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EXECUTIVE SUMMARY

Despite broad recognition of the importance of residential energy efficiency and thermal
comfort, there were no straightforward methods to accurately measure, compare, and rate
whole-house efficiency in terms of both energy use and comfort using a reliable index.
Existing methods for residential buildings have placed more emphasis solely on designed
energy performance to quantify the home energy efficiency based solely on the inherent
components of the house (i.e., home's asset). This is a large shortcoming given that these
asset ratings cannot reflect the actual energy use of the house. In addition, for accurate
characterization of the actual home energy performance, it is necessary to measure and
report the concurrent thermal comfort performance of the house. This is especially critical for
low-load homes to make sure they can still deliver high standards of comfort to their
residents.

The purpose of this research is to investigate how thermal comfort dynamics are impacted by
energy-efficient or thermal comfort improvements in a low-load house and to explore
methods or metrics to rate a whole-house performance in an integrative way based on
measured energy and comfort performance of the house. This research aims to strike a
balance between advancing measurement science of whole-house performance in a holistic
manner and developing a next-generation method or metric that is practical and reliable for
realistic field applications to the existing residential building stock.

To accomplish this, this research collected, processed, and inspected the high-resolution
detailed building and system performance data of the Net-Zero Energy Residential Test
Facility (NZERTF) that is located on the campus of the National Institute of Standards and
Technology (NIST) in Gaithersburg, MD, USA for its Year 1 and Year 2 operations along with
coincident weather data. The quality-controlled 1-min data were then divided into several
subgroups to accurately characterize and report the whole-house energy and thermal
comfort performance of NZERTF. This includes partitioning long-term energy and thermal
comfort data by season based on the heat pump system’s actual operation mode under
given weather conditions and by three Thermostat's Temperature Differential (TTD) settings
that were used to control the heat pump system.

The sub-grouped data were then used to calculate weather-dependent energy models for
the whole house and five major end uses (e.g., conditioning, ventilation, lighting, plug loads+
appliances, and domestic hot water). The weather-dependent changing-point regression
models for conditioning energy use were then used to estimate the energy performance
changes caused by major energy-efficient or thermal comfort improvements applied to
NZERTF throughout its Year 1 and Year 2 operations. It was found that the conditioning
electricity use would increase with tighter TTD control during the heating season, while the
improved control strategy of the backup electric resistance heater during the Year 2
operation to minimize its use would result in high energy savings during the heating season.

In addition, this study calculated several whole-house thermal comfort metrics for each
subgroup to reveal the impact of major energy-efficient or thermal comfort improvements
applied to NZERTF on its thermal comfort performance. The calculated metrics include
temperature deviation from the setpoint temperature (i.e., room-to-thermostat temperature
difference) to evaluate the system’s fundamental ability to produce and deliver the designed
air temperature; room-to-room temperature difference to evaluate spatial thermal uniformity;
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cyclic discomfort to evaluate temporal thermal uniformity; and relative humidity (RH)
deviation from the setpoint RH (i.e., room-to-humidistat RH difference) to evaluate
dehumidification efficiency in terms of maintaining a setpoint humidity. The calculated
metrics for each subgroup were then compared against relevant benchmarks such as the
ACCA Manual RS and the ASHRAE Standard 55-2017.

Besides, to fully understand the long-term thermal comfort data, this study performed
statistical and advanced characterization of the granular thermal comfort data relative to the
outdoor weather and the time of the day not only for the primary rooms but also for the attic
and the basement that are thermally important due to possible heat transfer from/to the
primary rooms. These analyses revealed weather-dependent characteristics of the thermal
comfort metrics and their dynamic interactions with uneven internal heat gains from
occupants, lighting, appliances, and miscellaneous electronic devices.

Finally, this study proposed an integrative rating method based on the weather-dependent
conditioning energy use of the house and coincident whole-house thermal comfort metrics
that were averaged over a particular range of weather conditions. The proposed method was
demonstrated using the Year 1 and Year 2 NZERTF performance data, which allowed a
weather-normalized comparison of the three different TTD operations in terms of both
energy and thermal comfort for a particular weather condition. For both energy and comfort
metrics, lower values mean good performance, while higher values mean poor performance.

For example, during the cooling season, the Year 2 operation had the largest temperature
deviation from the setpoint in the first-floor rooms but maintained the second-floor
temperature closer to the setpoint. The first-floor overcooling during the Year 2 operation
was caused by using the average of two temperature sensors (i.e., thermostat sensor in the
living room and the remote sensor in the second-floor hallway) to control the heat pump
system. It was also found that the use of a thermostat with remote sensing capability during
the Year 2 operation did not improve thermal uniformity between the floors.

During the heating season, different results were obtained by the outdoor air temperature.
On mild winter days, the Year 2 operation maintained a smaller temperature deviation from
the setpoint with comparable room-to-room temperature differences. On colder winter days,
the Year 2 operation had the largest room-to-thermostat temperature deviation, which was a
comfort penalty due to an improved control strategy to minimize the use of the backup
electric resistance heater. As a result, the heat pump system ran constantly to meet the
heating setpoint temperature, which was actually helpful to maintain better thermal
uniformity with smaller room-to-room temperature differences during the Year 2 operation.

The impact of lowered differential temperatures was also revealed by comparing different
TTD settings that had been changed over the Year 1 operation. For example, a larger low-
side temperature deviation from the setpoint was observed along with unfavorable non-
compliant periods based on the ACCA Manual RS benchmarks when the 15 stage heating
differential temperature was set higher. The observed thermal discomfort improved with the
lowered TTD setting. However, there was an energy penalty (i.e., increased heating energy
use).

In conclusion, the proposed rating method allowed an integrative and rigorous assessment
of a whole-house performance in terms of both energy efficiency and comfort of which
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assessments were often made separately in the history of the disciplines. In the absence of
high-quality residential datasets, the results of this study can serve as rigorous benchmarks to
which other houses and conditioning systems can be compared for respective outdoor
weather conditions. The proposed rating method is also expected to be applicable for both
short-term and long-term measurements using the data sorted by respective outdoor
temperature, although long-term measurements would provide a more accurate
characterization.
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1. INTRODUCTION
1.1. BACKGROUND
Project Motivation: Energy use in Residential Buildings

Residential buildings are responsible for one-fifth of the total energy use in the U.S. (EIA
2020a), which is equal to about 55% of the energy use in the U.S. building sector. According
to the Annual Energy Outlook 2020 by the U.S. Energy Information Administration (EIA) (EIA
2020b), the number of the U.S. households, which is one of the main drivers of residential
energy use, is also projected to grow continuously by an average of 0.6% per year between
2019 and 2050. Not surprisingly, a study by The Rockefeller Foundation and Deutsche Bank
Climate Change Advisors (DBCCA) (2012) found that residential buildings have the largest
potential for significant energy savings in the building sector by applying appropriate
building envelope and HVAC retrofit measures.

However, despite their largest potential impact, the residential energy use historically has
gained less attention by professional HVAC&R society such as American Society of Heating,
Refrigerating, and Air-Conditioning Engineers (ASHRAE) (2014a). Previous efforts largely
focused on establishing and complying minimum performance requirements for residential
buildings such as International Energy Conservation Code (IECC) (ICC 2018), ASHRAE
Standard 90.2 (ASHRAE 2018), and ASHRAE Standard 62.2 (ASHRAE 2019a). Other research
efforts examined how to maximize the overall performance of residential buildings, including
the concepts of Net-Zero Energy Home (NZEH) or Zero Energy Ready Home (ZERH) by
combining state-of-the-art low-energy residential building technology with on-site renewable
energy systems (DOE 2020a). However, fewer efforts have been made to quantify the actual
performance of these low-load homes after construction in terms of their detailed energy
efficiency and comfort performance.

Residential buildings have a wide variety of energy end uses that serve different purposes’. In
addition, there is a wide variety of the way households use energy (EIA 2018b), which is
affected by multiple factors such as geographic location, the physical and structural energy
efficiency attributes of housing, envelope, and equipment, as well as widely varying, resident-
dependent factors such as residents’ comfort preferences, behavioral patterns, and
socioeconomic factors. This known variety of residential energy use has partially influenced to
a lack of high-quality residential datasets, including complete information on resident-
dependent factors that are often hard to measure or control under actual conditions. As a
result, there is a need for reliable residential datasets, leading to a better understanding of
the actual energy performance of advanced residential building technology and components
that also provide comfortable and healthy indoor environments.

' According to the 2015 U.S. Residential Energy Consumption Survey (RECS) (EIA 2018a), about 54% of the single-
family residential energy is consumed to provide space conditioning, including heating (46%) and air conditioning
(8%). Other energy end uses include water heating (17%), refrigerator (3%), and lighting/appliances/equipment
(26%).
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NIST Net-Zero Energy Residential Test Facility (NZERTF)

One unique effort made by NIST to reliably measure and characterize the long-term
operational performance of a net-zero energy home is the Net-Zero Energy Residential Test
Facility (NZERTF) on the campus of the NIST (NIST 2020). The NZERTF is a single-family house
that serves as a laboratory with simulated occupancy and scheduled internal loads. The
house was designed to allow full-scale dynamic testing and analysis of low-energy residential
building technology or control strategies under actual conditions. At the NZERTF,
measurements from nearly 400 sensors are being continuously collected and stored, typically
in increments of one minute. These data are valuable resources for researchers who aim to
improve measurement science associated with the low-energy building technology control
strategies, which well supports the mission of Engineering Laboratory at NIST.

The overall energy performance data for the first year of NZERTF operation from July 2013 to
June 2014 (i.e., Year 1 NZERTF Data) are presented in Fanney et al. (2015), which successfully
demonstrated its net-zero operation under harsh winters. A number of lessons were also
learned during the Year 1 operation of the NZERTF. As a result, several efficiency-improving
adjustments were proposed and applied to the NZERTF for the Year 2 demonstration from
February 2015 to January 2016 (i.e., Year 2 NZERTF Data), of which data and a comparison
against Year 1 data are presented in Fanney et al. (2017).

As a result, the NZERTF's energy use during the second year of operation was reduced by
9.5%2 along with mild winter. However, there have been limited discussions and reporting on
the impact of the applied energy-efficient improvements on thermal comfort dynamics,
although thermal comfort can have a significant impact on residents’ overall comfort and
well-being. Thermal comfort analysis is essential to verify the measured energy savings while
assuring residents’ comfort, which is critical for long-term, successful habitation in low-load
homes.

Home Performance Rating Systems

In spite of a broad recognition on the importance of residential energy efficiency and thermal
comfort, there were no straightforward methods to accurately measure, compare, and rate
whole-house efficiency in terms of both energy use and comfort using a reliable index, while
some efforts were made for commercial buildings (ASHRAE 2010a; ASHRAE 2014b). Existing
methods for residential buildings have placed more emphasis solely on designed energy
performance, including:

e The U.S. Department of Energy (DOE) Home Energy Score (DOE 2020b) and

e Residential Energy Services Network (RESNET) Home Energy Rating System (HERS)

(RESNET 2020).

Both the U.S. DOE Home Energy Score and the RESNET HERS are designed to quantify the
home energy efficiency based solely on the inherent components of the house (i.e., home's
asset) such as the physical and structural energy efficiency attributes of housing, envelope,

and equipment®. As a result, both rating systems assume resident-dependent factors and

21,241 kWh savings from 13,042 kWh for Year 1 to 11,801 kWh for Year 2.

3 The U.S. DOE Home Energy Score is based on the calculated home energy use, which is shown on a one-to-ten
scale, while the RESNET HERS calculates a relative energy performance score of the house against a standard
house of the same size and shape built to comply with the 2004/2006 IECC.
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behaviors (e.g., thermostat settings, appliances, plug loads, and lighting) are fixed and
somewhat constant. This is a large shortcoming given that these asset ratings cannot reflect
actual energy use of the house and a possible discrepancy between designed performance
(i.e., asset rating) and actual performance (i.e., operational rating) of the house, which are
often affected by the way how residents use the building/equipment as well as poor
construction and maintenance practices. In addition, for an accurate characterization of the
actual home energy performance, it is necessary to measure and report the concurrent
thermal comfort performance of the house. This is especially critical for low-load homes in
order to make sure they can still deliver high standards of comfort to their residents.

Therefore, this study explores new methods or metrics to properly analyze and rate a whole-
house performance based on measured energy and thermal comfort performance using the
data collected from the NIST NZERTF. The findings from this study are expected to contribute
to the existing knowledge and measurement science by developing an improved method or
metric enabling an integrative and rigorous assessment of a whole-house performance.

1.2. PURPOSE OF THE RESEARCH

The purpose of this research is to investigate how thermal comfort dynamics are impacted by
energy-efficient or thermal comfort improvements in a low-load house and to explore
methods or metrics to rate a whole-house performance in an integrative way based on
measured energy and comfort performance of the house. This research aims to strike a
balance between advancing measurement science of whole-house performance in a holistic
manner and developing a next-generation method or metric that is practical and reliable for
realistic field applications to the existing residential building stock.

1.3. ORGANIZATION OF THE REPORT
This report is organized into six sections.
Section 1 introduces the background of the study, including the purpose of the research.
Section 2 describes the methodology used to conduct this research, including a description
of NIST NZERTF and the HVAC systems; thermal comfort and system performance data
collection, processing, and inspection; energy and thermal comfort data analysis methods;

and the proposed integrative rating system.

Section 3 presents a detailed analysis of the NZERTF energy and thermal comfort data for the
Year 1 and Year 2.

Section 4 presents an analysis of whole-house thermal comfort performance using several
whole-house thermal comfort metrics.

Section 5 demonstrates the use of the proposed rating method based on the weather
dependent conditioning energy use (i.e., heating, cooling, and dehumidification) of the
house and coincident whole-house thermal comfort metrics that were averaged over a
particular range of weather condition using the Year 1 and Year 2 NZERTF performance data.
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Section 6 summarizes the key findings from this research and discusses the
recommendations for future research, which will contribute to improved design, operation,
and measurements of whole-house performance for energy efficiency and thermal comfort.

Appendix A describes the rule that was applied to fill the data gaps identified in the raw data.

Appendix B provides a list of the 49 days that were excluded from the analysis with the
reasons for exclusion.

Appendix C presents graphical summaries of the 1-min temperature, humidity, and electricity
data for Year 1 and Year 2.

Appendix D graphically present the globe-to-air temperature difference (i.e., AT (°C) = Tg -
Ta) calculated using the 5-min average temperature data collected from the five primary
rooms.

Appendix E presents the binned room air temperatures and humidity ratios against outdoor
temperatures for the other rooms such as MBR, BR3, ATTIC, MBA and BSMT as
supplementary materials to Section 3.4.

Appendix F presents time-of-day colored maps applied to the hourly average room

temperatures over the measurement period for the other rooms such as MBR, BR3, BR4, and
DR as supplementary materials to Section 3.5.
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2. METHODOLOGY

This section describes the methodology used to conduct this research. This research
collected two years of high resolution, 1-min data throughout the NIST NZERTF in
Gaithersburg, MD from July 2013 to June 2014 (i.e., Year 1 NZERTF Data) and from February
2015 to January 2016 (i.e., Year 2 NZERTF Data) along with coincident outdoor weather data.
During the analysis period, the major energy-efficient or thermal comfort improvements
applied to the NZERTF throughout is Year 1 and Year 2 operations include:

e Lowered 2" stage and 3" stage differential temperature settings along with
shortened delay time to control the same heat pump system;

e Improved control strategy of the backup electric resistance heater of the same heat
pump system (i.e., 3" stage heating) by removing associated delay time to minimize
its use;

e Use of a thermostat with an additional remote sensor located in the second-floor
hallway in lieu of the combined thermostat/humidistat by the heat pump manufacturer
located in the living room of the house;

e Use of a whole-house dehumidifier in lieu of the heat pump'’s dedicated
dehumidification cycle; and

e Lowered outdoor ventilation rate per ASHRAE Standard 62.2-2010 (ASHRAE 2010b),
which resulted in a 20% reduced outdoor ventilation compared to Year 1 operation.

Section 2.1 presents a description of the NIST NZERTF.

Section 2.2 presents an overview of the thermal comfort and system performance data
collection, processing and inspection.

Section 2.3 describes the data analysis methods.

Section 2.4 describes an integrative rating system proposed to rate a whole-house
performance based on measured energy and thermal comfort performance of the house.

2.1. NIST NZERTF
2.1.1. HOUSE DESCRIPTION

The NZERTF is a two-story house shown in Figure 1 that has a basement and attic and is
similar in size and aesthetics to homes in the surrounding communities. The occupiable floor
area consisting of the first floor (1F) and the second floor (2F) is 242 m? (2,605 ft?). The total
floor area of the house, including basement, 1F, 2F, and attic, is 485 m? (5,221 ft?). The house
is unoccupied and unfurnished other than permanently installed cabinetry. Despite it being
unoccupied, the activities of a family of four (i.e., two adults and two children) were simulated
in terms of electrical use (i.e., appliances and lighting), hot water use, and metabolic heat and
moisture generation. Details of these control schedules can be found in Omar and Bushby
(2013) and Kneifel (2012).

One of the ways the NZERTF achieved its net-zero energy goals was by minimizing heating
and cooling loads by installing a well-insulated and tight building envelope. The exterior
walls were constructed of wood studs, a fully-adhered membrane applied to plywood
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Figure 1: Front View of the NIST NZERTF (South Facade).

sheathing, two layers of polyisocyanurate foam board, fiber cement lap siding, and blow-in
cellulose insulation. The calculated U-factor of the exterior above-grade walls, including
framing members, is 0.13 W/m?-°C. The windows are double-hung units with a rated U-factor
of 1.14 W/m2-°C. A continuous air barrier system was installed to minimize infiltration, and
ventilation was provided by a heat recovery ventilator (HRV). Upon completion of the
NZERTF, Pettit et al. (2014) reported the results of the airtightness test, which was 0.55 air
changes per hour (ACH) at 50 Pa with kitchen and dryer vents sealed; and 0.63 ACH at 50 Pa
with kitchen and dryer vents unsealed.

2.1.2. HVAC SYSTEMS

Other ways that the NZERTF achieved its net-zero energy goals were through the 10.2 kW
photovoltaic (PV) system, a high-efficiency air-to-air heat pump, and a solar hot water system.
During the analysis period, the central air-to-air heat pump system with a two-stage
compressor and a variable speed indoor blower provided supply air to all floors except the
attic. All ductworks are located within the conditioned space since the fully-adhered
membrane air and moisture barrier was applied from the roof down to the foundation.
Passive air transfer grilles connect the basement to the first floor and the attic to the second
floor of the house. Air is returned to the heat pump via three return air grilles (i.e., one on the
first floor and two on the second floor). Table 1 summarizes the characteristics of the heat
pump operated at NZERTF during the analysis period, including cooling and heating capacity
and efficiency of the system.
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The cooling setpoint temperature was 23.8°C (75°F), and the heating setpoint temperature
was 21.1°C (70°F) with no setback schedules. The auto HEAT/COOL changeover feature of
the thermostat was enabled for both years. The heat pump was operated in the heating
mode if the sensed temperature at the thermostat drops below the heating setpoint
temperature, while it was in the cooling mode if the sensed temperature goes above the
cooling setpoint temperature.

Different thermostats were used between the two years. During the Year 1 operation, the
combined thermostat/humidistat provided by the heat pump manufacturer was installed in
the living room of the house and used to control the heat pump system, which was replaced
by a different thermostat with remote sensing capability during the Year 2 operation. The
remote temperature sensor was located in the second-floor hallway. The average of two
temperature sensors (i.e., thermostat sensor in the living room and the remote sensor in the
second-floor hallway) was used to control the heat pump system.

The compressor speeds were modulated depending on the differential temperature setting
on the thermostat, which was the temperature relative to the setpoint temperature. The
thermostat used during the Year 1 operation also allows the user to set the stage time delay
along with corresponding differential temperatures to initiate the 2" stage of compressor for
both heating and cooling or the 3" stage electric resistance heating. However, the
thermostat used during the Year 2 activates the 2"? stage of compressor or the 3™ stage
electric resistance heating only based on the differential temperature setting. Table 2
summarizes these control settings, which had been changed over the analysis period. Since
these settings have a direct impact on the maintained thermal comfort and associated heat
pump'’s cooling and heating energy use, this study decided to group the data by Thermostat
Temperature Differential (TTD) settings, including:

e Year 1 High TTD (YR1 HTTD) from July 1, 2013 to January 22, 2014;

e Year1Low TTD (YR 1 LTTD) from January 24, 2014 to June 30, 2014; and

e Year 2 (YR2)from February 1, 2015 to January 31, 2016.

For example, during the YR1 HTTD operation, the 15t and 2" stage compressor was set to be
activated if the difference between the sensed temperature and setpoint is over 0.6°C (1.0°F)
and over 2.8°C (5.0°F), respectively, along with 40 min 2"? stage delay time. The 3™ stage
heating (i.e., 5 kW electric resistance heating) was set to be turned on when the sensed
temperature dropped lower than 3.3°C (6.0°F) below the setpoint with the 3" stage delay
time of 40 minutes. During the YR1 LTTD operation, only the 2" stage and 3" stage
differential temperatures were reduced from 2.8°C (5.0°F) to 1.1°C (2.0°F) and from 3.3°C
(6.0°F) to 1.7°C (3.0°F), respectively, along with reduced 2"? stage delay time from 40
minutes to 10 minutes. Lastly, during the YR2 operation, the 1%t and 2" stage differential
temperatures were lowered to 0.3°C (0.5°F) and 0.6 (1.0°F), while the 3™ stage differential
temperature was raised to 2.8°C (5.0°F) compared to YR1 LTTD operation.

During the Year 1 operation, dehumidification was provided by activating the 2-stage
dedicated dehumidification cycle of the same heat pump if the relative humidity (RH) at the
combined thermostat/humidistat reaches 50% RH. During the 1°' stage dehumidification, the
indoor fan speed was reduced to reduce the temperature of the indoor coil with the 2" stage
delay time of 15 minutes. The 2"? stage dehumidification activated dedicated
dehumidification cycle of the heat pump. During the Year 2 operation, a separate humidistat
near the thermostat was used to control the whole-house dehumidifier. The whole-house
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dehumidifier was installed to pull air from the living room and supply the dehumidified air to
the supply duct leaving the heat pump system. It uses a damper on the supply which opens
only when the whole-house dehumidifier operates. The whole-house dehumidifier installed
at the house has a capacity of 63.9 L/day and an energy factor of 1.81 L/kWh at a flow rate of
14 m3/min (500 CFM) with 26.7°C (80.0°F)/60% RH inlet air conditions.

A balanced, ducted HRV system supplies outdoor air to the first-floor living area and three
second-floor bedrooms. It draws return air for heat recovery from one bathroom on the first
floor and two bathrooms on the second floor. During the Year 1 operation, the HRV ran
continuously at 171 m3/h (100 CFM), which exceeded the minimum ventilation requirements
of the ASHRAE Standard 62.2-2010 (ASHRAE 2010b). During the YR2 operation, the HRV was
operated on an intermittent schedule (i.e., approximately 40 minutes on and 20 minutes off
with an extra on-time in order to account for the start-up time of the supply fan to reach
maximum speed) to provide 137 m3/h (80 CFM) of outdoor air (i.e., 0.09 ACH based on the
entire volume of the house, including basement, first floor, second floor, and attic) per
ASHRAE Standard 62.2-2010, which resulted in a 20% reduced outdoor ventilation compared
to the Year 1 operation.

