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Abstract 
 
To evaluate the performance of speaker recognition systems, a detection cost function defined as a 
weighted sum of the probabilities of type I and type II errors is employed. The speaker datasets may 
have data dependency due to multiple uses of the same subjects. Using the standard errors of the 
detection cost function computed by means of the two-layer nonparametric two-sample bootstrap 
method, a significance test is performed to determine whether the difference between the measured 
performance levels of two speaker recognition algorithms is statistically significant. While 
conducting the significance test, the correlation coefficient between two detection cost functions for 
two algorithms, respectively, is taken into account. Examples are provided. 
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1 Introduction 
 
The Speaker Recognition Evaluation (SRE) is an ongoing project conducted by the National 
Institute of Standards and Technology (NIST) [1]. It has had a great impact on the research efforts 
and the development of technology in the community of the audio, speech, and language processing. 
Each trial in a speaker recognition test consists of a training model speaker and a test speech 
segment. The speaker recognition system must decide whether speech of the model speaker occurs 
in the test speech segment and generate a similarity score. A higher score indicates greater 
confidence that the test speech is spoken by the model speaker. Target (non-target) scores are 
generated by trials in which the test speech segment contains (does not contain) speech of the model 
speaker defined in the training data. 
 
To evaluate the performance of speaker recognition systems, a detection cost function defined as a 
weighted sum of the probabilities of type I error (miss) and type II error (false alarm) is employed as 
a metric [1]. These two error rates represent a tradeoff and are negatively correlated [2]. Further, the 
NIST speaker recognition data contain dependencies [3]. Data dependency in speaker recognition 
applications arises largely from multiple uses of the same subjects in order to provide more target 
and non-target scores due to limited resources. This data dependency is complicated, due in part to 
the way the data are collected. There are several ways to interpret the dependencies of the data, 
which can impact the bootstrap results. 
 
In our test, data dependency is determined based solely upon the multiple use of the training speaker 
identification (ID) number. Target scores and non-target scores generated using the same training 
speaker ID number are grouped into a target set and a non-target set, respectively, in order to 
preserve the data dependency. Then the speaker datasets are refined to a two-layer data structure: the 
first layer consists of target sets and non-target sets, and the second layer consists of target scores 
and non-target scores within sets. 
 
Based on our investigation of the probabilities for scores being selected, and to keep the numbers of 
scores resampled equal from iteration to iteration while using the bootstrap method, the datasets are 
adjusted in such a way that all target sets contain the same number of scores and likewise for the 
non-target sets [3]. The adjusted datasets had 132 target sets (130 non-target sets), each of which 
contained 96 target scores (244 non-target scores); and thus the total number of target (non-target) 
scores was 12,672 (31,720). Hence, there are still tens of thousands of scores in the datasets [3]. 
 
The sampling variability, including the data dependency, results in uncertainties of the detection cost 
function in the SRE. However, the covariance between the type I and II errors and the data 
dependency make the analytical computation of such uncertainties difficult. Hence, in our prior 
studies, the standard error (SE) of the detection cost function was estimated using the two-layer 
nonparametric two-sample bootstrap method, where the empirical distribution is assumed for each of 
the observed scores, based on our extensive bootstrap variability studies in ROC analysis on large 
datasets [2-9]. 
 
The two samples involved are referred to as a set of target scores and a set of non-target scores, 
which characterize the speaker recognition system that generates them and usually do not have well 
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defined parametric forms [10, 11]. In the two-layer bootstrap, the nonparametric two-sample 
resampling takes place randomly with replacement (WR), not only on the first layer of the data, i.e., 
the target sets and non-target sets, but also subsequently on the second layer, i.e., the target scores 
and non-target scores within the sets. While resampling on the first layer, the bootstrap units are sets; 
on the second layer, the bootstrap units are scores within a set, where the similarity scores are 
conditionally independent. 
 
In evaluating and comparing the performances of speaker recognition systems, it is insufficient to 
only compute the uncertainty of the cost function [2, 12]. It may be of interest to determine whether 
the difference between the measured performance level of a specific speaker recognition algorithm 
and a hypothesized criterion value is real or by chance, or to determine whether the difference 
between the measured performance levels of two algorithms is statistically significant. The 
principles are the same. In SRE the latter is often of more interest, and thus is explored in this article. 
 
Comparison issues may be examined intuitively to some extent using the 95 % confidence intervals 
(CI) derived from the uncertainty. But it is difficult to reach any conclusion when the two 95 % CIs 
overlap. CIs alone are insufficient to provide quantitative information (such as p-values) on the 
statistical significance of the difference. Thus, statistical hypothesis testing is employed. 
 
