NISTIR 7903

Dietary Supplement Laboratory Quality Assurance Program: Exercise H Final Report

Melissa M. Phillips Catherine A. Rimmer Laura J. Wood Anthony F. Marlow Michele M. Schantz John R. Sieber

http://dx.doi.org/10.6028/NIST.IR.7903

NISTIR 7903

Dietary Supplement Laboratory Quality Assurance Program: Exercise H Final Report

Melissa M. Phillips Catherine A. Rimmer Laura J. Wood Anthony F. Marlow Michele M. Schantz John R. Sieber Chemical Sciences Division Material Measurement Laboratory

http://dx.doi.org/10.6028/NIST.IR.7903

December 2012

U.S. Department of Commerce *Rebecca M. Blank, Acting Secretary*

National Institute of Standards and Technology Patrick D. Gallagher, Under Secretary of Commerce for Standards and Technology and Director

ABSTRACT	1
INTRODUCTION	1
OVERVIEW OF DATA TREATMENT AND REPRESENTATION	
Statistics	2
Individual Data Table	3
Summary Data Table	4
Graphs	4
Data Summary View	4
Sample/Control Comparison View	5
NUTRITIONAL ELEMENTS IN FOODS AND SUPPLEMENTS	
Study Overview	6
Sample Information	0 2
Co supplement	0 6
Ca supplement	0 7
Technical Recommendations	·····/ 7
Table 1 Individual data table (NIST) for nutritional elements in foods and dietary	/
supplements	9
Table 2. Data summary table for calcium in foods and dietary supplements.	10
Table 3. Data summary table for copper in foods and dietary supplements.	11
Table 4. Data summary table for manganese in foods and dietary supplements.	12
Figure 1. Calcium in SRM 1566b Oyster Tissue (data summary view).	13
Figure 2. Calcium in candidate SRM 3532 Calcium Dietary Supplement (data summa	ary
view).	14
Figure 3. Copper in SRM 1566b Oyster Tissue (data summary view)	15
Figure 4. Copper in candidate SRM 3532 Calcium Dietary Supplement (data summar	ry
view)	16
Figure 5. Manganese in SRM 1566b Oyster Tissue (data summary view)	17
Figure 6. Manganese in candidate SRM 3532 Calcium Dietary Supplement (data	
summary view)	18
Figure 7. Calcium in SRM 1566b Oyster Tissue and candidate SRM 3532 Calcium	
Dietary Supplement (sample/sample comparison view)	19
Figure 8. Copper in SRM 1566b Oyster Tissue and candidate SRM 3532 Calcium	
Dietary Supplement (sample/sample comparison view)	20
Figure 9. Manganese in SRM 1566b Oyster Tissue and candidate SRM 3532 Calcium	n
Dietary Supplement (sample/sample comparison view)	21
PAHs IN GREEN TEA	

TABLE OF CONTENTS

Study Overview	
Sample Information	
Neat solution	22

Green tea	22
Study Results	23
Technical Recommendations	23
Table 5. Individual data table (NIST) for PAHs in green tea.	24
Table 6. Data summary table for naphthalene in green tea.	25
Table 7. Data summary table for fluorene in green tea.	26
Table 8. Data summary table for phenanthrene in green tea.	27
Table 9. Data summary table for anthracene in green tea	28
Table 10. Data summary table for fluoranthene in green tea.	29
Table 11. Data summary table for pyrene in green tea.	30
Table 12. Data summary table for benz[a]anthracene in green tea	31
Table 13. Data summary table for chrysene in green tea	32
Table 14. Data summary table for triphenylene in green tea.	33
Table 15. Data summary table for chrysene + triphenylene in green tea	34
Table 16. Data summary table for benzo[a]pyrene in green tea.	35
Figure 10. Naphthalene in SRM 1647e PAH Solution (data summary view)	36
Figure 11. Naphthalene in SRM 3254 Camellia sinensis (Green Tea) Leaves (data	
summary view)	37
Figure 12. Fluorene in SRM 1647e PAH Solution (data summary view).	38
Figure 13. Fluorene in SRM 3254 Camellia sinensis (Green Tea) Leaves (data sun	nmary
view)	
Figure 14. Phenanthrene in SRM 1647e PAH Solution (data summary view)	40
Figure 15. Phenanthrene in SRM 3254 Camellia sinensis (Green Tea) Leaves (data	a
summary view)	41
Figure 16. Anthracene in SRM 1647e PAH Solution (data summary view)	42
Figure 17. Anthracene in SRM 3254 <i>Camellia sinensis</i> (Green Tea) Leaves (data	
summary view)	43
Figure 18. Fluoranthene in SRM 1647e PAH Solution (data summary view)	44
Figure 19. Fluoranthene in SRM 3254 Camellia sinensis (Green Tea) Leaves (data	ı
summary view)	45
Figure 20. Pyrene in SRM 1647e PAH Solution (data summary view)	46
Figure 21. Pyrene in SRM 3254 Camellia sinensis (Green Tea) Leaves (data summ	nary
view)	
Figure 22. Benz[<i>a</i>]anthracene in SRM 1647e PAH Solution (data summary view)	48
Figure 23. Benz[a]anthracene in SRM 3254 Camellia sinensis (Green Tea) Leaves	s (data
summary view)	
Figure 24. Chrysene in SRM 1647e PAH Solution (data summary view).	50
Figure 25. Chrysene in SRM 3254 Camellia sinensis (Green Tea) Leaves (data sur	mmary
view)	51
Figure 26. Sum of chrysene and triphenylene in SRM 1647e PAH Solution (data	
summary view)	52
Figure 27. Sum of chrysene and triphenvlene in SRM 3254 Camellia sinensis (Gre	en
Tea) Leaves (data summary view)	53
Figure 28. Benzo[<i>a</i>]pyrene in SRM 1647e PAH Solution (data summary view)	54
Figure 29. Benzo[<i>a</i>]pyrene in SRM 3254 <i>Camellia sinensis</i> (Green Tea) Leaves (d	lata
summary view)	55

Figure 30. Phenanthrene in SRM 1647e PAH Solution and SRM 3254 Camellia sinensis
(Green Tea) Leaves (sample/control comparison view)
Figure 31. Anthracene in SRM 1647e PAH Solution and SRM 3254 Camellia sinensis
(Green Tea) Leaves (sample/control comparison view)
Figure 32. Benz[a]anthracene in SRM 1647e PAH Solution and SRM 3254 Camellia
sinensis (Green Tea) Leaves (sample/control comparison view)
Figure 33. Chrysene in SRM 1647e PAH Solution and SRM 3254 Camellia sinensis
(Green Tea) Leaves (sample/control comparison view)
Figure 34. Sum of chrysene and triphenylene in SRM 1647e PAH Solution and SRM
3254 Camellia sinensis (Green Tea) Leaves (sample/control comparison view)60

CHOLINE IN FOODS

Study Overview	51
Sample Information6	51
Soy Flour	51
Whole egg powder6	51
Study Results	51
Technical Recommendations	52
Table 17. Individual data table (NIST) for choline in foods.	53
Table 18. Data summary table for choline in foods.	54
Figure 35. Choline in candidate SRM 3234 Soy Flour (data summary view)	55
Figure 36. Choline in candidate SRM 1845a Whole Egg Powder (data summary view)6	56
Figure 37. Choline in SRM 3234 Soy Flour and candidate SRM 1845a Whole Egg	
Powder (sample/sample comparison view)	57
Figure 38. Expanded view of choline in SRM 3234 Soy Flour and candidate SRM 1845	5a
Whole Egg Powder (sample/sample comparison view).	58

TOCOPHEROLS IN FOODS

Study Overview
Sample Information
Carrot extract
Egg powder69
Study Results
Technical Recommendations
Table 19. Individual data table (NIST) for tocopherols in foods 71
Table 20. Data summary table for α-tocopherol in foods
Table 21. Data summary table for β -tocopherol in foods
Table 22. Data summary table for γ–tocopherol in foods74
Table 23. Data summary table for δ -tocopherol in foods
Table 24. Data summary table for total tocopherol in foods
Figure 39. α-Tocopherol in SRM 3276 Carrot Extract in Oil (data summary view)77
Figure 40. α-Tocopherol in candidate SRM 1845a Whole Egg Powder (data summary
view)78
Figure 41. β-Tocopherol in SRM 3276 Carrot Extract in Oil (data summary view)79
Figure 42. γ-Tocopherol in SRM 3276 Carrot Extract in Oil (data summary view)80
Figure 43. γ-Tocopherol in candidate SRM 1845a Whole Egg Powder (data summary

FATTY ACIDS IN BOTANICAL OILS

Study Overview	88
Sample Information	88
Flaxseed oil	88
Perilla oil	88
Study Results	88
Technical Recommendations	89
Table 25. Individual data table (NIST) for fatty acids in botanical oils	90
Table 26. Data summary table for linoleic acid in botanical oils	91
Table 27. Data summary table for α -linolenic acid in botanical oils	92
Table 28. Data summary table for γ -linolenic acid in botanical oils	93
Table 29. Data summary table for arachidonic acid in botanical oils	94
Figure 50. Linoleic Acid [C18:2, n-6] in SRM 3274-3 Flaxseed Oil (data summar	ry
view)	95
Figure 51. Linoleic Acid [C18:2, n-6] in SRM 3274-4 Perilla Oil (data summary	view)96
Figure 52. α-Linolenic Acid [C18:3, n-3] in SRM 3274-3 Flaxseed Oil (data sum	mary
view)	97
Figure 53. α-Linolenic Acid [C18:3, n-3] in SRM 3274-4 Perilla Oil (data summa	ary
view)	98
Figure 54. γ-Linolenic Acid [C18:3, n-6] in SRM 3274-3 Flaxseed Oil (data sum	mary
view)	99
Figure 55. γ-Linolenic Acid [C18:3, n-6] in SRM 3274-4 Perilla Oil (data summa	ary
view)	100
Figure 56. Arachidonic Acid [C20:4, n-6] in SRM 3274-3 Flaxseed Oil (data sum	nmary
view)	101
Figure 57. Arachidonic Acid [C20:4, n-6] in SRM 3274-4 Perilla Oil (data summ	nary
view)	102
Figure 58. Linoleic acid in SRM 3274-3 Flaxseed Oil and SRM 3274-4 Perilla O	il
(sample/control comparison view)	103
Figure 59. α-Linolenic acid in SRM 3274-3 Flaxseed Oil and SRM 3274-4 Perilla	a Oil
(sample/control comparison view)	104

PHYTOSTEROLS IN SAW PALMETTO

Study Overview	10):	5
----------------	----	----	---

Sample Information105
Saw palmetto extract105
Saw palmetto berries105
Study Results
Technical Recommendations
Table 30. Individual data table (NIST) for phytosterols in saw palmetto107
Table 31. Data summary table for campesterol in saw palmetto 108
Table 32. Data summary table for β -sitosterol in saw palmetto109
Table 33. Data summary table for stigmasterol in saw palmetto
Figure 60. Campesterol in SRM 3251 Serenoa repens Extract (data summary view)111
Figure 61. Campesterol in SRM 3250 Serenoa repens (Fruit) (data summary view)112
Figure 62. β-Sitosterol in SRM 3251 Serenoa repens Extract (data summary view)113
Figure 63. β-Sitosterol in SRM 3250 Serenoa repens (Fruit) (data summary view)114
Figure 64. Stigmasterol in SRM 3251 Serenoa repens Extract (data summary view)115
Figure 65. Stigmasterol in SRM 3250 Serenoa repens (Fruit) (data summary view)116
Figure 66. Campesterol in SRM 3250 Serenoa repens (Fruit) and SRM 3251 Serenoa
repens Extract (sample/control comparison view)117
Figure 67. β-sitosterol in SRM 3250 Serenoa repens (Fruit) and SRM 3251 Serenoa
repens Extract (sample/control comparison view)118
Figure 68. Stigmasterol in SRM 3250 Serenoa repens (Fruit) and SRM 3251 Serenoa
repens Extract (sample/control comparison view)119

ABSTRACT

The NIST Dietary Supplement Laboratory Quality Assurance Program (DSQAP) was established in collaboration with the National Institutes of Health (NIH) Office of Dietary Supplements (ODS) in 2007 to enable members of the dietary supplements community to improve the accuracy of measurements for demonstration of compliance with various regulations. Exercise H of this program offered the opportunity for laboratories to assess their in-house measurements of nutritional elements (Ca, Cu, and Mn), contaminants (polycyclic aromatic hydrocarbons [PAHs]) water-soluble vitamins (choline), fat-soluble vitamins (tocopherols), fatty acids, and phytosterols in foods and/or botanical dietary supplement ingredients and finished products.

INTRODUCTION

The dietary supplement industry in the US is booming, with two-thirds of adults considering themselves to be supplement users.¹ Consumption of dietary supplements, which includes vitamin and mineral supplements, represents an annual US expenditure of more than \$25 billion. These figures represent an increasing American trend, and as a result, it is critically important that both the quality and safety of these products are verified and maintained.

The Dietary Supplement Health and Education Act of 1994 (DSHEA) amended the Food, Drug and Cosmetic Act to create the regulatory category called dietary supplements. The DSHEA also gave the FDA authority to write current Good Manufacturing Practices (cGMPs) that require manufacturers to evaluate the identity, purity, and composition of their ingredients and finished products. To enable members of the dietary supplements community to improve the accuracy of the measurements required for compliance with these and other regulations, NIST established the Dietary Supplement Laboratory Quality Assurance Program (DSQAP) in collaboration with the NIH ODS in 2007.

The program offers the opportunity for laboratories to assess their in-house measurements of active or marker compounds, nutritional elements, contaminants (toxic elements, pesticides, mycotoxins), and fat- and water-soluble vitamins in foods as well as botanical dietary supplement ingredients and finished products. Reports and certificates of participation are provided and can be used to demonstrate compliance with the cGMPs. In addition, NIST and the DSQAP assist the ODS Analytical Methods and Reference Materials program (AMRM) at the NIH in supporting the development and dissemination of analytical tools and reference materials. In the future, results from DSQAP exercises could be used by ODS to identify problematic matrices and analytes for which an Official Method of Analysis would benefit the dietary supplement community.

NIST has experience in the area of quality assurance programs, but the DSQAP takes a unique approach. In other NIST quality assurance programs, a set of analytes is measured repeatedly over time in the same or similar matrices to demonstrate laboratory performance. In contrast, the

¹ Walsh, T. (2012) Supplement Usage, Consumer Confidence Remain Steady According to New Annual Survey from CRN. Council for Responsible Nutrition, Washington, DC.

wide range of matrices and analytes under the "dietary supplement" umbrella means that not every laboratory is interested in every sample or analyte. The constantly changing dietary supplement market, and the enormous diversity of finished products, makes repeated determination of a few target compounds in a single matrix of little use to participants. Instead, participating laboratories are interested in testing in-house methods on a wide variety of challenging, real-world matrices to demonstrate that their performance is comparable to that of the community and that their methods provide accurate results. In an area where there are few standard methods, the DSQAP offers a unique tool for assessment of the quality of measurements, provides feedback about performance, and can assist participants in improving laboratory operations.

This report summarizes the results from the eighth exercise of the DSQAP, Exercise H. Seventy-five laboratories responded to the call for participants distributed in January 2011. Samples were shipped to participants in March 2012, and results were returned to NIST by June 2012. This report contains the final data and information to be disseminated to the participants in October 2012.

OVERVIEW OF DATA TREATMENT AND REPRESENTATION

Statistics

The individual data table and graphs contain information about the performance of each laboratory relative to that of the other participants in this study and relative to a target around the expected result (if available). The consensus mean and standard deviation are calculated according to the robust algorithm outlined in ISO 13528:2005(E), Annex C.² The algorithm is summarized here in simplified form.

Initial values of the consensus mean, x^* , and consensus standard deviation, s^* , are estimated as

x^* = median of x_i	(i = 1, 2,, n)
$s^* = 1.483 \times \text{median of } x_i - x^* $	(i = 1, 2,, n).

These initial values for x^* and s^* are updated by first calculating the expanded standard deviation, δ , as

 $\delta = 1.5 \times s^*$.

Then each x_i is compared to the expanded range and adjusted to x_i^* as described below to reduce the effect of outliers.

If $x_i < x^* - \delta$, then $x_i^* = x^* - \delta$. If $x_i > x^* + \delta$, then $x_i^* = x^* + \delta$. Otherwise, $x_i^* = x_i$.

New values of x^* , s^* , and δ are calculated iteratively until the process converges. Convergence is taken as no change from one iteration to the next in the third significant figure of s^* and in the equivalent digit in x^* :

$$x^* = \frac{\sum_{i=1}^{n} x_i^*}{n}$$

$$s^* = 1.134 \times \sqrt{\frac{\sum_{i=1}^{n} (x_i^* - x^*)}{n-1}}.$$

Individual Data Table

The data in this table is individualized to each participating laboratory and is provided to allow participants to directly compare their data to the summary statistics (consensus or community data as well as NIST certified, reference, or estimated values). The upper left of the data table includes the randomized laboratory code. Tables included in this report are generated using NIST data to protect the identity and performance of participants.

Section 1 of the data table contains the laboratory results as reported, including the mean and standard deviation when multiple values were reported. A blank indicates that NIST does not have data on file for that laboratory for a particular analyte or matrix. An empty box for standard deviation indicates that only a single value was reported and therefore that value was not included in the calculation of the consensus data.²

Also in Section 1 are two Z-scores. The first Z-score, Z_{comm} , is calculated with respect to the community consensus value, using x* and s*:

$$Z_{comm} = \frac{x_i - x_*}{s_*}.$$

The second Z-score, Z_{NIST} , is calculated with respect to the target value (NIST certified, reference, or estimated value), using x_{NIST} and U_{95} (the expanded uncertainty) or s_{NIST} , the standard deviation of NIST measurements:

$$Z_{NIST} = \frac{x_i - x_{NIST}}{U_{95}}$$

or

$$Z_{NIST} = \frac{x_i - x_{NIST}}{s_{NIST}}$$

The significance of the Z-score is as follows:

- |Z| < 2 indicates that the laboratory result is considered to be within the community consensus range (for Z_{comm}) or NIST target range (for Z_{NIST}).
- 2 < |Z| < 3 indicates that the laboratory result is considered to be marginally different from the community consensus value (for Z_{comm}) or NIST target value (for Z_{NIST}).
- |Z| > 3 indicates that the laboratory result is considered to be significantly different from the community consensus value (for Z_{comm}) or NIST target value (for Z_{NIST}).

