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Abstract 

Cell image segmentation (CIS) is critical for quantitative imaging in cytometric analyses. The 
data derived after segmentation can be used to infer cellular function. To evaluate CIS 
algorithms, first for dealing with comparisons of single cells treated as two-dimensional objects, 
a misclassification error rate (MER) is defined as a weighted sum of the false negative rate and 
the false positive rate. Then, all cells’ MERs are aggregated to constitute a new measure called 
the total error rate, which statistically takes account of the sizes of the cells in such a way that the 
weight on the result for an algorithm is higher if larger cells are not segmented correctly. This 
total error rate is used to measure the performance level of CIS algorithms. It was tested by 
applying ten CIS algorithms taken from the image processing toolkit ImageJ to 106 cells in our 
database. Furthermore, these cells with different sizes were manually segmented to be treated as 
the ground-truth cells. The test results were supported by the primitive pairwise comparison 
between two algorithms’ MERs on all cells. 

Keywords: Cell image segmentation; Measure; Total error rate; Total probability; 
Misclassification error rate; False negative rate; False positive rate. 
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1 Introduction 

Cell image segmentation (CIS) analysis is critical for quantitative imaging in cytometric 
analyses. The data derived after segmentation could ultimately be used to infer cellular function, 
such as cell movement and cell behavior, which reveals cells’ response to various conditions and 
external factors, and thus plays a critical role in molecular biology and cellular biochemistry. 

Under different normal and pathological conditions, certain types of cells may migrate to entirely 
different parts of the organism. Hence, the investigation of cell movement and behavior is 
directly related to the research in areas such as oncology of tumor cell metastasis and invasion, 
cell embryology of neural crest cells migrating from the neural tube to various areas of the 
embryo and transforming into different structures, and so on [1]. 

Usually, algorithms are designed and developed to segment cells in fluorescent microscopy 
images. It is obvious that the performance of a segmentation algorithm can affect the quantitative 
results derived from an image. Thus, assessing the performance quality of an algorithm is very 
important. To do so, the images are typically segmented manually first. This operation results in 
the identification of pixels that belong to the cell and pixels that belong to the background. The 
cells are treated as two-dimensional objects. Thereafter, the algorithm is validated by comparing 
the output segmentation of the algorithm to the manual segmentation. 

A cell in an image, regardless of whether it is segmented manually or using an algorithm, is 
identified by pixels belonging to the cell. Cells in a fluorescent microscopy image segmented 
manually by experts are treated as the ground-truth (GT) cells, whereas cells in an image 
segmented using an algorithm are named as the algorithm-detected (AD) cells. It is clear that the 
determination of GT cells is pivotal in evaluating CIS algorithms. In this article, the process of 
manual segmentation is based on the protocol as described in Appendix 1. 

Generally speaking, the geometric relationship between a GT cell and the corresponding AD cell 
consists of three regions: 1) some part of the GT cell is also identified by the algorithm, named 
as the intersection region; 2) some part of the GT cell is missed by the algorithm, called as the 
false negative (FN) region; 3) some part of the AD cell is mistakenly picked up which does not 
belong to the GT cell, named as the false positive (FP) region. 

In this article, if an algorithm detects a cell, that is manually segmented as one GT cell object, as 
several cells, then all these AD cells are counted as one AD cell; if an algorithm segments 
several cells, that are manually identified as different GT cells, as just one cell, then all these GT 
cells are treated as one GT cell. The issues regarding FN and FP regions in the CIS are similar to 
those in other applications, such as biometrics, speaker recognition evaluations, etc. [2, 3]. 

Different algorithms may have different criteria and methods to determine the boundary of a cell 
in a fluorescent microscopy image, and thus have different abilities to identify cells with respect 
to different cell features. For cells with some specific characteristics, some algorithms may 
perform better than others. As a result, how to measure the performance level of a CIS algorithm 
is a very important issue. 
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There are several metrics that can be applied to evaluate the performances of CIS methods1. 
They are, for instance, the Jaccard index [4], the Rand index [5], the Kappa statistic [6, 7], and so 
on [8]. However, each metric has its own advantages and disadvantages. For instance, the 
Jaccard and Rand indices do not take account of the spatial characteristics of segmentation [8]. 
The Kappa statistic could be an overly conservative measure of agreement [9]. 

