
NIST GCR 19-022 

Formalizing ISA-95 Level 3 Control with 
Smart Manufacturing System Models 

Leon F. McGinnis 

This publication is available free of charge from: 
https://doi.org/10.6028/NIST.GCR.19-022 

https://doi.org/10.6028/NIST.GCR.19-022


NIST GCR 19-022 

Formalizing ISA-95 Level 3 Control with 
Smart Manufacturing System Models 

Prepared for 
U.S. Department of Commerce 

Engineering Laboratory - Systems Integration Division 
National Institute of Standards and Technology 

Gaithersburg, MD 20899 

By 
Leon F. McGinnis 

The Georgia Institute of Technology, 
School of Industrial and Systems Engineering 

This publication is available free of charge from: 
https://doi.org/10.6028/NIST.GCR.19-022 

November 2019 

U.S. Department of Commerce 
Wilbur L. Ross, Jr., Secretary 

National Institute of Standards and Technology 
Walter Copan, NIST Director and Undersecretary of Commerce for Standards and Technology 

https://doi.org/10.6028/NIST.GCR.19-022


Disclaimer 

This publication was produced as part of contract 70NANB15H234 with the National In-
stitute of Standards and Technology. The contents of this publication do not necessarily 
refect the views or policies of the National Institute of Standards and Technology or the 
US Government. 



Acknowledgements 

The work reported here would not have been possible without the fnancial support of the 
National Institute for Standards and Technology, and particularly the mentoring of Conrad 
Bock. At the same time, it would not have been possible without the participation, en-
couragement and support of many others. Jack Harris of Rockwell Collins (now Collins 
Aerospace) provided the frst fnancial support of work that used SysML to model a pro-
duction system and automated the creation of Arena simulation models. Sandy Frieden-
thal, then at Lockheed, sponsored an early multidisciplinary project to integrate product 
system and production system design. Boeing has been a strong supporter, through the 
Boeing-Georgia Tech Strategic University Partnership, for production system modeling 
with SysML and simulation model automation; Michael Christian and Adam Graunke have 
been key collaborators. McKesson High Value Solutions provided both fnancial support 
and very important access to actual central fll pharmacies. Dr. George Thiers, founder of 
MBSE Tools, Inc., and Dr. Tim Sprock, currently at NIST, have made seminal contribu-
tions to these ideas and both have been directly involved, at one time, in the work reported 
here. Many graduate students in the Steward School of Industrial and Systems Engineering 
at Georgia Tech have participated in this project and earlier work on which this project 
was based, most recently including Morgan McCombs, Chinmay Navrange and Prabodh 
Gawande. Any errors of omission or commission in this document are the sole responsi-
bility of the author. 

i 



Abstract 

Achieving the vision of ”smart manufacturing and ”Industrie 4.0” requires building on suc-
cesses in computational control of processes to create generic approaches for management 
of manufacturing operations, or smart manufacturing operations management (SMOM). 
The approach to SMOM presented in this report generalizes the modeling framework of 
ISA-95 with a reference model for discrete event logistics systems (DELS) that identifes 
fve generic operations management decisions. This report applies it in a computational 
model of a large-scale, highly-automated central fll pharmacy that is the basis for a sim-
ulation testbed enabling convenient experimentation with operations management policies 
and decision algorithms. 

Key words 

Smart Manufacturing; Operations Management; Systems Modeling. 

ii 



iv 

 

TABLE OF CONTENTS 

1 Introduction, Motivation and Approach 1 

1.1 Introduction 1 
1.2 What Is the Opportunity? 2 
1.3 Approach 4 
1.4 Overview 4 

2 ISA-95 and DELS 6 

2.1 DELS Overview 6 
2.2 DELS to ISA-95 Correspondences 8 

3. Operational Controller Function and Architecture 11 

3.1 Requirement: Defining Task 12 
3.2 Function: Operational Decisions 13 
3.3 Function: Decision Triggers 14 
3.4 Controller Functions 14 
3.5 Controller Architecture 14 
3.6 Summary 17 

4. Central-Fill Pharmacy Case Study 18 

4.1 Concept of Operation 18 
4.2 HVCFP Product 19 
4.3 HVCFP Processes 19 
4.4 HVCFP Resources 20 

4.4.1 Dispense Phase Resources 20 
4.4.2 Order Accumulation Phase Resources 21 
4.4.3 Pharmacy Accumulation Phase Resources 22 

4.5 Facility 22 
4.6 Operational Control 23 
4.7 System Summary 24 

5. Model-Based Systems Engineering for the HVCFP 25 

5.1 Upper Level Ontology—Generic CFP 25 
5.2 CFP Context 26 
5.3 Defining Product 27 
5.4 Defining Process 27 
5.5 Defining Resource 30 
5.6 Defining Control 30 
5.7 Summary 33 

6 Demonstration CFP System Model 34 

6.1 DemoCFP Package 35 
6.1.1 DemoCFP Product 35 
6.1.2 DemoCFP Resource 35 
6.1.3 DemoCFP Process 37 
6.1.4 DemoCFP Control 38 



v 

 

6.2 HSFillSystem Package 43 
6.2.1 HSFillSystem Product 43 
6.2.2 HSFillSystem Resource 43 
6.2.3 HSFillSystem Process 46 
6.2.4 HSFillSystem Control 50 

6.3 HFFillSystem Package 50 
6.3.1 HFFillSystem Product 50 
6.3.2 HFFillSystem Resource 51 
6.3.3 HFFillSystem Process 52 
6.3.4 HFFillSystem Control 54 

6.4 VTS Package 54 
6.4.1 VTS Product 54 
6.4.2 VTS Resource 54 
6.4.3 VTS Process 55 
6.4.4 VTS Control 55 

6.5 SortSystem Package 57 
6.5.1 SortSystem Product 57 
6.5.2 SortSystem Resource 57 
6.5.3 SortSystem Process 58 
6.5.4 SortSystem Control 58 

6.6 Modeling Summary 58 

7 Simulating the DemoCFP 60 

7.1 The Simulation Platform 60 
7.2 What is Simulated? 60 
7.3 Overview of the Simulation Model 60 

7.3.1 HighSpeed Model 62 
7.3.2 HighFlex Model 65 
7.3.3 Vial Transfer System Model 68 

7.4 Initial Experimentation 68 
7.5 Modeling Issues 70 
7.6 Future Simulation Model Development 72 

8 Conclusions 73 

9 References 75 

 

  



vi 

 

Table of Figures 

Figure 1-1 Manufacturing Enterprise Context for ISA-95 ............................................................................ 2 
Figure 1-2 Functions and messages in Level 3 ............................................................................................. 3 
Figure 2-1 Basic DELS Semantics................................................................................................................ 6 
Figure 2-2 Conceptual Model of DELS Operational Controller ................................................................... 7 
Figure 2-3 DELS Product and ISA-95 Manufacturing Bill .......................................................................... 8 
Figure 2-4 Process in DELS and ISA-95 ...................................................................................................... 8 
Figure 2-5 Resource in DELS and ISA-95 ................................................................................................... 9 
Figure 2-6 Facility in DELS and ISA-95 ...................................................................................................... 9 
Figure 2-7 Authorizing Operations in DELS and ISA-95 .......................................................................... 10 
Figure 3-1 DELS Controller and Base System ........................................................................................... 11 
Figure 3-2 Conceptual Controller Architecture .......................................................................................... 15 
Figure 3-3 Interface Location Example ...................................................................................................... 16 
Figure 4-1 Vial in Puck ............................................................................................................................... 20 
Figure 4-2 Robotic Workstation ................................................................................................................. 21 
Figure 4-3 Order Sortation System ............................................................................................................. 22 
Figure 4-4 ISA-95 Control Hierarchy ......................................................................................................... 23 
Figure 5-1 Common Semantics for Discrete Event Logistics Systems ...................................................... 26 
Figure 5-2 CFP Context .............................................................................................................................. 26 
Figure 5-3 CFP "Product" ........................................................................................................................... 27 
Figure 5-4 Generic Order Fulfillment Process ............................................................................................ 28 
Figure 5-5 Order Filling Structure .............................................................................................................. 28 
Figure 5-6 Line Filling Structure ................................................................................................................ 29 
Figure 5-7 CFP Fulfillment Process............................................................................................................ 29 
Figure 5-8 CFP Subsystems and Components ............................................................................................ 30 
Figure 5-9 Order Screening Process for CFP Controller ............................................................................ 31 
Figure 5-10 Task Structure for CFP ............................................................................................................ 32 
Figure 5-11 Order Batching Process for CFP Controller ............................................................................ 32 
Figure 6-1 System Model Organization ...................................................................................................... 34 
Figure 6-2 DemoCFP Product and Process ................................................................................................ 35 
Figure 6-3 DemoCFP System Structure ..................................................................................................... 36 
Figure 6-4 Flows in DemoCFP ................................................................................................................... 37 
Figure 6-5 Inbound Order Process .............................................................................................................. 38 
Figure 6-6 DemoCFP Control up to Bagging ............................................................................................. 39 
Figure 6-7 DemoCFP Batch Release to Fulfillment ................................................................................... 40 
Figure 6-8 DemoCFP Control Decisions and Control Processes ............................................................... 41 
Figure 6-9 Task Definitions for DemoCFP Controller ............................................................................... 41 
Figure 6-10 Structure of DemoCFP TaskDefs............................................................................................ 42 
Figure 6-11 DemoCFP Controller .............................................................................................................. 42 
Figure 6-12 HSFillSystem Products ............................................................................................................ 43 
Figure 6-13 HSFillSystem Resources .......................................................................................................... 43 
Figure 6-14 VialDispenseSystem Model ..................................................................................................... 44 
Figure 6-15 HSDispenseFinger Example ................................................................................................... 44 
Figure 6-16 PuckBaggerSystem Example ................................................................................................... 45 
Figure 6-17 Flows in HSFillSystem ............................................................................................................ 45 
Figure 6-18 Puck Fill Order Batch Process ................................................................................................ 46 
Figure 6-19 Puck Line Fill Non-combo Order Process .............................................................................. 48 
Figure 6-20 Puck Line Fill Combo Order Process ...................................................................................... 47 



vii 

 

Figure 6-21 HSFillSystem Dispense Line Process ...................................................................................... 49 
Figure 6-22 HSFillSystemControl Decisions, Processes and Task Definitions .......................................... 50 
Figure 6-23 HFFillSystem Product ............................................................................................................. 50 
Figure 6-24 HFFillSystem Structure ........................................................................................................... 51 
Figure 6-25 Flows in HFFillSystem ............................................................................................................ 52 
Figure 6-26 FillToteOrder Process ............................................................................................................. 53 
Figure 6-27 FillToteBatch Process ............................................................................................................. 53 
Figure 6-28 VTS Structure .......................................................................................................................... 55 
Figure 6-29 VTS Internal Structure ............................................................................................................ 55 
Figure 6-30 VTS Control Process ................................................................................................................ 56 
Figure 6-31 Flows in the Sortsystem ........................................................................................................... 57 
Figure 6-32 Sort Process ............................................................................................................................. 58 
Figure 7-1 Accept/Reject Decision ............................................................................................................. 61 
Figure 7-2 Creating the Pending Order Table ............................................................................................. 61 
Figure 7-3 Structure of the DemoCFP Simulation ...................................................................................... 62 
Figure 7-4 High Speed Resource Library ................................................................................................... 63 
Figure 7-5 HighSpeed Subsystem Model ................................................................................................... 64 
Figure 7-6 HighSpeed FillSystem Model ................................................................................................... 65 
Figure 7-7 HighFlex Resource Library ....................................................................................................... 66 
Figure 7-8 HighFlex Subsystem Model (partial) ........................................................................................ 67 
Figure 7-9 Distribution of Order Received Time ........................................................................................ 68 
Figure 7-10 Cycle Time vs Received Time ................................................................................................ 69 
Figure 7-11 Simulated Cycle Time vs Throughput..................................................................................... 69 
Figure 7-12 Throughput vs Number of Pucks; 200 Totes ........................................................................... 70 
Figure 7-13 Throughput vs Number of Pucks; 250 Totes ........................................................................... 70 
 



viii 

 

EXECUTIVE SUMMARY 

This report demonstrates a novel approach to modeling production systems, including their operational 

control, with a large-scale, highly automated central fill pharmacy as the demonstration use case.  The 

products are: (1) the system model, authored using the OMG SysML™ language; and (2) a discrete event 

simulation of the modeled central fill pharmacy, structured specifically to support convenient 

experimentation with alternative operations management policies and decision algorithms. 