By examining the relationship between the two types of 95 % CIs, it was found that the one 
computed using the quantile method matched very well with the one derived using the normality 
assumption for the distribution of the detection cost function. This suggests that the detection cost 
function be regarded as approximately normally distributed. Thereafter, the Z-test may be used to 
perform significance testing. 
 
The detection cost functions of the two speaker recognition systems might or might not be 
correlated, depending on how the test is designed and how the sets of similarity scores are generated. 
In our SRE tests, all the scores of the different systems were generated on a common set of speakers 
and speech segments and, therefore, are highly correlated. And thus, the resulting detection cost 
functions are also correlated. In this article, an algorithm is provided to find the correlated pairs of 
metrics from the correlated similarity scores, and then the correlation coefficient of the detection 
cost function can be computed explicitly [2, 12]. 
 
The notations of sets and scores are provided in Section 2. The formulas for computing the detection 
cost function are presented in Section 3. The general formulas of hypothesis testing for comparing 
two speaker recognition systems are shown in Section 4. The two-layer nonparametric two-sample 
bootstrap algorithm is provided in Section 5. An algorithm for computing the correlation coefficient 
of two detection cost functions is described in Section 6. The results of examples involving five 
speaker recognition systems1 are presented in Section 7. The conclusions and discussion can be 
found in Section 8. 
 

                                                 
1 Specific hardware and software products identified in this paper were used in order to adequately support the 
development of technology to conduct the performance evaluations described in this document. In no case does such 
identification imply recommendation or endorsement by the National Institute of Standards and Technology, nor does it 
imply that the products and equipment identified are necessarily the best available for the purpose. 
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2 The notations of sets and scores 
 

target 
ST 

sets 1 TS  2 TS  …… 
Tm  TS  

scores 
1 1 T , 2 1 T , …, 

1 Tμ  1 T  
1 2 T , 2 2 T , …, 

2 Tμ  2 T  
…… 

1  T Tm , 2  T Tm , …, 

T TT m  T μm  

Table 1 The target sets, the number of which is mT, and the target scores contained in each set. 

 

non-
target 

SN 

sets 1 NS  2 NS  …… 
Nm  NS  

scores 
1 1 N , 2 1 N , …, 

1 Nμ  1 N  
1 2 N , 2 2 N , …, 

2 Nμ  2 N  
…… 

1  N Nm , 2  N Nm , 

…, 
N NN m  N μm  

Table 2 The non-target sets, the number of which is mN, and the non-target scores contained in each set. 

 
There are several ways to group data into sets according to data dependency. As discussed in Section 
1, in this article the speaker recognition scores are grouped into sets based on the training speaker ID 
number. Target scores involving a given ID number of the training and test speakers are grouped 
into a target set, whereas non-target scores involving a given ID number of the training speaker but 
different ID numbers of the test speakers are grouped into a non-target set. 
 
Suppose that the number of the target sets is mT, and the number of the non-target sets is mN. Thus, 
the set ST of all target sets and the set SN of all non-target sets are expressed, respectively, as 
follows, 

Si = { Si j | j = 1, …, mi }, i  {T, N}, (1) 
where ST j are target sets and SN j are non-target sets. 
 
In terms of its scores, each set can be expressed as 

Si j = { αi j k | k = 1, …, μi j }, j = 1, …, mi and i  {T, N}, (2) 
where αT j k are target scores, αN j k are non-target scores, and μi j stands for the number of scores in 
the corresponding set. 
 
Due to the reasons stated in Section 1, the datasets are adjusted in such a way that all target sets 
contain the same number of scores and likewise for the non-target sets. In other words, µi 1 = µi 2 = 
… = 

im  iμ , where i  {T, N}. Moreover, since the scores are grouped into sets based on the training 

speaker ID numbers as discussed in Section 1, the two scores of any two speaker recognition 
systems with the same ordinal number of sets and the same ordinal number of scores in sets are 
generated by the speakers and speech segments with the same ID numbers, regardless of whether 
these two scores are target scores or non-target scores. Therefore, these two scores of two systems 
are correlated. 
 