In this article, to evaluate CIS algorithms, a new approach is proposed. The analysis of CIS starts 
with comparisons of single cells treated as two-dimensional objects using the misclassification 
error rate (MER) defined as a weighted sum of the FN rate and the FP rate. Then, all cells’ 
MERs are aggregated to constitute a new measure called the total error rate, which statistically 
takes account of the sizes of the cells in such a way that the weight on the result for an algorithm 
is higher if larger cells are not segmented correctly. This total error rate is used to measure the 
performance level of CIS algorithms. 

There are many factors that can affect how accurately a CIS algorithm detects the boundary of a 
cell in a fluorescent image. The cell size is one major factor. In general, large cells should be 
easier to detect than small cells, so the MER should be smaller for segmenting larger cells. If an 
algorithm is unable to detect larger cells well, it can affect the overall performance of the 
algorithm more negatively. 

  Figure 1 A Fluorescent image of some sample cells selected from 106 manually segmented cells. 

The total error rate was tested on a dataset that consisted of 106 cells with different sizes, which 
were manually segmented to be taken as GT cells. These cells can be found in the NIST 
(National Institute of Standards and Technology) Semantics for Biological Data Resource: Cell 
Image Database [10]. In Figure 1, nine representative fluorescent microscopy images illustrate 
the data used in this article. As indicated in this figure, the sizes of cells vary. 

1 Certain commercial entities, equipment, or materials may be identified in this document in order to describe an 
experimental procedure or concept adequately. Such identification is not intended to imply recommendation or 
endorsement by the National Institute of Standards and Technology, nor is it intended to imply that the entities, 
materials, or equipment are necessarily the best available for the purpose. 
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The ten algorithms taken from the public domain and open source java-based image analysis 
package, ImageJ, were employed to segment cells in this article [11]. They are IJ_Huang, 
IJ_RenyiEntropy, IJ_Li, IJ_MaxEntropy, IJ_Intermodes, IJ_Minimum, IJ_Triangle, IJ_Yen, IJ_ 
MinError, and IJ_Percentile, denoted by Algorithm 1 through 10 consecutively in the following 
text. Here the algorithms were numbered according to their performance levels in descending 
order (See Section 5). An ImageJ macro code for computing GT areas, AD areas, FPs and FNs in 
fluorescent microscopy images is provided in Appendix 2. 

The MERs in the CIS data analysis are investigated in Section 2. Limitations of other approaches 
for evaluating CIS algorithms are discussed in Section 3. Our total error rate is defined in Section 
4. The test results are presented in Section 5. Finally, the conclusions and discussion can be 
found in Section 6. 

2 The MERs in the CIS data analysis 

The first issue in the CIS data analysis in our approach is to define the MER for identifying a cell 
object in a fluorescent image using an automated algorithm. The sizes of a GT cell object and a 
related AD cell object are denoted by nG and nA, respectively. The sizes of the FN region, the FP 
region, and the intersection region as described in Section 1 are expressed by ng, na, and nI, 
respectively. All sizes are computed in terms of the number of pixels involved as discussed in 
Section 1. 

The FN rate rfn and the FP rate rfp are 

These five parameters satisfy the following equations,
௚൅ ݊ூൌ ݊ீ݊

.௔൅ ݊ூൌ ݊஺݊ 
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Figure 2 The weighted MER rw is a surface (red) and the average MER ra is a plane (green) with respect to the FN rate rfn 

and the FP rate rfp. They are tangent along a straight line (blue). 
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The MER of an algorithm with respect to detecting a cell is the proportion of pixels misclassified 
by the algorithm [12]. Therefore, several MERs can be defined in terms of the FN rate rfn and the 
FP rate rfp, by assigning different weights. Here are two of them: 
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The ra is called the average MER with equal weight 1/2, and the rw is named as the weighted 
MER using rfn and rfp themselves as weight so that the larger rate pays more penalties. As rfn and 
rfp approach to zero, rw goes to zero as well. Both ra and rw vary in the region [0, 1]: 0 stands for 
the best segmentation when an AD cell is identical to the related GT cell, and 1 means the worst 
classification when an AD cell and the corresponding GT cell are disjoint. 