Table 1: Summary of the Characteristics of the Heat Pump System at NZERTF.

CDHP
Two-stage compressor and  variable-
speed indoor blower

Cooling Capacity 7.6 kW
Heating Capacity 7.8 kW at 8.3°C

SEER 4.63 W/W
Efficiency

HSPF 2.65 W/W
Electric resistance heater 5 kw

Table 2: Summary of the Thermostat Temperature Differential (TTD) Settings.

1% Stage 2" stage 3" Stage
Operation
Period Temperature Delay Temperature Delay Temperature
Differential (°C) Time (min) Differential (°C) Time (min) Differential (°C)

7/1/2013 to ord) ) o B °
YR1 HTTD 1/22/2014 0.6°C 40 min 2.8°C 40 min 3.3°C
YR1 LTTD 1/24/2014 to 0.6°C 10 min? 1.1°C 40 min 1.7°C

6/30/2014 ‘ min : '
YR2 0.3°C 0.6°C 2.8°C

Note:
1) 1.1°C for heating before 11/19/2013.
2) 30 minutes Before 1/28/2014.
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2.2. THERMAL COMFORT AND SYSTEM PERFORMANCE DATA

At the NZERTF, sensors were installed throughout the house to monitor the ambient
conditions as well as the performance of each particular subsystem in the house. The
instrumentation, data acquisition system, and measurement uncertainty associated with the
heat pump system, as well as all other electrical/mechanical subsystems within the NZERTF
are described in Davis et al. (2014). The measurements from nearly 400 sensors are
continuously collected and stored, typically in increments of one minute, and publicly
available (NIST 2020).

2.2.1. DATA COLLECTION

This study collected detailed building and system performance data of NZERTF during the
analysis period, including 1-min whole-house thermal comfort data. The 1-min whole-house
thermal comfort data include air temperature (Ta), relative humidity (RH), and globe
temperature (Tg) in the center of the selected rooms at approximately 1.4 m (55 in.) above
the floor, as shown in Figure 2. Table 3 lists the measurement parameters and
instrumentation used for the whole-house thermal comfort measurements.

Figure 3 shows the rooms selected for whole-house thermal comfort data monitoring with
specific variables monitored. All three variables were monitored in primary rooms such as
living room (LR), kitchen (KIT), master bedroom (MBR), bedroom (BR) 2, and BR3. In the
rooms that are not primary habitable but either produce or are near moisture sources such as
master bathroom (MBA) and basement (BSMT), two variables (i.e., Ta and RH) were
monitored®. Lastly, only air temperature was monitored in other rooms, including bathroom
(BA) 1, BA2, washer and dryer (WD), dining room (DR), BR4, and entry hallway (EH)°.

Table 3: Whole-House Thermal Comfort Measurement Parameters and Instrumentation.

Parameter Instrumentation Sensor Type Range
Air Temperature (Ta) Omega Type T thermocouple 13°Cto 30°C +0.2°C
Michell Inst t 0% RH t
Relative Humidity (RH) ichell Instruments Capacitive polymer % ° +3% RH
WM32-3-XX-HX 100% RH
Type T thermocouple
Globe Temperature (Tg) Omega inside grey ping pong 13°Cto 30°C +0.2°C
ball

4 The attic and basement air temperatures were monitored at four different locations (i.e., in the middle of each
quadrant of the room such as northeast, northwest, southeast, and southwest), while room relative humidity in the
basement was monitored at one location.

5 The entry hallway air temperature were monitored at the five different levels: the lowest level at a height of 0.6 m
(24 in.); the lower middle level at a height of 1.8 m (71 in.); the middle level at a height of 3.0 m (118 in.); the
upper middle level at a height of 4.3 m (169 in.); and the upper level at a height of 5.5 m (217 in.).
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Figure 3: Rooms Selected for Whole-House Thermal Comfort Data Monitoring.
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In addition to the thermal comfort data, this study collected:
e 3-sec or 10-sec electric power and performance data for the indoor and outdoor units
of the heat pump;
e 1-min outdoor air (OA) temperature and 3-sec or 10-sec OA dew point temperature;
and
e Basic building and system characteristics, including as-built architectural and
mechanical drawings; and HVAC system operation and event logs.

The collected heat pump power along with supply airflow were used to determine each
system'’s on and off cycling and the season classification as described in Section 3.3.1. The
coincident weather data from nearby National Oceanic and Atmospheric Administration
(NOAA) weather stations (NOAA 2019), including Washington/Dulles International Airport,
VA, were also collected and compared against OA temperature and dew point temperature
data collected from NZERTF.
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2.2.2. DATA PROCESSING AND INSPECTION

The collected raw data were processed and inspected using a set of data processing
templates that were developed to ensure accuracy and consistency in the collected raw data.
The data processing templates are capable of filling in short periods of missing data,
replacing bad data with -99, and producing 1-min, 5-min average, and hourly average data
based on consistent daylight saving time (DST) timestamp. Appendix A describes the rule
that was applied to fill the data gaps identified in the raw data.

The processed data were then inspected along with the collected heat pump system
operation and event log in order to identify and document any long-term missing data or
abnormal/invalid data that must be excluded from the analysis. As a result, this study
identified a total of 25 days (i.e., 15 days in Year 1 and 10 days in Year 2) that should be
excluded from the analysis due to operational anomalies of the heat pump system or
activities at NZERTF that might affect the collected thermal comfort data. There were
additional 24 days (i.e., 15 days in Year 1 and 9 days in Year 2) that were partially excluded
from the analysis due to long-term bad data in OA dew point temperature data. Appendix B
provides a list of the 49 days that were excluded from the analysis with the reasons for
exclusion.

Appendix C presents graphical summaries of the 1-min temperature, humidity, and electricity
data for Year 1 and Year 2 for the following data channels:
e 24 room air temperature channels;
5 room globe temperature channels;
2 outdoor air temperature channels;
7 room relative humidity channels;
1 outdoor humidity channel; and
3 heat pump electricity channels.
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2.3. DATA ANALYSIS

The processed 1-min, 5-min average, and hourly average data based on consistent DST
timestamp were analyzed to characterize and evaluate the whole-house energy and thermal
comfort performance of NZERTF, with a focus on:
e How thermal comfort dynamics were impacted by energy-efficient improvements at
NZERTF; and
e How to adequately normalize the measured energy and comfort performance by the
key variables affecting the performance of applied energy-efficient improvements
such as weather conditions.

2.3.1. LONG-TERM ENERGY AND THERMAL COMFORT DATA
DECOMPOSITION

To accurately characterize and report the energy and thermal comfort performance of the
NZERTF under different operation modes and outdoor weather conditions, the two-year
granular thermal comfort data were divided into the following subgroups:
e By the heat pump system’s TTD settings as summarized in Table 2:
— YR1HTTD from July 1, 2013 to January 22, 2014
— YR1LTTD from January 24, 2014 to June 30, 2014
— YR2 from February 1, 2015 to January 31, 2016
e By the heat pump system’s on/off cycle:
— Oncycle
—  Off cycle
e By the heat pump system’s actual operation mode under given weather conditions:
— Cooling season
— Heating season
— Transitional season

Transitional season was defined to identify and separately group the days when the heat
pump systems provided little or no space conditioning, which helped the interpretation
process because on these days the unconditioned temperature of the house was floating
between the cooling and heating setpoint temperature. For that, this study first calculated the
heat pump’s actual operation mode based on its measured cooling and heating capacity,
and the days with no cooling or heating capacity were then classified into transitional season.

In addition, to identify the days when the heat pump system provided little space
conditioning while the house’s unconditioned temperature was floating between the cooling
and heating setpoint temperature, this study calculated the heat pump energy use models
(i.e., five-parameter (5-P) change-point linear models) based on daily data using the ASHRAE
Inverse Modeling Toolkit (IMT) (Kissock et al. 2004), as shown in Figure 4. In this classification,
the days when the daily average OA temperature was between 7.5°C (45.5°F) and 17.2°C
(63.0°F) were classified into transitional season. 7.5°C (45.5°F) was the daily average OA
temperature below which the heat pump system at NZERTF was actively running to provide
heating based on the model, while 17.2°C (63.0°F) was the daily average OA temperature
above which the heat pump system was actively running to provide cooling. Figure 5
presents the final classification of the heating, transitional, and cooling seasons used in this
study. This includes:

e YRTHTTD:
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— 84 days for the cooling season

— 60 days for the heating season

— 52 days for the transitional season
e YR1LTTD:

— 48 days for the cooling season

— 55 days for the heating season

— 51 days for the transitional season
e YR2:

— 145 days for the cooling season

— 97 days for the heating season

— 113 days for the transitional season
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Figure 4: Daily Heat Pump Electricity Use Against the Daily Outdoor Air Temperature with a
Five-Parameter (5-P) Change-Point Linear Models, Including the Heating Change-

Point Temperature (Tuc) and the Cooling Change-Point Temperature (Tcc) of the
Year 1 Model.

Page 14



Daily OA Dry-Bulb Temp. (C)

Daily OA Dry-Bulb Temperature (C)

Figu

71113 7/29/13  8/26/13 9/23/13 10/21/13 11/18/13 12/16/13 1/13/14 2/10/14 3/10/14 4714 5/5114 6/214 6/30/14

¢ Cooling * Heating = Transitional ——Tset_Cooling —Tset_Heating

(a) Year 1

-10

-15 T T T T v T T T T T T T
2/115  3/115 3/29/15 4/26/15 5/24/15 6/21/15 7/19/15 8/16/15 9/13/15 10/11/15 11/8/15 12/6/15 1/3/16 1/31/16

¢ Cooling * Heating = Transitional ——Tset_Cooling —Tset_Heating

(b) Year 2

re 5: Classification of the Heating, Transitional, and Cooling Seasons.

2.3.2. ENERGY PERFORMANCE CHARACTERIZATION

To characterize the energy performance of the NZERTF during the analysis period, 43 electric
power channels were grouped into five major end uses such as:

Conditioning (i.e., heat pump (HP) for cooling and heating and whole-house
dehumidifier (WHD));

Ventilation (i.e., HRV);

Lighting;

Plug loads + appliances (i.e., refrigerator, dish washer, cooktop, oven, clothes washer,
clothes dryer, and microwave); and

Domestic hot water (i.e., heat pump water heater (HPWH)).

The weather-dependent, change-point linear regression electricity use models were then
calculated with daily data for the whole house® and major end uses for weekdays and
weekends, separately, using the ASHRAE IMT as shown in Figure 6. This method allowed
identify key influencing factors about building electricity use to be determined by correlating
the electricity use to a potential explanatory variable such as OA temperature. The functional

form

s of regression models used in this study include a one-parameter (1-P) model (i.e.,

6The

whole-house electricity use of NZERTF includes the five major end uses and the electricity use by the solar

system circulators which was about 3% of the whole-house electricity use on an annual basis.
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mean model when building electricity use does not change with the independent variable), a
three-parameter (3-P) change-point linear model, and a five-parameter (5-P) change-point
linear model.

When the consumption on the weekdays and weekends were not significantly different, a
combined all-day model was developed using data from all days of the week. When the
consumption significantly depended on a day-of-week schedule such as lighting and plug
loads, multiple day-of-week models were developed. YR1 HTTD (i.e., baseline) data were
used to establish a self-reference benchmark for YR1 LTTD and YR2 data with energy-efficient
improvements.

The differences in the NZERTF conditioning electricity use (i.e., savings’) was then calculated
for the YR1 LTTD and YR2 operations against the baseline, YR1 HTTD operation by
subtracting the YR1 HTTD consumption from the YR1 LTTD and YR2 consumption,
respectively. Two different types of consumption were used in this calculation:

e Measured electricity use; and

e Predicted electricity use.

The measured electricity use is the measured, actual conditioning electricity use, which was
available only for the period when the respective TTD operation was applied such as:

e YRTHTTD from July 1, 2013 to January 22, 2014;

e YRTLTTD from January 24, 2014 to June 30, 2014; and

e YR2 from February 1, 2015 to January 31, 2016.

The predicted electricity use, which was the consumption that would have been if the
corresponding TTD operation was applied, was calculated using the three 5-P change-point
linear energy models with the OA temperatures during the period of the Year 1 and Year 2
operations. For example, the YR1 HTTD predicted electricity use could be calculated for the
periods of the YR1 LTTD and YR2 operations although the YR1 HTTD operation was not
actually applied.

To ensure confidence in the calculated regression model as well as energy performance
changes, this study referred to the ASHRAE Guideline 14-2014 (ASHRAE 2014b), including
the two statistical indicators such as the coefficient of determination (R?) and the coefficient of
variation of the root mean square error (CV-RMSE). The R? was used to quantify the
goodness-of-fit of the model, where an R? equal to 1.0 means a perfect fit, and an R? above
0.8 indicates that the fit is good (ASHRAE 2010a). The CV-RMSE was used to quantify how
data were scattered around the model. The Whole-Building Prescriptive Path in Section
4.3.2.1 of the ASHRAE Guideline 14-2014 allows a baseline model to have a maximum CV-
RMSE between 20% and 30% depending on the number of months of post-retrofit data
available for computing the savings.

7 In this report, the word “savings” is used to represent the changes in energy use versus the YR1 HTTD operation.
Negative savings means increased energy use compared to the YR1 HTTD operation.
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Figure 6: ASHRAE IMT Change-Point Models. (a) Mean or 1-P Model, (b) 2-P Model, (c) 3-P
Heating Model, (d) 3-P Cooling Model, (e) 4-P Heating Model, (f) 4-P Cooling
Model, and (g) 5-P Model.

2.3.3. THERMAL COMFORT ANALYSIS

This study performed a statistical characterization of the continuously-measured long-term
thermal comfort data not only for the primary rooms but also for the attic and the basement
that are thermally important due to possible heat transfer from/to the primary rooms. The
descriptive statistics of the thermal comfort data were calculated for each subgroup, which
was also graphically displayed using the modified box-and-whisker plots proposed by Kim et
al. (2019).

The modified box-and-whisker plot displays long-term thermal comfort data using multiple
percentile ranks to characterize extreme variations based on =£1.5%, £2.5%, +5% and £10%
deviations. For example, the 1.5 and 98.5" percentiles characterize data based on £1.5%
deviation, which corresponds to 3% of the period in total. In the same way, the 2.5™ and
97.5% percentiles are based on =2.5% deviation (i.e., 5% of the period in total), the 5" and
95% percentiles are based on +5% deviation (i.e., 10% of the period in total), and the 10" and
90 percentiles are based on +10% deviation (i.e., 20% of the period in total). The 3% and 5%
deviations are the recommended criteria for acceptable deviations to evaluate long term
performance of buildings provided in the Annex G of the European standard, DIN EN 15251

(CEN 2007).
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Although the globe temperatures were measured in the five rooms (i.e., LR, KIT, MBR, BR2,
and BR3), this study used room air temperature as the primary index for a thermal uniformity
analysis in terms of providing uniform space temperatures across the house since this study
primarily focuses on the residential system'’s fundamental ability to produce and deliver a
certain temperature to multiple occupied spaces as installed in the house. In addition, it was
found that the globe-to-air temperature differences (i.e., AT (°C) = Tg - Ta) calculated using
the 5-min average temperature data collected from the five primary rooms were within
+0.5°C, which was more than 98.5% of the period based on 1.5% extreme variation except
for the kitchen during the transitional season® (Appendix D). This indicates there were no
significant radiation sources at NZERTF.

To better understand the observed temporal variations of the long-term thermal comfort
data, which was revealed from a statistical analysis, this study also performed an advanced
characterization of the measured thermal comfort data relative to coincident outdoor weather
and the time of the day. First, this study characterized variations of the measured thermal
comfort data relative to outdoor weather using a 5°C (9°F) binned quartile analysis, which
also allowed a weather-normalized characterization and comparison of the impact of the
three different TTD operations on thermal comfort. To accomplish this, the 5-min average air
temperatures measured in each room were characterized using the modified binned box-
and-whisker plots, where the 1.5%, 2.5%, 5t 10t 25% 50, 75t 90t 95t 97 5% and 98.5t
percentiles, as well as minimum, mean, and maximum values, were arranged against outdoor
temperatures binned into 5°C (9°F) bins.

Another characterization was a time-of-day analysis of the hourly average room temperature
data using a time-of-day colored map (i.e., heat map). The use of the proposed time-of-day
colored map was useful in tracking how the rooms were conditioned over the course of a day
and a year separately for YR1 HTTD, YR1 LTTD, and YR2 based on data with an hourly
temporal resolution.

2.3.4. WHOLE-HOUSE THERMAL COMFORT METRICS

The whole-house thermal comfort performance was evaluated in terms of:
e Temperature deviation from the setpoint temperature (i.e., room-to-thermostat
temperature difference);
¢ Room-to-room temperature difference to evaluate spatial thermal uniformity;
e Cyclic discomfort to evaluate temporal thermal uniformity; and
e RH deviation from the setpoint RH (i.e., room-to-humidistat RH difference) to evaluate
latent cooling performance (i.e., dehumidification efficiency)

The room temperature deviation from the thermostat setpoint temperature was calculated as
room-to-thermostat temperature difference (i.e., AT (°C) = Troom - Tsetpoint) using the 5-min
average room temperature data collected from the five primary rooms (i.e., LR, KIT, MBR,
BR2, and BR3) and two additional rooms on the first floor (i.e., DR, and BR4). In addition, a
whole-house room-to-thermostat temperature difference was calculated using an area-
weighted whole-house temperature, which is the temperature weighted by the floor areas of

8 The globe-to-air temperature differences in the kitchen during the transitional season had a few more occasions
exceeding 0.5°C, which was still less than 2.5% of the period.
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seven primary rooms (i.e., LR, KIT, DR, BR4, MBR, BR2, and BR3 representing 71% of the total
floor area) as shown in Figure 7°.

The setpoint temperatures used in the calculation are 23.8°C (75°F) for the cooling season
and 21.1°C (70°F) for the heating season. For the transitional season, 23.8°C (75°F) was used
if the room temperature was above the cooling setpoint temperature (i.e., 23.8°C), while
21.1°C (70°F) was used if the room temperature was below the heating setpoint temperature
(i.e., 21.1°C). The percentage distribution of the room-to-thermostat temperature difference
was then compared against the Air Conditioning Contractors of America (ACCA) Manual RS
benchmarks (ACCA 1997):

e Thermostat setpoint £1.67°C (£3°F) for the cooling season;

e Thermostat setpoint £1.11°C (£2°F) for the heating season; and

e Between thermostat setpoint -1.11°C (-2°F) and thermostat setpoint +1.67°C (+3°F)

for the transitional season.

=+
=+

To evaluate the spatial thermal uniformity across the house, the room-to-room temperature
difference was calculated using the 5-min average room temperature data collected from the
five primary rooms (i.e., LR, KIT, MBR, BR2, and BR3) and two additional rooms on the first
floor (i.e., DR, and BR4): AT (°C) = MAX(Troom1, Troom2, ...) - MIN(Troom1, Troom2, ...). The
percentage distribution of the room-to-room temperature difference was then compared
against the ACCA Manual RS benchmarks:

e 1.67°C(3°F) average and 3.33°C (6°F) maximum for the cooling and transitional

season; and
e 1.11°C(2°F) average and 2.22°C (4°F) maximum for the heating season.

To evaluate the temporal thermal uniformity, the cyclic and drift temperature variations with
time were calculated using the 1-min operative temperature for the five primary rooms (i.e.,
LR, KIT, MBR, BR2, and BR3) and the 1-min area-weighted whole-house operative
temperature. The whole-house operative temperature was weighted by the floor areas of five
primary rooms (i.e., LR, KIT, MBR, BR2, and BR3 representing 50% of the total floor area)
where the globe temperatures were collected. The 1-min operative temperature was
calculated in accordance with Appendix A of the ASHRAE Standard 55-2017 (ASHRAE 2017)
to be used in this analysis per Section 5.3.5 of the ASHRAE Standard 55-2017. The
percentage of failures in cyclic and drift temperature variations was then calculated based on
the ASHRAE Standard 55-2017 benchmarks:

e 1.1°C(2.0°F) maximum for any 15-minute period;

e 1.7°C(3.0°F) maximum for any 30-minute period;
e 2.2°C(4.0°F) maximum for any 1-hour period;
e 2.8°C(5.0°F) maximum for any 2-hour period; and
e 3.3°C(6.0°F) maximum for any 4-hour period.

To evaluate the effectiveness of latent cooling performance, the RH deviation from the
humidistat setpoint (i.e., 50% RH) was calculated as room-to-humidistat RH difference (i.e.,
ARH (%) = RHroom - RHsetpoint if RHroom > RHsetpoint; or ARH (%) = 0% RH if RHroom <
RHsetpoint) using the 5-min average room RH data collected from the five primary rooms (i.e.,
LR, KIT, MBR, BR2, and BR3) and the MBA and BSMT only for the cooling season. In addition,

? Floor area of NZERTF is equivalent to volume of the house because the floor-to-ceiling height was same across
the house.
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a whole-house room-to-humidistat RH difference was calculated using an area-weighted
whole-house RH, which is the RH weighted by the floor areas of five primary rooms (i.e., LR,
KIT, MBR, BR2, and BR3 representing 50% of the total floor area). The percentage distribution
of the room-to-humidistat RH difference was then calculated and compared between the

three TTD operations.
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2.4.INTEGRATIVE METHOD

To assess a whole-house performance in an integrative way based on measured energy and
thermal comfort performance of the house, this study proposed a rating method based on
the weather dependent conditioning energy use (i.e., heating, cooling, and dehumidification)
of the house and coincident whole-house thermal comfort metrics that were averaged over a
particular range of weather condition. The proposed method was applied to the collected
Year 1 and Year 2 NZERTF performance data to ensure the validity, reliability, and practicality
of the proposed assessment method. For example, the daily OA dry-bulb temperature was
sorted into 5°C (9°F) temperature bins while the mean coincident values of daily conditioning
energy uses and daily room-to-thermostat temperature differences were determined for each
bin, which were then paired and plotted using a scatter plot for three different TTD
operations. This allowed a weather-normalized comparison of the three different TTD
operations in terms of both energy and thermal comfort for a particular weather condition.

The whole-house thermal comfort metrics considered in this study are:
e Room-to-room temperature difference and room-to-room discomfort degree hours
¢ Room-to-thermostat temperature difference using:
— Living room temperature
—  Whole-house temperature weighted by the floor areas of seven primary rooms
(i.e., LR, KIT, DR, BR4, MBR, BR2, and BR3 representing 71% of the total floor area)
as shown in Figure 7.
e Room-to-humidistat RH difference (only for the cooling season) using
— Living room RH
— Whole-house RH weighted by the floor areas of five primary rooms (i.e., LR, KIT,
MBR, BR2, and BR3 representing 50% of the total floor area) where the humidity
data were collected.