Hence, the set of all target scores and the set of all non-target scores can be denoted, respectively, as 

T  = { αT j k | k = 1, …, μT j and j = 1, …, mT }, (3) 
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and 
N  = { αN j k | k = 1, …, μN j and j = 1, …, mN }. (4) 

The sets Si j, T, and N are all in the sense of multiset, in which members are allowed to appear more 
than once. Indeed score can occur multiple times within a set. Finally, the total number of target 
scores NT and the total number of non-target scores NN are, respectively, 

,



im

1  j
j ii μ N    where i  {T, N}. (5) 

 
The target and non-target sets and scores contained in each set are explicitly listed in Table 1 and 
Table 2, respectively. There are mT target sets and mN non-target sets. The target sets 1 TS , 2 TS , …, 

Tm  TS  contain 1 Tμ , 2 Tμ , …, 
Tmμ  T  target scores, respectively; and the non-target sets 1 NS , 2 NS , 

…, 
Nm  NS  have 1 Nμ , 2 Nμ , …, 

Nmμ  N  non-target scores, respectively. 

 
3 The detection cost function in speaker recognition evaluation 
 
After converting scores to integer, without loss of generality, for a speaker recognition system, the 
scores are expressed inclusively using the integer score set {s} = {smin, smin+1, …, smax}, running 
consecutively from the lowest score smin to the highest score smax. Let Ci (s), i  {T, N} denote the 
cumulative probabilities of target scores and non-target scores from the highest score smax down to 
an integer score s, respectively. 
 
The probability of type I error at a threshold } s {  t  for target scores, denoted by PI (t), is cumulated 
from the lowest score smin. The probability of type II error at a threshold t for non-target scores, 
denoted by PII (t), is cumulated from the highest score smax. For discrete probability distribution, 
while computing PI (t) and PII (t) at a threshold t, the probabilities of target scores and non-target 
scores at this threshold t must be taken into account [13]. 
 
Hence, at a threshold value } s {  t , the estimators of the probabilities of type I error and type II 
error are expressed, respectively, as 

(t) PÎ  = 1 – CT (t + 1) 
for } s {  t  , (6) 

(t) PII
ˆ = CN (t) 

where CT (smax + 1) = 0 is assumed [2, 10]. Based on Eq. (8), in practice, the estimators (t) PÎ  and 

(t) PII
ˆ  can be obtained by moving the score from the highest score smax down to the threshold t one 

score at a time to cumulate the probabilities of target scores and non-target scores, respectively. 
 
A number of metrics exist for measuring the performance level of a speaker recognition system [1]. 
In this article, the detection cost function at a threshold for the primary evaluation of speaker 
detection performance is employed as the metric of interest. However, the same method of 
computing the uncertainties of the detection cost functions can be used to compute uncertainties for 
other metrics in SRE as well. 
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The detection cost function at a threshold t is defined as a weighted sum of the probabilities of type I 
error and of type II error at the threshold t [1] 
 

CDet (t) = CMiss × PI (t) × PTarget + CFalseAlarm × PII (t) × (1 – PTarget) . (7) 
 
Hence, it is a function of the threshold t. It was required that the thresholds be provided by speaker 
recognition systems in order to make an explicit speaker detection decision for each trial. The 
thresholds can also be determined in other ways. It is a challenging research problem to determine 
appropriate decision thresholds, which is outside the scope of this article. Therefore, the thresholds 
used in this article are those provided by the tested systems. 
 
The parameters CMiss and CFalseAlarm are the relative costs of detection errors, and the parameter PTarget 
is the a priori probability of the specified model speaker. For the primary evaluation of speaker 
recognition performance for all speaker detection tests, the parameters CMiss, CFalseAlarm, and PTarget 
were set to be 10, 1, and 0.01, respectively [1]. 
 
4 Two-algorithm hypothesis testing for comparisons 
 
As pointed out in Section 1, due to the specific applications in SRE, the comparison of two speaker 
recognition systems rather than the evaluation of a system with respect to a hypothesized criterion 
value for the cost function is of more interest and thus is explored in this article. Nonetheless, the 
principles stay the same. 
 
Let C1 and C2 denote the two detection cost functions for any two speaker recognition systems at 
respective thresholds. Then, the null and alternative hypotheses are 

Ho : C1 = C2 (8) 
Ha : C1 ≠ C2 

 
If the statistic of interest is normally distributed, the general Z statistic for two-algorithm hypothesis 
testing is expressed as 

Z = 
)Ĉ( SE )Ĉ( SE  2 - )Ĉ( SE  )Ĉ( SE

Ĉ - Ĉ

212
2

1
2

21

r
 (9) 

where Ĉ 1 and Ĉ 2 are two estimators of the detection cost function, SE ( Ĉ 1) and SE ( Ĉ 2) stand for 
their SEs, respectively, and r is the correlation coefficient between Ĉ 1 and Ĉ 2. 
 