However, some differences exist between rw and ra. First, the weighted MER rw is a more 
conservative measure than the average MER ra. It is trivial to prove using Eq. (3) that rw = ra if 
and only if rfn = rfp; otherwise, rw > ra. This can also be seen in Fig. 2, where rw is a surface in red 
and ra is a plane in green as functions of the two variables rfn and rfp. The red surface is above the 
green plane except they are tangent along a straight line in blue. 

Second, if an algorithm segments a small GT cell completely with a relatively very large AD 
cell, then rfn = 0 and rfp → 1 and thus the weighted MER rw approaches 1 but the average MER ra 

goes to 1/2 due to Eq. (3). And also if an algorithm detects a large GT cell with a relatively very 
small AD cell located completely inside the GT cell, then rfp = 0 and rfn → 1 and thus also rw → 
1 but ra → 1/2. Indeed, when an AD cell contains a GT cell or is inside a GT cell and the size 
difference between the two cells is very large, the MER should be much larger than 1/2 and close 
to 1. The weighted MER rw can deal with these special cases better than the average MER ra. 

Figure 3 The weighted MER rw and the average MER ra as a function of the size of the intersection area nI. (L): An AD 
cell with size 5000 (or 500) approaches to the related GT cell with size 500 (or 5000). (R): Both cells are in the size of 500. 

Third, rw is more rational than ra, when the segmentation of an AD cell object is simulated to 
approach a GT cell object as the size of the intersection area nI increases. To explore this feature, 
the average MER ra and the weighted MER rw are expressed as functions of nI by 
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Since the GT cell size nG and the AD cell size nA are symmetric in Eqs. (4) and (5), ra and rw will 
vary in the same way regardless of whether nG > nA or nG < nA. 

In Fig. 3 (L) are depicted Eqs. (4) and (5) in which nA and nG were set to be 5000 and 500, 
respectively. As the intersection area nI gets larger and larger, the average MER ra decreases 
linearly all the way; but the weighted MER rw decreases first and then increases. If an algorithm 
performs well, it should detect a cell with a comparable-size cell. It seems that the weighted 
MER rw behaves more reasonably than the average MER ra. The same argument holds true if nA 

and nG were set to be 500 and 5000, respectively, due to symmetry. When nA is equal to nG, the 
two MERs ra and rw are acting in the same way as shown in Fig. 3 (R) where both sizes are 
assumed to be 500. 

In conclusion, the weighted MER rw is a better measure than the average MER ra for evaluating 
the performance of the CIS algorithms. However, in the following text, both of them are 
employed to illustrate the differences when used to compare algorithm segmentation with 
manual segmentation. 

3 Limitations of other approaches for evaluating CIS algorithms 

Figure 4 Histograms of the weighted MERs, rw, generated using Algorithms 1 (A), 2 (B), and 3 (C). 

The top three algorithms, Algorithms 1, 2, and 3 as identified in Section 1, were applied to 
segment 106 cells (see Section 5). Fig. 4 shows their MER histograms, in which the weighted 
MER rw is used. These three histograms overlap each other. However, the histograms shift 
towards larger MER from Algorithm 1 to 3, suggesting that Algorithm 1 may be better than 
Algorithm 2 that in turn may be better than Algorithm 3. 
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When only the FN rate and FP rate are used to measure the performance level of a CIS 
algorithm, this is a bivariate issue. The three scatter plots of these two rates for Algorithms 1, 2, 
and 3 are shown in Fig. 5 (A). To enlarge the scatterplot, only the part from 0 to 0.3 for both FN 
rate and FP rate is shown. These three scatter plots overlap each other. Thus, it is impossible to 
distinguish which algorithm is better than the other. However, Algorithm 2 (in green) produces 
smaller FN rates but larger FP rates; and Algorithm 3 (in blue) is the other way around. 