The room-to-room temperature difference (R-to-R TD) and room-to-room discomfort degree
hours (R-to-R DDH) were calculated as follows:
. Dain average R-to-RTD (°C) = Z(MAX(TroomLTroomZ,...) - MIN(Troom1,Troom2,...)) / N
e Daily total R-to-R DDH (°C-h) = Y (Hourly average R-to-R TD)
where,
HourIy average R-to-RTD (°C) = Z(MAX(Troom1 ,Troom2,...) - MIN(Troom1,Troom2,...)) / N’
N = number of data points in a day (i.e., 1440/selected data interval in minutes)
N’ = number of data points in an hour (i.e., 60/selected data interval in minutes)

Three different metrics were calculated for the room-to-thermostat temperature difference
(R-to-T TD) using the living room temperature and the area-weighted whole-house
temperature. This includes:

e Daily average R-to-T TD(-) (°C) Y(AT)/ N

e Daily average R-to-T TD (+) (°C) Y(AT)/N

e Daily average R-to-T Total TD (°C) = |R-to-T TD (-)| + |Ro-to-T TD (+)|
where,

AT (°C) = Troom - Tsetpoint
N = number of data points in a day (i.e., 1440/selected data interval in minutes)

—
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Daily average R-to-T TD is the sum of absolute differences between the room temperature
and the setpoint temperature.

The room-to-humidistat RH difference (R-to H RHD) includes one metric, which was calculated
using the living room RH and the area-weighted whole-house RH only for the cooling season:

e Daily average R-to-H RHD (%) =>(ARH (%)) /N
where,
ARH (%) = RHroom - RHsetpoint (if RHroom > RHsetpoint)
=0% RH (if RHroom < RHsetpoint)

N = number of data points in a day (i.e., 1440/selected data interval in minutes)
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3. NZERTF ENERGY AND THERMAL COMFORT ANALYSIS

This section presents a detailed analysis of the NZERTF energy and thermal comfort data for
the Year 1 and Year 2.

Section 3.1 presents a weather-dependent characterization of the NZERTF energy use for the
whole house and major end uses.

Section 3.2 presents the results of a weather-normalized comparison of the NZERTF
conditioning energy use between the three different TTD operations.

Section 3.3 presents a statistical characterization of the long-term room temperature and
humidity data.

Section 3.4 presents an advanced characterization of the room temperature and humidity
data relative to the outdoor temperature and humidity.

Section 3.5 presents the time-of-day characterization of the room temperature data using a
time-of-day colored map (i.e., heat map).

3.1. ENERGY PERFORMANCE CHARACTERIZATION
3.1.1. WHOLE-HOUSE ELECTRICITY

Figure 8 presents the time series plot of the daily total whole-house electricity use of NZERTF
(kWh/day) for both years. Figure 9 presents the same data plotted against the daily average
OA temperature with the final 5-P change-point linear models for weekdays and weekends
separately because the energy consumption patterns were distinctively different between
weekdays and weekends. Figure 10 presents the same data plots by three different TTD
operations with all three 5-P models, including an all-day model, a weekday model, and a
weekend model.

The results showed that the daily total whole-house electricity use was strongly correlated to
the daily average OA temperature. The 5-P change-point linear models appeared to yield the
best-fit with:
e (YR1HTTD)R?=0.89 and CV-RMSE = 14.5% for Weekdays; R?= 0.88 and CV-RMSE =
10.2% for Weekends;
e (YR1LTTD)R?=0.89 and CV-RMSE = 17.9% for Weekdays; R?= 0.84 and CV-RMSE =
14.2% for Weekends; and
e (YR2)R?=0.86 and CV-RMSE = 14.7% for Weekdays; R?= 0.83 and CV-RMSE = 12.4%
for Weekends.

The weekend whole-house electricity use was consistently higher than the weekday electricity
use for all three TTD operations due to the higher lighting and plug loads/appliances
electrical use simulated for the weekends. Among the three TTD operations, YR2 had the
lowest weekday consumption. YR1T HTTD and YR1 LTTD had similar weekday use during the
heating months, while there was a slight deviation during the cooling months. Compared to
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Figure 9: Daily Total Whole-House Electricity Use Models for Weekdays and Weekends.
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Figure 10: Daily Total Whole-House Electricity Use Models by TTD Operations.
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the weekday electricity use, the difference in the weekend electricity use between the three
TTD operations was less obvious.

3.1.2. MAJOR END USES

Figure 11 presents the time series plot of the daily total conditioning electricity use of
NZERTF (i.e., HP for cooling and heating and WHD in kWh/day), which was about 49% and
43% of the whole-house electricity use on an annual basis for Year 1 and Year 2, respectively.
Figure 12 presents the same data plotted against the daily average OA temperature with the
final 5-P change-point linear models. Figure 13 presents the same data plots by three
different TTD operations with all three 5-P models, including an all-day model, a weekday
model, and a weekend model.

The results showed that the daily total conditioning electricity use was strongly correlated to
the daily average OA temperature. The 5-P change-point linear models appeared to yield the
best-fit with:

e (YR1HTTD) R?=0.89 and CV-RMSE = 25.6%;

e (YR1LTTD)R?=0.89 and CV-RMSE = 31.6%; and

e (YR2)R?=0.86 and CV-RMSE = 30.1%.

There was no clear difference in the conditioning electricity use between the weekdays and
weekends for all three TTD operations. Among the three TTD operations, YR2 had the lowest
consumption, while YR1 LTTD had the highest consumption at the same OA temperatures.

Figure 14 presents the time series plot of the daily total ventilation electricity use of NZERTF
(i.e., HRV in kWh/day), which was about 4% of the whole-house electricity use on an annual
basis for both years. Figure 15 presents the same data plotted against the daily average OA
temperature with the final 5-P change-point linear models. Figure 16 presents the same data
plots by three different TTD operations with all three 5-P models, including an all-day model,
a weekday model, and a weekend model.

The results showed that the daily total whole-house electricity use was moderately correlated
to the daily average OA temperature. The 5-P change-point linear models appeared to yield
the best-fit with:

e (YR1HTTD)R?= 0.56 and CV-RMSE = 2.5%;

e (YR1LTTD)R?=0.52 and CV-RMSE = 1.9%; and

e (YR2)R?=0.82 and CV-RMSE = 1.6%.

There was no clear difference in the ventilation electricity use between the weekdays and
weekends for all three TTD operations. Among the three TTD operations, YR2 had the lowest
consumption, while YR1T HTTD and YR1 LTTD had comparable energy consumption patterns.
The heating change-point temperature was almost same as the cooling change-point
temperature for both YR1 HTTD and YR1 LTTD.

Figure 17 presents the time series plot of the daily total lighting'® electricity use of NZERTF
(kWh/day), which was about 5% of the whole-house electricity use on an annual basis for both

10 The lighting electricity use in the basement was excluded in this analysis since there were a few occasions the
basement lights stayed on due to some activities at NZERTF.
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years. Figure 18 presents the same data plotted against the daily average OA temperature
with the final 1-P models for weekdays + Sundays and Saturdays separately because the
energy consumption patterns were distinctively different for Saturdays. Figure 19 presents
the same data plots by three different TTD operations with all three 1-P models, including an
all-day model, a weekday + Sunday model, and a Saturday model.

Not surprisingly, no relationship was observed between the daily total lighting electricity use
and the daily average OA temperature, which consequently yielded 1-P models (i.e., mean
models). The Saturday lighting electricity use was consistently higher than the weekday +
Sunday electricity use for all three TTD operations due to the higher lighting electrical use
simulated for the Saturdays. There was no difference in the calculated models between the
three TTD operations, which was expected.

Figure 20 presents the time series plot of the daily total plug loads + appliances electricity
use of NZERTF (i.e., plug loads, refrigerator, dish washer, cooktop, oven, clothes washer,
clothes dryer, and microwave in kWh/day), which was about 31% and 36% of the whole-
house electricity use on an annual basis for Year 1 and Year 2, respectively. Figure 21
presents the same data plotted against the daily average OA temperature with the final 1-P
models for MTTF (i.e., Mondays, Tuesdays, Thursdays, and Fridays), Wednesdays, Saturdays,
and Sundays separately because the energy consumption patterns were distinctively different
depending on the day of the week. Figure 22 presents the same data plots by three different
TTD operations with all five 1-P models, including an all-day model, a MTTF model, a
Wednesday model, a Saturday model, and a Sunday model.

Like lighting electricity use, no relationship was observed between the daily total plug loads
+ appliances electricity use and the daily average OA temperature, which consequently
yielded 1-P models (i.e., mean models). The Saturday plug loads + appliances electricity use
was the highest, which was followed by Sundays, Wednesdays, and other days-of-the-week
(i.e., MTTF) consumption. There was also a period when the plug loads + appliances
consumption was unusually higher than other days, which occurred from November 24, 2015
to December 15, 2015 due to the increased electrical use in the dining room. There was a
small difference in the calculated models between the three TTD operations, which might be
affected by a few outliers. YR2 had the highest plug loads + appliances electricity use, which
was followed by YR1T HTTD and YR1 LTTD.

Figure 23 presents the time series plot of the daily total domestic hot water electricity use of
NZERTF (i.e., HPWH in kWh/day), which was about 9% and 10% of the whole-house electricity
use on an annual basis for Year 1 and Year 2, respectively. Figure 24 presents the same data
plotted against the daily average OA temperature with the final 3-P heating models for
weekdays and weekends separately because the energy consumption patterns were
distinctively different between weekdays and weekends. Figure 25 presents the same data
plots by three different TTD operations with all five 3-P heating models, including an all-day
model, a weekday model, and a weekend model.

The daily total domestic hot water electricity use showed meaningful correlation to the daily
average OA temperature, although it was not strong. The 3-P heating change-point linear
models appeared to yield the best-fit with:
e (YR1HTTD) R?= 0.40 and CV-RMSE = 46.9% for Weekdays; R?= 0.42 and CV-RMSE =
40.0% for Weekends;
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e (YR1LTTD)R?=0.49 and CV-RMSE = 38.6% for Weekdays; R?= 0.62 and CV-RMSE =
33.2% for Weekends; and

e (YR2)R?=0.45 and CV-RMSE = 38.7% for Weekdays; R?= 0.42 and CV-RMSE = 40.0%
for Weekends.

The weekend domestic hot water electricity use was slightly higher than the weekday
electricity use for all three TTD operations due to the higher hot water use simulated for the
weekends. Between the three TTD operations, a small difference in the calculated models
was observed. High CV-RMSE also indicates additional independent variable that might
affect hot water electricity use.
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Figure 11: Daily Total Conditioning Electricity Use of the NZERTF.
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Figure 13: Daily Total Conditioning Electricity Use Models by TTD Operations.
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Figure 19: Daily Total Lighting Electricity Use Models by TTD Operations.
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Tuesdays, Thursdays, and Fridays), Wednesdays, Saturdays, and Sundays.

Page 34



25
(0]
%]
o)
& 20 A %
Qo 5 X
= ST ——_— T T — PR S T T T 1. T S S IOR—
38 151 =
3z
+
o< 10 1
=
o
= 5 4
©
[a)
0 T T T T T T T T T T T
-20 -15 -10 -5 0 5 10 15 20 25 30 35 40
Daily OA Temperrature (C)
YR1 HTTD MTTF YR1 HTTD Wed YR1 HTTD Sat
= YR1HTTD Sun 1P_YR1 HTTD_AIll Days 1P_YR1 HTTD_MTTF
1P_YR1 HTTD_Wed —— 1P_YR1HTTD_Sat =~ - 1P_YR1 HTTD_Sun
(a) YRTHTTD
25
(]
%]
=)
g 20 1 + o4 + +¢.YA‘._4.: iy
w o~ P o Bt grreres TR e bsssennasssssdonsasasssssesnedoassssssennass
a% 15 | Lo s -
2=
;E T ottt ettt - et el ~ el - M 9k Pt ] - et e S SN
= Gra 20 - 2 OGS
o B 5 &858 B
> 5 4
‘©
[a)
-20 -15 -10 -5 0 5 10 15 20 25 30 35 40
Daily OA Temperrature (C)
YR1LTTD MTTF o YR1LTTD Wed + YR1LTTD Sat
YR1LTTD Sun — - =1P_YR1 LTTD_AIll Days 1P_YR1 LTTD_MTTF
------------ 1P_YR1 LTTD_Wed —— 1P_YR1 LTTD_Sat weee 1P_YR1 LTTD_Sun
(b) YR1LTTD
25
(]
@ = =
o)
o 20 1 = B a5
i
T e S S
28 151
3z
+
o< 101
-]
o
= 5 4
‘©
(=)
0 T T T T T T T T T T T
-20 -15 -10 -5 0 5 10 15 20 25 30 35 40
Daily OA Temperrature (C)
YR2 MTTF o YR2 Wed -  YR2 Sat
YR2Sun  eeeeens 1P_YR2_All Days —— 1P_YR2_MTTF
1P_YR2_Wed —— 1P_YR2_Sat =~ e 1P_YR2_Sun
(c) YR2

Figure 22: Daily Total Plug Loads + Appliances Electricity Use Models by TTD Operations.
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14
@
b 12 1
[ .
i _§~ 10 1
Iz ¢
£
o~
L~ g
=
8 4
2 4
-20 -15 -10 -5 0 5 10 15 20 25 30 35 40
Daily OA Temperrature (C)
YR1 HTTD Weekday YR1 LTTD Weekday YR2 Weekday
3PH_YR1 HTTD_Weekday = ——3PH_YR1LTTD_Weekday = ——3PH_YR2_Weekday
(a) Weekday Model
14

12 1
10 1

Daily HPWH Elec. Use
(KWh/day)
[ee]

YR1 HTTD Weekend
3PH_YR1 HTTD_Weekend

Daily OA Temperrature (C)
+ YR1LTTD Weekend
3PH_YR1 LTTD_Weekend

(b) Weekend Model

- YR2 Weekend

40

3PH_YR2_Weekend

Figure 24: Daily Total Domestic Hot Water Electricity Use Models for Weekdays and
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Figure 25: Daily Total Domestic Hot Water Electricity Use Models by TTD Operations.
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3.2. WEATHER-NORMALIZED ENERGY USE COMPARISON

Figures 26 and 27 present the results of the savings calculations for the conditioning
electricity use: (a) measured savings and (b) predicted savings during the period of the Year
1 and Year 2 operations, respectively. The measured savings were calculated using the
measured electricity use if available, while the predicted savings were calculated only using
the predicted electricity use.

The savings percentages calculated on an annual basis were same regardless of the use of
either measured or predicted electricity use. The conditioning electricity use would be
reduced if the YR1 LTTD operation was applied: 3.2% (204 kWh/year) in the period of the
Year 1 operation; and 3.3% (197 kWh/year) in the period of the Year 2 operation. If the YR2
TTD operation was applied, the conditioning electricity use would be further reduced: 19.0%
(1,199 kWh/year) in the period of the Year 1 operation; and 18.3% (1,094 kWh/year) in the
period of the Year 2 operation. These savings calculated for the Year 2 operation were lower
than the whole-house electricity savings reported in Fanney et al. (2017), which was 1,241
kWh savings. This is expected because the savings calculated in this study did not include the
savings from ventilation energy.

The monthly savings calculated for the YR1 LTTD operation were negative (i.e., increased
electricity use) during the heating months, while positive savings were calculated during the
cooling months. The positive savings were calculated for the YR2 TTD operation throughout
a year, which tended to increase during the heating months.
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Figure 26: Monthly Conditioning Electricity Savings Against the YR1 HTTD Operation during
the Period of the Year 1 Operation.
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Figure 27: Monthly Conditioning Electricity Savings Against the YR1 HTTD Operation during
the Period of the Year 2 Operation.

" No measured savings were calculated for the YR1 LTTD operation since both the YR1T HTTD and YR1 LTTD consumptions is

predicted electricity use.
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3.3. STATISTICAL CHARACTERIZATION OF LONG-TERM ROOM TEMPERATURE
AND HUMIDITY

This study performed a statistical characterization of the continuously-measured long-term
temperature and humidity data not only for the primary rooms but also for the attic and the
basement that are thermally important due to possible heat transfer from/to the primary
rooms. The granular temperature and humidity data were divided into subgroup by the TTD
operations and the heat pump on/off cycle in addition to the season (i.e., cooling season,
heating season, and transitional season) to understand the impact of different TTD controls
on thermal comfort dynamics. Figure 28 presents the modified box and whisker plots used in
this analysis. Data were color-coded by TTD operations: yellow for YR1 HTTD, dark orange
for YR1 LTTD, and green for YR2.

3.3.1. ROOM TEMPERATURE

Figures 29 to 31 graphically present the statistical characterization of the long-term room
temperature data with a superimposed ACCA Manual RS benchmarks (i.e., thermostat
setpoint £1.7°C (+3°F) for a cooling season; and thermostat setpoint £1.1°C (£2°F) for a
heating season). This includes the 10" percentile for the lower whisker and the 90™ percentile
for the upper whisker, in addition to 1.5%, 2.5t%, 5t 25t 50t 75t 95t 97 5t and 98.5%
percentiles, as well as minimum, mean, and maximum values for air temperature by season:

cooling season in Figure 29, heating season in Figure 30, and transitional season in Figure
31.

1 max ] max 71 max
98.5t 98.5t -+ 98.5t
975t 97.5t O 97.5t
g5th g5th 2 g5th
goth goth goth

T 75t T 75t T 75t
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25th 25th 25th
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Bth Bth /\ 5t

2.5t 2.5t O 2.5
1.5 1.5 + 1.5%
min 1 min 1 min

Figure 28: Modified Box and Whisker Plot to Display Continuously-Measured 5-Min Average
Thermal Comfort Data for YR1 HTTD (Yellow), YR1 LTTD (Dark Orange), and YR2
(Green).
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Important observations on the room temperature during the cooling season (Figure 29) are:

e There was a noticeable difference in the OA temperature when the heat pump was on
cycle versus off cycle. When the heat pump cycled on, the OA temperature was higher
by 3.0°C (YR1 HTTD), 3.9°C (YR2 LTTD), and 4.6°C (YR2) on average. The system
cycled on for about 63% (YR1 HTTD), 55% (YR1 LTTD), and 64% (YR2) of the time.

e Primary rooms on the first floor (i.e., LR and KIT)

The rooms on the first floor were colder than the rooms on the second floor, of
which temperatures tended to be lower than the setpoint temperature (i.e., 23.9°C
(75°F)) for all three TTD operations. This was caused by the natural stratification of
warm air.

There was a noticeable difference in the measured first-floor room temperatures
between the three TTD operations. YR2 maintained the lowest living room
temperatures with average temperatures of 22.6°C during the heat pump on
cycle. This is a result of overcooling caused by the use of a different thermostat
with an additional remote temperature sensor located in the second-floor hallway
during the YR2 operation'2.

YR1 HTTD had the highest room temperatures with an average living room
temperature of 23.6°C during the on cycle. YR1 LTTD with lowered differential
temperatures and shortened delay time had an average living room temperature
of 23.3°C during the on cycle.

YR1 HTTD had the largest temporal variations with the highest interquartile range
(i.e., IQR = 75" quartile - 25" quartile) of 0.43°C in the living room during the on
cycle. YR1 LTTD and YR2 had similar temporal variations with IQRs of 0.27°C (YR1
LTTD) and 0.28°C(YR2) in the living room.

There was no meaningful difference in the room temperatures when the heat
pump was on cycle versus off cycle for all three TTD controls.

e Primary rooms on the second floor (i.e., MBR, BR2, and BR3)

YR2 maintained the lowest room temperatures, while YR1T HTTD and YR1 LTTD
had comparable second-floor room temperatures.

YR2 also maintained better temporal variations with the smallest IQRs, which was
followed by YR1 LTTD and YR1 HTTD.

There was no meaningful difference in the room temperatures when the heat
pump was on cycle versus off cycle except for BR2. When the heat pump was on,
the BR2 temperature was higher by 0.3°C on average for all three TTD operations.

e Atticand BSMT

Like the rooms on the second floor, YR2 maintained the lowest attic temperatures,
while YR1T HTTD and YR1 LTTD had comparable attic temperatures.

Unlike other primary rooms, there was a meaningful difference in the attic
temperature when the heat pump was on cycle versus off cycle by 0.5°C on
average (YR1 HTTD), 0.7°C on average (YR1 LTTD), and 0.6°C on average (YR2)
(i.e., hotter when the heat pump was on cycle).

12 The average of two temperature sensors (i.e., thermostat sensor in the living room and the remote sensor in the
second-floor hallway) was used to control the heat pump system.
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Not surprisingly, the basement temperatures were consistently colder than other
rooms in the house, which might be also affected by the heat pump water heater
located in the basement.

Comparison to the ACCA Manual RS benchmarks for Primary Rooms (Higher
Temperature Side):

There were occasions when the room-to-thermostat temperature differences
exceeded the ACCA Manual RS cooling benchmark on the high side, which is a
comfort penalty in the cooling season. However, the occasions were less than 10%
(YR1 HTTD) and 5% (YR1 LTTD) of the period based on 90™ and 95" percentiles
except for the BR2. BR2 had non-compliances over 25% of the period with the YR1
HTTD operation.

A further inspection revealed that this deviation consistently occurred at a specific
time of the days when the resistance heating boxes in BR2 were turned on to
simulate the scheduled internal loads (i.e., occupancy, plug loads, and lighting). In
addition, unlike other bedrooms, constant 20 W base loads remained on in BR2
for both years, which increased the amount of internal heat gains in BR2 compared
to other bedrooms.

Comparison to the ACCA Manual RS benchmarks for Primary Rooms (Lower
Temperature Side):

There were also occasions when the room-to-thermostat temperature differences
exceeded the ACCA Manual RS cooling benchmark on the low side in the first-
floor rooms, especially in the kitchen.

The KIT had a relatively long period of low-side deviation, which was more
frequent with the YR2 operation during the heat pump on cycle.

Important observations on the room temperature during the heating season (Figure 30) are:
There was a noticeable difference in the OA temperature when the heat pump was on
cycle versus off cycle. When the heat pump cycled on, the OA temperature was lower
by 6.0°C (YR1 HTTD), 6.5°C (YR2 LTTD), and 7.5°C (YR2) on average. The system
cycled on for about 68% (YR1 HTTD), 75% (YR1 LTTD), and 65% (YR2) of the time.

Primary rooms on the first floor (i.e., LR and KIT)

The rooms on the first floor had similar or slightly lower temperatures to the rooms
on the second floor, which resulted in a better whole-house temperature
uniformity for the heating season.

Like the cooling season, the room temperatures were lower than the heating
setpoint temperature (i.e., 21.1°C (70°F)) for all three TTD operations. The YR2
operation that controlled the heat pump system based on the average
temperature of the living room and second-floor hallway maintained the warmest
temperatures, which was nearer to the heating setpoint temperature.

YR1 HTTD and YR1 LTTD had tightly-controlled temperature conditions with
smaller IQRs compared to the YR2 operation, especially in the LR during the
system on cycle.

Primary rooms on the second floor (i.e., MBR, BR2, and BR3)
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— Similar to the first-floor bedrooms, the second-floor room temperatures tended to
be lower than the heating setpoint temperature for all three TTD operations,
though to a lesser extent. BR3 maintained the warmest temperature.

— The YR1 HTTD operation had the lowest temperatures among the three TTD
operations.

— The three TTD operations had comparable temporal variations although the YR2
operation tended to have slightly higher IQR in MBR.

— Unlike the cooling season, there was a meaningful difference in the room
temperatures when the heat pump was on cycle versus off cycle, which was to a
greater extent with the YR2 operation especially in BR2. This indicates the system
cycled off once it reached the desired temperature, which is expected.

Attic and BSMT

— Like the rooms on the second floor, the YR1 HTTD operation had the lowest attic
temperatures among the three TTD operations, and the YR2 operation had the
highest temporal variations. The attic temperatures were warmer when the heat
pump cycled off.

