NISTIR 7880-15

NIST Micronutrients Measurement Quality Assurance Program Winter 2005 Comparability Studies

Results for Round Robin LVII Fat-Soluble Vitamins and Carotenoids in Human Serum and Round Robin 22 Ascorbic Acid in Human Serum

> David L. Duewer Jeanice B. Thomas

http://dx.doi.org/10.6028/NIST.IR.7880-15

NISTIR 7880-15

NIST Micronutrients Measurement Quality Assurance Program Winter 2005 Comparability Studies

Results for Round Robin LVII Fat-Soluble Vitamins and Carotenoids in Human Serum and Round Robin 22 Ascorbic Acid in Human Serum

> David L. Duewer Jeanice B. Thomas Chemical Sciences Division Materials Measurement Laboratory

http://dx.doi.org/10.6028/NIST.IR.7880-15

Lwpg 2013

""""U.S. Department of Commerce *Eco gt qp* 'HOMgtt {, Acting Secretary

"""National Institute of Standards and Technology """Patrick D. Gallagher, Under Secretary of Commerce for Standards and Technology and Director (This page intentionally blank)

Abstract

The National Institute of Standards and Technology coordinates the Micronutrients Measurement Quality Assurance Program (MMQAP) for laboratories that measure fat- and water-soluble vitamins and carotenoids in human serum and plasma. This report describes the design of and results for the Winter 2005 MMQAP measurement comparability improvement studies: 1) Round Robin LVII Fat-Soluble Vitamins and Carotenoids in Human Serum and 2) Round Robin 22 Total Ascorbic Acid in Human Serum. The materials for both studies were shipped to participants in November 2004; participants were requested to provide their measurement results by March 2, 2005.

Keywords

Human Serum Retinol, α-Tocopherol, γ-Tocopherol, Total and *Trans*-β-Carotene Total Ascorbic Acid

Table of Contents

Abstract	iii
Keywords	iii
Table of Contents	
Introduction	
Round Robin LVII: Fat-Soluble Vitamins and Carotenoids in Human Serum	
Round Robin 22: Vitamin C in Human Serum	2
References	
Appendix A. Shipping Package Inserts for RR57	A1
Appendix B. Final Report for RR57	B1
Appendix C. "All-Lab Report" for RR57	C1
Appendix D. Representative "Individualized Report" for RR57	D1
Appendix E. Shipping Package Inserts for RR22	E1
Appendix F. Final Report for RR22	F1
Appendix G. "All-Lab Report" for RR22	
Appendix H. Representative "Individualized Report" for RR22	

Introduction

Beginning in 1988, the National Institute of Standards and Technology (NIST) has coordinated the Micronutrients Measurement Quality Assurance Program (MMQAP) for laboratories that measure fat- and water-soluble vitamins and carotenoids in human serum and plasma. The MMQAP provides participants with measurement comparability assessment through use of interlaboratory studies, Standard Reference Materials (SRMs) and control materials, and methods development and validation. Serum-based samples with assigned values for the target analytes (retinol, alpha-tocopherol, gamma/beta-tocopherol, *trans*- and total beta-carotene, and total ascorbic acid) and performance-evaluation standards are distributed by NIST to laboratories for analysis.

Participants use the methodology of their choice to determine analyte content in the control and study materials. Participants provide their data to NIST, where it is compiled and evaluated for trueness relative to the NIST value, within-laboratory precision, and concordance within the participant community. NIST provides the participants with a technical summary report concerning their performance for each exercise and suggestions for methods development and refinement. Participants who have concerns regarding their laboratory's performance are encouraged to consult with the MMQAP coordinators.

All MMQAP interlaboratory studies consist of individual units of batch-prepared samples that are distributed to each participant. For historical reasons these studies are referred to as "Round Robins". The MMQAP program and the nature of its studies are described elsewhere. [1,2]

Round Robin LVII: Fat-Soluble Vitamins and Carotenoids in Human Serum

Participants in the MMQAP Fat-Soluble Vitamins and Carotenoids in Human Serum Round Robin LVII comparability study (hereafter referred to as RR57) received four lyophilized and one liquid-frozen human serum test samples for analysis. Unless multiple vials were previously requested, participants received one vial of each serum. These sera were shipped on dry ice to participants in November 2004. The communication materials included in the sample shipment are provided in Appendix A.

Participants are requested to report values for all fat-soluble vitamin-related analytes that are of interest to their organizations. Not all participants report values for the target analytes, and many participants report values for non-target analytes.

The final report delivered to every participant in RR57 consists of three documents:

- A cover letter for the current study, a brief description of the other two documents, and a discussion of our analysis of the overall results that may be of broad interest. This cover letter is reproduced as Appendix B.
- The "All-Lab Report" that lists all of the reported measurement results, a number of consensus statistics for analytes reported by more than one participant, and the mean median and pooled SD from any prior distributions of the serum. This report also provides a numerical "score card" for each participant's measurement comparability for the more commonly reported analytes. This report is reproduced as Appendix C.

• An "Individualized Report" that graphically analyzes each participant's results for all analytes reported by at least five participants. This report also provides a graphical summary of their measurement comparability. The graphical tools used in this report are described in detail elsewhere [3]. An example "Individualized Report" is reproduced as Appendix D.

Round Robin 22: Vitamin C in Human Serum

Participants in the MMQAP Vitamin C in Human Serum Round Robin 22 comparability study (hereafter referred to as RR22) received four frozen serum test samples, two frozen control sera, and a solid ascorbic acid control material for analysis. Unless multiple vials were previously requested, participants received one vial of each material. These sample materials were shipped on dry ice to participants in November 2004. The communication materials included in the sample shipment are provided in Appendix E.

The test and control serum materials were prepared by adding equal volumes of 10 % metaphosphoric acid (MPA) to human serum that had been spiked with ascorbic acid. While these samples contain some dehydroascorbic acid, its content is variable. Therefore, the participants report only total ascorbic acid (TAA, ascorbic acid plus dehydroascorbic acid). Participants are also encouraged to prepare calibration solutions from the supplied solid control to enable calibrating their serum measurements to the same reference standard.

The final report delivered to every participant in RR22 consists of three documents:

- A cover letter for the current study, a brief description of the other two documents, and a discussion of our analysis of overall results that may be of broad interest. This cover letter is reproduced as Appendix F.
- The "All-Lab Report" that summarizes all of the reported measurement results and provides several consensus statistics. This report is reproduced as Appendix G.
- An "Individualized Report" that graphically analyzes each participant's results for TAA, including a graphical summary of their measurement comparability. The graphical tools used in this report are described in detail elsewhere [3]. An example "Individualized Report" is reproduced as Appendix H.

References

- Duewer DL, Brown Thomas J, Kline MC, MacCrehan WA, Schaffer R, Sharpless KE, May WE, Crowell JA. NIST/NCI Micronutrients Measurement Quality Assurance Program: Measurement Repeatabilities and Reproducibilities for Fat-Soluble Vitamin-Related Compounds in Human Sera. Anal Chem 1997;69(7):1406-1413.
- 2 Margolis SA, Duewer DL. Measurement Of Ascorbic Acid in Human Plasma and Serum: Stability, Intralaboratory Repeatability, and Interlaboratory Reproducibility. Clin Chem 1996;42(8):1257-1262.
- 3 Duewer DL, Kline MC, Sharpless KE, Brown Thomas J, Gary KT, Sowell AL. Micronutrients Measurement Quality Assurance Program: Helping Participants Use Interlaboratory Comparison Exercise Results to Improve Their Long-Term Measurement Performance. Anal Chem 1999;71(9):1870-1878.

Appendix A. Shipping Package Inserts for RR57

The following three items were included in each package shipped to an RR57 participant:

- Cover letter
- Datasheet
- Packing List and Shipment Receipt Confirmation Form

The cover letter and datasheet were enclosed in a sealed waterproof bag along with the samples themselves. The packing list was placed at the top of the shipping box, between the cardboard covering and the foam insulation.

November 8, 2004

Dear Colleague:

Enclosed are the samples (Sera 309 – 313) for the first fat-soluble vitamins and carotenoids in serum round robin study (Round Robin LVII) for the fiscal year (FY) 05 NIST Micronutrients Measurement Quality Assurance Program. You will find one vial of each of one liquid-frozen and four lyophilized serum samples for analysis along with a form for reporting your results. When reporting your results, please submit one value for each analyte for a given serum sample. If a value is obtained below your limit of quantification, please indicate this result on the form by using NQ (Not Quantified). Results are due to NIST by March 2, 2005. Results received more than two weeks after the due date will not be included in the summary report for this round robin study. The feedback report concerning the study will be provided in April.

Lyophilized samples should be reconstituted with 1.0 mL of HPLC-grade water or equivalent. We recommend that dissolution be facilitated with 3 to 5 min agitation in an ultrasonic bath or at least 30 min at room temperature with intermittent swirling. (CAUTION: Vigorous shaking will cause foaming and possibly interfere with accurate measurement. The rubber stopper contains phthalate esters that may leach into the sample upon intermittent contact of the liquid sample with the stopper. These esters absorb strongly in the UV region and elute near retinol in most LC systems creating analytical problems.) Pipette a known volume of serum from the vial for analysis. The final volume of the reconstituted sample is greater than 1.0 mL. Water should not be added to the liquid-frozen sample 313.

For consistency, we request that laboratories use the following absorptivities (E 1% cm): retinol, 1843 at 325 nm (ethanol); retinyl palmitate, 975 at 325 nm (ethanol); α -tocopherol, 75.8 at 292 nm (ethanol); γ -tocopherol, 91.4 at 298 nm (ethanol); α -carotene, 2800 at 444 nm (hexane); β -carotene, 2560 at 450 nm (ethanol), 2592 at 452 nm (hexane); lycopene, 3450 at 472 nm (hexane).

Please mail or fax your results for Round Robin LVII to:

Micronutrients Measurement Quality Assurance Program NIST 100 Bureau Drive Stop 8392 Gaithersburg, MD 20899-8392 Fax: (301) 977-0685

If you have questions or comments regarding this study, please call me at (301) 975-3120; e-mail me at jbthomas@nist.gov; or mail/fax queries to the above address.

Sincerely, Fanic

Jeanide Brown Thomas Research Chemist Analytical Chemistry Division Chemical Science and Technology Laboratory

Enclosures

Date: _____

Round Robin LVII NIST Micronutrients Measurement Quality Assurance Program

Analyte	309	310	311	312	313	Units*
total retinol						
trans-retinol						
didehydroretinol						
retinyl palmitate						
α -tocopherol						
γ/β-tocopherol						
δ-tocopherol						
total β-carotene						
trans-β-carotene						
total cis-β-carotene						
total α -carotene						
total lycopene						
trans-lycopene						
total β-cryptoxanthin						
total α -cryptoxanthin						
total lutein						
total zeaxanthin						
total lutein&zeaxanthin						
total Coenzyme Q10						
ubiquinol (QH ₂)						
ubiquinone (Qox)						
phylloquinone (K ₁)						
25-hydroxyvitamin D						
Other analytes?						

* we prefer μ g/mL

Was serum 309 frozen when received? Yes | No

Comments:

Fat-Soluble Vitamins Round Robin LVII NIST Micronutrients Measurement Quality Assurance Program

Packing List and Shipment Receipt Confirmation Form

This box contains (we hope) one vial each of the following **five** FSV M²QAP sera:

Serum	Form	Reconstitute?
#309	Lyophilized	Yes (1 ml H ₂ O)
#310	Lyophilized	Yes (1 ml H ₂ O)
#311	Lyophilized	Yes (1 ml H ₂ O)
#312	Lyophilized	Yes (1 ml H ₂ O)
#313	Liquid frozen	No

Please 1) Open the pack immediately

- 2) Check that it contains one vial each of the above samples
- 3) Check if serum 313 arrived frozen
- 4) Store the samples at -20 °C or below until analysis
- 5) Complete the following information
- 6) Fax the completed form to us at 301-977-0685 (or email requested information to david.duewer@nist.gov)

Date this shipment arrived: ______
Are all five vials intact? Yes | No

If "No", which one(s) were damaged?

- 3) Was there any dry-ice left in cooler? Yes | No
- 4) Did serum 313 arrive frozen? Yes | No

5) At what temperature are you storing the samples? _____°C

6) When do you anticipate analyzing these samples? _____

Your prompt return of this information is appreciated.

The M²QAP Gang

Appendix B. Final Report for RR57

The following three pages are the final report as provided to all participants:

- Cover letter.
- An information sheet that:
 - describes the contents of the "All-Lab" report,
 - o describes the content of the "Individualized" report,
 - describes the nature of the test samples and details their previous distributions, if any, and
 - summarizes aspects of the study that we believe may be of interest to the participants.

April 14, 2005

Dear Colleague:

Enclosed is the summary report of the results for round robin LVII (RR57) of the 2005 NIST Micronutrients Measurement Quality Assurance Program (M²QAP) for the fat-soluble vitamins and carotenoids in human serum. Included in this report are: (1) a summary of data and measurement comparability scores for all laboratories, (2) a detailed graphical analysis of your results; and (3) a graphical summary of your measurement comparabilities relative to the NIST assigned values. The NIST-assigned values are equally weighted means of the medians from this interlaboratory comparison exercise and the means from the analyses performed by NIST.

Data for evaluating laboratory performance in RR 57 are provided in the comparability summary (Score Card) on page 6 of the All Lab Report. Laboratory comparability is summarized as follows: results rated 1 to 3 are within 1 to 3 standard deviations of the assigned value, respectively; those rated 4 are >3 standard deviations from the assigned value.

If you have concerns regarding your laboratory's performance, we suggest that you obtain and analyze a unit of SRM 968c, Fat-Soluble Vitamins, Carotenoids, and Cholesterol in Human Serum. If your measured values do not agree with the certified values, we suggest that you contact us for consultation.

Samples for the second 2005 QA interlaboratory exercise will be shipped starting the week of May 16. We will send you a reminder via e-mail or fax a week prior to shipment. It is critical that you carefully inspect all samples upon arrival and that you promptly confirm to us that they have arrived. We will replace samples (lost or damaged in shipment or miss-packaged by us) only for participants who report the problem within <u>one calendar week</u> after the package arrives.

If you have any questions regarding this report, please contact Dave Duewer at david.duewer@nist.gov or me at jbthomas@nist.gov, tel: 301/975-3120, or fax: 301/977-0685.

