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Flow Control in Time-Varying, Random Supply

Chains

lon Matei, Assane Gueye and John S. Baras

Abstract

This paper focuses on the logistics aspect of supply chaimagement. It proposes a randomized flow management
algorithm for a time-varying, random, supply chain netwofk constrained stochastic optimization problem that
maximizes the profit function in terms of the long-run, timesrage of the flows in the supply chain is formulated.
The algorithm is distributed and based on queueing theodyséochastic Lyapunov analysis concepts. The long-run,
time average of the flows generated by the algorithm can dpitranily close to the solution of the aforementioned
optimization problem. In support of the theoretical resuftumerical simulations are also presented.

|. INTRODUCTION

Among many possible definitions, the supply chain can be eééfes a network of interrelated activities of
procurement, production, distribution, vendition, andi&amption of one of more productsg. Manufacturing is
often outsourced around the world, with each component riratbeations chosen for their expertise and low costs
[17]. Consequently, today’s supply chains are increasinghgmex and rely on critical infrastructures such as roads,
railways, and airports to move goodsd], and therefore they exhibit the co-existence of operafi@ptimization
with operational vulnerability 17]. This was most recently and dramatically demonstratechi dftermath of
several accidents and natural disasters. For example, @nfitee Phillips Semiconductor plant in Albuquerque,
New Mexico caused its major customer, Ericsson, to lose $40ion in potential revenues. Another example
concerns the impact of Hurricane Katrina. This storm halté&o - 15% of the total U.S. gasoline production,
raising both domestic and overseas oil pricés More recently, the tragic earthquake of March 13, 201 tle
northeastern coast of Japan and the devastating tsunatmiotitaved have shattered the nation, with immense
loss of life and property. In addition, it brought uncertgiof the future, not the least of which is the expected

decades-long impact of the nuclear reactors in Fukushiria [
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As the world’s economies become increasingly intercoratkirtto a global economy, supply chain networks face
many new types of risk, including natural disasters, prgitsocial instability, culturgcommunication inconsistency,
exchange rate fluctuation, and local legislatiofis These risks forced the supply chains’ stakeholders toeymid
the operational optimization and to recognize the opematioulnerabilities of the supply chains and to underline
their time-varyingandrandomnature.

This paper focuses on tHegistics aspect of the supply chain management. Logistics planslemmgnts, and
controls dficient and &ective product storage and flows (forwaslerse). Logistics starts from the point of origin
to the point of consumption, with the goal of meeting customeguirementsj]. The paper addresses the flow
management in a supply chain that exhibit stochastic behawi both links and demands, and in addition it
responds the need for decentralized decisions as poinhda} iA randomized and decentralized algorithm for the
management of the flow of the product in a time-varying, randwpply chain aimed at maximizing the profit of
a firm is proposed. Due to the random nature of the supply clianprofit function is defined to be dependent on
the (long-run, time) averages of the flows, since the flowsranelom processes. Hence, the optimization problem
becomes stochastic. The approach for solving the optimizgiroblem is as follows. First, the satisfiability of the
supply chain’ constraints is transformed into a stabiligndition on a set of queues associated with the supply
chain’s components. Second, a Lyapunov drift analysisniecie is used to generate an algorithm that ensures
the stability of the queues, and at the same time maximizeptafit function. This approach avoids the need of
a realization of the stochastic parameters, as it is the icagestochastic approximation approach. At each time
instant, the algorithm produces decisions on the flows ttetraplementable (that is, take into account the current
the state of the supply chain). More importantly, the réisgltong-run, time averages of the flowst arbitrarily
closeto the solution of the stochastic optimization problem. ¢idiion, the algorithnmdoes not require knowledge
of the probability distributiorof the random process that drives the supply chain and detddath supply changes
and demand variability. Furthermore, thetions takerby a specific decision maker are based only on a localized
view of the state of the supply chain. This localized view sists of the state of all the links that have at one end
the decision maker. In other wordke algorithm is distributed

The operational research literature emphasizes impatandlows’ management in supply chains, with ap-
proaches varying from linear, non-linear or mixed-integergramming i],[ 18] to game theory 1], [17],[13],[19].

The role of a supply chain, the key strategic drivers of itsfgrenance, and the analytical methodologies for its
analysis are extensively treated .|

The study of a supply chain under a stochastic setup haveduiEassed in several works in the literature, however
there are some significantffirences compared to the approach presented in this papéf],lthe authors propose
an algorithm for determining the system reliability wittspect to the maximum flow of a network achieving a given
demand. Although the network studied by the authors havesititat can fail randomly, the demand is assumed
deterministic and no cagrofit functions are considered in their analysis. Gh fhe goal is to determine how much
of a particular product a plant should produce, given a (jptsssandom) demand and based on maximizing a utility

function. The authors use a simplified model for a supply chimirmed by plants and retailers only, the resulting