— Not surprisingly, the basement temperatures were lower than other rooms’
temperatures but to a lesser extent compared to the cooling season.

Comparison to the ACCA Manual RS benchmarks for Primary Rooms (Higher

Temperature Side):

— There were few occasions when the room-to-thermostat temperature differences
exceeded the ACCA Manual RS heating benchmark on the high side, especially in
the second-floor bedrooms and attic during the heat pump cycled off. This can be
explained by the natural stratification of warm air during the heat pump off cycle.

Comparison to the ACCA Manual RS benchmarks for Primary Rooms (Lower

Temperature Side):

— There were occasions when the room-to-thermostat temperature differences
exceeded the ACCA Manual RS heating benchmark on the low side, which is a
comfort penalty in the heating season. The observed low-side deviation was worse
during the YR2 operation especially when the heat pump cycled on.

Important observations on the room temperature during the transitional season (Figure 31)

are:
°

Although the daily average OA temperature during the transitional season was
between 7.5°C and 17.2°C"3, the 5-min OA temperatures had a wide temporal
variation: from -1.0°C to 24.4°C (YR1 HTTD), from -1.2°C to 26.6°C (YR1 LTTD) and
from 0.8°C to 25.4°C (YR2). As a result, the heat pump system occasionally cycled on
for about 10% (YR1 HTTD), 12% (YR1 LTTD), and 9% (YR2) of the time. Due to the
small sample size of the system on cycle, discussion of transitional season data focuses
on the data collected during the heat pump off cycle.

Primary rooms on the first floor (i.e., LR and KIT)
— Like other seasons, the rooms on the first floor were colder than the rooms on the
second floor due to the natural stratification of warm air.

13 A detailed explanation of the proposed data decomposition is provided in Section 2.3.1.
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— Not surprisingly, the room temperatures varied a lot more than other seasons (i.e.,
cooling and heating seasons) between the heating setpoint and the cooling
setpoint temperatures for all three TTD operations when the system cycled off.

— On average, the three TTD operations had comparable off-cycle room
temperatures, although YR1 HTTD had a wider temporal variation compared to
other TTD operations.

Primary rooms on the second floor (i.e., MBR, BR2, and BR3)
— The second-floor rooms had very similar observations to those of the first-floor
rooms as described above.

Attic and BSMT

— There was not a noticeable difference in the attic temperatures between the three
operations on average, but the observed temporal variations were wider with the
YR1 HTTD, which agreed with the observations made for primary rooms.

— Like other seasons, the basement temperatures were consistently colder than
other rooms in the house.

Comparison to the ACCA Manual RS benchmarks for Primary Rooms (Higher

Temperature Side):

— There were no occasions when the room-to-thermostat temperature differences
exceeded the ACCA Manual RS cooling benchmark on the high side for the
primary rooms.

Comparison to the ACCA Manual RS benchmarks for Primary Rooms (Lower

Temperature Side):

— There were occasions when the room-to-thermostat temperature differences
exceeded the ACCA Manual RS heating benchmark on the low side especially in
the first-floor rooms. The deviation was more obvious with the YRT HTTD
operation, which might be affected by its relaxed differential temperatures.
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Figure 29: Graphical Summaries of the 5-Min Average Room Temperatures When the Heat Pump Was On (Left Figure) and Off
(Right Figure) for the Cooling Season.
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Figure 30: Graphical Summaries of the 5-Min Average Room Temperatures When the Heat Pump Was On Cycle (Left Figure) and
Off Cycle (Right Figure) for the Heating Season.
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Figure 31: Graphical Summaries of the 5-Min Average Room Temperatures When the Heat Pump Was On Cycle (Left Figure) and
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3.3.2. ROOM HUMIDITY

Figures 32 to 37 graphically present the statistical characterization of the long-term room
relative humidity and absolute humidity levels (i.e., humidity ratio in g H20/kg dry air). The RH
plots include a superimposed dehumidifier setpoint RH (i.e., 50% RH'*) and other relevant RH
benchmark: 30% to 60% RH as reported by Sterling et al. (1985) and more recently by Derby
and Pasch (2017)". The humidity ratio plots include a superimposed ASHRAE Standard 55-
2017 benchmark: 12 g/kg maximum humidity ratio limit'® (ASHRAE 2017).

The plots display the 10™ percentile for the lower whisker and the 90t percentile for the
upper whisker, in addition to 1.5%, 2.5%, 5%, 25t 50t 75t 95t 97 5t and 98.5" percentiles,
as well as minimum, mean, and maximum values for room humidity ratio by season:

e RH (Figure 32) and humidity ratio (Figure 33) for the cooling season;

e RH (Figure 34) and humidity ratio (Figure 35) for the heating season; and

e RH (Figure 36) and humidity ratio (Figure 37) for the transitional season.

Important observations on the room humidity during the cooling season (Figures 32 and 33)
are:
e When the heat pump cycled off, the OA RH was higher by 2.6% RH (YR1 HTTD), 5.9%
RH (YR1LTTD), and 11.7% RH (YR2) on average, which was partially affected by the
temperature-dependent nature of the metric (i.e., relative humidity) rather than actual
OA moisture levels.

e Room Humidity

— When the heat pump cycled on, the room RH levels were well within the optimum
RH range between 30% and 60% for most of the measurement period except for
the KIT. The KIT had a higher percentage of the high-side deviation (i.e., over 60%
RH). The KIT RH levels were also higher than other rooms in general.

— There were few occasions when the humidity ratios exceeded the maximum
humidity ratio limit of the ASHRAE Standard 55, which was less than 1.5% of the
period except for the kitchen. Kitchen had a few more occasions exceeding the
maximum limit, 12 g/kg.

— The second-floor room RH levels were lower than the first-floor RH levels, which
was affected by warmer second-floor room temperatures rather than lower
absolute humidity levels. In terms of absolute humidity levels, the second-floor
rooms had similar or slightly higher humidity ratios compared to the first-floor
rooms.

— When comparing the three TTD operations, the YR2 operation tended to have
higher RH, which was noticeable in the first-floor rooms, including the LR where
the humidistats were located. This was partially affected by the lower room
temperature during the YR2 operation. However, considering the dehumidifier
setpoint based on relative humidity (i.e., 50% RH), the dehumidification

4 The ASHRAE Standard 62.1-2016 (ASHRAE 2016) limits the relative humidity of occupied spaces to 65% or less
at the dehumidification design conditions, which was revised to a maximum dew point of 15°C (60°F) in the 2019
edition of the ASHRAE Standard 62.1-2019 (ASHRAE 2019b).

15 The ACCA Manual RS (1997) also suggests a 60% RH as the upper limit for human comfort during the cooling
season.

16 The latest version of the ASHRAE Standard 62.1-2019 (ASHRAE 2019b) limits the dew point of occupied spaces
to 15°C (60°F) or less in mechanically cooled buildings, which is equivalent to a humidity ratio of 11 g/kg.
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performance during the Year 1 operation were better than that during the Year 2
operation.

— When the heat pump cycled off, the room RH and humidity ratios tended to have
slightly larger interquartile ranges for all three TTD operations. However, the
basement that did not directly get the OA ventilation from the HRV maintained
similar room RH and humidity ratios regardless of the heat pump on and off cycle
with very small IQRs.

Important observations on the room humidity during the heating season (Figures 34 and 35)
are:
e When the heat pump cycled on, the OA RH was higher by 11.4% RH (YR1 HTTD), 5.6%
RH (YR1 LTTD), and 3.4% RH (YR2) on average, which was partially affected by colder
OA temperatures.

e Room Humidity

— When the heat pump cycled on, the room RH levels were below the lower limit of
the optimum RH range (i.e., below 30% RH) for most of the measurement period,
except for the BSMT.

— There was no occasion when the humidity ratio exceeded the maximum humidity
ratio limit of the ASHRAE Standard 55 during the heating season.

— The second-floor room RH and humidity ratios were slightly lower than the first-
floor RH and humidity ratios. The BR2 and BR3 had the lowest room humidity,
while the basement had the highest RH and humidity ratios.

— When comparing the three TTD operations, the YR2 operation had higher RH and
humidity ratios, which was noticeable during the off cycle. Meanwhile, the YR1
LTTD operation had the lowest RH and humidity ratios across the house, which
aligns with the lowest OA RH conditions during the period of the YR1 LTTD
operation.

— When the heat pump cycled off, the room RH and humidity ratios tended to be
slightly higher than those during the heat pump on cycle with slightly larger
interquartile ranges regardless of the TTD operations.

— The basement had the highest RH and humidity ratios.

Important observations on the room humidity during the transitional season (Figures 36 and
37) are:

e During the transitional season when the system mostly cycled off'’, there was a
noticeable difference in the measured OA RH levels between the three TTD
operations, which tended to be higher than the OA RH levels during the heating
season but lower than the OA RH levels during the cooling season. The OA RH levels
during the YR1 LTTD operation were noticeably lower than those during the other
TTD operations.

e Room Humidity
— Like the OA RH levels, the room RH levels during the transitional season were
higher than the room RH levels during the heating season but lower than the room
RH levels during the cooling season.

7 Due to the small sample size of the heat pump on cycle, discussion of transitional season data focuses on the
data collected during the system off cycle.
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— There were very few occasions when the humidity ratios exceeded the maximum
humidity ratio limit of the ASHRAE Standard 55 only in the kitchen and BR3.

— Like other seasons, the room RH levels of the first-floor rooms were higher than the
levels of the second-floor rooms.

— Like the heating season, the YR1 LTTD operation had the lowest RH and humidity

ratios across the house, which aligns with the lowest OA RH conditions during the
period of the YR1 LTTD operation.
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Figure 33: Graphical Summaries of the 5-Min Average Room Humidity Ratio When the Heat Pump Was On Cycle (Left Figure) and

Off Cycle (Right Figure) for the Cooling Season.
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Figure 34: Graphical Summaries of the 5-Min Average Room Relative Humidity When the Heat Pump Was On Cycle (Left Figure)

and Off Cycle (Right Figure) for the Heating Season.
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Figure 36: Graphical Summaries of the 5-Min Average Room Relative Humidity When the Heat Pump Was On Cycle (Left Figure)

and Off Cycle (Right Figure) for the Transitional Season.
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Figure 37: Graphical Summaries of the 5-Min Average Room Humidity Ratio When the Heat Pump Was On Cycle (Left Figure) and

Off Cycle (Right Figure) for the Transitional Season.
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3.4. ADVANCED CHARACTERIZATION OF TEMPORAL VARIATIONS RELATIVE TO
OUTDOOR TEMPERATURE AND HUMIDITY

To better understand the observed temporal variations of the long-term room temperature
and humidity data, which was revealed from statistical characterization, this study performed
an advanced characterization of the measured room temperature and humidity variations
relative to outdoor weather conditions using a 5°C (9°F) interval binned quartile analysis. This
allowed a weather-normalized characterization and comparison of the impact of the three
TTD operations on thermal comfort dynamics.

3.4.1. ROOM TEMPERATURE

Figures 38 to 40 present the results of the binned room air temperatures relative to outdoor
temperature for the three rooms, including the living room where the thermostat was located
and the two rooms representing each floor (i.e., KIT and BR2). Appendix E provides the
results for other rooms (i.e., MBR, BR3, ATTIC, and BSMT) as supplementary materials. Each
figure consists of the six plots: (a) YR1 HTTD on cycle; (b) YRT HTTD off cycle; (c) YR1 LTTD on
cycle; (d) YR1 LTTD off cycle; (e) YR2 on cycle; and (f) YR2 off cycle.

Important observations are:
e LR during the heat pump on cycle (Figure 38 (a), (c), and (e))

— The LR temperature where the thermostat was located was consistently lower than
the setpoint temperature regardless of outdoor air temperature, which needs a
further investigation considering the proximity of the thermostat to the LR
measurement stand.

— The YR1 HTTD operation had a few occasions when the room temperatures
approached 19°C at low OA temperature bins (i.e., below 10°C temperature bins).
This was caused by the 1 stage heating differential temperature set higher before
November 19, 2013, which was reduced from 1.1°C to 0.6°C. In addition, a
delayed or no response of the heat pump’s 2" and 3" stage heating was
observed during the YR1 HTTD operation.

— The YR1 LTTD operation controlled the room temperatures tighter than other TTD
operations without extreme outliers regardless of outdoor air temperature with
smaller interquartile ranges. This was affected by the lowered differential
temperatures for the 2" and 3" stage heating along with the associated delay
time that was also shortened.

— The YR2 operation controlled the room temperatures much lower than the cooling
setpoint during the cooling season (i.e., 15°C to 35°C OA temperature bins). This
is a result of overcooling caused by the use of a different thermostat with an
additional remote temperature sensor located in the second-floor hallway during
the YR2 operation'®.

— The YR2 operation also had the coldest room temperature at the very low OA
temperatures (i.e., -15°C and -10°C OA temperature bins), while the heat pump
system ran constantly. This was affected by an improved control strategy of the
backup electric resistance heater (i.e., 3™ stage heating) by removing associated
delay time to minimize its use.

8 The average of two temperature sensors (i.e., thermostat sensor in the living room and the remote sensor in the
second-floor hallway) was used to control the heat pump system.
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LR during the heat pump off cycle (Figure 38 (b), (d), and (f))

Not surprisingly, the LR temperatures during the heat pump off cycle had higher
temporal variations, which occurred to a greater extent at the mild OA
temperatures (i.e., 10°C and 15°C OA temperature bins).

Compared to the conditions during the heat pump on cycle, the room
temperatures during the off cycle were slightly warmer at the low OA
temperatures and slightly lower or almost identical at the high OA temperature for
all three TTD controls. This might be affected by small 1% stage differential
temperatures such as 0.6°C for the YR1 operation and 0.3°C for the YR2 operation.

KIT during the heat pump on cycle (Figure 39 (a), (c), and (e))

The KIT had slightly larger temporal variations than the LR.

Similar to the LR results, the KIT temperature was consistently lower than the
setpoint temperature regardless of OA temperature, and the YR1 LTTD operation
tended to have tighter room temperatures than the YR1 HTTD and YR2
operations. The KIT also appeared to have slightly higher room temperatures at
the very low OA temperatures (i.e., -15°C and -10°C OA temperature bins).

One interesting trend observed in the kitchen with all three TTD operations was
the KIT temperatures decreased with increasing OA temperatures during the
cooling season (i.e., 30°C and 35°C OA temperature bins).This is the opposite of
the trends observed in other primary rooms and indicates a possible overcooling
issue in the KIT at the higher OA temperatures, which needs a further
investigation.

KIT during the heat pump off cycle (Figure 39 (b), (d), and (f))

Similar to the LR results, the KIT temperatures during the off cycle were slightly
warmer at the low OA temperatures and slightly lower or almost identical at the
high OA temperature.

The observed counter-intuitive trend during the HP on cycle was also observed for
the off cycle.

BR2 during the heat pump on cycle (Figure 40 (a), (c), and (e))

Unlike the first-floor rooms, the BR2 appeared to have room temperatures higher
than the cooling setpoint during the cooling season for all three TTD operations,
which was affected by natural stratification of warm air to higher elevations.

The YR2 operation could maintain the lowest BR2 room temperatures which
resulted from the use of the average temperature of the living room and the
second-floor hallway to control the heat pump system.

BR2 during the heat pump off cycle (Figure 40 (b), (d), and (f))

Like the other rooms, the BR2 temperatures during the heat pump off cycle had
higher temporal variations, which occurred to a greater extent at the mild OA
temperatures (i.e., 10°C and 15°C OA temperature bins).

Figure 41 displays the median values of the binned room temperatures of all seven rooms
(i.e., LR, KIT, MBR, BR2, BR3, ATTIC, and BSMT) for a comparison between rooms: (a) 1F
rooms and ATTIC HP on cycle; (b) 1F rooms and ATTIC HP off cycle; (c) 2F rooms and BSMT
HP on cycle; and (d) 2F rooms and BSMT HP off cycle. The rooms on each floor had similar
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indoor-outdoor temperature relationship to some extent within each TTD operation except
for the kitchen'?. As a result, Figure 42 displays the median values of the binned room
temperatures averaged by floor (i.e., 1F and 2F) for simplicity: (a) HP on cycle and (b) HP off
cycle. Lastly, Figure 43 presents the binned room-to-room temperature differences (i.e., AT
(°C) = MAX(Troom1, Troom2, ...) - MIN(Troom1, Troom2, ...)) relative to outdoor temperature
with a superimposed ACCA Manual RS benchmarks (i.e., 1.67°C (3°F) average and 3.33°C
(6°F) maximum for a cooling season; and 1.11°C (2°F) average and 2.22°C (4°F) maximum for
a heating season).

During the cooling months, there was an obvious difference in the maintained room
temperatures by floor between the three TTD operations under the same OA temperatures.
The YR2 operation maintained the second-floor bedrooms and the attic colder at the high
OA temperatures, which was nearer to the cooling setpoint temperature. However, the first-
floor bedroom were overcooled during the YR2 operation, which resulted in the largest
temperature deviation from the cooling setpoint temperature.

During the heating months, the YR2 maintained warmer temperature at the 0°C OA
temperature bins. However, at the very low OA temperatures, the YR2 operation had lower
room temperatures, which was affected by an improved control strategy to minimize the use
of backup electric resistance heater.

In terms of the room-to-room temperature differences, all three TTD operations had stronger
association with the OA temperature during the cooling season (i.e., at the high OA
temperature bins). Among the three TTD operations, YRT HTTD maintained better thermal
uniformity with lower room-to-room temperature differences at the OA temperatures
between 15°C and 30°C, while the YR2 operation had the highest room-to-room temperature
differences. However, during the heating season, YR2 had slightly better temperature
uniformity across the house with lower room-to-room temperature differences especially at
the very low OA temperatures (i.e., -15°C and -10°C OA temperature bins). This might be
affected by the heat pump running constantly to meet the heating setpoint temperature at
this low OA temperatures without activating the backup electric resistance heater during the
YR2 operation.

19 The kitchen had decreasing room temperatures with increasing OA temperatures when the CDHP was in
operation during the cooling season.
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Figure 40: Binned BR2 Room Air Temperatures Against Outdoor Temperatures.
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Figure 43: Binned Room-To-Room Temperature Differences Against Outdoor Temperatures.




3.4.2. ROOM HUMIDITY

Figures 44 to 46 present the results of the binned room absolute humidity levels (i.e.,
humidity ratio in g H2O/kg dry air) relative to outdoor dew point temperatures for the three
rooms, including the living room where the thermostat was located and the two rooms
representing each floor (i.e., KIT and BR2). Appendix E provides the results for other rooms
(i.e., MBR, BR3, MBA, and BSMT) as supplementary materials. Each figure consists of the six
plots: (a) YR1 HTTD on cycle; (b) YR1T HTTD off cycle; (c) YR1 LTTD on cycle; (d) YR1 LTTD off
cycle; (e) YR2 on cycle; and (f) YR2 off cycle.

Important observations are:

e All primary rooms appeared to have an association between the outdoor and indoor
absolute humidity levels to some extent regardless of the type of TTD operations. The
observed relationship was not linear and was less clear at the lower or the higher
outdoor dew point temperatures.

e Atthe high outdoor dew point temperatures (i.e., cooling season), the
dehumidification controls applied to the Year1 and Year 2 operations effectively
removed moisture from the air and maintained humidity ratios in the rooms below the
upper recommended humidity limit of the ASHRAE Standard 55-2017 (i.e., 12 g/kg,
which is equivalent to 17.2°C (63°F) dew point temperature) for most of the
measurement period.

e There were a few incidences when the maximum humidity ratios exceeded 0.012
kg/kg, which occurred in the KIT during the YR1 LTTD operation and in all second-
floor bedrooms during the YR1 HTTD operation.

Figure 47 displays the median values of the binned room absolute humidity ratio of all six
rooms (i.e., LR, KIT, MBR, BR2, BR3, and BSMT) for a comparison between rooms: (a) 1F
rooms and BSMT HP on cycle; (b) 1F rooms and BSMT HP off cycle; (c) 2F rooms HP on cycle;
and (d) 2F rooms HP off cycle. Figure 48 displays the median values of the binned room
humidity ratios averaged by floor (i.e., 1F and 2F) for simplicity: (a) HP on cycle and (b) HP off
cycle. Lastly, Figure 49 presents the binned room-to-room humidity ratio difference (i.e., AW
(g/kg) = MAX(Wroom1, Wroom2, ...) - MIN(Wroom1, Wroom2, ...)) relative to outdoor dew point
temperature.

During the cooling months, there was no noticeable difference in the maintained room
humidity ratios between the three TTD operations under the same OA dew point
temperatures. During the heating months, there was an obvious difference in the maintained
room humidity ratios between the three TTD operations. The YR1 LTTD operation had the
lowest humidity ratios (i.e., driest) under the same OA dew point temperatures, while the YR2
operation had the highest humidity ratios. In addition, the first-floor rooms appeared to have
higher humidity ratios than the ratios of the second-floor rooms.

In terms of the room-to-room humidity ratio differences, their relationship with the OA dew
point temperature was less stronger compared to the room-to-room temperature
differences, although they tended to increase at the high OA dew point temperatures.
Among the three TTD operations, YR1 HTTD maintained better thermal uniformity with
slightly lower room-to-room humidity ratio differences at the OA dew point temperatures
above 15°C. The YR2 operation tended to have larger temporal variations.
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Figure 44: Binned LR Room Air Humidity Ratios Against Outdoor Dew Point Temperatures.
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Figure 45: Binned KIT Room Air Humidity Ratios Against Outdoor Dew Point Temperatures.
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Figure 46: Binned BR2 Room Air Humidity Ratios Against Outdoor Dew Point Temperatures.
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3.5. TIME-OF-DAY CHARACTERIZATION

Another characterization performed in this study to better understand the observed temporal
variations of the long-term temperature data at NZERTF was a time-of-day analysis of hourly
average room temperature data using a time-of-day colored map (i.e., heat map). At NZERTF,
the activities of a family of four (i.e., two adults and two children) were simulated in terms of
electrical use (i.e., appliances and lighting), hot water use, and metabolic heat and moisture
generation based on a consistent schedule. This provides a unique opportunity to
understand the dynamic interactions between uneven internal heat gains from occupants,
lighting, appliances, and miscellaneous electronic devices and the measured thermal
conditions since they can have significant localized impacts on indoor climates even in low-
load houses (Stecher et al. 2012).

Figures 50 to 52 present the results for the three rooms, including the living room where the
thermostat was located and the two rooms representing each floor (i.e., KIT and BR2).
Appendix F provides the results for other rooms (i.e., MBR, BR3, BR4, and DR) as
supplementary materials. Each figure consists of the six plots: (a) YRT HTTD on cycle; (b) YR1
HTTD off cycle; (c) YR1 LTTD on cycle; (d) YR1 LTTD off cycle; (e) YR2 on cycle; and (f) YR2 off
cycle.

In the figures, the heat pump thermostat’'s TTD operations was color-coded (i.e., yellow for
YR1 HTTD, dark orange for YR1 LTTD, and green for YR2) and displayed in the first row
named TTD Operation. The season classification was also color-coded (i.e., blue for the
cooling season, dark red for the heating season, and grey for the transitional season) and
displayed in the second row. The non-colored cells represent the data collected during the
25 days that were excluded from the analysis, as described in Appendix B.

