averaged 

over all the frames in the experiment to develop a performance score. The tracking-based 

metrics use the identity and the complete trajectory of each object separately over the test 

sequence and compare the GT tracks with the SUT tracks based on best correspondence. 

Then, based on the best matches, various error rates and performance metrics, described 

below, are computed.  Finally, the perimeter intrusion detection measure is based on 

detecting any object when it enters a specified area.  
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                                                                    a                                                                  
b                                                    c 

Figure 1. (a) One-to-one matching, (b) many-to-one matching and (c) one-to-many matching. 

 

 

Figure 2. One-to-one matching, many-to-one matching, and one-to-many matching. 

 

3.1. Object Correspondence 

 

The methods used for determining object correspondences between the SUT’s data and 

the GT data significantly affect the values of the performance measures.  The object 

matching and correspondence methods that we use are discussed in the following 

sections. In the case of annotation-based GT, the system results and the GT data are 

compared in the sensor coordinate (or sensor image). The main criteria are:  

 

1) Object matching based on the object area intersection criterion is measured by 

calculating the overlapping area of the SUT-reported bounding box with the GT 

bounding box at each frame [22], with a threshold selected for a successful match. 

2) Object matching using object centroids is based on measuring the Euclidean distance 

between the object’s centroid as reported by the SUT and the GT data at each frame, with 

a threshold selected for a successful match. Normalization based on the size of the 

bounding box is often also used [15]. 

 

In the case of 3D GT data in world coordinates, object matching is based on a centroid 

criterion. The threshold value used for matching may increase with the distance from the 

sensor, since the accuracy of the depth reported by some sensors goes down with 

distance. Sometimes there is also an allowance for a time threshold for object matching if 

there is a time lag between the GT and SUT data. We only test for correspondence when 



This publication is available free of charge from http://dx.doi.org/10.6028/NIST.IR.7972 

5 

 

the objects are in the field of view of the SUT sensor.  It is also possible to project the 3D 

GT data back to the 2D sensor image coordinates and use object matching based on 

object area intersection as described above for annotation-based GT systems. 

 

3.2. Detection Metrics  

The purpose of a detection-based metric is to get meaningful measures of the system’s 

ability to perform object detection tasks. Metrics include the number of correctly detected 

objects, falsely detected objects, or misdetected objects.  Other widely used detection 

measures are detection rate/precision and sensitivity. The detection-based metrics (also 

called frame-based metrics) are used to evaluate the performance of a SUT on individual 

frames from video sensor data. They do not take into account the identities of objects 

over the lifespan of the test. All the objects are individually validated to see if there is a 

corresponding match between SUT and GT systems for each frame during the test. To 

compute the performance of the SUT compared to the GT data, we mainly followed the 

work of Bashir and Porikli [10] and Nascimento and Marques [22]. When associating GT 

data with SUT-detected objects, six cases can occur [10][22]: zero-to-one, one-to-zero, 

one-to-one, many-to-one, one-to-many, and many-to-many associations. According to 

[10] and [22], these associations correspond to false alarms (the detected object has no 

correspondence), misdetection (the GT data has no correspondence), correct detection 

(the detected object matches one and only one object), merge error (the detected object is 

associated with several GT objects), split error, and split-merge. The performances for 

each individual frame are then averaged over all the frames in the experiment to provide 

a performance evaluation measure. 

 

The notation used for evaluation is as follows: 

 SUT—System Under Test 

 FP—False positive, an object present in the SUT, but not in the GT (also called a False Alarm) 

 FN—False negative, an object present in the GT, but not in the SUT (also called a Detection 
Failure) 

 TP—True positive, an object present in the GT and the SUT (also called Correct Detection or 
one-to-one match) 

 TN—True negative, an element present in neither the GT nor the SUT 

 CGT—Complete Ground Truth is the total number of GT objects. 

 

The following metrics are calculated: 

 

3.2.1. False Positive Rate (FPR) 

FPR = FP/(FP + TN), the number of false positives relative to the sum of the number of 

false positives and true negatives. It is a measure of how well the system correctly rejects 

false positives. 