² ISO 13528:2005(E), Statistical methods for use in proficiency testing by interlaboratory comparisons, pp 14-15.

Section 2 of the data table contains the community results, including the number of laboratories reporting more than a single value for a given analyte¹, the mean value determined for each analyte, and a robust estimate of the standard deviation of the reported values.³ Consensus means and standard deviations are calculated using the laboratory means; if a laboratory reported a single value, the reported value is not included.¹ Additional information on calculation of the consensus mean and standard deviation can be found in the previous section.

Section 3 of the data table contains the target values for each analyte. When possible, the target is a certified or reference value determined at NIST. Certified values and the associated expanded uncertainty (U_{95}) have been determined with two independent analytical methods at NIST, by collaborating laboratories, or in some combination. Reference values are assigned using NIST values obtained from the average and standard deviation of measurements made using a single analytical method. For both certified and reference values, at least six samples have been tested and duplicate preparations from the sample package have been included, allowing the uncertainty to encompass variability due to inhomogeneity within and between packages. For commercial products, the analytes are measured at NIST using an appropriate method. The NIST value represents the mean of at least three replicates.

Summary Data Table

This data table includes a summary of all reported data for a particular analyte in a particular study. Participants can compare the raw data for a single laboratory to the other participating laboratories or to the consensus data. A blank indicates that the laboratory signed up and received samples for that particular analyte and matrix, but NIST does not have data on file for that laboratory.

Graphs

Data Summary View

In this view, individual laboratory data are plotted with the individual laboratory standard deviation (error bars). Data points that are unfilled represent laboratories that only reported a single value for that analyte and therefore were not included in the consensus mean. The black solid line represents the consensus mean, and the black dotted lines represent the consensus variability calculated as one standard deviation about the consensus mean. The gray shaded region represents the target zone for "acceptable" performance, which encompasses the NIST certified, reference, or estimated value bounded by twice its uncertainty (U_{95}) or standard deviation. For the purpose of the DSQAP, a target range spanning twice the uncertainty in the NIST value is selected because participants are only asked to make a limited number of observations. The size of the y-axis on the data summary view graph represents the consensus mean bounded by 2δ . In this view, the relative locations of individual laboratory data and consensus zones with respect to the target zone can be compared easily. In most cases, the target zone and the consensus zone overlap, which is the expected result. One program goal is to reduce the size of the consensus zone and center the consensus zone about the target value. Analysis of an appropriate reference material as part of a quality control scheme can help to identify sources of bias for laboratories reporting results that are significantly different from the target zone.

³ ISO 13528:2005(E), Statistical methods for use in proficiency testing by interlaboratory comparisons, Annex C.

Sample/Control Comparison View (Sample/Sample Comparison View)

In this view, the individual laboratory results for a control (NIST SRM with a certified value) are compared to the results for an unknown (another NIST SRM with a more challenging matrix, a commercial sample, etc.). The error bars represent the individual laboratory standard deviation. The solid red box represents the target zone for the control (x-axis) and unknown sample (y-axis). The dotted blue box represents the consensus zone for the control (x-axis) and the unknown sample (y-axis). This view emphasizes trends in the data that may indicate potential calibration issues or method biases. One program goal is to identify such calibration or method biases and assist participants in improving analytical measurement capabilities. In some cases, when two equally challenging materials are provided, the same view (sample/sample comparison) can be helpful in identifying commonalities or differences in the analysis of the two materials.

NUTRITIONAL ELEMENTS IN FOODS AND SUPPLEMENTS

Study Overview

In this study, participants were provided with two NIST SRMs, SRM 1566b Oyster Tissue and candidate SRM 3532 Calcium Dietary Supplement. Participants were asked to use in-house analytical methods to determine the mass fractions of three nutritional elements (calcium, copper, and manganese) in each of the matrices and report values on an as-received basis.

Sample Information

Oyster tissue. Participants were provided with six vials, each containing approximately 1 g of freeze-dried, powdered oyster tissue. The material was prepared from oysters collected in the Gulf of Mexico that had been shucked, rinsed, and blended both before and after freeze drying. Before use, participants were instructed to thoroughly mix the contents of the vial and use a sample size of at least 0.25 g. Participants were asked to report a single value from each pair of vials and store the material at controlled room temperature, 10 °C to 30 °C. Approximate analyte levels were not reported prior to the study. NIST certified values in SRM 1566b were determined using inductively coupled plasma mass spectrometry (ICP-MS), isotope dilution ICP-MS, instrumental neutron activation analysis (INAA), and radiochemical neutron activation analysis (RNAA). The certified values and uncertainties for Ca, Cu, and Mn in SRM 1566b are outlined in the table below, both on a dry-mass basis and an as-received basis following adjustment for the moisture content of the material, 2.9 %.

	Certified Mass Fraction (mg/kg)	Adjusted Mass Fraction (mg/g)
<u>Analyte</u>	(dry-mass basis)	(as-received basis)
Ca	838 ± 20	0.813 ± 0.019
Cu	71.6 ± 1.6	0.0695 ± 0.0016
Mn	18.5 ± 0.2	0.0180 ± 0.0002

Ca supplement. Participants were provided with one packet containing approximately 10 g of calcium dietary supplement powder. The calcium supplements were purchased commercially, then ground, sieved, and heat-sealed inside nitrogen-flushed 0.1 mm (4 mil) polyethylene bags, which were then sealed inside aluminized plastic bags with 2 packets of silica gel. Before use, participants were instructed to thoroughly mix the contents of the packet and use a sample size of at least 0.25 g. Participants were asked to report three values from the single packet provided and store the material at controlled room temperature, 10 °C to 30 °C. Approximate analyte levels were not reported prior to the study. NIST values in candidate SRM 3532 will be certified using X-ray fluorescence (XRF) and inductively coupled plasma optical emission spectrometry (ICP-OES) following microwave digestion using standard additions as the method of quantitation. The preliminary NIST values in candidate SRM 3532, estimated from the mean of these two methods of analysis, are reported in the table below with an estimated uncertainty of 5 %.

	Estimated Certified	d Ma	ss Fraction (mg/g)
Analyte	(as-rece	eiveo	<u>d basis)</u>
Ca	170	\pm	8.5
Cu	0.270	±	0.014
Mn	0.530	\pm	0.027

Study Results

- Forty-nine laboratories enrolled in this exercise and received samples. Thirty-seven laboratories reported results for calcium (76 % participation), 38 laboratories reported results for copper (78 % participation), and 34 laboratories reported results for manganese (71 % participation).
- The consensus means for calcium and copper in the dietary supplement were within the target range with acceptable variability (6 % and 14 % relative standard deviation (RSD), respectively). The consensus mean for manganese in the dietary supplement was within but near the low end of the target range, again with acceptable variability (11 % RSD).
- The consensus mean for calcium in the oyster tissue was within but at the high end of the target range, while the consensus mean for copper was within but near the low end of the target range. Again, both had acceptable variability (15 % and 9 % RSD, respectively). The consensus mean for manganese in the oyster tissue was within the target range with acceptable variability (9 % RSD).
- A majority of the laboratories reported using either open-beaker digestion (29 % to 41 %) or microwave digestion (32 % to 41 %) for sample preparation. Some laboratories used hot block digestion (15 % to 16 %). Other laboratories reported using dry ashing or partial digestion within plastic bottles.
- A majority of the laboratories reported using either ICP-OES (46 %) or ICP-MS (41 %) as their analytical method. Other laboratories reported using atomic absorption spectroscopy (AAS), titrimetry, or total reflection X-ray fluorescence (TXRF).

Technical Recommendations

The following recommendations are based on results obtained by the participants in this study.

- While there seemed to be only a slight difference in results between open-beaker digestions and microwave digestions, it did appear that the open-beaker digestions were slightly more effective, with more results in the consensus range. Open-beaker digestions work well for these three elements since they are neither easily volatilized nor found as contaminants in most laboratories. Participants would be able to digest materials until they could actually see that the material was fully dissolved.
- When using ICP-OES for value assignment, there are usually several wavelengths available for each analyte. Using several wavelengths for each analyte helps in the determination of interferences or background shifts due to matrix effects at any one wavelength.
- With both ICP-OES and ICP-MS, it is important to check the calibration curve for linearity.
 - With ICP-OES, some elements will only be linear within a specific range. Solution concentrations need to fall within that linear range.
 - With ICP-MS, many instruments run in pulse mode, which is more sensitive. If the calibration curve goes outside of the dynamic range for pulse mode then the instrument will use both the pulse and analog mode. The ICP-MS must be calibrated for both modes in this case. It is often easier and more accurate to have a narrower range of calibration points, making sure the calibration curve is linear in the pulse mode.

- More accurate measurements can be achieved by making sure the sample concentrations fall within the middle of the calibration curve.
- Double-check all calculations; this is a cause for many errors.

Table 1. Individual data table (NIST) for nutritional elements in foods and dietary supplements.

National Institute	e of	Standards	&	Technology
--------------------	------	------------------	---	------------

	Lab Code:	NIST	1. Your Results				_	2. Community Results				3. Target		
Analyte	Sample	Units	x _i	s _i	Z _{comm}	Z _{NIST}		Ν	x*	s*		X _{NIST}	U_{95}	
Са	Ca Supplement	mg/g	170	8.48	0.0	0.1		36	170	10.5		170	8.5	
Са	Oyster Tissue	mg/g	0.813	0.019	-0.3	0.0		37	0.847	0.126		0.813	0.019	
Cu	Ca Supplement	mg/g	0.270	0.014	-0.1	0.0		37	0.273	0.040		0.270	0.014	
Cu	Oyster Tissue	mg/g	0.0695	0.0016	0.4	0.0	_	38	0.0672	0.0063		0.0695	0.0016	
Mn	Ca Supplement	mg/g	0.530	0.027	0.8	0.0		34	0.488	0.054		0.530	0.027	
Mn	Oyster Tissue	mg/g	0.0180	0.0002	-0.1	0.2	_	34	0.0182	0.0017	_	0.0180	0.0002	

Exercise H - March 2012 - Nutritional Elements

- x_i Mean of reported values
- s_i Standard deviation of reported values
- Z_{comm} Z-score with respect to community consensus
- Z_{NIST} Z-score with respect to NIST value
- N Number of quantitative values reported
- x* Robust mean of reported values
- s* Robust standard deviation

 $\begin{array}{ll} x_{\rm NIST} & {\rm NIST}\mbox{-}assessed value \\ U_{95} & \pm 95\% \mbox{ confidence interval} \\ & about the assessed value or \\ & standard deviation ($_{\rm NIST}$) \end{array}$

		Calcium									
			SRM 1566	b Oyster Ti	issue (mg/g))	SRM 3	3532 Calciu	m Dietary S	Supplement	(mg/g)
	Lab	Α	В	С	Avg	SD	Α	В	С	Avg	SD
	NIST				0.813	0.019				170	8.5
	H802										
	H803										
	H804	0.760	0.716	0.748	0.741	0.023	165	168	170	168	2.8
	H805	0.816	0.782	0.775	0.791	0.022	178	180	179	179	1.0
	H806	0.928	0.893	0.877	0.899	0.026	182	180	179	180	1.7
	H807	0.887	0.846	0.885	0.873	0.023	181	188	186	185	4.0
	H808	0.778	0.753	0.754	0.762	0.014	172	156	158	162	8.7
	H809										
	H810	0.832	0.821	0.815	0.823	0.009	165	164	163	164	1.0
	H811	1.626	1.627	1.610	1.621	0.010	178	178	180	179	0.9
	H812	1.010	1.000	1.000	1.003	0.006	179	181	180	180	1.0
	H814	3.570	3.480	3.520	3.523	0.045	167	168	171	169	2.1
	H816	4.370	5.080	3.490	4.313	0.797	163	165	154	161	5.8
	H817	0.810	0.770	0.790	0.790	0.020	153	156	167	159	7.3
	H819	0.824	0.938	0.798	0.853	0.074	163	163	159	162	2.3
	H820	1.071	0.793	0.888	0.918	0.141	164	166	166	165	1.3
	H821	0.870	0.880	0.870	0.873	0.006	159	160	159	159	0.6
	H822	1.120	1.040	1.040	1.067	0.046	164	165	164	164	0.6
	H825	0.840	0.840	0.860	0.847	0.012	170	170	170	170	0.0
	H828										
sults	H829										
Re	H831	0.830	0.820	0.830	0.827	0.006	177	172	160	169	8.9
lual	H833	0.880	0.860	0.860	0.867	0.012	177	177	174	176	1.9
livid	H836	0.787	0.855	0.752	0.798	0.052	168	170	170	170	1.4
Inc	H840	0.878	0.874	0.863	0.872	0.008	179	164	176	173	7.6
	H843										
	H844	0.780	0.773	0.775	0.776	0.003	169	171	170	170	1.0
	H847	0.727	0.678	0.724	0.710	0.027	169	169	169	169	0.2
	H848	0.751	0.764	0.757	0.757	0.007	168	169	170	169	0.8
	H849	0.855	0.867	0.873	0.865	0.009	169	174	171	172	3.6
	H852	0.855	0.840	0.841	0.840	0.007	175	172	1/1	172	3.4
	H853	0.813	0.822	0.786	0.807	0.018	214	216	212	214	2.3
	H854										
	H857	0.573	0.585	0.577	0.578	0.006	192	181	177	184	7.8
	H858	1.441	1.420	1.365	1.409	0.039	267	268	269	268	0.7
	H862	1.001	0.917	1.026	0.981	0.057	162	167	159	163	3.9
	H863	1.800	1.760	1.600	1.720	0.106	173	174	174	173	0.7
	H864										
	H866										
	H867	0.680	0.620	0.667	0.656	0.031	71	70	88	76	10.0
	H868 H869	0.666	0.646	0.690	0.667	0.022	119	11/	119	118	1.2
	H870	0.864	0.770	0.910	0.848	0.071	188	105	188	160	47.9
	H871	0.670	0.620	0.660	0.650	0.026	167	166	165	166	0.7
	H873										
	H874	0.800	0.800	0.800	0.800	0.000	186	151	120	186	0.1
-	H8/5	0.830	0.770 Mean	0.800	0.800	0.030	152 Consensus	151 Mean	138	14/	8.1
unity Is		Consensus	Standard De	eviation	0.852		Consensus	Standard De	eviation	10.6	
sult		Maximum			4.313		Maximum	Di		268	
Con Re		Minimum			0.578		Minimum			76	
Ŭ		Ν			37		Ν			36	

 Table 2. Data summary table for calcium in foods and dietary supplements.

			Copper										
			SRM 1566	b Oyster Ti	ssue (mg/g)		SRM 3	3532 Calciu	m Dietary S	Supplement (mg/g)			
	Lab	Α	В	С	Avg	SD	А	В	С	Avg	SD		
	NIST				0.0695	0.0016				0.270	0.014		
	H802												
	H803												
	H804	0.0619	0.0595	0.0618	0.0611	0.0014	0.245	0.245	0.242	0.244	0.002		
	H805	0.0676	0.0667	0.0674	0.0672	0.0005	0.274	0.286	0.278	0.279	0.006		
	H806	0.0749	0.0743	0.0744	0.0745	0.0003	0.311	0.314	0.317	0.314	0.003		
	H807	0.0657	0.0660	0.0676	0.0664	0.0010	0.256	0.255	0.258	0.256	0.002		
	H808	0.0640	0.0654	0.0642	0.0645	0.0008	0.235	0.233	0.237	0.235	0.002		
	H809												
	H810	0.0707	0.0704	0.0702	0.0704	0.0003	0.277	0.272	0.272	0.274	0.003		
	H811	0.0600	0.0600	0.0596	0.0599	0.0002	0.211	0.212	0.215	0.213	0.002		
	H812	0.0760	0.0770	0.0750	0.0760	0.0010	0.299	0.301	0.300	0.300	0.001		
	H814	0.0800	0.0740	0.0780	0.0773	0.0031	0.331	0.326	0.322	0.326	0.005		
	H816	0.0650	0.0650	0.0650	0.0650	0.0000	0.270	0.280	0.280	0.277	0.006		
	H817	0.0700	0.0700	0.0700	0.0700	0.0000	0.270	0.260	0.270	0.267	0.006		
	H819	0.0728	0.0827	0.0713	0.0756	0.0062	0.309	0.305	0.301	0.305	0.004		
	H820	0.0647	0.0637	0.0655	0.0646	0.0009	0.314	0.320	0.315	0.316	0.003		
	H821	0.0790	0.0770	0.0780	0.0780	0.0010	0.245	0.253	0.246	0.248	0.004		
	H822	0.0714	0.0718	0.0683	0.0705	0.0019	0.245	0.266	0.259	0.257	0.011		
	H825	0.0710	0.0720	0.0740	0.0723	0.0015	0.220	0.220	0.220	0.220	0.000		
	H828												
sult	H829												
Re	H831	0.0700	0.0700	0.0700	0.0700	0.0000	0.280	0.280	0.280	0.280	0.000		
lual	H833	0.0700	0.0700	0.0700	0.0700	0.0000	0.270	0.270	0.270	0.270	0.000		
livid	H836	0.0674	0.0692	0.0663	0.0676	0.0015	0.276	0.273	0.277	0.275	0.002		
Inc	H840	0.0759	0.0759	0.0190	0.0569	0.0329	0.295	0.288	0.286	0.290	0.005		
	H843												
	H844	0.0721	0.0719	0.0720	0.0720	0.0001	0.307	0.311	0.315	0.311	0.004		
	H847	0.0610	0.0620	0.0600	0.0610	0.0010	0.359	0.375	0.370	0.368	0.008		
	H848	0.0550	0.0550	0.0570	0.0557	0.0012	0.308	0.327	0.329	0.321	0.012		
	H849	0.0729	0.0744	0.0749	0.0741	0.0010	0.273	0.266	0.000	0.270	0.005		
	H850	0.0726	0.0731	0.0732	0.0730	0.0003	0.298	0.299	0.300	0.299	0.001		
	H853	0.0653	0.0642	0.0619	0.0638	0.0000	0.324	0.327	0.326	0.200	0.002		
	H854												
	H857	0.0700	0.0710	0.0690	0.0700	0.0010	0.280	0.269	0.264	0.271	0.008		
	H858	0.0664	0.0677	0.0665	0.0668	0.0007	0.193	0.192	0.193	0.193	0.001		
	H861	0.0700	0.0700	0.0606	0.0600	0.0002	0.202	0.204	0.214	0.207	0.006		
	H863	0.0700	0.0700	0.0696	0.0699	0.0002	0.302	0.304	0.314	0.307	0.008		
	H864	0.0551	0.0551	0.0575	0.0040	0.0025	0.500	0.270	0.2)2	0.277	0.000		
	H866												
	H867	0.0679	0.0735	0.0648	0.0687	0.0044	0.237	0.171	0.323	0.244	0.076		
	H868	0.0640	0.0641	0.0626	0.0636	0.0008	0.231	0.245	0.239	0.238	0.007		
	H869 H870	0.0516	0.0551	0.0538	0.0535	0.0018	0 149	0 143	0.120	0.137	0.015		
	H871	0.0510	0.0610	0.0620	0.0607	0.0015	0.260	0.260	0.230	0.250	0.017		
	H873	0.0671	0.0579	0.0589	0.0613	0.0050	0.202	0.205	0.210	0.206	0.004		
	H874	0.0672	0.0657	0.0669	0.0666	0.0008	0.242			0.242			
	H875	0.0640	0.0660	0.0640	0.0647	0.0012	0.290	0.280	0.290	0.287	0.006		
nity s		Consensus	Mean Standard D	wintion	0.0673		Consensus	Mean Standard D	aviation	0.273			
mul sults		Maximum	Stanuaru De	viauon	0.0065		Maximum	Stanuaru De	= viauofi	0.040			
om Re		Minimum			0.0535		Minimum			0.137			
0		Ν			38		Ν			37			

 Table 3. Data summary table for copper in foods and dietary supplements.