Each room consists of the following three plots with the corresponding color key on the left
side of each plot:

e (a) hourly average room temperatures with a continuous scale from 17°C to 27°C;

e (b) hourly average room-to-thermostat temperature difference (i.e., AT (°C) = Troom -
Tsetpoint) with a discrete scale to represent the following seven value ranges; and
- >1.67: AT above 1.67°C (3°F)

- +1.67: AT from 1.11°C to 1.67°C (2°F to 3°F)

- +1.11: AT from 0.56°C to 1.11°C (1°F to 2°F)

- =0.56: AT from -0.56°C to 0.56°C (-1°F to 1°F)
- -1.11: AT from -1.11°C to -0.56°C (-2°F to -1°F)
- -1.67: AT from -1.67°C to -1.11°C (-3°F to -2°F)
— <-1.67: AT below -1.67°C (-3°F))

e (c) ACCA Manual RS compliance based on an hourly average room-to-thermostat
temperature difference while the favorable temperature differences (i.e., AT below
0°C in the cooling season and AT above 0°C in the heating season) were intentionally
color-coded using green?.

— >=x1.67 (red): AT above 1.67°C (cooling season) and
AT below -1.67°C (heating season)

20The color-coding system of the transitional season followed the cooling season if the corresponding room
temperature was above the cooling setpoint temperature (i.e., 23.8°C) or the heating season if the corresponding
room temperature was below the heating setpoint temperature (i.e., 21.1°C).
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— *1.67 (peach): AT from 1.11°C to 1.67°C (cooling season) and
AT from -1.67°C to -1.11°C (heating season)

- =1.11 (light green): AT from 0.56°C to 1.11°C (cooling season) and
AT from -1.11°C to -0.56°C (heating season)
— =0.56(green): AT below 0.56°C (cooling season) and

AT above -0.56°C (heating season)

In this way, the red cells represent only the hours when the room temperatures
unfavorably exceeded the ACCA benchmarks (i.e., AT above 1.67°C in the cooling
season and AT below 1.67°C in the heating season). Due to the more stringent ACCA
benchmark for a heating season (i.e., thermostat setpoint +1.11°C (£2°F)), the peach
cells in the heating season also represent a non-compliant period.

Different temporal patterns were observed, which was mostly affected by the schedule of
internal loads simulated in each room. For example, the LR temperature was always lower
during the nighttime before the sun rises, which was affected by no presence of the
simulated occupancy/plug loads in the LR at night. However, the opposite pattern (i.e., lower
BR2 temperatures during the daytime due to no presence of the simulated occupancy) was
observed in the BR2.

These maps also allowed the identification of non-compliant periods based on the ACCA
Manual RS benchmarks and the resulting thermal discomfort. For example, during the Year 1
operation, the unfavorable non-compliant period (i.e., red and peach in a heating season;
red in a cooling season in Figure 48 (c) and (f)) in the LR mainly occurred during the heating
days before November 19, 2013 when the 1% stage heating differential temperature was set
higher. In addition, delayed or no responses of the heat pump’s 2"¢ and 3" stage heating
were occasionally observed during the YR1 HTTD operation. In addition, non-compliance in
the LR mostly occurred at nighttime when there were no internal heat gains.

Like the Year 1 operation, the unfavorable non-compliant period in the LR during the Year 2
operation occurred when the heat pump was in the heating mode. They mainly occurred on
cold winter days of which nighttime OA temperatures were below 0°C. The observed
temporal patterns of the unfavorable non-compliant period for the KIT resembled those for
the LR, though to a lesser extent.

In the BR2, the unfavorable non-compliance occurred through a year during the Year 1
operation. During the year 2 operation, the unfavorable non-compliant period in the BR2
occurred only when the heat pump was in the heating mode. It should be noted that the BR2
had a lot more non-compliances when the heat pump was in the cooling mode compared to
other second-floor bedrooms (Appendix F). This occurred at a specific time of the days due
to the combined effect of the scheduled internal loads (i.e., occupancy, plug loads, and
lighting) and the constant 20 W base loads remained on in BR2.

As explained above, the heating non-compliance includes both red (AT below -1.67°C) and
peach (AT from -1.67°C to -1.11°C). Unlike the Year 1 operation, a few extreme incidences of
the heating non-compliance (i.e., red) were observed during the Year 2 operation. This was
due to extreme weather conditions on these four days on February 2015 of which daily
average OA temperatures were below -10°C (i.e., February 15, 16, 19, and 20, 2015). This
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was a comfort penalty caused by an improved control strategy of the backup electric
resistance heater (i.e., 3™ stage heating) to minimize its use.

In addition to the room-to-thermostat temperature compliance with the ACCA Manual RS, the
room-to-room temperature differences and the resultant compliance with the ACCA Manual
RS were also graphically displayed using a time-of-day colored map, as shown in Figure 53.
The hourly average room-to-room temperature difference (i.e., AT (°C) = MAX(Troom1,
Troom2, ...) - MIN(Troom1, Troom2, ...)) was color-coded with a discrete scale to represent the
following seven value ranges:

e AT above 3.33°C (6°F);
AT from 2.78°C to 3.33°C
AT from 2.22°C to 2.78°C (4°F to 5°F);

5°F to 6°F);

)

AT from 1.67°C to 2.22°C (3°F to 4°F);
)

)

—_— o~ o~ —~

AT from 1.11°C to 1.67°C (2°F to 3°F);
AT from 0.56°C to 1.11°C (1°F to 2°F); and
AT from 0°C to 0.56°C (0°F to 1°F).

The ACCA Manual RS compliance based on hourly average room-to-room temperature
difference was color-coded using three different colors:
e Not compliant (red): AT above 3.33°C (cooling and transitional season) and AT above
2.22°C (heating season);
e Compliant with the maximum benchmarks (orange): AT from 1.67°C to 3.33°C
(cooling and transitional season) and AT from 1.11°C to 2.22°C (heating season); and
e Compliant with the average benchmarks (green): AT below 1.67°C (cooling and
transitional season) and AT below 1.11°C (heating season).

As a result, the use of the proposed time-of-day colored map was useful to find out when the
non-compliance period occurred and the level of discomfort. For both years, the room-to-
room temperature differences exceeded the ACCA average cooling benchmark (i.e., orange)
for most of the measurement period when the heat pump was in the cooling mode, although
the YR1 HTTD operation had more occasions of which room-to-room temperature
differences were below the average cooling benchmark (i.e., green) than the other two TTD
operations. When the heat pump was in the heating mode, both years had several occasions
exceeding the ACCA average heating benchmark (i.e., orange), which mostly occurred
during the daytime.
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4. WHOLE-HOUSE THERMAL COMFORT METRICS

This section presents an analysis of whole-house thermal comfort performance using several
whole-house thermal comfort metrics.

Section 4.1 presents the results of a room temperature deviation analysis from the setpoint
temperature based on the room-to-thermostat temperature difference.

Section 4.2 presents the results of a room-to-room temperature difference analysis
performed to evaluate the spatial thermal uniformity.

Section 4.3 presents the results of a cyclic discomfort analysis performed to evaluate the
temporal thermal uniformity.

Section 4.4 presents the results of a room RH deviation analysis from the setpoint RH based
on the room-to-humidistat RH difference.

4.1. TEMPERATURE DEVIATION FROM THE SETPOINT TEMPERATURE

Figures 54 to 56 present the percentage distributions of the 5-min average room-to-
thermostat temperature difference for the cooling season (Figure 54), heating season (Figure
55), and transitional season (Figure 56), with the percentages?’ of the data points grouped
based on a degree of temperature difference (AT) as follows:
e AT above 1.67°C(3°F);
AT from 1.11°C to 1.67°C (2°F to 3°F);
AT from 0.56°C to 1.11°C (1°F to 2°F);
AT from 0°C to 0.56°C (0°F to 1°F);
AT from -0.56°C to 0°C (-1°F to 0°F);
AT from -1.11°C to -0.56°C (-2°F to -1°F);
AT from -1.67°C to -1.11°C (-3°F to -2°F); and
AT below -1.67°C (-3°F).

In these figures, the relevant ACCA Manual RS benchmarks (i.e., thermostat setpoint £1.67°C
(£3°F) for a cooling season; and thermostat setpoint =1.11°C (+2°F) for a heating season) are
also presented for comparison. The groups meeting the ACCA benchmarks were highlighted
in green, while the groups unfavorably exceeding the ACCA benchmarks (i.e., AT above
1.67°C in the cooling season and AT below -1.11°C in the heating season) were highlighted
in red. Data were color-coded by TTD operations: yellow for YR1 HTTD, dark orange for YR1
LTTD, and green for YR2.

Important observations on the room-to-thermostat temperature difference are:
e Cooling Season Results (Figure 54)

— The first-floor room-to-thermostat temperature differences were mostly on the low
side (i.e., AT below 0°C) for all three TTD operations. There were no occasions
when the room-to-thermostat temperature difference unfavorably exceeded the
ACCA cooling benchmark (i.e., AT above 1.67°C) in the first-floor rooms.

210.00% means there were still few data points in that corresponding group.
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Not surprisingly, the second-floor room-to-thermostat temperature differences
were mostly on the high side (i.e., AT above 0°C) for all three TTD operations.
There were occasions when the room-to-thermostat temperature difference
unfavorably exceeded the ACCA cooling benchmark (i.e., AT above 1.67°C) in the
second-floor rooms, which was the highest during the YR1 HTTD operation: 4.8%
(MBR), 26.7% (BR2), and 3.0% (BR3).

The YR2 operation had the highest low-side AT deviation in the first floor rooms
compared to the YR1 HTTD and YR1 LTTD operations with an average room-to-
thermostat temperature differences of -1.3°C (LR), -1.6°C (KIT), -1.4°C (DR) and -
1.3°C (BR4). In addition, the YR2 operation had the highest non-compliance
percentages of the first-floor rooms on the low side: 5.6% (LR), 43.1% (KIT), 15.7%
(DR), and 5.1% (BR4).

However, in the second-floor rooms, the YR2 operation had the lowest room-to-
thermostat temperature differences of 0.4°C (MBR), 0.7°C (BR2), and 0.4°C (BR3),
without any non-compliance percentages.

Between the two YR1 operations, the YR1 HTTD operation had slightly lower
room-to-thermostat temperature differences in the first-floor rooms than the YR1
LTTD operation with comparable ACCA compliance percentages.

The whole-house room-to-thermostat temperature difference, which is a metric
weighted by the floor areas of seven primary rooms (i.e., LR, KIT, DR, BR4, MBR,
BR2, and BR3 representing 71% of the total floor area) had 100% ACCA
compliance percentages for all three TTD operations although there were very few
incidences of low-side non-compliance for the YR2 operation. However, this
whole-house temperature did not well represent the actual temperature
conditions of the house due to high temperature differences between the first-
floor and second-floor rooms during the cooling season.

Heating Season Results (Figure 55)

Compared to the cooling season, lower compliance percentages were reported
during the heating season for all three TTD operations.

Like the cooling season, the first-floor room-to-thermostat temperature differences
were mostly on the low side (i.e., AT below 0°C) for all three TTD operations. High
non-compliance percentages were reported in the first-floor rooms where the
room-to-thermostat temperature difference unfavorably exceeded the ACCA
heating benchmark (i.e., AT below 1.1°C): from 7.7% (KIT) to 42.2% (DR) during
the YR1 HTTD operation; from 2.7% (KIT) to 47.7% (DR) during the YR1 LTTD
operation; and from 9.1% (KIT) to 22.2% (DR) during the YR2 operation.

On average, the second-floor room temperatures were closer to the setpoint
temperature. However, the second-floor rooms also reported high ACCA non-
compliance percentages except for BR3: 30.1% (MBR) and 17.2% (BR2) during the
YR1 HTTD operation; 10.5% (MBR) and 6.2% (BR2) during the YR1 LTTD operation;
and 12.7% (MBR) and 12.1% (BR2) during the YR2 operation.

Unlike the cooling season, the differences in the calculated room-to-thermostat
temperature differences between the three TTD operations were less obvious,
although the YR2 operation maintained the room temperatures nearest to the
setpoint temperature on average.

The whole-house room-to-thermostat temperature difference better represented
the actual temperature conditions of the house during the heating season when
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there were lower temperature differences between the first-floor and second-floor
rooms.

e Transitional Season Results (Figure 56)

— The transitional season maintained its room temperature between the heating and
cooling setpoint temperature, which resulted in room-to-thermoset temperature
differences of 0°C. Otherwise, the first-floor room-to-thermostat temperature
differences tended to be on the low side (i.e., AT below 0°C) like other seasons.

— The reported non-compliance percentages were also on the low side (i.e., AT
lower than - 1.11°C), which was the highest during the YR1 HTTD operation
especially when the 15t stage heating differential temperature was set higher
before November 19, 2013.
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Figure 56: Graphical Summaries of the 5-Min Average Room-To-Thermostat Temperature Differences for the Transitional Season.
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4.2. ROOM-TO-ROOM TEMPERATURE DIFFERENCE

Figure 57 presents the percentage distributions of the 5-min average room-to-room
temperature difference with the percentages of the data points grouped based on a degree
of temperature difference (AT) as follows:

e AT above 3.33°C (6°F);
AT from 2.78°C to 3.33°C
AT from 2.22°C to 2.78°C (4°F to 5°F

5°F to 6°F)

)

AT from 1.67°C to 2.22°C (3°F to 4°F)
)

)

1
1
1

—_~ o~ o~ —~

AT from 1.11°C to 1.67°C (2°F to 3°F);
AT from 0.56°C to 1.11°C (1°F to 2°F); and
AT from 0°C to 0.56°C (0°F to 1°F).

In these figures, the relevant ACCA Manual RS benchmarks (i.e., 1.67°C (3°F) average and
3.33°C (6°F) maximum for cooling and transitional seasons; and 1.11°C (2°F) average and
2.22°C (4°F) maximum for a heating season) are also presented for a comparison. The groups
meeting the ACCA average benchmarks (i.e., AT below 1.67°C for cooling and transitional
seasons and AT above 1.11°C for a heating season) were highlighted in light green, while the
groups exceeding the ACCA average benchmarks but still meeting its maximum benchmarks
(i.e., AT above 3.33°C in cooling and transitional seasons and AT above 2.22°C in a heating
season) were highlighted in light yellow. Lastly, the groups exceeding even the ACCA
maximum benchmarks were highlighted in red. Data were also color-coded by TTD
operations: yellow for YR1 HTTD, dark orange for YR1 LTTD, and green for YR2.

Important observations on the room-to-room temperature difference are:
e Cooling Season Results

— Allthree TTD operations had an average room-to-room temperature difference
exceeding the ACCA average cooling benchmark (i.e., 1.67°C). The compliance
percentages with the ACCA average cooling benchmark were only 21.8% (YR
HTTD), 14.4% (YR1 LTTD), and 13.1% (YR2).

— Among the three TTD operations, the YR1 HTTD operation maintained smaller
room-to-room temperature differences than the YR1 LTTD and YR2 operations
with an average room-to-room temperature difference of 2.0°C.

— There were occasions when the room-to-room temperature difference exceeded
the ACCA maximum cooling benchmark (i.e., 3.33°C), which was about 0.4% (YR
HTTD), 0.2% (YR1 LTTD), and 0.9% (YR2).

— There was a difference in the compliance percentage with the ACCA average
cooling benchmark when the heat pump cycled on versus off. Higher compliance
percentages were reported when the heat pump cycled off for all three TTD
operations.

e Heating Season Results

— Allthree TTD operations had an average room-to-room temperature difference
lower than the ACCA average heating benchmark (i.e., 1.11°C). The compliance
percentages with the ACCA average heating benchmark were 80.3% (YR1 HTTD),
70.7% (YR1 LTTD), and 78.8% (YR2).

— The maintained room-to-room temperature differences were comparable
between the three TTD operations with an average room-to-room temperature
differences of 0.9°C (YR1 HTTD), 1.0°C (YR1 LTTD), and 0.9°C (YR2).
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There were occasions when the room-to-room temperature difference exceeded
the ACCA maximum heating benchmark (i.e., 2.22°C), which were about 0.3%
(YR1 HTTD) and 0.7% (YR1 LTTD).

There was a difference in the compliance percentage with the ACCA average
heating benchmark when the heat pump cycled on versus off. Lower compliance
percentages were reported when the heat pump cycled off for all three TTD
operations.

e Transitional Season Results

The transitional season maintained the room-to-room temperature differences
smaller than the cooling season but higher than the heating season. There were
no occasions of exceeding the ACCA maximum cooling benchmark in all three
TTD operations. This means the natural stratification of warm air in this two-story
house during the transitional season when the heat pump system mostly cycled off
still provided acceptable thermal uniformity across the house.

Among the three TTD operations, the YR1 HTTD operation maintained smaller
room-to-room temperature differences than the YR1 LTTD and YR2 operations
with an average room-to-room temperature difference of 1.0°C along with a
higher compliance percentage with the ACCA average cooling benchmark of
93.1%.
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4.3. CYCLIC DISCOMFORT

Tables 4 (cooling season), 5 (heating season), and 6 (transitional season) report the
percentage of failures in cyclic and drift temperature variations based on the ASHRAE
Standard 55-2017 (ASHRAE 2017) with the number of data points (i.e., minutes) for the
following time periods:

e 0.25h (15 minutes);
0.50h (30 minutes);
1h (60 minutes);
2h (120 minutes); and
4h (240 minutes).

The ASHRAE Standard 55-2017 specifies a peak-to-peak variation in operative temperature
for any 15-minute period shall not exceed 1.1°C (2.0°F) to evaluate cyclic variations. The
criteria for drift variations are based on maximum operative temperature change allowed:
1.1°C (2.0°F) for any 15-minute period; 1.7°C (3.0°F) for any 30-minute period; 2.2°C (4.0°F)
for any 1-hour period; 2.8°C (5.0°F) for any 2-hour period; and 3.3°C (6.0°F) for any 4-hour
period.

In general, the percentage of failures was negligible, which was less than 0.5% of the period
except for the kitchen for the cooling season during the YR1 HTTD and YR2 operations and
the MBR for the transitional season during the YR1 LTTD operation. No obvious difference
was observed between the TTD operations and between seasons. Higher failure rates were
observed for the shorter time periods. For example, no failures were reported for the longer
time period such as 4h.

The kitchen and MBR still had quite low percentages of failures, which was below 1.25% of
the period. The incidences were related to the schedule of internal loads in these rooms that
were turned on to emulate electrical use of (i.e., appliances and lighting) of the activities of a
family of four (i.e., two adults and two children) at NZERTF.
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Table 4: Percentage of Failures in Cyclic and Drift Temperature Variations Per ASHRAE Standard 55-2017 for the Cooling Season.

YR1LTTD YR2
025h  0.50h  1h 2h 4h | 025h  0.50h  1h 2h 4h | 025h  050h  1h 2h 4h

g Minutes 9 0 0 0 0 30 0 0 0 of 162 70 0 0 0

%ofperiod | 0.01% 000% 000% 0.00% 0.00% 0.04% 0.00% 0.00% 0.00% 000% 008% 0.03% 000% 0.00% 0.00%

p | Minutes 1492 190 0 0 of 285 38 0 0 of 1633 719 200 87 0

% of period 0.16% 0.00% 000% 000%| 041% 0.05% 000% 000% 000% | FRER 034% 0.10% 0.04% 0.00%

vgr | Minutes 143 162 215 0 of 202 248 165 0 of 427 360 278 0 0
%ofperiod | 0.12% 0.13% 0.18% 000% 000% 029% 036% 0.24% 000% 000% 020% 0.17% 0.13% 0.00% 0.00%

ary  Minutes 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

%ofperiod | 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.0% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% _0.00%

gra  Minutes 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

%ofperiod | 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% _0.00%

Primary minutes 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Rooms %ofperiod | 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% _0.00%

Table 5: Percentage of Failures in Cyclic and Drift Temperature Variations Per ASHRAE Standard 55-2017 for the Heating Season.

YR1 LTTD YR2

0.25h 0.50h 1h 2h 4h 0.25h 0.50h 1h 2h 4h 0.25h 0.50h 1h 2h 4h
LR minutes 19 0 0 0 0 0 0 0 0 0 0 0 0 0 0
% of period 0.02% 0.00% 0.00% 0.00% 0.00%| 0.00% 0.00% 0.00% 0.00% 0.00%| 0.00% 0.00% 0.00% 0.00% 0.00%
KIT minutes 14 0 0 0 0 0 0 0 0 0 214 5 0 0 0
% of period 0.02% 0.00%  0.00%  0.00%  0.00%| 0.00%  0.00% 0.00%  0.00%  0.00%| 0.15% 0.00% 0.00% 0.00%  0.00%
MBR minutes 239 295 63 0 0 156 192 72 70 0 285 351 10 0 0
% of period 0.28% 0.34% 0.07% 0.00% 0.00%| 0.20% 0.24% 0.09% 0.09% 0.00%| 0.20% 0.25% 0.01% 0.00% 0.00%
BR2 minutes 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
% of period 0.00% 0.00% 0.00% 0.00% 0.00%| 0.00% 0.00% 0.00% 0.00% 0.00%| 0.00% 0.00% 0.00% 0.00% 0.00%
BR3 minutes 19 0 0 38 0 38 11 58 58 0 0 0 0 0 0
% of period 0.02% 0.00% 0.00% 0.04% 0.00%| 0.05% 0.01% 0.07% 0.07% 0.00%| 0.00% 0.00% 0.00% 0.00% 0.00%
Primary minutes 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Rooms % of period 0.00% 0.00% 0.00% 0.00% 0.00%| 0.00% 0.00% 0.00% 0.00% 0.00%| 0.00% 0.00% 0.00% 0.00% 0.00%
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Table 6: Percentage of Failures in Cyclic and Drift Temperature Variations Per ASHRAE Standard 55-2017 for the Transitional

Season.
YR1 LTTD YR2
0.25h  0.50h  1h 2h 4h | 025h  0.50h  1h 2h 4h | 025h  0.50h  1h 2h 4h

g Minutes 0 0 0 0 0 19 23 0 0 of 169 156 131 48 0
%of period | 0.00% 000% 000% 000% 000% 003% 003% 000% 000% 000% 010% 0.0% 0.08% 0.03% 0.00%
qp  Minutes 2 0 7 50 0 34 0 0 0 of 376 136 0 0 0
%of period | 0.00% 0.00% 001% 0.07% 0.00%| 0.05% 0.00% 000% 000% 000% 0.23% 0.08% 0.00% 0.00% 0.00%
vgr | Minutes 215 269 228 0 of 304 382 504 0 of 522 617 358 0 0
%ofperiod | 029% 036% 030% 000% 000% 0.41% 0N  0.00% 000%| 032% 0.38% 0.22% 0.00% 0.00%
ary  Minutes 0 0 0 0 0 0 0 0 0 0 14 29 59 0 0
%ofperiod | 0.00% 0.00% 000% 0.00% _0.00% 0.00% 0.00% 0.00% _0.00% 000% 0.01% 0.02% 0.04% 0.00% _0.00%
BR3 minutes 0 0 0 0 0 52 35 83 154 0 0 0 0 0 0
%of period | 0.00% 000% 000% 0.00% 000% 007% 005% 0.11% 021% 000% 000% 0.00% 0.00% 0.00% 0.00%
Primary minutes 0 0 0 0 0 0 0 0 0 0 14 29 59 0 0
Rooms %ofperiod | 000% 000% 000% 000% 000% 000% 000% 000% 000% 000% 001% 0.02% 004% 0.00%  0.00%
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4.4. RH DEVIATION FROM THE SETPOINT RH

Figure 58 presents the percentage distributions of the 5-min average room-to-humidistat RH
difference for the cooling season with the percentages?? of the data points grouped based
on a percentage of RH difference (ARH) as follows:
¢ ARH =0%RH (i.e., room RH at or below 50% RH);
ARH from 0 % RH to 2% RH;
ARH from 2 % RH to 4% RH;
ARH from 4 % RH to 6% RH;
ARH from 6 % RH to 8% RH;
ARH from 8 % RH to 10% RH;
ARH from 10 % RH to 12% RH;
ARH from 12 % RH to 14% RH; and
ARH above 14 % RH.