Figure 5 The scatter plots (A) and the CDFs (B) of the three algorithms. Algorithms 1, 2, and 3 are depicted in red, green, 
and blue, respectively. The Weighted MER is used. 

If the cumulative distribution function (CDF) of the weighted MER rw is employed, the three 
CDFs of Algorithms 1, 2, and 3 are depicted in Fig. 5 (B). These CDF curves cross repeatedly, 
making it impossible to quantitatively compare the performances of two CIS algorithms based on 
this approach either. 

4 The total error rate in the CIS data analysis 

To measure the performance level of a CIS algorithm, the statistic of interest is the total error 
rate ε, based on the formation of the total probability in statistics [13]. Generally speaking, 
segmenting a cell in fluorescent microscopy images is an exclusive event with respect to 
detecting other cells. Thus, the total error rate ε is defined as 

௡ 

| ௜ ௜ሻ ܥሺሻ Pr ሺൌܵܫܥܥ  ෍Pr  ሻܵܫܥሺߝ ≡ Pr  
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where n is the total number of cells, Pr (CIS) stands for the total probability of making 
misclassification errors while using an algorithm to detect all cells in a fluorescent image, the 
conditional probability Pr (CIS | Ci) means the MER while segmenting the i-th cell in the image 
which is denoted by MERi, and Pr (Ci) is the probability of the occurrence of the i-th cell that is 
assumed to be the ratio of the size of the i-th GT cell Si to the total sizes of all GT cell objects. 
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In Eq. (6), the MERi can be either the weighted MER rw or the average MER ra as defined in Eq. 
(3) for segmenting the i-th cell in the image. It can be proven that the total error rate ε varies in 
the region [0, 1], where 0 stands for the best performance of the algorithm in the CIS and 1 
means the worst performance. 

Indeed, the total error rate ε aggregates all cell objects’ MERs statistically to be a weighted sum 
using the sizes of the cell objects as weights. Such a formation of a measure in the CIS data 
analysis can ensure that the penalties for misclassifying cells are proportional to the sizes of 
cells. 

5 Results 

Figure 6 The histogram of the sizes of all 106 GT cells. 

Algorithms 
Weighted MER rw is used Average MER ra is used 

the number of the number of 
< > = < > = 

1 2 87 19 0 91 15 0 
2 3 57 49 0 55 51 0 
3 4 68 38 0 73 33 0 
4 5 59 47 0 59 47 0 
5 6 101 5 0 100 6 0 
6 7 79 27 0 79 27 0 
7 8 103 3 0 103 3 0 
8 9 98 3 5 98 3 5 
9 10 61 6 39 61 6 39 

Table 1 Comparisons of two algorithms in terms of the numbers of inequalities and equalities for 106 cells using the 
weighted MER rw and the average MER ra, respectively. 
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The dataset employed in this article consisted of 106 cells with different sizes, which were 
manually segmented as GT cell objects [10]. Fig. 6 shows the histogram of sizes of all these 106 
GT cell objects in terms of the total number of pixels covered by the GT cell object. The sizes of 
GT cell objects ranged from 647 up to 27 562. The median size was 5 368, and the mean value 
was 6 062. The distribution of the sizes of GT cells was skewed on the right side. The variation 
of sizes of the GT cells was quite large. Therefore, the sizes of the cells must be taken into 
account while designing the measure in the evaluation of CIS algorithms. 

The MER, either the weighted MER rw or the average MER ra, can be computed for each of 106 
cell objects using Eq. (3). The pairwise comparison can be conducted between the MERs of 106 
cell objects generated using a CIS algorithm and those created using another algorithm. Table 1 
shows the relationship in terms of the numbers of “less than” (<), “greater than” (>), and “equal 
to” (=) between the two corresponding MERs using two algorithms, where both rw and ra were 
employed. 