3.2.2. False Alarm Rate (FAR) 

FAR = FP/(TP+FP), the number of false positives relative to the sum of the number of 

true positives and the false positives. It provides a measure of the likelihood that a 

detected target is correctly reported. 
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3.2.3. Detection Rate (DR) 

DR = TP/(TP+ FN), the number of true positives relative to the sum of the true positives 

and the false negatives. It is a measure of the percentage of true targets that is detected. 

3.2.4. False Negative Rate 

False Negative Rate = FN/(TP+FN), the number of false negatives relative to the sum of 

the true positives and the false negatives. It is a measure of the likelihood that a target 

will be missed given the total number of actual targets. 

3.2.5. True Negative Rate (TNR) 

TNR = TN/ (TN + FP), the true false detections relative to the sum of the true false 

detections and the false positive. This provides a measure of the likelihood of a negative 

response given the total number of actual negative detections. 

3.2.6. Accuracy 

Accuracy = (TP+TN)/CGT, the sum of the true positives and the true negatives relative to 

the total number of GT objects. This is a measure of the actual performance of the system 

with regard to both correctly detecting and correctly rejecting targets. 

3.2.7. Precision 

Precision = TP/ (TP + FP), the number of true positives relative to the sum of the true 

positives and the false positives. That is, precision is the fraction of detected items that 

are correct. 

 

3.2.8. Recall 

Recall = TP/ (TP + FN), the number of true positives relative to the sum of the true 

positives and the false negatives. Recall is the fraction of items that were correctly 

detected among all the items that should have been detected. 

3.2.9. F-Measure  

F-Measure = (1 + ) x (Precision * Recall) / (  x Precision + Recall)  

Where  is a non-negative real valued weighting factor [23]. The F-measure gives an 

estimate of the accuracy of the system under test. 

3.2.10. Receiver Operating Characteristic (ROC) Curve 

Detection rate vs. False Positive Rate (many other ROC-like curves are possible) 

 

A single performance number is inadequate to measure system performance. Since the 

system performance has many critical measurement points, it is best represented by a 

performance curve. In the next paragraph, we discuss two curves widely used for this 

purpose.   

 

Most of the SUTs will detect different objects and report their locations and detection 

confidence values. By varying the detection confidence value, the ROC curve can be 

calculated. It shows the Detection Rate vs. False Positive Rate curve for different factors 

at different value levels as shown in Figure 3. An ideal ROC curve will show a very steep 

rise followed by a flat response. 

b 2 b 2

b 2
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Figure 3. An example ROC curve  (Detection Rate vs. False Positive Rate)  

 

3.2.11. Detection Error Trade-off Curve (DET Curve) 

A DET Curve is a graph of Miss Rate (or False Negative Rate) vs. False Positive Rate. 

The DET curve is a plot of the error rate for a binary classification system. 

3.2.12. Precision-Recall Curve (PR Curve) 

By varying the confidence value, it is also possible to create the PR curve. In pattern 

recognition and information retrieval, precision (also called positive predictive value) is 

the fraction of labeled or retrieved instances that are relevant, while recall (also known as 

sensitivity) is the fraction of labeled or relevant instances that are retrieved. Both 

precision and recall are therefore measures of relevance. 

3.2.13. Time Detection Lag 

The time detection lag is the delay that the SUT has compared to the GT system. This 

value should be accounted for in calculating all of the other metrics. Its effects should be 

evaluated rather than trying to calibrate the lag and remove it from the computations. 

3.2.14. Object Localization Metrics 

The 2D/3D localization metrics measure the distances between the centers of SUT-

detected objects and the corresponding GT centers of gravity.  This metric determines the 

detection precision. 

3.3. Tracking Metrics   

The tracking based metrics measure the ability of a SUT to track objects over time.  The 

tracking-based metrics (also called object-based metrics) take the identity and the 

complete trajectory of each object separately over the test sequence and compare the GT 

tracks with the SUT tracks based on best correspondence. Then, based on these 

correspondences, various error rate and performance metrics are computed.   