Data were color-coded by TTD operations: yellow for YR1 HTTD, dark orange for YR1 LTTD,
and green for YR2. In general, the room-to-humidistat RH differences were small except for
the kitchen and the basement. In the kitchen the YR2 HTTD operation maintained the lowest
average room-to-humidistat RH difference of 2.7% RH, which followed by YR1 LTTD (4.6%
RH) and YR2 (5.2% RH). The LR where the humidistat was located had the average room-to
humidistat RH differences of 0.3% RH (YR1 HTTD), 1.1% RH (YR1 LTTD), and 1.1% RH (YR2). In
terms of the percentage distribution, the YR1 HTTD also had the highest percentage of 0%
ARH (87.6%), which followed by YR1 LTTD (70.7%) and YR2 (56.3%).

In spite of the higher percentage of 0% ARH, YR1 LTTD and YR2 had about the same average
room-to-humidistat RH difference (i.e., 1.1% RH) because the YR 1 LTTD operation had more
occasions in the high ARH above 4% RH. This occurred because the YR1 LTTD includes only
two cooling months such as May and June of which sensible cooling loads are relatively
smaller compared to July and August. As a result, the YR1 HTTD operation showed better
dehumidification performance with the lowest average room—to-humidistat RH difference
and the highest percentage of 0% ARH.

22.0.00% means there were still few data points in that corresponding group.
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Figure 58: Graphical Summaries of the 5-Min Average Room-To-Humidistat RH Differences
for the Cooling Season.

Page 91



5. INTEGRATIVE METHOD TO RATE WHOLE-HOUSE ENERGY AND COMFORT

This section demonstrates the use of the proposed rating method based on the weather
dependent conditioning energy use (i.e., heating, cooling, and dehumidification) of the
house and coincident whole-house thermal comfort metrics that were averaged over a
particular range of weather condition using the Year 1 and Year 2 NZERTF performance data.
This allowed a weather-normalized comparison of the three different TTD operations in terms
of both energy and thermal comfort for a particular weather condition.

Section 5.1 presents the results using room-to-room temperature difference to compare the
system'’s fundamental ability to produce and deliver the designed air temperature.

Section 5.2 presents the results using room-to-thermostat temperature difference to
compare the efficiency of the respective TTD operation in terms of delivering the designed
air temperature.

Section 5.3 presents the results using room-to-humidistat RH difference only for the cooling
season to compare the dehumidification efficiency of the respective TTD operation in terms
of maintaining the designed relative humidity.

5.1. ROOM-TO-ROOM TEMPERATURE DIFFERENCE

The daily OA dry-bulb temperature was sorted into 5°C (9°F) temperature bins while the
mean coincident values of daily conditioning energy uses and daily room-to-room
temperature differences (R-to-R TD) were determined for each bin, which were then paired
and plotted using a scatter plot for three different TTD operations, as shown in Figure 59: (a)
all TTD operations for a comparison and (b) each TTD operation separately along with
corresponding daily data that were averaged over 5°C (9°F) OA temperature bins to form a
line graph. Figure 60 presents the weather-dependent characteristics of the two metrics (i.e.,
daily average conditioning energy use and R-to-R TD) by plotting them against daily average
OA temperature.

In addition to daily average R-to-R TD, the use of daily room-to-room discomfort hours (R-to-R
DDH) was tested and presented in Figures 61 and 62. Not surprisingly the shapes of the plots
were exactly same with larger values. Since the use of daily average R-to-R TD is a more
intuitive metric which can be easily understandable by general public, this section discusses
the results based on the R-to-R TD.

In all figures, the relevant ACCA Manual RS benchmarks are also presented for a comparison:
e Average Heating Benchmark (Avg. HBM) = 1.1°C (2°F)
e Average Cooling Benchmark (Avg. CBM) = 1.7°C(3°F)
e Maximum Heating Benchmark (Max. HBM) = 2.2°C (4°F)
e Maximum Cooling Benchmark (Max. CBM) = 3.3°C (6°F)

For both energy and comfort metrics, lower values mean good performance, while higher
values mean poor performance. For example, the transitional season had metrics closer to
the origin, which means better energy and comfort performance compared to the cooling
and heating seasons. The line begins with a daily average outdoor air temperature of -10°C
(no arrow) and ends with a daily average outdoor air temperature of 30°C (arrow). If the trend
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line forms a vertical line, it means the respective thermal comfort metric is less sensitive to OA
temperature, while the conditioning energy use sharply increased with increased OA. On the
other way, if the trend line forms a horizontal line, it means the respective thermal comfort
metric is sensitive to OA temperature while the conditioning energy is not.

The YR1 HTTD operation had better thermal uniformity during the cooling season with lower
daily average R-to-R TD at the same OA temperature bins, which followed by the YR1 LTTD
and YR2 operations. The conditioning energy use of the YR1 HTTD operation was the highest
among the three TTD operations. Both metrics (i.e., conditioning energy use and R-to-R TD)
increased with increased OA temperature. The daily average R-to-R TD began to exceed the
average CBM as the coincident daily average OA temperature exceeded 17.5°C (i.e., 20°C
OA temperature bin). This indicates the importance of OA temperature condition when
measuring and benchmarking energy and thermal comfort performance of a house during
the cooling season.

During the heating season, the YR1 LTTD operation had the highest daily average R-to-R TD
except for -10°C OA temperature bin, but the coincident conditioning energy use was also
the highest among the three TTD operations. At -10°C OA temperature bin, the YR1 LTTD
operation had lower R-to-R TD while using more conditioning energy, which was affected by
lowered differential temperatures of the 2"¢ and 3" stage compressor along with shortened
delay time.

The YR1 HTTD and YR2 operations had comparable daily average R-to-R TD until the
coincident daily average OA temperature reaches -2.5°C (i.e., 0°C OA temperature bin)
during the heating season. On cold winter days of which daily average temperatures were
below -2.5°C, the YR2 operation maintained better thermal uniformity with lower R-to-R TD
along with lower daily average conditioning energy. This might be affected by the heat pump
running constantly to meet the heating setpoint temperature at this low OA temperatures
without activating the backup electric resistance heater during the YR2 operation.

Unlike the cooling season, the daily average R-to-R TD was less sensitive to OA temperature,
while the conditioning energy use for heating sharply increased with increased OA
temperature. The daily average R-to-R TD maintained below the average HBM except for -
10°C OA temperature bin.
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Figure 59: Integrative Rating Method based on Weather-Dependent Daily Conditioning
Energy Use and Coincident Daily Average R-to-R TD.

0.4 35
g

_ w30
i g
=

§ 5 25
o g
3 5

& c 20
3 §
5 02 o
o«

4 S 15

€ Lol
S £
3 g
2 2

5 © 1.0
o a0
> 0.1 ;
£ -3

e 8 os

0.0 0.0

20 10 0 10 20 30 40 20 10 0 10 20 30 40
Daily Average OA Temperature(°C) Daily Average OA Temperature(°C)
& YR1HTTD —& YR1LTTD -8 YR2 @ YR1 HTTD —& YRLLTTD - YR2
YRLHTTD Daily ~ + YR1LTTD Daily YR2 Daily YRLHTTD Daily ~ + YR1LTTD Daily YR2 Daily

Figure 60: Weather-Dependent Characteristics of the Two Chosen Energy and Whole-House
Thermal Comfort Metrics: Daily Average R-to-R TD.

Page 94



920-02°¥09" 1 SIN/8Z09 01 /B10°10p//:sdRy :wiouy ab.1eyd jo a1 s|qejieAe s| uoieolignd siy L

Daily Conditioning Energy Use (kWh/m?)

0.4

= <= = E
§|O §|o nE: [} g O
TN U.fo I|= Yla
oG ¥g 3| R 58
2 :TI‘ < : TT =] = ??
| |
0.3 1 | |
= | |
£ | | Toasr10°C(YR1)
~ o]
r= | |
E | |
= | |
2 | |
D 0.2 4 | |
& ° / |
o0 Toa=-10°C(YR2 I i
g | |
w
o ! ' Toa=30°C
T | | o)
> o
= 1. Toa=0°C : :
o
| |
| |
| |
| o
Toa=10°CO C
0.0 . —l } . . .
0 10 20 30 40 50 60 70 80 90
Daily Total Discomfort Degree Hours (°C-h)
<> YR1IHTTD —» YR1LTTD -8»YR2
(a) All TTD Operations
0.4 0.4
gk; HIR S[< élz ER
2N TT1=1% T 3% <3 3|
| | < [ = |
| £
! £ o3 ! | < o3 |
| | = | P Tea=-10C = |
if (LR 2 1 | 3 |
| | §Toa3-10 = | | o |
I | 2 { | 3 |
| | 2 1+ | =2 |
| | & | | & |
1 | o 0.2 “; i 2 0.2 |
I | | w
P | ga | | o F'Hpn: 10°C
i S 5 J!
| =] iy b AR 4 = f
Toa=30°C 2 2! ;e = /
I | = = o, 1 | b JT64=30°C 5 /[ |
-0°co | | 2 Tos0E4, | | 2 | =30°q
T0s=0°C { ! - é 01 . } } P 8 17 41 9; 0.1 ToA:O“Cm{ : /d/;me
| | = 61 | 3 kL
! 12T0a=20iC e v ! £ e % |
| o | 3
Tos=10°CO._ Lo ! 55 1k - 1m=1o°c\‘3!v43 S i
10 20 30 40 50 60 70 80 90 : 0 10 20 30 40 50 60 70 80 90 : 0 10 20 30 40 50 60 70 80 90

Daily Total Discomfort Degree Hours (°C-h)

@ YR1 HTTD

YR1 HTTD Daily

Daily Total Discomfort Degree Hours (°C-h)

—& YR1LTTD

(b) By TTD

« YR1LTTD Daily

Operation

Daily Total Discomfort Degree Hours (°C-h)

-8 YR2

YR2 Daily

Figure 61: Integrative Rating Method based on Weather-Dependent Daily Conditioning
Energy Use and Coincident Daily Total R-to-R DDH.
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5.2.ROOM-TO-THERMOSTAT TEMPERATURE DIFFERENCE

Similar to room-to-room temperature difference, the daily OA dry-bulb temperature was
sorted into 5°C (9°F) temperature bins while the mean coincident values of daily conditioning
energy uses and daily room-to-thermostat temperature differences (R-to-T TD) were
determined for each bin, which were then paired and plotted using a scatter plot for three
different TTD operations using the area-weighted whole-house temperature, which is the
temperature weighted by the floor areas of seven primary rooms. For both energy and
comfort metrics, lower values mean good performance, while higher values mean poor
performance.

Three different daily average R-to-T TD metrics were calculated, including R-to-T total TD?3, R-
to-T TD(-), and LR R-to-T TD(+). Figures 63 to 68 present the results using the area-weighted
whole-house temperature:

e Whole-house R-to-T total TD (Figures 63 and 64)

¢ Whole-house R-to-T TD(-) (Figures 65 and 66)

e Whole-house R-to-T TD(+) (Figures 67 and 68)

In addition to the whole-house R-to-T TD metrics, the use of 1F and 2F R-to-T TD using the
area-weighted 1F temperature and 2F temperature, respectively, was tested and presented
in Figures 69 and 74 (1F R-to-T TD) and Figures 75 and 80 (2F R-to-T TD):
e 1F R-to-T total TD (Figures 69 and 70)
1F R-to-T TD(-) (Figures 71 and 72)
1F R-to-T TD(+) (Figures 73 and 74)
2F R-to-T total TD (Figures 75 and 76)
2F R-to-T TD(-) (Figures 77 and 78)
2F R-to-T TD(+) (Figures 79 and 80)

In all figures, the relevant ACCA Manual RS benchmarks are also presented for a comparison:
e Heating Benchmark (HBM) = 1.1°C(2°F)
e Cooling Benchmark (CBM) = 1.7°C(3°F)

Important observations on the whole-house R-to-T total TD are:

e During the cooling season, the YR2 operation had noticeably larger daily average R-
to-T TD at the whole-house level under the same OA temperature conditions, which
was caused by overcooled first-floor bedrooms during the YR2 operation when the
average of two temperature sensors (i.e., thermostat sensor in the living room and the
remote sensor in the second-floor hallway) was used to control the heat pump system.

e The whole-house temperatures used in these plots were weighted by the floor areas
of the seven primary rooms consisting of 1F rooms (59%) and 2F rooms (41%). The
observed difference between the three TTD operations reduced when this study
tested a different whole-house temperature, which was weighted by the floor areas of
all rooms including bathrooms and hallways as well as the seven primary rooms,
consisting of 1F (53%) and 2F (47%).

e The YR 1LTTD operation maintained the smallest daily average R-to-T TD at the
whole-house level under the same OA temperature conditions during the cooling

23 Daily R-to-T TD is the sum of absolute differences between the room temperature and the setpoint temperature.
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season. The conditioning energy use of the YR1 LTTD operation was also slightly
lower than other operations in general.

Unlike the R-to-R TD, the daily average R-to-T TD was less sensitive to OA
temperature, while the conditioning energy use for cooling sharply increased with
increased OA temperature. The daily average R-to-T TD were much lower than the
CBM.

During the heating season, the YR2 operation also showed larger daily average R-to-T
TD at the whole-house level on cold winter days of which daily average temperatures
were below -2.5°C (i.e., -5°C and -10°C OA temperature bins). This was affected by an
improved control strategy of the backup electric resistance heater to minimize its use,
which was a penalty in terms of thermal comfort but an advantage for energy savings.
Between the two Year 1 operations, YR1 LTTD maintained slightly lower daily average
R-to-T TD at the whole-house level than YR1 HTTD while the associated conditioning
energy for heating was also higher. This was affected by lowered differential
temperatures of the 2"¥ and 3™ stage compressor along with shortened delay time.
Like the cooling season, the daily average R-to-T TD was also less sensitive to OA
temperature, while the conditioning energy use sharply increased with increased OA
temperature. The daily average R-to-T TD maintained below the average HBM except
for the YR2 operation at-10°C OA temperature bin.

Important observations on the whole-house R-to-T TD(-) and R-to-T TD(+) are:

It was found that separating negative and positive room-to-thermostat temperature
differences was helpful in the interpretation process. For example, the heating season
daily average R-to-T TD(+) was 0, which means the area-weighted whole-house
temperature was always lower than the setpoint temperature during the heating
season. However, during the cooling season, the YR1 HTTD and YR1 LTTD operations
had both negative and positive room-to-thermostat temperature differences. At the
very high OA temperatures, the area-weighted whole-house temperature was higher
than the setpoint temperature, while it was lower than the set point temperature on
mild summer days.

Important observations on the 1F and 2F R-to-T metrics are:

The shapes of the 1F and 2F plots were similar during the heating season when there
were lower temperature differences between the first-floor and second-floor rooms
and their deviations were in the same direction (i.e., both had R-to-T TD(-) only).
However, during the cooling season when the first-floor and second-floor
temperature deviation were in the opposite direction (i.e., R-to-T TD(-) for 1F; and R-
to-T TD(+) for 2F), the cooling shapes of the whole-house plots did not well represent
the actual temperature conditions of the house because the area-weighted whole-
house temperature?* took the average of the high-side deviation of the second-floor
rooms and the low-side deviation of the first-floor rooms.

As a result, to accurately characterize the whole-house thermal comfort performance,
it would be important not to combine the rooms that have different thermal
conditions for the temperature deviation calculations from the setpoint. For example,
the use of whole-house R-to-T TD resulted in the daily average R-to-T TD much lower

24 The whole-house temperatures used in this section were weighted by the floor areas of the seven primary
rooms (i.e., LR, KIT, DR, BR4, MBR, BR2, and BR3 representing 71% of the total floor area) consisting of 1F rooms
(59%) and 2F rooms (41%) as shown in Figure 7.
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than the CBM. However, the daily average 1F R-to-T TD for the YR2 operation and 2F
R-to-T TD for the YR1 HTTD and YR1 LTTD operations approached the CBM with
increased outdoor temperature. In addition, the daily average 2F R-to-T TD was no
longer less sensitive to OA temperature.

In addition, the impact of the applied TTD on thermal comfort was different by floor.
The Year 2 operation had the largest temperature deviation from the setpoint in the
first-floor rooms but maintained the second-floor temperature closer to the setpoint

than other TTD operations.

Page 98



920-02°¥09" 1 SIN/8Z09 01 /B10°10p//:sdRy :wiouy ab.1eyd jo a1 s|qejieAe s| uoieolignd siy L

0.4

sl sl
o ~
II : U: i
P [
& | |
£ I [
< 03 A ! |
2 I LS
= T?A='10 C(YR1)
o 9, |
w
3> | |
a0 | |
g | |
S 02 A | |
Qo | |
£
< Toa=-10°C[YR2)
S !
= Toa=30°C | |
2 o | I
3 01 4 o || |
> | |
T | |
=} | |
| |
| |
| |
0.0 IEa=15°C - g ! !
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Daily Avg. Room-To-Thermostat Total TD (°C)
<> YR1IHTTD —» YR1LTTD -8»YR2
(a) All TTD Operations
S " S " TElER
il K Fig ] 4 Bl
| | | | I |
T Tl £ i £ ]|
£ | I
£ 03 | | < 03 | | < o3 | |
9 Tpa=-10"C
g | l g ik 2 | |
P 9Tpa=-10°C | ¥ | 1 g | |
3 | I 3 J1 | S | |
% | | % | | & I |
7} | | T | | T | |
g 02 ! : £ 02 ! ! 5 02 | !
2 | | rod <l | g /{3 Toa=-10°C
: R : STy g ot
£ Tea=30°C | : 3 Tos=30°C A -b"c ! 3 an [
g o1 Jokoc | | 8 o1 b 8 o1 ! |
2 i " il T [0
3 | i 8 i | 3 / | |
| | | | @ I
| I | | )i | ;
b 4 | | Ll L | o | |
0.0 ATAEISC | L 00 jfasz1sec 1 L 0.0 $Tmm5C | L
0.0 0.5 1.0 15 20 25 3.0 35 0.0 05 1.0 15 2.0 25 3.0 35 0.0 05 1.0 15 2.0 25 3.0 35

Daily Avg. Room-To-Thermostat Total TD (°C)

@ YR1 HTTD

Daily Conditioning Energy Use (kWh/m?)

YR1 HTTD Daily

—& YR1LTTD

+ YR1LTTD Daily

Daily Avg. Room-To-Thermostat Total TD (°C)

-8 YR2

(b) By TTD Operation

Figure 63: Integrative Rating Method based on Weather-Dependent Daily Conditioning
Energy Use and Coincident Daily Average Whole-House R-to-T Total TD.

0.4
03
02
0.1
o7
0.0
-20 -10 0 10 20 30 40
Daily Average OA Temperature (°C)
@ YR1HTTD ~& YR1LTTD -8 YR2
YR1 HTTD Daily + YRLLTTD Daily YR2 Daily

Daily Avg. Room-To-Thermostat Total TD (°C)

@ YR1HTTD

40

Daily Average OA Temperature (°C)

- YR1LTTD
* YR1LTTD Daily

-8 YR2

YR1 HTTD Daily YR2 Daily

Daily Avg. Room-To-Thermostat Total TD (°C)

YR2 Daily

Figure 64: Weather-Dependent Characteristics of the Two Chosen Energy and Thermal
Comfort Metrics: Daily Average Whole-House R-to-T Total TD.
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Figure 65: Integrative Rating Method based on Weather-Dependent Daily Conditioning
Energy Use and Coincident Daily Average Whole-House R-to-T TD(-).
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Figure 66: Weather-Dependent Characteristics of the Two Chosen Energy and Thermal
Comfort Metrics: Daily Average Whole-House R-to-T TD(-).
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Figure 67: Integrative Rating Method based on Weather-Dependent Daily Conditioning
Energy Use and Coincident Daily Average Whole-House R-to-T TD(+).
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Figure 68: Weather-Dependent Characteristics of the Two Chosen Energy and Thermal
Comfort Metrics: Daily Average Whole-House R-to-T TD(+).
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Figure 69: Integrative Rating Method based on Weather-Dependent Daily Conditioning
Energy Use and Coincident Daily Average 1F R-to-T Total TD.
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Figure 70: Weather-Dependent Characteristics of the Two Chosen Energy and Thermal
Comfort Metrics: Daily Average 1F R-to-T Total TD.
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Figure 71: Integrative Rating Method based on Weather-Dependent Daily Conditioning
Energy Use and Coincident Daily Average 1F R-to-T TD(-).
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Figure 72: Weather-Dependent Characteristics of the Two Chosen Energy and Thermal
Comfort Metrics: Daily Average 1F R-to-T TD(-).
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Figure 73: Integrative Rating Method based on Weather-Dependent Daily Conditioning
Energy Use and Coincident Daily Average 1F R-to-T TD(+).
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Figure 74: Weather-Dependent Characteristics of the Two Chosen Energy and Thermal
Comfort Metrics: Daily Average 1F R-to-T TD(+).

Page 104



920-02°¥09" 1 SIN/8Z09 01 /B10°10p//:sdRy :wiouy ab.1eyd jo a1 s|qejieAe s| uoieolignd siy L

0.4

CBM
1.7°C

|
T|5A=30°c (YR1)

Daily Conditioning Energy Use (kWh/m?2)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Daily Avg. 2F Room-To-Thermostat Total TD (°C)
9 YR1IHTTD - YRILTTD -8 YR2

(a) All TTD Operations

0.4 0.4
By =l Sio =
gl - alr Sl alr
i = =4 S
| ] | |
~ | ! &~ :E‘ | |
3 | | 3 | |
£ 03 | 1 e g 03 1 |
2 L[ g : A
o Toa=-10"CO | | N g I |
3 | I 3 3 | I
% | | % & I |
5 | | 5 T I |
g 02 | | £ 5 02 | |
| ! =10° 1 |
2 | I = 2 ToamrabiGuy I
g | | 5 s -1 |
2 | Toa=30°C = = / | |
B | 2 g 2 / pras=a0tc |
Toa=0°Co | | S S —g°c/ R Toa= |
Uz 0.1 ¥ = i S O ‘o oy f | i
= | ! = = [+) | |
2 I I 8 3 |7 : |
2 " I |
| I é | |
o | I Zies | |
0.0 4 T6a215°C | I 6o B To1sc 1 L
0.0 05 1.0 15 2.0 25 3.0 35 0.0 05 1.0 15 2.0 25 3.0 35 0.0 05 1.0 15 2.0 25 3.0 35
Daily Avg. 2F Room-To-Thermostat Total TD (°C) Daily Avg. 2F Room-To-Thermostat Total TD (°C) Daily Avg. 2F Room-To-Thermostat Total TD (°C)
@ YR1HTTD YR1 HTTD Daily —& YR1LTTD * YR1LTTD Daily -2 YR2 YR2 Daily

(b) By TTD Operation

Figure 75: Integrative Rating Method based on Weather-Dependent Daily Conditioning
Energy Use and Coincident Daily Average 2F R-to-T Total TD.
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Figure 76: Weather-Dependent Characteristics of the Two Chosen Energy and Thermal
Comfort Metrics: Daily Average 2F R-to-T Total TD.
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Figure 77: Integrative Rating Method based on Weather-Dependent Daily Conditioning
Energy Use and Coincident Daily Average 2F R-to-T TD(-).
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Figure 78: Weather-Dependent Characteristics of the Two Chosen Energy and Thermal
Comfort Metrics: Daily Average 2F R-to-T TD(-).
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Figure 79: Integrative Rating Method based on Weather-Dependent Daily Conditioning
Energy Use and Coincident Daily Average 2F R-to-T TD(+).
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Figure 80: Weather-Dependent Characteristics of the Two Chosen Energy and Thermal
Comfort Metrics: Daily Average 2F R-to-T TD(+).