The approach is based on a semantic reference model for discrete-event logistics systems (DELS) that 

enables modelers to create a comprehensive and computational model of structure, behavior and control of 

DELS.  This model is described in Chapter 2 and shown to generalize the resource and process models 

underlying the ISA-95 standard. A key element of the reference model is its represents operational control.  

Chapter 3 discusses generic operational controller requirements, functions, and a suggested architecture. 

The demonstration use case is automated central fill pharmacies (CFPs).  These are described in Chapter 4, 

which focuses on a particular style of CFP, and is based on a particular CFP.  However, no proprietary 

information is presented. 

Chapter 5 applies the DELS reference model to establish some abstract components of a CFP model.  This 

chapter bridges the reference model of chapter 2, the specific use case of Chapter 4, and a detailed system 

model, presented in Chapter 6. 

The detailed model of a particular CFP is presented in Chapter 6.  This model is the first such model to be 

available in the public domain, as far as we know, because OMG SysML™ has almost exclusively been 

applied to models of product systems, such as airplanes and space missions.  The extant papers that do 

address production or manufacturing present only very limited models of small systems. A major challenge 

addressed in Chapter 6 is how to organize large production system models. Other challenges addressed 

include representation of: order filling processes when both the number of specific drugs ordered and their 

identities are not known a priori; the mechanisms by which operational controllers invoke the behaviors of 

resources; and material transport and process contingencies in the operational controller. 

Chapter 7 describes a simulation model reflecting the structure, behavior and control captured in the system 

model of Chapter 6.  Most commercial off-the-shelf discrete-event simulation packages have very limited 

native capability for controller decision making, requiring the modeler to be able to code such decision 

making in the underlying language and link this new code with the existing package.  A key feature of the 

model in Chapter 7 is support for integrating a generic simulation platform providing all the standard 

discrete event simulation capabilities with a generic mathematical analysis tool in which key elements of 

the controllers are implemented.   Some initial results from experiments with the simulation model are 

discussed. 

Much has been accomplished and much has been learned in this project.  However, there remain many 

issues to resolve before the technology for SMOM achieves a commercially viable technical readiness level.  

Chapter 8 summarizes the lessons learned and identifies key areas for further research and development. 

 



1 

 

1  Introduction, Motivation and Approach 

1.1 Introduction 

“Smart manufacturing” represents the next major phase in the evolution of manufacturing and aims to make 

the capture, dissemination, and intelligent use of information for decision-making reliable, fast, cheap, and 

ubiquitous.  When fully realized, smart manufacturing technologies and methods will impact every aspect 

of manufacturing.  Both quality and time to market will be improved—integrating product design and 

product manufacturing allows product information to flow seamlessly to production and producibility 

information to flow seamlessly back to design.  Costs will be reduced—smart operations management 

improves production resource utilization and responds faster to contingencies through sensing and real-

time decision making. 

The smart manufacturing transformation extends from the decisions on the shop floor about how to 

sequence tasks or respond to contingencies all the way to the executive suite where decisions are made 

about products, markets and supply chains.  Achieving smart manufacturing across this broad spectrum of 

decision-making requires: 

• Data/information interoperability:  The executive suite deals with time intervals of months or years, 

addresses families of products, geographical regions, and transactions with suppliers and 

customers.  Decisions on the shop floor deal with seconds or minutes, with specific machines, 

workstations and people, and the individual operations required to transform material into product.  

Across the enterprise, decision making requires information aggregation/disaggregation, which is 

possible only with high-quality detailed reference models for the information being exchanged. 

• Decision-support analysis automation: At all levels of the manufacturing enterprise, the 

fundamental decisions are “what to do,” “how to do it” and “when to do it”.  Making these decisions 

requires an understanding of the alternative actions that can be taken regarding products, the 

processes for their production, and the resources available to execute those processes, and the 

decisions themselves must be made considering the impacts on time, quality and cost. 

Automatically formulating and solving appropriate decision-support analyses is possible only with 

high-quality detailed reference models for the products, processes and resources. 

The research reported here addresses the second of these fundamental requirements in the context of 

attempting to “enable real-time monitoring, control, and performance optimization of smart manufacturing” 

(http://www.nist.gov/el/ smartcyber.cfm).  Our approach is to use a single modeling language (OMG 

SysML™) to construct a standard representation of the manufacturing system that explicitly formalizes 

plant and control separation for the domain. The resulting architecture for smart manufacturing provides 

the missing bridge between system models and data and analysis models and methods in order to enable 

operations management decision support. While there are existing models that capture the structure and 

behavior of the manufacturing plant, there remains a need for an explicit model of operational control that 

can bridge between system models, analysis models, and execution tools. 

This approach is consistent with and draws insight from the “model-based systems engineering” (MBSE) 

approach that is rapidly becoming standard practice in the aerospace and defense industry, for the 

development of “product” systems such as airplanes and weapons systems.  Until now, MBSE has not be 

developed or deployed for the design of the factories or supply chains producing these systems. 



2 

 

1.2 What Is the Opportunity? 

Figure 1-1 illustrates the manufacturing context for control as defined by ISA-95.  There is a “base system” 

consisting of physical resources that convert material flows from an input state to an output state.  ISA-95 

addresses the decision making and execution control functions that determine the goals for the base system 

and make those goals executable.  To do this, ISA-95 separates the manufacturing domain into four levels: 

4) Business Planning & Logistics (the domain of ERP systems), 3) Manufacturing Operations Management 

(the domain of MES) 2) Manufacturing Control Systems (the domain of PLC, DCS, SCADA), and 1) 

Intelligent devices.  The primary focus of ISA-95 is on defining the functions required for achieving control 

and the information that must be exchanged between these functions. 

At ISA-95 Levels 0,1 and 2, control 

consists of executing predefined 

operations, such as running a part 

program on a CNC mill, or 

assembling a set of parts.  In this 

domain there is a large and robust 

research and development literature 

on implementing control from the 

computer science, mechanical, 

electrical, and software engineering 

perspectives. With the evolution 

towards advanced manufacturing 

systems (AMS), much has been 

accomplished in designing and 

managing these complex systems, 

including research in topics such as: 

how is the control network organized 

(Dilts, Boyd, & Whorms, 1991), how 

should control networks be 

implemented (Galloway & Hancke, 

2013), how can legal sequences of 

controller actions be generated 

(Smith, Joshi, & Qiu, 2003)), how to generate PLC code (Vogel-Heuser, Witsch, & Katzke, 2005), and how 

to use automata and formal language theory to derive the existence and structure of controllers, and how to 

define a controllable language for discrete event (Davis, Jones, & Saleh, 1992). While there is always room 

for advancement, this level of control appears to be reasonably well-understood, with reasonably effective 

and robust solutions available in manufacturing. 

ISA-95 level 4 is concerned with developing a production plan, i.e., determining what products should be 

produced and when they should be available, where the time intervals of concern can be week, months, or 

even quarters.  Within the operations research and management science disciplines, there is a vast literature 

on production planning, which tends to be focused primarily on formulating and solving large scale 

mathematical optimization problems in order to find the “best” production plan—expressed as quantities 

of product delivered by time period, subject to estimates of demand, production capacities, and costs of 

production, warehousing and transportation, see, e.g., (Jans & Degraeve, 2008).  In this literature, the 

“problem is solved” when a vector of decision variable values is obtained.  While research in this topic 

continues apace, there also are a number of commercial software solutions that provide decision support. 

In the ISA-95 framework, the resulting production plan is passed from Level 4 to Level 3. 

 

Figure 1-1 Manufacturing Enterprise Context for ISA-95 

 

Business Planning & Logistics

Manufacturing 
Operations & Control

Plant Production Scheduling
Operations Management, etc

Dispatching Production, Detailed Production 
Scheduling, Reliability Assurance

Batch
Control

Continuous
Control

Discrete
Control

Level 4

Level 3

Levels 
2,1,0

Production 
Plan

Material Flow 
Results & 

Capabilities

Dispatched 
Jobs

State 
Changes, 
KPIs, etc

Manufacturing Enterprise

Base System
Material 

Flow

Information 
Flow



3 

 

ISA-95 Level 3 consumes the production plan, creates a production schedule, consisting of individual 

processing steps, perhaps with start/finish times, and invokes the execution capabilities of Levels 2, 1 and 

0. Again, within operations research and management science, there is a vast literature on production 

scheduling, which assumes there is a set (or perhaps a stream) of job types with known resource 

requirements, that need to be assigned to available production resources in some sequence, see, e.g., (Silver 

& Peterson, 1998).  This is well known to be, in most cases and from a theoretical perspective, an extremely 

difficult decision problem (most likely admitting no exact computational method which can reach a 

guaranteed optimum decision in time that is less than exponentially related to the problem size).  In this 

literature, the “problem is solved” when the dispatching or scheduling decisions have been determined, 

again, typically as a vector of release or start times.  Ultimately, Level 3 must translate the production 

schedule into tasks or jobs that are executable by the base system, through the control actions at Levels 2, 

1 and 0.   

There is a draft proposal within ISA-95 for the control functions at level 3, as summarized in Figure 1-2 

below.  There are eight identified functions: 

• Detailed scheduling: translates the operations schedule from Level 4 into work schedules 

• Resource management: responsible for defining, acquiring, adjusting and retiring resources 

• Dispatching: assigns work scheduled to resources 

• Tracking: uses data collected from Level 1 and 2 to update schedule progress and provide input to 

dispatching and performance analysis 

• Definition management: defines the work process 

• Execution management: interacts with Level 1 and 2 functions to execute the defined and 

dispatched work 

• Data collection: aggregates data on work commenced, redirected, completed, aborted, executed or 

reconciled 

In this framework, there are three decision functions: scheduling, resource management, and dispatching. 

 

Figure 1-2 Functions and messages in Level 3 

Source: https://www.isa.org/intech/20171203/ 



4 

 

Deploying this framework in practice will require concrete implementations of the functions themselves, 

and the processes for synchronizing their execution.  The concrete implementation of a decision function, 

e.g., Dispatching, will require converting the information available to the function, Work scheduled, Work 

defined, Work dispatched, and the status of each individual Work dispatched, into a decision problem.  The 

decision required is the work to dispatch next.  Conceptually, solving this decision problem requires, either 

explicitly or implicitly, predicting the outcomes of alternative decisions.  It requires an understanding, not 

just of the parts of the system, but of their interactions as well.  In other words, it requires an understanding 

of the structure and behavior of the Level 2 controls and the base system. 

While ISA-95 has defined the events and corresponding information exchanges, as well as the operational 

control functions, it does not provide a mechanism for specifying the base system or the control architecture.  

The opportunity addressed in this report is the development of these important aspects of ISA-95 

deployment. 

ISA-95 Level 3 events are discrete events.  The information being exchanged represents a discrete message. 

Moreover, the work being dispatched represents a discrete unit of work, with a planned and observed 

start/finish time.  Thus, the system represented in the ISA-95 Level 3 framework can be viewed as a Discrete 

Event Logistics System (DELS), defined in (Sprock, Thiers, McGinnis, & Bock, 2019) as: 

• a network of resources, arranged in a facility; each resource has one or more processing capabilities, 

with a capacity for each capability; 

• products flow through this network of resources, transformed by processes executed by the 

resources; a process may require capabilities of more than one resource; processes can change 

location, age, or condition of products. 

The DELS reference model is developed explicitly to support specifying the parts, interfaces, and behaviors 

of resources, to enable automation of decision-support analyses. 

1.3 Approach 

The work reported here demonstrates that the DELS reference model supports deployment of the ISA-95 

Level 3 reference model.  The DELS reference model supports developing a base system model expressed 

in OMG SysML ™, including the specification of a control architecture conforming to ISA-95.  In addition, 

a generic controller architecture for DELS is used to specify ISA-95 control function implementation. 