network topology being a deterministic bipartite graphe Buthors propose a heuristic scheme for determining the
assignment policy and focus most of their attention to ai@adr type of graph, called expander graphs. Expanders
graphs are interesting due to there spectral propertias,ighthey do not degrade by increasing the number of
nodes. Compared to this work, although the profit function lba interpreted as a utility function, in the current
paper the graph is arbitrary and stochastic and the pro@gedthm is based on a rigorous, mathematical analysis.
Another example of supply chain analysis under random demanintroduced in]. Similar to the current paper,
the authors focus on determining the flow on the supply chiakslbased on optimizing an objective function, but
the supply chain is assumed deterministic. Another fortiargor the analysis of a supply chain under a stochastic
setup is presented in f], where the authors consider the procesgmgsportation costs, demands, supplies, and
capacities to be stochastic parameters. The goal is to nziaithe expectation of a cost function and the authors
chose a stochastic approximation strategy to solve thenagdtion problem. This approach consists of using a
realization of the stochastic parameters to approximaeipectation cost and then use deterministic optimization
techniques to solve the resulting problem. The main disatéwgge of this approach is that the accuracy of the solution
depends on the number on samples the joint probabilityiloligion of the stochastic parameters must be knows.
In the current paper, the approach for solving the stoahagtiimization problem is not based on a approximation
of the expected cost and there is no need for the probabiktyiltlition to be known.

The paper is organized as following. Sectibrintroduces the model for the time-varying supply chain roekw
considered in this paper. Sectitlh introduces the notion of the capacity region of a supply clzaid formulates a
constrained stochastic optimization problem, aimed atimizing the profit function in terms of the long-run time-
average of the flows. SectidW describes a randomized, dynamic flow control algorithm &dviag the stochastic
optimization problem, using queuing theory concepts to @hdlde constraints. Sectiovi presents a performance
analysis of the flow control algorithm, which shows that tldduson of the algorithm can get arbitrarily close to
the solution of the optimization problem described in Smttil. The paper ends with numerical simulations of

the proposed algorithm (Sectidfi) and some concluding remarks (Sectighl ).

Il. SUPPLY CHAIN MODEL

A firm involved in the production, storage and distributiohaohomogeneous product is considered. The firm
uses a set of manufacturing facilities, a set of warehousdssarves a set of retail outlgdemand markets.

The supply chain model used in this paper is similar to the ased in [L7], with the main diference that
the network istime-varyingand random An example of a supply chain network is given in Figutewhere
node 1 represents the firm, nod@s3,4} represent the set of manufacturing facilities, nof{&s5),(6,6")} are the
warehouses and nod¢€g 8,9} designate the retail outlgtemand markets.

A supply chain with only one firm is considered. The singleafscenario is suitable for a dominant-firm model,
where a single firm controls a dominant share of the markét [The sets of firms, manufacturers, warehouses and
retailers are denoted by, M, ‘W andR, respectively. In addition, lelv be the set of all nodes in the network

(with a typical node denoted by, i.e., N = {F U MUWURU{I’'li € W}, with cardinality N = [N|. Note that



Fig. 1: Example of supply chain network

similarly to [17], a warehouse is represented by two nodes in the network (by usiras well) in order to clearly
emphasize the flow of the product passing through the wasshaie., through the linki,(’). The set of links of
the supply chain is denoted by ={(i, j),i # j € N}, where products “flow” from nodeto nodej for each {, j) € £
and where the flow of the product in the chain is driven by thealed at the retailefharkets. It is assumed that
links of the form {,i’) are also included in_.

The supply chain operates in slotted time, with slots noizedl to integral units so that slot times occur at
timest €{0,1,2,...}. The state of the supply chain at tinhés denoted by5(t). The state procesS(t) incorporates
the stochastjnondeterministic behavior of the supply chain, such asiplesslisruptions in manufacturing and
transportation due to natural disasters, power outagebnigal and malfunctions. For example, the transport or
manufacturing capacity can be at full capacity or at zercachy in case of uncontrollable events. For simplicity,
throughout the rest of the paper, we assume that the linkeeostipply chain can be either active or inactive, as
described by5(t). This means that a transportation link may become unaleilat some time slot. The following
assumptions about the statistical propertieS@j are made.

Assumption 2.1The proces$(t) belongs to a finite se$ and evolves according to an identically, independently



distributed random process, with stationary distributiiven by = (7s), where

19
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with 1is-)-s being the indicator function that takes value one when&(®r= s, and zero otherwise.

The amount of product flowing through the link j) during time slott is denoted byu; j(t) . Without loss of
generality it is assumed that the flows are measured in (fpralluct units; to recover other units (raw materials
for example) the flows are multiplied by the process rate ef égbonomic unit generating the flow. The random
processdi(t) for i € R represents the demand at markelt is reasonable to assume that the quantity of product
flowing between dterent entities is upper-bounded, and hence the followisgraption is made.

Assumption 2.2The flows; j(t) are non-negative for all time-slotsand there exist positive scalguf'®* such
that

Z#i,b(t) <" Vie N, Y, @)
b

where all pairsi(b) belong to the sef’.
The above inequalities limit the total flow of the productieg any node, which can be thought of as production,
transportation or storage capabilities limitations.

The following definitions introduce the time averages of ineduct flows in the supply chain.

Definition 2.1: The time average flows of product in the supply chain are gben
_ 1 -1
mﬂﬁ;%ﬂmwh 3)
and the long-run time averages of flow product are given by
pij = fim i i (0), (4)
for all (i, j) € L.

Additionally, the market demands satisfy the followingwaagtion.

Assumption 2.3The random processelit) are independent and identically distributed, with mearegiby
di = E{di(D)}. VieR. (5)

The aggregate vectors of product flows and market demanddemated bypu(t) = (ﬂi’j(t)) for (i,j) € £, and
d(t) = (d;(t)) for i € R, respectively.