Page 107



5.3.ROOM-TO-HUMIDISTAT RH DIFFERENCE

Daily OA dew point temperature was sorted into 5°C (9°F) temperature bins while the mean
coincident values of daily conditioning energy uses and daily room-to-humidistat RH
differences (R-to-H RHD) were determined for each bin, which were then paired and plotted
using a scatter plot for three different TTD operations using the area-weighted whole-house
RH only for the cooling season. The area-weighted whole-house RH is the RH weighted by
the floor areas of five primary rooms (i.e., LR, KIT, MBR, BR2, and BR3 representing 50% of the
total floor area). Figure 81 presents (a) all TTD operations for a comparison and (b) each TTD
operation separately along with corresponding daily data that were averaged over 5°C (9°F)
OA dew point temperature bins to form a line graph. Figure 82 presents the weather-
dependent characteristics of the two metrics (i.e., daily average conditioning energy use and
R-to-H RHD) by plotting them against daily average OA dew point temperature.

In addition to daily average whole-house R-to-H RHD, the use of LR R-to-H RHD using the
living room RH was tested and presented in Figures 83 and 84. Although the shapes of the LR
plots were different from those of the whole-house R-to-H RHD, the same conclusion could
be obtained in terms of the dehumidification efficiency of the respective TTD operation.
Since the proposed method aims to evaluate energy and comfort performance at the whole-
house level, this section discusses the results based on the whole-house R-to-H RHD.

For both energy and comfort metrics, lower values mean good performance, while higher
values mean poor performance. The YR1 HTTD operation had the lowest daily average R-to-
H RHD at the same OA dew point temperature bins. The YR1 LTTD and YR2 operations had
comparable R-to-H RHD, but the YR2 operation reported higher conditioning energy use
compared to the YR1 LTTD operation.

The dehumidification performance difference observed between the YR1 HTTD and YR1
LTTD operations that had the same dehumidification control strategy (i.e., dedicated
dehumidification cycle of the heat pump system) was caused because the YR1 LTTD includes
only two cooling months such as May and June of which sensible cooling loads are relatively
smaller compared to July and August. As a result, the YR1T HTTD operation showed better
dehumidification performance with lowered R-to-H RHD at the very high OA dew point
temperature bin (i.e., 20°C OA dew point temperature bin), which is clearer in the living room
where the humidistat was located as shown in Figure 83(a).
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Figure 81: Integrative Rating Method based on Weather-Dependent Daily Conditioning
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Figure 83: Integrative Rating Method based on Weather-Dependent Daily Conditioning
Energy Use and Coincident Daily Average LR R-to-H Total RHD.
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6. CONCLUSIONS

This section summarizes the key findings from this research and discusses the
recommendations for future research, which will contribute to improved design, operation,
and measurements of whole-house performance for energy efficiency and thermal comfort.

This research investigated how thermal comfort dynamics were impacted by energy-efficient
or thermal comfort improvements applied to NZERTF and proposed and demonstrated a
method to rate a whole-house performance in an integrative way based on measured energy
and comfort performance of the house. During the analysis period, the major energy-efficient
or thermal comfort improvements applied to the NZERTF throughout is Year 1 and Year 2
operations include:

e Lowered 2" stage and 3" stage differential temperature settings along with
shortened delay time to control the same heat pump system;

e Improved control strategy of the backup electric resistance heater of the same heat
pump system (i.e., 3" stage heating) by removing associated delay time to minimize
its use;

e Use of a thermostat with an additional remote sensor located in the second-floor
hallway in lieu of the combined thermostat/humidistat by the heat pump manufacturer
located in the living room of the house;

e Use of a whole-house dehumidifier in lieu of the heat pump'’s dedicated
dehumidification cycle; and

e Lowered outdoor ventilation rate per ASHRAE Standard 62.2-2010 (ASHRAE 2010b),
which resulted in a 20% reduced outdoor ventilation compared to Year 1 operation.

To accomplish this, the quality-controlled 1-min data were divided into several subgroups to
accurately characterize and report the whole-house energy and thermal comfort
performance of NZERTF. This includes partitioning long-term energy and thermal comfort
data by season based on the heat pump system’s actual operation mode under given
weather conditions and by three Thermostat's Temperature Differential (TTD) settings that
were used to control the heat pump system (i.e., Year 1 High TTD (YR1 HTTD); Year 1 Low
TTD (YR1 Low TTD); and Year 2 (YR2)).

The sub-grouped data were then used to calculate weather-dependent energy models for
the whole house and five major end uses (e.g., conditioning, ventilation, lighting, plug loads+
appliances, and domestic hot water). The weather-dependent changing-point regression
models for conditioning energy use were then used to estimate the energy performance
changes between the different subgroups. It was found that the conditioning electricity use
would increase with tighter TTD control during the heating season, while the improved
control strategy of the backup electric resistance heater during the Year 2 operation would
result in high energy savings during the heating season.

In addition, this study calculated several whole-house thermal comfort metrics for each
subgroup to reveal the impact of major energy-efficient or thermal comfort improvements
applied to NZERTF on its thermal comfort performance. The calculated metrics include:

e Temperature deviation from the setpoint temperature (i.e., room-to-thermostat
temperature difference) to evaluate the system’s fundamental ability to produce and
deliver the designed air temperature;

¢ Room-to-room temperature difference to evaluate spatial thermal uniformity;
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e Cyclic discomfort to evaluate temporal thermal uniformity; and

e Relative humidity (RH) deviation from the setpoint RH (i.e., room-to-humidistat RH
difference) to evaluate dehumidification efficiency in terms of maintaining a setpoint
humidity.

The calculated metrics for each subgroup were then compared against relevant benchmarks
such as the ACCA Manual RS and the ASHRAE Standard 55-2017.

Besides, to fully understand the long-term thermal comfort data, this study performed
statistical and advanced characterization of the granular thermal comfort data relative to the
outdoor weather and the time of the day not only for the primary rooms but also for the attic
and the basement that are thermally important due to possible heat transfer from/to the
primary rooms. These analyses revealed weather-dependent characteristics of the thermal
comfort metrics, which led to the development of the proposed rating method, and their
dynamic interactions with uneven internal heat gains from occupants, lighting, appliances,
and miscellaneous electronic devices.

Finally, this study proposed an integrative rating method based on the weather-dependent
conditioning energy use of the house and coincident whole-house thermal comfort metrics
that were averaged over a particular range of weather conditions. The proposed method was
demonstrated using the Year 1 and Year 2 NZERTF performance data, which allowed a
weather-normalized comparison of the three different TTD operations in terms of both
energy and thermal comfort for a particular weather condition.

As shown in Figures 85, lower values mean good performance, while higher values mean
poor performance for both energy and comfort metrics. For example, the transitional season
had metrics closer to the origin, which means better energy and comfort performance
compared to the cooling and heating seasons. The line begins with a daily average outdoor
air temperature of -10°C (no arrow) and ends with a daily average outdoor air temperature of
30°C (arrow). If the trend line forms a vertical line, it means the respective thermal comfort
metric is less sensitive to OA temperature, while the conditioning energy use sharply
increased with increased OA. On the other way, if the trend line forms a horizontal line, it
means the respective thermal comfort metric is sensitive to OA temperature while the
conditioning energy is not.

For example, during the cooling season, the Year 2 operation had the largest temperature
deviation from the setpoint in the first-floor rooms but maintained the second-floor
temperature closer to the setpoint. The first-floor overcooling during the Year 2 operation
was caused by using the average of two temperature sensors (i.e., thermostat sensor in the
living room and the remote sensor in the second-floor hallway) to control the heat pump
system. It was also found that the use of a thermostat with remote sensing capability during
the Year 2 operation did not improve thermal uniformity between the rooms/floors with the
largest room-to-room temperature differences at the same outdoor air temperature
conditions.

During the heating season, different results were obtained by the outdoor air temperature.
On mild winter days, the Year 2 operation maintained a smaller temperature deviation from
the setpoint with comparable room-to-room temperature differences. On colder winter days,
the Year 2 operation had the largest room-to-thermostat temperature deviation, which was a
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comfort penalty due to an improved control strategy to minimize the use of the backup
electric resistance heater. As a result, the heat pump system ran constantly to meet the
heating setpoint temperature, which was actually helpful to maintain better thermal
uniformity with smaller room-to-room temperature differences during the Year 2 operation.

The impact of lowered differential temperatures was also revealed by comparing different
TTD settings that had been changed over the Year 1 operation. For example, a larger low-
side temperature deviation from the setpoint was observed along with unfavorable non-
compliant periods based on the ACCA Manual RS benchmarks when the 1¢ stage heating
differential temperature was set higher before November 19, 2013. In addition, delayed or
no responses of the heat pump’s 2"¥ and 3" stage heating were occasionally observed
during the Year 1 high TTD operation. The observed thermal discomfort improved with the
lowered TTD setting. However, there was an energy penalty (i.e., increased heating energy
use).

In conclusion, the proposed rating method allowed an integrative and rigorous assessment
of a whole-house performance in terms of both energy efficiency and comfort of which
assessments were often made separately in the history of the disciplines. In the absence of
high-quality residential datasets, the results of this study can serve as rigorous benchmarks to
which other houses and conditioning systems can be compared for respective outdoor
weather conditions. For example, based on the NZERTF data, the energy and comfort
conditions in a house can be classified into three categories that are highlighted in different
colors as shown in Figure 85.

To improve the proposed rating system, it is highly recommended that research to be
performed to develop more reliable residential benchmarks based on multiple datasets
representing different types of systems, control strategies, or envelope characteristics. In
addition, to improve the validity of the proposed rating method, more metrics should be
tested and included in this rating system. For example, the energy performance of a house
can include electricity demand in addition to daily energy use.

From practicality perspective, it is recommended that research be performed to demonstrate
the proposed rating method based on short-term measurements or measurements with a
lower spatial/temporal resolution. For example, the proposed rating method is expected to
be applicable for both short-term and long-term measurements using the data sorted by
respective outdoor temperature, although long-term measurements would provide a more
accurate characterization. In addition, if thermal comfort measurements in multiple rooms
across the house is not readily available, this rating system can be used even with a single
temperature measurement at the most problematic location. (i.e., the room with the largest
temperature deviation from the setpoint) or in a room where the thermostat is located
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APPENDIX A: Data Gaps

Appendix A describes the rule that was applied to fill the data gaps identified in the raw data.
Data gaps include missing timestamps (e.g., midnight missing data for two to three minutes)
and bad data. Most long-term data gaps (> 2 hours) occurred in the days to exclude. The
following rule was applied to fill the data gaps identified:

e If gaps < 1 hour, the gaps were filled with previous values.

e |If gaps > 1 hourand < 2 hours, the gaps were filled with interpolation.

e If gaps > 2 hours, the gaps were filled with -99.

The data gaps identified in the Year 1 raw data from July 2013 to June 2014 include:
¢ Midnight missing data for two to three minutes;
e 123 non-midnight data gaps < 1 hour; and
e 11 long-term data gaps > 1 hour.

123 non-midnight data gaps randomly occurred throughout the Year 1, but they tend to
repeatedly occur at around 11 PM in the first few months of Year 1 dataset. Out of the 11
long-term data gaps, 8 data gaps occurred in the days to exclude (i.e., no need for filling
gaps). 1 data gap occurred to forward one hour due to DST on March 9, 2014. 2 data gaps
include 100 1-min data points (i.e., equivalent to 1 hour 40 minutes) from December 5, 2013
6:03 AM to 7:42AM; and 103 1-min data points (i.e., equivalent to 1 hour 43 minutes) from
May 15,2014 0:01 AM to 1:43 AM.

The data gaps identified in the Year 2 raw data from February 2015 to January 2016 include:
¢ Midnight missing data for two to three minutes;
e 10 non-midnight data gaps < 1 hour; and
e 3long-term data gaps > 1 hour.

Out of the three long-term data gaps, 2 data gaps occurred in the days to exclude (i.e., no

need for filling gaps), and 1 data gap occurred to forward one hour due to DST on March 8,
2015.
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APPENDIX B: DAYS TO EXCLUDE

Appendix B provides a list of the 25 days that were excluded from the analysis (i.e., 15 days in
Year 1 and 10 days in Year 2) along with additional 24 days (i.e., 15 days in Year 1 and 9 days
in Year 2) that were partially excluded from the analysis due to long-term bad data in OA dew
point temperature data.

The days to exclude for Year 1 from July 2013 to June 2014 include:
e The following 10 days were excluded due to the exclusion from the PV data reported
in Fanney et al. (2015).
— August 2, 2013 through August 6, 2013
— December 4, 2013
— December 27,2013
— January 31, 2014
— May 13,2014
— May 14, 2014

e The following 2 days were excluded due to bad/missing data in the heat pump
performance data.
— September 28,2013
— September 29, 2013

e The following 1 day was excluded due to the event log recorded errors and no
heating response from HP at low temperature.
— October 25, 2013

e The following 1 day was excluded due to the change of the thermostat's differential
temperature setting in the middle of the day.
— January 23, 2014

e The following 1 day was excluded due to long-term bad data in NIST OA temperature
data.
— April 29,2014

e The following 15 days were partially excluded due to bad/missing data in NIST OA
dew point temperature data.
— September 12,2013
— October 11, 2013 through October 13, 2013
— October 16,2013
— October 17,2013
— November 24, 2013 through November 27, 2013
— January 6, 2014 through January 8, 2014
— February 13,2014
— February 14,2014

The days to exclude for Year 2 from February 2015 to January 2016 include:

e The following 2 days were excluded due to the time response test at NZERTF.
— February 5, 2015
— February 6, 2015
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The following 3 days were excluded due to the failure of a relay in the heat pump

outdoor unit.
— May 30, 2015 through June 1, 2015

The following 3 days were excluded due to system shutdown.
— October 20, 2013 through October 22, 2013

The following 2 days were excluded due to NIST close down.
— January 25, 2016
— January 26, 2016

The following 9 days were partially excluded due to bad/missing data in NIST OA dew
point temperature data.

— February 15, 2015

— February 16, 2015

— February 19, 2015 through February 21, 2015

— February 23, 2015

— February 24,2015

— January 23, 2016

— January 24, 2016
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APPENDIX C: GRAPHICAL SUMMARIES OF 1-MIN THERMAL COMFORT AND
ENERGY DATA

Appendix C presents graphical summaries of the 1-min temperature, humidity, and electricity
data from July 2013 to June 2014 (i.e., Year 1) and from February 2015 to January 2016 (i.e.,
Year 2) for the following data channels:

24 room air temperature channels (Appendix C-1);

5 room globe temperature channels (Appendix C-2);
2 outdoor air temperature channels (Appendix C-3);
7 room relative humidity channels (Appendix C-4);

1 outdoor humidity channel (Appendix C-5); and

3 heat pump electricity channels (Appendix C-6).

Standard time-series plots present the 1-min temperatures in degrees Celsius using the
primary Y-axis on the left and the same temperatures in Fahrenheit on the secondary Y-axis
on the right. In addition, the heating and cooling setpoint temperatures are presented as a
reference for all rooms.
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APPENDIX C-1: 1-MIN AIR TEMPERATURES BY ROOM
ROOMS ON THE FIRST FLOOR
e LR: Living Room
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Figure C-1: Year 1 1-Min LR Temperature.
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NIST LR Temperature (February 2015) NIST LR Temperature (March 2015)
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Figure C-2: Year 2 1-Min LR Temperature.
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e KIT: Kitchen

NIST KIT Temperature (July 2013)
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Figure C-3: Year 1 1-Min KIT Temperature.
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NIST KIT Temperature (February 2015)
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Figure C-4: Year 2 1-Min KIT Temperature.
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e DR: Dining Room

NIST DR Temperature (July 2013) NIST DR Temperature (August 2013)
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Figure C-5: Year 1 1-Min DR Temperature.
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NIST DR Temperature (February 2015)
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Figure C-6: Year 2 1-Min DR Temperature.
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Figure C-7: Year 1 1-Min BR4 Temperature.
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NIST BR4 Temperature (February 2015)
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Figure C-8: Year 2 1-Min BR4 Temperature.
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e BA1: Bathroom 1

NIST BA1 Temperature (July 2013)

NIST BA1 Temperature (August 2013)
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Figure C-9: Year 1 1-Min BA1 Temperature.
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NIST BA1 Temperature (February 2015)
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Figure C-10: Year 2 1-Min BA1 Temperature.
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e WD: Washer and Dryer
NIST WD Temperature (July 2013) NIST WD Temperature (August 2013)
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Figure C-11: Year 1 1-Min WD Temperature.
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NIST WD Temperature (February 2015)
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Figure C-12: Year 2 1-Min WD Temperature.
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ROOMS ON THE SECOND FLOOR
e MBR: Master Bedroom

NIST MBR Temperature (July 2013)

NIST MBR Temperature (August 2013)
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Figure C-13: Year 1 1-Min MBR Temperature.
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NIST MBR Temperature (February 2015)
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Figure C-14: Year 2 1-Min MBR Temperature.
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Figure C-15: Year 1 1-Min BR2 Temperature.
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Figure C-16: Year 2 1-Min BR2 Temperature.
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Figure C-17: Year 1 1-Min BR3 Temperature.

Page 138

Room Temperature (F) Room Temperature (F) Room Temperature (F) Room Temperature (F) Room Temperature (F)

Room Temperature (F)



920-02°¥09" 1 SIN/8Z09 01 /B10°10p//:sdRy :wiouy ab.1eyd jo a1 s|qejieAe s| uoieolignd siy L

NIST BR3 Temperature (February 2015) NIST BR3 Temperature (March 2015)

8
8

B
3 8 8
B

Room Temperature (F)
b

73

N Y A, A o A_A A A A A\
20 MWN WVW"‘WW\”J\JWWWVVW VY e

A . VY SR WSSO S At Plragrdy ”
W ik T AV oa B i s feadad A g Mt

Room Temperature (C)
8
8

Room Temperature (C)
> 8

38 2 8 d I B 8
Room Temperature (F)

15 59
21115 2/6/15 2111115 2/16/15 221115 2/26/15 3115 3/6/15 311115 3/16/15 3/21/15 3/26/15 3131115

—Tset_ C —Tset_H ——Corrected Ta —Tset_C —Tset_H ——Corrected Ta

&

NIST BR3 Temperature (April 2015) NIST BR3 Temperature (May 2015)

8
3
8

28

8
N
8

25

S RPN ad VN MVAA\J.WA_/\/«

20

!
|
]

Room Temperature (F)
]

Room Temperature (C)
2 8 3 I

Room Temperature (C)
® 8
4
<
3
38 2 8 d I 8B 8
Room Temperature (F)

15
4115 46115 41115 4/16/15 421118 4/26/15 /1 51115 5/6/15 511115 5/16/15 5/21/15 5/26/15 5/31/16

—Tset_ C —Tset_H ——Corrected Ta —Tset_C —Tset_ H ——Corrected Ta

8
@

oo

NIST BR3 Temperature (June 2015) NIST BR3 Temperature (July 2015)
30

8
8

8
8

86
28 82
”n

»
&

= \n... ISP\ o AN NP i
23 AoV 73

20 68

Room Temperature (C)
8
8

Room Temperature (F)
Room Temperature (C)
b

3
Room Temperature (F)

®
?

15 59
6/1/15 6/6/15 6/11/15 6/16/15 6/21/18 6/26/15 711115 71118 716115 71115 7116/15 7121118 7126115 7131115

—Tset C —Tset_H ——Corrected Ta —Tset C —Tset_H —Corrected Ta

@

59

o NIST BR3 Temperature (August 2015) " NIST BR3 Temperature (September 2015)

8
8

28 82

B
®
8

25 w

®

Room Temperature (C)
8
3 3
Room Temperature (F)

3

Aol s anai A W et

23 73

20 68

Room Temperature (F)
8
3

Room Temperature (C)

>
?

15 59
8115 8/6/15 811115 8/16/15 821/15 8/26/15 8/31/15 115 9/6/15 911/15 9/16/15 9121115 9126115 10/1/15

—Tset_C —Tset_H ——Corrected Ta ——Tset_C —Tset H ——Corrected Ta

&

NIST BR3 Temperature (October 2015) NIST BR3 Temperature (November 2015)
30 8

8
8

28 82

B
8

N
]

25 7
Lot o A B

VYR AR AR W s NIVLY &

20 68

o

s wﬂ\ A AAAA AN AN

Yy A
= M.

Room Temperature (C)
8

Room Temperature (F)
Room Temperature (C)
8
Room Temperature (F)

18 84

®

64

15 59 15 59
10/1/15 10/6/15 1011115 10/16/15 10/21/15 10/26/15 10131115 111115 11/6/15 111115 11/16/15 1121115 11/26/15 12/1115

—Tset_C —Tset_H ——Corrected Ta —Tset_ C —Tset_H ——Corrected Ta

NIST BR3 Temperature (December 2015) NIST BR3 Temperature (January 2016)

_"_J\r_ 'A:V I\‘vl\ A, WANA_N_A UAW\/N\J A\JA\_IW’E’V .
20 v A |

e Mo

A Ao

Room Temperature (C)
b

Room Temperature (F)

Room Temperature (C)
b
3

Room Temperature (F)

2 8

15 9 15 59
1211115 12/6/15 1211115 12116115 12121115 12/26/15 1213115 1116 1616 111116 116116 121116 1126116 131116
—Tset_ C —Tset_H ——Corrected Ta —Tset_C —Tset H ——Corrected Ta

Figure C-18: Year 2 1-Min BR3 Temperature.
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Figure C-19: Year 1 1-Min MBA Temperature.
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NIST MBA Temperature (February 2015)
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Figure C-20: Year 2 1-Min MBA Temperature.
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e BA2: Bathroom 2

NIST BA2 Temperature (July 2013) NIST BA2 Temperature (August 2013)
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Figure C-21: Year 1 1-Min BA2 Temperature.
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NIST BA2 Temperature (February 2015)
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Figure C-22: Year 2 1-Min BA2 Temperature
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ATTIC

e A_NW: Attic - Northwest
NIST ATTIC_NW Temperature (July 2013) NIST ATTIC_NW Temperature (August 2013)
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Figure C-23: Year 1 1-Min Attic Northwest Temperature.
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NIST ATTIC_NW Temperature (February 2015)
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Figure C-24: Year 2 1-Min Attic Northwest Temperature.
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e A_NE: Attic - Northeast
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Figure C-25: Year 1 1-Min Attic Northeast Temperature.