		Manganese										
		:	SRM 1566	b Oyster Ti	ssue (mg/g)		SRM 3	3532 Calciu	m Dietary S	Supplement	(mg/g)	
	Lab	Α	В	С	Avg	SD	A	В	С	Avg	SD	
	NIST				0.0180	0.0002				0.530	0.027	
	H802											
	H803											
	H804	0.0178	0.0169	0.0173	0.0173	0 0004	0 470	0 506	0 465	0.480	0.022	
	H805	0.0179	0.0178	0.0180	0.0179	0.0001	0.469	0.451	0.446	0.455	0.012	
	H806	0.0190	0.0183	0.0183	0.0185	0.0004	0.463	0.455	0.455	0.458	0.005	
	H807	0.0160	0.0163	0.0159	0.0161	0.0004	0.535	0.503	0.522	0.520	0.005	
	11007	0.0158	0.0164	0.0159	0.0160	0.0002	0.333	0.303	0.322	0.320	0.007	
	11000	0.0158	0.0104	0.0139	0.0100	0.0005	0.402	0.475	0.401	0.405	0.007	
	1010	0.0101	0.0101	0.0170	0.0190	0.0001	0.522	0.500	0.409	0.510	0.020	
	H810	0.0181	0.0181	0.0179	0.0180	0.0001	0.533	0.500	0.498	0.510	0.020	
	H811	0.0220	0.0209	0.0206	0.0212	0.0007	0.503	0.495	0.489	0.495	0.007	
	H812											
	H814	0.0840	0.0820	0.0820	0.0827	0.0012	0.529	0.522	0.535	0.529	0.007	
	H816	0.0450	0.0200	0.0200	0.0283	0.0144	0.520	0.500	0.610	0.543	0.059	
	H817	0.0199	0.0195	0.0194	0.0196	0.0003	0.409	0.430	0.433	0.424	0.013	
	H819	0.0187	0.0213	0.0184	0.0195	0.0016	0.482	0.513	0.453	0.483	0.030	
	H820						0.470	0.460	0.478	0.470	0.009	
	H821	0.0200	0.0200	0.0200	0.0200	0.0000	0.475	0.475	0.452	0.467	0.013	
	H822											
	H825	0.0180	0.0180	0.0180	0.0180	0.0000	0.500	0.500	0.530	0.510	0.017	
	H828											
ults	H829											
Res	H831	0.0200	0.0200	0.0200	0.0200	0.0000	0.440	0.430	0.430	0.433	0.006	
lal	H833	0.0200	0.0200	0.0200	0.0200	0.0000	0.440	0.430	0 440	0.437	0.006	
vid	H836	0.0169	0.0163	0.0160	0.0164	0.0005	0.434	0.446	0.439	0.440	0.006	
Indi	H840	0.0100	0.0100	0.0187	0.0189	0.0003	0.430	0.423	0.403	0.410	0.014	
	H8/13	0.0170	0.0170	0.0107	0.0107	0.0002	0.450	0.425	0.405	0.41)	0.014	
	11043	0.0175	0.0175	0.0175	0.0175	0.0000	0.470	0.478	0.406	0.494	0.010	
	11044	0.0175	0.0175	0.0175	0.0175	0.0000	0.479	0.478	0.490	0.551	0.010	
	H848	0.0160	0.0170	0.0100	0.0167	0.0000	0.575	0.521	0.558	0.551	0.027	
	H849	0.0100	0.0170	0.0170	0.0107	0.0000	0.303	0.014	0.038	0.000	0.037	
	H850	0.0181	0.0183	0.0182	0.0182	0.0001	0.542	0.510	0.490	0.514	0.026	
	H852	0.0183	0.0182	0.0183	0.0183	0.0001	0.525	0.540	0.548	0.538	0.012	
	H853	0.0154	0.0151	0.0145	0.0150	0.0004	0.522	0.586	0.567	0.558	0.033	
	H854											
	H857	0.0190	0.0190	0.0180	0.0187	0.0006	0.523	0.535	0.559	0.539	0.018	
1	H858 H861	0.0189	0.0188	0.0183	0.0187	0.0003	0.524	0.527	0.584	0.545	0.034	
	H862	0.0190	0.0185	0.0188	0.0188	0.0003	0.452	0.518	0.488	0.486	0.033	
	H863											
	H864											
	H866											
	H867	0.0132	0.0185	0.0198	0.0172	0.0035	0.391	0.312	0.234	0.312	0.079	
1	H868	0.0168	0.0170	0.0166	0.0168	0.0002	0.490	0.509	0.511	0.503	0.012	
1	H869	0.0192	0.0179	0.0224	0.0105	0.0025	0.640	0.504	0.706	0.647	0.056	
	H870	0.0185	0.0178	0.0224	0.0195	0.0025	0.040	0.594	0.700	0.047	0.030	
1	H873	0.0189	0.0169	0.0171	0.0176	0.0011	0.410	0.425	0.436	0.423	0.013	
1	H874	0.0181	0.0175	0.0178	0.0178	0.0003	0.415			0.415		
	H875	0.0160	0.0170	0.0170	0.0167	0.0006	0.430	0.420	0.420	0.423	0.006	
ity		Consensus	Mean		0.0182		Consensus	Mean		0.488		
uni ilts		Consensus	Standard De	eviation	0.0017		Consensus	Standard De	eviation	0.054		
limit kest		Maximum			0.0827		Maximum			0.647		
Co Co		N			0.0150 34		Ninimum			0.312		
L	L	11			57		11			57		

 Table 4. Data summary table for manganese in foods and dietary supplements.

Figure 1. Calcium in SRM 1566b Oyster Tissue (data summary view). In this view, individual laboratory data are plotted with the individual laboratory standard deviation (error bars). The black solid line represents the consensus mean, and the black dotted lines represent the consensus variability calculated as one standard deviation about the consensus mean. The gray shaded region represents the target zone for "acceptable" performance, which encompasses the NIST certified value bounded by twice its uncertainty (U_{95}).

Figure 2. Calcium in candidate SRM 3532 Calcium Dietary Supplement (data summary view). In this view, individual laboratory data are plotted with the individual laboratory standard deviation (error bars). Data points that are unfilled represent laboratories that only reported a single value for that analyte and therefore were not included in the consensus mean. The black solid line represents the consensus mean, and the black dotted lines represent the consensus variability calculated as one standard deviation about the consensus mean. The gray shaded region represents the target zone for "acceptable" performance, which encompasses an approximation of the NIST certified value bounded by an approximated uncertainty of 5 %. The approximate certified value is the mean of results from ICP-OES and XRF.

Figure 3. Copper in SRM 1566b Oyster Tissue (data summary view). In this view, individual laboratory data are plotted with the individual laboratory standard deviation (error bars). The black solid line represents the consensus mean, and the black dotted lines represent the consensus variability calculated as one standard deviation about the consensus mean. The gray shaded region represents the target zone for "acceptable" performance, which encompasses the NIST certified value bounded by twice its uncertainty (U_{95}).

Figure 4. Copper in candidate SRM 3532 Calcium Dietary Supplement (data summary view). In this view, individual laboratory data are plotted with the individual laboratory standard deviation (error bars). Data points that are unfilled represent laboratories that only reported a single value for that analyte and therefore were not included in the consensus mean. The black solid line represents the consensus mean, and the black dotted lines represent the consensus variability calculated as one standard deviation about the consensus mean. The gray shaded region represents the target zone for "acceptable" performance, which encompasses an approximation of the NIST certified value bounded by an approximated uncertainty of 5 %. The approximate certified value is the mean of results from ICP-OES and XRF.

Figure 5. Manganese in SRM 1566b Oyster Tissue (data summary view). In this view, individual laboratory data are plotted with the individual laboratory standard deviation (error bars). The black solid line represents the consensus mean, and the black dotted lines represent the consensus variability calculated as one standard deviation about the consensus mean. The gray shaded region represents the target zone for "acceptable" performance, which encompasses the NIST certified value bounded by twice its uncertainty (U_{95}).

Figure 6. Manganese in candidate SRM 3532 Calcium Dietary Supplement (data summary view). In this view, individual laboratory data are plotted with the individual laboratory standard deviation (error bars). Data points that are unfilled represent laboratories that only reported a single value for that analyte and therefore were not included in the consensus mean. The black solid line represents the consensus mean, and the black dotted lines represent the consensus variability calculated as one standard deviation about the consensus mean. The gray shaded region represents the target zone for "acceptable" performance, which encompasses an approximation of the NIST certified value bounded by an approximated uncertainty of 5 %. The approximate certified value is the mean of results from ICP-OES and XRF.

Figure 7. Calcium in SRM 1566b Oyster Tissue and candidate SRM 3532 Calcium Dietary Supplement (sample/sample comparison view). In this view, the individual laboratory results for one sample (SRM 1566b Oyster Tissue) with a certified value for the analyte are compared to the results for a second sample (candidate SRM 3532 Calcium Dietary Supplement). The error bars represent the individual laboratory standard deviation. The solid red lines represent the target zone for the control (x-axis) and unknown (y-axis). The dotted blue box represents the consensus zone for the control (x-axis) and the unknown sample (y-axis).

Figure 8. Copper in SRM 1566b Oyster Tissue and candidate SRM 3532 Calcium Dietary Supplement (sample/sample comparison view). In this view, the individual laboratory results for one sample (SRM 1566b Oyster Tissue) with a certified value for the analyte are compared to the results for a second sample (candidate SRM 3532 Calcium Dietary Supplement). The error bars represent the individual laboratory standard deviation. The solid red lines represent the target zone for the control (x-axis) and unknown (y-axis). The dotted blue box represents the consensus zone for the control (x-axis) and the unknown sample (y-axis).

Figure 9. Manganese in SRM 1566b Oyster Tissue and candidate SRM 3532 Calcium Dietary Supplement (sample/sample comparison view). In this view, the individual laboratory results for one sample (SRM 1566b Oyster Tissue) with a certified value for the analyte are compared to the results for a second sample (candidate SRM 3532 Calcium Dietary Supplement). The error bars represent the individual laboratory standard deviation. The solid red lines represent the target zone for the control (x-axis) and unknown (y-axis). The dotted blue box represents the consensus zone for the control (x-axis) and the unknown sample (y-axis).

PAHs IN GREEN TEA

Study Overview

In this study, participants were provided with two NIST SRMs, SRM 1647e PAH Solution and SRM 3254 *Camellia sinensis* (Green Tea) Leaves. Participants were asked to use in-house analytical methods to determine the mass fractions of ten polycyclic aromatic hydrocarbons (PAHs) – naphthalene, fluorene, phenanthrene, anthracene, fluoranthene, pyrene, benz[*a*]anthracene, chrysene, triphenylene, and benzo[*a*]pyrene) – in each of the matrices and report values on an as-received basis.

Sample Information

Neat solution. Participants were provided with three ampoules, each containing approximately 1.2 mL of an acetonitrile solution of 16 PAHs. The solution was prepared gravimetrically from individual compounds and aliquotted into 2 mL amber glass ampoules, which were purged with argon prior to adding the solution. Before use, participants were instructed to mix thoroughly the contents of the ampoule. Participants were asked to report a single value from each ampoule and store the material at controlled room temperature, 10 °C to 30 °C. Approximate analyte levels were not reported prior to the study. NIST certified values in SRM 1647e were based on the gravimetric preparation with purity assessment of the neat PAHs and analysis using liquid chromatography (LC) with absorbance detection. The certified values and uncertainties for each PAH in SRM 1647e are reported in the table below.

Green tea. Participants were provided with three packets, each containing approximately 3 g of green tea (*Camellia sinensis*) leaves. The green tea leaves were ground, sieved, and heat-sealed inside nitrogen-flushed 0.1 mm (4 mil) polyethylene bags, which were then sealed inside aluminized plastic bags with 2 packets of silica gel. Before use, participants were instructed to thoroughly mix the contents of the packet and use a sample size of at least 0.3 g. Participants were asked to report a single value from each packet and store the material at controlled room temperature, 10 °C to 30 °C. Approximate analyte levels were not reported prior to the study. Values in SRM 3254 were determined by gas chromatography (GC) with MS detection following pressurized-fluid extraction. The estimated values are based on an average and standard deviation of single measurements from three packets and are provided on an as-received basis in the table below.

	Certified Mass Fraction	NIST-Determined Mass Fraction
<u>Analyte</u>	<u>in SRM 1647e (mg/kg)</u>	<u>in SRM 3254 (ng/g)</u>
Naphthalene	$25.48 \hspace{0.2cm} \pm \hspace{0.2cm} 0.58$	48.1 ± 4.0
Fluorene	6.09 ± 0.14	12.7 ± 2.6
Phenanthrene	$4.52 \hspace{0.2cm} \pm \hspace{0.2cm} 0.11$	102 ± 13
Anthracene	1.01 ± 0.02	$4.22 \hspace{.1in} \pm \hspace{.1in} 0.69$
Fluoranthene	9.73 ± 0.21	47.4 ± 5.1
Pyrene	10.88 ± 0.22	27.7 ± 1.5
Benz[a]anthracene	5.25 ± 0.11	$4.24 \hspace{0.2cm} \pm \hspace{0.2cm} 0.25$
Chrysene	4.62 ± 0.10	
Chrysene + Triphenylene	15.9 ± 0.4	
Benzo[<i>a</i>]pyrene	6.25 ± 0.15	

Study Results

- Twelve laboratories enrolled in this exercise and received samples, and six laboratories reported results for at least some of the PAHs (50 % participation).
- The consensus means for all PAHs in the neat solution were lower than the target range with high variability (35 % to over 100 % RSD).
- The consensus means for all PAHs in the green tea were higher than the target range with high variability (53 % to over 100 % RSD).
- Two laboratories (40 %) reported using pressurized-fluid extraction for sample preparation, two laboratories (40 %) reported using direct injection, and one laboratory (20 %) reported using Soxhlet extraction.
- Three laboratories (60 %) used GC-MS as their analytical method. Two laboratories (40 %) reported using GC with flame ionization detection (FID).
- Three laboratories (60 %) reported using an internal standard approach to calibration, and two laboratories (40 %) reported using an external standard approach to calibration.

Technical Recommendations

While more data is needed to draw strong conclusions about results of this study, the following recommendations are based on results that were obtained by the participants in this study.

- Low values obtained for the neat solution could be the result of improper calibration.
- Low values obtained for the neat solution could also be the result of excessive sample preparation. The neat solution only required dilution prior to injection.
- High results for the green tea sample could be a result of improper calibration. This is especially true if the differences between certified values and measured values for the control (SRM 1647e) were used to calculate a correction factor. Correction factors frequently lead to biased results due to differences in matrix effects.

Table 5. Individual data table (NIST) for PAHs in green tea.