Sincerely,

Jeanice Brown Thomas Research Chemist Analytical Chemistry Division Chemical Science and Technology Laboratory

Enclosures

Page	"All Lab" Report
1-4	A listing of all results and statistics for analytes reported by at least two laboratories.
5a 5b	A list of results for the analytes reported by only one laboratory. A legend for the above two lists.
6	The text version of the "Comparability Summary" (or "Score Card").
Page	"Individualized" Report
1	Your values, the number of labs reporting values, and our assigned values.
2 to n	"Four Plot" summaries of your current and past measurement performance, one page for each analyte you report that is also reported by at least 8 other participants.
. 1	

The NIST M²QAP Round Robin LVII (RR57) report consists of:

n+1 The "target" plot version of your "Comparability Summary" scores.

Serum	Description	Prior Distributions
309	Lyophilized blended serum with native carotenoid levels, augmented with α - and δ -tocopherol; SRM 968c Level II.	#249:RR44-9/98, #256:RR46-6/99, #264:RR48-3/01, #284:RR52-9/02, #299:RR55-3/04
310	Lyophilized blend of the $#311$ augmented serum and stripped serum, in 1+3 ratio (<i>i.e.</i> , measurand levels should be $\frac{1}{4}$ those of $#311$).	#197:RR31-6/94, #211:RR35-9/95, #245:RR43-6/98
311	Lyophilized blended serum with native carotenoid levels, augmented with retinol, retinyl palmitate, and α - and γ -tocopherol.	#198:RR31-6/94, #212:RR35-9/95, #246:RR43-6/98
312	Lyophilized, native, single-donor, commercially obtained serum prepared in 2002. The same material was used to prepare #313.	#290:RR53-2/03, #300:RR55-3/04
313	Fresh-frozen, native, single-donor, commercially obtained serum prepared in 2002. The same material was used to prepare #312.	#292:RR53-2/03, #301:RR55-3/04

Samples. The five sera below were distributed in RR57.

Results

- 1) <u>Sera Stability</u>. There was no significant change in the median level or increase in the variability of any measurand in any of the sera. Note that Sera 310 and 311 were prepared more than 10 years ago.
- 2) <u>Relative Accuracy at Low Measurand Levels</u>: Sera 310 and 311 were prepared to evaluate relative accuracy of measurements made at low measurand levels. The Serum 311 material was created by augmenting a blended serum pool having with fairly high native carotenoid levels with retinol, retinyl palmitate, α -tocopherol, and γ -tocopherol. The Serum #310 material was created by blending one part of the Serum 311 material with 3 parts stripped serum. The measurand levels in the

resulting Serum 310 pool should be $\approx 25\%$ of those in the Serum 311 pool. The Table below reports the observed ratios for the measurands reported by at least 8 participants. Only the ratio for retinyl palmitate is significantly different from the expected 0.25 value in Serum 310; this could result from systematic underestimation of low retinyl palmitate levels **or** about half of the retinyl palmitate in Serum 310 has been lost since the materials were prepared **or** about half of the retinyl palmitate that should be in Serum 310 was lost during preparation. The ratio data from earlier comparisons of these materials agree well with the current values, suggesting that retinyl palmitate has not degraded during storage. However, we cannot yet distinguish between the other two possibilities.

	Ratio	, Sera 31	0/311
Measurand	Mean	-SD	+SD
Retinyl Palmitate	0.15	0.13	0.17
<i>trans</i> -β-Carotene	0.21	0.19	0.24
trans-Lycopene	0.21	0.20	0.23
Total β-Carotene	0.22	0.18	0.27
Total Lycopene	0.23	0.19	0.29
Total α-Carotene	0.24	0.16	0.36
α-Tocopherol	0.24	0.23	0.26
Total Lutein&Zeaxanthin	0.25	0.21	0.29
Total Retinol	0.25	0.23	0.27
Total Lutein	0.26	0.21	0.32
γ/β -Tocopherol	0.26	0.24	0.28
Total β-Cryptoxanthin	0.28	0.22	0.38

If your serum 310/311 ratio for any measurand is much different from 0.25, you should review the manner by which you integrate low-level signals.

3) <u>Matrix (Lyophilized vs. Fresh-Frozen) Differences.</u> Sera 312 and 313 were prepared from the same serum pool. Since we suggest that you reconstitute our lyophilized samples with 1.0 mL water rather than to a total volume of 1.0 mL, the measurand levels in Serum 312 should be \approx 95% of those in Serum 313. The observed average ratio \pm SD over all measurands with 8 or more quantitative measurements is 0.952 \pm 0.008. If any of your Sera 312/313 ratios are much different than 0.95, you should look at your measurement system for those measurands. If your lyophilized/fresh frozen ratios are consistently much different from 0.95, you should review how you reconstitute lyophilized materials.

Appendix C. "All-Lab Report" for RR57

The following six pages are the "All-Lab Report" as provided to all participants, with two exceptions:

- the participant identifiers (Lab) have been altered.
- the order in which the participant results are listed has been altered.

The data summary in the "All-Lab Report" has been altered to ensure confidentiality of identification codes assigned to laboratories. The only attributed results are those reported by NIST. The NIST results are not used in the assessment of the consensus summary results of the study.

313	0.057	600.0								0.048													0.210					0.030	0.033	na			0.044			2	0.030	0.048	0.210	0.014) M	5	0.075	0.030	nq					0.048
	0.055									bu													0.202					0.030	0.024				0.044			9	0.024				40			0.026	bu					0.050
	0.154 (0.143													0.246 (0.140		0.074			0.140					0.140 (5	0			nq					0.140
	0.046 0									nq C													0.038					0.020	0.024				0.033 0			9		0.036			3/	0			bu					0.036 0
	0.581 0									0.466													0.663 0					0.080.0		0.577			0.600 0			8			0.690 0		-	9	0.714	0.265		ო	0.015	0.007		0.553 0
	1.915 (1 764 (006.	1.833	1.678	.740	.729			1.489 (1.281	.798	.810	000	1.800		2.031		1.828 (2.800	.512		7.000		1.856			1.780		680	23				0.128 (_							0.018	L	1.789
	1.843 1 1 727 1		1.800 1				1.611 1			.299 1					1.126 1		1.770 1		1.712 1		1.966 2			1.580 1				7 000.1		1.736 1			1.690 1		1 580 1		1.126 1				٥			-				0.043 0		1.769 1
-	693 512	210	800	575		830	429			013 1					1.668 1		540	ľ	637		288			2.470 1			000	000	600	392			510		570		1.668 1			0.168 0	-							0.047 0		571
e	0.706 2.	Ń	0.900 2.			0.660 2.	Ń			587 2.						719	.670 2.		0.633 2.		.859 3.			0.660 2.				0./00 2.	ç	0.574 2.			620 2.		570 2						ກ		0.701 2.		695			0.012 0.	S (684 2
	1.589 0. 1.537 0		1.700 0.		1.449 0.					.289 0.					1.029 0.	0	0		1.617 0.		1.905 0.		.544 0.			1.553 0.		1.700 U.		1.536 0.			1.480 0.		240 0		1.029 0.								o.		0.019 0.			1.550 0.
	10.40				9.88			9.90	06.	9.25 1.	.86	.57	10.70		8.63				10.45 1.			9.87	8.96			11.15 1		007.11		9.99			11.20	.80 1			8.63 1				۵			l	-		0.38 0		L	10.37
	10.05 10 10.09 10		10.20 10				9.53 10					10.70 9			7.28 8							0.05 01 01 01 01 01 01 01											10.50 11			38					٥				·			0.21		10.51 10
	14.75 1(14 99 1(14.28			0.13.70		-		13.70 \$		14.30 1(10.73							10.94			-	-		07.01		13.57			14.60 10			37					۵		14.20					0.18		14.42 1(
	3.46				3.30 1		3.52		`	`					3.13			3.74				3.20						00.00		3.89			3.68			37					4		3.59 1					0.04		3.49 1
	16.63 17 11		18.10	16.41	15.92		17.05			14.69		16.65	16.60		12.16						18.92	18.46						18.00		16.12			17.30								٥							0.26		16.69
	0.115			0.123		0.103	0.095			0.092								0.130			0.212			0.099				100.0	0.086				0.084						0.212	0.023	74	13	0.103	0.023					L	0.097
	0.110			0.123		0.107				0.086								0.120			0.153			0.091				800.0	0.084				0.060					0.093		0.024	07 7			0.020						0.093
	0.219	C77		0.250		296				0.272								0.340			0.493			0.254				0.220	0.201	-			0.249					0.263					0.277							0.263
	0.031			0.036		œ	bu			0.048								0.050			0.068			0.033				0.041	0.048				0.048			11		0.048		_	17			0.014						0.048
	0.088	600		0.081		260	0.086			0.073								0.110			0.075			0.077				0.040	0200				0.065			12					10	4		1.017						0.076
313										_				0.660					0.618		-								0.633										0.660		Э		-	0.024	0.673					0.633
312 3														0.600 0							0.627 0								0 601 0								0.596 0			c	Э				0.689 0					0.600 0
311 3														0.730 0							0.813 0								0.758 0								0.730 0			c	5	0	0 (0.789 0					0.750 0
310 3														0.180 0							0.196 0								0.213 0							5		0.190 0		c	5	0			188					0.190 0
309														0.510 0							0.496 0								0 424 0							5			0.510 0	c	Э	7	0.480		0.489 0.	ო	0.006	0.007		0.484 0
	0.670	0.647	0.690	0.627	0.586	0.542	0.596	0.720	0.646	0.601	0.667	0.632			0.714	0.637	0.681					0.518	0.618	0.584		0.662	001	200.0			0.580	0.645	0.670	1.450	0.580	36			1.450 0	.042	-			l				0.005 0	L	0.658 0
	0.649 0. 0.641 0.					0.567 0.						0.596 0.				0.574 0.			/4				0.561 0.			0.668 0.		0 800.0					0.660 0.					0.609 0.			ס							0.016 0.		0.650 0.
														/4					/4		/1								~												x				39 ≥0.689					
	4 0.787 5 0.778		0 0.790				8 0.724				0.705			74		7 0.748			/4		/1		8 U.8U2 9 0.729			8 0.802		0 0.700	~						067.0 0					7 0.057					8 ≥0.789			4 0.008		8 0.769
	0.204			0.191			0.188			0.190	'		0.183						/1		/4	0.207				0.198		01203	~				0.141					0.187		0.01					≥0.18			0.004		0.188
	0.489 0.487			0.477			0.480							74				0.470	/4		/1		0.480 0.539			0.485		0.403	~	0.481			0.518	1.250	0.220	36	0.403	0.486	1.250	0.025	Ω ۱	42			0.49	e	0.009	0.005		0.491
	FSV-BA FSV-BB	FSV-BC	FSV-BE	FSV-BG	FSV-BH	FSV-BI		FSV-B	FSV-BM	FSV-BN	FSV-BO	FSV-BP	∕-BQ	FSV-BR	FSV-BS	V-BU	FSV-BV	FSV-BW	FSV-BX	FSV-CC	FSV-CD		FSV-CF	FSV-CI	FSV-CP	FSV-CS				FSV-DB	FSV-DD	FSV-DF	FSV-DI		FSV-UW	z	Min	Median	Max	200	3	Npast	Medianpast	SUpast	NIST	NNIST	Srep	Shet		NAV

Page 1 / 6

All Lab Report

Round Robin LVII Laboratory Results All Results in µg/mL Round Robin LVII Laboratory Results All Results in µg/mL