The ten CIS algorithms taken from the ImageJ as defined in Section 1 were employed to generate 
MER for each cell object. In Table 1, Algorithm 1 was compared with Algorithm 2, Algorithm 2 
was compared with Algorithm 3, and so on. For instance, comparing Algorithms 1 with 2, if the 
weighted MER rw is used, there are 87 cells for which the MERs of Algorithm 1 are less than the 
MERs of Algorithm 2 and there are only 19 cells for which the situation is “greater than”. 

While comparing an algorithm against other algorithms having larger ordinal-number labels, the 
number of “less than” is still larger than the number of “greater than”. For instance, while 
comparing Algorithm 1 against Algorithm 3, the numbers of “less than” and “greater than” are 
91 and 15, respectively; while comparing Algorithm 1 against Algorithm 4, the numbers are 101 
and 5, respectively, and so on. Generally speaking, when the “less than” occurs, the difference 
between the values of the two MERs gets larger and larger. 

From this primitive inequality test, it suggests that the performance of Algorithm 1 be better than 
the performance of Algorithm 2, the performance of Algorithm 2 be better than the performance 
of Algorithm 3, and so on. 

Algorithm 
Total error rate ε 

using weighted MER 
Total error rate ε 

using average MER 
1 0.0575 0.0358 
2 0.0669 0.0373 
3 0.0894 0.0465 
4 0.1051 0.0580 
5 0.1712 0.0862 
6 0.1735 0.0871 
7 0.2244 0.1277 
8 0.3750 0.2395 
9 0.7133 0.5839 
10 0.9742 0.9195 

Table 2 The total error rates ε of CIS employing Algorithms 1 through 10 taken from the ImageJ, where both the 
weighted MER rw and the average MER ra were used. 
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The total error rates ε were computed using Eq. (6) for all ten CIS algorithms taken from the 
ImageJ, where both weighted MER rw and average MER ra were employed, as shown in Table 2. 
For instance, the total error rates ε of Algorithms 1 and 2 are 0.0575 and 0.0669, respectively, 
when rw is used. It indicates that the segmentation masks of Algorithm 1 are more similar to the 
GT masks than Algorithm 2. The same argument can be applied to other cases as presented in 
Table 2. 

It is clear that the conclusion based on the total error rate ε is fully supported by these primitive 
inequality tests. Moreover, regarding Algorithms 1, 2, and 3, the results shown in Table 2 are 
qualitatively consistent with the discussion in Section 2, where the histograms of MERs for these 
three algorithms shift gradually towards larger MER. Algorithms 9 and 10 generated a large 
fraction of MER equal to 1 (for both rw and ra), and thus their performances were very poor with 
total error rates higher than 0.5. 

It is worth pointing out that in Table 2 for each algorithm the total error rate ε using the weighted 
MER rw is larger than the one using the average MER ra. This is because rw is greater than or 
equal to ra for the same FN rate and FP rate as discussed in Section 2, and the weights in terms of 
the sizes of GT cells are the same for both ways while calculating the total error rate as shown in 
Eq. (6). Again, the total error rate ε using rw is more conservative than the one using ra. 

6 Conclusions and discussion 

Evaluation of CIS algorithms starts with a single cell comparison using the MER defined in 
terms of the FN rate and the FP rate. The two types of MERs, i.e., the weighted MER rw and the 
average MER ra, were explored. The former is more conservative than the latter. It is more 
important that the former can deal with some special circumstances more suitably than the latter. 
Nonetheless, the test results using both of them were presented. 

It is impossible to quantitatively evaluate CIS algorithms based on a bivariate criterion in terms 
of the FN rate and the FP rate by examining their scatter plots if the plots overlap. It is also 
difficult to do so by invoking the CDF curves of the MERs if the curves cross repeatedly. A 
method must be chosen to combine the computed FN rate and FP rate into a univariate measure 
for comparison. 