National Institute of Standards & Technology

	Lab Code:	NIST	1. Your Results				2. Co	mmunity R	lesults	3. Target		
Analyte	Sample	Units	Xi	si	Z _{comm}	Z _{NIST}		Ν	x*	s*	X _{NIST}	U_{95}
Naphthalene	Solution	ng/g	25500	580	1.0	0.0	_	4	15100	10300	25480	580
Naphthalene	Green Tea	ng/g	48.1	4.0	-1.1	0.0	_	2	464	362	48.1	4.0
Fluorene	Solution	ng/g	6090	140	1.2	0.0		5	2910	2730	6090	140
Fluorene	Green Tea	ng/g	12.7	2.6	-1.5	0.0	_	4	319	203	12.7	2.6
Phenanthrene	Solution	ng/g	4520	110	1.0	0.0		5	2330	2200	4520	110
Phenanthrene	Green Tea	ng/g	102.0	13.0	-0.5	0.0	_	4	188.0	178.0	102.0	13.0
Anthracene	Solution	ng/g	1010	20	0.9	0.0		5	550	522	1010	20
Anthracene	Green Tea	ng/g	4.22	0.69	-1.8	0.0	_	3	56.10	28.50	4.22	0.69
Fluoranthene	Solution	ng/g	9730	210	0.6	0.0		3	8090	2790	9730	210
Fluoranthene	Green Tea	ng/g	47.4	5.1	-0.6	0.0		2	146.0	167.0	47.4	5.1
Pyrene	Solution	ng/g	10900	220	0.9	0.1		5	5690	5720	10880	220
Pyrene	Green Tea	ng/g	27.7	1.5	-0.6	0.0		2	97.5	111.0	27.7	1.5
Benz(a)anthracene	Solution	ng/g	5250	110	0.9	0.0		6	2950	2610	5250	110
Benz(a)anthracene	Green Tea	ng/g	4.24	0.25	-1.0	0.0		5	49.50	44.50	4.24	0.25
Chrysene	Solution	ng/g	4620	100	0.7	0.0	_	6	2820	2460	4620	100
Chrysene	Green Tea	ng/g						5	70	87		
Triphenylene	Solution	ng/g						1				
Triphenylene	Green Tea	ng/g						1				
Chrysene+Triphenyl	Solution	ng/g	4620	100	0.5	0.0	_	6	3290	2800	4620	100
Chrysene+Triphenyl	Green Tea	ng/g	15.9	0.4	-0.7	0.0		5	72.4	84.5	15.9	0.4
Benzo(a)pyrene	Solution	ng/g	6250	150	0.7	0.0	_	5	4300	2730	6250	150
Benzo(a)pyrene	Green Tea	ng/g						2	6	6		

Exercise H - March 2012 - Contaminants (PAHs)

x_i Mean of reported values

consensus

- N Number of quantitative si Standard deviation of reported values values reported
 - x* Robust mean of reported values
- x_{NIST} NIST-assessed value $U_{95} \pm 95\%$ confidence interval about the assessed value or standard deviation (SUST)

Z_{NIST} Z-score with respect to NIST value

Z_{tomm} Z-score with respect to community

s* Robust standard deviation

						Naph	thalene				
			SRM 1647	e PAH Sol	ution (ng/g)			SRM 32	54 Green T	'ea (ng/g)	
	Lab	Α	В	С	Avg	SD	Α	В	С	Avg	SD
	NIST				25480	580				48.1	4.0
	H803										
	H810										
	H813										
ividual Results	H818	12968	12199	12308	12492	416	115	330	270	238	111
	H819	21700	20400	20300	20800	781					
	H821										
	H843										
Ind	H847	3288	3580	3759	3542	238					
	H848										
	H862										
	H865										
	H873	23310	23920	23930	23720	355	660	720	690	690	30
ty		Consensus	Mean		15138		Consensus	Mean		464	
uni lts		Consensus	Standard De	viation	10293		Consensus	Standard De	eviation	362	
mm esu		Maximum			23720		Maximum			690	
C01 R		Minimum			3542		Minimum			238	
-		Ν			4		Ν			2	

Table 6. Data summary table for naphthalene in green tea.

		[Flue	orene				
			SRM 1647	e PAH Soh	tion (ng/g)			SRM 32	54 Green T	'ea (ng/g)	
	Lab	Α	В	С	Avg	SD	Α	В	С	Avg	SD
	NIST				6090	140				12.7	2.6
	H803										
	H810										
	H813										
ults	H818	3636	3497	3442	3525	100	90	90	100	93.3	5.8
Res	H819	5080	5100	5260	5147	99					
ual	H821										
dividus	H843										
Ind	H847	328	357	363	349	19	534	446	499	493.1	44.4
	H848	464	339	379	394	64	445	424	408	425.7	18.6
	H862										
	H865										
	H873	4920	5570	4910	5133	378	240	280	270	263.3	20.8
ity		Consensus	Mean		2910		Consensus	Mean		319	
uni llts		Consensus	Standard De	viation	2732		Consensus	Standard De	viation	203	
mm	1	Maximum			5147		Maximum			493	
R COI	1	Minimum			349		Minimum			93	
•	1	N 5 N			4						

 Table 7. Data summary table for fluorene in green tea.

						Phena	unthre ne				
			SRM 1647	e PAH Solu	tion (ng/g)			SRM 32	54 Green T	'ea (ng/g)	
	Lab	Α	B	С	Avg	SD	Α	В	С	Avg	SD
	NIST				4520	110				102.0	13.0
	H803										
	H810										
	H813										
sults	H818	3054	2836	2821	2903	130	95	105	95	98.3	5.8
Res	H819	4130	4020	4200	4117	91					
lual	H821										
livid	H843										
Ind	H847	261	258	259	259	2	76	120	143	113.0	34.0
	H848	331	255	268	285	40	122	109	119	116.7	6.8
	H862										
	H865										
	H873	4010	4060	4190	4087	93	390	440	440	423.3	28.9
ity		Consensus	Mean		2330		Consensus	Mean		188	
uni lts		Consensus	Standard De	viation	2202		Consensus	Standard De	viation	178	
mm tesu		Maximum			4117		Maximum			423	
R Col		Minimum			259		Minimum			98	
-	1	Ν			5		Ν			4	

 Table 8. Data summary table for phenanthrene in green tea.

						Anth	racene				
_			SRM 1647	e PAH Soh	ution (ng/g)			SRM 32	54 Green T	ea (ng/g)	
	Lab	Α	В	С	Avg	SD	Α	В	С	Avg	SD
	NIST				1010	20				4.2	0.7
	H803										
	H810										
ts	H813										
lus	H818	793	800	668	754	74	ND	ND	ND		
Re	H819	923	897	949	923	26					
ividual F	H821										
	H843										
ibu	H847	53	52	50	52	2	124.4	23.0	28.0	58.5	57.2
I	H848	65	52	50	56	8	30.8	29.4	29.7	30.0	0.7
	H862										
	H865										
	H873	890	990	1020	967	68	80.0	70.0	90.0	80.0	10.0
ty		Consensus	Mean		550		Consensus	Mean		56.1	
uni lts		Consensus	Standard De	viation	522		Consensus	Standard De	viation	28.5	
umn		Maximum			967		Maximum			80.0	
Con Re		Minimum			52		Minimum			30.0	
-		N			5		N			3	

Table 9. Data summary table for anthracene in green tea.

		Fluoranthene									
		SRM 1647e PAH Solution (ng/g)					SRM 3254 Green Tea (ng/g)				
	Lab	Α	В	С	Avg	SD	Α	В	С	Avg	SD
Individual Results	NIST				9730	210				47.4	5.1
	H803										
	H810										
	H813										
	H818	5742	4965	5035	5247	430	40.0	45.0	40.0	42	3
	H819	9200	9460	10100	9587	463					
	H821										
	H843										
	H847										
	H848										
	H862										
	H865										
	H873	9950	9300	9030	9427	473	260.0	250.0	240.0	250	10
Community Results		Consensus Mean			8087		Consensus Mean			146	
		Consensus Standard Deviation			2790		Consensus Standard Deviation			167	
		Maximum			9587		Maximum			250	
		Minimum			5247		Minimum			41.7	
		Ν			3		Ν			2	

 Table 10. Data summary table for fluoranthene in green tea.
						Ру	rene				
			SRM 1647	e PAH Soh	ttion (ng/g)			SRM 32	54 Green T	ea (ng/g)	
	Lab	Α	В	С	Avg	SD	Α	В	С	Avg	SD
	NIST				10880	220				27.7	1.5
	H803										
	H810										
ţ2	H813										
tesul	H818	6301	5478	5517	5765	465	25.0	30.0	30.0	28.3	2.9
Re	H819	10600	10800	11400	10933	416					
ividual	H821										
	H843										
ndi	H847	644	620	570	611	38					
Ē	H848	753	583	609	648	92					
	H862										
	H865										
	H873	10370	10680	10380	10477	176	180.0	160.0	160.0	166.7	11.5
ty		Consensus	Mean		5687		Consensus	Mean		97.5	
umi lts		Consensus	Standard De	viation	5716		Consensus	Standard De	viation	111	
amu esult		Maximum			10933		Maximum			167	
R G		Minimum			611		Minimum		28.3		
		Ν			5		Ν			2	

 Table 11. Data summary table for pyrene in green tea.

						Benz(a)a	anthracene						
_			SRM 1647	e PAH Soh	ution (ng/g)			SRM 32	254 Green Tea (ng/g)				
	Lab	Α	В	С	Avg	SD	Α	В	С	Avg	SD		
	NIST				5250	110				4.2	0.3		
	H803												
	H810												
ts	H813												
sul	H818	2890	2580	2587	2686	177	15.0	ND	10.0	12.5	3.5		
ividual Re	H819	5330 5620 59		5900	5617	285							
	H821												
	H843												
ndi	H847	334	270	228	277	53	66.4	79.0	99.0	81.5	16.4		
I	H848	352	272	271	298	46	63.7	72.5	56.2	64.1	8.2		
	H862												
	H865	3731	3852	3855	3813	71	2.8	2.9	3.0	2.9	0.1		
	H873	5320	4640	5110	5023	348	90.0	80.0	90.0	86.7	5.8		
ty		Consensus	Mean		2952		Consensus	Mean	-	49.5			
uni lts		Consensus	Standard De	viation	2606		Consensus	Standard De	viation	44.5			
umn		Maximum			5617		Maximum		86.7				
Con Re		Minimum			277		Minimum	Minimum			2.9		
~		Ν			6		Ν	N					

Table 12. Data summary table for benz[*a*]anthracene in green tea.

						Chr	ysene					
			SRM 1647	e PAH Soh	ution (ng/g)			SRM 32	54 Green T	ea (ng/g)		
	Lab	Α	В	С	Avg	SD	Α	В	С	Avg	SD	
	NIST				4620	100						
	H803											
	H810											
B	H813											
ndividual Resul	H818	2929	2735	2852	2839	98	10.0	ND	10.0	10.0	0.0	
	H819	4330	4540	4460	4443	106						
	H821											
	H843											
	H847	299	251	207	253	46	39.5	46.0	68.0	51.2	14.9	
-	H848	331	252	258	280	44	149.1	228.0	206.0	194.4	40.7	
	H862											
	H865	3470	3551	3661	3561	96	9.4	9.4	10.0	9.6	0.4	
	H873	6110	5570	4890	5523	611	90.0	80.0	90.0	86.7	5.8	
ţ		Consensus	Mean		2816		Consensus	Mean		70.4		
umi lts		Consensus	Standard De	viation	2460		Consensus	Standard De	viation	86.6		
sult		Maximum			5523		Maximum			194		
R G		Minimum			253		Minimum		9.6			
<u> </u>		Ν			6		Ν		5			

 Table 13. Data summary table for chrysene in green tea.

						Triph	enylene				
			SRM 1647	e PAH Soh	tion (ng/g)			SRM 32	254 Green T	'ea (ng/g)	
	Lab	Α	В	С	Avg	SD	Α	В	С	Avg	SD
	NIST										
	H803										
	H810										
lts	H813										
sul	H818	2929	2735	2852	2839	98	10.0	ND	10.0	10.00	0.00
Re	H819										
ual	H821										
vid	H843										
ibu	H847										
H	H848										
	H862										
	H865										
	H873										
ty		Consensus	Mean				Consensus	Mean			
amunity esults		Consensus	Standard De	viation			Consensus	Standard De	eviation		
		Maximum					Maximum				
R G		Minimum					Minimum				
		Ν			1		Ν			1	

 Table 14. Data summary table for triphenylene in green tea.

					С	hrysene +	Triphenylen	e				
_			SRM 1647	e PAH Soh	ution (ng/g)			SRM 32	254 Green Tea (ng/g)			
	Lab	Α	В	С	Avg	SD	Α	В	С	Avg	SD	
	NIST				4620	100				15.9	0.4	
	H803											
	H810											
ts	H813											
esul	H818	5859	5470	5703	5677	196	20.0		20.0	20.0	0.0	
Re	H819	4330	4540	4460	4443	106						
ividual	H821											
	H843											
ibu	H847	299	251	207	253	46	39.5	46.0	68.0	51.2	14.9	
I	H848	331	252	258	280	44	149.1	228.0	206.0	194.4	40.7	
	H862											
	H865	3470	3551	3661	3561	96	9.4	9.4	10.0	9.6	0.4	
	H873	6110	5570	4890	5523	611	90.0	80.0	90.0	86.7	5.8	
ty		Consensus	Mean		3290		Consensus	Mean	72.4			
uni lts		Consensus	Standard De	viation	2795		Consensus	Standard De	viation	84.5		
umn		Maximum			5677		Maximum		194			
Con Re		Minimum			253		Minimum			9.6		
U		Ν			6		Ν		5			

 Table 15. Data summary table for chrysene + triphenylene in green tea.

						Benzo(a)pyrene					
			SRM 1647	e PAH Soh	ution (ng/g)			SRM 32	54 Green T	ea (ng/g)		
	Lab	Α	В	С	Avg	SD	Α	В	С	Avg	SD	
	NIST				6250	150						
	H803											
	H810											
ts.	H813											
tesul	H818	4033	3629	3800	3820	203	10.0	10.0	10.0	10.0	0.0	
Re	H819	6020	6740	6980	6580	500						
vidual	H821											
	H843											
ibu	H847	497	378	330	402	86						
-	H848											
	H862											
	H865	4722	5041	5057	4940	189	1.8	2.2	2.2	2.1	0.2	
	H873	5910	5860	5480	5750	235						
ty		Consensus	Mean		4298		Consensus	Mean		6.0		
uni Its		Consensus	Standard De	viation	2727		Consensus	Standard De	viation	6.4		
amu esult		Maximum			6580		Maximum			10.0		
R G		Minimum			402		Minimum			2.1		
		Ν			5		Ν			2		

Table 16.	Data	summary	table for	or benzo	[a]]pyrene	in green to	ea.
-----------	------	---------	-----------	----------	-----	---------	-------------	-----

Figure 10. Naphthalene in SRM 1647e PAH Solution (data summary view). In this view, individual laboratory data are plotted with the individual laboratory standard deviation (error bars). The black solid line represents the consensus mean, and the black dotted lines represent the consensus variability calculated as one standard deviation about the consensus mean. The gray shaded region represents the target zone for "acceptable" performance, which encompasses the NIST certified value bounded by twice its uncertainty (U_{95}).

Figure 11. Naphthalene in SRM 3254 *Camellia sinensis* (Green Tea) Leaves (data summary view). In this view, individual laboratory data are plotted with the individual laboratory standard deviation (error bars). The black solid line represents the consensus mean, and the black dotted lines represent the consensus variability calculated as one standard deviation about the consensus mean. The gray shaded region represents the target zone for "acceptable" performance, which encompasses the NIST value determined by GC-MS, bounded by twice the standard deviation observed for three measurements.

Figure 12. Fluorene in SRM 1647e PAH Solution (data summary view). In this view, individual laboratory data are plotted with the individual laboratory standard deviation (error bars). The black solid line represents the consensus mean, and the black dotted lines represent the consensus variability calculated as one standard deviation about the consensus mean. The gray shaded region represents the target zone for "acceptable" performance, which encompasses the NIST certified value bounded by twice its uncertainty (U_{95}).

Figure 13. Fluorene in SRM 3254 *Camellia sinensis* (Green Tea) Leaves (data summary view). In this view, individual laboratory data are plotted with the individual laboratory standard deviation (error bars). The black solid line represents the consensus mean, and the black dotted lines represent the consensus variability calculated as one standard deviation about the consensus mean. The gray shaded region represents the target zone for "acceptable" performance, which encompasses the NIST value determined by GC-MS, bounded by twice the standard deviation observed for three measurements.

Figure 14. Phenanthrene in SRM 1647e PAH Solution (data summary view). In this view, individual laboratory data are plotted with the individual laboratory standard deviation (error bars). The black solid line represents the consensus mean, and the black dotted lines represent the consensus variability calculated as one standard deviation about the consensus mean. The gray shaded region represents the target zone for "acceptable" performance, which encompasses the NIST certified value bounded by twice its uncertainty (U_{95}).

Figure 15. Phenanthrene in SRM 3254 *Camellia sinensis* (Green Tea) Leaves (data summary view). In this view, individual laboratory data are plotted with the individual laboratory standard deviation (error bars). The black solid line represents the consensus mean, and the black dotted lines represent the consensus variability calculated as one standard deviation about the consensus mean. The gray shaded region represents the target zone for "acceptable" performance, which encompasses the NIST value determined by GC-MS, bounded by twice the standard deviation observed for three measurements.

Figure 16. Anthracene in SRM 1647e PAH Solution (data summary view). In this view, individual laboratory data are plotted with the individual laboratory standard deviation (error bars). The black solid line represents the consensus mean, and the black dotted lines represent the consensus variability calculated as one standard deviation about the consensus mean. The gray shaded region represents the target zone for "acceptable" performance, which encompasses the NIST certified value bounded by twice its uncertainty (U_{95}).

Figure 17. Anthracene in SRM 3254 *Camellia sinensis* (Green Tea) Leaves (data summary view). In this view, individual laboratory data are plotted with the individual laboratory standard deviation (error bars). The black solid line represents the consensus mean, and the black dotted lines represent the consensus variability calculated as one standard deviation about the consensus mean. The gray shaded region represents the target zone for "acceptable" performance, which encompasses the NIST value determined by GC-MS, bounded by twice the standard deviation observed for three measurements.

Figure 18. Fluoranthene in SRM 1647e PAH Solution (data summary view). In this view, individual laboratory data are plotted with the individual laboratory standard deviation (error bars). The black solid line represents the consensus mean, and the black dotted lines represent the consensus variability calculated as one standard deviation about the consensus mean. The gray shaded region represents the target zone for "acceptable" performance, which encompasses the NIST certified value bounded by twice its uncertainty (U_{25}).

Figure 19. Fluoranthene in SRM 3254 *Camellia sinensis* (Green Tea) Leaves (data summary view). In this view, individual laboratory data are plotted with the individual laboratory standard deviation (error bars). The black solid line represents the consensus mean, and the black dotted lines represent the consensus variability calculated as one standard deviation about the consensus mean. The gray shaded region represents the target zone for "acceptable" performance, which encompasses the NIST value determined by GC-MS, bounded by twice the standard deviation observed for three measurements.

Figure 20. Pyrene in SRM 1647e PAH Solution (data summary view). In this view, individual laboratory data are plotted with the individual laboratory standard deviation (error bars). The black solid line represents the consensus mean, and the black dotted lines represent the consensus variability calculated as one standard deviation about the consensus mean. The gray shaded region represents the target zone for "acceptable" performance, which encompasses the NIST certified value bounded by twice its uncertainty (U_{95}).