0.424 0.424 0.531 0.531 0.424 0.461 0.461 0.473 0.491 0.491 0.456 0.466	0.167 0.148	0.689 0.692	0.130	0.133										313										313
0.531 0.390 0.461 0.395 0.473 0.491 0.401 0.461 0.461			0.111	0.117	0.414 0.394	0.155 0.139	0.643 (0.643 (0.123 0.106 0	0.127 0.111	0.029 (0.030) (0.030) (0.030) (0.030) (0.030 (0.030) (0.030) (0.030) (0.030 (0.030) (0.012 0.009	0.046 (0.048 (0.0	0.007 0 0.005 0		0.090 0.090	0.006	0.029 (0.073 C 0.064 C	0.075	0.459 0.418	0.034 (0.037 (0.156 0.156	0.528 0.468	
0.456 0.456 0.456	0.124 0.113 0.151 0.151 0.160	0.800 0.695 0.729 0.775 0.688	0.136 0.090 0.144 0.139 0.122	0.142 0.094 0.157 0.157 0.113	0.369	0.138	0.718 (0.139 (0.123	0.026	0.013	0.057	bu	bu	0.105 0.096 0.076 0.108	0.016 0.014 0.008	0.033 0.033 0.038 0.038 0.038 0.038 0.038 0.031 0	0.094 0.080 0.082 0	0.096 0.084 0.069 0.079	0.426 0.442 0.331 0.405	0.017 0.017 0.045 0.045 0.035	0.128 0.158 0.141 0.124	0.474 0.551 0.434 0.428	0.476 0.544 0.463 0.463
20	0.139	0.606 0.723	0.103 0.103 0.109	0.114 0.117 0.122	0.361	0.122	0.547 (0.095	0.105	0.035 (0.012	0.054 (0.004 0	0.004									393 550 482	0.303 0.428 0.561 0.390
≥0.414 0.441		≥0.633 0.688	≥0.130 0.112	≥0.144 0.120	0.414	0.150	0.633 (0.130 0	0.144						0.108 0.099		0.046	0.093 0.075 0	0.099	0.480 0.438	0.061	0.191 0.130	0.548 0.582 0.465 0.509	
	0.130 ≥0.134			0.120 0.120 ≥0.122	0.380	0.134	0.628 (0.115 0	0.122						0	pu.0 700.0							0.570 0.590	
0.436 0.496	0.103 0.132	0.583 0.547	0.081 0.049	0.107 0.123											0.102	0.009	0.038	0.065 0	0.081	0.404	0.048 (0.247	0.278	
FSV-CC FSV-CG 0.369 FSV-CI ≥0.367 ≥ FSV-CP 0.417 FSV-CS 0.449	0.111 ≥0.114 0.165 0.180	0.569 ≥0.582 0.665 0.684	0.097 ≥0.113 0.122 0.117	0.111 ≥0.123 0.121 0.124	0.339 0.37	0.099 0.11	0.519 (0.58 0.58	0.091 0.11	0.104	0.030	0.012	0.050	0.006	0.008	0.106 0.078 < 0.105 0.106	0.008 <0.016 0.011 0.010	0.040 (0.031 (0.037 (0.031 (0.	0.075 C 0.061 C 0.082 C 0.079 C	0.086 0.067 0.081 0.083	0.398 0.403 0.458	0.028 0.042 0.043 0	0.143 0.143 0.174 0.174	0.408 0.469 0.466 0.459 0.492 0.521	
0 440	0.170	0.560	0.130	0.160	0.375	0.183	0.718 (0.116 0	0.122						0.092	0.020	0.045 (0.080 0	0.082					
0.377	0.157 0.131	0.620	0.130	0.140	0.409	0.134	0.663	0.123 0	0.130	0.031 (0.023	0.061	0.007 0	0.008	0.100	0.008	0.040	0.079 0	0.085	0.442 0.399	0.033 0.028 0	0.152 0.141	0.511 0.552 0.467 0.503	
FSV-DF FSV-DI 0.417 FSV-DV	0.150	0.680	0.065	0.075																0.385	0.022 (0.097	0.445	0.490
0.260 0.380	0.140 0.140	0.380 0.690	0.060 0.110	0.050 0.120											0.048	0.006	0.014 (0.041 0	0.041	0.229	0.021 (0.059	0.286 0.293	
	24 0.103	25 0.380	26 0.049	26 0.050	10 0.339]				23 0.278	
Median 0.440 Max 0.544 SD 0.043	0.140 0.180 0.022	0.688 0.800 0.077	0.111 0.144 0.017	0.120 0.160 0.008	0.378 0.414 0.028	0.136 0.183 0.017	0.638 (0.718 (0.048 (7	0.116 0.139 0.011 0.011 0.011	0.123 0.144 0.009	0.030 0.035 0.002 0.002	0.012 0.023 0.001 5	0.052 (0.061 (0.006 (0.006 0 0.007 0 0.001 0	0.006 0.008 0.001	0.096 0.150 0.012	0.008 0.020 0.004	0.036 0.046 0.007	0.075 C 0.102 C 0.011 C	0.081 0.108 0.008	0.426 0.538 0.041	0.035 (0.061 (0.011 (0.151 0.247 0.019	0.474 0.575 0.063	0.503 0.613 0.068
30	32	32	26	26	. 4						s co	∞							53					
0.424 0.047	0.154 0.032	0.678 0.089	0.112 0.014	0.120 0.018	0.386 0.034	0.152 0.020	0.634 (0.048 (0.108 0.010 0	0.115 0.012	0.030	0.016 (0.009 (0.0	0.052 (0.020 (0.020)	0.007 0	0.007 0.002	0.096 0.018	0.009	0.034 (0.010) (0.010	0.071 0	0.076 0.013	0.411 0.065	0.027 0.009 0	0.127 0.046	0.479 0.059	0.504 0.071
0.431	≥0.140		≥0.124	≥0.125	0.394	0.140	0.669 (0.124 (0.125	0.037	bu	bu	bu	bu	0.100	bu) bu	0.076 C	0.076					
NNIST 3 Srep 0.007 Shet 0.006	3 0.002 0.001	3 0.017 0.021	3 0.004 0.002	3 0.001 0.001	3 0.016 0.010				-	3 0.011 0.010					3 0.003 0.006			3 0.002 0.002 0	3 0.003 0.001					
0.009	0.003	0.027	0.004	0.001	0.019												_		0.003					
NAV 0.436 NAU 0.062	0.140 0.022	0.679 0.094	0.118 0.021	0.123 0.020	0.386 0.042	0.136 0.017	0.638 (0.066 (0.116 0 0.014 0	0.123 0.015	0.034 (0.016 (0.0	0.012 (0.004 (0.052 (0.021 (0.021)	0.006 0 0.003 0	0.006 0.003	0.098 0.028	0.008 0.004	0.036 (0.012 (0.0	0.076 C 0.022 C	0.078 0.024	0.431 0.092	0.035 (0.012 (0.0	0.152 0.039	0.478 0.100	0.500 0.103

All Lab Report

Page 2 / 6

Round Robin LVII Laboratory Results All Results in µg/mL

[e	0.055	0.031 0.030 0.039	0.030	0.028		0.032	0.030 0.034 0.027	0.043		0.025	13 0.025 0.030 0.055 0.004 13	13 0.033 0.008	0.024 3 0.001 0.002	0.027
	2 313														
anthin	312	25 0.053	27 0.026 2 0.027 23 0.041	5 0.024 7 0.024	5 0.028		5 0.026	22 0.030 06 0.033 9 0.027	22 0.041		6 0.024	0.0.0.0	0.0	0.028 3 0.004 0.002	
Total Zeaxanthin	311	5 0.025	7 0.027 0.012 7 0.023	a 0.015 0.017	3 0.015		9 0.015	5 0.022 4 0.006 9 0.019	3 0.022		5 0.016	0.000	8 8 7 0.018 3 0.008	bu	6 0.017 3 0.005
Tot	310	0.005	0.007 nq 0.007	bu bu	0.003		<0.009	0.005 pn 0.009	0.006		0.005	8 0.003 0.006 0.009 0.002 28	8 0.007 0.003	bu	0.006 0.003
	309	0.041	0.023 0.021 0.036	0.021	0.018		0.018	0.021 0.024 0.021	0.028		0.021	13 0.011 0.021 0.041 0.003	14 0.024 0.007	0.018 3 0.003 0.001	0.007
	313	0.101	0.072 0.059 0.072 0.072 0.090	0.062 0.073	0.085		0.067	0.084 0.094 0.084	0.092	0.068	0.059	15 0.059 0.073 0.101 0.015 21	15 0.083 0.016	0.075 3 0.003 0.001	0.074 0.015
	312	0.099	0.078 0.056 0.075 0.085	0.055	0.082		0.064	0.080 0.092 0.087	0.087	0.064	0.056	15 0.055 0.078 0.099 0.016 21	15 0.078 0.017	0.076 3 0.002 0.003	0.077 0.016
Total Lutein	311	0.067	0.057 0.032 0.049 0.050	0.039	0.053		0.040	0.065 0.057 0.061	0.062	0.046	0.043	15 0.032 0.050 0.067 0.011 22	12 0.053 0.011	0.052 0.002 0.002 0.002	0.051 0.011
	310	0.016	0.013 0.008 0.013 0.016	0.015 nq	0.012		0.013	0.017 nq 0.015	0.016	0.012	0.015	13 0.008 0.015 0.017 0.002 15	10 0.014 0.004	bu	0.015 0.004
	309	0.107	0.097 0.062 0.086 0.087	0.062	0.086		0.061	0.095 0.115 0.085	0.098	0.072	0.070	15 0.061 0.086 0.115 0.018 21	16 0.085 0.014	0.085 3 0.003 0.002	
	313	0.033 0.023		0.016					0.030			4 0.016 0.027 0.033 0.007 27	0		0.027
nthin	312			0.017					0.029			4 0.017 0.026 0.033 0.007 27	7 0.021		0.026
tox		0.013 (0.007 () bu					0.008			3 0.007 0.008 0.013 0.013	7 0.012 (0.002		0.008
otal α-C	310	nq 0.002 (bu					0.002			0.002 0	5 0.005 0		0
		0.022 0.014 0		0.005					0.019 0			4 0.005 0 0.016 0 0.022 0 0.006 35	7 0.017 0 0.006		0.016
L	313 3		0.045 0.057 0.058 0.062 0.062	0.048 0 0.046 0 0.040	0.060 0.058 0.045 0.055 0.051	0.062	0.073	0.066 0.053 0.056 0.063	0.050		0.046	24 0.040 0.055 0.073 0.009 0.009 16	22 0.053 0 0.010 0	0.049 3 0.002 0.002	
				0.043 0.(0.044 0.(0.050 0.(0.073 0.0 0.052 0.0 0.043 0.0 0.049 0.0			0.065 0.0 0.050 0.0 0.059 0.0	0.064 0.0 0.049 0.0						
otoxanth		25 0.068 19 0.051									16 0.044		0.0		
р-С		06 0.025 05 0.019	12 0.017 06 0.020 0.021 0.023 0.016	nq 0.010 7 0.015 -	08 0.019 0.017 03 0.013 07 0.012 06 0.018			07 0.023 05 0.021 07 0.018 08 0.030	07 0.025 3 0.016		0.016	00000	0.0	bu	06 0.019 02 0.005
		0 0.006	6 0.012 0 0.006 0 <i>nq</i> 5 0.005 2 <i>nq</i>	й -	8 0.008 9 0.003 7 0.003 8 0.006		0 0	9 0.007 6 0.005 9 0.007	4 0.007 7 0.003		6 0.006	0.0	0.0	29 <i>nq</i> 33 33	0 0.006 9 0.002
		0.040	0.026 0.030 0.030 0.035 0.035 0.032	0.021 0.023 0.014	0.048 0.029 0.023 0.027 0.028			0.039 0.036 0.036 0.036 0.039 0.039 0.039	0.044 0.027		0.026	0.0.0	0.0	0.029 3 0.003 0.001	
		0.290 0.240	0.307	0.245	0.253		0.255	0.306	0.309			8 0.240 0.273 0.309 0.041	10 0.268 0.053		0.273 0.049
ene	312	0.277 0.229	0.300	0.224	0.244		0.221	0.289	0.287			8 0.221 0.260 0.300 0.044	10 0.248 0.042		0.260 0.047
trans-Lycopene	311	0.068 0.057	0.078	0.052	0.014 0.065		0.061	0.080	0.073			8 0.052 0.067 0.080 0.010 0.010	8 0.077 0.020		0.067 0.012
tran:	310	0.016 0.011	0.017	0.011			0.011	0.022	0.016			8 0.011 0.015 0.022 0.004 26	8 0.021 0.008		0.015 0.006
	309	0.215 0.184	0.229	0.187	0.179		0.194	0.211	0.224			8 0.179 0.203 0.229 0.023 11	11 0.208 0.036		0.203 0.036
L	Lab	FSV-BA FSV-BB FSV-BC	FSV-BD FSV-BE FSV-BE FSV-BG FSV-BG FSV-BG FSV-BJ FSV-BJ	FSV-BL FSV-BM FSV-BN FSV-BO FSV-BO FSV-BO FSV-BO	FSV-BK FSV-BS FSV-BS FSV-BU FSV-BU FSV-BW FSV-BW	FSV-CE FSV-CE FSV-CF	FSV-CG FSV-CI	FSV-CF FSV-CS FSV-CT FSV-CT	FSV-DB FSV-DB	FSV-DD FSV-DF FSV-DI FSV-DV	FSV-ET	Min N Median SD CV	Npast Medianpast SDpast	NIST NNIST Srep Shet	

Page 3 / 6

All Lab Report

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	10 Dbiquinol Dbiquinol Dbiquinone Phylloquinone (K1) 312 313 309 310 311 312 313 309 310 311 312 313 309 310 311 312		1.32 0.21 1.20 0.36	0.678 0.745		0.670 0.690 0.780 0.063 0.400 0.500 0.350 0.150 0.047 0.120 0.170 0.340	0.83 0.24 0.36 0.33	0.090 0.090 0.390 0.430 0.808 0.836 nd nd 0.208 0.138 0.234 0.916 0.045 0.452 0.670 0.602	0.620 0.690	6 6 1 1 2 2 2 2 2 2 2 3	5 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Total Lutein&Zeaxanthin 310 311 312 312 310 310 311 312 310 310 311 312 310 311 312 312 310 310 312 312 310 310 312 312 311 0.022 0.005 0.091 311 0.016 0.066 0.093 311 0.015 0.055 0.093 312 0.014 0.066 0.016 312 0.014 0.065 0.016 311 0.014 0.066 0.106 312 0.014 0.065 0.106 313 0.014 0.065 0.110 313 0.014 0.016 0.110 313 0.022 0.065 0.102 313 0.014 0.0105 0.110 314 0.022 0.065 0.110 314 0.022	Coenzyme Q 310 311			0.110 0.539		0.100 0.520		0.030 0.070 <0.2 0.360 0.045 0.660	0.090 0.560	5 6 0.030 0.070 0.090 0.530 0.110 0.660 0.041 0.115 46 22	0
Total Lutein&Zeaxanthin 310 311 312 310 311 312 48 0.021 0.092 0.111 90 0.016 0.092 0.112 83 0.016 0.093 0.016 83 0.015 0.055 0.093 96 0.014 0.0669 0.0940 97 0.0220 0.072 0.116 985 0.014 0.0665 0.0940 96 0.014 0.0665 0.010 97 0.015 0.057 0.116 97 0.023 0.056 0.106 90 0.013 0.056 0.106 91 0.023 0.056 0.136 93 0.013 0.056 0.132 91 0.023 0.068 0.132 93 0.013 0.026 0.132 91 0.023 0.066 0.132 91 0.023 0.066 <t< th=""><th>313</th><th>0.115 0.156</th><th>0.086</th><th></th><th>0.092 0.0982 0.115</th><th></th><th>0.110 0.141 0.099 0.137</th><th></th><th>0.115</th><th></th><th></th></t<>	313	0.115 0.156	0.086		0.092 0.0982 0.115		0.110 0.141 0.099 0.137		0.115		
Total Lutein&Zeaxar Total Lutein&Zeaxar 310 311 07 0.021 0.072 08 0.021 0.092 09 0.016 0.068 01 0.020 0.071 02 0.016 0.066 03 0.016 0.066 04 0.020 0.071 05 0.020 0.071 06 0.014 0.066 07 0.015 0.066 07 0.014 0.067 08 0.0114 0.067 07 0.022 0.074 08 0.0114 0.066 09 0.013 0.067 00 0.014 0.067 00 0.023 0.067 00 0.024 0.068 00 0.023 0.068 00 0.023 0.068 00 0.023 0.068 00 0.023 0.068	thin 312	0.111 0.152	0.109 0.091	0.116		0.116 0.107 0.106 0.089 0.110	0.118 0.126 0.090	0.130 0.110 0.125 0.114 0.132	0.103 0.080	24 0.079 0.109 0.152 0.017 16	23 0.107 0.018
23 26 25 21 25 48 0 29 20 20 20 20 20 20 20 20 20 20 20 20 20	n&Zeaxani 311	0.072 0.092	0.068 0.069	0.072		0.071 0.065 0.060 0.057 0.068	0.074 0.078 0.055	0.086 0.087 0.080 0.086	0.058 <i>0.0</i> 59	23 0.044 0.068 0.092 0.012 18	18 0.074 0.013 ≥0.052
238255558639 <u>7</u> 833 838658 3388658 480	Total Lutei 310	0.022 0.021	0.013 0.016 0.008	0.020	015	0.029 0.014 0.013 0.015	nq 0.019 <0.022	0.022 nq 0.024 0.023	0.013 <i>0.020</i>	18 0.008 0.020 0.029 0.006 29	
		0.107 0.148	0.111 0.109 0.083	0.122	0.083 0.085 0.116		0.137 0.125 0.079 0.131			24 0.079 0.107 0.148 0.022 21	25 0.109 0.023 <i>0.102</i>