In our case, the total error rate ε aggregates all cell objects’ MERs based on the formation of the 
total probability in statistics. Indeed, it is a weighted sum of all cell objects’ MERs by taking 
account of the sizes of the cells. In this way, the weight on the total error rate for an algorithm is 
higher if larger cells are not segmented correctly. 

The total error rate ε was tested by applying the ten CIS algorithms taken from the ImageJ to our 
106 cells with different sizes, which were manually segmented to be taken as the GT cell objects. 
The results were supported by the primitive pairwise comparison between the MERs of all these 
106 cells generated using a CIS algorithm and those created using another algorithm, and also 
qualitatively consistent with the observations from their histograms. 
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As pointed out in Section 1, there are many factors that can affect how to segment cells in a 
fluorescent microscopy image and how to evaluate the performance of CIS algorithms. Our 
approach is based on detecting the boundary of cells treated as two-dimensional objects using 
cell sizes in terms of pixel numbers. Our method provides a way to measure the performance 
level of CIS algorithms under such circumstances. Further, certainly all numbers shown in 
Section 5 could be changed, if the protocol for generating manual segmentation treated as GT 
were refined. Nonetheless, this would have no substantial impact on the conclusions obtained in 
this article. 

The sampling variability can result in measurement uncertainties. Thus, it is important to 
compute the uncertainty of the total error rate ε in terms of the standard error and the 95 % 
confidence interval. Subsequently, in order to see whether the difference between the 
performances of the two CIS algorithms is statistically significant, it is pertinent to conduct 
hypothesis testing. The research work on all these issues is underway. 

Appendix 1: Protocol for generating manual segmentation [10] 

1. Open ImageJ 
2. Once in ImageJ, press “cntrl o” and select the frame to be manipulated. One can also press: 
File, then Open… 
3. Click on “image” then roll over “type” then click on “RGB Color”.  
4. Double click on color picker to open the color pallet. 
5. Select either black (0,0,0) or yellow (255,255,0) or any other color as long as the same color is 
used to outline each cell. 
6. Click on “image” then click on “adjust” and click on “Brightness and Contrast”. 
7. Adjust the brightness of the frame so that a fair amount of grayscale is visible. Then in the 
B&C box click “apply”. 
8. Select paintbrush by double clicking it. This will not only switch to paint brush but it will 
allow you to change the thickness of the brush as well. Adjust brush thickness to 1 pixel.   
9. Use zoom in and zoom out to manipulate the frame. This can be accomplished by pressing the 
magnifying glass and then by left clicking to zoom in and right clicking to zoom out.  
10. In order to trace the cells well, zoom in really far in on the edge of the cell. Trace the cell by 
having the brush edge paint over the very edge of the cell. 
11. Save the frame by clicking “file”, “save as”, “.tif” then choose where to save it. 
12. To make a mask, you must first duplicate your images. To do this, click on image, then click 
duplicate, and check the box that says “duplicate stack”. 
13. Go to Image, then Type, and select 8- Bit. 
14. Next, click on image, then click adjust, then click threshold. 
15. In the first dropdown menu, make sure that “default” is selected and in the second dropdown 
menu, make sure that “red” is selected.  
16. Adjust the two scrollbars until you see a red outline around each cell with as little red within 
the cell as possible. Click on apply. 
17. Next click on process, then click binary, then click fill holes. (NOTE: Real interior holes will 
be lost) 
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18. Finally, if necessary, click on analyze, then on analyze particles to get rid of any spots that 
are not cells. You will have to change the setting to 2100-infinity and you will need to select 
“Show Masks” in the dropdown menu. Duplicate this image. 