Figure 21. Pyrene in SRM 3254 *Camellia sinensis* (Green Tea) Leaves (data summary view). In this view, individual laboratory data are plotted with the individual laboratory standard deviation (error bars). The black solid line represents the consensus mean, and the black dotted lines represent the consensus variability calculated as one standard deviation about the consensus mean. The gray shaded region represents the target zone for "acceptable" performance, which encompasses the NIST value determined by GC-MS, bounded by twice the standard deviation observed for three measurements.

Figure 22. Benz[*a*]anthracene in SRM 1647e PAH Solution (data summary view). In this view, individual laboratory data are plotted with the individual laboratory standard deviation (error bars). The black solid line represents the consensus mean, and the black dotted lines represent the consensus variability calculated as one standard deviation about the consensus mean. The gray shaded region represents the target zone for "acceptable" performance, which encompasses the NIST certified value bounded by twice its uncertainty (U_{95}).

Figure 23. Benz[*a*]anthracene in SRM 3254 *Camellia sinensis* (Green Tea) Leaves (data summary view). In this view, individual laboratory data are plotted with the individual laboratory standard deviation (error bars). The black solid line represents the consensus mean, and the black dotted lines represent the consensus variability calculated as one standard deviation about the consensus mean. The gray shaded region represents the target zone for "acceptable" performance, which encompasses the NIST value determined by GC-MS, bounded by twice the standard deviation observed for three measurements.

Figure 24. Chrysene in SRM 1647e PAH Solution (data summary view). In this view, individual laboratory data are plotted with the individual laboratory standard deviation (error bars). The black solid line represents the consensus mean, and the black dotted lines represent the consensus variability calculated as one standard deviation about the consensus mean. The gray shaded region represents the target zone for "acceptable" performance, which encompasses the NIST certified value bounded by twice its uncertainty (U_{95}).

Figure 25. Chrysene in SRM 3254 *Camellia sinensis* (Green Tea) Leaves (data summary view). In this view, individual laboratory data are plotted with the individual laboratory standard deviation (error bars). The black solid line represents the consensus mean, and the black dotted lines represent the consensus variability calculated as one standard deviation about the consensus mean.

Figure 26. Sum of chrysene and triphenylene in SRM 1647e PAH Solution (data summary view). In this view, individual laboratory data are plotted with the individual laboratory standard deviation (error bars). The black solid line represents the consensus mean, and the black dotted lines represent the consensus variability calculated as one standard deviation about the consensus mean. The gray shaded region represents the target zone for "acceptable" performance, which encompasses the NIST certified value bounded by twice its uncertainty (U_{95}).

Figure 27. Sum of chrysene and triphenylene in SRM 3254 *Camellia sinensis* (Green Tea) Leaves (data summary view). In this view, individual laboratory data are plotted with the individual laboratory standard deviation (error bars). The black solid line represents the consensus mean, and the black dotted lines represent the consensus variability calculated as one standard deviation about the consensus mean. The gray shaded region represents the target zone for "acceptable" performance, which encompasses the NIST value determined by GC-MS, bounded by twice the standard deviation observed for three measurements.

Figure 28. Benzo[*a*]pyrene in SRM 1647e PAH Solution (data summary view). In this view, individual laboratory data are plotted with the individual laboratory standard deviation (error bars). The black solid line represents the consensus mean, and the black dotted lines represent the consensus variability calculated as one standard deviation about the consensus mean. The gray shaded region represents the target zone for "acceptable" performance, which encompasses the NIST certified value bounded by twice its uncertainty (U_{95}).

Figure 29. Benzo[*a*]pyrene in SRM 3254 *Camellia sinensis* (Green Tea) Leaves (data summary view). In this view, individual laboratory data are plotted with the individual laboratory standard deviation (error bars). The black solid line represents the consensus mean, and the black dotted lines represent the consensus variability calculated as one standard deviation about the consensus mean.

Figure 30. Phenanthrene in SRM 1647e PAH Solution and SRM 3254 *Camellia sinensis* (Green Tea) Leaves (sample/control comparison view). In this view, the individual laboratory results for the control (SRM 1647e PAH Solution) with a certified value for the analyte are compared to the results for an unknown (SRM 3254 *Camellia sinensis* (Green Tea) Leaves). The error bars represent the individual laboratory standard deviation. The solid red lines represent the target zone for the control (x-axis) and unknown sample (y-axis). The dotted blue box represents the consensus zone for the control (x-axis) and the unknown sample (y-axis).

Figure 31. Anthracene in SRM 1647e PAH Solution and SRM 3254 *Camellia sinensis* (Green Tea) Leaves (sample/control comparison view). In this view, the individual laboratory results for the control (SRM 1647e PAH Solution) with a certified value for the analyte are compared to the results for an unknown (SRM 3254 *Camellia sinensis* (Green Tea) Leaves). The error bars represent the individual laboratory standard deviation. The solid red lines represent the target zone for the control (x-axis) and unknown sample (y-axis). The dotted blue box represents the consensus zone for the control (x-axis) and the unknown sample (y-axis).

Figure 32. Benz[*a*]anthracene in SRM 1647e PAH Solution and SRM 3254 *Camellia sinensis* (Green Tea) Leaves (sample/control comparison view). In this view, the individual laboratory results for the control (SRM 1647e PAH Solution) with a certified value for the analyte are compared to the results for an unknown (SRM 3254 *Camellia sinensis* (Green Tea) Leaves). The error bars represent the individual laboratory standard deviation. The solid red lines represent the target zone for the control (x-axis) and unknown sample (y-axis). The dotted blue box represents the consensus zone for the control (x-axis) and the unknown sample (y-axis).

Figure 33. Chrysene in SRM 1647e PAH Solution and SRM 3254 *Camellia sinensis* (Green Tea) Leaves (sample/control comparison view). In this view, the individual laboratory results for the control (SRM 1647e PAH Solution) with a certified value for the analyte are compared to the results for an unknown (SRM 3254 *Camellia sinensis* (Green Tea) Leaves). The error bars represent the individual laboratory standard deviation. The dotted blue box represents the consensus zone for the control (x-axis) and the unknown sample (y-axis).

Figure 34. Sum of chrysene and triphenylene in SRM 1647e PAH Solution and SRM 3254 *Camellia sinensis* (Green Tea) Leaves (sample/control comparison view). In this view, the individual laboratory results for the control (SRM 1647e PAH Solution) with a certified value for the analyte are compared to the results for an unknown (SRM 3254 *Camellia sinensis* (Green Tea) Leaves). The error bars represent the individual laboratory standard deviation. The solid red lines represent the target zone for the control (x-axis) and unknown sample (y-axis). The dotted blue box represents the consensus zone for the control (x-axis) and the unknown sample (y-axis).

CHOLINE IN FOODS

Study Overview

In this study, participants were provided with two NIST SRMs, candidate SRM 1845a Whole Egg Powder and candidate SRM 3234 Soy Flour, neither of which has been fortified with choline. Participants were asked to use in-house analytical methods to determine the mass fractions of total choline in each of the matrices and report values on an as-received basis. Participants were not asked to report the choline content in any particular form; NIST values are reported as the choline ion.

Sample Information

Whole egg powder. Participants were provided with three vials, each containing approximately 1.5 g of unfortified whole egg powder from a single production lot. The material is a free-flowing, fine powder prepared from USDA-inspected whole eggs. Before use, participants were instructed to thoroughly mix and homogenize the contents of the vial and use a sample size of at least 100 mg. Participants were asked to report a single value from each vial provided and to store the egg powder at controlled room temperature, 10 °C to 30 °C. Approximate analyte levels were not reported prior to the study. The NIST certified value for choline in candidate SRM 1845a will be determined using microwave acid digestion followed by ID-LC-MS in combination with data from external collaborating laboratories. An estimation of the certified value of the choline ion, $(14. 71 \pm 0.33)$ mg/g, is provided as the mean and standard deviation of duplicate ID-LC-MS measurements from 10 packets.

Soy Flour. Participants were provided with three vials, each containing approximately 1.5 g of defatted soy flour. Before use, participants were instructed to thoroughly mix and homogenize the contents of the vial and use a sample size of at least 400 mg. Participants were asked to report a single value from each vial provided and to store the egg powder at controlled room temperature, 10 °C to 30 °C. Approximate analyte levels were not reported prior to the study. The NIST certified value for choline in candidate SRM 3234 will be determined using microwave acid digestion followed by isotope dilution LC-MS in combination with data from external collaborating laboratories. An estimation of the certified value of the choline ion, (2.663 ± 0.023) mg/g, is provided as the mean and standard deviation of duplicate ID-LC-MS measurements from 12 packets.

Study Results

- Thirteen laboratories enrolled in this exercise and received samples, and seven laboratories reported results for the egg powder and soy flour (54 % participation).
- For both materials, the consensus ranges were very wide and were higher than the NIST target range (Figures 35 and 36).
 - The dispersion of the data could be a result of challenges in completely extracting and hydrolyzing the samples.
 - In the soy flour, five of the seven laboratories (71 %) reported values that were reasonably close to the target range. The remaining two laboratories reported values that were significantly higher than the target range (5 times higher and almost 100 times higher). This could indicate an interference in the analytical method (titration

and spectrophotometry) caused by matrix components. More information is needed about the analytical methods to draw more conclusive inferences.

- In the egg powder, four of the seven laboratories (57 %) reported values that were reasonably close to the target range. Two of the remaining laboratories reported values that were significantly lower than the target range (2 times lower and 500 times lower). This could indicate incomplete extraction (both laboratories reported using solvent extraction). Another laboratory reported a value that was 5 times higher than the target value. This laboratory also reported very high values for the soy flour, indicating a possible calibration error.
- Laboratories that reported low values for the egg powder did not report low values for the soy flour. This indicates that the egg powder may contain more choline esters that require hydrolysis prior to analytical determination.
- The NIST values were determined using microwave acid digestion. As a result, the NIST target ranges and the consensus means may not overlap when participating laboratories use less extensive extraction procedures. This may result in a discrepancy between laboratories (such as NIST) determining the "total" choline content and laboratories determining "free" choline content.
- In general, the instrumental method used did not correlate with any trend in the data. In this case, variability in the data is more likely related to sample preparation than to instrumental method. A larger data set and more information from participants is necessary to draw any strong correlations between method and result.

Technical Recommendations

The following are recommendations based on results obtained by the participants in this study.

- The literature indicates that some proportion of the total choline is present in these matrices as choline esters that require acidic or basic hydrolysis to release choline ion. Participants should be clear as to what form of choline is reported and whether a sample preparation procedure will yield total or free choline.
- No analytical method was identified as being exceptionally good or problematic. For these types of samples, the extraction method seems to be more critical than the instrumental methods used by participants.
- Participants were not asked to report choline results in any specific molecular form. The NIST estimation of the certified value is reported as the choline ion. Conversion to the choline hydroxide form would increase the values by 16 %. Two laboratories reported values 13.5 % and 17.7 % greater than the NIST value for the soy flour, which could be explained by a difference in the reported form. However, these same two laboratories reported values for the egg powder that were only 8.2 % and 4.1 % greater than the NIST value, respectively. While a small error due to inconsistent reporting of results is possible, it does not completely explain the outlying results.

Table 17. Individual data table (NIST) for choline in foods.

			F	Exercise H	- March 2	012 - Cho	oline	•				
Lab Code: NIST 1. Your Results							_	2. Co	ommunity R	esults	3. Target	
Analyte	Sample	Units	Xi	s _i	Z _{comm}	Z _{NIST}		Ν	х*	s*	X _{NIST}	U_{95}
Choline	Soy Flour	mg/g	2.66	0.023	-0.5	-0.1	_	7	5.59	6.1	2.66	0.023
Choline	Egg Powder	mg/g	14.7	0.33	0.2	0.0	_	7	13.200	9.150	14.7	0.33
x_i Mean of reported values s_i Standard deviation of reported values								Number values r	of quantitati	ive x_{NIS}	_{3T} NIST-ass ₉₅ ±95% co	sessed value
		Zcon	Z-score v	x*	Robust	mean of repo	orted	about the	assessed value			

National Institute of Standards & Technology

et to community

consensus

Z_{NIST} Z-score with respect to NIST value

values

s* Robust standard deviation

rval lue or standard deviation (\$NIST)

						Ch	oline					
			SRM 32	34 Soy Flo	ur (mg/g)		SI	RM 1845a V	Whole Egg I	Powder (mg	/g)	
	Lab	Α	В	С	Avg	SD	Α	В	С	Avg	SD	
	NIST				2.66	0.02				14.7	0.3	
	H801											
	H803											
	H810	3.1	3.1	2.9	3.02	0.1	15.7	15.7	16.3	15.9	0.3	
lts	H816	129	130	133	131	2.5	76.1	78.2	81.2	78.5	2.6	
esu	H821											
al R	H824											
idua	H826	2.4	2.4	2.4	2.41	0.02	14.8	14.8	14.7	14.8	0.1	
ndiv	H829											
I	H845	2.0	2.0	2.2	2.07	0.08	13.4	13.2	13.6	13.4	0.2	
	H846											
	H860	3.1	3.1	3.1	3.13	0.02	15.1	15.4	15.3	15.3	0.1	
	H862	12.2	12.3	11.3	11.93	0.53	6.7	6.6	7.2	6.8	0.3	
	H870	2.2	1.8	1.8	1.95	0.25	0.028	0.028	0.028	0.028	0.000	
y		Consensus	Mean		5.59		Consensus	Mean	13.2			
unit. Its	I	Consensus	Standard De	eviation	6.05		Consensus	Standard De	eviation	9.1		
nmu esul	I	Maximum			131		Maximum			78.5		
Con	I	Minimum			1.95		Minimum			0.028		
	l	Ν			7		Ν			7		

 Table 18. Data summary table for choline in foods.

Figure 35. Choline in candidate SRM 3234 Soy Flour (data summary view). In this view, individual laboratory data are plotted with the individual laboratory standard deviation (error bars). The black solid line represents the consensus mean, and the black dotted lines represent the consensus variability calculated as one standard deviation about the consensus mean. The gray shaded region represents the target zone for "acceptable" performance, which encompasses the NIST value determined by ID-LC-MS bounded by twice the standard deviation observed for 24 measurements.

Figure 36. Choline in candidate SRM 1845a Whole Egg Powder (data summary view). In this view, individual laboratory data are plotted with the individual laboratory standard deviation (error bars). The black solid line represents the consensus mean, and the black dotted lines represent the consensus variability calculated as one standard deviation about the consensus mean. The gray shaded region represents the target zone for "acceptable" performance, which encompasses the NIST value determined by ID-LC-MS bounded by twice the standard deviation observed for 20 measurements.

Figure 37. Choline in SRM 3234 Soy Flour and candidate SRM 1845a Whole Egg Powder (sample/sample comparison view). In this view, the individual laboratory results for one sample (candidate SRM 1845a Whole Egg Powder) with a certified value for the analyte are compared to the results for a second sample (candidate SRM 3234 Soy Flour). The error bars represent the individual laboratory standard deviation. The solid red lines represent the target zone for the control (x-axis) and the unknown sample (y-axis). The dotted blue box represents the consensus zone for the control (x-axis) and the unknown sample (y-axis).

Figure 38. Expanded view of choline in SRM 3234 Soy Flour and candidate SRM 1845a Whole Egg Powder (sample/sample comparison view). In this view, the individual laboratory results for one sample (candidate SRM 1845a Whole Egg Powder) with a certified value for the analyte are compared to the results for a second sample (candidate SRM 3234 Soy Flour). The error bars represent the individual laboratory standard deviation. The solid red lines represent the target zone for the control (x-axis) and the unknown sample (y-axis).

TOCOPHEROLS IN FOODS

Study Overview

In this study, participants were provided with two NIST SRMs, SRM 3276 Carrot Extract in Oil and candidate SRM 1845a Whole Egg Powder. Participants were asked to use in-house analytical methods to determine the mass fractions of four tocopherols (α -tocopherol, β -tocopherol, γ -tocopherol, and δ -tocopherol) as well as the total amount of tocopherols in each of the matrices and report values on an as-received basis.

Sample Information

Carrot extract. Participants were provided with three ampoules, each containing approximately 1 mL of carrot extract in oil. The carrot extract in oil was mixed with butylated hydroxytoluene (BHT, approximately 670 μ g/g) and ampouled under argon. Before use, participants were instructed to mix thoroughly the contents of the ampoule and use a sample size of at least 50 mg. Participants were asked to report a single value from each ampoule and store the extract at controlled room temperature, 10 °C to 30 °C. Approximate analyte levels were not reported prior to the study. The NIST certified values and uncertainties in SRM 3276 were determined by LC-fluorescence following solvent extraction and are reported in the table below.

Egg powder. Participants were provided with three vials, each containing approximately 1.5 g of whole egg powder. The material is a free-flowing, fine powder prepared from USDA-inspected whole eggs. Before use, participants were instructed to mix thoroughly the contents of the vial and use a sample size of at least 0.5 g. Participants were asked to report a single value from each vial and store the material at controlled room temperature, 10 °C to 30 °C. Approximate analyte levels were not reported prior to the study. The NIST certified values and uncertainties in candidate SRM 1845a Whole Egg Powder will be determined by a combination of LC-fluorescence data and data from external collaborating laboratories. An estimation of duplicate measurements performed by three (γ -tocopherol) or six (α -tocopherol) external collaborating laboratories. All laboratories used saponification in the sample preparation and liquid chromatography with either absorbance or fluorescence detection to measure the tocopherols in candidate SRM 1845a.

	Certified Mass Fraction	NIST-Determined Mass Fraction
<u>Analyte</u>	<u>in SRM 3276 (µg/g)</u>	<u>in Candidate SRM 1845a (µg/g)</u>
α-tocopherol		36.0 ± 7.0
β-tocopherol		
γ-tocopherol	373 ± 34	12.0 ± 5.6
δ-tocopherol	443 ± 64	

Study Results

- Forty-one laboratories enrolled in this exercise and received samples, and 20 laboratories reported results for at least some of the tocopherols (49 % participation).
- NIST target values are available for γ-tocopherol and δ-tocopherol in the carrot oil sample.

