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Modeling Methodologies and Simulation for Dynamical Systems 

Ion Matei and Conrad Bock 

Abstract: Computer-interpretable representations of system structure and behavior are at the 
center of designing today’s complex systems. Engineers create and review such representations 
using graphical modeling languages that support specification, analysis, design, verification and 
validation of systems that include hardware, software, data, personnel, procedures, and facilities, 
such as the Systems Modeling Language, an extension of the Unified Modeling Language. 
However, these languages usually do not support detailed enough simulation and performance 
analysis and must be enhanced with domain specific tools for this purpose. System modeling and 
simulation tools are often used separately and sequentially, which reduces the efficiency of the 
design process. As a result, there is an increasing need for integrating different simulation tools 
under a common framework for integration into system modeling tools. In this report we present 
results of analyzing modeling methodologies for simulating dynamical systems. We identify two 
primary methodologies, namely signal-flow and physical-interaction, and introduce the main 
concepts for building models based on these methodologies. To support the analysis, we give 
representative implementation examples of these concepts and methodologies in two simulation 
tools. We identify these concepts and methodologies in order to build an abstract model of 
simulation tools that facilitates integration of multiple simulation tools into a common 
framework. 

1. Introduction 
Simulation of a system is the imitation of the operation of a real-world system over time [1]. 
Simulation requires a model, which is a representation of a system used to answer questions, 
without doing experiments on the real system. Experiments may be too expensive or dangerous, 
the time-scale of the dynamics too long to allow performing experiments in a reasonable time 
interval, variables of interest may be inaccessible (may not be measurable or observable), and so 
on.  A model can be seen as a simplified system that reflects some properties of the real system 
[2] [3]. Limitations and conditions under which a simulation is valid must always be considered 
when evaluating results. When possible, we should compare simulation results against 
experimental results from the real system. For simulation purposes we are mainly interested in 
mathematical models, as opposed to physical or other simulation media. 

In this report we present results of analyzing modeling methodologies for simulating dynamical 
systems. We identify two primary methodologies, namely signal-flow and physical-interaction, 
and give representative implementation examples of these methodologies to support the analysis. 
In addition, we introduce the main concepts for building models based on these methodologies. 
Our goal is to emphasize the common methodologies across many tools, to be used as integration 
points with system modeling languages such as the Systems Modeling Language, an extension of 
the Unified Modeling Language (SysML/UML) [4]. 

The rest of the report is organized as follows. In Section 2 we describe two modeling 
methodologies used for representing dynamical systems. In Section 3 we introduce modeling 
concepts to be used under the methodologies. Section 4 shows how the concepts are 
implemented in two simulation tools, and how they are used in the methodologies. We end the 
paper with some conclusions in Section 5. 
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2. Modeling methodologies and simulation 

The modeling method determines what information can be produced by simulation. The primary 
modeling methodologies affecting simulation are signal-flow and physical-interaction 
modeling.1 

2.1. Signal-flow modeling 

In signal-flow modeling, the relationship between system components is unidirectional, from 
outputs of one component to inputs of others. Components use inputs to compute outputs, which 
flow to other components. This is typical in modeling movement of information (signals), as in 
control engineering and signal processing. Physical conservation laws do not apply in these 
applications because the same information can flow (be copied) to multiple components, while 
physical things cannot. This is true even if the information happens to be expressed in physical 
quantities, such as voltage. Signal-flow modeling is useful in understanding the mathematics 
involved in simulating dynamical systems in part because mathematical operators such as 
addition, multiplication and integration appear explicitly. However, when describing physical-
system behavior, signal-flow models are more work to create and are less reusable than physical-
interaction models (see next section).  

2.2. Physical-interaction modeling 

In physical-interaction modeling, the relationship between system components is bidirectional, 
because actions of one component on another involve reactions back onto the acting component. 
For example, a component attempting to output water to another component will be affected by 
how much water the other component can accept and how fast.   Physical conservation laws 
apply, because physical things, such as energy, electricity, and water, are moving, rather than 
information.  For example, physical models of hydraulics require fluid movement between 
interacting components to balance out so that fluid going out of a component is balanced by the 
same amounts of fluid coming into other components (as compared to information that is copied 
in signal-flow modeling). Physical models do not specify inputs and outputs for components, 
because their interaction is bidirectional. 