The demonstration use case is a central fill pharmacy producing approximately 30,000 prescriptions per 

day using a combination of dispensing automation and manual dispensing. 

The DELS model of the central fill pharmacy constitutes a design document for developing a corresponding 

discrete event simulation model implemented in MATLAB/SimEvents.  

1.4 Overview 

Chapter 2 discusses the relationship between the ISA-95 reference model and the DELS reference model. 

Chapter 3 identifies operational controller requirements, functions and a suggested architecture. 

Chapter 4 provides a detailed description of the test case, the central fill pharmacy. 



5 

 

Chapter 5 applies the DELS reference model to define some abstract components of a CFP model.  This 

chapter bridges the reference model in Chapter 2, the specific use case in Chapter 4, and detailed system 

model, presented in Chapter 6. 

Chapter 6 presents the detailed SysML model of the demonstration case, addressing resources, processes, 

and controls.   

Chapter 7 describes a discrete event simulation of the modeled CFP and presents some initial results from 

experimentation using the simulation. 

Chapter 8 discusses the results and conclusions from this work and identifies important avenues for further 

research and development. 



6 

 

2 ISA-95 and DELS 

ISA-95 specifies a reference model for the information exchanged between the various functions required 

for manufacturing enterprise planning and control. This includes information about the product the 

resources available, the operations required to produce the product and schedules for production. The DELS 

reference model, developed expressly to support design and operational decision making, specifies product, 

process, resource, facility and control.  Because the DELS reference model is used here, it is important to 

understand how the two reference models are related, and in particular, any differences in how they structure 

information about manufacturing operations management. The description of ISA-95 given here will 

necessarily be brief and incomplete but will include the essential aspects of ISA-95 that have corresponding 

elements in the DELS reference model. 

2.1 DELS Overview 

The basic DELS ontology is shown in Figure 2-1.  Product is defined by a bill of materials identifying the 

individual parts and assemblies which also may be (intermediate) Products.  A Product is created by a 

Process, an activity, which may employ other Processes.  The Process may require inputs of Resources, 

which can include Material but also ActiveResources, such as Equipment or other DELS.  A Process is 

executed by a capable ActiveResource which can be a collection of resources, and that execution is 

authorized by a Task.  Not explicit in Figure 2-1is an assumption that Task is issued by some controller 

performing the ISA-95 control functions and is specific to a particular Process.  The complete DELS 

reference model can be found at (Sprock, Thiers, McGinnis, & Bock, 2019). 

 

Figure 2-1 Basic DELS Semantics 

 

 



7 

 

In the DELS ontology, all the elements are abstract objects, i.e., they need to be specialized to specific 

object types, instances and executions in an application. A very important aspect of the DELS ontology is 

that every class within the ontology may have as parts other objects of the same class.  Thus, a product 

nests products, a process has sub-activities that are processes, a resource may contain resources, a facility 

may contain facilities and a task may contain tasks. 

In the DELS ontology ActiveResource has a controller part; a DELS has an OperationalController while an 

equipment has a RealtimeController.  Figure 2-2 illustrates a conceptual model for the DELS 

OperationalController identified in Figure 2-1.  There are six specific types of decisions made by the 

OperationalController:  

• Admission: will a received or offered task be accepted? 

• Sequencing: in what order will accepted tasks be executed? 

• Assignment: if there are alternatives, to which resource will a task be assigned? 

• Change State: when shall the state of a resource be changed, e.g., tooling configuration? 

• Process Planning: an accepted Task may have both explicit and implicit sub-tasks; the controller 

must be able to identify these sub-tasks 

• Routing: what process should be executed next? 

  

 

Figure 2-2 Conceptual Model of DELS Operational Controller 



8 

 

2.2 DELS to ISA-95 Correspondences 

The DELS Product is a generalization of the ISA-95 Manufacturing Bill which has one or more associated 

Product Segment. Essentially, the Product Segment organizes the Manufacturing Bill according to the parts 

that are produced in the same or nearby locations within the same time frame.  The DELS Product allows 

exactly the same kind of structuring for a specific product instance.  This correspondence is illustrated in 

Figure 2-3below. 

The DELS Process represents the information that typically is captured in process plans and detailed work 

instructions, thus Process generalizes Product Production Rule, Production Routing and Process Segment.  

Product Production Rule is a detailed instruction, thus can be modeled as a SysML activity. Production 

Routing is expressed through the precedence relationships in the DELS Process. Process Segment identifies 

the various resources required for a Product Segment and these are defined in Process, either as inputs or 

as the owner of the behavior represented by an activity. All of this information, in many instances, already 

exists, or is being developed in dedicated authoring systems, so it is conceptually straightforward to extract 

it to populate the Process model.  These correspondences are illustrated in Figure 2-4below. 

 

Figure 2-3 DELS Product and ISA-95 Manufacturing Bill 

 

 

Figure 2-4 Process in DELS and ISA-95 

 



9 

 

Note also that Product Segment identifies a particular Process Segment. The corresponding DELS Product 

is created by the corresponding DELS Process.  

DELS Resource models are in some respects very similar to the information contained in the ISA-95 

Process Segment but are a generalization of the various resource categories identified in ISA-95.  This is 

illustrated in Figure 2-5 below. Similarly, DELS Facility is a generalization of the specific ISA-95 

categories of Enterprise, Site, Area, Process Cell, Production Unit, and Production Line, as shown in Figure 

2-6. 

 

 

Figure 2-5 Resource in DELS and ISA-95 

 

 

Figure 2-6 Facility in DELS and ISA-95 

 



10 

 

DELS Task is a generalization of the ISA-95 Production Schedule, Production Request, and Segment 

Requirement as shown in Figure 2-7.  One significant distinction in the DELS framework is that material 

handling also is a Process, executed by a Resource, but one which may not be defined a priori, i.e., not 

defined in Product Production Rule.  For example, a Product may need to visit a Work Cell, but at the 

moment it is ready to be moved, there is not space available at the target Work Cell, so the Product must 

be moved to a temporary storage location, and later retrieved and moved to the target Work Cell.  A 

controller may need to create these kinds of Task even though they are not explicit in the process plan or 

work instructions. 

 

In summary, there is a relatively straightforward mapping between DELS and ISA-95, except for controller 

objects.  DELS specifically identifies controllers as a part of ActiveResource.  Resources in the ISA-95 

Level 3 domain have L3 controllers, and resources in the ISA-95 Level 2 domain have L2 controllers. The 

DELS ontology does not extend below the Level 2 controllers. 

 

Figure 2-7 Authorizing Operations in DELS and ISA-95 

 



11 

 

3. Operational Controller Function and Architecture 

In the DELS semantic framework a discrete event logistics system consists of an operational (ISA-95 Level 

3) controller and a set of active resources within the controller’s domain, each having well defined 

capabilities. The controller is responsible for operational decisions regarding the admission of new tasks 

and the execution of existing tasks.  This chapter explores the transition from the abstract semantics to a 

concrete implementation of a controller by addressing the control requirements, control functions, and their 

logical organization into an architecture. 

The fundamental behavior of the operational controller is decision making, and as described in (Sprock, 

Bock, & McGinnis, 2019), there are five specific kinds of operational control decisions: admission, 

assignment, scheduling, routing, and active resource state change. 

Figure 3-1 below presents a conceptual representation of the processes involving a DELS, its controller and 

its active resource set. Conceptually, new tasks are received by the controller, which may reject them.  If 

they are accepted, upon completion the DELS controller reports the result.  The active resources receive 

tasks from the controller.  There may be a failure, or a DELS active resource may reject a task (if it also is 

a DELS). Otherwise, the process associated with the task is executed by some active resource, which reports 

the result to the controller.  If the task completed by the active resource represents the completion of a task 

received by the DELS controller, the controller reports the result.  Note that this is a conceptual 

representation; as one example, there may be multiple active resources, so a single port is not an accurate 

model. However, the model is a good starting point for discussing operational controller functions and 

architecture. 

Given this context, what can be inferred about the functions and architecture of the operational controller?  

Answering this question requires careful consideration of the definition of task, the mechanisms for 

triggering controller decision-making and the nature of the decision problems which the controller must 

resolve. 

 

Figure 3-1 DELS Controller and Base System 

 



12 

 

3.1 Requirement: Defining Task 

The fundamental requirement for an operations controller is to manage the completion of tasks it has 

accepted recognizing performance objectives and task execution constraints. In (Sprock, Thiers, McGinnis, 

& Bock, 2019) task is described as a cyber-physical object representing both the authorization for process 

execution and the (passive) resource upon which the processes operate.  In the discussion below, however, 

task will refer only to the authorization component, and “releasing” a task refers to transmitting the task to 

the resource that will execute the associated process.  A task accepted by the controller may correspond to 

a process that can be directly executed, or it may correspond to a multi-step process, in which case the 

controller will release the individual sub-tasks.  An accepted task is not completed until all its subtasks have 

been completed.  The term “task” in the following discussion may refer to the task as accepted by the 

controller or to any of its constituent sub-tasks.  

A task in the DELS context is the authorization of a resource to execute a process on a specific part or part 

set, or “job” for the purposes of this discussion. The job and the task may arrive together, for example a 

paper workorder in a bin of parts.  Alternatively, the job may arrive before the task, inducing the resource 

to request a task, or the task may arrive before the job, requiring the resource to match a job to a previously 

received task. 

In a manufacturing context, the task “produce product” corresponds to a process plan, which can be 

conceptualized as a directed acyclic graph (DAG) where nodes correspond to the specification of processes 

to be executed and edges correspond to precedence constraints (see, e.g., (Cho, Son, & Jones, 2006).  The 

process plan describes the sequence of process steps that must be accomplished and as a consequence also 

identifies required capabilities of the set of resources that execute those process steps. 

The DELS process that corresponds to a task can be represented using a SysML activity diagram, with call 

action nodes representing directly executable processes (process steps) and control flow paths representing 

precedence constraints. However, the task itself, the authorization for process execution, is not an activity, 

it is better conceptualized as structured data consumed by a controller and translated by the controller into 

invocations of active resource behavioral capabilities. 

The traditional process plan for producing a product or service invariably specifies only the “make” 

processes.  For example, the process plan for a circuit card assembly will specify the manufacturing process 

steps, such as clean the bare board, apply solder paste, place components, reflow, and inspect.  However, 

in producing the circuit card assembly, there will be a number of “move” processes, and perhaps “store” 

processes as well.  In addition, there may be contingencies that arise, such as failing an inspection, that 

require additional process steps.  Without these additional processes, the circuit card assembly cannot be 

produced, but these processes are not spelled out in the process plan. 

Because move, store and resolve processes are executed by active resources, their executions must be 

authorized by a controller.  In some fashion, the “make”-focused task, e.g., make circuit card assembly, 

must be elaborated to include not only the individual make process steps but also subtasks for move, store 

and resolve processes.  It is perhaps worth noting that a detailed “pedigree” for a product would include not 

only information corresponding to make process steps, but for every other process step.  Thus, historical 

data could provide a template for an extended process model, and thus for an extended task model. 

A fundamental issue in designing a controller architecture is choosing the specific mechanisms by which 

an accepted task is elaborated to generate the required move, store and resolve tasks.  Knowledge of the 

implied elaborated process can be made explicit in some way and used as input to controller functions.  

Alternatively, knowledge of the extended process model could be incorporated implicitly in controller 



13 

 

function computational algorithms.  The added sub-tasks might be created when the task is accepted, or 

they might be created on-the-fly as the subtasks are released.  No matter how this issue is resolved, it should 

be noted that there likely always will be disruptions, i.e., process results which have not been anticipated, 

and which the controller cannot resolve based solely on the accepted task and predefined elaborations of 

the task. 

3.2 Function: Operational Decisions 

Recall that (Sprock, Thiers, McGinnis, & Bock, 2019) identify five operational control decision types: 

admission, sequencing, assignment, routing and state change.  These decisions are implemented through 

the execution of resource behaviors, authorized by tasks. Further, (Sprock, Thiers, McGinnis, & Bock, 

2019) categorize tasks as: 

“availableTasks (role played by Task) are tasks that have been accepted, admitted, and are 

waiting in the availableTaskQueue to be serviced. completedTasks are tasks that have been 

serviced and are stored 0 in an completedTaskQueue waiting to depart the system. 

inProcessTasks are tasks currently being served by the system and located in/at some 

memberResource (usually equipment).” 