I1l. FORMULATION OF THE STOCHASTIC OPTIMIZATION PROBLEM

In this section, the optimization problem the firm needs tlvesto maximize its profit is presented. The profit
function is defined as the fiierence between the revenue from selling the product andasiefar producing the
product. Since the supply chain is assumed random, the [uofition is defined in terms of the long-run, time

averages of the product flows. The flows of the product mustfgad set of constraints induced by the supply



chain network. These constraints define tapacity regionof a supply chain, which tells how much demand the
supply chain can support.

Definition 3.1: The capacity regior of a supply chain is the closure of all vector of demamrds(x;) that can
be supported by the supply chain network, considering adlsibe strategies for choosing the flows of product,
under the limitations introduced by Assumptiar®.

In the following, a more detailed characterization of theawity region of a supply chain is given. To that end,
let Cij(s) be the set of flows on linki(j) satisfying Assumptior2.2, when the supply network is in stag and
under all possible flow control policies. LEXs) be the set of all link sets, i.eG(s) = (Ci’j(s)) for (i,]) € L. Let
co{C(s)} denote the convex hull of the set of all possible value€(@). Recalling that the state of the supply chain
is an i.i.d. random process, the set of the average convéxhall possible flows on links, given all possible states

can be defined. This average set can be formally written amdyfaf graphsr’, given by
rézy@qqu
EN

A matrix G = (G j) is said to belong td’ if there exits a randomized flow control policy that dependsliwe state

of the network, such that
G= ) mE®IS®H = s,
€S

where E{u(t)|S(t) = s} is the expected flow matrix under the considered policy, yitreat the supply chain is in
states.

The following Theorem inspired by3] gives a mathematical characterization of the capacitioregf the supply
chain.

Theorem 3.1:The capacity region of a supply chain is given by the seatf all demand vectors = (x;) such

that there exits a flow matri& = (G; j) belonging to the closure df, together with flow variables; ; such that

fij=0, ¥(i,j)e £, fij=0, ¥(i,j) ¢ L, (6)
D ifai= ) fip, VieM, (7)
acF beWw

Z fa,i = fi,i’, Vi EW, (8)
asM
fij = Z fir b, VieW, ()]
berR
D fwi=x, VieR (10)
acw
fij <Gij, V(,j)e L (11)

In the particular case where the proc&gd is i.i.d. (which in fact is the assumption throughout thappr), the
next Corollary presents a further characterization of tyeacity region, wher€I(A) is used to denote the closure

of the setA.



Corollary 3.1 (adaptation of Corollary 3.9,9]): If T is a closed set and if the state proc&g¥ is i.i.d. from
slot to slot, the demand vectaris within the capacity region if and only if there exists a stationary (randomized)
policy that chooseg(t) based only on the current topology st&t), such that

E{Z/Ja,i(t)} = E{ 2 ui,b(t)},v e M,

acF bew

E{Zﬂa,i(t)} =E{uii O}V ieWw,

aeM

E{uii (1)} = E{Z#i',b(t)},v iew,

beR

E{Z /vla’,i(t)} =%,V ieR

acw
where the expectation is taken with respect to the randoroeges(t) and the (potentially) random policy based

on S(t).
Note that ifx € A, then anyx“such thatx’< x entrywise, also belongs ta. In addition, it can be shown that the
setA is convex, closed and bounded and it contains the vectord aeabs, (i.e.,0€ A).

The previous Corollary gives the constraints induced bystiygply chain network that the flows of product must
satisfy. Next, a stochastic optimization problem is foratetl; problem that describes the objective of the firm under
the network constraints introduced above.

The goal of the firm is to maximize its profit, that is thefdrence between the revenue and the cost functions.
The revenue function of the firm depends on the quantity oflpcts that reach the retailégmgarkets in the long-run.
The revenue function is denoted by

f@= > fii),
ieW,jer
where (', j) represent valid warehouse-retailer pairs, i.e W, je R and (', j) € L. Cost functions associated with
each link (, j) € £ are also considered, and are denotedyfjyui ;). These cost functions depend on the flow of the
product on the links and are generated by activities suctc@girdng raw materials, manufacturing, transportation
or warehouse usage. The total cost function is given by

o(u) = Z 9i,j(uij) + Z 9i,j(ﬁi,j)+zgi,v(ﬁi,i')+

ief,jeM ieM,jeWw iew
£ > g ).
ieW,jer
Assumption 3.1The functionsf; ; are non-negative, continuouslyfidirentiable and concave, while the functions
0i,j are non-negative, continuouslyfidirentiable and convex.

The profit functionh is the diference between the revenue and the cost functions, i.e.,

h() = () - 9(u)-



The firm’s objective is to maximize the profit under the flow swaints induced by the (capacity region of the)

supply chain network. Lex; denote the long-run, average flow of product arriving at reaketailer)i, that is,

Xi = Zﬁa’i’ VieR.
acw

The following stochastic optimization problem is consih&r

max  h(u) (12)

X
subject to: X €A,

<d.
The first constraint introduced above ensures that the gegueoduct flows arriving at the markets (retailers) are
within the capacity region of the supply chain network, ican be supported by the network. The second inequality

ensures that the long term flow of the product arriving at tlaekets are no larger than the demands at the markets.