The Z statistic is distributed as the standard normal distribution with zero expectation and unit 
variance. The standard errors of the detection cost function with data dependency can be computed 
using the two-layer nonparametric two-sample bootstrap (see Section 5). If the two statistics of 
interest are positively correlated and the correlation coefficient r is not taken into account, it can 
leave the denominator of Eq. (9) larger and the Z score smaller; thereby reduce the chance of 
detecting a performance difference between two algorithms. 
 
There is no reason to believe a priori that the performance of one algorithm is likely to be better 
than the performance of the other algorithm. Further, the two-tailed test is generally more 
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conservative than the one-tailed test in the sense that the former is more difficult to reject the null 
hypothesis for a given significance level [14]. Thus, the two-tailed Z-test is used in this article. 
 
5 An algorithm for the two-layer nonparametric two-sample bootstrap 
 
Because it is difficult to compute analytically the covariance term of the correlated probabilities of 
type I error PI (t) and type II error PII (t) at a threshold t in Eq. (7) and also because the data 
dependency is involved, the two-layer nonparametric two-sample bootstrap method is proposed to 
compute the estimate of the uncertainty of the detection cost function at a threshold t, based on our 
previous studies of bootstrap variability in ROC analysis on large datasets [2-9]. 
 
The two-layer resampling is carried out not only on the first layer of the new data structure where 
the resampling units are target sets and non-target sets, but also on the second layer of the data in 
which the resampling units are target scores and non-target scores in sets. From here on, the 
superscript indices are used for the numeration of the resampling iterations. The algorithm is shown 
as follows. 
 
Algorithm I (two-layer nonparametric two-sample bootstrap) 
 
1: for i = 1 to B do 
2:     WR_Random_Sampling_Set ( mT, ST, S 'T i = { S 'T j 

i | j = 1, …, mT } ) 
3:     for k = 1 to mT do 
4:           WR_Random_Sampling_Set ( μ'T k

i, S 'T k 
i, S "T k 

i ) 
5:     end for 
 
6:     WR_Random_Sampling_Set ( mN, SN, S 'N i = { S 'N j 

i | j = 1, …, mN } ) 
7:     for k = 1 to mN do 
8:           WR_Random_Sampling_Set ( μ'N k

i, S 'N k 
i, S "N k 

i ) 
9:     end for 
 

10:     S "T i = { S "T j 
i | j = 1, …, mT } and S "N i = { S "N j 

i | j = 1, …, mN } => statistic iĈ  
11: end for 
 

12: ) 2) /  - (1 Q̂ 2), / ( Q̂( and ÊS  } B ..., 1,  i | Ĉ { i   
13: end 
 
1.1: function WR_Random_Sampling_Set (L, Γ, Θ) 
1.2: for i = 1 to L do 
1.3: select randomly WR an index j   { 1, …, L } 
1.4: θi = γj 
1.5: end for 
1.6: end function 
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The two-layer nonparametric two-sample bootstrap calls the function WR_Random_Sampling_Set. 
In this function, Γ stands for a set of sets or a set of scores, L is the cardinality of the set Γ, Θ 
represents a new set of sets or scores accordingly with the same cardinality, and γj and θi are 
members of the sets Γ and Θ, respectively. Notice that this function can be applied to either a set of 
sets or a set of scores. It runs L iterations as shown from Step 1.2 to Step 1.5. In the i-th iteration, a 
member of the set Γ is randomly selected WR to become a member of a new set Θ, as indicated in 
Steps 1.3 and 1.4. As a result, L members (sets or scores) are randomly selected WR from the set Γ 
to form a new set Θ. 
 
In Algorithm I, B is the number of the bootstrap replications, i.e., the number of iterations as shown 
from Step 1 to 11, ST is the set of all target sets and SN is the set of all non-target sets as expressed in 
Eq. (1), and mT and mN are the cardinalities of the set ST and the set SN, respectively. 
 
In the i-th iteration, as shown in Step 2 and Step 6, the function WR_Random_Sampling_Set is 
applied to the first layer of datasets, i.e., the target and non-target sets. That is, mT target sets are 
randomly selected WR from the set ST of all original target sets to form a new set S 'T i = { S 'T j 

i | j = 
1, …, mT }, and mN non-target sets are randomly selected WR from the set SN of all original non-
target sets to constitute a new set S 'N i = { S 'N j 

i | j = 1, …, mN }. 
 