The tasks in the availableTaskQueue should be tasks that can be released to some active resource in the 

controller’s domain, so they may represent sub-tasks of an admitted task. Only those tasks in the 

availableTaskQueue with no binding precedence constraints are candidates to be released immediately by 

the controller to authorize process execution.  These will be referred to as readyTasks. Also, move tasks 

often will authorize a material handling DELS to execute a move process, i.e., the material handling DELS 

will determine, on-the-fly, exactly how to execute the authorized move, e.g., how to route the carrier. 

The availableTasks have been admitted after considering both capability (does the DELS have active 

resources capable of executing the task?) and capacity (can the DELS complete the task in a timely manner 

without causing unacceptable delays to other already accepted tasks?). A direct consequence is that the 

controller must have access to information about the set of active resources in its domain, including their 

current capabilities, potential capabilities (realizable by a change state process) and current state with regard 

to ability to accept a task.  This kind of information constitutes a plantModel, and a key functional 

requirement for the controller is maintaining this model. 

The remaining operational decisions regarding availableTasks are assignment (which resource will execute 

the process associated with the task), scheduling (when will the process be executed) and routing 

(scheduling a supporting process not spelled out in the process plan). The controller also can decide to 

change the state (e.g., the setup) of an active resource.  The specific timing and sequencing of these 

decisions may be different for different applications and implementations. For example, the assignment 

decision might be made when the task is accepted, or it might be delayed until the task is released. Routing 

decisions might be made when the task is accepted, but more realistically would be made at the time the 

controller considers a readyTask.  

Clearly, in order to make operational decisions about tasks, the controller must have access to information 

identifying availableTasks, readyTasks, inProcessTasks, and completedTasks, i.e., to a complete 

taskModel. Thus another functional requirement for the controller is maintaining this model. 

Operational decision-making requires queries to the taskModel to identify a set of readyTasks, and queries 

to the plantModel to identify the set of available resources for each readyTask. The assignment, scheduling 

and routing decisions depend upon the query results. 



14 

 

3.3 Function: Decision Triggers 

A fundamental assumption about DELS is that they are event driven.  Assuming the DELS is initialized 

with an empty availableTaskQueue, the events that might trigger operational decision-making are those 

that correspond to a state change for either the task list or some resource in the base system.  These include: 

(1) arrival of a new task; (2) acceptance of a new task; (3) completion of some process execution authorized 

by a previously released task; and (4) resource failure. Other events, e.g., timers, might also trigger decision-

making, but the focus here will be on the task and process related events. These change the states of the 

plantModel and taskModel and thus represent an opportunity to reconsider already made but not yet 

executed operational decisions or to make new operational decisions. There is little motivation for decision-

making in between events since there has been no observable change in the state of the plantModel or 

taskModel since the most recent decision-making triggered by an event. 

The DELS L3 controller must incorporate functions for detecting and interpreting events in its domain, as 

well as events associated with new task requests. 

3.4 Controller Functions 

From the previous discussion, the following controller functions can be identified: 

• Maintaining plantModel and taskModel, i.e., updating as events occur and decisions are made 

(model maintenance) 

• Querying plantModel and taskModel to support decision-making (model query) 

• Identifying required processes not spelled out in traditional process plans (task elaboration)  

• Detecting events and determining the appropriate response (event detection and interpretation) 

• Formulating a decision-problem relevant to the kind of event, and perhaps to the query results 

(decision analysis problem formulation) 

• Solving the decision problem (decision analysis problem solution) 

• Translating the decision problem solution into assignable task(s) (task definition) 

• Transmitting task(s) to assigned resources (task communication) 

These eight functions are required in order for the operations controller to be able to make the five kinds of 

decisions identified in (Sprock, Bock, & McGinnis, 2019) and manage the corresponding tasks. 

3.5 Controller Architecture 

A conceptual controller architecture is illustrated in Figure 3-2. This is not claimed to be the only possible 

controller architecture, but it provides a reference point for discussing how controllers might be 

implemented in the DELS framework.  All the functions identified above are included except task 

elaboration, because it is not clear where in the functional architecture it should appear. Resolving the issue 

of how to represent task elaboration requires a more in-depth investigation of process.   

Parts visit active resources, where processes are executed on the part.  Either explicitly or implicitly, the 

active resource must induct the part in order to execute a process and once the process completes, it must 

discharge the part. This can be conceptualized as a three-step process, a get operation, followed by the 

process, followed by a put operation.  The sequence is get-process-put. The process can be either a make 

process, or a move or store process.  In all cases, the fundamental sequence is the same. 

The complete process for a product involves many of these get-process-put sequences as the parts and 

assemblies move from one active resource to another. In fact, it will alternate between make (or store) active 



15 

 

resources and material transport active resources. This is the case, regardless of the nature of the material 

transport resource—it can be an automated resource such as an AGV, or it could be a workstation operator 

who is moving the part to the next workstation. 

The part must transition from one active resource to another.  In the most general case, the arriving part to 

be processed is in some (input) interface location, from which it is retrieved, and once the process is 

complete, it is placed in some (output) interface location.  The two locations could be the same.  The 

interface location could be either a part or a reference for the active resource, i.e., it could belong to the 

active resource, or to some other active resource.  Figure 3-3 illustrates one possible configuration.  There 

are two workstations with “work positions” where their respective processes can be executed.  Workstation1 

has a robot that loads parts from the workcell induction location into the work position for workstation 1, 

moves the part from the work position for workstation 1 to the load/unload port for workstation 1, and 

finally moves the completed part from the load/unload port for workstation 2 to the workcell discharge 

location.  The induction location is an interface location between the workcell and the active resource 

delivering parts to the workcell; similarly for the discharge location.  The robot delivers and retrieves parts 

directly from the work position for workstation 1 but to a load/unload port for workstation 2. There is no 

separate interface location for workstation 1, but the load/unload port is the interface location for 

workstation 2.  Workstation 1work position and workstation 2 load/unload port are reference properties for 

the robot. 

The sequence of operations for a single part going through the workcell would be: 

1. Get-move-put: robot moves part from induction location to workstation 1 workposition 

2. (get)-make-(put): workstation 1 executes a process on the part, but the get and put are degenerate, 

as they will be performed by the workstation 1 robot. 

 

Figure 3-2 Conceptual Controller Architecture 

 

 



16 

 

3. Get-move-put: robot moves part from workstation 1 work position to workstation 2 load/unload 

port 

4. Get-make-put: workstation 2 retrieves the part from the load/unload port, executes a process on the 

part, then puts the part to the load/unload port 

5. Get-move-put: robot moves part from workstation 2 load/unload port to discharge location. 

Note that the workcell also might include a store resource, to provide a temporary buffer between 

workstations 1 and 2, in case a part is ready to move from workstation 1, but workstation 2 is not finished 

with its current operation.  Note also that a part cannot be placed in the workstation 2 load/unload port if 

workstation 2 is processing a part, as that would create a deadlock. This is, of course, a simple illustration 

of the get-move-put and interface location concepts. 

There are several important implications from this simple example.  One is that the operations controller 

for the workcell must create tasks that essentially elaborate the process plan for parts going through the 

workcell to include all the move processes, but in addition, it must authorize, either explicitly or implicitly 

all the get and put operations. Depending upon the design of the system, move operations may require a 

destination interface location to be reserved in order to avoid deadlocks, a type of constraint that may not 

always be described as a simple precedence between tasks. 

In the circuit card assembly example given earlier (see section 3.1) the task assembleCircuitCard is not 

directly executable.  It must be elaborated into its constituent subtasks, which are placed on the 

availableTaskList. In fact, any task on the availableTaskList should be directly executable, i.e., it can be 

 

Figure 3-3 Interface Location Example 

 



17 

 

assigned to some active resource in the controller’s domain. Thus, the function of maintaining the task 

model is an appropriate place to integrate the elaboration of process plans to incorporate move processes, 

although the corresponding move tasks may not have a specific origin or destination, because the associated 

make tasks have not yet been assigned to active resources. When a make task has been assigned to a specific 

active resource, the origin for the subsequent move can be specified, but the destination may not be assigned 

until the make task has been completed.  

For a given make, move or store task, the assignment to a particular active resource will dictate the 

associated get and put operations, i.e., whether or not they are degenerate.  The corresponding get and put 

tasks can be placed on the availableTask list.  

Since assigning a task to a resource is an event, it can trigger the event director, which can invoke the 

ModelMaintaner to update the availableTaskList.  The conclusion is that the ModelMaintainer has two task 

elaboration functions: (1) an arriving task is elaborated into process authorizations which can be assigned 

to an active resource; and (2) whenever an availableTask is assigned to an active resource, details of 

previously defined move tasks are updated, and new get and put tasks are created as appropriate. 

3.6 Summary 

The key take-aways from this chapter are: 

• Operations control invokes the behavior of active resources that make, move, store, or measure 

product 

• The transfer of product between active resources occurs through an interface location and involves 

a get-process-put sequence of behaviors 

• Control decisions are based on the state of accepted tasks and active resources in the controlled 

domain 

• Control decisions are triggered by events. 

 

 

 

  



18 

 

4. Central-Fill Pharmacy Case Study 

A central fill pharmacy (CFP) is “a pharmacy which is permitted by the state in which it is located to prepare 

controlled substances orders for dispensing pursuant to a valid prescription transmitted to it by a registered 

retail pharmacy and to return the labeled and filled prescriptions to the retail pharmacy for delivery to the 

ultimate user”1.  The main advantages of a CFP include cost reduction, through inventory consolidation and 

improved resource utilization, and giving pharmacists in local pharmacies the flexibility to focus on 

customers.  The disadvantage is the delay associated with sending a prescription to the CFP, and the 

transport cost and delay associated with the physical delivery to the local pharmacy or direct to the patient.  

This delay is not critical for “routine” refills. 

A high-volume CFP (HVCFP) uses automation to speed the filling of prescriptions, further improving labor 

productivity and substantially reducing the cycle time and cost for fulfillment.  Fundamental challenges in 

designing and operating a highly automated CFP include: (1) selecting the right portfolio of automation 

technologies; (2) designing the material handling automation to integrate the drug dispensing technologies; 

(3) assigning drugs to dispensing technologies, and perhaps configuring the technologies for operation; and 

(4) operational control to achieve goals regarding accuracy, cost, throughput and response time. 

This case study identifies the “product” produced by a HVCFP, the processes required to produce that 

product, the resources used to execute the required processes, and the organization of resources into a 

facility.  It also identifies the control functions of the HVCFP, using the ISA-95 standard architecture as a 

framework. The system description is based on a particular HVCFP architecture and the case study is for a 

specific instantiation of that architecture. However, the system model and simulation model contain 

elements that are reusable for other HVCFP architectures, although new model elements might have to be 

developed for those architectures. 

4.1 Concept of Operation 

A HVCFP will be capable of filling prescriptions, or “scripts,” for many drugs, perhaps several thousand, 

and the demand rates for these drugs will differ significantly.  Drugs are identified by their National Drug 

Code, or NDC. The NDC Pareto curve may be extremely skewed, with the top 2 or 3 percent of the NDCs 

accounting for 70% of the scripts filled.  Generally, the most often dispensed drugs will be for controlling 

blood pressure or cholesterol level, or for diabetes. 

The HVCFP receives orders via the internet from local pharmacies.  In one operational protocol, these 

orders may be transmitted at any time; orders received when the HVCFP is not operating are accumulated 

for the following day and available orders not completed in one day are carried over to the next day.  All 

orders from a particular customer (pharmacy) completed during the HVCFP daily operation will be 

accumulated for delivery overnight. Other protocols are possible, such as guaranteeing that orders received 

before a designated cutoff time will be filled on the day received and delivered overnight.  In another 

scenario orders may arrive with due dates, and can be filled and delivered earlier. There are many possible 

variations. 