- The consensus mean for γ -tocopherol was within the target range, while the consensus mean for δ -tocopherol was slightly above the target range.
- The consensus ranges were quite wide for both compounds in the carrot extract (33 % and 70 % RSD, respectively).
- NIST target values are available for α -tocopherol and γ -tocopherol in the egg powder sample. The consensus means for both compounds were within the target range, and the consensus ranges were both quite wide (48 % and 60 % RSD, respectively).
- Results for total tocopherols were calculated as the sum of all four tocopherol values reported for each sample.
 - In the carrot oil, the consensus mean was lower than the target range with a wide uncertainty (125 % RSD).
 - In the egg powder, the consensus mean was within the target range, but had a wide uncertainty (59 % RSD).
 - Many laboratories reported values for tocopherols not known to be present at quantifiable levels in the materials.
- Eleven laboratories (55 %) reported using saponification followed by extraction, while eight laboratories (40 %) reported using solvent extraction to prepare samples. One laboratory (5 %) reported using derivatization in the sample preparation.
- A majority of laboratories (75 %) used LC-absorbance for analysis. Three laboratories (15 %) reported using LC-fluorescence, one laboratory (5 %) reported using LC-MS, and one laboratory (5 %) reported using GC-MS.
- A majority of laboratories (88 %) reported using an internal standard approach to calibration. Two laboratories (12 %) reported using a standard addition approach to calibration.

Technical Recommendations

The following recommendations are based on results obtained by the participants in this study.

- A calibration error is possible, based on the sample/control comparison graphs, but more data for the entire sample set is needed to conclusively determine the source of error.
- Spiking studies or subjecting calibrant materials to the same preparation procedure as the samples (extraction, hydrolysis, etc.) can help to identify if tocopherols are being degraded during sample preparation.
- Tocopherol calibrant mass fraction should always be determined spectrophotometrically.
- If saponification is used for the sample preparation and an internal standard approach is taken to quantitation, it is imperative that laboratories check the stability of the internal standard.

Table 19. Individual data table (NIST) for tocopherols in foods.

Exercise II - Warth 2012 - Totopherois												
	Lab Code:	NIST	1. Your Results				2. Co	nmunity F	Results	3. Ta	3. Target	
Analyte	Sample	Units	\mathbf{X}_{i}	\mathbf{s}_{i}	Z _{comm}	Z _{NIST}	Ν	х*	s*	X _{NIST}	U_{95}	
α-tocopherol	Carrot Oil	μg/g					11	16.7	14.9			
α -tocopherol	Egg Powder	μg/g	36.0	7.0	-0.6	0.0	16	49.5	24.0	36.0	7.0	
β-tocopherol	Carrot Oil	µg/g					3	6.02	1.63			
β-tocopherol	Egg Powder	µg/g					1					
γ-tocopherol	Carrot Oil	μg/g	443	64	0.7	0.0	10	365	117	443	64	
γ-tocopherol	Egg Powder	μg/g	12	5.6	-0.5	0.0	8	17.8	10.7	12.0	5.6	
δ-tocopherol	Carrot Oil	µg/g	373	34	-0.3	0.0	9	452	316	373	34	
δ-tocopherol	Egg Powder	μg/g					2	14.4	21.4			
Total tocopherols	Carrot Oil	μg/g	816	73	0.7	0.0	20	446	561	816	72	
Total tocopherols	Egg Powder	μg/g	48.0	9.0	-0.3	0.0	20	56.9	33.8	48.0	9.0	

Exercise H - March 2012 - Toconherols

National Institute of Standards & Technology

x_i Mean of reported values

- s_i Standard deviation of reported values Z_{comm} Z-score with respect to community
 - consensus
- Z_{NIST} Z-score with respect to NIST value
- N Number of quantitative values reportedx* Robust mean of reported values
- s* Robust standard deviation
- x_{NIST} NIST-assessed value
- $U_{95} \pm 95\%$ confidence interval about the assessed value or standard deviation (s_{UST})

		a-tocopherol									
	-	S	RM 3276 C	arrot Extra	ct in Oil (µg/	g)	SI	RM 1845a V	Whole Egg	Powder (µg/	g)
	Lab	Α	В	С	Avg	SD	Α	В	С	Avg	SD
	NIST									36.0	7.0
	H801										
	H803										
	H805										
	H807										
	H809										
	H810						63.4	62.4	66.2	64.0	2.0
	H812	25.6	22.3	25.0	24.3	1.8	66.0	78.0	62.0	68.7	8.3
	H814						53.1	55.0	50.0	52.7	2.5
	H815	44.5	46.2	46.1	45.6	0.9	47.1	48.9	49.6	48.5	1.3
	H816		0.6	0.7	0.7	0.0	0.7	0.8	0.6	0.7	0.1
	H820										
	H821										
	H823	20.5	21.0	20.0	20.5	0.5	63.1	62.2	63.7	63.0	0.8
	H824	6560	6440	6470	6490	62	31.1	27.8	30.1	29.7	1.7
	H826	14.0	14.0	16.0	14.7	1.2	56.0	61.0	63.0	60.0	3.6
	H828										
ts	H829										
ndividual Result	H830										
	H832										
	H834										
	H835										
Ч	H839										
	H842										
	H843										
	H846										
	H847	3.9	3.8	6.7	4.8	1.7	27.6	22.1	32.3	27.3	5.1
	H848	4.1	3.9	6.8	4.9	1.7	25.8	20.6	30.2	25.5	4.8
	H850										
	H852										
	H853						69.7	66.1	65.2	67.0	2.4
	H855			41.9	41.9		73.1	107.0	83.0	87.7	17.4
	H856	Q 1	7 2	25.4	12.6	10.2	18.5	22.5	17.2	10.4	28
	H858	0.1	1.5	23.4	15.0	10.2	16.5	22.3	17.2	19.4	2.0
	H861										
	H862						69.4	72.2	68.4	70.0	2.0
	H870						40.5	40.1	38.5	39.7	1.1
	H871										
	H872 H873	15.0	167	16.0	16.2	0.4	56.3	50.2	55 7	57.1	10
	H874	13.7	10.7	10.0	10.2	0.4	50.5	39.2	55.1	57.1	1.7
y		Consensus	Mean		19.1		Consensus	Mean		49.5	
unit lts		Consensus	Standard De	viation	17.9		Consensus	Standard De	viation	24.0	
mm		Maximum			6490		Maximum			87.7	
		Minimum			0.7		Minimum			0.70	
		IN			10		IN			16	

Table 20. Data summary table for α -tocopherol in foods.

		β-tocopherol									
		SI	RM 3276 Ca	arrot Extra	ct in Oil (µg/	'g)	SF	RM 1845a V	Whole Egg	Powder (µg/	g)
	Lab	Α	В	С	Avg	SD	Α	В	С	Avg	SD
	NIST										
	H801										
	H803										
	H805										
	H807										
	H809										
	H810										
	H812										
	H814										
	H815	3.81	4.90	4.44	4.38	0.55					
	H816	0.01				0.00					
	H820										
	H821										
	H823	7 44	6.91	673	7.03	0.37	0.54	0.62	0.62	0.59	0.04
	H824	7.77	0.71	0.75	7.05	0.57	0.54	0.02	0.02	0.57	0.04
	11024	8.00	6.00	6.00	6.67	1 15					
	LI820	8.00	0.00	0.00	0.07	1.15					
	11020										
ults	П029										
Res	H850										
ual	H832										
ivid	H834										
Ind	H835										
	H839										
	H842										
	H843										
	H846										
	H847										
	H848										
	H850										
	H852										
	H855										
	H856										
	H857										
	H858										
	H861										
	H862										
	H870 H871										
	H872										
	H873										
	H874										
ity		Consensus	Mean		6.02		Consensus I	Mean			
nun ults		Consensus	Standard De	viation	1.63		Consensus S	Standard De	viation		
Rest		Minimum			7.03 7.38		Minimum				
ວີ		N					N			1	

Table 21. Data summary table for β -tocopherol in foods.

		γ-tocophe rol									
		SI	RM 3276 Ca	arrot Extra	ct in Oil (µg/	g)	SI	RM 1845a '	Whole Egg	Powder (µg/	g)
	Lab	Α	В	С	Avg	SD	Α	В	С	Avg	SD
	NIST				443	64				12.0	5.6
	H801										
	H803										
	H805										
	H807										
	H809										
	H810	342	334	336	337	4	19.8	20.7	24.4	21.6	2.4
	H812										
	H814										
	H815	201	216	198	205	10	4.7	6.0	6.4	5.7	0.9
	H816										
	H820										
	H821										
	H823	467	452	456	459	7	23.3	23.2	23.6	23.4	0.2
	H824										
	H826	380	396	382	386	9	20.0	22.0	22.0	21.3	1.2
	H828										
ts	H829										
esul	H830										
al R	H832										
idu	H834										
udiv	H835										
Ir	H839										
	H842										
	H843										
	H846										
	H847										
	H848										
	H850										
	H852										
	H853	477	468	494	479	13	29.5	29.8	32.1	30.5	1.4
	H855	391	396	399	395	4	19.0	18.9	18.8	18.9	0.1
	H856 H857	15	20	20	18	3	0.6	0.6	03	0.5	0.2
	H858	15	20	20	10	5	0.0	0.0	0.5	0.5	0.2
	H861										
	H862	467	459	460	462	4					
	H870	420	450	400	423	25	18.5	19.6	19.1	19.1	0.6
	H871										
	H872 H873										
	H874										
y		Consensus	Mean		370		Consensus	Mean		17.8	
uni Its		Consensus	Standard De	viation	123		Consensus	Standard De	eviation	10.7	
mm tesu		Maximum			479		Maximum			30.5	
Co B		Minimum N			18		Minimum N			0.52	
	l	11			9		IN			ð	

Table 22. Data summary table for γ -tocopherol in foods.

		δ-tocopherol										
		SF	RM 3276 Ca	arrot Extra	ct in Oil (µg/s	g)	SI	RM 1845a '	Whole Egg l	Powder (µg/g	g)	
	Lab	Α	В	С	Avg	SD	Α	В	С	Avg	SD	
	NIST				373	34						
	H801											
	H803											
	H805											
	H807											
	H809											
	H810	264	262	261	262	2						
	H812											
	H814											
	H815	102	93	99	98	4						
	H816											
	H820											
	H821											
	H823	390	386	388	388	2	1.11	1.06	1.02	1.06	0.04	
	H824	570	500	500	500	2	1.11	1.00	1.02	1.00	0.04	
	H826	331	350	338	340	10						
	H828	551	550	550	540	10						
	11828											
dividual Results	П029 11920											
	11922											
	П032 11924											
	11925											
Ind	П033 11920											
	119.40											
	H842											
	H845											
	H846											
	H847											
	H848											
	H850											
	H852 H853	900	892	918	903	14						
	H855	440	445	445	443	3						
	H856			110	110	0						
	H857											
	H858											
	H861	221	207	226	220	2						
	H862	331	327	326	328	3	27.00	24.50	21.00	27.80	621	
	H871	2010	2120	2020	2030	01	27.00	-54.50	21.90	27.00	0.34	
	H872											
	H873											
	H874											
uity		Consensus I	Mean	• .•	472		Consensus	Mean		14.43		
nur ults		Consensus S Maximum	Standard De	viation	361 2050		Maximum	Standard De	eviation	21.44		
om Res		Minimum			2050 98		Minimum			27.00 1.06		
C		N			8		N			2		

Table 23. Data summary table for δ -tocopherol in foods.

		Total tocopherols									
	-	SI	RM 3276 Ca	arrot Extra	ct in Oil (µg/	'g)	S	RM 1845a '	Whole Egg	Powder (µg/	'g)
	Lab	Α	В	С	Avg	SD	Α	В	С	Avg	SD
	NIST				816	72				48.0	9.0
	H801										
	H803										
	H805										
	H807										
	H809										
	H810	606	596	597	600	6	83.2	83.1	90.6	85.6	4.3
	H812	25.6	22.3	25.0	24.3	1.8	66.0	78.0	62.0	68.7	8.3
	H814	0.00	0.00	0.00	0.00	0.00	53.1	55.0	50.0	52.7	2.5
	H815	351	360	347	353	7	51.8	54.9	56.0	54.2	2.2
	H816	0.00	0.64	0.66	0.43	0.38	0.73	0.77	0.59	0.70	0.09
	H820										
	H821										
	H823	884	867	871	874	9	88.1	87.0	89.0	88.0	1.0
	H824	6560	6440	6470	6490	62	31.1	27.8	30.1	29.7	1.7
	H826	733	766	742	747	17	76.0	83.0	85.0	81.3	4.7
	H828										
S	H829										
sult	H830										
ldividual Res	H832										
	H834	21.5	21.0	19.8	20.8	0.9	60.6	61.4	53.8	58.6	4.2
	H835	17.2	18.2	18.0	17.8	0.5	62.0	56.2	62.9	60.4	3.6
In	H839	18.7	20.5	20.0	19.7	0.9	56.2	53.7	55.2	55.0	1.3
	H842										
	H843										
	H846										
	H847	3.92	3.80	6.74	4.82	1.66	27.6	22.1	32.3	27.3	5.1
	H848	4.09	3.89	6.84	4.94	1.65	25.8	20.6	30.2	25.5	4.8
	H850										
	H852										
	H853	1378	1359	1412	1383	27	99.2	95.9	97.3	97.5	1.7
	H855	831	841	886	853	29	92.1	126.0	102.0	106.7	17.4
	H856	22.0	27.4	45.5	22.0	10.1	10.1	00.1	17.5	10.0	•
	H857	22.8	27.4	45.7	32.0	12.1	19.1	23.1	17.5	19.9	2.9
	H861										
	H862	798	786	786	790	7	69.4	72.2	68.4	70.0	2.0
	H870	2430	2570	2420	2473	84	86.0	94.2	79.5	86.6	7.4
	H871										
	H872	4.5.0		140	1.60			7 0 0			1.0
	H873	15.9	16.7	16.0	16.2	0.4	56.3	59.2	55.7	57.1	1.9
~	n8/4	Consensus	Mean		433		Consensus	Mean		59.9	
unity ts		Consensus	Standard De	viation	572		Consensus	Standard De	viation	30.9	
nmo		Maximum			6490		Maximum			106.7	
Con R		Minimum			0.00		Minimum			0.70	
-		Ν			19		Ν			19	

 Table 24. Data summary table for total tocopherol in foods.

Figure 39. α -Tocopherol in SRM 3276 Carrot Extract in Oil (data summary view). In this view, individual laboratory data are plotted with the individual laboratory standard deviation (error bars). Data points that are unfilled represent laboratories that only reported a single value for that analyte and therefore were not included in the consensus mean. The black solid line represents the consensus mean, and the black dotted lines represent the consensus variability calculated as one standard deviation about the consensus mean.

Figure 40. α -Tocopherol in candidate SRM 1845a Whole Egg Powder (data summary view). In this view, individual laboratory data are plotted with the individual laboratory standard deviation (error bars). The black solid line represents the consensus mean, and the black dotted lines represent the consensus variability calculated as one standard deviation about the consensus mean. The gray shaded region represents the target zone for "acceptable" performance, which encompasses an approximation of the NIST certified value based on LC-absorbance and LC-fluorescence data from six external collaborating laboratories, bounded by twice the standard deviation observed for 10 total measurements.

Figure 41. β -Tocopherol in SRM 3276 Carrot Extract in Oil (data summary view). In this view, individual laboratory data are plotted with the individual laboratory standard deviation (error bars). The black solid line represents the consensus mean, and the black dotted lines represent the consensus variability calculated as one standard deviation about the consensus mean.

Figure 42. γ -Tocopherol in SRM 3276 Carrot Extract in Oil (data summary view). In this view, individual laboratory data are plotted with the individual laboratory standard deviation (error bars). The black solid line represents the consensus mean, and the black dotted lines represent the consensus variability calculated as one standard deviation about the consensus mean. The gray shaded region represents the target zone for "acceptable" performance, which encompasses the NIST certified value bounded by twice its uncertainty (U_{95}).

Figure 43. γ -Tocopherol in candidate SRM 1845a Whole Egg Powder (data summary view). In this view, individual laboratory data are plotted with the individual laboratory standard deviation (error bars). The black solid line represents the consensus mean, and the black dotted lines represent the consensus variability calculated as one standard deviation about the consensus mean. The gray shaded region represents the target zone for "acceptable" performance, which encompasses an approximation of the NIST certified value based on LC-absorbance and LC-fluorescence data from three external collaborating laboratories, bounded by twice the standard deviation observed for 5 total measurements.

Figure 44. δ -Tocopherol in SRM 3276 Carrot Extract in Oil (data summary view). In this view, individual laboratory data are plotted with the individual laboratory standard deviation (error bars). The black solid line represents the consensus mean, and the black dotted lines represent the consensus variability calculated as one standard deviation about the consensus mean. The gray shaded region represents the target zone for "acceptable" performance, which encompasses the NIST certified value bounded by twice its uncertainty (U_{95}).

Figure 45. Total tocopherols in SRM 3276 Carrot Extract in Oil (data summary view). In this view, individual laboratory data are plotted with the individual laboratory standard deviation (error bars). The black solid line represents the consensus mean, and the black dotted lines represent the consensus variability calculated as one standard deviation about the consensus mean. The gray shaded region represents the target zone for "acceptable" performance, which encompasses the NIST value bounded by twice its uncertainty (U_{95}), calculated as a combination of the certified values for γ -tocopherol and δ -tocopherol.

Figure 46. Total tocopherols in candidate SRM 1845a Whole Egg Powder (data summary view). In this view, individual laboratory data are plotted with the individual laboratory standard deviation (error bars). The black solid line represents the consensus mean, and the black dotted lines represent the consensus variability calculated as one standard deviation about the consensus mean. The gray shaded region represents the target zone for "acceptable" performance, which encompasses an approximation of the NIST certified value based on LC-absorbance and LC-fluorescence data from six external collaborating laboratories, bounded by twice the standard deviation observed for 10 total measurements, calculated as a combination of the values for α -tocopherol.

Figure 47. α -Tocopherol in candidate SRM 1845a Whole Egg Powder and SRM 3276 Carrot Extract in Oil (sample/control comparison view). In this view, the individual laboratory results for the control (SRM 3276 Carrot Extract in Oil) with a certified value for the analyte are compared to the results for an unknown (candidate SRM 1845a Whole Egg Powder). The error bars represent the individual laboratory standard deviation. The dotted blue box represents the consensus zone for the control (x-axis) and the unknown sample (y-axis).