 

Since the GT track(s) could correspond to more than one SUT track, a correspondence 

mapping has to be established first. Based on this mapping between the object tracks, the 

track-based metrics are computed.  The correct match requires both spatial and temporal 



This publication is available free of charge from http://dx.doi.org/10.6028/NIST.IR.7972 

8 

 

overlap between GT tracks and SUT tracks as shown in Figure 4.  Some of the measures 

that we have selected are based on [2][10][11][12][13]. Requirements for these metrics 

include: 

 
1. Finding a mapping between the objects or people indicated by the GT and the hypotheses of 

the tracker (correspondence problem). 
2. For each individual mapping, determining the precision with which the object’s or person’s 

position was estimated. 
3. Counting all GT persons as misses for which no SUT tracker hypothesis was output. 
4. Counting all SUT hypotheses for which no GT exists as false positives. 
5. Making sure that the objects and people were tracked correctly over time. This includes 

checking that objects and people were not substituted for each other, for example when they 
passed close to each other, and checking that a track was correctly recovered after it was 
lost, for example when an object or person was occluded. 
 

 
Figure 4. Shows the GT and SUT trajectories and a miss and false positive  

 

Two measures are used to express the performance of the tracker. The first is the tracking 

precision, which expresses how well the tracker estimates the exact positions of objects 

or people. The second is the tracking accuracy, which measures how well the system 

keeps track of people or objects and how many mistakes are made in terms of misses, 

false positives, mismatches, failures to recover tracks, etc. 

 

3.3.1. Object Tracking Time delay 

This is the estimated delay between the SUT algorithm’s detection of an object or person 

and that of the GT [11]. It could be positive or negative. 

3.3.2. Tracker Detection rate (TRDR) 

This is the precision. TRDR= Total True Positives/ Total Number of GT tracks[11]. 
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3.3.3. Identifier Change (IDC) 

The metric IDC is the number of times the identifier changes for each SUT track, while 

the GT identifier is unchanged. This is a very basic metric for a tracking test [11]. 

3.3.4. Track Matching Error (TME) 

This TME metric is the positional error between the SUT trajectory and the GT trajectory 

and measures the average distance error between the GT and SUT track. The smaller the 

TME number, the better the tracking accuracy [11].   

3.3.5. Track Completeness (TC) 

TC is defined as the time for which the SUT track overlapped with the GT track divided 

by the total duration of the GT track [11]. 

 

3.3.6. Latency of the SUT track (LT) 

Latency (LT) is the time delay of the SUT track start compared to the GT track start. The 

optimal latency is zero or less than zero if the GT sensor has latency [11]. 

3.3.7. Occlusion success rate (OSR)  

Occlusion success rate is not easy to calculate in our case.  OSR = Number of successful 

dynamic occlusions/ Total number of dynamic occlusions [11]. A successful occlusion 

occurs when the track and object identity are not lost during the occlusion or are correctly 

recovered immediately following the occlusion. 

3.3.8. ROC Curve 

It is possible to calculate ROC curves based on tracking by varying the different 

parameters (threshold, confidence value, etc.) 

3.3.9. Precision Recall Curve 

Precision and recall measures can also be used as metrics.  The tracking methods can be 

evaluated on the basis of whether or not they generate correct trajectories. In the context 

of tracking, precision and recall measures can be defined as in [13]: 

        

     Precision = TP/ STR, the percentage of the selected trajectory that is correct, 

     Recall = GT / STR, the percentage of the GT trajectory that overlaps with the selected 

trajectory, 

 

where STR is one of the selected trajectories out of all the trajectories reported by the 

SUT. The precision and recall curve identifies the track that maximizes recall for a given 

precision and determines the value of parameters (threshold, confidence value, etc.) 

 

3.3.10. Multiple Object Tracking Precision (MOTP) 

MOTP is the precision of the tracker in determining the exact position of a tracked person 

or object. MOTP is calculated as follows: 
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  , 

where is the Euclidian distance error between the matched GT location and the 

matched SUT location and  is the total number of matches made.  The MOTP is a 

Euclidian distance error for matched GT-SUT pairs over all frames, averaged by the total 

number of matches made. It shows how well positions of persons or objects are 

estimated. 

3.3.11. Multiple Object Tracking Accuracy (MOTA) 

MOTA is the accuracy of the tracker in keeping correct correspondences over time, 

estimating the number of people or objects, recovering tracks, etc. 