2.3. Dangers of incorrect modeling methodology 

Physical-interaction methodology supports both conserved and non-conserved quantities, while 
signal-flow methodology directly supports only non-conserved quantities, and requires more 
complicated modeling to support conserved quantities (see Section 4.3.2). Consequently, it is 
easier to making modeling mistakes when using the signal-flow methodology on physical 
applications than using the physical-interaction methodology. However, it is easier for simulators 
to support signal-flow modeling, and engineers may be tempted to choose the signal-flow 
                                                           

1 Also known as causal or block diagram modeling, and acausal or first principles or conserved modeling, 
respectively. 
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methodology due to wide availability of tools. Unfortunately, the information provided by 
simulating the model may prove to be incorrect. Consider the two electrical circuits given in 
Figure 1. We use a signal-flow model to represent them, where the signal is represented by 
voltage. A simple exercise shows that the input-output relation between voltages Y1 and U1 of 
System 1 (where U1 is considered input and Y1 is considered output) is given by 

𝑌1 =
𝑅2

𝑅1 + 𝑅2
𝑈1 

  

Similarly, the input-output relation of the second system is given by 

𝑌2 =
𝑅4

𝑅3 + 𝑅4
𝑈2 

 
                                      a)                                                                          b) 

Figure 1: a) Depiction of Electrical Circuit 1; b) Depiction of Electrical Circuit 2. 

An important characteristic of signal-flow modeling is that when the above two systems are 
connected in series (as showed in Figure 2), the input-output relation of the resulting system 
should be given by 

𝑌 =
𝑅3

𝑅3 + 𝑅4
𝑈2 =

𝑅3
𝑅3 + 𝑅4

𝑌1 =
𝑅1𝑅3

(𝑅1 + 𝑅2)(𝑅3 + 𝑅4)
𝑈 

 
Figure 2: Series connection between Electrical Circuit 1 and Electrical Circuit 2 
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However, the above input-output relation for the electrical system shown above is incorrect, 
since the correct expression is given by 

𝑌 =
𝑅1𝑅3𝑅4

(𝑅1 + 𝑅2)(𝑅3 + 𝑅4) + 𝑅1𝑅3
𝑈 

The mistake is that our model ignored the currents (rate of electricity movement) at the 
connection points.  

However, there are cases where signal-flow modeling is equivalent to physical modeling based 
on conservation laws. For example, a signal-flow model of two electrical circuits with infinite 
(very large) input impedances and zero (very small) output impedances produces the correct 
mathematical expression for input-output relation of two systems in series. 

3. Building models 

To build a model of a system, the first step is to identify the main components of the system and 
how they interact. Each component is broken down into subcomponents until a desired level of 
granularity is attained. The granularity level is usually determined by the availability of models 
belonging to a library of reusable subcomponents. The next step is to specify the interfaces of the 
subcomponents and mathematically express the interactions between the (sub)components of the 
model. 

Modeling in a simulation tool is based on three basic concepts: components, ports, and links. 
Components are system elements that process and exchange information or physical things. 
Ports are interfaces through which components exchange information or physical things with 
other components. Links are connections between ports of components across which information 
or physical things are exchanged. A subsystem is a component composed of other components, 
which may be other subsystems. Subsystems show the hierarchical nature of a system or simplify 
the model, when the number of components is significantly large.  A model can be viewed as a 
component composed of other components, which might be subsystems. 

The behavior of a model is specified by describing the behavior of each component in it and 
linking them together. The interaction between components together with their behavior dictates 
the behavior of the model. The behavior of components that are not subsystems is defined using 
mathematical models. 

3.1. Components 

Components consist of subcomponents, variables, and parameters. Subcomponents are other 
components or ports internal to the component. The behavior of a component that is not a 
subsystem is given by a mathematical model describing the mathematical relationships 
(equations) between the variables and the parameters of the component. Mathematical models 
can be dynamic, static, continuous, discrete or hybrid. Dynamic mathematical models implicitly 
or explicitly include time, causing some variables of the model to vary. Static models are used to 
represent steady-state or equilibrium regimes where properties are constant. Variables of 
continuous-time models evolve continuously while variables of discrete-time models change 
only at discrete time instants. Models with both continuous and discrete components are called 
hybrid. 
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3.1.1. Mathematical equations to express component behavior 

As mentioned earlier, we use mathematical models to represent component behavior. We 
distinguish two types of properties in specifying the behavior of a model: variables and 
parameters. Variables are properties whose values change during the simulation. Parameters are 
properties that are set at the beginning of the simulation but stay constant during the simulation. 

The most general mathematical models that simulation tools use are differential algebraic 
equations (DAEs) [5]. Formally, a continuous-time DAE can be expressed as 

𝑓1(�̇�(𝑡), 𝑥(𝑡), 𝑡, 𝜃) = 0
…

𝑓𝑚(�̇�(𝑡), 𝑥(𝑡), 𝑡,𝜃) = 0
 

where 𝑥(𝑡) = �𝑥1(𝑡), 𝑥2(𝑡), … , 𝑥𝑛(𝑡)� is a vector of dependent variables, (𝑓1,𝑓2, … ,𝑓𝑚) is a set 
of m functions and �̇�(𝑡) is the derivative of the state vector. In the above equations, time is 
denoted by t and 𝜃 refers to the (constant) parameters of the model. DAEs are very useful for 
modeling constrained mechanical systems, electrical circuits, and chemical reaction kinetics. 