 A given HVCFP will serve a large number of local pharmacies, perhaps several hundred.  The populations 

served by these local pharmacies may differ demographically, and if so, their ordering patterns may be quite 

 

1 21 CFR 1300.01 (44) [Title 21 Food and Drugs; Chapter II Drug Enforcement Administration, Department of Justice; 

Part 1300 Definitions] 



19 

 

different.  The HVCFP will see significant day-to-day variability in the volume of scripts and mix of drugs 

ordered.  The average volume and the mix of drugs ordered also may change depending on the season, and 

even the time of the month.  The total number of scripts to be fulfilled, as well as the mix of drugs will 

change over time, driven by both demographic changes and advances in medicine. 

4.2 HVCFP Product 

A HVCFP produces batches of patient-specific orders ready for delivery to the originating local pharmacy.  

At regular intervals, e.g., the end of each working day, these batches will be loaded into a delivery vehicle 

for transport to the local pharmacies.  In a particular pharmacy’s batch, each individual patient’s order will 

consist of one or more NDCs in appropriate packaging—vials for pills, bottles for liquids, and various unit-

of-use packages. These NDCs must be packaged together, along with necessary paperwork, for delivery to 

the individual at the originating pharmacy.  

Each NDC can be characterized as “dispensable” or “manual”.  Scripts for dispensable drugs—typically in 

pill form—can be filled using automation, whereas scripts for manual drugs must be filled by a human 

operator.  The latter might correspond to liquids to be measured, items that come prepackaged in a form 

not suitable for automation (“unit of use”), drugs requiring refrigeration, etc.  An order for a particular 

patient may include both dispensable and manual drugs. 

4.3 HVCFP Processes 

There are three phases of operation in a HVCFP.  The first phase is the dispensing of individual drugs.  The 

second phase is assembling individual patients’ orders, which may consist of multiple scripts.  The third 

phase is assembling all the orders for a specific pharmacy and delivering them.  Note that dispensing drugs 

to fill a script and accumulating scripts to complete an order are referred to as the “fulfillment” function of 

the HVCFP.  Accumulating the orders by pharmacy is referred to as the “delivery function”. There are four 

fundamental processes for dispensing a drug, four fundamental processes for completing an individual’s 

order, and three fundamental processes for completing a pharmacy’s delivery. 

To dispense a drug (dispense phase): 

1. Prepare an appropriate container into which the drug will be dispensed.  If the drug is prepackaged 

as a “unit of use” this process is not required. 

2. Dispense the drug.  This involves counting pills, measuring liquids, or retrieving a unit of use. 

3. Verify the drug and quantity. In HVCFP facilities, this process is a regulatory requirement to insure 

patient safety. 

4. Seal the container. Once a drug has been dispensed and verified, the container must be sealed.  For 

prepacked unit-of-use drugs, this process is not required. 

To complete an individual’s order (order accumulation phase): 

1. Accumulate all scripts for the individual order.  Individual scrips in the order may be filled using 

different technologies, but all scripts must be brought together to complete the order. 

2. Add each script’s container to customer-specific packaging, typically a plastic bag. 

3. Add drug-specific instructions,  required notifications and other documentation. 

4. Seal individual order. 

To complete a pharmacy’s delivery (pharmacy accumulation phase): 



20 

 

1. Accumulate all the individual orders for the specific pharmacy. 

2. Seal the pharmacy order 

3. Deliver the pharmacy order to a shipping dock, load into a delivery vehicle and transport to the 

pharmacy. 

Of course, there are other related processes in a HVCFP.  For example, inventory processes for storing 

drugs prior to use in filling orders, refrigeration processes, replenishing automation, etc. However, this case 

focuses specifically on the operational processes in supplying individual orders to pharmacies. 

4.4 HVCFP Resources 

Over the past twenty years, a number of drug dispensing automation technologies have been developed, 

and HVCFP solutions are offered by several suppliers (see, e.g., http://www.computertalk.com/feature-

stories/cover-story-september-october-2014-the-evolution-of-central-fill or 

http://www.mckesson.com/about-mckesson/our-company/businesses/mckesson-high-volume-solutions/)  . 

4.4.1 Dispense Phase Resources 

For dispense phase processes, there are essentially four kinds of automation resources.  The first is 

automation resources for dispensing, labeling, weighing and capping vials, which [will] contain pills. For 

example, dispensing, labelling and weighing empty vials may be combined into a single automated process, 

where the weighing determines a tare weight, used later to verify the dispensed pill count.  There also may 

be stand-alone resources for weighing or capping vials.   

Second, there are resources that can automatically dispense a 

specific number of pills from a drug-specific canister into a 

vial.  The automation technologies for dispensing drugs in pill 

form essentially use gravity to remove pills from an inverted 

canister, along with a mechanism that counts the number of 

pills dispensed and stops the flow when the required number 

of pills have been dispensed.  There are two variations of this 

technology, which might be termed “high speed” and “high 

flexibility”.  A high speed resource will receive empty, but 

labeled and tared vials transported in a “puck” on a conveyor, 

see Figure 4-1.  The puck will be moved under a dispenser, 

the vial filled with pills, and then moved in the puck to stations 

for verification, weighing, and capping.  The vial never leaves 

the puck.  A single dispensing machine might have, say, six 

dispensers, and machines can be “ganged” together to provide 

a multiple of six dispensers, all served by the same puck 

conveyor.  Clearly, high speed dispensing technologies 

require considerable integration of all the individual resources 

and the puck conveyor, but can be very effective for 

dispensing drugs for which there is a high demand rate. 

 

Figure 4-1 Vial in Puck 

http://www.mckesson.com/pharmacies

/mail-order/central-fill/ 

 



21 

 

A high flexibility resource operates quite differently.  It is essentially a robotic workstation, which may 

have as many as 200 or more canisters, or pill types. Labeled and tare weighed vials may be delivered to 

the workstation via pucks and the vials removed from the pucks by the robot.  Alternatively, the workstation 

may have its own capability to dispense, label and tare weigh vials. Figure 4-2 shows a robot holding a vial 

under a dispensing canister.  For high flexibility workstations with vial dispensing capability, the filled 

vials are dropped into totes moved on a tote conveyor. There can be multiple high-flexibility workstations, 

as well as manual fill stations integrated via the tote conveyor. This technology can be effective for drugs 

that are ordered often enough to keep the robot reasonably busy.  Extremely rarely ordered drugs are 

probably most economically handled manually. 

As a comparison, a high speed technology might be 

capable of fulfilling 18 different drugs, each at a rate of 

3 scripts/minute (for a total of 54 scripts/minute) and a 

capital cost of $175,000, while a high flexibility 

technology might be capable of fulfilling any one of 

200 different drugs at a total rate 2 scripts/minute and a 

capital cost of $200,000.  These are illustrations only, 

and do not define the complete range of automated 

solution capabilities and costs.   

The third kind of technology for the dispense phase is 

visual verification, which involve imaging the 

dispensed pills in the vial, and having the image 

verified by a pharmacist. 

Finally, there is transport technology for moving vials 

between dispensing processes.  For high speed 

dispensing or high flexibility dispensing with separate 

vial dispense, label and tare weigh, the pucks must be transported between the various stations or 

technologies that are performing the necessary dispensing, labeling, and other processes. For high flexibility 

dispensing with built-in capability for vial dispense, label and tare weigh, the robot provides all the needed 

transport of the vials between operations. 

4.4.2 Order Accumulation Phase Resources 

In the order accumulation phase, there are four basic technologies.  There is the technology of accumulating 

the scripts in a customer order, which is accomplished by delivering the scrips to a bagging station that can, 

itself, be completely manual, partly automated or completely automated.  The scripts can be delivered to 

the bagging station via a puck conveyor, if all the scripts in the order are filled from the high-speed 

technology.  When some scripts are filled from manual workstations, or from the high-flexibility technology 

workstations with built-in vial dispense, label and tare weigh, then they are delivered to bagging in a tote 

via a tote conveyor, and they are accumulated in the tote as the tote travels to each dispense workstation 

along the tote conveyor. There is a special case of orders, called “combo orders” that have at least one script 

filled from the high-speed technology, and one script filled manually or from tote-based high-flexibility 

technology. In this case, one or more scripts filled from the high-speed technology, and contained in a puck 

must be transferred to the tote containing the rest of the scripts for the combo order. This can be 

accomplished by a vial transfer station (VTS), a robotic cell that removes vials from pucks, places them in 

temporary storage, then when the target tote is available, retrieves the pucks and deposits them into a tote, 

where the other items in the order are already accumulated.  

 

Figure 4-2 Robotic Workstation 

https://www.youtube.com/watch?v=cBUig

yLA0xg 

 



22 

 

4.4.3  Pharmacy Accumulation Phase Resources 

Multiple orders from a given local pharmacy may be filled throughout the day and appear somewhat at 

random in the stream of orders coming from the fulfillment system.  These orders must be accumulated into 

a pharmacy-specific container for delivery.   At any time during the day, the stream of orders being delivered 

to the order consolidation process might contain orders for any of the customer pharmacies.  Thus, the order 

consolidation process requires some form of sortation and accumulation by pharmacy.  In a HVCFP 

processing tens of thousands of orders per day, automation is likely to be required, and there are a number 

of technological alternatives.  All of them, however, have a similar functional form, i.e., the bagged orders 

are oriented on a conveyor, scanned to determine the destination pharmacy, conveyed past accumulation 

“lanes” and individual bags are diverted to the lane corresponding to their destination pharmacy.  Figure 

4-3 illustrates a portion of such a system, where there are accumulation lanes on either side of the sortation 

conveyor. An accumulation lane is assigned to a particular pharmacy and orders for that pharmacy are 

discharged from the sort conveyor and fall into the bin.  When the bin is full, it is sealed and moved to a 

staging are prior to loading into a delivery vehicle. 

When the number of pharmacy customers is large, in the hundreds, it may not be possible to dedicate an 

accumulation lane to each pharmacy; rather some operational policy may be necessary to permit 

accumulation lanes to be shared by multiple 

pharmacies.  This policy may address both the 

way that orders are released for fulfillment and 

the way the sortation/accumulation system is 

managed. A fundamental challenge with shared 

accumulation lanes is that bagged orders for a 

pharmacy may arrive to a lane that is shared, but 

not currently assigned to that pharmacy.  This 

possibility dictates the need for a “sort error” 

lane, where such sort failures can be 

accumulated for later disposition. This 

disposition may involve running these orders 

through the sorter again, if there are many, or 

perhaps manually sorting them, if there are not 

so many. 

4.5 Facility 

The order fulfillment resources in the HVCFP 

are organized logically into seven subsystems: 

• High speed dispense system that 

employs a range of fast dispense 

resources, as well as resources for 

dispensing and tare weighing vials, verifying dispense quantity and NDC, capping and bagging 

• Puck conveyor system that provides all product movement through the high speed dispense system 

• High flexibility dispense system that consists of a range of automated and manual workstations to 

dispense drugs that either cannot be automatically dispensed, or are ordered often enough to justify 

automated dispensing, but not often enough for high speed dispensing 

• Tote conveyor system that provides all product movement through the high flexibility dispense 

system 

• Vial transfer system that moves vials from the high speed system to the high flexibility system 

 

Figure 4-3 Order Sortation System 

https://www.youtube.com/watch?v=VdHcq0_zq_M 



23 

 

• Take-away conveyor system that removes bagged orders from both high speed and high flexibility 

systems 

• Order sortation/accumulation system that sorts orders by ordering pharmacy 

4.6 Operational Control 

The control processes can be distinguished according to the ISA 95 standard, which is illustrated in  Figure 

4-4. In level 3, manufacturing operations management, decisions will be made such as the release of orders 

to the fulfillment process, or management of the sorting capabilities.  Level 2 is where operations 

management decisions are translated into execution by production resources, e.g., controlling the movement 

of a package on a conveyor, based on level 3 routing decisions.   Deciding when a manual station should 

be staffed and by whom would be an operational decision.   Lower level control decisions focus on data 

acquisition, and managing the execution of predefined behaviors in automation.  In this case study, the 

focus is on operational control, i.e., level 3. 