, 

 

Where 𝑚𝑡 , 𝑓𝑝𝑡,  and  are the number of misses, of false positives, of mismatches 

and the number of GT objects respectively for time t. It is the sum of all errors made by 

the tracker over all frames, averaged by the total number of GT objects and people. 

MOTA is similar to accuracy metrics widely used in other domains and gives a very 

intuitive measure of the tracker’s performance independent of its ability to determine the 

exact person locations. 

 

3.4. Perimeter Intrusion Detection Metric 

In this section, we focus on detection performance metrics for safety systems and flexible 

automation. In order for more advanced flexible automation to operate in an environment 

that may contain humans, the probability of the robot or automation system injuring any 

person must be acceptably low.  The human detection system is only part of the entire 

automation safety system and thus by itself cannot guarantee a safe operating 

environment.  Human detection systems provide varying amounts of information about 

the humans they detect. The more information provided and the more accurate that 

information, the more options are available to the automation system designer as to how 

to use that information. 

3.4.1. Mean Time to False Detection 

The true and false detection rates are measured separately for each type of moving or 

movable object by deliberately moving that object into the protected area of the human 

detection system. In addition, the system must be tested to determine how frequently the 

perimeter intrusion is triggered with no stimulus present.   The system’s false detection 

rate will equal the sum of the false detection rate for each class of object multiplied by 

the frequency associated with that class of object plus the false detection rate without a 

stimulus. The mean time to false detection is the reciprocal of the false detection rate.  It 
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is important to vary the speeds and positions where the intrusion occurs. The rates should 

also be reported separately for each object type if the results are to be extrapolated to 

environments with different frequencies. 

3.4.2. Mean Time to Missed Detection for Perimeter Intrusion Accuracy 

Separate missed detection rates must be measured to capture the contribution of each 

activity, demographic group, and type of clothing likely to occur in the environment. The 

planned activity will dictate a range of positions and velocities around the perimeter that 

need to be tested. It is important to report the rates separately if the results are to be 

extrapolated to environments with different frequencies. Activities that cannot be 

performed while crossing the perimeter need not be considered. 

3.4.3. Presence Accuracy for Perimeter Intrusion Accuracy 

Presence accuracy includes the same two metrics as perimeter intrusion, but adds two 

additional metrics which measure the system’s ability to report when all people have left 

the protected area. 

3.4.3.1. Mean Time to False Clear for Human Presence  

The average time while the human presence is being reported until the system falsely 

indicates the area is clear. 

3.4.3.2. Mean Time to Missed Clear for Presence Accuracy 

The average time while presence is being reported until the system fails to report that the 

area has become clear. 

3.4.3.3. Falsely Clear Regions 

A falsely clear region is an area or volume for which the GT reports a person but the SUT 

does not. 

3.4.3.4. Falsely Occupied Regions 

A falsely occupied region is an area or volume that the SUT reports as containing a 
person but the GT reports as being clear.  

3.4.3.5. Mean Time To Tracking Failure (MTTF).  

This measure gives the confidence level of the expected time until one of the 
following tracking failure events occurs. 

 Losing track of a person 

 Swapping identifiers for two different people 

 Creating a new unnecessary identifier for a person already being tracked 

 Treating a group of two or more people as a single person with a single identifier 

 Treating a single person as two or more people  

3.4.4. Human Identity Tracking 

The SUT and GT systems provide an identifier for each person that should remain 

constant and unique to that person even if he/she leaves the environment for extended 

periods and returns. 

3.4.5. Probability/Confidence 

The system may provide a probability or confidence value that each tracked person is in 

fact a human. The system may also provide a polygon, polyhedrons, or grids or matrices 
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to describe 2D or 3D areas within the protected area where sensors will be unable to 

detect people due to either temporary or permanent occlusions.  

4. Conclusion 

In this report we have presented performance evaluation metrics for object detection and 

tracking in manufacturing and safety applications. In particular we have discussed three 

types of performance evaluation metrics based on detection, tracking, and perimeter 

intrusion.  

 

Currently, we have implemented some of these performance metrics and test procedures 

for the evaluation of human detection and tracking for a robot safety evaluation.  The 

results will provide scientific foundations for development of new standards that enable 

the use of perception systems in manufacturing applications. 
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