By Corollary 3.1, the above stochastic optimization problem can be equitlgleepresented as

max h(u) (13)
M
subject to: Y acs Hai = Dpew Mib, V1 € M,
YacMMai = pijr, Vi € W,
Hiri = per Hir b, Vi € W,
YacwMar i < &’Vi eR,
whereu; j = E{ui j(t)} for all (i, j) € £, with 4 j(t) being chosen by some stationary, randomized control iihgor
based only on the current stait).
Assumption 3.2 (Interior point)There exist positive scalaeg ande; and two stationary randomized flow control

policies based on the current st&8&), corresponding t@; and ey, respectively, such that

Elu () +e=E {Z,u (t)} VieM,

D EGO)+a=Eut o). view,

a

E{uft ) +e = {Z# (t)} View,
E{Z,u;},i(t)}+€1 <d.VieR,

and

E{Zyizb(t)}+62 = EuZ (OLY ie M,
b

E{u I,(t)}+52—z 2o} view,

a



E {Z yf,{b(t)} +e=E{u?®)].view,
b

E{Zuii(t)} <d,VieR,
a

The above Assumption basically states that the optimatisolwf (13) is not on the boundary of the capacity
region. In particularg; can be viewed as an additional flow on one of the links thavesrat a node and is produced
by a source outside the supply chain, whifecan be viewed as an additional flow leaving a node on one of the
links but that fails to reach the destination node.

From the numerical optimization point of view, it is more adiageous to work with inequality constraints
rather than equality constraints. As a consequence, eadiggconstraint in 13) is replaced by two inequality

constraints, as shown in the following:

max h(x) (14)

i
subject t0: Yacr fai < Ypew Hib, Vi € M,
Yaer Hai = Ypew Hip, Vi € M,
YacmMaji < i, Vi€ W,
ZacmHai = fijr, Vi€ W,
Hiri < YperHir b, Vi € W,
Hiri 2 Yper Hir b, Vi € W,
Yacwiai < G, Vi€ R.

In the following sections a mathematical approach for sguvhe optimization problemld) is introduced. This

approach is based on queueing theory and on drift analysis.

IV. FLOW CONTROL ALGORITHM

In this section a flow control algorithm which ensures tha lilng-run, time-average flows in the supply chain
get arbitrarily close to the optimal solution df3) is presented. The main idea behind the algorithm is to @ssoc
to each of the inequality constraints a (virtual) queue. Asws in what follows, the inequality constraints are
satisfied if the queues associated to them are stable, in sense that is about to be defined. By taking advantage
of this property, an algorithm that stabilizes the queues gets arbitrarily close to the optimal solution a4 is
proposed. The algorithm is derived as a result afrift analysisapproach on the (virtual) queues. This approach
is closely related to the stochastic Lyapunov the@iyand avoids using a realization of the stochastic pararmeter

for approximating the objective function.
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A. Modeling inequality constraints using queues

This subsection shows why the feasibility of the inequadibyistraints defined in the optimization probleta)(
can be connected to the stability of a set of queues assddiatthem.

Consider a queud(t) (Figure?2) with (possibly random) input(t) and outpufu(t), whose dynamics is given by

U(t+1) = max{U (t) — u(t), 0} + A(t).

ﬂ Input

ﬂ QOutput

Fig. 2: Queue schematics

Definition 4.1: The queuédJ(t) is said to bestrongly stablaf

=
limsup— Z E{U (1)} < co.
=0

t—oo t
T

Let us now assume that there exiitandp_such that

|

A= fim 3 2, B
and

_ 13

pi=fim g B

Proposition 4.1 (Queue stability)A necessary condition for the strong stability of the quel® is
A<

The necessary condition is quite intuitive. Indeed[if 1z, then the expected queue backlog grows to infinity,
leading to instability. Under additional assumptions oa grocessed(t) and u(t), it can be shown thaf<;7 is
also a sfiicient condition (seed] for more details).

As previously mentioned, a set of (virtual) queues are astartto the constraints of the optimization problem

(14), whose dynamics are given in the following.
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In the case of a manufacturing unit, the dynamics of the queveds are given by

Ult+1)= max{Uil(t) = > Hin(t), o} + ) Hailt), Vie M, (15)
b a
U(t+1)= max{Uiz(t) - Zﬂai (t),O} + Z Lin(t), Vi e M. (16)
a b
The queues associated to the wharehouses evolve in timedagg®o
UH(t+1) = max{U(t) - i (1).0} + Z pai(t),¥ie W, (17)
U(t+1)= max{Uiz(t) - Z Lai (), o} + i (), Yi € W. (18)
and
Ult+1)= max{Uil,(t) = > pir (1), o} +iir (1), Yi e W, (19)
b
UZ(t+1) = max{UZ(0) — i e (1),0) + > i n(t), Vi € W. (20)
b

The dynamics of the queues corresponding to the retailegivén by
Ui(t+1) = max{UX(t) - di(t). 0} + Z pai(t), Vi € R. (21)
a

Remark 4.1:In the previous expressiong;puip(t) represents the summation over all active links carrying
products from nodé, at time slott, as per the state of the supply chain sta(g. A similar interpretation can be
given to the term),ua;(t).