All Lab Report

Page 4 / 6

Round Robin LVII Laboratory Results All Results in µg/mL

Analytes Reported By One Laboratory

Analyte	Code	309	310	311	312	313
25-hydroxyvitamin D	FSV-BN	nq	0.0270	0.0170	0.0350	0.0230
trans-Lutein						
Phytofluene	FSV-DA	0.068	0.011	0.048	0.107	0.114
Phytoene	FSV-DA	0.051	0.009	0.052	0.125	0.132
Retinyl stearate	FSV-DA	0.030	0.005	0.037	0.033	0.034

Legend

Term	Definition
N	Number of (non-NIST) quantitative values reported for this analyte
Min	Minimum (non-NIST) quantitative value reported
Median	
Max SD	Maximum (non-NIST) quantitative value reported Standard deviation for (non-NIST) results: 0.741*(3rd Quartile - 1st Quartile)
CV	Coefficient of Variation for (non-NIST) results: 100*SD/Median
Npast	Mean of N(s) from past RR(s)
Medianpast	Mean of Median(s) from past RR(s)
SDpast	Pooled SD from past RR(s)
NIST	Mean of all analyses (vials x duplicates) reported by a NIST analyst
NIST	
-	Within-vial pooled standard deviation
Shet	
SNIST	Total standard deviation for NIST analyses: $(S_{rep}^2 + S_{het}^2)^{0.5}$
NAV	NIST Assigned Value
	= (Median + Mean _{NIST})/2 for analytes reported by NIST analyst(s)
	= Median for analytes reported by \geq 10 labs but not NIST
NAU	NIST Assigned Uncertainty: $(S^2 + S_{btw}^2)^{0.5}$
	S is the maximum of (0.05*NAV, SD, SNIST, eSD) and Sbtw is the standard deviation between Medianpart and MeanNIST. The expected long-term SD, eSD,
	is defined in: Duewer, et al. Anal Chem 1997;69(7):1406-1413.
-	Not analyzed
nd	Not detected (i.e., no detectable peak for analyte)
nq	Detected but not quantitatively determined
<x< th=""><th>Concentration at or below the limit of quantification, x</th></x<>	Concentration at or below the limit of quantification, x
≥x	Concentration greater than or equal to x

Comparability Summary

Lab	TR	аT	g/bT	bC	tbC	aC	TLy	TbX	TLu	ΤZ	L&Z	Label	Definition
FSV-BA	1	1	1	1	1	1	1	2	1	2	1		Participant code
FSV-BB	1	1	1	1	1	1	1	1	1	1	1	TR	Total Retinol
FSV-BC	3												α-Tocopherol
FSV-BD	1	1									1		γ/β-Tocopherol
FSV-BE	2	1	2	2							•	-	Total β-Carotene
FSV-BF	1	3	3	2		2	1	2			1		trans-β-Carotene
FSV-BG	1	1		2		1	1	1	2	3	2		•
FSV-BG			1	2	4	1	1		2	3	2		Total α-Carotene
	2	1	1		1		1	1 1	2	4	2		Total Lycopene
FSV-BI	2	1	1	1		1 1	1	1	2 1	1	2		Total β-Cryptoxanthin
FSV-BJ	1	1	1	1		. I	1	1	-T	1	1	TLu	Total Lutein
FSV-BK	1	1										TZ	Total Zeaxanthin
FSV-BL	4	2							1			L&Z	Total Lutein & Zeaxanthin
FSV-BM	1	1											
FSV-BN	1	2	2	1	2	1	1	2			1		
FSV-BO	1	1		1		1	1	1			1	n	number of participants providing quantitative data
FSV-BP	1	1		1		1	1	2	2	1	2	% 1	Percent of CS = 1 (within 1 SD of medians)
FSV-BQ	2	1									1	% 2	Percent of CS = 2 (within 2 SD of medians)
FSV-BR	1	1							2	2	1	% 3	Percent of CS = 3 (within 3 SD of medians)
FSV-BS	2	3	3	1	1	2	2	2	1	1	1		Percent of $CS = 4$ (3 or more SD from medians)
FSV-BU	1	1	1	1		1	1	1					
FSV-BV	2	1	1	1		2	1	1					"Comparability Score"
FSV-BW	1	1	-	1		2	1	1			1		Comparability Score
FSV-BX	1	2	1	1	1	1	•	1				The (Comparability Score (CS) of summarizes your measurement
FSV-CC	1	2			•	•					1		rmance for a given measurand, relative to the consensus
FSV-CD	1	2	3	2		1	2	1			1		ans. CS is the average distance, in standard deviation units,
FSV-CE	3	3	5	2			2	1			1		your measurement performance characteristics are from the
FSV-CE	1	2		2					1	2	2		ensus performance. CS is calculated when the number of
			4	2	2	4	4	2	1	2			titative values you reported for a measurand, N _{vou} , is at least
FSV-CG	1	2	1	2	2	1	1	2			1	two a	and the measurand has been reported by 10 or more
FSV-CI	2	1	1	1	1	2						partic	cipants.
FSV-CP		3	4	1		1	1	1			1		
FSV-CS	1	1	4	1		1	1	1				CS =	$= MIN(4, INT(1 + \sqrt{C^2 + AP^2}))$
FSV-CT	_	_		2	_	_	1	1	1	1	1		
FSV-CW	3	2	1		2	2		2	1	1	1		
FSV-CZ	1	1		2								$\mathbf{C} = \mathbf{C}$	$Concordanc e = \sum_{i}^{N_{you}} \frac{You_{i} - Median_{i}}{NAU_{i}} / N_{you}$
FSV-DA	1	1	1	1	1	1	1	2					\sum_{i} NAU _i / Vy_{ou}
FSV-DB	1	1	1	1			1	1	1	1	1		
FSV-DD	1												N_{YOU} (Marking) ²
FSV-DF	1								1			AP =	Apparent Precision = $\sqrt{\sum_{i}^{N_{you}} \left(\frac{You_{i} - Median_{i}}{NAU_{i}}\right)^{2} / (N_{you} - 1)}$
FSV-DI	2	1	1	2			1		1	1	1		$\sqrt{\frac{2}{i}}$ NAU _i) / $\sqrt{\frac{3}{2}}$
FSV-DV	4	2											
FSV-DW	2	1		3		2	2	1				NAU	= NIST Assigned Uncertainty, our estimate of the overall
FSV-ET	1	1	2	1									measurement standard deviation for each sample. The
NISTa	1	1	1	1	1	1		1	1	1	1		estimate includes serum heterogeneity, analytical
-	41		24	30	11		23	25	16	14	25		repeatability, and among-participant reproducibility variance components.
	TR	аT	g/bT	bC	tbC	aC	TLy	TbX	TLu	ΤZ	L&Z	East.	urther details, places age; Duower DL, Kling MC, Sharphare
% 1	66		67	67	73	71	87	68	75	71	84		urther details, please see: Duewer DL, Kline MC, Sharpless Brown Thomas J, Gary KT. Micronutrients Measurement
	22		13	30	27	29	13	32	25	21	16		ity Assurance Program: Helping participants use
% 3	7	10	13	3	0	0	0	0	0	7	0		aboratory comparison exercise results to improve their long-
	5	0	8	0	0	0	0	0	0	0	0		measurement performance. Anal Chem 1999;71(9):1870-8.
% 4										0	U		

Appendix D. Representative "Individualized Report" for RR57

Each participant in RR57 received an "Individualized Report" reflecting their reported results. Each report included a detailed analysis for analytes that were assayed by at least five participants. The following analytes met this criterion in RR57:

- Total Retinol
- trans-Retinol
- Retinyl Palmitate
- α-Tocopherol
- γ/β -Tocopherol
- δ-Tocopherol
- Total β-Carotene
- *trans*-β-Carotene
- Total *cis*-β-Carotene
- Total α-Carotene
- Total Lycopene
- *trans*-Lycopene
- Total β-Cryptoxanthin
- Total Lutein
- Total Zeaxanthin
- Total Lutein & Zeaxanthin
- Coenzyme Q10

The following 15 pages are the "Individualized Report" for the analytes evaluated by participant FSV-BA.

Set 1 of 43

Individualized Round Robin LVII Report: FSV-BA

Summary

	c	36	12	38	23	2	26	10	S	23	23	∞	24	4	24
Serum 313	NAV	0.658	0.10	10.37	1.789	0.048	0.123	0.123	0.006	0.078	0.500	0.273	0.053	0.027	0.11
Seru	You	0.670	0.12	10.40	1.915	0.057	0.133	0.127	0.006						
	c	36	12	38	23	9	26	10	S	23	23	∞	24	4	24
m 312	NAV	0.650	0.09	10.51	1.769	0.050	0.118	0.116	0.006	0.076	0.478	0.260	0.051	0.026	0.107
Serum 312	You	0.649	0.11	10.05	1.843	0.055	0.130	0.123	0.007	0.073	0.528	0.277	0.068	0.033	0.111
	c	35	12	37	23	∞	25	10	9	22	22	∞	23	ო	23
m 311	NAV	0.769	0.3	14.42	2.571	0.140	0.679	0.638	0.052	0.036	0.152	0.067	0.019	0.008	0.07
Seru	You NAV	0.787	0.2	14.75	2.693	0.154	0.689	0.643	0.046	0.029	0.156	0.068	0.025	0.013	0.07
		34	1	37				10							
um 310	You NAV	0.188	0.0	3.49	0.684	0.036	0.140	0.136	0.012	0.008	0.035	0.015	0.006		0.02
Seru	You	0.204	0.0	3.46	0.706	0.046	0.167	0.155	0.012	0.006	0.034	0.016	0.006	bu	0.02
	c	36	12	38	23	∞	26	10	9	23	23	∞	24	4	24
m 309	NAV	0.491	0.08	16.69	1.550	0.553	0.436	0.386	0.034	0.098	0.431	0.203	0:030	0.016	0.105
Seru	You	0.489	0.09	16.63	1.589	0.581	0.443	0.414	0.029	060.0	0.459	0.215	0.040	0.022	0.107
	Analyte	Total Retinol	Retinyl Palmitate	a-Tocopherol	γ/β-Tocopherol	õ-Tocopherol	Total β-Carotene	trans-β-Carotene	Total cis-β-Carotene	Total α-Carotene	Total Lycopene	trans-Lycopene	Total β-Cryptoxanthin	Total α-Cryptoxanthin	Total Lutein&Zeaxanthin

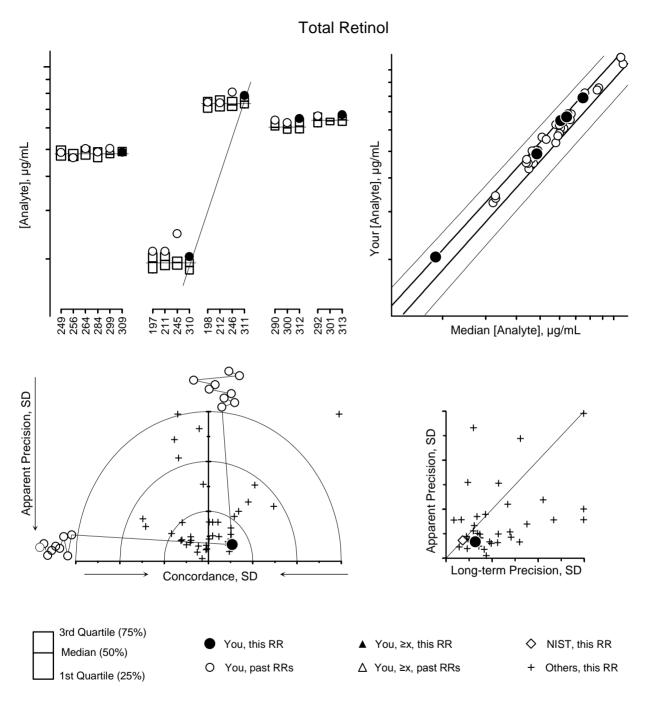
You : Your reported values for the listed analytes (micrograms/milliliter)