For the HVCFP, the level 3 control decisions will include: 

• Whether to accept an offered order 

• When to release each of the scripts in an accepted order for fulfillment  

 

Figure 4-4 ISA-95 Control Hierarchy 

http://www.mdpi.com/1999-5903/9/3/35/htm 

 



24 

 

• If multiple resources are available to execute a given fulfillment process, the assignment of process 

step to resource 

• If a resource must be re-configured to execute a process, when to change the resource configuration 

It is important to be able to judge whether or not a control system is performing well.  In the case of the 

CFP, criteria might include: 

• Maximum achievable rate of order fulfillment, measured in scripts per hour 

• Distribution of fulfillment cycle time, from order release to bagging 

• Resource utilization distributions 

Other criteria might be defined.  In general, what a system owner will care about is system cost (investment 

and operating), system service level (fraction of accepted orders filled on time), and capacity margin (room 

for demand growth). 

4.7 System Summary 

A HVCFP represents a significant investment and promises significant operational cost savings over stand-

alone local pharmacy operations.  Realizing these potential savings depends on making good decisions 

about the selection of technologies, planning, and executing operations for a system that has many 

individual components, and large amounts of data related to capabilities, capacities and daily demand. This 

is an ideal setting in which to apply the principles and methods of Model-Based Systems Engineering 

(MBSE).  

 



25 

 

5. Model-Based Systems Engineering for the HVCFP2 

A fundamental goal in applying MBSE is to provide a single “source of truth” for the system definition to 

be used by the various decision-makers involved in designing, planning, managing and controlling the 

system of interest, in this case a central fill pharmacy.  In order to do this, there must be a shared definition 

of the system that includes all the information needed by those decision makers.  Thus, a common semantic 

model or reference model is required for the system model.  A common practice in developing and applying 

such reference models is a layered approach, as in (Sprock, Thiers, McGinnis, & Bock, 2019).  At the 

highest level of abstraction is the fundamental “language” being used, in this case it is OMG SysML™. 

Using, e.g., SysML, an upper level ontology applicable to a broad range of systems is defined, in this case, 

Discrete Event Logistics Systems, or DELS.  The DELS ontology can be refined for a subset of DELS that 

is central fill pharmacies, or CFPs and then further refined for the subset of CFPs that is high volume CFPs, 

or HVCFPs. Finally, the lower level ontology can be used to create a specification of the particular system 

of interest, a particular HVCFP.  This chapter addresses the upper level abstractions that provide the 

reference model for use in developing a system model for a particular CFP.  The following chapter will use 

these abstractions to create a detailed system model for the kind of CFP described in chapter 4. 

5.1 Upper Level Ontology—Generic CFP 

Since the CFP is an example of a discrete event logistics system (DELS), we can employ the semantics 

defined for DELS (Sprock, Thiers, McGinnis, & Bock, 2019). Figure 5-1 expands on the DELS reference 

model presented in chapter 2.  The terms “product”, “process” and “resource” have the meaning as defined 

earlier for the HVCFP, but the DELS reference model and  Figure 5-1 add semantics.  Resources can contain 

other resources (memberResource).  As an example, the High Speed Fill System is a resource, and it 

contains a number of other resources such as vial dispense and labeler, etc.  As SysML blocks, resources 

can be connected to one another, and this is how a model represents potential for product to flow through 

the system.   

“Process” defines how a product is produced. Because process is modeled as a SysML activity, it can 

contain other processes (activities). As an example, the process for filling a prescription can be modeled 

using process models (activities) for dispensing and labeling a vial, dispensing pills, and capping the vial, 

and precedences between these processes can be modeled using control flows.  In general, the “Process” 

will describe a generic way of producing a product. For example, if there are multiple resources capable of 

executing a particular production step, the “Process” model typically will not specify which resource is to 

be used; rather, that decision is made by an operational controller. 

Figure 5-1 adds two objects to the DELS reference model, Controller and PlantModel.  A controller issues 

the tasks that authorize execution of processes, and it uses data from a plant model in order to make 

decisions about which tasks to issue and when to issue them. Clearly, the controller must have, either 

implicitly or explicitly, knowledge about the processes required to produce a product, the resources within 

its control domain and their process capabilities. It should be noted that while a task authorizes the execution 

of a process, the task is received by the active resource that has the capability for and actually executes the 

process. 

 

2 All SysML diagrams come from the HVCFP.mdzip model 



26 

 

A DELS controller makes decisions that manage the operations of the DELS resources.  According to 

(Sprock, Bock, & McGinnis, 2019), there are essentially five kinds of decisions the controller may need to 

make: 

• Admission: whether or not to accept a task  

• Sequence: the sequence of task execution  

• Assignment: the resource to be used to execute a task 

• Routing: identifying the next process to execute 

• Setup: changing the capability state of a resource  

Not every DELS will make all five kinds of decisions, as will be illustrated in the HVCFP. 

The remaining sections of this section will present key elements of a SysML-based system model for the 

class of central fill pharmacies described in chapter 4. 

5.2 CFP Context 

The CFP serves a population of local pharmacies, 

or “stores” by fulfilling individual customer 

orders, consisting of one or more prescriptions.  

The CFP, in turn, is served by a population of 

suppliers, who provide the drugs that are dispensed 

by the CFP.  This is illustrated in Figure 5-2.  This 

study focuses on the customer order fulfillment 

only; the replenishment processes and resources 

are not considered. 

 

Figure 5-1 Common Semantics for Discrete Event Logistics Systems 

 

 

Figure 5-2 CFP Context 

 



27 

 

5.3 Defining Product 

The “product” for the CFP is the batch of fulfilled customer orders to be delivered to a particular pharmacy 

at the end of a particular day. This product, identified in Figure 5-3 as one or more StoreTotes, aggregates 

the BaggedOrders for individual CustomerOrders, which themselves contain the NDCPackage for each 

script defined by an OrderLine in a CustomerOrder.  Thus, producing the CFP “product” requires first 

fulfilling the customer order lines, then assembling them into bagged orders, which fulfill the individual 

customer order, then assembling bagged orders into 

store specific totes to fulfill the store order.   

There is not a “bill of materials” for a generic store 

order.  In fact, not all the customer orders in a 

particular store order typically will be known at the 

same time.  Some customer orders from the store may 

come in overnight, while others may come in during 

the day.  If the CFP specifies a “cutoff time”, i.e., a 

time after which received customer orders are not 

promised for delivery overnight, then that cutoff time 

is the first point at which the CFP might know all the 

customer orders in a particular store order.  It is 

conceivable that in the lifetime of the CFP, it will 

never produce two identical store orders for any store. 

Similarly, there is not a “bill of materials” for a 

generic customer order.  Rather, a customer order 

consists of some number of drugs, chosen from the 

catalog of drugs that can be provided by the CFP. In 

a given day, the CFP might produce several identical 

orders, e.g., 90 doses of Benecar 20 mg.  However, 

there also will be many unique customer orders, 

consisting of multiple drugs.  The generic bill of 

materials simply states that a customer order consists 

of one or more lines, and each line specifies an NDC 

and a quantity or amount. 

5.4 Defining Process 

Process models specify the transformations required to create the product, in this case, the store orders. For 

the definition of a Process to be useful, the DELS must contain some Resource with a behavior that can be 

invoked by a Task to execute the Process.  A Process may be associated with an aggregate Resource, i.e., 

a Resource that nests other MemberResources, in which case it will be an aggregate Process and will need 

to be refined into its constituent Processes executed by the corresponding MemberResources. 

It is worth noting that the number of distinct “products” (StoreOrders) of the CFP is practically infinite.  

Considering just individual CustomerOrders, the number of unique orders is basically:  

∑ (
𝑀
𝑗
)

𝑗=𝑁

𝑗=1
 

 

Figure 5-3 CFP "Product" 

 



28 

 

where M is the number of different drugs available in the CFP and N is the maximum number of scripts in 

a customer order.  Note that M is typically in the range of several thousand and a practical limit for N is 

perhaps five; the number of different 5-script orders is greater than 2.65 x 1014.  Thus, it should be clear 

that a Process is not going to be defined a priori for every possible customer order.  

The generic process for filling a customer order is shown in Figure 5-4.  Order lines can be filled in any 

sequence. After they are filled, they are accumulated.  Once all the lines in an order are accumulated, the 

order is bagged. In general, the number of lines is not known a priori. 

Since a process is not created explicitly for each individual customer order, it must be created “on-the-fly” 

by the CFP operational control system. Note also that while the process for filling a line may be precisely 

defined, there can be “exceptions” requiring special processing, e.g., incorrect pill count or failed capping.  

This also must be handled by operational control on-the-fly. 

Although there is no single “order assembly process” there is structure for the process of producing an 

order, as illustrated in Figure 5-5.  Producing a customer order requires filling each of the associated order 

lines, accumulating each of the order lines, bagging the order and sorting the order to a store tote.  The 

definition of the process for filling order lines will differ with the nature of the drug—is automated dispense 

possible—and the nature of its packaging—is it a unit of use item, or must it be dispensed into a generic 

container?  However, as with order filling, there is a generic structure, as shown in Figure 5-6.  Every order 

 

Figure 5-4 Generic Order Fulfillment Process 

 

 

Figure 5-5 Order Filling Structure 

 



29 

 

line must be dispensed in some way, verified for drug and quantity, and accumulated.  But dispensing a 

package (e.g., a vial), labeling, tare weighing and sealing are only necessary for drugs that are measured or 

counted from a bulk quantity or amount into an order specific quantity or amount. 

In the context of Figure 5-2, the CFP itself has the capability to 

produce a StoreOrder.  It does that by first assembling customer 

orders (in bags) and then assembling store orders (by sorting the 

customer orders).  This process is summarized in the activity 

diagram of Figure 5-7.  Both the order assembly and store order 

assembly processes must be further refined, recognizing the 

structure illustrated in Figure 5-5 and Figure 5-6.  Figure 5-7 

shows a stream of bagged orders going directly from the order 

assembly process to the store order assembly (sorting) process.  

The implication of this is that there is an actual handoff of the 

“bagged order” between these two systems, and therefore that 

the associated material handling is part of one of the two 

systems.  If that material handling is a separate system, then the 

material handling process also should be included in the activity 

diagram to support object flow between the two assembly 

processes. 

With figures 4.5-4.7, we have the abstract definition of the 

fundamental processes in assembling customer and store orders 

as well as the abstract definition of CFP processes.  Further 

fining and elaborating these processes requires identifying the 

CFP resources that will be used and how they will be controlled. 

This discussion will be deferred until resources have been 

defined.  

 

 

Figure 5-7 CFP Fulfillment Process 

 

 

Figure 5-6 Line Filling Structure 

 



30 

 

 

5.5 Defining Resource 

In the DELS framework, active resources have capabilities to execute processes, and thereby create 

products.  Resource models must identify active resources, their capabilities, their memberResources if any, 

and their process capabilities. Central fill pharmacies will utilize some generic and some specialized 

resources.  These resources must be carefully defined to support system design and operational decision 

making.  In particular, resources must be characterized in terms of capabilities, i.e., the processes that they 

can execute, and capacities, i.e., the throughput rates for those processes when executed. Additional 

attributes may be needed as well, for example, footprint and required clearances, utility requirements, 

maintenance schedules, etc. 

Figure 5-8 illustrates the main subsystems of a CFP and their key components.  There is an OrderFillsystem 

with multiple fulfillment workstations, and a SortSystem with multiple sort lanes.  The details of these 

resources will differ with different technologies for dispensing drugs and sorting bagged orders, but the 

fundamental system architecture is as shown in Figure 5-8. These are active resources. 

A CFP also uses a number of passive resources, primarily packaging for dispensed drugs or carriers for 

transported order lines or orders being assembled.  These include but may not be limited to bottles, boxes, 

vials, pucks, and totes. 