From Propositiort.1 it can be inferred that any flow control algorithstabilizingthe queues produces a solution
that satisfiesthe flow constraints defined in the optimization probleh3)( Therefore, it makes sense to look for

an algorithm that stabilizes the queues defined above arftieisame time maximizes the profit function.

B. Algorithm description

This section introduces a randomized flow control algorithat can get arbitrarily close to the optimal solution of
(13). The algorithm stabilizes the (virtual) queues and treneeensures that the inequality constraints are satisfied,
but, most importantly, it shows how the economic entitieshi@ supply chain dynamically adapt their flows based
on the changes in the network.

The algorithm consists of actions taken by the entities lvaa in the economic activities of the firm, at each
time slott. Let § be a positive scalar, thatfacts the performance of the algorithm. For simplicity, teé af firms
¥ contains only one firm, say node 1 in the network. In the foilmphe flow control algorithm is described.

« Control of the raw material flowAt every time slot, the firm observes the current levels ofrttenufacturers’

queuesug(t) and Ug(t). Then, at each timeit chooses the amoupt , of raw material sent to manufacturer

b, whereus p is the solution of the following optimization problem:

Tllg] Yoem (60L0(u1p) + [UEH) - UZ(®)] ) (22)

subject to: YbemHib < U7 pap > 0,b. (23)
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« Control of the flow of product from manufacturers to wareremig\t every time slot, each manufacturer
observes the current level of its queu.dslé(t) and Uiz(t) and the current levels of the queues of the warehouse
b to which product is possible to be sent to (as per the statg(9j, i.e., Ug(t) and Ug(t). The amount
of product sent to each warehouBeat time slott is given by up, obtained as solution of the following

optimization problem:

min - p0Gip(uin) - ([UH0) - Up®)] + [UE0 - UF®) s (24)
subject to: Dbew Mib < " pip = 0,VD, (25)

forall ie M, be W and {,b) € £ which are active at time, as per the state of the supply chain given by
S(t).

« Control of the flow of product within the warehous@s:every time slot, each warehousebserves the current
level of its queuedJ!(t), U (t), UZ(t) and UZ(t). The amount of product allowed in the warehouse at time

slott is given by, obtained as solution of the following optimization praite

min 5611 42) = ([UFO - VO] +[UF 0 - U7 )u (26)

subject to: 0< p < pfmax (27)

for all i e W and (,i") € £ which are active at tim¢, as per the state of the supply chain given3gy).

« Control of the flow of product from warehouses to retailefd: every time slot, each warehousebserves
the current level of its queues backlb,gi(t) and Uiz,(t) and the current level of the queue of the retableo
which the product is sent to, i.eug(t). The amount of product sent to retailerat time slott is given by

Uir b, Whereyi , are obtained as solution of the following optimization desh:

min - YperdGir(pir o) =6 fr(uie ) - (U ) - UE®) - U2 i (28)

subject to: Zber Mirb < 4@ pir b 2 0, Vb, (29)

forallie W, beR and {’,b) € £ which are active at timé, as per the state of the supply chain given by
S(1).

Note that the optimization problem23)-(28) are convex constrained optimization problems, which aasdived
efficiently at each time slot. Also, note that each of the estit@olved in the economic activitietoes not need to
know the entire state of the network, nor the probabilityriisition of S(t). Indeed, in the case of the manufacturers,
the raw material flow is determined only by the level of the ups backlogs and the cost. When a manufacturer
must decide the flow of the product sent to warehouses, islabithe current valid links, and it makes the decision
based on the cost of utilizing the respective links, and dasethe diference between the queues’ levels of the
manufacturer and warehouses. In the case of the amount déigtrallowed in a warehouse, the decision is based
on the cost of keeping the product in the warehouse and onififegehce between the levels of the (virtual) queues.
Finally, the amount of product sent to retailers from a watede is based on the current available links, on the

(localized) profit obtained from sending products to a djecetailer and on the éierence between the queues’
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levels of the warehouse and retailef$is limited need of information for implementing the algan makes it
advantageous for controlling the flow of product in increegy complex and globalized supply chaidgother
important observation is that the manufacturers, waretmasd retailers do not need to know the entire state of
the network at a time slot, nor the statistics of the stategssS(t). They only need to observe the state of links
which connect them to their neighbors. In addition, theuzirtqueueédil(t) can find an analogy in reality. Indeed,
in the case of a manufacturer for example, the queue can kedias a deposit for the raw material waiting to

be processed.

V. DERIVATION OF THE ALGORITHM AND PERFORMANCE ANALYSIS

This section shows the considerations behind the developafi¢he algorithm and analyzes its performance. The
algorithm is derived as a result of a tradiebetween maximizing the profit function and maintaining ttebgity
of the queues introduced above. Stability of the queuesreadhat the constraints introduced by the supply chain
are satisfied. By putting more weight on maximizing the prhfiiction, the flows generated by the algorithm get

closer to the optimal solution. However, the backlogs ofqoneues are increased as well.

A. Derivation of the algorithm

The algorithm is derived as a result of a traffdmetween a drift function and the profit function. The driftais
measure of the increase in the queues’ backlogs.