NAV : NIST Assigned Values, here equal to this RR's median

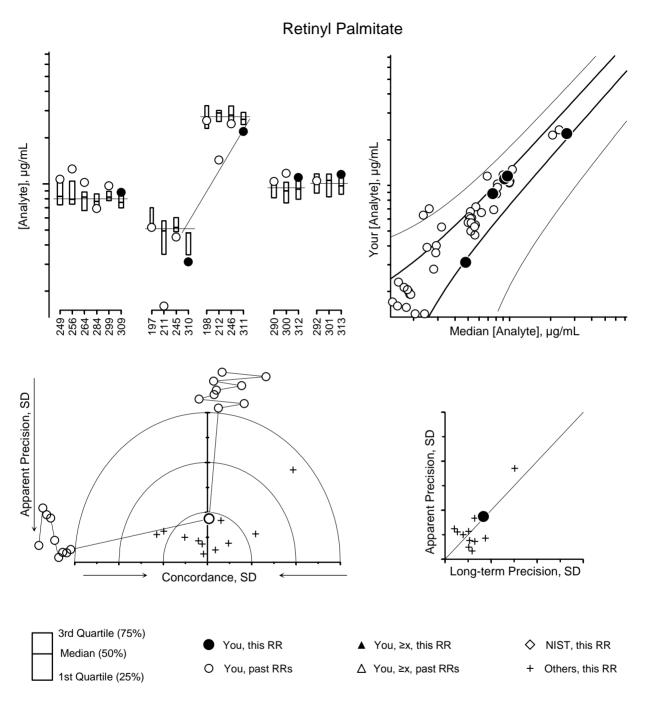
n: Number of non-NIST laboratories reporting quantitative values for this analyte in this serum

nq : Detected, but not quantitatively determined

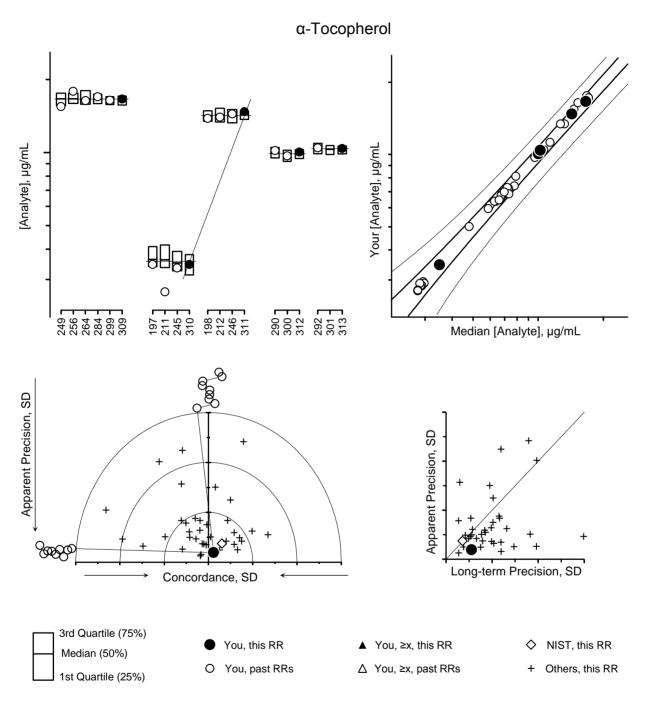
Tel: (301) 975-3935 Fax: (301) 977-0685 Email: david.duewer@nist.gov

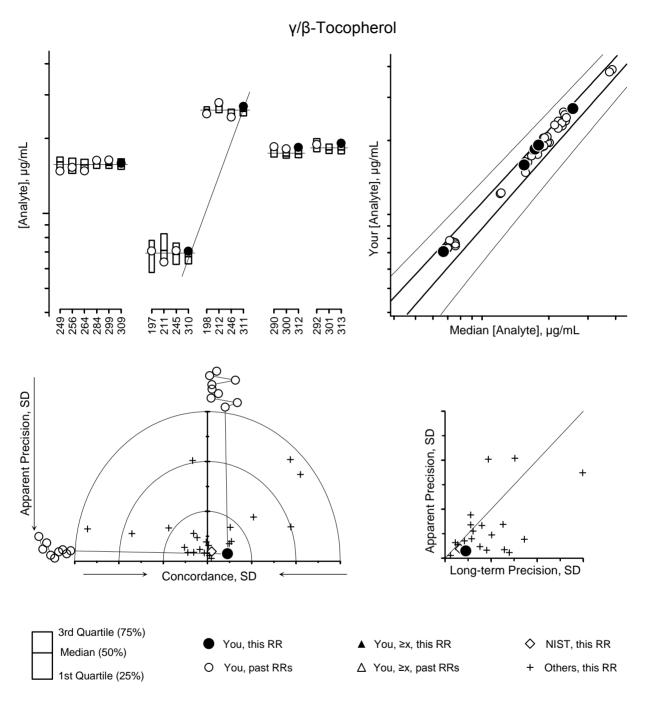

Please check our records against your records. Send corrections and/or updates to...

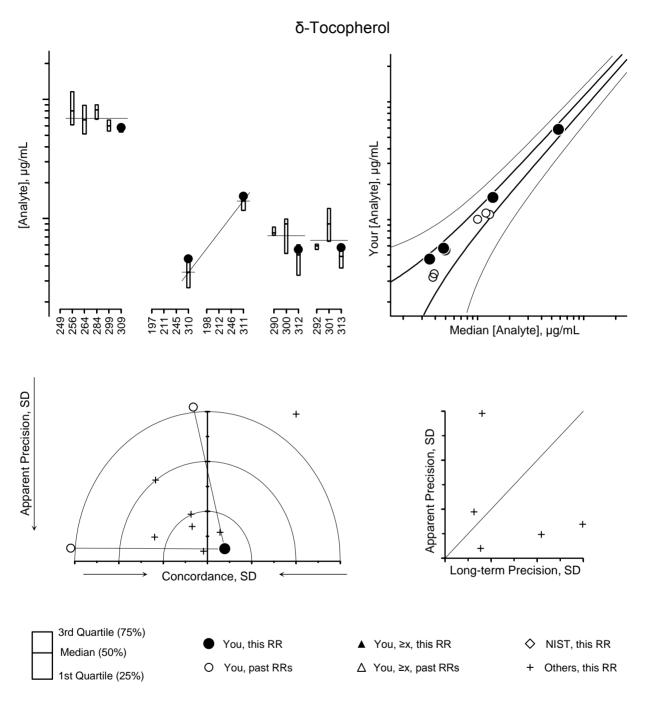
Micronutrients Measurement Quality Assurance Program

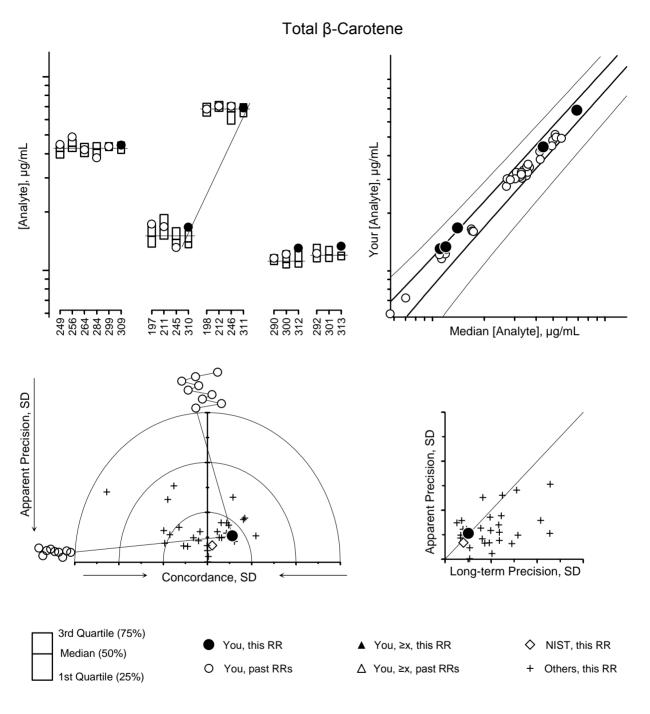

National Institute of Standards and Technology

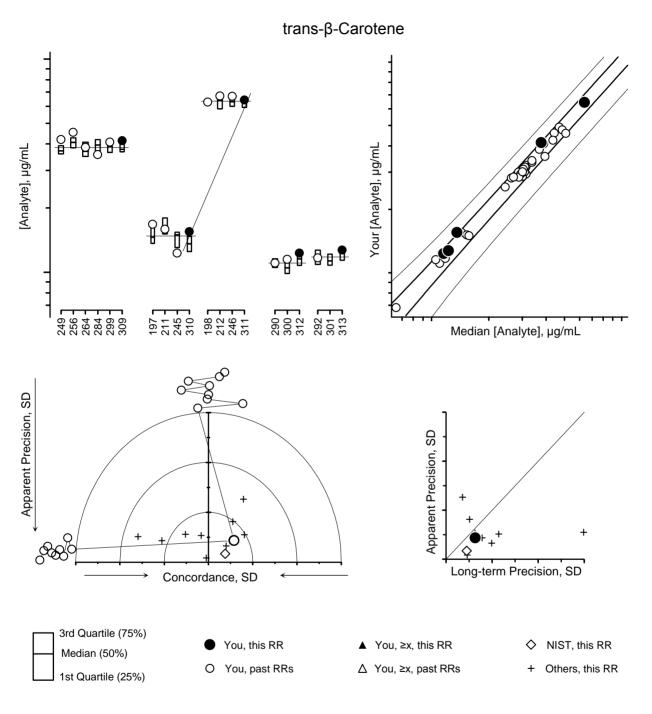
100 Bureau Drive Stop 8392 Gaithersburg, MD 20899-8392 USA Page 1 / 15


Individualized Report


<u>Serum</u>	<u>History</u>	<u>Comments</u>
#309	Lyophilized - 44:249, 46:256, 48:264, 52:284, 55:299	Augmented, multi-source (SRM 968c Level II)
#310	Lyophilized - 31:197, 35:211, 43:245	Same as #311, 1:3 diluted with stripped serum
#311	Lyophilized - 31:198, 35:212, 43:246	Augmented, multi-source
#312	Lyophilized - 53:290, 55:300	Native, single-source
#313	Fresh-frozen: 53:292, 55:301	Native, single-source, hemolyzed


<u>Serum</u>	<u>History</u>	<u>Comments</u>
#309	Lyophilized - 44:249, 46:256, 48:264, 52:284, 55:299	Augmented, multi-source (SRM 968c Level II)
#310	Lyophilized - 31:197, 35:211, 43:245	Same as #311, 1:3 diluted with stripped serum
#311	Lyophilized - 31:198, 35:212, 43:246	Augmented, multi-source
#312	Lyophilized - 53:290, 55:300	Native, single-source
#313	Fresh-frozen: 53:292, 55:301	Native, single-source, hemolyzed

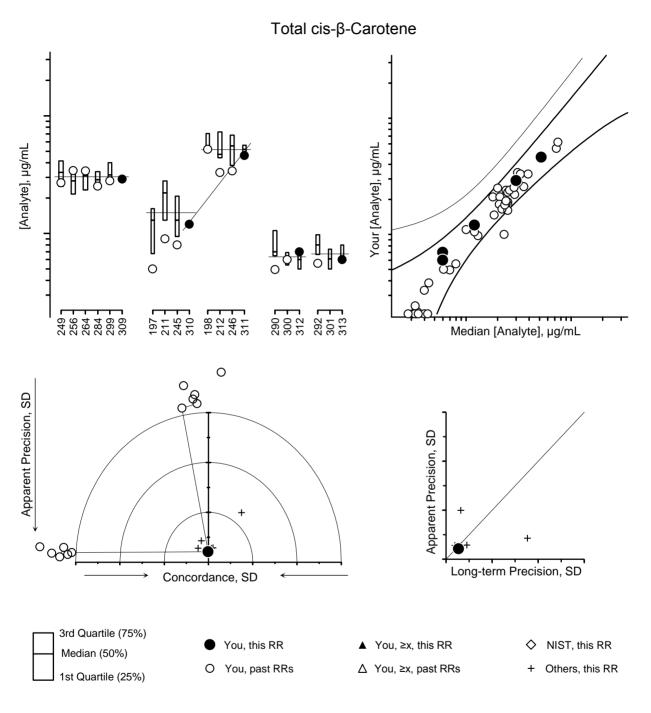

<u>Serum</u>	<u>History</u>	<u>Comments</u>
#309	Lyophilized - 44:249, 46:256, 48:264, 52:284, 55:299	Augmented, multi-source (SRM 968c Level II)
#310	Lyophilized - 31:197, 35:211, 43:245	Same as #311, 1:3 diluted with stripped serum
#311	Lyophilized - 31:198, 35:212, 43:246	Augmented, multi-source
#312	Lyophilized - 53:290, 55:300	Native, single-source
#313	Fresh-frozen: 53:292, 55:301	Native, single-source, hemolyzed


<u>Serum</u>	<u>History</u>	<u>Comments</u>
#309	Lyophilized - 44:249, 46:256, 48:264, 52:284, 55:299	Augmented, multi-source (SRM 968c Level II)
#310	Lyophilized - 31:197, 35:211, 43:245	Same as #311, 1:3 diluted with stripped serum
#311	Lyophilized - 31:198, 35:212, 43:246	Augmented, multi-source
#312	Lyophilized - 53:290, 55:300	Native, single-source
#313	Fresh-frozen: 53:292, 55:301	Native, single-source, hemolyzed

<u>Serum</u>	<u>History</u>	<u>Comments</u>
#309	Lyophilized - 44:249, 46:256, 48:264, 52:284, 55:299	Augmented, multi-source (SRM 968c Level II)
#310	Lyophilized - 31:197, 35:211, 43:245	Same as #311, 1:3 diluted with stripped serum
#311	Lyophilized - 31:198, 35:212, 43:246	Augmented, multi-source
#312	Lyophilized - 53:290, 55:300	Native, single-source
#313	Fresh-frozen: 53:292, 55:301	Native, single-source, hemolyzed

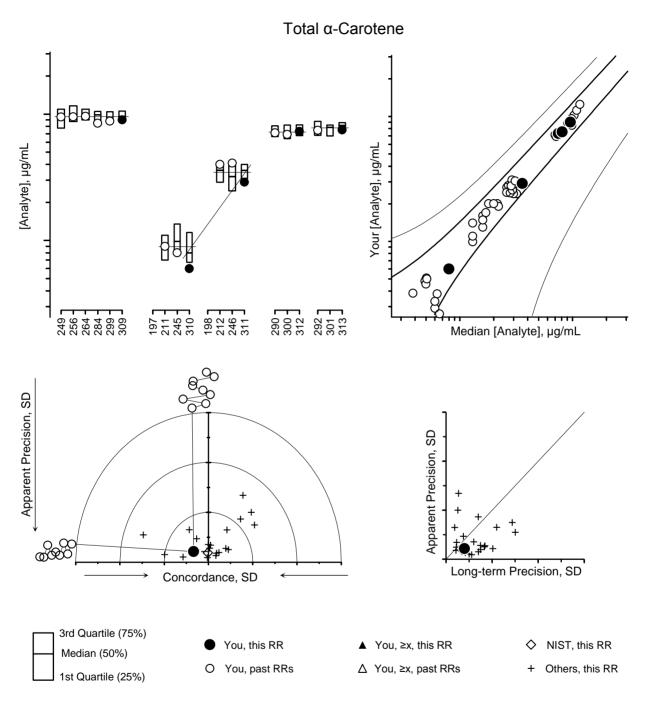
<u>Serum</u>	<u>History</u>	<u>Comments</u>
#309	Lyophilized - 44:249, 46:256, 48:264, 52:284, 55:299	Augmented, multi-source (SRM 968c Level II)
#310	Lyophilized - 31:197, 35:211, 43:245	Same as #311, 1:3 diluted with stripped serum
#311	Lyophilized - 31:198, 35:212, 43:246	Augmented, multi-source
#312	Lyophilized - 53:290, 55:300	Native, single-source
#313	Fresh-frozen: 53:292, 55:301	Native, single-source, hemolyzed