Example 1: DAE for representing the dynamics of a planar pendulum [6] 

Figure 3 presents a mathematical pendulum, where a pendulum of mass m is connected is 
attached to a rod of length l. The potential energy in terms of the position (x,y) of the pendulum 
is given by  

𝑈(𝑥,𝑦) = 𝑚𝑔𝑙 − 𝑚𝑔𝑦 

and the kinetic energy is 

𝑇(�̇�, �̇�) =
1
2

(�̇�2 + �̇�2) 

 

 
Figure 3: The mathematical pendulum 
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The mechanical constraint of the pendulum is given by  

𝑔(𝑥,𝑦) = 𝑥2 + 𝑦2 − 𝑙2 = 0 

Using Euler’s equations, the motion of the pendulum is described by 

𝑚�̈� + 2𝜆𝑥 = 0 

𝑚�̈� −𝑚𝑔 + 2𝜆𝑦 = 0 

𝑔(𝑥, 𝑦) = 0 

By introducing the additional notations 𝜑1 = 𝑥 , 𝜑2 = �̇�,𝜑3 = 𝑦  and 𝜑4 = �̇� we obtain 

𝑚�̇�2 + 2𝜆𝜑1 = 0 

𝑚𝜑4̇ − 𝑚𝑔 + 2𝜆𝜑3 = 0 

𝜑2 = �̇�1 

𝜑4 = �̇�3 

𝜑12 + 𝜑32 − 𝑙2 = 0 

which is the DAE for the mathematical pendulum. 

We can observe from the previous example that the motion equations were obtained using 
energy conservation laws, which requires physical-interaction modeling. 

A discrete time equivalent of a DAE can be expressed as 

𝑓(𝑥(𝑘 + 1), 𝑥(𝑘),𝑘,𝜃) = 0 

where 𝑥(𝑘) = �𝑥1(𝑘),𝑥2(𝑘), … , 𝑥𝑛(𝑘)� and k is the discrete time. 

 A particular type of DAEs are the ordinary differential equations (ODEs), which can be 
generally described by 

�̇�(𝑡) = 𝑓(𝑥(𝑡), 𝑡,𝜃) 

0 = ℎ(𝑥(𝑡), 𝑡, 𝜃) 

DAEs differ from ordinary differential equations (ODE) in that a DAE is not completely solvable 
in closed form for the derivatives of all components of the vector of variables 𝑥. ODEs are the 
most common mathematical models used by simulation tools to describe behavior of 
components. Note that ODEs are DAEs solved for all variables’ derivatives.  Since ODEs are a 
kind of DAE they can be simulated using physical-interaction modeling. 

ODEs are used for signal-flow modeling, where the relationships between components are in one 
direction, from output of one component to inputs of another. This is typical in modeling 
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movement of information, rather than physical things (see Section 2.1). In particular, the 
(continuous-time) mathematical models used in the signal-flow methodology are 

�̇�(𝑡) = 𝑓(𝑥(𝑡),𝑢(𝑡), 𝑡,𝜃) 

𝑦(𝑡) = ℎ(𝑥(𝑡),𝑢(𝑡), 𝑡,𝜃) 

where u(t) represent the inputs of the systems and y(t) are the outputs of the systems. The vector 
of variables x(t) is usually referred to as the state vector. 

 A discrete version of the above mathematical model is 

𝑥(𝑘 + 1) = 𝑓(𝑥(𝑘),𝑢(𝑘),𝑘,𝜃) 

𝑦(𝑘) = ℎ(𝑥(𝑘),𝑢(𝑘),𝑘, 𝜃) 

where, as before, k denotes the discrete time. Combinations of components with continuous and 
discrete mathematical models generate hybrid models, which are also supported by simulation 
tools implementing signal-flow modeling. 

3.2. Ports 
Components interact with other components through interfaces, which are called ports. They 
specify which variables are shared or exchanged with other components. For example, in the 
case of signal-flow modeling, ports have variables that are either all inputs or all outputs, and are 
commonly referred to as input or output ports. In the case of physical-interaction modeling, ports 
still specify which variables interact with other components, but their variables are neither inputs 
nor outputs. 

3.3. Links 
As mentioned at the beginning of Section 3, the first step in building a model is to identify the 
main components of the system and how they interact. Interaction between components 
combines with the internal behavior of the components to produce the behavior of the entire 
model. Connecting components actually means connecting their ports using links.  When 
components are connected through links, mathematical formulas are generated. These formulas 
become part of the behavior of the model and their expressions depend on the type of the 
modeling methodology used. 