Let U(t) = (Uij(t),i eM,Uij(t),Uij,(t),i e W,je{l,2},Uit),i eR) be the vector of queues. Using the quadratic
Lyapunov function

1 - - - 1
UCOES DUl ) (VP +ulw?)|+ 5 D Ui
jef1,2} LliemM iew ier
the queuesdrift is given by:
A(U(1) = E[V(U(t+1)) - V(UO)IU O],

The flow control algorithm for the supply chain results fronmimmizing an upper bound of the following quantity
AU(1)) - SE {h(u(®))IU(®)} (30)

for each time slot. Note that minimizing the previous expression means a tofidbetween the stability of the
gueues through the Lyapunov drif{U(t)) and the firm’s profit through the profit functidn whereé is a weighing

factor. In fact, makings large enough implies focusing on maximizing the profit (amdtigg arbitrarily close to
the optimal solution), but at a cost in terms of an increasedlyct congestion in the queues.

Let usY,U,u, A be three non-negative reals so that
Y <maxU —pu,0} + A
It is not difficult to show that the following inequality holds:

Y2 < U242+ A2-2U(u—A). (31)
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Using the previous inequality, an upper-bound 8@)(is as follows:

A(U() - SE (h(u(t)IU(t) < BN - E{Z Uil(t)[Z/Ji,b(t) _/Jl,i(t)]|u(t)}_

iemM b

—E{Z u?(t)[— i (1) +u1,i(t)]|ua)} - E{Z U0 | i () - Zua.i(t)]w(t)} -
ieM b iew a

—E{Z u?(t)[—m,i/(t) + Zm«t)] |U(t)} - E{Z U] D kin(®) —ui,if(t)]w(t)} -
iew a iew b

—E{Z Uiz’(t)[_ Hib(t) +#i,i/(t)]|u(t)} - E{Z Ui(t) | di(t) - Z#a/,i(t)]lU(t)}—
iew b ierR a

—aE{Z fi/,j(m,,—(n»ua)}+6E{Z gi(ri(th(t)}wE{Z gi,j(ui,j(t))|ua>}+
(.)) ieM @i.))
+6E{Z gi,ifwi,v(tmua)}+6E{Z gi',j(ﬂi',j(t))IU(t)},
(i.i") (GN);

where

oty

ieN
and whereN is the number of all queues.

A rearrangement of the sums in the previous inequality &rrfiroduces
AU(1) - E{(h(u®))IU(1)} <

< BN+ E{Z Ui(t)d (t)|U(t)}+ E{Z §91i(ui(®) + Ut - u?(t)]m,i(t>|ua)}+

ierR ieM

E{ > 5gi,b(m,b(t))—([uﬁ(t)—Ué(t)]+[UE,(t)—U?(t)])m,b(t)|ua)}+
(i,b)

JieMbeWw

+E{ > 6 (i () - (UMD - VRO + [Uizf(t)—Uiz(t)])#i,i/(t)IU(t)}+

(iew

+ E{ DT 8Gmr n(t)) - 6T bl n(®) — (U0 - Un()) - u%(t)]m,,b(tnua)}. (32)

(i" b)ieW beR
From the above inequality, the derivation of the algoritterevident. Given queue leveld(t), the flow control
algorithm follows from greedily minimizing the right-hargide of the inequality 32), in terms of the control

variablesu(t) over all possible flow options satisfying the constraimisdduced in Assumptio.2
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B. Performance analysis

This subsection shows that the dynamic flow control algorithtroduced above gets arbitrarily close to the
optimal solution of {4). The next theorem proves to be useful in the analysis of liperighm.
Theorem 5.1:Let Assumptions2.1 through3.2 hold and assume that there exist positive constantsand B

such that for all timeslots and all backlog queue leveld(t), the Lyapunov drift satisfies:

N
AU®) ~ SEThEO)IUE®) < B—e Y Ui(t) ~ah'. (33)
i=1

whereh* is the optimal cost function of the stochastic optimizatpoblem (3). Then the follwing inequalities

are satisfied

lim su ltf[f [§ EU@)+ Y EU@ +Ul@)+ > E{U-(r)}]  Broth-h) (34)
'[—»orgt n K i 4 i i’ 4 : - €
=0 j=1 \ieW ieM ieR
lim inf_ hG() > h* - ?, (35)

whereu(t) was defined ing) and h is given by

t-1
h 2 lim sup:—L > Eth(u(@)).
=0

t—oo t

The previous Theorem is a slight modification of Theorem &.43] and for brevity the proof is omitted.

Remark 5.1:Note that since the flowg; j(t) are upper bounded ky"®* and the functiorh is continuous, there
exists hmax SO thath — h* < hmax In addition, letumax= min{u"®.

The next Theorem describes the performance of the flow doalgorithm.

Theorem 5.2:Let Assumptions2.1 through3.2 hold. For any positive parametérthe flow control algorithm
stabilizes the (virtual) queues associated with the caimgs of the optimization problenif) and gives the following

upper bounds:

. 1 (8 - - - NB+ 6hmax
iim sup ¢ Z;)[Z _Z E{UiJ(T)}+Z E(U)(z)+ uil,(r)}+z E{Ui(T)] < ﬂTX"‘a (36)
=0\ j=1lieW ieM ier
o _ BN
lim inf h(u(t)) > h(u") - = (37)

wherey* is the solution of {3) and whereu(t) satisfies 8).
Proof: Let e1 be a small quantity of product flow added to the inputs of qsehqje(t) for allie MUW and

queuedJ;(t), for i € R. It follows that the dynamics of the aforementioned queussone