H	listory

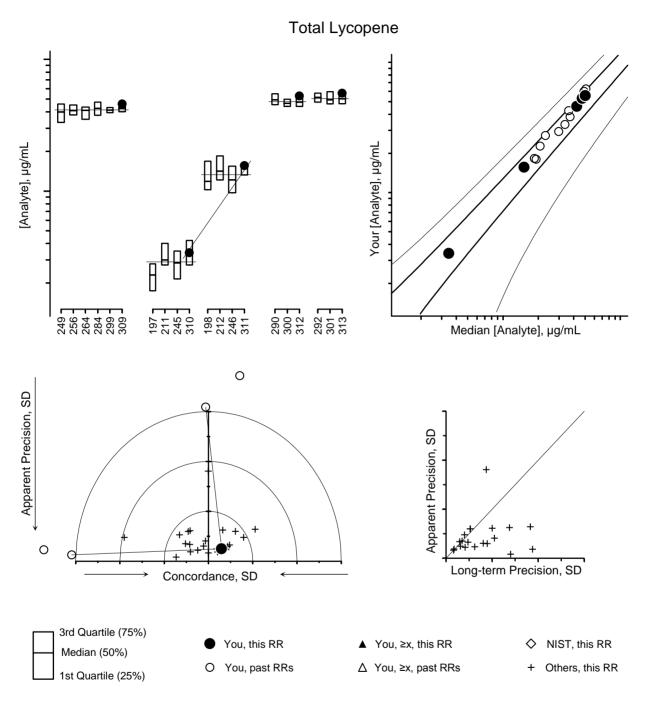

<u>History</u>	<u>Comments</u>
Lyophilized - 44:249, 46:256, 48:264, 52:284, 55:299	Augmented, multi-source (SRM 968c Level II)
Lyophilized - 31:197, 35:211, 43:245	Same as #311, 1:3 diluted with stripped serum
Lyophilized - 31:198, 35:212, 43:246	Augmented, multi-source
Lyophilized - 53:290, 55:300	Native, single-source
Fresh-frozen: 53:292, 55:301	Native, single-source, hemolyzed

<u>Serum</u> #309

#310

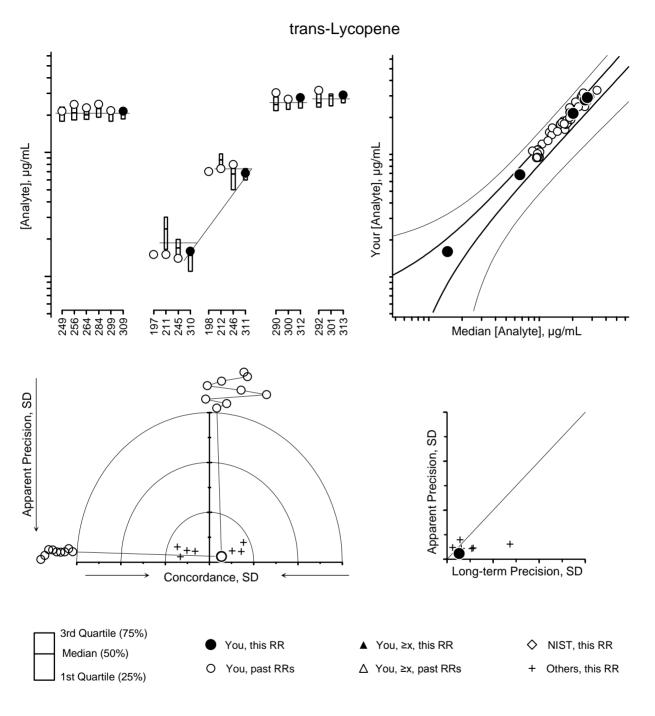

#311

#312 #313



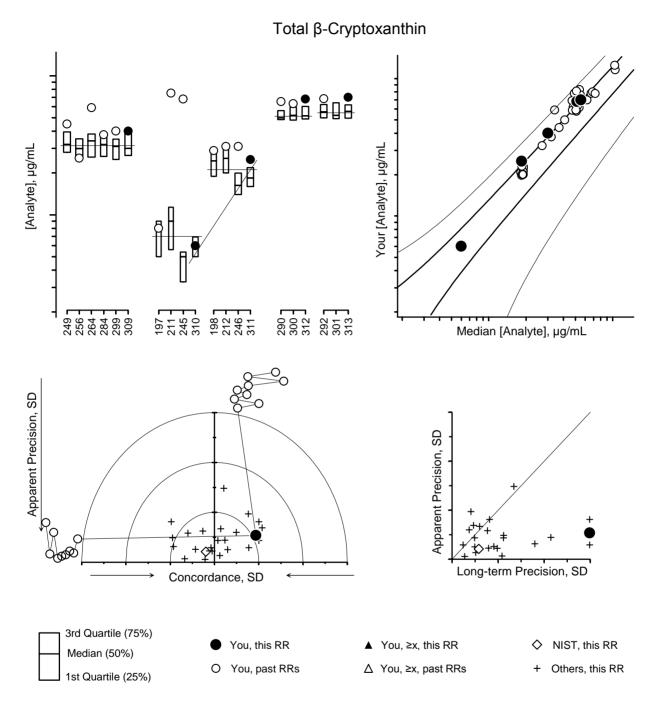
History

<u>Serum</u> **Comments** #309 Lyophilized - 44:249, 46:256, 48:264, 52:284, 55:299 Augmented, multi-source (SRM 968c Level II) #310 Lyophilized - 31:197, 35:211, 43:245 Same as #311, 1:3 diluted with stripped serum #311 Lyophilized - 31:198, 35:212, 43:246 Augmented, multi-source #312 Lyophilized - 53:290, 55:300 Native, single-source #313 Fresh-frozen: 53:292, 55:301 Native, single-source, hemolyzed



<u>Serum</u>	<u>History</u>	<u>Comments</u>
#309	Lyophilized - 44:249, 46:256, 48:264, 52:284, 55:299	Augmented, multi-source (SRM 968c Level II)
#310	Lyophilized - 31:197, 35:211, 43:245	Same as #311, 1:3 diluted with stripped serum
#311	Lyophilized - 31:198, 35:212, 43:246	Augmented, multi-source
#312	Lyophilized - 53:290, 55:300	Native, single-source
#313	Fresh-frozen: 53:292, 55:301	Native, single-source, hemolyzed

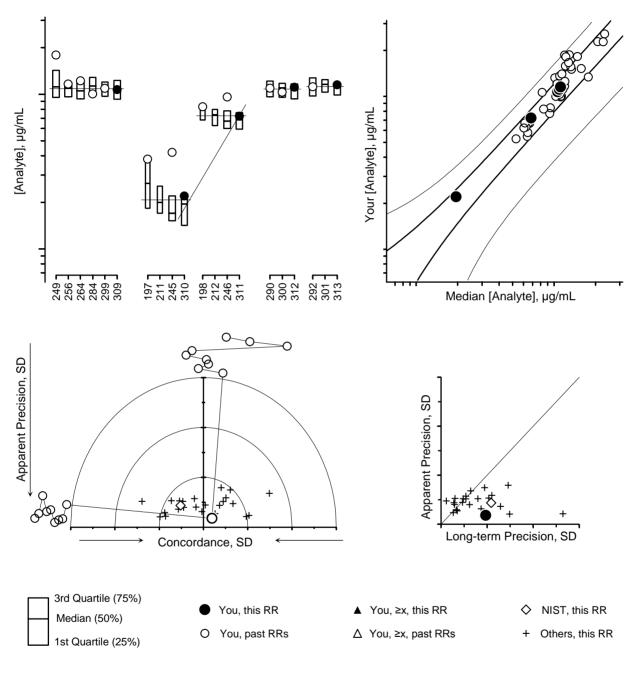
<u>Serum</u>	<u>History</u>	<u>Comments</u>
#309	Lyophilized - 44:249, 46:256, 48:264, 52:284, 55:299	Augmented, multi-source (SRM 968c Level II)
#310	Lyophilized - 31:197, 35:211, 43:245	Same as #311, 1:3 diluted with stripped serum
#311	Lyophilized - 31:198, 35:212, 43:246	Augmented, multi-source
#312	Lyophilized - 53:290, 55:300	Native, single-source
#313	Fresh-frozen: 53:292, 55:301	Native, single-source, hemolyzed


Individualized RR LVII Report: FSV-BA

History

<u>Serum</u>	<u>History</u>	<u>Comments</u>
#309	Lyophilized - 44:249, 46:256, 48:264, 52:284, 55:299	Augmented, multi-source (SRM 968c Level II)
#310	Lyophilized - 31:197, 35:211, 43:245	Same as #311, 1:3 diluted with stripped serum
#311	Lyophilized - 31:198, 35:212, 43:246	Augmented, multi-source
#312	Lyophilized - 53:290, 55:300	Native, single-source
#313	Fresh-frozen: 53:292, 55:301	Native, single-source, hemolyzed

Individualized RR LVII Report: FSV-BA



History

<u>Serum</u>	<u>History</u>	<u>Comments</u>
#309	Lyophilized - 44:249, 46:256, 48:264, 52:284, 55:299	Augmented, multi-source (SRM 968c Level II)
#310	Lyophilized - 31:197, 35:211, 43:245	Same as #311, 1:3 diluted with stripped serum
#311	Lyophilized - 31:198, 35:212, 43:246	Augmented, multi-source
#312	Lyophilized - 53:290, 55:300	Native, single-source
#313	Fresh-frozen: 53:292, 55:301	Native, single-source, hemolyzed

Individualized RR LVII Report: FSV-BA

Total Lutein&Zeaxanthin

Н	isto	ry

Comments

#309	Lyophilized - 44:249, 46:256, 48:264, 52:284, 55:299	Augmented, multi-source (SRM 968c Level II)
#310	Lyophilized - 31:197, 35:211, 43:245	Same as #311, 1:3 diluted with stripped serum
#311	Lyophilized - 31:198, 35:212, 43:246	Augmented, multi-source
#312	Lyophilized - 53:290, 55:300	Native, single-source
#313	Fresh-frozen: 53:292, 55:301	Native, single-source, hemolyzed

<u>Serum</u>

Total Lutein&Zeaxanthin •• Total Zeaxanthin Coenzyme Q10 Total Lutein • Individualized Round Robin LVII Report: FSV-BA **Graphical Comparability Summary** Total cis-β-Carotene Total β-Carotene trans-β-Carotene Total α-Carotene • • • •••• • • • Total β-Cryptoxanthin γ/β-Tocopherol a-Tocopherol **ð-Tocopherol** • • ٠ • • • **Retinyl Palmitate** Total Lycopene trans-Lycopene Total Retinol •• ; . ે -1

Individualized Report

Page 15 / 15

Set 1 of 43

Appendix E. Shipping Package Inserts for RR22

The following five items were included in each package shipped to an RR22 participant:

- Cover letter
- Protocol for Preparation and Analysis of the Ascorbic Acid Solid Control Material
- Preparation and Validation of Ascorbic Acid Solid Control Material Datasheet
- Analysis of Control Materials and Test Samples Datasheet
- Packing List and Shipment Receipt Confirmation Form

The cover letter, preparation protocol, and the two datasheets were enclosed in a sealed waterproof bag along with the samples themselves. The packing list was placed at the top of the shipping box, between the cardboard covering and the foam insulation.

November 8, 2004

Dear Colleague:

The samples within this package constitute Vitamin C Round Robin 22 (RR22) of the 2005 Micronutrients Measurement Quality Assurance Program.

RR22 consists of four vials of frozen serum *test samples* (#23, #33, #42, and #70), one vial of ascorbic acid *solid control material* (Control), and two vials of frozen *serum control materials* (Control #1 and Control #2). Please follow the attached protocols when you prepare and analyze these samples. If you cannot prepare the *solid control* solutions gravimetrically, please prepare equivalent solutions volumetrically and report the exact volumes used. (Routine 0.5 g gravimetric measurements are generally 10-fold more accurate than routine 0.5 mL volumetric measurements.)

The two serum control materials are a new component of the M^2QAP for Vitamin C. Please use these materials to validate the performance of your measurement system <u>before</u> you analyze the *test samples*. The target value and \approx 95% confidence interval for *Control #1* is 8.41 ±0.61 µmol/L sample; the target value and \approx 95% confidence interval for *Control #2* is 28.05 ±0.49 µmol/L sample.

Please be aware that sample contact with any oxidant-contaminated surface (vials, glassware, etc.) may degrade your measurement system's performance (SA Margolis and E Park, "Stability of Ascorbic Acid in Solutions in Autosampler Vials", *Clinical Chemistry* 2001, 47(8), 1463-1464). You should suspect such degradation if you observe unusually large variation in replicate analyses.

The report for RR21 was mailed the week of Nov 1, 2004. If you find your results for RR21 unsatisfactory, we recommend that you obtain **Standard Reference Material (SRM) 970 Ascorbic Acid in Serum** to validate your methodology and value assign in-house control materials. This SRM may be purchased from the Standard Materials Reference Program at NIST (Tel: 301-975-6776, Fax: 301-948-3730, or e-mail: srminfo@nist.gov).

If you have any questions or concerns about the Vitamin C Micronutrients Measurement Quality Assurance Program please contact Jeanice Brown Thomas at tel: 301-975-3120, fax: 301-977-0685, or e-mail: <u>jbthomas@nist.gov</u>.

We ask that you return your results for these RR22 samples *before* March 2, 2005. We would appreciate receiving your results as soon as they become available. Please use the attached form. Your results will be kept confidential.