5.6 Defining Control 

At the level of the CFP, there are only two control decisions, Admission and Sequencing. A CFP controller 

will have three part properties representing aspects of a plant model:  an AdmittedOrderSet is a set of 

admitted customer orders, a Batchsize, or the number of orders released to the OrderFillSystem at one time, 

and a TaskSet, representing authorizations for the order fill system to execute processes necessary to fill 

customer orders. The CFP controller makes an admission decision about customer orders, it batches 

 

Figure 5-8 CFP Subsystems and Components 

 



31 

 

customer orders for fulfillment, and it translates customer orders into fulfillment tasks, i.e., into 

authorizations for processes that actually produce filled customer orders.  

Figure 5-9 illustrates the controller process for admitting a new customer order.  The input to the process is 

the CustomerOrder being evaluated.  There is an AdmissionDecision which returns a Boolean; if the value 

is 1 the new order is added to the AdmittedOrderSet and if 0, the new order is rejected.  The details of 

implementing the decision algorithm and the information processing associated with the AdmittedOrderSet 

will depend on the details of the target application. 

 

The CFP controller also will release batches of orders for fulfillment, which means it must select a subset 

of all the accepted orders to release in a batch.  The decision process for selecting the orders to batch 

together may well depend upon the state of the fulfillment resources, in terms of already released workload, 

as well as the overall operational strategy for the CFP.  Thus, it is reasonable to expect that the batching 

decision is made with recognition of the tasks corresponding to the selected orders.  In other words, between 

the admission decision and the batching decisions, customer orders are translated into tasks.  The structure 

of the tasks is illustrated in Figure 5-10 but it is important to note that the details of translating orders to 

tasks will necessarily depend upon the specific process steps required in a particular implementation.  In 

particular, DispenseTask may involve several steps for pill dispensing.  Also, there will be material handling 

tasks associated with moving pucks or totes among the various fulfillment workstations. 

In a similar fashion Figure 5-11 illustrates the sequencing process for the CFP controller, which conforms 

to the definition in (Sprock, Bock, & McGinnis, 2019). The method for computing the sort index will 

depend on the application.  The orders selected will be the first batchSize orders in the sorted TaskSet.  

 

 

 

Figure 5-9 Order Screening Process for CFP Controller 

 



32 

 

 

For a generic CFP, the Assign decision is degenerate—all orders go to the OrderFillSystem—and the 

Routing decisions are made within the OrderFillSystem. Also, there is no operational StateChange decision, 

 

Figure 5-11 Order Batching Process for CFP Controller 

 

 

Figure 5-10 Task Structure for CFP 

 



33 

 

the most relevant state change would be the NDC assigned to a particular dispense workstation, and that is 

more a planning decision than an operational decision. 

 

5.7 Summary 

This chapter provides the basic semantics for a central fill pharmacy.  These semantics must be elaborated, 

e.g., for specific resource types, specific process steps and specific control processes and decisions.  This 

elaboration will be illustrated in the following chapter, using the example CFP from Chapter 4 as the 

specific application. 

The key take-aways from this chapter are: 

• Adding task and controller to the basic DELS framework 

• Defining the CFP context 

• Defining CFP product in terms of requests for fulfillment and units of fulfillment 

• Identifying the fundamental challenge of explicit fulfillment process models and suggesting a 

response to this challenge by defining the structure of fulfillment processes 

• Identifying the CFP-level processes and resource organization 

• Identifying CFP level order screening and batching 

• Identifying the task structure for the CFP 



34 

 

6 Demonstration CFP System Model 

In this chapter, the semantic definitions in Chapter 5 are extended and applied to the Demonstration CFP 

(subsequently abbreviated to DemoCFP) described in Chapter 4 to create a detailed system model 

specifying products, processes, resources, facilities and operational control. The intent for this system 

model is to provide a system specification sufficient to support the development of a discrete event 

simulation model for testing alternative decision processes for the various DELS and equipment controllers. 

The context and product definitions from Chapter 5 serve adequately to describe the context and products 

for DemoCFP, recognizing that there are several hundred stores being served, around 2000 NDCs being 

dispensed, and approximately 30,000 orders processed each day. 

An important consideration in developing 

detailed models for large-scale complex 

systems is the organization of the model itself.  

Poorly organized SysML models are difficult to 

navigate effectively, thus difficult to validate 

and difficult to understand.  At this writing, 

there is not a legacy of production system 

SysML models from which to derive best 

modeling practices.  The practice that will be 

followed in presenting the DemoCFP model is 

illustrated in Figure 6-1.  The primary 

organizing concept is active resource and in 

general an active resource is defined in a 

package of the same name. The SysML 

package DemoCFP captures the specification 

of the DemoCFP.  The DemoCFP package 

contains four other packages, one each for 

modeling the product or service produced by 

DemoCFP, the resources contained in 

DemoCFP, the process capabilities of 

DemoCFP, and the control of DemoCFP.  In 

this case the DemoCFP has four part properties 

which are themselves DELS and thus are 

modeled with the same package structure. The 

DemoCFPController also has its own package, 

which contains three additional packages where 

decisions, control processes and task 

definitions are modeled.  The decision package 

addresses the five types of decisions for DELS 

controllers.  The process package addresses all 

the non-decision processes required by a 

controller, such as maintaining information 

about tasks or invoking behaviors of owned 

resources.  The task definition package defines the tasks which the controller can assigned to owned 

resources. 

 

Figure 6-1 System Model Organization 

 



35 

 

The sequencing of packages within an active resource package is in the easiest order of presentation and 

explanation.  Products and resources need to be identified to support process models, and some control 

models are best understood after resources and processes have been defined.  It is the case, however, that 

in any interesting system model, there will inevitably be “forward references” in describing the products, 

resources, processes and controls. 

The general modeling principles are: 

• Any active resource or controller is modeled in its own package. Exceptions can be made for active 

resources having no owned resources and whose process model and operations can be modeled 

within the active resource block (for an example, see the robot arm of the VTS) 

• An active resource package contains other packages specifying products/services produced, 

process capabilities, owned parts, and controls 

• A controls package contains other packages specifying decisions, non-decision control processes, 

and task definitions for called behaviors. 

6.1 DemoCFP Package 

The DemoCFP, as shown in Figure 6-1, has five part properties and one operation.  The five part properties 

represent the four subsystems—the high speed fill system, the vial transfer system, the high flexibility fill 

system and the sort system—and the CFP controller.  In this model, DemoCFP has no value properties, but 

there could be value properties for site-specific information, such as location, etc.   

6.1.1 DemoCFP Product 

As shown in Figure 6-2, the DemoCFP is capable of producing two products, a CFPCustomerOrder which 

is a kind of CustomerOrder, and a CFStoreOrder which is a sealed tote containing customer orders from a 

particular store.  

6.1.2 DemoCFP Resource 

DemoCFP is composed from four active resource subsystems as illustrated in the block definition diagram 

in Figure 6-3, which also shows the major owned resources of the subsystems.  The four major subsystems 

are: 

• HSFillSystem, the puck conveyor based system with dedicated dispensers 

• HFFillSystem, the tote conveyor based system with shared dispenser automation and manual 

dispensing 

 

Figure 6-2 DemoCFP Product and Process 

 



36 

 

• VTS: the vial transfer systemn that bridges between the tote and puck systems, and 

• SortSystem: the system that takes bagged orders from HSFillSystem and HFFillSystem and 

assembles the store totes.   

The vTSPick and vTSPut reference properties for VTS are associations of the PuckConveyorSystem and 

ToteConveyorSystem, respectively, and are the locations where the VTSRobot can access pucks and totes.  

In a less precise representation, the HSFillSystem and the HFFillSystem both have the TakeAwayConveyor 

as a reference property, because their respective bagging stations deposit bagged customer orders on a 

segment of the TakeAwayConveyor.  The PuckConveyorSystem is a part property of the HSFillSystem and 

ToteConveyorSystem is a part property of HFFillSystem. There are many interfaces between the conveyor 

systems and the parts of the fill systems, corresponding to locations where pucks or totes can be delivered 

to dispensing workstations.  These will be defined in more detail when the subsystem models are presented. 

The fifth major component of DemoCFP, not shown in Figure 6-3 is the controller, DemoCFPController.   

The DemoCFP’s four major subsystems—HSFillSystem, HFFillSystem, VTS, and SortationConveyor— are 

DELS because all four systems, at some point, require logistical decisions to be made, and thus have L3 

controllers.  

The internal block diagram of Figure 6-4 corresponds to the block definition diagram in Figure 6-3 and 

shows the flows among the major subsystems. The details of each of the four major subsystems will be 

presented in subsequent sections. 

 

Figure 6-3 DemoCFP System Structure 



37 

 

Vials which are part of a combo order flow from the PuckIFPosn to the VTSRobot, and from the VTSRobot 

to the ToteIFPosn.  Bagged orders flow from both HSFillSystem and HFFillSystem to the 

TakeAwayConveyor; from there to the IncomingBagBuffer, after which the sorting process takes place.  

Partially full StoreTotes are removed from the SortationConveyor when their lane is reassigned and placed 

into a temporary StoreToteBuffer.  Full StoreTotes are sealed and put into a SealedToteBuffer to await 

loading into a delivery vehicle. 

 

6.1.3 DemoCFP Process 

DemoCFP has two process capabilities that are relevant in its context, one corresponding to the processing 

of incoming customer orders and one corresponding to delivering store orders at the end of the day.   

The InboundOrderProcess represents the admission/rejection of a customer order.  It is exposed to stores 

via the processOrder operation listed in Figure 6-1. An admitted order will subsequently be fulfilled by 

other processes invoked either by the InboundOrderProcess or by processes of the CFPController and 

become part of a CFPStoreOrder. The ShipStoreOrder process is not explicitly exposed to the stores but 

represents the DemoCFP’s contractual agreement to ship store orders the end of the day.   

The InboundOrderProcess is shown in Figure 6-5.  Orders are received via the internet at any time, and if 

the DemoCFP is not operating, these orders go into a buffer.  When the DemoCFP is operating, customer 

orders are considered in first-come-first-served sequence and evaluated to see if all the order lines can be 

fulfilled, i.e., if the requested NDCs all are available.  If not, the order is rejected, otherwise it is accepted.  

In either case, there is a response to the submitting store.  An admitted order is evaluated and assigned an 

order type—HSFillSystem only, HFFillSystem only, or combo order—and given a wave assignment 

 

Figure 6-4 Flows in DemoCFP 

 



38 

 

corresponding to the store’s assigned wave.  The augmented order is added to a database of open orders, 

the OpenOrderTable, which will be used by subsequent DemoCFP control processes. 

The ShipStoreOrder process has not been modeled. 

 

6.1.4 DemoCFP Control 

 DemoCFP control, up to the bagging of orders is summarized in Figure 6-6. The DemoCFPController has 

two key operations management functions. Orders are screened for admission and prepared for fulfillment 

by the InboundOrderProcess and released to the two fulfillment systems by the BatchRelease .  Further 

control within the fulfillment resources is required to fill customer orders.  Once orders are bagged, there 

is subsequent control to sort them to store totes which is not modeled here.  Note that fillPuckBatch is a 

called behavior of the HSFillSystem and fillToteBatch is a called behavior of the HFFillSystem. 

In the InboundOrderProcess, only the order admission constitutes a decision, and even that is a relatively 

trivial decision.  The other actions are essentially administrative processes of the CFPController.   

BatchRelease selects a batch of orders from the OpenOrderTable to release for fulfillment and converts the 

orders in this batch into tasks suitable for release to the two fill systems.   This process is illustrated in 

Figure 6-7.  The actions highlighted in green represent control decisions:  selectWaveSet, 

selectReleaseBach, sequence represent schedule or sequence decisions, and assignDispenser represents a 

resource assignment.  The fillToteBatch call operation action uses an exposed process of the HFFillSystem 

and the fillPuckBatch call operation action uses an exposed process of the HSFillSystem. The remaining 

call operation actions in the figure are data preparation functions performed by the DemoCFPController.  

The activity uses two accept event actions corresponding to the two fill systems completing all the currently 

released orders and requesting a new batch. 

 . 

 

Figure 6-5 Inbound Order Process 

 



39 

 

Recall from Figure 6-4 that order lines from a combo order that are filled in the HSFillSystem must go 

through the VTS to be combined with lines filled in the HFFillSystem. This requires some synchronization 

between the two systems.  Part of the synchronization is realized in Figure 6-7, where for a given release 

batch, the combo lines are sequenced first for the HSFillSystem and last for the HFFillSystem.  If it happens 

that a required vial has not yet reached the VTS by the time the corresponding order tote arrives, then an 

error has occurred, and the tote simply recirculates to try again, until the vial has arrived. 