3.3.1. Signal-flow link semantics 
This type of link is found in signal-flow modeling, where the variables belonging to the ports are 
designated as inputs or outputs. Interconnecting components means connecting the output ports 
of some components to the input ports of other components, under some constraints: an input can 
only be connected to one output; an output cannot be directly connected to the input of the same 
component; an output can be connected to several inputs. From the semantic point of view, when 
an output port is connected to an input port, setting a variable of the output port assigns the same 
value to the same variable in the connected input port. Therefore, the variables that are the same 
on connected output and input ports must have compatible types and the same dimension if they 
are vectors. Figure 4 shows equivalent graphical depictions of an output of a component 
connected to the inputs of two other components via two links. 
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      Figure 4: Equivalent graphical depictions of two links in signal-flow modeling  

The output port V1 is connected to the inputs ports V2 and V3, where the arrows specify the 
direction. The signal-flow semantics induces the following assignments 

V2 := V1 

V3 := V1  

where := is an assignment operator.  Assignment means when the value of V1 is changed, the 
values of V2 and V3 are changed to the same value.  The value of V1 is not affected by changes in 
V2 and V3, but since V2 and V3 are on input ports, their values cannot be changed by their 
components, only by other components linked to them.  This reflects the directional nature of 
signal-flow modeling. 

3.3.2. Physical-interaction link semantics 

This type of link is found in physical-interaction modeling, where variables belonging to ports 
interact bidirectionally.  We distinguish two types of variables present on ports in physical-
interaction models: conserved and non-conserved.2 Conserved variables give the rate of 
movement of physical things that are not created or destroyed by the system, for example current 
and power are rates of movement of charge and energy, respectively. Non-conserved variables 
describe physical things in other ways than their rate of movement. For example, voltage is a 
non-conserved variable for the exchange of electricity, because it measures electric potential, 
rather than movement of charge. Physical-interaction links between ports have the following 
semantics: the values of conserved variables sum up to zero, and values of non-conserved 
variables must be equal. 

Figure 5 depicts two equivalent graphical depictions showing two links from one component to 
two others. The ports of these components have conserved (I1, I2, I3) and non-conserved (V1, V2, 
V3) properties.  

                                                           

2 Simulation tools call these “through” and “across” variables, respectively. 
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Figure 5: Equivalent graphical depictions of two links in physical-interaction modeling 

According to physical-interaction link semantics, we get the following equations between the 
variables of the ports: 

V2 = V1 

V3 = V1 

I1 = I2+I3 

Note that in this case we obtain a set of equations and not assignments. This means the values of 
V1, V2, and V3 can only change in ways that maintain the specified equalities.  Equations do not 
restrict which variables affect which others.  They can all affect each other within the bounds of 
the equations. This reflects the bidirectional nature of physical-interaction modeling.  

4. Examples of modeling concepts in simulation tools 

Most simulation tools provide graphical user interfaces for building models, including graphical 
modeling constructs corresponding to the modeling concepts described in Section 3. Modeling 
details are described using textual languages specific to the tools. Modeling constructs can be 
edited using the underlying textual languages of the simulation tools to specify properties and 
behavior of the constructs. Simulation tools often provide prebuilt modeling constructs, 
organized in libraries. These constructs have preset properties behavior, but users can modify 
parameter values before starting simulations. 

In this section we present examples of modeling concepts in specific simulation tools using 
signal-flow and physical-interaction methodologies. As a representative of signal-flow modeling 
tools, we use Simulink®, based on the textual modeling and simulation language Matlab® [7].  
As a representative of physical-interaction modeling, we use OpenModelica, an open source tool 
based on Modelica®, a non-proprietary textual modeling and simulation language [8] [9] [10]. 
Note that, although two simulation tools may implement the same methodology and concepts, 
their modeling constructs may be different. 
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1  

COMPONENT 
2  

COMPONENT 
3  

Port 1 

Port 3 

Port 2 

Port 
V 
flow I 

COMPONENT 
1 

COMPONENT 
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COMPONENT 
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4.1. Signal-flow modeling concepts in Simulink 

Graphically, Simulink shows models as block diagrams, where blocks are components usually 
shown as rectangles (although other shapes are sometimes used). Links are shown as lines 
between blocks. Ports are shown on blocks with additional icons, or more compactly as direction 
markers on links. 

 
Figure 6: Block diagrams 

Figure 6 shows an example of a block diagram with blocks that generate signals (Sine Wave in 
this example), process signals (mx+b), and show time evolution of signals (scope), as well as 
links to move signals downstream. Additionally, Figure 6 presents the internal structure of the 
subsystem “mx+b”, showing input/output ports explicitly as round-cornered rectangles. 

Models are saved in structured text files containing keywords on groups of parameter-value 
pairs. The model file describes model components in hierarchical order and as follows [7]: 
 
Model { 

<Model Parameter Name> <Model Parameter Value> 
... 
BlockDefaults { 

<Block Parameter Name> <Block Parameter Value> 
... 

} 
AnnotationDefaults { 

<Annotation Parameter Name> <Annotation Parameter Value> 
... 