Appendix 2: An ImageJ macro code for computing GT areas, AD areas, FPs 
and FNs in fluorescent microscopy images 

Cell culture methods:  A-10 rat smooth muscle cells (ATCC, Manassas, VA) were maintained in 
Dulbecco’s Modified Eagles Medium ( DMEM/10 %FBS, Mediatech, Herndon, VA) 
supplemented with glutamine, non-essential amino acids and occasionally 
penicillin/streptomycin (Invitrogen, Carlsbad CA) in 5 % CO2 at 37 °C.  For the experiment, the 
cell lines were seeded at 800, in 3-wells of a 6-well tissue culture treated polystyrene plate 
(353046, BD Falcon, Franklin Lakes, NJ) in maintenance media, and placed in the incubator for 
approximately 20 hours.  The media was removed; the cells were rinsed with PBS and fixed for 
3 h with 1 % (v/v) formaldehyde in PBS at 25 °C.  The cells were stained with PBS containing 
0.02 % (v/v) TritonX-100 (Sigma, St. Louis, MO ), 0.5 µg/mL TxRed c2 maleimide (Invitrogen) 
(5 mg/mL in DMSO stock), 1.5 µg/mL DAPI ) (Sigma) (1 mg/mL in DMSO stock) for 4 hours, 
rinsed with PBS, PBS containing 1 % BSA and PBS, sequentially.  Fixed and stained cells were 
covered with PBS, stored at 4 °C, and imaged within two days. 

Automated Fluorescence Microscopy Imaging details: Fluorescence images of fixed and stained 
cells were acquired with an Olympus IX71 inverted microscope (Center Valley, PA) equipped 
with an automated stage (Ludl, Hawthorne, NY), automated filter wheels (Ludl), a Xe arc lamp 
fluorescence excitation source, a 10 x ApoPlan 0.4 NA objective (Olympus), and a CoolSNAP 
HQ CCD camera (Roper Scientific, Tucson, AZ).  the TxRed stained cells imaged using a 555 
nm notch excitation (PN# S555_25x) and a 630 nm notch emission filter (PN#S630_60m)  and a 
custom coated multipass dichroic beam splitter (PN#51019+400DCLP) matched to the excitation 
and emission filters (Chroma Technologies, Brattleboro, VT). 

ImageJ macro code for computing the GT area, AD area, FPs and FNs: 

//list of thresholds 
num_thresholds=17; 
threshold_type=newArray(num_thresholds); 
threshold_type[0]="Default"; 
threshold_type[1]="Huang"; 
threshold_type[2]="Intermodes"; 
threshold_type[3]="IsoData"; 
threshold_type[4]="IJ_IsoData"; 
threshold_type[5]="Li"; 
threshold_type[6]="MaxEntropy"; 
threshold_type[7]="MinError"; 
threshold_type[8]="MinError"; 
threshold_type[9]="Minimum"; 
threshold_type[10]="Moments"; 
threshold_type[11]="Otsu"; 
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threshold_type[12]="Percentile"; 

threshold_type[13]="RenyiEntropy"; 

threshold_type[14]="Shanbhag"; 

threshold_type[15]="Triangle"; 

threshold_type[16]="Yen"; 


//where to write the data files
 
save_path=getDirectory("Choose a directory to save the analysis results"); 


//NOTE: make sure ROI manager is cleared and closed 

waitForUser("Select the reference mask images..."); 

referenceID=getImageID(); 

waitForUser("Select the images to segment..."); 

testID=getImageID(); 


//make blank image to use for calculating AREA of algorithm, FP, and FN 

selectImage(testID); 

wt=getWidth(); 

ht=getHeight(); 

run("Select None"); 

run("Duplicate...", "title=test_space"); 

run("8-bit"); 

run("Multiply...", "value=0"); 

run("Canvas Size...", "width="+wt+2+" height="+ht+2+" position=Center zero"); 


//set-up ROIs based on reference image 

selectImage(referenceID); 

run("Analyze Particles...", "size=500-Infinity circularity=0.00-1.00 show=Nothing exclude add 

stack"); 

roiManager("Show None"); 


cells= roiManager("count"); 


//setting up arrays for reference, false positive, false negative, and test areas
 
ref_area = newArray(cells); 

FN_area = newArray(cells); 