Subsequently, the same function is applied to the second layer of datasets, i.e., the similarity scores 
in sets as well. As shown from Step 3 to 5, mT iterations take place after the first-layer resampling of 
the target sets in Step 2. In the k-th iteration, μ'T k

i target scores are randomly selected WR from the 
target set S 'T k 

i, which is the k-th new target set from the first-layer resampling, to form the k-th 
new target set S "T k 

i of the second-layer resampling. The analogous interpretation can be applied to 
non-target scores in the non-target set S 'N k 

i as shown from Step 7 to 9. 
 
As indicated in Step 10, all target scores in the new set S "T i = { S "T j 

i | j = 1, …, mT } and all non-
target scores in the new set S "N i = { S "N j 

i | j = 1, …, mN } are employed to calculate the estimators 
of the probabilities of type I and type II errors, i.e., (t) PÎ  and (t) PII

ˆ  using Eq. (6) and then the i-th 

bootstrap replication of the estimated detection cost function at a given threshold, i.e., iĈ  using Eq. 
(7). 
 
With the new data structure described in Section 1, not only does each target (non-target) score have 
the same probability to be selected, but also the same numbers of target scores and the same 
numbers of non-target scores, respectively, are resampled in Step 10 at different iterations of the 
two-layer nonparametric two-sample bootstrap. All these can reduce the variance of the 
computation. 
 

Finally, as shown in Step 12, from the set { iĈ  | i = 1, …, B }, the standard error SÊ of the detection 
cost function is estimated by the sample standard deviation of the B bootstrap replications, and the 
estimators of the /2 100 % and (1 - /2) 100 % quantiles of the bootstrap distribution, denoted by 

)2/( Q̂ α  and )2/1( Q̂ α , at the significance level  can be calculated [5]. Definition 2 of quantile 
in Ref. [15] is adopted. That is, the sample quantile is obtained by inverting the empirical 
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distribution function with averaging at discontinuities. Thus, ))2/1( Q̂),2/( Q̂ ( αα   stands for the 

estimated bootstrap (1 - ) 100 % CÎ. If 95 % CÎ is of interest, then  is set to be 0.05. 
 
The remaining issue is to determine how many iterations the bootstrap algorithms need to run in 
order to reduce the bootstrap variance and ensure the accuracy of the computation. In our 
applications, such as biometrics and the evaluation of speaker recognition, etc., the sizes of datasets 
are tens to hundreds of thousands of similarity scores, which are much larger than those in some 
other applications of bootstrap methods like medical decision making, etc. [5]. Moreover, in ROC 
analysis our statistics of interest are mostly probabilities or a weighted sum of probabilities, etc. 
rather than a simple sample mean. And most importantly our data samples of similarity scores have 
no parametric model to fit. Therefore, the bootstrap variability was re-studied empirically, and the 
appropriate number of bootstrap replications B for our applications was determined to be 2,000 [2, 8, 
9]. 
 
6 An algorithm for computing the correlation coefficient 
 
The two detection cost functions for any two speaker recognition systems may or may not be 
correlated. However, they are correlated in our test set due to its structure. For example, consider 
two speaker recognition systems denoted by A and B. These two systems have the same two-layer 
data structures. As stated in Section 2, the two systems generate two scores with the same ordinal 
number of sets and the same ordinal number of scores in sets by matching the speakers and speech 
segments with the same ID numbers, for target scores as well as non-target scores. Therefore, these 
two scores corresponding to the two systems co-vary. Consequently the detection cost functions of 
any two systems, computed using similarity scores in Eqs. (6) and (7), are also correlated. 
 
An algorithm for computing the correlation coefficient of two detection cost functions is as follows. 
 
Algorithm II (Correlation coefficient) 
 
1: for i = 1 to M do 
2:     Synchronized_WR_Random_Sampling_Set 
                ( mT, S A

T, S A 'T i = { S A 'T j 
i | j = 1, …, mT }, S B

T, S B 'T i = { S B 'T j 
i | j = 1, …, mT } ) 

3:     for k = 1 to mT do 
4:          Synchronized_WR_Random_Sampling_Set ( μ'T k

i, S A 'T k 
i, S A "T k 

i, S B 'T k 
i, S B "T k 

i ) 
5:     end for 
 
6:     Synchronized_WR_Random_Sampling_Set 
                ( mN, S A

N, S A 'N i = { S A 'N j 
i | j = 1, …, mN }, S B

N, S B 'N i = { S B 'N j 
i | j = 1, …, mN } ) 