Ult+1) = max{uil(t)—Zm,b(t),o}wl,i(t)+el,\fi eM,
b

ult+1) = max{uil(t)—m,i/(t),o}+Zﬂa,i(t)+el,wew,

Ult+1) = max uil,(t)—Zyi,,b(t),o}+M,i/(t)+el,Vi ew,
b

Ui(t+1) =

max{Ui (1) - 6i(t). O} + > ptar (1) + €1, Vi € R,
a
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and letA., denote the capacity region of the supply chain under thetiaddl flow e, and u*(e1) denote the
solution of (L3), whenA is replaced byA.,. Then, by Corollary3.1 applied to the capacity regiof.,, we have
that there exists a stationary randomized flow control dligar, that chooses the flows based on the current state

of the supply chain, and gives

Elpi(e)l+ea = E{Z#fib(ﬂ)},v ieM,
b

D Elusi@)+e=Efu @) iew,

a

E{,ui*,i;(fl)}+ €1= E{Z#i*/,b(fl)}’v lew,
b

E{Zu;’i(q)}+q < C{,V i eR,
a

whereT (e1) = E {5, (en))-
Similarly, assuming that a small floeg is added to the inputs of queubl(t)?, their dynamics become

UAt+1) = max{UP(D) —puai(t). 0} + > pin(t) + e, Vi € M,
b

UZ(t+1) = max{UiZ(t)—Zpai(t),0}+,ui,i/(t)+52,VieW,

UZ(t+1) =

max{UZ(t) - i (1).0} + Z pir () + €2, Vi € W.
b

Denoting byA,, the capacity region under the additional fleyy u*(e2) represents the solution ot whenA is
replaced byA,.
As before, by Corollang.1 applied to the capacity regiof.,, there exists a stationary randomized flow control

algorithm, that chooses the flows based on the current stateesupply chain, and gives
E{Zﬂf,b(fz)} te= E{/JL(GZ)},V ieM,
b

E{,ui*’i,(ez)} +e = Z E{y;i (52)},\7’ ieW,

E{Zﬂ?f,b(fz)} +e=E{u (). VieWw,
b

wheresT (e2) = E{g; (e2)).

Note that by Assumptio.2, suche; ande, do exist.

The flow control algorithm described in the previous sectitinimizes the right-hand side of inequalit$2) for
all possible policies based on the current state of the gugmin. In particular, it does this against the previously
mentioned stationary policies, generated by adding thédtiaddl flows e; and e2. Consequently, under the flow
control algorithm, it follows that

AU() ~ E (h(u®)IU®)} <BN- > uﬁ(t)[Zﬁ;,b(el) - (el)]—
b

ieM



17

- D U0| - D (e + ayy(e) |- Y Ut [‘Tii'(fl) - D Haite|-
ieM b iew 2

= D VRO i (@) + Y @) |- Y Ui [Zﬁib<fl> ~Hi (@)=
iew a iew b

- 2 URO| - D e+ ()|~ Y Ui(t)[E{di )= D 5 j(e0) |-
iew b iR a

=53 Fi i (e) +6 D 91iGE; (e0) +8 . 01 (i (en)) +

(.0 iem @i.)

+6Z Giir (i (1)) +5Z 0G5 (),
(@i,i")

Denotinge = min{ey, e2}, the above inequality becomes

A(U(1) - SE{h(u(®)IU(t)} <
2 . 2 . .
Z Z Ul - EZ Z Ul +ulm]- 62 Ui(t) - sh(i* (e1)).
j=liem j=liew IS
By Theorem5.1 it follows that

2
Z{ZE U@+ > ElU)@)+U) (T)}+ZE{Ui(T)}] <

iemM ierR

- BN+6(h— h(u* (e1))) - BN+ dhmax

€ - €

(38)

and
im nf AGE() = ha (@) - 5 (39)

The performance bounds i88) and @9) hold for any values o such that < g < umax for i = 1,2. However,
the particular values of only affect the values of the bounds and not the control algorithneréfore, the bounds
can be optimized separately over all possible valueg,af=1,2. Obviously, the bound3g) is minimized where
approachepmax It can be shown that the optimal solution df3 when the capacity region is replaced Ay, is
continuous ine;. Consequently, ag approaches zero, the capacity region approached andu®(e1) approaches
p*. Therefore, the bound@) is minimized whene; goes to zero, and the result follows. |

Remark 5.2:Note that inequality 36) shows that under the flow control algorithm, the queues ersg@ble,
i.e., the long-run flows are feasible. In addition, ineqyal87) shows that the solution provided by the flow control

algorithm can get arbitrarily close to the optimal solutitly makings arbitrarily large.
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Fig. 3: Example of network topology: 2 branches, 2 retajlesand downstream crossings

VI. NUMERICAL EXAMPLE

The flow control algorithm described in the previous sedtiaras implemented and tested on the supply chain
network shown in Figur8. The cost function corresponding to each linkX of the network has the form j(ui j) =
aj’jﬂsj +bi jui j, while the revenue function is given bi(u) = Cyf)j +d, wherea ; =0.1,b;=03,¢c=3,d=2,

p = 1.8. The maximum output rate at nodes assumed to be equal tghax= 6% Lj, whereL; is the number of links

going out ofi. This sets an “average” maximum rate of 6 for each link. A lirds two states, ON and OFF. and the
links ON-OFF processes are assumed to be i.i.d. with an 'Qbbability of 09. The demand processes are taken
to be independent and uniformly distributed between 0 antdeaeh time, with an average of 1.5. In addition, two
values for the paramete@rare considered,.0 and 09, respectively, to show its influence on the queues’ backlog