} 
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System { 
<System Parameter Name> <System Parameter Value> 
... 
Block { 

<Block Parameter Name> <Block Parameter Value> 
... 

} 
Line { 

<Line Parameter Name> <Line Parameter Value> 
... 
Branch { 

<Branch Parameter Name> <Branch Parameter Value> 
... 

} 
} 
Annotation { 

<Annotation Parameter Name> <Annotation Parameter Value> 
... 

} 
} 

} 

As shown above, the file has four sections. In the Model section, aspects of the model are 
defined, such as the model name, and simulation parameters. The BlockDefaults section defines 
values for block parameters to be used when the modeler does not specify any, while 
AnnotationDefaults gives purely graphical information in the model. The top-level system and 
each subsystem in the model are described in separate System sections. Each System section 
defines system-level parameters and includes Block, Line, and Annotation sections for each block, 
line, and annotation in the system. Each Line that contains a branch point includes a Branch 
section that defines the branch line. 

In the following we present excerpts from a model file for diagrams shown in Figure 6. 
Model { 
 Name "slope intercepts" 

... 
 BlockDefaults {...} 

AnnotationDefaults {...} 
% Structure of the model 
System { Name “slopeintercept” 
 ... 
 Block { 
  BlockType Scope 
  Name “Scope” 
  NumInputPorts “1” 
  ... 
 } 
 Block { 
  BlockType Sin 
  Name “SineWave” 
  ... 

} 
 Block { 
  BlockType ToWorkspace 
  Name “To Workspace” 
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  ... 
} 

 Block { 
  BlockType SubSystem 
  Name “mx+b” 
  ...   

} 
% Structure of the subsystem 
System { 
 Name “mx+b” 

  ... 
  Block { 
   BlockType Inport 
   Name “x” 
   Port “1” 
   SampleTime -1 

... 
 

  } 
  Block { 
   BlockType Constant 
   Name “Intercept” 
   Value “b” 

... 
  } 
  Block { 
   BlockType Gain 
   Name “Slope” 
   Gain “m” 

... 
  } 
  Block { 
   BlockType Sum 
   Name “Sum” 
   Inputs “|++” 

... 
  } 
  Block { 
   BlockType Outport 
   Name “y” 
   Port “1” 
   Inputs “|++” 

... 
  } 

% Specification of links 
  Line { 
   SrcBlock “Intercept” 
   SrcPort 1 
   DstBlock “Sum”    
   DstPort 2 
  } 
 
  Line { 
   SrcBlock “Sum” 
   SrcPort 1 
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   DstBlock “y”    
   DstPort 1 
  } 
  Line { 
   SrcBlock “x” 
   SrcPort 1 
   DstBlock “Slope”    
   DstPort 1 
  } 
 } 

Line { 
  SrcBlock “Sine Wave” 
  SrcPort 1 
  DstBlock “mx+b”    
  DstPort 1 
 } 

Line { 
  SrcBlock “mx+b” 
  SrcPort 1 

... 
Branch{ 
DstBlock “Scope” 
DstPort 1 
} 
Branch{ 
DstBlock “To Workspace” 
DstPort 1 
} 

 } 
} 
... 

} 
 
The above example shows a hierarchically structured model file. Blocks are identified by name 
and type. The section starting with the keyword System are blocks depicted in the block diagram 
window of the graphical interface. If a block is a subsystem then an additional System section is 
needed, placed in the interior of the System section to which the subsystem belongs, forming a 
system hierarchy.  Links between ports are specified with the name and number of the source 
port (output) and the name and number of the destination port (input). Ports are automatically 
numbered, starting with 1 in each block. If a new port is added, the next available number is 
assigned to it. When a port is deleted, the other ports are automatically renumbered to ensure that 
the ports are in sequence and that no numbers are omitted. 

Next we address specification of block behavior, based on the model structure above. Block 
behavior is described using S-functions, which can be written in Matlab, C, or C++ languages. S-
functions are very general, in that they are able to accommodate continuous, discrete and hybrid 
systems. An S-function has the following form 

function [sys,x0,str,ts]=f(t,x,u,flag,p1,p2,...) 

where f is the S-function's name, t is the current time, x is the state vector of the corresponding 
S-function block, u is the block's inputs, flag indicates a task to be performed, and p1, p2, ... are 
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the block's parameters. During simulation, f is repeatedly invoked, using a flag to indicate the 
task to be performed for a particular invocation.  The general template of an S-function 
implemented as follows [4]. 

function [sys,x0,str,ts] = f(t,x,u,flag,p1,p2,...) 
switch flag, 
 case 0,[sys,x0,str,ts] = mdlInitializeSizes(lb,ub,xi); 
 case 1,[sys,x0,str,ts] = mdlDerivatives(t,x,u,lb,ub); 
 case 2,[sys,x0,str,ts] = mdlUpdate(t,x,u); 
 case 3,[sys,x0,str,ts] = mdlOutputs(t,x,u); 
 case 9,[sys,x0,str,ts] = mdlTerminate(t,x,u); 
end 
 
The tasks corresponding to cases 0 and 9 execute only once, at the beginning and at the end of 
the simulation, respectively.  In the initialization step (task mdlInitializeSizes), several subtasks are 
performed: state initialization and state constraints determination (upper and lower bounds); 
determination of the number of continuous and discrete states (the continuous, discrete or hybrid 
nature of the block), interface description through determination of the number of inputs and 
outputs (they can be dynamically sized), and sample time initialization (in the case of discrete 
blocks). The termination step (task mdlTerminate) performs any actions required at termination of 
the simulation, such as freeing memory. 