FN_area2 = newArray(cells); 

test_area = newArray(cells); 

test_area2 = newArray(cells); 

FP_area = newArray(cells); 

FP_area2 = newArray(cells); 

TP_area = newArray(cells); 

TP_area2 = newArray(cells); 

num_particles = newArray(cells); 


//identify corresponding cells in test image after threshold
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run("Set Measurements...", "area centroid redirect=None decimal=3"); 

for (h=0; h<num_thresholds; h++) { 

//make duplicate image of test image to set threshold and make mask image 

  selectImage(testID); 

  run("Duplicate...", "title=stack_analysis duplicate range=1-50"); 

  setAutoThreshold(threshold_type[h]+" dark");//autothreshold test image 

  getThreshold(lower, upper); 


run("Convert to Mask", " black"); 

  run("Canvas Size...", "width="+wt+2+" height="+ht+2+" position=Center zero"); 


for (i=0; i<cells; i++) { 
//get reference area 
  selectImage(referenceID); 
  roiManager("Select", i); 
  slice_n=getSliceNumber(); 
  getStatistics(area, mean); 
  ref_area[i] = area*mean/255; 
//find all particles under the reference mask 

TP = 0;//true positives area
  store_test_area = 0; 
  run("Clear Results"); 
  selectImage(testID); 
  setThreshold(lower, upper);//resets autothreshold from earlier
  roiManager("Select", i); 
  run("Analyze Particles...", "size=0-Infinity circularity=0.00-1.00 show=Nothing 
display"); 

//paste each detected fragments into the test space

  for (j=0; j<nResults; j++) { 

   x = getResult("X", j); 

   y = getResult("Y", j); 


TP = TP + getResult("Area", j); 

   selectWindow("stack_analysis");

   setSlice(slice_n); 

   run("Select None"); 

   doWand(x+1, y+1); 

   roiManager("Add"); 

   selectWindow("test_space"); 

   roiManager("Select", cells); 

   run("Fill", "slice"); 

   roiManager("Delete"); 


}
 
getStatistics(area, mean, min, max, std); 


 test_area[i] = store_test_area;
 
test_area2[i] = mean*area/255; 


 run("Select All");

 run("Translate...", "x=-1 y=-1 interpolation=None"); 

 roiManager("Select", i); 
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getStatistics(area, mean, min, max, std); 

FN_area[i] = ref_area[i]-TP; 

FN_area2[i] = area-(area*mean/255); 

TP_area[i] = TP; 

TP_area2[i] = area*mean/255; 


 run("Multiply...", "value=0"); 

 run("Select None"); 


getStatistics(area, mean, min, max, std); 


FP_area[i] = test_area[i]-TP; 

FP_area2[i] = area*mean/255; 

num_particles[i] = nResults; 


//remove detected fragments and clear results 
 run("Clear Results"); 
 run("Multiply...", "value=0"); 

} 

//reset threshold and close the mask image made earlier 

selectImage(testID); 

resetThreshold; 

selectWindow("stack_analysis");
 
close(); 


//write results to file
 
f=File.open(save_path+threshold_type[h]+".txt"); 

print(f, "GT pixels, algorithm, FP, FN, TP, num_particles"); 

for (i=0; i<cells; i++) { 


print(f, ref_area[i]+", "+test_area2[i]+", "+FP_area2[i]+", "+FN_area2[i]+", 
"+TP_area2[i]+", "+num_particles[i]); 

} 
 File.close(f); 
} 


//print results table
 
//run("Clear Results"); 


//for (i=0; i<cells; i++) { 

// setResult("GT pixels",i,ref_area[i]);  //print results to table
 
// setResult("Algorithm",i,test_area[i]);
 
// setResult("FP",i,FP_area[i]); 

// setResult("FN",i,FN_area[i]); 

// setResult("TP",i,TP_area[i]); 

// } 


//updateResults(); //show results 
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//selectWindow("Results"); //bring results to front - this data should be pasted into a spread sheet 
program 
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