Sincerely, In Thomas Veanice

Jeanice Brown Thomas Research Chemist Analytical Chemistry Division Chemical Science and Technology Laboratory

Enclosures: Protocols, Preparation and Analysis of Control Materials and Analysis of Test Samples RR22 Report Form for Ascorbic Acid Solid Control Material Preparation RR22 Report Form for Control Material and Test Sample Analyses

Micronutrient Measurement Quality Assurance Program for Vitamin C

Please Read Through Completely BEFORE Analyzing Samples

Protocol for Preparation and Analysis of the Ascorbic Acid Solid Control Material

The *ascorbic acid solid control material* (in the amber vial) should be prepared and used in the following manner:

- 1) Prepare at least 500 mL of 5% mass fraction metaphosphoric acid (MPA) in distilled water. This solution will be referred to as the "Diluent" below.
- 2) Weigh 0.20 to 0.22 g of the ascorbic acid solid control material to 0.0001 g (if possible), dissolve it in the Diluent in a 100 mL volumetric flask, and dilute with the Diluent to the 100 mL mark. Weigh the amount of Diluent added to 0.1 g. Record the weights. The resulting material will be referred to as the "Stock Solution" below.
- 3) Prepare three dilute solutions of the Stock Solution as follows:

<u>Dilute Solution 1:</u> Weigh 0.500 mL of the Stock Solution to 0.0001 g into a 100 mL volumetric flask; dilute with Diluent to the 100 mL mark. Record the weight.

<u>Dilute Solution 2:</u> Weigh 0.250 mL of the Stock Solution to 0.0001 g into a 100 mL volumetric flask; dilute with Diluent to the 100 mL mark. Record the weight.

<u>Dilute Solution 3:</u> Weigh 0.125 mL of the Stock Solution to 0.0001 g into a 100 mL volumetric flask; dilute with Diluent to the 100 mL mark. Record the weight.

4) Calculate and record the total ascorbic acid concentrations, [TAA], in these Dilute Solutions. If you follow the above gravimetric preparation directions, the [TAA] in µmol/L is calculated:

 $[\mathsf{TAA}]_{\mathsf{DS}} = \frac{(\mathsf{g} \operatorname{Stock} \operatorname{Solution} \operatorname{in} \operatorname{Dilute} \operatorname{Solution}) \cdot (\mathsf{g} \operatorname{AA} \operatorname{in} \operatorname{Stock} \operatorname{Solution}) \cdot (56785 \ \mu \operatorname{mol/g} \cdot \mathsf{L})}{(\mathsf{g} \operatorname{AA} \operatorname{in} \operatorname{Stock} \operatorname{Solution}) + (\mathsf{g} \operatorname{Diluent} \operatorname{in} \operatorname{Stock} \operatorname{Solution})}$

For example, if you prepared the Stock Solution with 0.2000 g of solid ascorbic acid and 103.0 g of Diluent, then 0.5 mL of the Stock Solution should weigh (0.2+103)/200 = 0.52 g and $[TAA]_{DS1} = (0.52 \text{ g})(0.2 \text{ g})\cdot(56785 \mu \text{mol/g}\cdot\text{L})/(0.2 + 103 \text{ g}) = 57.2 \mu \text{mol/L}$. Likewise, 0.25 mL of the Stock Solution should weigh 0.26 g and $[TAA]_{DS2} = 28.4 \mu \text{mol/L}$ and 0.125 mL should weigh 0.13 g and $[TAA]_{DS3} = 14.2 \mu \text{mol/L}$.

5) Measure the ultraviolet absorbance spectrum of Dilute Solution 1 against the Diluent as the blank using paired 1 cm path length cuvettes. Record the absorbance at 242, 243, 244, and 245 nm. Record the maximum absorbance (A_{max}) within this region. Record the wavelength (λ_{max}) at which this maximum occurs.

The extinction coefficient ($E^{1\%}$) of ascorbic acid at λ_{max} (using a cell with a 1 cm path length) of Dilute Solution #1 can be calculated:

 $E^{1\%}(\frac{dL}{g \cdot cm}) = \frac{(A_{max}) \cdot ((g \text{ AA in Stock Solution}) + (g \text{ Diluent in Stock Solution}))}{(g \text{ Stock Solution in Dilute Solution 1}) \cdot (g \text{ AA in Stock Solution})}$

If your spectrophotometer is properly calibrated, λ_{max} should be between 243 and 244 nm and $E^{1\%}$ should be 550 ± 30 dL/g·cm. If they are not, you should calibrate the wavelength and/or absorbance axes of your spectrophotometer and repeat the measurements.

- 6) Measure and record the concentration of total ascorbic acid in all three dilute solutions and in the 5% MPA Diluent in duplicate using *exactly* the same method that you will use for the serum control materials and test samples, including any enzymatic treatment. We recommend that you analyze these solutions in the following order: Diluent, Dilute Solution 1, Dilute Solution 2, Dilute Solution 3, Dilute Solution 3, Dilute Solution 2, Dilute Solution 1, Diluent.
 - a) Compare the values of the duplicate measurements. *Are you satisfied that your measurement precision is adequate?*
 - b) Compare the measured with the calculated [TAA] values. This is most conveniently done by plotting the measured values on the y-axis of a scatterplot against the calculated values on the x-axis. The line through the four {calculated, measured} data pairs should go through the origin with a slope of 1.0. *Are you satisfied with the agreement between the measured and calculated values?*

Do **<u>not</u>** analyze the serum control materials or test samples until you are satisfied that your system is performing properly!

 Once you have confirmed that your system is properly calibrated, analyze the serum control materials (see protocol below). The target values for these materials are:

Control #1: 8.5 \pm 0.5 μ mol/L of sample

Control #2: 28.1 $\pm 1.0~\mu mol/L$ of sample.

If your measured values are not close to these target values, please review your sample preparation procedure and whether you followed *exactly* the same measurement protocol the solutions prepared from the solid control material as you used for these serum controls. If the protocols differ, please repeat from Step 6 using the proper protocol. If the proper protocol was used, your measurement system may not be suitable for MPA-preserved samples. Please contact us: 301-975-3120 or Jeanice.BrownThomas@NIST.gov.

Do <u>not</u> analyze the test samples until you are satisfied that your system is performing properly and is suitable for the analysis of MPA-preserved serum!

Protocol for Analysis of the Serum Control Materials and Test Samples

The *serum control materials* and *test samples* are in sealed ampoules. They were prepared by adding equal volumes of 10% MPA to spiked human serum. We have checked the samples for stability and homogeneity. Only the total ascorbic acid is stable. While these samples contain some dehydroascorbic acid, its content is variable. Therefore, only <u>total ascorbic acid</u> should be reported. The *serum control materials* and *test samples* should be defrosted by warming at 20 °C for not more than 10 min otherwise some irreversible degradation may occur.

Each *serum test sample* contains between 0.0 and 80.0 μ mol of total ascorbic acid/L of solution. The total ascorbic acid in each ampoule should be measured in duplicate. Please report your results in μ mol/(L of the sample solution) rather than μ mol/(L of serum NIST used to prepare the sample).

Participant #: _____

Date:

Vitamin C Round Robin 22

NIST Micronutrient Measurement Quality Assurance Program

Preparation and Validation of Ascorbic Acid Solid Control Material

STOCK SOLUTION

Mass of ascorbic acid in the Stock Solution	_ g
Mass of 5% MPA Diluent added to the 100 mL volumetric flask	_ g

DILUTE SOLUTION 1

Mass of added stock solution (0.5 mL)	_ g
Mass of 5% MPA Diluent added to the 100 mL volumetric flask	_ g
Absorbance of Dilute Solution 1 at 242 nm	AU
Absorbance of Dilute Solution 1 at 243 nm	AU
Absorbance of Dilute Solution 1 at 244 nm	AU
Absorbance of Dilute Solution 1 at 245 nm	AU
Absorbance of Dilute Solution absorbance maximum	AU
Wavelength of maximum absorbance	_nm
Calculated E ^{1%}	_dL/g·cm
Calculated [TAA] _{DS1}	_μmol/L

DILUTE SOLUTION 2

Mass of added stock solution (0.25 mL)	g
Mass of 5% MPA Diluent added to the 100 mL volumetric flask	g
Calculated [TAA] _{DS2}	_μmol/L

DILUTE SOLUTION 3

Mass of added stock solution (0.125 mL)	g
Mass of 5% MPA Diluent added to the 100 mL volumetric flask	g
Calculated [TAA] _{DS3}	µmol/L

Please return before March 2, 2005 to:

MMQAP
100 Bureau Drive, Stop 8392
Gaithersburg, MD 20899-8392

Fax: 301-977-0685 Email: david.duewer@nist.gov Participant #: _____

Date:

Vitamin C Round Robin 22 NIST Micronutrient Measurement Quality Assurance Program

Analysis of Control Materials and Test Samples

Sample	Replicate 1	Replicate 2	Units
Dilute Solution 1			µmol/L of Dilute Solution
Dilute Solution 2			µmol/L of Dilute Solution
Dilute Solution 3			µmol/L of Dilute Solution
5% MPA Diluent			µmol/L of Diluent
Serum Control #1			μmol/L of Sample <i>Target:</i> 8.5 ±0.5 μmol/L
Serum Control #2			μmol/L of Sample <i>Target:</i> 28.1 ±1.0 μmol/L
Serum Test Sample #23			µmol/L of Sample
Serum Test Sample #33			µmol/L of Sample
Serum Test Sample #42			µmol/L of Sample
Serum Test Sample #70			µmol/L of Sample

Were samples frozen upon receipt? Yes | No

Analysis method: HPLC-EC | HPLC-Fluor DAB | HPLC-OPD | HPLC-UV | AO-OPD | Other If "Other", please describe:

COMMENTS:

Please return *before* March 2, 2005 to:

Fax: 301-977-0685 Email: david.duewer@nist.gov Vitamin C Round Robin 22 NIST Micronutrients Measurement Quality Assurance Program

Packing List and Shipment Receipt Confirmation Form

This box contains one vial each of the following **seven** VitC M²QAP samples:

Sample	Form
VitC #23	Liquid frozen (1:1 serum:10% MPA)
VitC #33	Liquid frozen (1:1 serum:10% MPA)
VitC #42	Liquid frozen (1:1 serum:10% MPA)
VitC #70	Liquid frozen (1:1 serum:10% MPA)
Control #1	Liquid frozen (1:1 serum:10% MPA)
Control #2	Liquid frozen (1:1 serum:10% MPA)
Control	Solid AA

Please 1) Open the pack immediately

- 2) Check that it contains one vial each of the above samples
- 3) Check if the samples arrived frozen
- 4) Store the samples at -20 °C or below until analysis
- 5) Complete the following information
- 6) Fax the completed form to us at 301-977-0685 (or email requested information to david.duewer@nist.gov)

1) Date this shipment arrived: _____

2) Are all of the vials intact? Yes | No

If "No", which one(s) were damaged?

- 3) Was there any dry-ice left in cooler? Yes | No
- 4) Did the samples arrive frozen? Yes | No
- 5) At what temperature are you storing the samples? _____°C
- 6) When do you anticipate analyzing these samples? _____

Your prompt return of this information is appreciated.

The M²QAP Gang

Appendix F. Final Report for RR22

The following two pages are the final report as provided to all participants:

- Cover letter.
- An information sheet that:
 - describes the contents of the "All-Lab" report,
 - o describes the content of the "Individualized" report,
 - describes the nature of the test samples and details their previous distributions, if any, and
 - summarizes aspects of the study that we believe may be of interest to the participants.

UNITED STATES DEPARTMENT OF COMMERCE National Institute of Standards and Technology Gaithersburg, Maryland 20899-0001

April 14, 2005

Dear Colleague:

Enclosed is the summary report of the results for Round Robin 22 (RR22) for the measurement of total ascorbic acid (TAA, ascorbic acid plus dehydroascorbic acid) in human serum. Included in this report are: a summary of data for all laboratories and a summary of individual laboratory performance and interlaboratory accuracy and repeatability. As in previous reports, the estimated standard deviations (eSD) for the measurements are defined as 0.74x interquartile range and the estimate coefficients of variation (eCV) are defined as 100x eSD/median.

RR 22 consists of four *test samples* (#23, #33, #42, and #70), two *serum control materials*, and one *solid control material* for preparation of TAA control solutions. Details regarding the samples can be found in the enclosed report.

If you have concerns regarding your laboratory's performance, we suggest that you obtain and analyze a unit of Standard Reference Material (SRM) 970, Vitamin C in Frozen Human Serum. SRM 970 can be purchased from the NIST SRM Program at phone: 301-975-6776; fax: 301-948-3730. If your measured values do not agree with the certified values, we suggest that you contact us for consultation.

Samples for the second vitamin C round robin study (RR 23) for the 2005 Vitamin C in Serum QA Program will be shipped (**during the week of May 16**). If you have questions or concerns regarding this report, please contact David Duewer at 301-975-3935; e-mail: david.duewer@nist.gov or me at 301-975-3120; e-mail: jbthomas@nist.gov; or fax: 301-977-0685.

Sincerely.

Jeanice Brown Thomas Research Chemist Analytical Chemistry Division Chemical Science and Technology Laboratory

Enclosures

The NIST M²QAP Vitamin C Round Robin 22 (RR22) report consists of

Page	"Individualized" Report		
1	Summarizes your reported values for the nominal 55 mmol/L solution you prepared from the ascorbic acid solid control sample, the two serum control samples, and the four serum test samples.		
2	Graphical summary of your RR 22 sample measurements.		
Page	"All Lab" Report		
1	1 A tabulation of results and summary statistics for Total Ascorbic Acid [TAA] in the RR22 samples and control/calibration solutions.		
Serum-ba	ased Samples. Two serum controls and four unknowns were distributed in RR22.		
CS1	SRM 970 level 1, ampouled in mid-1998.		
CS2	SRM 970 level 2, ampouled in mid-1998.		
S22:1	Serum 23, ampouled in late 2001, previously distributed as sample S17:1 (RR17, Sep-02), S19:2 (RR19, Sep-03), and S21:2 (Sep-04). An augmented serum.		
S22:2	Serum 33, ampouled in late 2001, previously distributed as sample S17:2 (RR17, Sep-02), S18:1 (RR18, Mar-03) and S20:1 (RR20, Mar-04). An augmented serum.		
S22:3	Serum 42, ampouled in late 2001, previously distributed as sample S18:2 (RR18, Mar-03),		

- S19:3 (RR19, Sep-03) and S21:3 (RR21, Sep-04). An augmented serum.
- Serum 70, SRM 970 level 2, ampouled in mid-1998. This material was distributed with identification in RR11 (Oct-98) and RR12 (Mar-99) and as samples S13-2 (RR13, Mar-00), S14-4 (RR14, Mar-01), S15:2 (RR15, Sep-01), S18:3 (RR18, Mar-03), and S20:4 (RR20, Mar-04). An augmented serum.

Results.