Figure 48. γ -Tocopherol in candidate SRM 1845a Whole Egg Powder and SRM 3276 Carrot Extract in Oil (sample/control comparison view). In this view, the individual laboratory results for the control (SRM 3276 Carrot Extract in Oil) with a certified value for the analyte are compared to the results for an unknown (candidate SRM 1845a Whole Egg Powder). The error bars represent the individual laboratory standard deviation. The solid red lines represent the target zone for the control (x-axis) and the unknown sample (y-axis). The dotted blue box represents the consensus zone for the control (x-axis) and the unknown sample (y-axis).

Figure 49. Total tocopherols in candidate SRM 1845a Whole Egg Powder and SRM 3276 Carrot Extract in Oil (sample/control comparison view). In this view, the individual laboratory results for the control (SRM 3276 Carrot Extract in Oil) with a certified value for the analyte are compared to the results for an unknown (candidate SRM 1845a Whole Egg Powder). The error bars represent the individual laboratory standard deviation. The solid red lines represent the target zone for the control (x-axis) and the unknown samples (y-axis). The dotted blue box represents the consensus zone for the control (x-axis) and the unknown sample (y-axis).

FATTY ACIDS IN BOTANICAL OILS

Study Overview

In this study, participants were provided with two NIST SRMs, SRM 3274-3 Flaxseed (*Linium usitatissimum*) Oil and SRM 3274-4 Perilla (*Perilla frutescens*) Oil. Participants were asked to use in-house analytical methods to determine the mass fractions of four fatty acids (linoleic acid, α -linolenic acid, γ -linolenic acid, and arachidonic acid) in each of the matrices and report values on an as-received basis. Participants were not instructed to report values for fatty acids in a certain form; NIST values are reported as triglycerides.

Sample Information

Flaxseed oil. Participants were provided with three ampoules, each containing approximately 1.2 mL of flaxseed oil from a single lot. The oil contained approximately 190 mg/L *tert*-butylhydroquinone (TBHQ) as an antioxidant and was packaged in amber glass ampoules under argon. Before use, participants were instructed to thoroughly mix the contents of the ampoule and use a sample size of at least 0.5 g. Participants were asked to report a single value from each ampoule and store the flaxseed oil in a refrigerator at 0 °C to 4 °C. Approximate analyte levels were not reported prior to the study. The NIST certified values and uncertainties in SRM 3274-3 were determined by GC-FID and GC/MS following multiple methods of hydrolysis and derivatization, and are summarized in the table below.

Perilla oil. Participants were provided with three ampoules, each containing approximately 1.2 mL of perilla oil from a single lot. The oil contained approximately 190 mg/L TBHQ as an antioxidant and was packaged in amber glass ampoules under argon. Before use, participants were instructed to mix thoroughly the contents of the ampoule and use a sample size of at least 0.5 g. Participants were asked to report a single value from each ampoule and store the perilla oil in a refrigerator at 0 °C to 4 °C. Approximate analyte levels were not reported prior to the study. The NIST certified values and uncertainties in SRM 3274-4 were determined by GC-FID and GC/MS following multiple methods of hydrolysis and derivatization, and are summarized in the table below.

	Certified Mass Fraction	Certified Mass Fraction					
Analyte	<u>in SRM 3274-3 (mg/g)</u>	<u>in SRM 3274-4 (mg/g)</u>					
Linoleic acid	171 ± 11	160 ± 14					
α -Linolenic acid	579 ± 30	629 ± 28					
γ-Linolenic acid	$1.55 \pm 0.25^*$	$2.08 \pm 0.48^*$					
Arachidonic acid	0.633 ± 0.029						
*reference value							

Study Results

- Thirty-seven laboratories enrolled in this exercise and received samples, and 20 laboratories reported results for at least some of the fatty acids (54 % participation).
- The consensus mean for linoleic acid was lower than the target range in both study materials, and the consensus mean for α-linolenic acid was within the target range in both study materials. The consensus ranges were reasonable (less than the size of the NIST target range) for both compounds in both study materials.

- Figures 58 and 59 indicate a possible calibration issue with these compounds. Laboratories that reported high values for flaxseed oil also reported high values for perilla oil. The same is true for laboratories reporting low values.
- Five laboratories (25 %) reported using an external standard calibration approach, while 12 laboratories (60 %) reported using an internal standard calibration approach. When compared, the two approaches give similar results for these compounds.
- The consensus mean for γ-linolenic acid was well within the target range for both study materials. For perilla oil, the consensus range was also contained within the NIST target range.
- Not many laboratories were able to measure arachidonic acid (five laboratories for flaxseed oil and three laboratories for perilla oil). A certified value is only available in the flaxseed oil, and the consensus mean was higher and the consensus range significantly wider than the target range.
- Almost all laboratories (95 %) used a hydrolysis and derivatization procedure for sample preparation followed by GC-FID as their analytical method. One laboratory reported using GC-MS.

Technical Recommendations

The following recommendations are based on results obtained by the participants in this study.

- The trend observed in the sample/control comparison graph is indicative of a calibration error in the determination of linoleic acid and α -linolenic acid.
- Spiking studies or subjecting calibrant materials to the same preparation procedure as the samples (extraction, hydrolysis, derivatization, etc.) can help to identify if fatty acids are being degraded during sample preparation.
- Participants were not asked to report fatty acid results in any specific molecular form. The NIST certified values are reported as triglycerides. Conversion of fatty acid results between triglycerides and fatty acid methyl esters (FAMEs) free fatty acids would only result in a maximum of 5 % error. While a small error due to inconsistent reporting of results is possible, it does not completely explain the outlying results.

Table 25. Individual data table (NIST) for fatty acids in botanical oils.

National	Institute	of	Standards	&	Technology

	Lab Code:	NIST		1. Your Results			 2. Co	mmunity F	Results	3. Target	
Analyte	Sample	Units	x _i	\mathbf{s}_{i}	Z _{comm}	Z _{NIST}	Ν	x*	s*	X _{NIST}	U_{95}
Linoleic Acid	Flax Oil	mg/g	171	11	0.8	0.0	20	159	16	171	11
Linoleic Acid	Perilla Oil	mg/g	160	14	1.8	0.0	 20	137	13	160	14
α-Linolenic Acid	Flax Oil	mg/g	579	30	1.1	0.0	20	534	42	579	30
α -Linolenic Acid	Perilla Oil	mg/g	629	28	1.4	0.0	 20	558	51	629	28
γ-Linolenic Acid	Flax Oil	mg/g	1.55	0.25	0.1	0.0	3	1.50	0.53	1.55	0.25
γ-Linolenic Acid	Perilla Oil	mg/g	2.08	0.48	0.4	0.0	 14	2.00	0.20	2.08	0.48
Arachidonic Acid	Flax Oil	mg/g	0.633	0.029	-0.5	0.0	4	0.813	0.400	0.633	0.029
Arachidonic Acid	Perilla Oil	mg/g					3	0.732	0.569		

Exercise H - March 2012 - Fatty Acids

x_i Mean of reported values

 $\boldsymbol{s}_i~$ Standard deviation of reported values

Z_{comm} Z-score with respect to community consensus

Z_{NIST} Z-score with respect to NIST value

N Number of quantitative values reported

- x* Robust mean of reported values
- s* Robust standard deviation

x_{NIST} NIST-assessed value

 $U_{95} \pm 95\%$ confidence interval about the assessed value or standard deviation (s_{IST})

		Linoleic Acid										
			SRM 3274	-3 Flaxsee	d Oil (mg/g)			SRM 327	4-4 Perilla	Oil (mg/g)		
	Lab	Α	В	С	Avg	SD	Α	В	С	Avg	SD	
	NIST				171	11.0				160	14.0	
	H801											
	H803											
	H805	129	129	128	129	0.6	109	112	112	111	1.7	
	H809											
	H810	162	164	162	163	1.2	140	140	139	140	0.6	
	H815	181	183	182	182	1.2	156	157	157	157	0.4	
	H817	168	168	168	168	0.1	144	144	144	144	0.1	
	H818	180	143	167	163	18.8	142	138	140	140	2.4	
	H819											
	H820	130	138	135	134	4.3	94	89	90	91	2.9	
	H821											
	H823	145	144	144	144	0.4	126	126	126	126	0.4	
	H824	158	158	159	158	0.6	137	136	136	136	0.6	
	H825	160	160	159	160	0.6	136	136	136	136	0.0	
10	H827											
ults	H828											
Res	H829											
vidual Re	H835	170	170	171	170	0.1	147	147	147	147	0.2	
	H838	169	169	169	169	0.0	146	144	146	145	1.2	
div	H839	171	170	171	171	0.6	148	147	148	148	0.2	
In	H841	157	162	164	161	3.5	140	140	140	140	0.5	
	H842											
	H843											
	H846											
	H850	78	77	77	77	0.4	68	68	66	67	1.0	
	H852											
	H854											
	H855	157	155	155	156	1.0	133	132	135	133	1.5	
	H857	169	175	179	174	5.0	149	155	146	150	4.6	
	H858											
	H861	1(2)	1.62	162	1(2	0.2	140	120	120	120	1.1	
	H862	103	163	103	163	0.3	140	138	139	139	1.1	
	H804	150	1.62	161	161	1.0	140	1.4.1	146	145	2.6	
	H80/	107	103	101	101	1.9	148	141	140	145	3.0	
	H872	127	148	145	140	26	140	1/4	140	115	30.0	
	H874	104	109	108	107	2.0	140	143	140	141	1./	
~	110/4	Consensus	Mean		150		Consensus	Mean		137		
nit; s		Consensus	Standard D∈	viation	15		Consensus	Standard De	viation	13		
mu		Maximum			182		Maximum		, autori	157		
om		Minimum			77		Minimum			67		
C		N			20		N			20		

 Table 26. Data summary table for linoleic acid in botanical oils.

			a-Linolenic Acid										
			SRM 3274	-3 Flaxsee	d Oil (mg/g)			SRM 327	4-4 Perilla	Oil (mg/g)			
	Lab	Α	В	С	Avg	SD	Α	В	С	Avg	SD		
	NIST				579	30.0				629	28.0		
	H801												
	H803												
	H805	394	400	391	395	4.6	400	415	403	406	7.9		
	H809												
	H810	539	547	541	542	4.2	569	571	565	568	3.1		
	H815	497	504	501	501	3.4	528	531	529	529	1.5		
	H817	561	562	563	562	0.8	592	592	592	592	0.3		
	H818	599	476	555	543	62.1	582	561	570	571	10.2		
	H819												
	H820	502	531	519	517	14.7	461	439	442	447	11.8		
	H821												
	H823	493	490	491	491	1.5	523	525	525	524	1.4		
	H824	531	530	532	531	1.0	561	560	556	559	2.6		
	H825	548	548	547	548	1	573	573	573	573	0.0		
	H827												
ults	H828												
kesı	H829												
dividual Re	H835	575	574	575	575	0.3	603	604	604	604	0.5		
	H838	571	574	577	574	3.0	609	608	601	606	4.4		
	H839	578	575	578	577	1.6	607	609	609	608	1.1		
Ine	H841	523	537	548	536	12.4	567	571	574	571	3.3		
	H842												
	H843												
	H846												
	H850	265	264	263	264	0.9	285	282	278	282	3.7		
	H852												
	H854												
	H855	533	529	528	530	2.5	555	551	558	555	3.9		
	H857	559	579	596	578	18.5	605	632	589	609	21.7		
	H858												
	H861												
	H862	590	595	597	594	3.5	620	622	612	618	5.4		
	H864												
	H867	492	506	495	497	7.3	578	542	553	558	18.5		
	H872	461	513	510	495	29.2	355	532	599	495	126.1		
	H873	554	561	555	557	3.8	566	585	572	574	9.7		
	H874												
ty		Consensus	Mean		535		Consensus	Mean		558			
uni lts		Consensus	Standard De	eviation	42		Consensus	Standard De	eviation	51			
nm esu		Maximum			594		Maximum			618			
R. R.		Minimum			264		Minimum			282			
-		Ν			20		Ν			20			

Table 27. Data summary table for α -linolenic acid in botanical oils.

		γ- Linolenic Acid											
		SRM 3274-3 Flaxseed Oil (mg/g)						SRM 3274-4 Perilla Oil (mg/g)					
	Lab	Α	В	С	Avg	SD	Α	В	С	Avg	SD		
	NIST				1.55	0.25				2.08	0.48		
	H801												
	H803												
	H805												
	H809												
	H810						2.00	1.96	1.95	1.97	0.03		
	H815	1.70	1.70	1.70	1.70	0.00	1.80	1.90	1.80	1.83	0.06		
	H817	1.83	1.81	1.87	1.84	0.03	1.82	1.82	1.83	1.82	0.01		
	H818	< 0.01	< 0.01	< 0.01			< 0.01	< 0.01	< 0.01				
	H819												
	H820												
	H821												
	H823						2.03	2.00	2.04	2.02	0.02		
	H824	2.00	2.00	2.00	2.00	0.00	4.00	4.00	4.00	4.00	0.00		
	H825	<1	<1	<1			2.20	2.20	2.20	2.20	0.00		
	H827												
sult	H828												
Res	H829												
ıal	H835						2.10	2.20	2.10	2.13	0.06		
Individu	H838						2.00	2.00	2.00	2.00	0.00		
	H839						2.10	2.10	2.10	2.10	0.00		
	H841						1.90	2.08	2.32	2.10	0.21		
	H842												
	H843												
	H846												
	H850												
	H852												
	П0J4 11955						2.00	2.00	2.00	2.00	0.00		
	H857						2.00	2.00	2.00	2.00	0.00		
	H858												
	H861												
	H862						1 70	1.70	1.80	1 73	0.06		
	H864						1.70	1.70	1.00	1.75	0.00		
	H867	0.89	0.95	1.06	0.97	0.09	0.93	1.02	1.09	1.01	0.08		
	H872	0.07	0.95	1.00	0.97	0.09	0.95	1.02	1.05	1.01	0.00		
	H873						2.29	2.11	2.02	2.14	0.14		
	H874						,						
Community Results		Consensus	Mean		1.63		Consensus Mean			2.00			
		Consensus Standard Deviation			0.52	2 Consensus Standard Deviation			eviation	0.20			
		Maximum			2.00		Maximum			4.00			
		Minimum			0.97	Minimum				1.01			
•		Ν			4	Ν			14				

		Arachidonic Acid									
		SRM 3274-3 Flaxseed Oil (mg/g) SRM 3274-4 Perilla								Oil (mg/g)	
	Lab	Α	В	С	Avg	SD	Α	В	С	Avg	SD
	NIST				0.633	0.029					
	H801										
	H803										
	H805										
	H809										
	H810										
	H815										
	H817	1.120	1.150	1.110	1.127	0.021	0.230	0.220	0.210	0.220	0.010
	H818	1.000	< 0.01	< 0.01	1.000		< 0.01	< 0.01	< 0.01		
	H819										
	H820										
	H821										
Individual Results	H823	1.026	1.047	1.075	1.049	0.025	1.186	1.116	1.364	1.222	0.128
	H824										
	H825	<1	<1	<1			<1	<1	<1		
	H827										
	H828										
	H829										
	H835										
	H830										
	П039										
	H842										
	H8/13										
	H846										
	H850										
	H852										
	H854										
	H855										
	H857										
	H858										
	H861										
	H862										
	H864										
	H867	0.319	0.344	0.400	0.354	0.041					
	H872										
	H873	0.730	0.710	0.720	0.720	0.010	0.790	0.720	0.750	0.753	0.035
	H874										
mmunity esults		Consensus Mean			0.850		Consensus Mean			0.732	
		Consensus Standard Deviation			0.359	0.359 Consensus Standard Deviation			eviation	0.569	
		Maximum			1.127	1.127 Maximum				1.222	
Col R		Minimum			0.354 Minimum					0.220	
Ĺ		Ν			4		Ν			3	

Figure 50. Linoleic Acid [C18:2, n-6] in SRM 3274-3 Flaxseed Oil (data summary view). In this view, individual laboratory data are plotted with the individual laboratory standard deviation (error bars). The black solid line represents the consensus mean, and the black dotted lines represent the consensus variability calculated as one standard deviation about the consensus mean. The gray shaded region represents the target zone for "acceptable" performance, which encompasses the NIST certified value bounded by twice its uncertainty (U_{95}).

Figure 51. Linoleic Acid [C18:2, n-6] in SRM 3274-4 Perilla Oil (data summary view). In this view, individual laboratory data are plotted with the individual laboratory standard deviation (error bars). The black solid line represents the consensus mean, and the black dotted lines represent the consensus variability calculated as one standard deviation about the consensus mean. The gray shaded region represents the target zone for "acceptable" performance, which encompasses the NIST certified value bounded by twice its uncertainty (U_{95}).

Figure 52. α -Linolenic Acid [C18:3, n-3] in SRM 3274-3 Flaxseed Oil (data summary view). In this view, individual laboratory data are plotted with the individual laboratory standard deviation (error bars). The black solid line represents the consensus mean, and the black dotted lines represent the consensus variability calculated as one standard deviation about the consensus mean. The gray shaded region represents the target zone for "acceptable" performance, which encompasses the NIST certified value bounded by twice its uncertainty (U_{95}).

Figure 53. α -Linolenic Acid [C18:3, n-3] in SRM 3274-4 Perilla Oil (data summary view). In this view, individual laboratory data are plotted with the individual laboratory standard deviation (error bars). The black solid line represents the consensus mean, and the black dotted lines represent the consensus variability calculated as one standard deviation about the consensus mean. The gray shaded region represents the target zone for "acceptable" performance, which encompasses the NIST certified value bounded by twice its uncertainty (U_{95}).

Figure 54. γ -Linolenic Acid [C18:3, n-6] in SRM 3274-3 Flaxseed Oil (data summary view). In this view, individual laboratory data are plotted with the individual laboratory standard deviation (error bars). The black solid line represents the consensus mean, and the black dotted lines represent the consensus variability calculated as one standard deviation about the consensus mean. The gray shaded region represents the target zone for "acceptable" performance, which encompasses the NIST reference value bounded by twice its uncertainty (U_{95}).