The behavior of a block, that is the description of an ODE corresponding to the block, is 
implemented through the tasks mdlDerivatives(t,x,u,lb,ub), mdlUpdate(t,x,u) and mdlOutputs(t,x,u), which 
are called during the simulation process. The task mdlDerivatives computes the derivatives of the 
continuous components of the state vector, that is, it implements 

�̇�(𝑡): = 𝑓(𝑥(𝑡),𝑢(𝑡), 𝑡,𝜃) 

The task mdlUpdate computes the values of the state vector at the current time of the simulation. 
In the case of discrete blocks, the state are updated according to 

𝑥(𝑘 + 1) = 𝑓(𝑥(𝑘),𝑢(𝑘),𝑘,𝜃) 
while in the case of continuous states, they are computed using the values of the state derivatives 
obtained as a result of the mdlDerivatives task. 

The task mdlOutputs computes the outputs of the block at the current time of the simulation, that 
is, it implements the assignments 

𝑦(𝑡): = ℎ(𝑥(𝑡),𝑢(𝑡), 𝑡,𝜃) 
in the case of continuous states, or 

𝑦(𝑘): = ℎ(𝑥(𝑘),𝑢(𝑘),𝑘,𝜃) 
in the case of discrete case. 

As indicated by the numbering of the tasks, other tasks can be invoked during the simulation 
process. These tasks are related to numerical algorithms used to solve the differential equations 
of the blocks. A complete list of the tasks that can be implemented in a S-function can be found 
in [7]. 
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4.2. Physical-interaction modeling  concepts in Modelica 

Modelica is a non-proprietary textual language for specification of complex systems, potentially 
containing subcomponents from multiple engineering domains, such as mechanical, electrical, 
electronic, hydraulic, thermal, control, or process-oriented. The language is designed to support 
computer simulation of dynamic systems, where behavior evolves as a function of time [9] [11] 
[12]. The mathematics of Modelica is based on equations rather than assignments (as in the case 
of Simulink), which permits physical-interaction modeling. It is an object-oriented language with 
a general class concept that facilitates reuse of components. 

We begin our discussion by showing how the planar pendulum in Example 1 is described. 
class Pendulum “Planar Pendulum” 
 Real x, y, vx, vy; 
 parameter Real g = 9.81, m = 1, l=0.5, lambda =1; 
 equation 
  m*der(vx)+2*lambda*x = 0; 
  m*der(vy)-m*g+2*lambda*y = 0; 
  der(x) = vx; 
  der(y) = vy; 
  x^2+y^2-l^2 = 0;  
end Pendulum; 

Class is the most general concept in Modelica.  It has a number of specializations, but the 
example above defines a general class, Pendulum, that has four variables of type real: x, y, vx, 
and vy. The parameters of the class are specified using the keyword parameter. The behavior of 
the class is described in a special section, called equation. The keywords used to define 
parameters and behavior are the same as or similar to the mathematical terms: Real refers to the 
real numbers, der(x) refers to the time derivatives of x.  

To simplify reading and maintenance, special keywords are introduced for specific uses of the 
general class concept. The relevant specialized classes for modeling and simulating dynamical 
systems are model, block and connector. A model is the same as a class, that is, the keywords are 
interchangeable, and corresponds to a component. They support physical-interaction modeling.  
A block is a class where all ports are declared as inputs or outputs, as in Simulink, supporting 
signal-flow modeling. 

A connector is a class used to define kinds of ports.  Modelica components (classes, models, 
blocks) define ports of particular kinds by defining variables typed by connectors. These 
variables/ports can be linked together using the keyword connect. As pointed out earlier, 
variables in physical-interaction modeling can be specified as conserved and non-conserved. 
Conserved variables are preceded by the keyword flow, while non-conserved variables have no 
keyword. We will show in the following an example of how components and interconnections 
between components are represented. 
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4.3. Comparison of signal-flow and physical-interaction modeling  on an electrical 
circuit 

In this section we apply the signal-flow and physical-interaction methodologies on an electrical 
circuit and discuss their advantages and disadvantages with respect to the modeling complexity 
and accuracy. 