Page 146



920-02"409" 1 SIN/8209°01/610"10p//:sdRy :woly abieyd jo aaiy o|qe|ieAe si uoeolignd siy |

NIST ATTIC_NE Temperature (February 2015)

NIST ATTIC_NE Temperature (March 2015)

30 8 30 8
S 2t O 2L
e g ¢ e
22 ng 2 ]
I} g 9 ]
223 73 223 73 g
3 § 3 Ao Aa~A AA e §
Ezow\,\/\/\w\/w\/\ﬂs EzO\J\,._..\,va ST ~~ < @'
S S o S
KT “e g8 6 &

15 59 15 59

21115 206115 21115 216115 221115 226115 3115 306115 311115 316115 32115 3/26/15 331115
—Tset_ C —Tset_H ——Corrected Ta —Tset_C —Tset_H ——Corrected Ta
NIST ATTIC_NE Temperature (April 2015) NIST ATTIC_NE Temperature (May 2015)

30 8 30 3
Qs @t O 2Lt
e e ¢ 2

5 5

e R ng §a M w8
173
B o e WA NG e ng EaxfY ng
5 AN e o 2
= g g 68 s
S 8 8 8
e 18 M g 18 6

15 59 15 59

41115 46115 41115 416115 42115 4126115 51115 511115 5/6115 511115 5/16/15 521115 5/26/15 5/31/15

—Tset_ C —Tset_H ——Corrected Ta —Tset_C —Tset_H ——Corrected Ta
NIST ATTIC_NE Temperature (June 2015) NIST ATTIC_NE Temperature (July 2015)
30 -3 30 %
S 2 2l Ty 2l
g 2 I A A~ TAIAIASA NN AN IINNANAAAA
22 78 22 72
4 = g £ g
é‘ 2 g “g’- 23 g
K3 e s 2
. e T 68 £
3 g 3 S
© 18 M 218 64

15 59 15 59

61115 6/6/15 8/11/15 6/18/15 6121115 6126/15 7118 7115 716115 71115 7116/15 712115 7126/15 7I31/15

—Tset C —Tset H ——Corrected Ta —Tset_C —Tset_H ——Corrected Ta
NIST ATTIC_NE Temperature (August 2015) NIST ATTIC_NE Temperature (September 2015)

30 86 30 8
S 2l O a2t
2 M AN AIIINAC AAAMNAAAAA] 8 2 g
Sx ng 5= J\,\/\/\,\/\/\N\\/\W\N\/\/\/\/\/\/\/\-\N\M‘- 73
o} 5 S )
é-za 73 g é 23 73 g
@ 2 O &
xS g 'z 2 68 ¢
S 8 § 8
& 18 M@ g 18 64 @

15 59 15 59

81115 86115 811115 8/16/15 821/15 826115 &/31/15 9115 96115 911115 916/15 921115 9/26/15 101115
——Tset_C —Tset_H ——Corrected Ta —Tset_C —Tset_H ——Corrected Ta
NIST ATTIC_NE Temperature (October 2015) NIST ATTIC_NE Temperature (November 2015)

30 8 30 8
Q28 2t Q= 2l
2 g ¢ 2
S 2 2 2
g% SANAAAAA A - e g
RJEETST e SMeneeeE R il lapoge R ng
g A s 5 IV NNNSZ\V.N. N -
= s T IR 68 g
s S & s
2 g S8 o &

15 15 59

101115 10615 1011115 10116/15 1012115 10/26/15 10031115 1111115 1116115 11115 11116115 112115 11126115 1211115
—Tset_C —Tset_H ——Corrected Ta —Tset_ C —Tset_H ——Corrected Ta
NIST ATTIC_NE Temperature (December 2015) NIST ATTIC_NE Temperature (January 2016)

30 30 -3
Q28 2t O 2L
2 e ¢ 2
22 g 22 e
@ g B g
g _[J_""\\ /\r\ 73 é‘ g 73 é‘
S o & o
£ o AT e wf LTI T S o T
s S & ]
e 18 “E g8 o

15 59 15 59

12/115 12/6/15 12111115 12/16/15 1212115 12126115 12/3115 1116 1616 11116 1116116 121116 126116 131116

—Tset_ C —Tset_H ——Corrected Ta —Tset_ C —Tset_H ——Corrected Ta

Figure C-26: Year 2 1-Min Attic Northeast Temperature.
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Figure C-27: Year 1 1-Min Attic Southeast Temperature.
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Figure C-28: Year 2 1-Min Attic Southeast Temperature.
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Figure C-29: Year 1 1-Min Attic Southwest Temperature.
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Figure C-30: Year 2 1-Min Attic Southwest Temperature.
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Figure C-31: Year 1 1-Min BSMT Northwest Temperature.
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Figure C-32: Year 2 1-Min BSMT Northwest Temperature.
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e B_NE: Basement - Northeast

NIST BSMT_NE Temperature (July 2013)

NIST BSMT_NE Temperature (August 2013)

30 8 30 8
Q2 2Lt Qo 82
o 2 o
EES ng 2 7
b} g 3
g2 BEg 22 73
® SHVSE " U SARI NV, SV Wover_SS. 0 No- e R A Vs s N A L e, i
;20 TV e's 'EZO hiaaa) W es
5 s s
& 18 ‘4 ¢ 18 64

15 59 15

7113 716113 71113 71613 7121113 7126113 713113 8113 8/6/13 81113 8/16/13 8/21/13 8/26/13 /3113

—Tset.C —Tset_ H ——Recorded Ta —Tset C —Tset H ——Recorded Ta
NIST BSMT_NE Temperature (September 2013) NIST BSMT_NE Temperature (October 2013)

30 8 30 8
< 2t O 82
o g 2
2 g £ ”
@ 2 g
£ MMMMMNMM PE E? 73
s e ’ s s S e
oo W @ g LaTE e e £ W 68
s S s
e 18 M g8 [

15 59 15 59

9113 96113 91113 9/16/13 92113 9/26/13 10113 101113 10/6/13 10111113 10/16/13 1021113 10/26/13 10031113
—Tset_ C —Tset_H ——Recorded Ta —Tset_C —Tset_H ——Recorded Ta
NIST BSMT_NE Temperature (November 2013) NIST BSMT_NE Temperature (December 2013)

30 8 30 8
S 2t Oz 82
g g 0
22 ng 2 i
& s &

é 23 73 g é- 73
2 e o2
e 2 MWMWMMJVWWW SBE £ B IV A AR, A e B, e 6
S 8 o
£ 18 M g8 &4
15 59 15 59
1113 11613 111113 11116113 112113 1112613 1211113 121113 12/6/13 1211113 1216113 12121113 12/26/13 12/31113
—Tset C —Tset_H ——Recorded Ta —Tset C —Tset_H ——Recorded Ta
NIST BSMT_NE Temperature (January 2014) NIST BSMT_NE Temperature (February 2014)

30 8 30 8
[P 2 T
2 2 o
22 g 2 77
© s s
é- 2 738 é- 2 73
g g 8
s 20 8 20 68
E VWW/WWWWW\NMWW - WWWWVWW
e 18 ‘M g 18 64

15 59 15 59

1114 16114 11114 116114 121114 1/26/14 13114 2114 26/14 21114 216114 22114 2026114
—Tset_C —Tset_H ——Recorded Ta —Tset_C —Tset_H ——Recorded Ta
NIST BSMT_NE Temperature (March 2014) NIST BSMT_NE Temperature (April 2014)

30 8 30 8
Q2 2t O 82
e e @

5 2 5
= 5 E®
b} 2 g
g2 BE 22 73
) o o
) ey T 68
£ E £
5 S s
e 18 4 ¢ 18 64
15 59 15 59
3114 30614 31114 3/16/14 32114 3126/14 33114 4114 46114 41114 416114 421114 4126114 5114
—Tset C —Tset_ H ——Recorded Ta —Tset_C —Tset_H ——Recorded Ta
NIST BSMT_NE Temperature (May 2014) NIST BSMT_NE Temperature (June 2014)

30 8 30 8
Qs 2t O 82
e g @

2 2 2>

@ 2 9

g BEg 2 73

© e, A e o

Ezo R N e e “"WW‘”*WW@E 'Ezo""’""”""""”"’“"‘*"“"" e s L e -

s S s

© 18 4 g 18 64
15 15 59
51114 56114 5111/14 5/16/14 5/21/14 5/26/14 5/31/14 61114 6/6/14 61114 6/16/14 6/21/14 6/26/14 7114

—Tset_ C —Tset_H ——Recorded Ta —Tset_C —Tset_H ——Recorded Ta

Figure C-33: Year 1 1-Min BSMT Northeast Temperature.
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NIST BSMT_NE Temperature (February 2015)

NIST BSMT_NE Temperature (March 2015)
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Figure C-34: Year 2 1-Min BSMT Northeast Temperature.
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e B _SE: Basement - Southeast

NIST BSMT_SE Temperature (July 2013) NIST BSMT_SE Temperature (August 2013)
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Figure C-35: Year 1 1-Min BSMT Southeast Temperature.
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NIST BSMT_SE Temperature (February 2015)
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Figure C-36: Year 2 1-Min BSMT Southeast Temperature.
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e B SW: Basement - Southwest

NIST BSMT_SW Temperature (July 2013)

NIST BSMT_SW Temperature (August 2013)
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Figure C-37: Year 1 1-Min BSMT Southwest Temperature.
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NIST BSMT_SW Temperature (February 2015)
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Figure C-38: Year 2 1-Min BSMT Southwest Temperature.
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Figure C-39: Year 1 1-Min EH Lowest Temperature.
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Figure C-40: Year 2 1-Min EH Lowest Temperature.
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e EH LowerMid: Entry Hallway Lower Middle at 1.8m (71 in.)
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Figure C-41: Year 1 1-Min EH Lower Middle Temperature.
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Figure C-42: Year 2 1-Min EH Lower Middle Temperature.
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e EH Middle: Entry Hallway Middle at 3.0 m (118 in.)
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Figure C-43: Year 1 1-Min EH Middle Temperature.
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NIST EH_middle Temperature (February 2015) NIST EH_middle Temperature (March 2015)
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Figure C-44: Year 2 1-Min EH Middle Temperature.
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e EH UpperMid: Entry Hallway Upper Middle at 4.3 m (169 in.)

NIST EH_upper_mid Temperature (July 2013) NIST EH_upper_mid Temperature (August 2013)
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Figure C-45: Year 1 1-Min EH Upper Middle Temperature.
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NIST EH_upper mid Temperature (February 2015)
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Figure C-46: Year 2 1-Min EH Upper Middle Temperature.
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e EH Upper: Entry Hallway Upper at 5.5 m (217 in.)
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Figure C-47: Year 1 1-Min EH Upper Temperature.
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NIST EH_upper Temperature (February 2015)
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Figure C-48: Year 2 1-Min EH Upper Temperature.
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APPENDIX C-2: 1-MIN GLOBE TEMPERATURE BY ROOM
ROOMS ON THE FIRST FLOOR

LR: Living Room

NIST LR Globe Temperature (July 2013)

Q2 8
e
5
i 5P e o = et o e S Tt B e e
8
15 23 73
©
o 20 68
S
RL] 64

15

711113 716113 71113 716113 712113 7126113 73113
—Tset_C —Tset_H Recorded Tg
NIST LR Globe Temperature (September 2013)

30 8
Q2 82
[

]
5 ST 5 77
8
g2 73
@
o 20 68
K
o1’ o4
15 59
9113 96113 91113 9/16/13 921/13 9/26/13 10/1/13
—Tset C —Tset_H Recorded Tg
NIST LR Globe Temperature (November 2013)

30 88
O 2 82
e
s
£ 77
8
g2 73
i
o 20 68
S
o1’ 64

15 59

1113 11/6/13 11113 11116113 112113 11126113 1211113

—Tset C —Tset_H Recorded Tg
NIST LR Globe Temperature (January 2014)

30 86
Q2 82
e
5
£> 77
8
£ 23 73
-

o 20 68
K
R 64
15 59
11114 1614 11114 116114 121114 126114 13114
—Tset_C —Tset_H Recorded Tg
NIST LR Globe Temperature (March 2014)

30 -
Q2 82
e
]
£ 77
8
£ 23 73
@

o 20 68
S
RG]
5
31114 36114 1114 3/16/14 321/14 3126114 3/31/14
—Tset_C —Tset H Recorded Tg
NIST LR Globe Temperature (May 2014)

30
Q2 82
[

]
£
8
£ 23 73
2
o 20 68
S
® 1. 64
5
51114 /6114 51114 5/16/14 521/14 5/26/14 5/31/14
—Tset_C —Tset_H Recorded Tg

Globe Temperature (F) Globe Temperature (F) Globe Temperature (F) Globe Temperature (F) Globe Temperature (F)

Globe Temperature (F)

Globe Temperature (C)

Globe Temperature (C) Globe Temperature (C) Globe Temperature (C) Globe Temperature (C

Globe Temperature (C)

NIST LR Globe Temperature (August 2013)

30 8
28 a2t
o
25 ]
e e e s
23 73 g
@
2
20 68 o
2
el
18 80
59
81113 86113 81113 8/16/13 821/13 8/26/13 8/31/13
—Tset C —Tset H Recorded Tg
NIST LR Globe Temperature (October 2013)
30 £
28 a2l
e
25 ]
v, ®
23 73 g
@
20 &'y
2
18 80O
15 59
10/1/13 106113 10111113 10116/13 10121113 10126/13 10/31/13
—Tset_C —Tset_ H Recorded Tg
NIST LR Globe Temperature (December 2013)
30 £
28 2L
e
25 w2
@
2 73 g
@
2
20 68 o
S
18 84 O
15 59
121113 12/6/13 1211113 12116113 12121113 12/26/113 12131113
—Tset_C —Tset_H Recorded Tg
NIST LR Globe Temperature (February 2014)
30 8
28 a2l
e
2 ]
°
23 73 g
3
I
20 88 o
2
o)
18 o
15 59
2114 26114 211114 216/14 22114 226/14
—Tset C —Tset_H Recorded Tg
NIST LR Globe Temperature (April 2014)
30 8
28 a2l
o
2 ]
o
23 73 g
3
o
20 68 o
2
)
18 84 0
5 59
4114 46114 41114 418114 4121114 426114 51114
—Tset C —Tset H Recorded Tg
NIST LR Globe Temperature (June 2014)
30 8
28 a2l
o
2 ]
°
23 73 g
3
2
20 68 o
2
°
18 84 O
15 59
6114 /6114 61114 6/16/14 6/21/14 6/26/14 7114
—Tset C —Tset_H Recorded Tg

Figure C-49: Year 1 1-Min LR Globe Temperature.

Page 170



NIST LR Globe Temperature (February 2015) NIST LR Globe Temperature (March 2015)
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Figure C-50: Year 2 1-Min LR Globe Temperature.
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e KIT: Kitchen

NIST KIT Globe Temperature (July 2013)

NIST KIT Globe Temperature (August 2013)
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Figure C-51: Year 1 1-Min KIT Globe Temperature.
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NIST KIT Globe Temperature (February 2015)
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Figure C-52: Year 2 1-Min KIT Globe Temperature.
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ROOMS ON THE SECOND FLOOR
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Figure C-53: Year 1 1-Min MBR Globe Temperature.
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Figure C-54: Year 2 1-Min MBR Globe Temperature.
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e BR2:Bedroom 2
NIST BR2 Globe Temperature (July 2013)
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Figure C-55: Year 1 1-Min BR2 Globe Temperature.
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NIST BR2 Globe Temperature (February 2015)

NIST BR2 Globe Temperature (March 2015)
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Figure C-56: Year 2 1-Min BR2 Globe Temperature.
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e BR3:Bedroom 3
NIST BR3 Globe Temperature (July 2013)
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Figure C-57: Year 1 1-Min BR3 Globe Temperature.

Page 178



NIST BR3 Globe Temperature (February 2015)
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Figure C-58: Year 2 1-Min BR3 Globe Temperature.
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APPENDIX C-3: 1-MIN OUTDOOR AIR (OA) TEMPERATURES

NIST OA Temperatures (July 2013)
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Figure C-59: Year 1 1-Min Outdoor Air Dry-Bulb and Dew Point Temperatures.
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NIST OA Temperatures (February 2015)
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Figure C-60: Year 2 1-Min Outdoor Air Dry-Bulb and Dew Point Temperatures.
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APPENDIX C-4: 1-MIN RELATIVE HUMIDITY BY ROOM

ROOMS ON THE FIRST FLOOR
e LR: Living Room

o NIST LR RH (July 2013) NIST LR RH (August 2013)
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Figure C-61: Year 1 1-Min LR Relative Humidity.
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NIST LR RH (February 2015)
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Figure C-62: Year 2 1-Min LR Relative Humidity.

Page 183



920-02°¥09" 1 SIN/8Z09 01 /B10°10p//:sdRy :wiouy ab.1eyd jo a1 s|qejieAe s| uoieolignd siy L

e KIT: Kitchen

NIST KIT RH (July 2013) NIST KIT RH (August 2013)
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Figure C-63: Year 1 1-Min KIT Relative Humidity.
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NIST KIT RH (February 2015) NIST KIT RH (March 2015)
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Figure C-64: Year 2 1-Min KIT Relative Humidity.
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ROOMS ON THE SECOND FLOOR
e MBR: Master Bedroom

NIST MBR RH (July 2013) NIST MBR RH (August 2013)
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Figure C-65: Year 1 1-Min MBR Relative Humidity.
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Figure C-66: Year 2 1-Min MBR Relative Humidity.
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Figure C-67: Year 1 1-Min BR2 Relative Humidity.
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Figure C-68: Year 2 1-Min BR2 Relative Humidity.
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Figure C-69: Year 1 1-Min BR3 Relative Humidity.
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Figure C-70: Year 2 1-Min BR3 Relative Humidity.
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Figure C-71: Year 1 1-Min MBA Relative Humidity.
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Figure C-72: Year 2 1-Min MBA Relative Humidity.
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Figure C-73: Year 1 1-Min BSMT Relative Humidity.
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NIST BSMT RH (February 2015) NIST BSMT RH (March 2015)
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Figure C-74: Year 2 1-Min BSMT Relative Humidity.
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APPENDIX C-5: 1-MIN OUTDOOR AIR (OA) RELATIVE HUMIDITY
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Figure C-75: Year 1 1-Min Outdoor Air Relative Humidity.
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Figure C-76: Year 2 1-Min Outdoor Air Relative Humidity.
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APPENDIX C-6: 1-MIN HEAT PUMP (HP) ELECTRICITY POWER
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Figure C-77: Year 1 1-Min Heat Pump Indoor Unit Power.
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Figure C-78: Year 2 1-Min Heat Pump Indoor Unit Power.
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Figure C-79: Year 1 1-Min Heat Pump Outdoor Unit Power.
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Figure C-80: Year 2 1-Min Heat Pump Outdoor Unit Power.
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Figure C-81: Year 1 1-Min Heat Pump Total Power.
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Figure C-82: Year 2 1-Min Heat Pump Total Power.
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APPENDIX D: GLOBE-TO-AIR TEMPERATURE DIFFERENCE

Appendix D graphically present the globe-to-air temperature difference (i.e., AT (°C) = Tg -
Ta) calculated using the 5-min average temperature data collected from the five primary
rooms (i.e., LR, KIT, MBR, BR2, and BR3). Data were color-coded by system types (i.e., yellow
for YR1 HTTD, dark orange for YR1 LTTD, and green for YR2). This includes:

e Cooling season (Figure D-1);

e Heating Season (Figure D-2); and

e Transitional Season (Figure D-3).
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Figure D-1: Graphical Summaries of the 5-Min Average Globe-To-Air Temperature Differences When the Heat Pump System Was
On Cycle (Left Figure) and Off Cycle (Right Figure) for the Cooling Season.
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Figure D-2: Graphical Summaries of the 5-Min Average Globe-To-Air Temperature Differences When the Heat Pump System Was
On Cycle (Left Figure) and Off Cycle (Right Figure) for the Heating Season.
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Figure D-3: Graphical Summaries of the 5-Min Average Globe-To-Air Temperature Differences When the Heat Pump System Was
On Cycle (Left Figure) and Off Cycle (Right Figure) for the Transitional Season.
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APPENDIX E: Binned Room Air Temperatures and Humidity Ratios Against Outdoor
Temperatures (Other Rooms)

Appendix E presents the binned room air temperatures and humidity ratios against outdoor
temperatures for the following rooms as supplementary materials to Section 3.4:

Room air temperature for MBR (Figure E-1);

Room air temperatures for BR3 (Figure E-2);

Room air temperature for ATTIC (Figure E-3);

Room air temperatures for BSMT (Figure E-4);

Room humidity ratios for MBR (Figure E-5);

Room humidity ratios for BR3 (Figure E-6);

Room humidity ratios for MBA (Figure E-7); and

Room humidity ratios for BSMT (Figure E-8).
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Figure E-1: Binned MBR Room Air Temperatures Against Outdoor Temperatures.
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Figure E-3: Binned ATTIC Room Air Temperatures Against Outdoor Temperatures.
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Figure E-4: Binned BSMT Room Air Temperatures Against Outdoor Temperatures.
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Figure E-5: Binned MBR Room Humidity Ratio Against Outdoor Temperatures.
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Figure E-6: Binned BR3 Room Humidity Ratio Against Outdoor Temperatures.
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Figure E-7: Binned MBA Room Humidity Ratio Against Outdoor Temperatures.
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Figure E-8: Binned BSMT Room Humidity Ratio Against Outdoor Temperatures.

Page 216




APPENDIX F: Time-of-Day Colored Maps (Other Rooms)

Appendix F presents time-of-day colored maps applied to the hourly average room
temperatures over the measurement periods for the following rooms as supplementary
materials to Section 3.5:

e MBR (Figure F-1);

e BR3(Figure F-2);

e BR4 (Figure F-3); and

e DR (Figure F-4).
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(f) Year 2 ACCA Compliance Based on Room-To-Thermostat Temperature Difference

Figure F-1: Time-of-Day Colored Map of MBR Temperature.
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Figure F-2: Time-of-Day Colored Map of BR3 Temperature.
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(f) Year 2 ACCA Compliance Based on Room—To—Thermostat Temperature Difference

Figure F-3: Time-of-Day Colored Map of BR4 Temperature.

Page 220



920-02"409" 1 SIN/8209°01/610"10p//:sdRy :woly abieyd jo aaiy o|qe|ieAe si uoeolignd siy |

-Cooling

-Heaiing Transitional

2

N

Day of Year
Juk13

2

£

2

Day of Year
Juk13

ﬁH"WN\I

167
1m

0lss-
-0.56

-1

-1.67

(b) Year 1 HourIy Average Room-To-Thermostat Temperature Difference

Day of Year
Juk13

TTD Operation
Season
Not Compliant e
> 67- } Commp -
6 AM|
Not Compliant

+167 (Heating)

1.1

o<l

(c) Year 1 ACCA Compliance Based on Room-To-Thermostat Temperature Difference

Day of Year

27,

17

Day of Year
Juk15

167
1

-

(e) Year 2 Hourly Average Room—To—Thermostat Temperature Difference

Day of Year
Juk15
TTD Operation
Season
1AM

N(Co liant

67 ma(lllum)pllam

1.1

(f) Year 2 ACCA Compliance Based on Room—To—Thermostat Temperature Difference
Figure F-4: Time-of-Day Colored Map of DR Temperature.
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