7:     for k = 1 to mN do 
8:          Synchronized_WR_Random_Sampling_Set ( μ'N k

i, S A 'N k 
i, S A "N k 

i, S B 'N k 
i, S B "N k 

i ) 
9:     end for 
 

10:     S A "T i = { S A "T j 
i | j = 1, …, mT } and S A "N i = { S A "N j 

i | j = 1, …, mN } => statistic iA  Ĉ  

11:     S B "T i = { S B "T j 
i | j = 1, …, mT } and S B "N i = { S B "N j 

i | j = 1, …, mN } => statistic i B Ĉ  
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12: end for 
 

13: } M ..., 1,  i | Ĉ { iA   and } M ..., 1,  i | Ĉ { i B   => the correlation coefficient ̂ݎAB
C 

14: end 
 
2.1: function Synchronized_WR_Random_Sampling_Set (L, ΓA, ΘA, ΓB, ΘB) 
2.2: for j = 1 to L do 
2.3: select randomly WR an index k  { 1, …, L } 
2.4: θA

j = γA
k 

2.5: θB
j = γB

k 
2.6: end for 
2.7: end function 
 
where ΓA stands for a set of sets or a set of scores generated by System A, and L is its cardinality. 
The analogous meanings are applied to ΘA, ΓB, and ΘB. And γA

k, θ
A

j, γ
B

k, and θB
j are their members, 

respectively. Algorithm II is similar to Algorithm I, except that the Algorithm II is applied to two 
speaker recognition systems simultaneously. Based on our bootstrap variability studies, the number 
of iterations M is set to be 2000 [2, 8, 9]. 
 
The function Synchronized_WR_Random_Sampling_Set can be applied to either a set of sets or a 
set of scores. As stated above, the two sets or scores γA

k and γB
k of two systems A and B with the 

same ordinal number k co-vary. Therefore, this function synchronizes the selection in a set ΓA 
created by System A and the selection in a set ΓB generated by System B so that the sets or the 
scores with the same ordinal number k are chosen to form two new sets ΘA and ΘB, respectively. In 
other words, the correlated similarity scores generated by these two systems are selected. 
 
From Step 1 to 12, Algorithm II runs M iterations. In the i-th iteration, in Step 2, the function is 
applied simultaneously to the first layer of the datasets, i.e., the set S A

T of target sets generated by 
System A and the set S B

T of target sets created by System B so that the two target sets with the same 
ordinal number in the two systems’ datasets are randomly selected WR and form two new sets S A 'T i 
and S B 'T i of target sets. 
 
Then, from Step 3 to 5, this function is applied simultaneously to the second layer of the datasets mT 
times created by the two systems. Hence, the target scores in set S A 'T k 

i generated by System A and 
the target scores in set S B 'T k 

i created by System B with the same ordinal number in the two 
systems’ datasets are randomly chosen WR. These correlated similarity scores constitute two new 
sets of target scores S A "T k 

i and S B "T k 
i, respectively. 

 
The analogous interpretation can be applied to non-target sets and non-target scores in sets from 
Step 6 to 9. In Step 10, the target scores in set S A "T i and the non-target scores in set S A "N i for 

System A produce the i-th bootstrap replication of the estimated detection cost function iA  Ĉ  for 
System A. In Step 11, the correlated target scores in set S B "T i and the correlated non-target scores 

in set S B "N i for System B produce the i-th bootstrap replication i B Ĉ  for System B. Thus, the 
correlated pairs of bootstrap replications of estimated cost functions are calculated from the 
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correlated similarity scores. Finally, in Step 13, the estimated correlation coefficient of the detection 
cost functions, ̂ݎAB

C, is computed from these two sets of correlated bootstrap replications of 
estimated cost functions [13]. 
 
7 Results 
 

Systems Cost functions SÊs 95% CÎs 
EL 0.022199 0.001952 (0.018384, 0.026084) 
UJ 0.028996 0.002026 (0.025082, 0.033150) 
BK 0.031588 0.001883 (0.028046, 0.035311) 
LZ 0.040098 0.002897 (0.034641, 0.045880) 
DL 0.040880 0.001841 (0.037185, 0.044511) 

Table 3 The estimated detection cost functions, SÊs, and 95 % CÎs of five speaker recognition systems. 

 

Figure 1 The estimated detection cost functions, and 95 % CÎs of five speaker recognition systems. 