4.3.1. Physical-interaction model of an electrical circuit 

Consider the electrical circuit in Figure 7 (shown with OpenModelica graphical notation), which 
has four types of components: resistors, capacitors, inductors, and AC voltage source [10]. 

 
Figure 7 - Example of electrical circuit 

In order to model the electrical circuit, each of these components must be described first. Note 
that each component has two interaction points, that is, two ports. The electricity exchanged 
between components is described by two variables: voltage and current, where current is a 
conserved variable because it is the rate of movement of electrons, which must be conserved 
across links, while voltage is a non-conserved variable, because it has the same value across 
links. The kind of port is described using a connector class: 

connector Pin  

  Voltage      v; 

  flow Current i; 

end Pin;  

where Voltage and Current are predefined data types. 

We are now ready to define the components of the circuit. Variables typed by Pin are ports of the 
component, because Pin is a connector. Each component has two variables: voltage and current of 
the components, the first giving the voltage drop across the component, the second the current 
through the component. These two variables can be expressed in terms of the variables of the 
ports. The resistor, capacitor, inductor and AC voltage source are given by the following models. 
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model Resistor "Ideal electrical resistor"  

 Pin p,n; 

Voltage v; 

Current i; 

parameter Real R(unit="Ohm") "Resistance"; 

equation  

v = p.v - n.v; 

    0 = p.i + n.i;  

    i = p.i; 

      R*i = v; 

end Resistor 

 

model Capacitor "Ideal electrical resistor"  

pin p,n; 

Voltage v; 

Current i; 

parameter Real C(unit="F") "Capacitance"; 

equation  

v = p.v - n.v; 

    0 = p.i + n.i; 

    i = p.i; 

      C*der(v)=i; 

end Capacitor 
 
model Inductor "Ideal electrical inductor"  

 pin p,n; 

Voltage v; 

Current i; 

parameter Real L(unit="H") "Inductance"; 

equation  

v = p.v - n.v; 

    0 = p.i + n.i;  

    i = p.i; 

      L*der(i)=v; 

end Inductor 

 

 

 

 



 

18 

 

model VSourceAC "Sin Wave Voltage source"  

pin p,n; 

Voltage v; 

Current i; 

parameter Voltage V=220 "Amplitute"; 

parameter Real f(unit=”Hz”) = 50 “Frequency” 

equation  

v = p.v - n.v; 

    0 = p.i + n.i;  

    i = p.i; 

      v = VA*sin(2*f*3.14*time); 

end VSourceAC 

 

In a similar way, we can model the electrical ground. 

model Ground "Ground"  

 pin p; 

equation  

 p.v = 0; 

end Ground; 

 

Having defined the components, the electrical circuit in Figure 7 is modeled as 

model circuit  

Resistor  R1(R=10); 

   Capacitor C(C=0.01); 

   Resistor  R2(R=100); 

   Inductor  L(L=0.1); 

   VsourceAC AC; 

   Ground    G; 

equation 

connect (AC.p, R1.p);    // Capacitor circuit 

connect (R1.n, C.p); 

connect (C.n, AC.n); 

connect (R1.p, R2.p);    // Inductor circuit 

connect (R2.n, L.p); 

connect (L.n,  C.n); 

connect (AC.n, G.p);     // Ground 

end circuit; 
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The connect keyword adds a set of equations following physical-interaction link semantics. For 
example  

connect (AC.p, R1.p); 

connect (R1.p, R2.p); 

generates the following equations: 

AC.p.i+R1.p.i+R2.p.i = 0; 

AC.p.v = R1.p.v; 

      R1.p.v = R2.p.v;  

4.3.2. Signal-flow model of an electrical circuit 

Modelica also supports signal-flow modeling with block type classes. For these type of classes, 
all ports must have assigned direction. In the following, we model the electrical circuit presented 
in Figure 7, using a signal-flow approach. To this end, we must choose for each component a set 
of input and outputs. The differential equation governing the capacitor’s behavior is given by 

𝑑𝑣(𝑡)
𝑑𝑡

=
1
𝐶
𝑖(𝑡) 

In signal-flow modeling, outputs are produced from current and past inputs, and cannot depend 
on future inputs. Since in the above equation the derivative is taken with respect of the voltage, 
we are going to choose as input the current 𝑖(𝑡) and as output the voltage 𝑣(𝑡). In the case of the 
inductor, the behavior is given by  

𝑑𝑖(𝑡)
𝑑𝑡

=
1
𝐿
𝑣(𝑡) 

In the case of the resistors, the input and output will be chosen as needed. That is, the voltage can 
be chosen as output and the current can be chosen as input, or the other way around. Figure 8 
shows a signal-flow model of the electrical circuit presented in Figure 7 [13]. 