The queues’ backlog over time as well as the running averafyge queues (Figure$) for the two considered
values ofé are plotted. Both the plots for the forwatq(l) and backwardJi(z) queues are shown. Recall that these
gueues are virtual queues introduced as a consequence efingpthe inequality constraints as queues. However,
the forward queues can be interpreted as real queues at abttesnetwork. Also, notice that there is no backward
gueue defined for the queue at a retailer. The queues’ backlbgach branch are shown in a 4-by-2 panel where
the left column corresponds to the froward queues (from topdttom nodes) and the right column corresponds
to the backward queues.

Plots of the flow rates on the fiérent links and their running averages (Fighjeare also depicted. The link

flow rates are shown in a 2-column panel. The left column sHimks (originating) in the left branch and the right
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column displays the rates of links (originating) in the tiginanch. In Figureba the left column shows (from top
to bottom) the rates in link&1,Ls,Ls, L7 of the topology on Figure; the right column shows the rate at links
Lo,L4,Le,Lg. The cross-branch links are shown in the bottom subplots r@ktes at linkd.g,L11 are shown in the
bottom of the left column and linkkjg,L12’s rates in the bottom of the right column). Finally, to empiza on
the convergence of the average rates, a zoom-in of the rat® ipl presented to focus only on the I@]-range of

the y-axis (i.e., the rates). This is shown in Figére

A. Discussion: Queues’ backlog

The queues’ backlogs are shown in Figudedt can be observed that the queues are oscillating but are no
growing unbounded. This is exactly the stability of queussdjcted by the theory. In fact, the average rates also
satisfies the stability condition of Proposition 4.1, aslwBEhe theory however, does not predict anything about the
convergence of the average queues’ backlog. Yet, it can beredd that the average backlog seems to converge
for all (forward and backward) queues. An interesting fellop of this study is to proveisprove convergence of
average queue and to determine under which conditions ogewee is guaranteed.

From the figures, it can be noticed that in general, the fadvgareues at the manufacturers and at the first (upper)
warehouses are in average more loaded than the queues atthe glower) warehouses and at the retailers. This
is a consequence of the back-pressure algorithm, whicle$arpstream nodes to reduce their rate and consequently
build up their queues when downstream nodes are congesetteHin general, queues close to the destination
tend to have a smaller backlog. It can be also observed teatriiss links serve to balance the load to reduce
the variations in each queue. Finally, it can be noticed thatqueue fluctuations increase for higher values of
the parametes (Figures4c-4d). Recall that setting large implies focusing on maximizing the profit (and getting

arbitrarily close to the optimal solution), but at the cokirereased product congestion in the queues.

B. Discussion: Link Rates

The rates at the fferent links are shown in Figurésand 6. A certain number of observations can be made
from the figures.

First, the rates are random due to the randomized controtitign. However, for all runs of the simulation, the
average rate converges for each link. Furthermore, at estefier, the value to which the average aggregate rate
converges is less than 1.5, the average demand at each n¥drigeis a necessary condition for the stability of the
qgueues as was stated in Proposition 4.1. The average rdie attter links are such that the conservation of flow
principle is satisfied at each node (which is what was expcte

When there are two links departing from a nodefficacan either be split (when both links are up), or entirely
sent over one link (especially when the other link is dowrg.see which choice will be made at a given node,
one can analyze the cost functig;(ui,j) = a/,cfj +byi j. Assume that at a branching node fiiais split such that
a rate ofu is sent over one link and X2u over the other link & u < 12. The (local) total cost of such routing
is au? + bu+a(12-u)? + b(12- u) = a(2u® — 24u) + 12b+ 144a. Analyzing this cost as a function ¢f, it can be
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observed that it is minimized when= 12, implying that at a branching node, when both links arethe,entire
traffic should be sent over one of the links. This is what is obseatetdes 2, 3, 6 and 7 for network in Figuge
where the tréfic on the links departing from such nodes is (almost all thee}igither O or equal to the maximum
rate of 12.
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VIII. ConNcLUSIONS

In this paper the management of flow product in a supply chais addressed. Generally speaking, the main
contribution of the paper to the literature consists of th&oduction of adistributed algorithm for the flow
management in a random and time-varying supply ch#iat is not based on stochastic approximation. In more
detail, the contributions are as following. Motivated bgeat events, a random and time-varying model for a supply
chain was proposed which induced a stochastic nature of dhes.fIA stochastic optimization problem aimed at
maximizing the profit function of a firm in terms of the timeeamges of the flows and subject to constraints induced
by the supply chain was formulated. A distributed, dynantgoathm for solving the aforementioned optimization
problem was proposed. Under this algorithm, at each timemglecisions are based only on the current state of
the supply chain. In addition, decisions do not need infaimneon the probability distribution of the supply chain.

It was shown that the long-run, time-averages of the flowsggrd by the algorithm can get arbitrarily close to
the optimal solution of the stochastic optimization prable

Another, indirect contribution of the paper is that it expeshe reader to new techniques for solving stochastic

optimization problems. This is beneficial to the operatioraearch literature based in part on optimization theory.
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