 
Five speaker recognition systems, labeled as EL, UJ, BK, LZ and DL2, are used for illustration. 
Their estimated detection cost functions, the estimated SÊs, and 95 % CÎs are shown in Table 3. In 
this table, the systems are listed in ascending order of the estimated detection cost functions. The 
estimated cost functions were derived using Eq. (7), in which all parameters were set as in Section 3 
and the thresholds were all provided by speaker recognition systems. The estimated SÊs, and 95 % 
CÎs were all computed using the two-layer nonparametric two-sample bootstrap method as described 
in Section 5 taking account of the data dependency in the speaker datasets. 
 

                                                 
2 It is the policy of NIST and the evaluation sponsors not to publicly associate specific SRE participants with their 
evaluation performance results, and therefore system names are encoded in this article. 
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The estimated 95 % CÎs shown in Table 3 were all calculated using the quantile method as described 
in Section 5. They can also be computed by multiplying 1.96 by the estimated SÊ, assuming that the 
distribution of 2,000 bootstrap replications of the detection cost function is normal. These two types 
of 95 % CÎs are matched up to the third or fourth decimal place for all five systems shown in Table 
3. For instance, for system EL, the 95 % CÎ derived from the quantile method is (0.018384, 
0.026084) as shown in Table 3, while it is (0.018374, 0.026024) based on the assumption of 
normality. This suggests that the detection cost function may be normally distributed. 
 
Figure 1 depicts the estimated detection cost functions, and their estimated 95 % CÎs, for the five 
speaker recognition systems. The estimated 95 % CÎs overlap in some cases. For instance, the 95 % 
CÎ of System EL somewhat overlaps the one of System UJ; and the latter considerably overlaps that 
of System BK. If the speaker recognition system pair needs to be compared to assess which may be 
more accurate than the other, no conclusion can be reached in these cases. In other words, useful 
comparisons cannot be made in these cases merely using the confidence interval approach. 
 

Systems EL UJ BK LZ DL 
EL 1.000000 0.233958 0.433872 0.620300 0.388808 
UJ  1.000000 0.347396 0.196418 0.425286 
BK   1.000000 0.437193 0.640776 
LZ    1.000000 0.426599 
DL     1.000000 

Table 4 The average correlation coefficients of two detection cost functions out of 20 runs of five speaker 
recognition systems. 

 
Systems EL UJ BK LZ DL 

EL 1.0000 0.0058 0.0000 0.0000 0.0000 
UJ  1.0000 0.2463 0.0005 0.0000 
BK   1.0000 0.0015 0.0000 
LZ    1.0000 0.7713 
DL     1.0000 

Table 5 The two-tailed p-values of two speaker recognition systems, where the correlation coefficients were taken 
into account. 

 
To determine whether the difference between the performances of two speaker recognition systems 
is statistically significant, hypothesis testing is carried out. Based on the normality assumption for 
the distribution of the cost function as stated above, the two-algorithm hypothesis testing provided in 
Section 4 can be employed. 
 
The correlation coefficient of the detection cost functions of two systems, which appears in Eq. (9), 
can be estimated using Algorithm II as presented in Section 6. This algorithm involves a 
synchronized random resampling. Due to the stochastic nature of resampling, for this article, the 
algorithm was run 20 times, and the average out of these runs was taken to be the resultant 
correlation coefficient for significance testing, in order to reduce the computational fluctuation. In 



 13

our testing, the algorithm was also run 50 times, and the results did not alter the qualitative 
substance shown here. In practice, if the p-value is considerably different from the critical value of 
interest such as 5 %, 1 %, etc., then this algorithm only needs to run once. 
 
All the correlation coefficients are shown in Table 4. Note that all of them are positive. This 
indicates as expected that all systems tend to assign higher or lower similarity scores to particular 
trials. Thus, these results provide evidence that the synchronized algorithm for computing the 
correlation coefficient is quite reasonable. 
 
All two-tailed p-values of system pair among the five speaker recognition systems are presented in 
Table 5, where the correlation coefficients were taken into account. In this table, only two p-values 
are greater than 5 %. They are 24.63 % for Systems UJ and BK and 77.13 % for Systems LZ and 
DL. This indicates that the null hypothesis cannot be rejected, i.e., the performance differences 
between UJ and BK and between LZ and DL are not significant, even though the estimated detection 
cost functions of Systems UJ and LZ are smaller than those of Systems BK and DL, respectively. 
This conclusion is consistent with the observation in Figure 1, where the estimated 95 % CÎs of the 
detection cost functions for Systems UJ and LZ overlap considerably those for Systems BK and DL, 
respectively. 
 