Figure 55. γ -Linolenic Acid [C18:3, n-6] in SRM 3274-4 Perilla Oil (data summary view). In this view, individual laboratory data are plotted with the individual laboratory standard deviation (error bars). The black solid line represents the consensus mean, and the black dotted lines represent the consensus variability calculated as one standard deviation about the consensus mean. The gray shaded region represents the target zone for "acceptable" performance, which encompasses the NIST reference value bounded by twice its uncertainty (U_{95}).

Figure 56. Arachidonic Acid [C20:4, n-6] in SRM 3274-3 Flaxseed Oil (data summary view). In this view, individual laboratory data are plotted with the individual laboratory standard deviation (error bars). Data points that are unfilled represent laboratories that only reported a single value for that analyte and therefore were not included in the consensus mean. The black solid line represents the consensus mean, and the black dotted lines represent the consensus variability calculated as one standard deviation about the consensus mean. The gray shaded region represents the target zone for "acceptable" performance, which encompasses the NIST certified value bounded by twice its uncertainty (U_{95}).

Figure 57. Arachidonic Acid [C20:4, n-6] in SRM 3274-4 Perilla Oil (data summary view). In this view, individual laboratory data are plotted with the individual laboratory standard deviation (error bars). The black solid line represents the consensus mean, and the black dotted lines represent the consensus variability calculated as one standard deviation about the consensus mean.

Linoleic Acid in SRM 3274-3 Flaxseed Oil, mg/g

Figure 58. Linoleic acid in SRM 3274-3 Flaxseed Oil and SRM 3274-4 Perilla Oil (sample/control comparison view). In this view, the individual laboratory results for the control (SRM 3274-3 Flaxseed Oil) with a certified value for the analyte are compared to the results for an unknown (SRM 3274-4 Perilla Oil). The error bars represent the individual laboratory standard deviation. The solid red lines represent the target zone for the control (x-axis) and the unknown sample (y-axis). The dotted blue box represents the consensus zone for the control (x-axis) and the unknown sample (y-axis).

α-Linolenic in SRM 3274-3 Flaxseed Oil, mg/g

Figure 59. α -Linolenic acid in SRM 3274-3 Flaxseed Oil and SRM 3274-4 Perilla Oil (sample/control comparison view). In this view, the individual laboratory results for the control (SRM 3274-3 Flaxseed Oil) with a certified value for the analyte are compared to the results for an unknown (SRM 3274-4 Perilla Oil). The error bars represent the individual laboratory standard deviation. The solid red lines represent the target zone for the control (x-axis) and the unknown sample (y-axis). The dotted blue box represents the consensus zone for the control (x-axis) and the unknown sample (y-axis).

PHYTOSTEROLS IN SAW PALMETTO

Study Overview

In this study, participants were provided with two NIST SRMs, SRM 3251 *Serenoa repens* Extract and SRM 3250 *Serenoa repens* (Fruit). Participants were asked to use in-house analytical methods to determine the mass fractions of three phytosterols (campesterol, β -sitosterol, and stigmasterol) in each of the matrices and report values on an as-received basis.

Sample Information

Saw palmetto extract. Participants were provided with three ampoules, each containing approximately 1 mL of a carbon dioxide extract of saw palmetto (*Serenoa repens*). The oil was packaged in amber glass ampoules under argon. Before use, participants were instructed to thoroughly mix the contents of the ampoule and use a sample size of at least 125 mg. Participants were asked to report a single value from each ampoule and store the extract at controlled room temperature, 10 °C to 30 °C. Approximate analyte levels were not reported prior to the study. The NIST certified values in SRM 3251 were determined by GC-FID (following hydrolysis and derivatization) and LC-MS (following hydrolysis). The certified values are provided on an as-received basis in the table below.

Saw palmetto berries. Participants were provided with three packets, each containing approximately 6 g of saw palmetto (*Serenoa repens*) fruit. The ground saw palmetto berries were heat-sealed inside nitrogen-flushed 0.1 mm (4 mil) polyethylene bags, which were then sealed inside aluminized plastic bags with 2 packets of silica gel. Before use, participants were instructed to thoroughly mix the contents of the packet and use a sample size of at least 0.5 g. Participants were asked to report a single value from each packet and store the material at controlled room temperature, 10 °C to 30 °C. Approximate analyte levels were not reported prior to the study. The NIST certified values in SRM 3250 were determined by GC-FID (following extraction, hydrolysis and derivatization) and LC-MS (following extraction and hydrolysis). The certified values and their associated uncertainties, corrected for the moisture content of the material (6.42 %), are provided on an as-received basis in the table below.

		Certified Mass Fraction
	Certified Mass Fraction	in SRM 3250 (mg/g)
Analyte	<u>in SRM 3251 (mg/g)</u>	(as-received basis)
Campesterol	0.533 ± 0.031	0.1100 ± 0.0023
β-Sitosterol	1.666 ± 0.064	0.425 \pm 0.017
Stigmasterol	0.247 \pm 0.040	0.0446 ± 0.0019

Study Results

- Twenty-four laboratories enrolled in this exercise and received samples, and eight laboratories reported results (33 % participation).
- The consensus means for campesterol, β -sitosterol, and stigmasterol in the extract were within the target range, but the consensus ranges were quite wide for all three (33 % to over 100 % RSD).

- The consensus means for campesterol and β -sitosterol in the ground berries were well below the target range, while the consensus mean for stigmasterol was within the target range. The consensus ranges were quite wide for all three (40 % to 50 % RSD).
- The sample/control comparison graphs (Figures 66-68) indicate a possible calibration error. Laboratories that reported high values for the extract also reported high values for the berries. The same is true for laboratories reporting low values.
- Half of the laboratories reported using a hydrolysis approach for sample preparation. Two laboratories (25 %) reported using solvent extraction, and one laboratory reported using a shaking/sonication extraction (13 %). Laboratories using solvent extraction reported values at or below the target value.
- Almost all laboratories (88 %) used GC-FID as their analytical method. One laboratory reported using GC-MS. The laboratory using GC-MS reported values that were below the target and consensus means.
- Half of the laboratories reported using an internal standard approach to calibration, and these laboratories consistently reported values at or above the target range in the extract material. Three laboratories (38 %) reported using an external standard approach to calibration, and these laboratories consistently reported values at or below the target range in the extract material. One laboratory (13 %) reported using a standard addition approach to calibration.

Technical Recommendations

The following recommendations are based on results obtained by the participants in this study.

- A calibration error is apparent in the sample/control comparison graphs. Calibrant materials should be subjected to the same preparation procedure as the samples (derivatization, hydrolysis, etc.).
- When sample preparation is extensive, an internal standard approach may be required to improve accuracy and precision.
- If an internal standard approach is used, it is best to add the internal standard at the earliest possible point (i.e. prior to extraction, saponification, and/or derivatization)

Table 30. Individual data table (NIST) for phytosterols in saw palmetto.

Exercise II - March 2012 - I hydosterois											
	Lab Code:	NIST		1. Your Results				Community F	Results	3. Ta	ırget
Analyte	Sample	Units	x _i	\mathbf{s}_{i}	Z _{comm}	Z _{NIST}	Ν	x*	s*	X _{NIST}	U_{95}
Campesterol	Extract	mg/g	0.533	0.031	0.0	0.0	8	0.529	0.320	0.533	0.031
Campesterol	Fruit	mg/g	0.110	0.002	0.8	0.0	7	0.080	0.037	0.110	0.002
β-sitosterol	Extract	mg/g	1.67	0.06	0.2	0.1	8	1.56	0.56	1.67	0.06
β-sitosterol	Fruit	mg/g	0.425	0.017	1.6	0.0	8	0.257	0.106	0.425	0.017
Stigmasterol	Extract	mg/g	0.247	0.0400	0.1	0.0	8	0.229	0.327	0.247	0.040
Stigmasterol	Fruit	mg/g	0.0446	0.0019	0.0	0.0	7	0.0453	0.0237	0.0446	0.0019

Exarcise H - March 2012 - Phytosterals

National Institute of Standards & Technology

 $x_i \;\; \text{Mean of reported values}$

- s_i Standard deviation of reported values
- Z_{comm} Z-score with respect to community consensus
- Z_{NIST} Z-score with respect to NIST value
- N Number of quantitative values reported
- x* Robust mean of reported values
- s* Robust standard deviation

 $\begin{array}{ll} x_{\rm NIST} & {\rm NIST}\mbox{-assessed value} \\ U_{95} & \pm 95\% \mbox{ confidence interval} \\ & {\rm about \ the \ assessed \ value \ or} \\ & {\rm standard \ deviation} \ (\$_{\rm NIST}) \end{array}$

		Campesterol										
		SR	M 3251 Sa	w Palmetto	Extract (mg	⟨ / g)	SRM 3250 Saw Palmetto Fruit (mg/g)					
	Lab	Α	В	С	Avg	SD	Α	В	С	Avg	SD	
	NIST				0.533	0.031				0.110	0.002	
	H801											
	H803											
	H805	0.480	0.479	0.468	0.476	0.007	0.070	0.072	0.073	0.072	0.002	
	H810	0.602	0.609	0.617	0.609	0.008	0.104	0.093	0.090	0.096	0.007	
	H813											
	H814											
ividual Results	H815	0.489	0.488	0.493	0.490	0.003	0.067	0.066	0.062	0.065	0.003	
	H816											
	H821											
	H823	0.659	0.678	0.631	0.656	0.024	0.070	0.093	0.094	0.086	0.014	
	H824	0.880	0.890	0.890	0.887	0.006	0.150	0.160	0.150	0.153	0.006	
	H828											
	H835											
Ind	H837											
	H845											
	H851											
	H852											
	H854											
	H858											
	H859											
	H862	0.070	0.060	0.070	0.067	0.006						
	H865	1.092	0.850	0.554	0.832	0.269	0.063	0.065	0.113	0.080	0.028	
	H870											
	H872	0.225	0.213	0.216	0.218	0.006	0.015	0.031	0.032	0.026	0.010	
y		Consensus	Mean		0.529		Consensus Mean			0.080		
unit lts		Consensus	Consensus Standard Deviation				Consensus Standard Deviation			0.037		
mm		Maximum			0.887		Maximum			0.153		
Col R		Minimum			0.067		Minimum			0.026		
		Ν			8 N				7			

 Table 31. Data summary table for campesterol in saw palmetto.

		β-Sitosterol										
		SR	M 3251 Sav	w Palmetto	Extract (mg	∉/g)	SRM 3250 Saw Palmetto Fruit (mg/g)					
	Lab	Α	В	С	Avg	SD	Α	В	С	Avg	SD	
	NIST				1.67	0.06				0.425	0.017	
	H801											
	H803											
	H805	1.61	1.60	1.57	1.59	0.02	0.260	0.274	0.277	0.270	0.009	
	H810	1.78	1.97	1.69	1.81	0.14	0.307	0.360	0.330	0.332	0.027	
	H813											
	H814											
	H815	1.51	1.53	1.51	1.51	0.01	0.258	0.268	0.261	0.262	0.005	
	H816											
lividual Results	H821											
	H823	1.74	1.61	1.71	1.69	0.07	0.259	0.270	0.267	0.265	0.006	
	H824	2.12	2.13	2.15	2.13	0.02	0.380	0.400	0.390	0.390	0.010	
	H828											
	H835											
Ind	H837											
	H845											
	H851											
	H852											
	H854											
	H858											
	H859											
	H862	0.26	0.25	0.26	0.26	0.01	0.100	0.110	0.120	0.110	0.010	
	H865	1.79	1.83	2.54	2.06	0.42	0.323	0.308	0.232	0.288	0.049	
	H870											
	H872	0.99	0.96	0.93	0.96	0.03	0.077	0.161	0.171	0.136	0.052	
y		Consensus	Mean		1.56		Consensus Mean			0.257		
unit Its		Consensus Standard Deviation			0.56	0.56 Consensus Standard De			eviation 0.106			
mm		Maximum			2.13		Maximum			0.390		
Coi R		Minimum			0.26		Minimum			0.110		
		Ν			8 N				8			

Table 32. Data summary table for β -sitosterol in saw palmetto.

		Stigmasterol										
		SR	M 3251 Sa	w Palmetto	Extract (mg	;/g)	SRM 3250 Saw Palmetto Fruit (mg/g)					
	Lab	Α	В	С	Avg	SD	Α	В	С	Avg	SD	
	NIST				0.247	0.040				0.0446	0.0019	
	H801											
	H803											
	H805	0.259	0.259	0.244	0.254	0.009	0.0380	0.0380	0.0390	0.0383	0.0006	
	H810	0.297	0.308	0.304	0.303	0.006	0.0600	0.0540	0.0530	0.0557	0.0038	
	H813											
	H814											
	H815	0.174	0.176	0.176	0.175	0.001	0.0280	0.0290	0.0276	0.0282	0.0007	
	H816											
	H821											
lividual Results	H823	0.215	0.186	0.237	0.213	0.026	0.0440	0.0330	0.0680	0.0483	0.0179	
	H824	0.290	0.290	0.290	0.290	0.000	0.0500	0.0500	0.0500	0.0500	0.0000	
	H828											
	H835											
Ind	H837											
	H845											
	H851											
	H852											
	H854											
	H858											
	H859											
	H862	0.030	0.030	0.030	0.030	0.000						
	H865	0.586	0.592	0.719	0.632	0.075	0.0920	0.0870	0.0750	0.0847	0.0087	
	H870											
	H872	0.137	0.130	0.124	0.130	0.007	0.0079	0.0190	0.0198	0.0156	0.0067	
y		Consensus	Mean		0.229		Consensus	Mean	0.0453			
unit. lts		Consensus Standard Deviation			0.327		Consensus	Standard De	viation	0.0237		
nmn esul		Maximum			0.632		Maximum			0.0847	0.0847	
Coi R		Minimum			0.030		Minimum			0.0156		
		Ν			8 N				7			

 Table 33. Data summary table for stigmasterol in saw palmetto.

Figure 60. Campesterol in SRM 3251 *Serenoa repens* Extract (data summary view). In this view, individual laboratory data are plotted with the individual laboratory standard deviation (error bars). The black solid line represents the consensus mean, and the black dotted lines represent the consensus variability calculated as one standard deviation about the consensus mean. The gray shaded region represents the target zone for "acceptable" performance, which encompasses the NIST certified value bounded by twice its uncertainty (U_{95}).

Figure 61. Campesterol in SRM 3250 *Serenoa repens* (Fruit) (data summary view). In this view, individual laboratory data are plotted with the individual laboratory standard deviation (error bars). The black solid line represents the consensus mean, and the black dotted lines represent the consensus variability calculated as one standard deviation about the consensus mean. The gray shaded region represents the target zone for "acceptable" performance, which encompasses the NIST certified value bounded by twice its uncertainty (U_{95}).

Figure 62. β -Sitosterol in SRM 3251 *Serenoa repens* Extract (data summary view). In this view, individual laboratory data are plotted with the individual laboratory standard deviation (error bars). The black solid line represents the consensus mean, and the black dotted lines represent the consensus variability calculated as one standard deviation about the consensus mean. The gray shaded region represents the target zone for "acceptable" performance, which encompasses the NIST certified value bounded by twice its uncertainty (U_{95}).

Figure 63. β -Sitosterol in SRM 3250 *Serenoa repens* (Fruit) (data summary view). In this view, individual laboratory data are plotted with the individual laboratory standard deviation (error bars). The black solid line represents the consensus mean, and the black dotted lines represent the consensus variability calculated as one standard deviation about the consensus mean. The gray shaded region represents the target zone for "acceptable" performance, which encompasses the NIST certified value bounded by twice its uncertainty (U_{95}).

Figure 64. Stigmasterol in SRM 3251 *Serenoa repens* Extract (data summary view). In this view, individual laboratory data are plotted with the individual laboratory standard deviation (error bars). The black solid line represents the consensus mean, and the black dotted lines represent the consensus variability calculated as one standard deviation about the consensus mean. The gray shaded region represents the target zone for "acceptable" performance, which encompasses the NIST certified value bounded by twice its uncertainty (U_{95}).

Figure 65. Stigmasterol in SRM 3250 *Serenoa repens* (Fruit) (data summary view). In this view, individual laboratory data are plotted with the individual laboratory standard deviation (error bars). The black solid line represents the consensus mean, and the black dotted lines represent the consensus variability calculated as one standard deviation about the consensus mean. The gray shaded region represents the target zone for "acceptable" performance, which encompasses the NIST certified value bounded by twice its uncertainty (U_{25}).

Figure 66. Campesterol in SRM 3250 *Serenoa repens* (Fruit) and SRM 3251 *Serenoa repens* Extract (sample/control comparison view). In this view, the individual laboratory results for the control (SRM 3251 *Serenoa repens* Extract) with a certified value for the analyte are compared to the results for an unknown (SRM 3250 *Serenoa repens* (Fruit)). The error bars represent the individual laboratory standard deviation. The solid red lines represent the target zone for the control (x-axis) and the unknown sample (y-axis). The dotted blue box represents the consensus zone for the control (x-axis) and the unknown sample (y-axis).

Figure 67. β -sitosterol in SRM 3250 *Serenoa repens* (Fruit) and SRM 3251 *Serenoa repens* Extract (sample/control comparison view). In this view, the individual laboratory results for the control (SRM 3251 *Serenoa repens* Extract) with a certified value for the analyte are compared to the results for an unknown (SRM 3250 *Serenoa repens* (Fruit)). The error bars represent the individual laboratory standard deviation. The solid red lines represent the target zone for the control (x-axis) and the unknown sample (y-axis). The dotted blue box represents the consensus zone for the control (x-axis) and the unknown sample (y-axis).

Figure 68. Stigmasterol in SRM 3250 *Serenoa repens* (Fruit) and SRM 3251 *Serenoa repens* Extract (sample/control comparison view). In this view, the individual laboratory results for the control (SRM 3251 *Serenoa repens* Extract) with a certified value for the analyte are compared to the results for an unknown (SRM 3250 *Serenoa repens* (Fruit)). The error bars represent the individual laboratory standard deviation. The solid red lines represent the target zone for the control (x-axis) and the unknown sample (y-axis). The dotted blue box represents the consensus zone for the control (x-axis) and the unknown sample (y-axis).