- All participants who prepared the four control/calibration solutions (the three "Dilute Solutions" and the 5% MPA "Diluent") did so correctly. The criteria used to evaluate this success are: the density of the 5% MPA (≈1.03 g/mL), the observed wavelength maximum of "Dilute Solution 1"(≈244 nm), the observed absorbance at that maximum (≈0.55 OD), the calculated E^{1%} of Solution 1"(≈550 dL/g·cm).
- 2) Judging from the calibration parameters calculated for the control/calibration solutions (intercepts close to 0.0 and slopes close to 1.0), the measurement systems for most participants are well calibrated, although the slope for one participant was 11% lower than expected and the intercept for another participant was significantly different from zero.
- 3) Several participants reported values for high-level control that were well outside the target range of 26 µmol/L to 30 µmol/L. If the measured values for the control samples are not close to the targets, even if your measured and calculated values for the calibration solutions agree, there is a problem with your measurement system.
- 4) There is no evidence of sample degradation with any of the samples distributed.

Appendix G. "All-Lab Report" for RR22

The following single page is the "All-Lab Report" as provided to all participants, with two exceptions:

- the participant identifiers (Lab) have been altered.
- the order in which the participant results are listed has been altered.

The data summary in the "All-Lab Report" has been altered to ensure confidentiality of identification codes assigned to laboratories.

Micronutrients Measurement Quality Assurance Program for Total Ascorbic Acid "Round Robin" 22 - March 2005

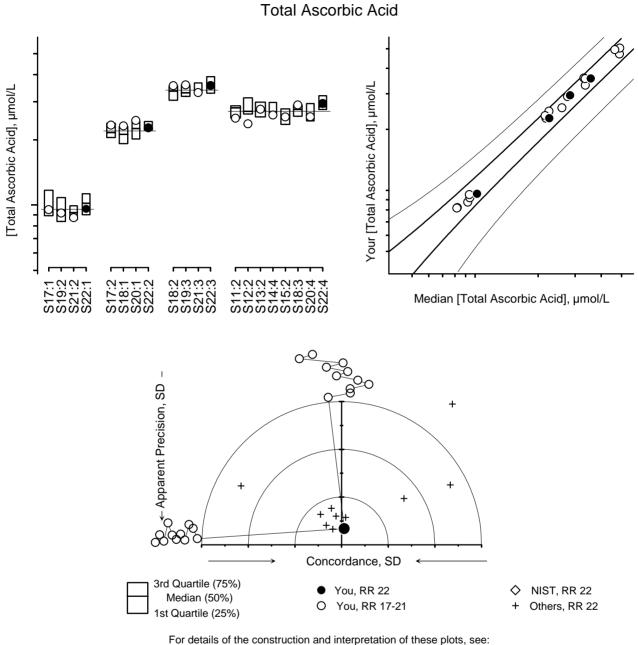
			ŝ	0	0	4	e	8	ы	4	6	6	0	1	-	ы	ŝ	5	· 10	6	0	0	0	0
		S22:4	27.(30.(30.0	27.4	34.:	27.8	26.	26.4	29.(29.6	46.0		÷	30.5	5.6	26.	27.1	29.6	30.0	46.(Э.С	÷
	Corrected, µmol/L	S22:3	33.4	37.1	42.0	30.4	40.7	33.9	26.9	31.1	35.5	35.5	54.9		11	36.5	7.5	76 Q	32.3	35.5	38.9	54.9	6.5	18
		S22:2	21.2	23.2	26.4	21.8	25.1	22.1	16.4	22.3	24.6	21.1	34.5		11	23.5	4.5	16.4	21.5	22.3	24.8	34.5	1.8	8
		S22:1	8.9	8.2	11.1	9.7	12.0	8.1	4.0	11.1	10.5	9.6	11.1		11	9.5	2.2	07	8.5	9.7	11.1	12.0	2.1	22
		CS#2 S	27.1	30.6	30.0	26.9	30.6	27.5	27.0	27.0	29.9	28.8	49.8		11	30.5	6.6	0 9 C	27.1	28.8	30.3	49.8	2.6	6
Samples		CS#1 C	7.9	8.8	8.9	7.9	9.3	7.9	7.1	9.7	8.4	8.8	11.5		11	8.8	1.2	7 1	7.9	8.8	9.1	11.5	1.3	14
	Spectrophotometry Measured, µmol/L	S22:4 C	29.4	28.4	27.0	28.2	34.1	28.2	26.0	26.5	35.0	29.8	46.0		11	30.8	5.8	26.0	27.6	28.4	31.9	46.0	2.1	7
		S22:3 S2		35.1		31.3	40.6		26.4	31.1	41.3		54.9		11	36.7	7.4	76.4	32.8	35.6	39.1	54.9	6.4	18
		S22:2 S2								22.6		21.2	34.5		11	23.8	4.7	16.1		22.6		34.5	1.9	8
					10.3 2				4.1	11.6	14.6 2	9.5 2	1.1		11		2.7	1 1	0.6			14.6 3	1.8	18
		#2 S22:1				-	30.4 1		26.5	27.2 1	35.3 1		49.8 1		11	30.8	6.7	26 E		28.9			2.1	7
		f1 CS#2		8.3 28		8.4 27	8.7 30		7.1 26	10.3 27	12.4 35		.5 49		11	9.1 30	1.6 6	1 26		8.6 28		12.4 49	0.4	5
		CS#1							~	10			1		、 8			-						ő
on 1		E ^{1%}		563.3	551.1		_	556.2			564.0	561.3				556.6	10.7	537 E				50	3.3	
Dilute Solution		A_{max}	0.5591	0.5612	0.5553	0.5315	0.5700	0.6120			0.5854	0.5603			8	0.5669	0.0236	0 5315	0.5582	0.5608	0.5739	0.6120	0.0109	1.9
Dilu		λ_{max}	243.	244.	243.	243.	243.9	244.			244.	244.			8	243.6	0.5	0.840	243.0	244.0	244.0	244.0	0.1	0.03
MPA	Calibration Parameters Density	g/mL	1.032	1.032	1.030	1.033	1.033	1.030	1.033	1.023	1.032	1.032			10	1.031	0.003	1 023	1.031	1.032	1.033	1.033	0.002	0.19
~			0	m	(0	4	0		0	1.3		10			z	ge	SD	Min	25	LE LE	75	Max	eSD	C<
		SEE	0 0.2	0 0.3	9.0.6	0 0.4	9 1.0	0 0.2	9 1.0	`	6 2.2	0 0.5				Average	0	2	%25	Median	%75	Ÿ	eS	0
		R ²			9 0.999		-		_		7 0.996	1 1.000												
		Slope	1.06	0.95	0.89	1.02	1.02	1.00	0.97	0.97	1.07	1.01												
nples		Inter	0.21	-0.07	0.40	0.33	-0.83	0.34	0.15	0.80	3.40	-0.12						_						
on Sar	Measured, μmol/L	MPA	0.0	0.0	0.0	0.0	0.0	0.2	1.0	0.4	1.5	0.0			10	0.3	0.5	00	0.0	0.0	0.3	1.5	0.0	
alibratio		Dil:3	15.3	13.7	12.5	14.8	13.3	15.7	13.4	15.0	19.8	13.9			10	14.7	2.0	10 E	13.4	14.4	15.2	19.8	1.4	10
Control / Calibration Samples		Dil:2	30.6	26.1	25.5	29.5	28.1	31.8	26.8	30.4	35.2	28.4			10	29.2	2.9	25 A7	27.09	28.97	30.53	35.21	2.8	10
		Dil:1	59.9	53.7	50.8	57.9	58.4	62.9	55.2	57.4	65.2	56.9			10	57.8	4.2	50 B	55.6	57.6	59.5	65.2	3.5	9
	Gravimetric, µmol/L	Dil:3	14.0	14.3	13.5	14.0	14.5	15.2	14.3	15.0	13.9	14.4			10	14.3	0.5	135	14.0	14.3	14.5	15.2	0.4	e
		Dil:2	28.5	28.0	27.5	28.3	29.1	31.2	28.0	28.8	28.4	27.8			10	28.5	1.0	27 EO	27.98	28.32	28.73	31.19	0.6	2
		Dil:1	56.4	56.6	57.2	56.7	57.6	62.5	56.0	58.7	58.9	56.7			10	57.7	1.9	56 O			58.5	62.5	0.9	2
	<u> </u>	Date	38/03/05	02/03/05	29/11/04	14/03/03	38/02/05	13/01/05	12/01/05	15/12/04	25/02/05	01/03/05	22/02/05		z	Average	SD	Min	%25	Median	%75	Max	MADe	S
		Lab D	VC-MA 08	VC-MB 02		VC-ME 14	Ŭ	`	•			0	VC-MY 22			Ā				2				
														l										

Appendix H. Representative "Individualized Report" for RR22

Each participant in RR22 received an "Individualized Report" reflecting their reported results. The following two pages are the "Individualized Report" for participant "VC-MA".

Vitamin C "Round Robin" 22 Report: Participant VC-MA

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				MPA Density			te Solutio trophotor		Control/Calibration Solutions Y_{meas} = Inter + Slope* X_{grav}					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Date	RR	Method	g/mL		λ_{max}	A _{max}	E ^{1%}	Inter	Slope	R^2	SEE		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				-										
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			HPLC-EC											
$\begin{array}{c c c c c c c c c c c c c c c c c c c $														
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	02/23/04	20	HPLC-EC	1.031		243.0	0.552	560.7	-0.4	1.05	1.000	0.65		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	09/13/04	21	HPLC-EC	1.030		244.0	0.555	562.2	-0.1	0.99	1.000	0.10		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	03/08/05	22	HPLC-EC	1.034		243.0	0.559	562.9	0.2	1.06	1.000	0.24		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			Mean	1.029	-	243.2	0.55	560.3				0.48		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			SD	0.003		0.8	0.02	4.6				0.42		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			CV	0.32		0.31	4.4	0.8						
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$														
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Date	RR	Sample	P				SD _{dup}	Ν	Mean	SD _{repeat}	SD _{reprod}		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$														
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										0.2	0.1	0.1		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$														
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$														
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	02/23/04	20	CS#2	25.8	26.2	1.0	26.0	0.3	3	27.2	0.4	1.6		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	09/13/04	21	CS#2	26.2	27.2	1.0	26.7	0.7						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	03/08/05	22	CS#2	29.0	29.0	1.0	29.0	0.0						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$														
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									4	9.3	0.3	0.4		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$														
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$														
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	03/08/05	22	S22:1	9.6	9.6	1.0	9.6	0.0						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10/10/00	47	047.0	00.0	00.4	1.0	00.4	0.4		00.5	0.5	0.0		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									4	23.5	0.5	0.8		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$														
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$														
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	03/06/05	22	522.2	22.1	ZZ.1	1.0	22.1	0.0						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	03/20/03	18	S18·2	35.1	36.0	10	35.6	0.6	4	35.0	0.3	13		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									<u> </u>	00.0	0.0	1.0		
03/08/05 22 S22:3 35.7 35.6 1.0 35.6 0.1 09/23/98 11 S11:2 49.2 51.4 0.5 25.2 0.8 04/02/99 12 S12:2 47.7 47.0 0.5 23.7 0.2 09/17/01 13 S13:2 27.6 27.7 1.0 27.7 0.1 09/27/01 14 S14:4 25.7 26.4 1.0 26.0 0.5 09/18/01 15 S15:2 25.4 25.6 1.0 25.5 0.2 03/20/03 18 S18:3 28.8 29.2 1.0 29.0 0.3 02/23/04 20 S20:4 25.9 25.2 1.0 25.5 0.5														
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$														
04/02/99 12 \$12:2 47.7 47.0 0.5 23.7 0.2 09/17/01 13 \$13:2 27.6 27.7 1.0 27.7 0.1 09/27/01 14 \$14:4 25.7 26.4 1.0 26.0 0.5 09/18/01 15 \$15:2 25.4 25.6 1.0 25.5 0.2 03/20/03 18 \$18:3 28.8 29.2 1.0 29.0 0.3 02/23/04 20 \$20:4 25.9 25.2 1.0 25.5 0.5				ļ										
09/17/0113S13:227.627.71.027.70.109/27/0114S14:425.726.41.026.00.509/18/0115S15:225.425.61.025.50.203/20/0318S18:328.829.21.029.00.302/23/0420S20:425.925.21.025.50.5	09/23/98	11	S11:2	49.2	51.4	0.5	25.2	0.8	8	26.5	0.4	2.0		
09/27/0114S14:425.726.41.026.00.509/18/0115S15:225.425.61.025.50.203/20/0318S18:328.829.21.029.00.302/23/0420S20:425.925.21.025.50.5	04/02/99	12	S12:2	47.7	47.0	0.5	23.7	0.2						
09/18/0115S15:225.425.61.025.50.203/20/0318S18:328.829.21.029.00.302/23/0420S20:425.925.21.025.50.5	09/17/01	13	S13:2	27.6	27.7	1.0	27.7	0.1						
03/20/0318S18:328.829.21.029.00.302/23/0420S20:425.925.21.025.50.5	09/27/01	14	S14:4	25.7	26.4	1.0	26.0	0.5						
02/23/04 20 S20:4 25.9 25.2 1.0 25.5 0.5	09/18/01	15	S15:2	25.4	25.6	1.0	25.5	0.2						
	03/20/03	18	S18:3	28.8	29.2	1.0	29.0	0.3						
03/08/05 22 S22:4 29.4 29.4 1.0 29.4 0.0				25.9		1.0	25.5	0.5						
	03/08/05	22	S22:4	29.4	29.4	1.0	29.4	0.0						


Please check our records against your records. Send corrections and/or updates to...

Micronutrients Measurement Quality Assurance Program National Institute of Standards and Technology 100 Bureau Drive Stop 8392 Gaithersburg, MD 20899-8392 USA

Fax: (301) 977-0685 Email: david.duewer@nist.gov

Page 1/2

Vitamin C "Round Robin" 22 Report: Participant VC-MA

Duewer, Kline, Sharpless, Brown Thomas, Gary, Sowell. Anal Chem 1999;71(9):1870-8.

Sample

Comments

- S21:1 Serum 23, previously distributed in RRs 17, 19, and 21
- S21:2 Serum 33, previously distributed in RRs 17, 18, and 20
- S21:3 Serum 42, previously distributed in RRs 18, 19, and 21
- S21:4 SRM 970 Level 2, previously distributed in RRs 11, 12, 13, 14, 15, 18, and 20