All other p-values in Table 5 are considerably less than 5 %. This suggests that the null hypothesis 
be strongly rejected. That is, the performance difference between the corresponding two systems is 
real. For instance, comparing Systems EL and UJ, the two-tailed p-value is 0.58 %. Thus, the 
performance of System EL is significantly better than the performance of System UJ, although their 
estimated 95 % CÎs slightly overlap as shown in Table 3 and Figure 1. 
 
In addition, the magnitudes of the p-values in Table 5 suggest, to some extent, how much the 
corresponding 95 % CÎs overlap. Thus, they describe quantitatively how significant the differences 
are between the performances of the two systems. In other words, the statistical hypothesis testing 
provides quantitative information (such as p-values) regarding the statistical significance of 
differences. 
 
8 Conclusions and discussion 
 
SRE involves the evaluation and comparison of speaker recognition systems. It can be important to 
determine whether the difference between the performance level of one speaker recognition system 
and a performance criterion value, or the difference between the performance levels of two systems 
is statistically significant. In this article, the latter case was investigated, but the principle involved in 
the former case is similar. 
 
To evaluate the performance of speaker recognition systems, a detection cost function defined as a 
weighted sum of the probabilities of type I error (miss) and type II error (false alarm) is employed as 
a metric. The NIST speaker recognition data contain dependencies due to multiple uses of the same 
subjects. Thus, the similarity scores are grouped into sets to preserve the data dependency, and the 
speaker datasets are refined into a two-layer data structure. 
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The sampling variability, including this data dependency, results in uncertainty for the value of the 
detection cost function. The uncertainties of the detection cost function in terms of SE and 95 % CI 
were computed using the two-layer nonparametric two-sample bootstrap method with 2000 
bootstrap replications based on our variability study of bootstraps in ROC analysis. 
 
The detection cost function may be approximately normally distributed regardless of the 
distributions of target scores and non-target scores. This assumption is supported by the matches 
between two types of 95 % CIs. One is computed using the definition of quantile, while the other is 
calculated based on the assumption that the distribution of 2000 bootstrap replications of the statistic 
of interest is normal. As a consequence, it seems reasonable to apply the Z-test. 
 
In SRE, the similarity scores of any two speaker recognition systems are correlated. Therefore, the 
detection cost functions of two systems are also correlated. If the two statistics of interest are indeed 
positively correlated and the correlation coefficient is not taken into account, the likelihood of 
detecting a difference between the performance levels of two systems will be reduced. In this article, 
a synchronized algorithm is provided to calculate such correlation coefficients. 
 
This algorithm is a stochastic process, since it involves a synchronized sampling. In practice, if the 
p-value is not considerably different from the critical value of interest, such as 5 %, 1 %, etc., then 
this algorithm needs to run several times (20 in our case) in order to reduce the computational 
fluctuation. The average correlation coefficient from these is taken to be the resultant correlation 
coefficient for the significance test. 
 
When conducting comparisons, the 95% CIs can be examined intuitively. It is hard, however, to 
reach any conclusion when the two 95 % CIs overlap. Determining whether the difference is real or 
by chance may be addressed using a significance test. As presented in Section 7, although the 95 % 
CIs of Systems EL and UJ did slightly overlap, hypothesis testing showed that the difference in 
performance levels between these two algorithms was statistically significant. 
 
The pairwise comparison conducted after obtaining a priori knowledge from the relationship among 
the 95% CIs as described in Section 7 is to show how crucial the significance test is if the two 95% 
CIs overlap while determining whether the difference between the performances of the two 
algorithms is statistically significant. If the confidence intervals for any combinations of algorithms 
are of interest, for instance, then some multiple comparison procedures, such as Tukey’s method, 
Scheffe’s method, Bonferroni’s method and so on, might need to be employed [16, 17, and 
references therein]. 
 
Conventionally, if the two-tailed p-value is greater than or equal to 5 %, the null hypothesis is not 
rejected; if it is less than 5 %, the null hypothesis is rejected in favor of the alternative hypothesis. In 
the literature [5], it is alternatively suggested: If the p-value is less than 0.10, borderline evidence is 
against Ho; if the p-value is less than 0.05, reasonably strong evidence is against Ho; if the p-value is 
less than 0.025, strong evidence is against Ho; if the p-value is less than 0.01, very strong evidence is 
against Ho. 
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