 
Figure 8 – A signal-flow modeling methodology approach for the electrical circuit in Figure 7. 
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Although mathematically equivalent with the physical-interaction representation, applying 
signal-flow to physical applications increases the complexity of the model, as follows: 

o Blocks do not show the physical things they are modeling. In our example, the physical 
things are resistors, capacitors, inductors and sources. In particular, representing the 
resistor is different depending on how it is used, rather than reusing the same resistor 
component, as in physical-interaction modeling. 

o Inputs and outputs must be chosen for each component separately, even if they represent 
the same physical thing, such as a resistor (again impairing reusability). 

o The ODEs used in a block must be manually derived from conservation equations and 
DAEs describing component behavior.  In particular, determining consistent initial 
conditions may be more challenging. 

In what follows, we present the signal-flow implementation using Modelica. We start by 
modeling the signals block exchange among them. 

connector Signal  

  Real      val; 

end Signal;  

The signal-flow representation of the AC source is given by 

block VSourceAC "Sin Wave Voltage source"  

output Signal out_sig; 

parameter Voltage V=220 "Amplitute"; 

parameter Real f(unit=”Hz”) = 50 “Frequency” 

equation  

      out_sig = VA*sin(2*f*3.14*time); 

end VSourceAC 

Note that we use the specialized class block reflecting the signal-flow approach and that we 
specifically mention that out_sig is the output by using the keyword output. As we can see in 
Figure 8, we need three more components: Summation, Gain and Integrator, presented in what 
follows. 

block Summation 

 input Signal in_sig1, in_sig2; 

output Signal out_sig; 

parameter Real scale1 = 1.0; 

parameter Real scale2 = 1.0; 

equation  

      out_sig = scale1*in_sig1.val+ scale1*in_sig1.val; 

end Summation 
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block Gain 
 input Signal in_sig; 

output Signal out_sig; 
parameter Real K = 1.0 “Gain factor”; 
equation  

      out_sig.val = K*in_sig.val; 
end Gain 
block Integrator 

parameter Real init_value = 0.0; 
 input Signal in_sig; 

output Signal out_sig(val(start=init_val)); 
equation  

      der(out_sig.val) = in_sig.val; 
end Integrator 

Having defined the necessary component, the signal-flow representation of the electrical circuit 
in Figure 7, is given by 
model circuit  
      VsourceAC sinIn; 

Summation sum1(scale2=-1); 
Summation sum2; 
Summation sum3(scale1=-1); 
Gain  Res2(K=10); 
Gain  Res1(K=0.1); 
Gain Cap (K=100); 
Gain Ind (K=10); 
Integrator I1; 
Integrator I2; 

equation 
connect (sinIn.out_sig, sum1.in_sig1);   
connect (sinIn.out_sig, sum3.in_sig2);    
connect (Res2.out_sig, sum3.in_sig1);     
connect (sum3.out_sig, Ind.in_sig);     
connect (Ind.out_sig, I2.in_sig); 
connect (I2.out_sig, Res2.in_sig); 
connect (I2.out_sig, sum2.in_sig1);   
connect (sum1.out_sig, Res1.in_sig);     
connect (Res1.out_sig, Cap.in_sig);     
connect (Res1.out_sig, sum2.in_sig2); 
connect (Cap.out_sig, I1.in_sig); 
connect (I1.in_sig, sum1.in_sig2); 

end circuit; 
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Details about the graphical representation of a component are prefixed by the keyword 
annotation. Graphical annotation information includes position, size, and icon of the component 
as it appears on the diagram, common properties such as the local coordinate system, or 
information associated with link lines, such as route and color. The example below shows the 
class Resistor with graphical annotations. 

model Resistor  

  Pin p annotation (extent=[-110, -10; -90, 10]); 

  Pin n annotation (extent=[ 110, -10;  90, 10]); 

  parameter R "Resistance in [Ohm]"; 

equation  

  R*p.i = p.v - n.v; 

  n.i = p.i;  

public 

  annotation (Icon(  

    Rectangle(extent=[-70, -30; 70, 30], style(fillPattern=1)), 

    Text(extent=[-100, 55; 100, 110], string="%name=%R"), 

    Line(points=[-90, 0; -70, 0]), 

    Line(points=[70, 0; 90, 0]) 

    )); 

end Resistor; 

 

5. Conclusion 

In this report, we present the results of analyzing modeling methodologies for dynamical 
systems, identifying two primary ones: signal-flow and physical-interaction. We show that 
although the two methodologies use the same concepts, they have significant semantic 
differences that make them appropriate for different modeling applications. To support the 
analysis, we give representative examples of the two methodologies in two simulation tools, and 
show how modeling concepts are implemented. These results are presented as part of creating an 
abstract representation of simulation tools that can be used within a framework for system 
modeling, such as SysML/UML. 

Disclaimer: Commercial products and services are identified to adequately specify certain procedures. In no case does such 
identification imply recommendation or endorsement by the U.S. National Institute of Standards and Technology, nor does it 
imply that the products and services identified are necessarily the best available for the purpose. 
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