 

Figure 6-6 DemoCFP Control up to Bagging 

 



40 

 

 

 

 

Figure 6-7 DemoCFP Batch Release to Fulfillment 

 



41 

 

The specific control decisions and control 

processes for DemoCFP that are used in 

Figures 6-6 through 6-8 are identified in 

Figure 6-8.  These decisions align with the 

five decision types defined in the DELS 

specification: 

• AdmitNewOrder: admission 

• AssignDispenser: resource 

assignment 

• SelectReleaseBatch: sequencing 

• SelectWaveSet: sequencing 

• Sequence: sequencing 

• SortLaneAssignment: resource 

assignment 

It is interesting to note that the process of 

partitioning the release batch, and 

concatenating the partitions differently for 

the puck line and tote line also is a type of 

sequencing, but it is a completely mechanical 

operation on the incoming order batch, based 

only on the order type. 

 

In the DELS framework, task is the authorization to execute 

a process for a specific product and is identified as a 

distinct object.  In the DemoCFP, task takes two forms: (1) 

a parameter in a call behavior action; and (2) a signal.  The 

“PuckDry” and “ToteDry” signals inform BatchRelease to 

process and release a new batch of orders.  Every other 

process has a set of input and output parameters, and those 

parameters constitute the information that would be 

conveyed in an explicit task.  The invocation of the 

behavior, along with the parameter set is the authorization 

for executing the associated process.  In this sense, the task 

definitions are simply the specification of the parameters 

themselves, which are summarized in Figure 6-9.  Figure 

6-10  shows how the various tasks are related to one another 

and to the generic tasks identified in the CFP_Abstractions 

package. 

 

 

 

 

Figure 6-9 Task Definitions for 

DemoCFP Controller 

 

 

Figure 6-8 DemoCFP Control Decisions and Control 

Processes 

 



42 

 

 

 

The structure of the DemoCFPController is displayed 

in Figure 6-11.  Note that DemoCFPController has as 

part properties several data objects.  The data objects, 

NDCLocnTable and WaveTable represent information 

that is the result of planning processes, namely the 

assignment of NDCs to dispense locations and the 

assignment of stores to sort waves, respectively.  

OpenOrderTable is the set of received and admitted 

customer orders that are available to be released for 

fulfillment. The value property batchSize is assumed 

here to be a constant, also determined by a planning 

decision (although in a more advanced controller it 

might be an operational decision). The currentWaveSet 

is the result of a DemoCFPController decision and 

specifies the waves from which orders will be chosen 

from the OpenOrderTable for release to fulfillment. 

This completes the modeling of the DemoCFP.  The following sections will take a similar approach to 

describing the modeling of each of DemoCFP’s subsystems. 

 

Figure 6-11 DemoCFP Controller 

 

 

Figure 6-10 Structure of DemoCFP TaskDefs 

 



43 

 

6.2 HSFillSystem Package 

In the HSFillSystem only order lines for the most frequently ordered drugs are dispensed and the primary 

function of the system is to dispense drugs into vials and accumulate the vials for merging into a customer 

order.  Vials are transported in pucks to individual workstations for dispensing a single NDC, verifying the 

NDC and quantity, capping and accumulation.  Accumulation is at a bagger workstation for orders that can 

be filled completely in the HSFillSystem and in the VTS for combo order lines. 

6.2.1 HSFillSystem Product  

As shown in Figure 6-12, the only products of the 

HSFillSystem are a bagged customer order, deposited on the 

take-away conveyor to the order-to-store sorting system, or a 

combo line deposited in the VTS. 

 

 

 

6.2.2 HSFillSystem Resource 

The active resources in HSFillSystem 

are illustrated in Figure 6-13.  On the 

left side of the figure are the 

resources involved in dispensing pills 

into vials, verifying the NDC and 

count, capping vials and 

accumulating vials in order to bag 

customer orders.  On the right side of 

the figure are blocks representing 

elements of two conveyor systems—

the puck conveyor that moves vials 

among the workstations shown on the 

left, and the take-away conveyor that 

removes bagged orders.   

The vial transfer system, VTS, is a 

reference property rather than a part.  

Note that the puck conveyor, which is 

a part property of HSFillSystem, 

provides an interface position at the 

VTS.   In a similar fashion, the take-

away conveyor, which is not a part 

property of HSFillSystem, provides 

an interface position to each of the 

bagger workstations.  VTS is modeled 

in more detail in section 6.4. 
 

Figure 6-13 HSFillSystem Resources 

 

 

Figure 6-12 HSFillSystem Products 

 



44 

 

The VialDispenseSystem consists of one or more 

VialDispenseWS, or workstations.  Each is capable of dispensing 

and labeling a vial and depositing it in an empty puck. The 

VialDispenseSystem exposes a single callable operation, 

dispenseVial  whose method is the process 

DispenseVialMarryPuck . This process calls the dispenseVial, 

labelVial, and insertVial operations of a VialDispenseWS as well 

as the selectWS operation of the VialDispenseController.  

The HSDispenseFinger consists of multiple HSDispenseCells, 

each of which can dispense a single NDC into a vial presented by 

a puck at its designated PuckIFPosn.  It also has as part properties 

an ImageWS and a ScaleWS. Figure 6-15 shows an example of a 

HSDispenseFinger with eight dispense cells. Note that every part 

of the finger that performs an operation involving a vial in a puck 

has as a reference property a corresponding PuckIFPosn which is 

a part property of the associated FingerSpur conveyor part. The 

HSFillSystem may have several HSDispenseFingers. 

In this model there is a single CapWS where vials in pucks are 

capped and a single ExceptionWS which resolves errors that may 

have occurred for a puck at any of the previously visited 

workstations. 

 

Figure 6-14 VialDispenseSystem 

Model 

 

 

Figure 6-15 HSDispenseFinger Example 

 



45 

 

Finally, the PuckBaggerSystem consists of multiple BaggerWS where customer orders are collected and 

when complete are placed in a bag along with all required documentation.  Figure 6-16 illustrates a puck 

bagger system with two bagger stations. A BaggerWS has an associated interface position from both the 

puck conveyor system and the tote conveyor system. 

The organization of the resources in HSFillSysem is summarized in Figure 6-17.  For every major 

component, except ExceptionsWS there is a spur conveyor which provides some queuing at the 

workstation.  The MainPuckLoop provides overall puck circulation. Both the VTS and 

TakeAwayConveyor are reference properties, thus shown with dashed borders.  

 

Figure 6-16 PuckBaggerSystem Example 

 

 

Figure 6-17 Flows in HSFillSystem 

 



46 

 

 

6.2.3 HSFillSystem Process 

The HSFillSystem has four processes that either are exposed to the DemoCFP or directly impact a 

HSFillSystem owned resource.  The PuckFillOrderBatch process is exposed to the DemoCFP as the call 

operation action fillPuckBatch of the HSFillSystem and is shown in Figure 6-18.  

A batch of augmented orders, created by the BatchReleaseProcess of DemoCFPControl, is the input to the 

PuckFillOrderBatch process. This batch is added to a data store, ActiveBatch which is a part property of 

the HSFillSystemController.  All these orders are marked as “open”, i.e., they are available to release for 

fulfillment.  

A mechanism is needed to meter pucks into the HSFillSystem so that congestion on the conveyor or at 

heavily used workstations is avoided.  The mechanism illustrated in Figure 6-18 is based on the number of 

pucks currently in process with a vial.  When this “work in process” or puck WIP is below a target level, a 

new order can be released and as its order lines are released, the puck WIP will increase.  If there is an open 

order that has not yet been released, it will be selected and two actions follow: (1) check the puck WIP until 

it falls below the puck WIP target (because vials are being accumulated either at the VTS or at a bagger 

workstation); and (2) fill the order using the process appropriate to the type of order.  

The difference between the two puck order fill processes is that combo order lines are accumulated in the 

VTS and thus do not require bagging, while non-combo lines are accumulated at a bagger station and when 

complete, must be bagged.  Figure 6-20 shows the process for filling a combo order and Figure 6-19 shows 

the process for non-combo orders. 

 

Figure 6-18 Puck Fill Order Batch Process 

 



47 

 

  

 

  

 

Figure 6-19 Puck Line Fill Combo Order Process 

 



48 

 

 

 

 

Both Figure 6-20 and Figure 6-19 have a call behavior action referring to the HSFillSystem operation 

puckDispenseLineProcess whose method is PuckDispenseLineProcess.  This process is described in Figure 

6-21 and involves the HSFillSystemController, the puck conveyor and the dispense resources of the 

HSFillSystem.  The proper sequencing of process steps is managed through the execution of this process.   

Note that the process can terminate in two ways: (1) vial is successfully capped; or (2) an exception is 

resolved.  Exceptions occur when there is an error in any of the dispense processes, from vial dispense 

through capping.  For simplicity, it is assumed that resolving an exception results in a capped vial with the 

correct quantity of the correct NDC.  Thus, when this process terminates, the line filled is ready to be 

accumulated.  Where it is to be accumulated is determined by the type of order, as illustrated in Figure 6-18 

and Figure 6-20. 

 

 

 

 

 

 

Figure 6-20 Puck Line Fill Non-combo Order Process 

 



49 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6-21 HSFillSystem Dispense Line Process 

 



50 

 

6.2.4 HSFillSystem Control 

As shown in Figure 6-18, the HSFillSystemController receives a batch of orders when its 

PuckFillOrderProcess is invoked by the DemoCFPController call to the fillPuckBatch operation of 

HSFillSystem.  In Figure 6-22, the associated decisions, processes and tasks definitions are identified.  There 

are three control decisions listed: 

• HSSelectBagger: associates a 

particular bagger workstation with an 

order; the simplest decision process 

would be round-robin, although least 

work or other rules could be used; 

• HSSelectOpenOrder: from the 

PuckReleaseBatch, select the next 

order to process; the simplest rule is to 

use the sequence of orders in the batch;  

• HSSelectOpenLine: for the open order 

currently being filled, select which line 

to fill next; the simplest rule is to use 

the sequence of lines in the order. 

Additional control decisions are illustrated in 

Figure 6-18 through Figure 6-21, where there 

are simple logical branches for type of order, or 

presence of an order, or occurrence of an 

exception event.  In each case the decision is a 

simple branching, based on state.  . 

The processes listed in Figure 6-22 all are information management processes necessary to support the 

decisions.  The tasks defined for the DemoCFPController are sufficient for the HSFillSystemController. 

6.3 HFFillSystem Package 

The HFFillSystem is capable of dispensing any NDC that is available in the DemoCFP.  It is comprised of 

manual workstations, automated dispensers for certain unit-of-use drugs, and robotic workstations 

employing automated dispensers that are similar to or identical with those used in the HSFillSystem.  While 

the HSFillSystem may have capability for fewer than 100 NDCs, the HFFillSystem may have capability for 

several thousand NDCs.   

6.3.1 HFFillSystem Product 

The product of the HFFillSystem is a bagged 

customer order, placed on the TakeAwayConveyor. 

 

 

  

 

Figure 6-22 HSFillSystemControl Decisions, 

Processes and Task Definitions 

 

 

Figure 6-23 HFFillSystem Product 

 



51 

 

6.3.2 HFFillSystem Resource 

The resource organization for HFFillSystem is illustrated in Figure 6-24.  The major components are shown 

on the left side of the diagram and all are part properties except for VTS which is a reference property. The 

ToteConveyorSystem is a part property, and it also is a DELS. Its components include the seven spurs 

shown, and each of them provides an interface position for some dispense resource. Note that all the 

dispense resources may have multiple instances in a given system configuration and the ToteBaggerSystem 

may have multiple ToteBagger workstations. 

The structure of the HFFillSystem is further elaborated in Figure 6-25.  As in the PuckConveyorSystem, the 

ToteConveyorSystem provides a spur for each major dispense resource and an interface position where the 

resource can access the tote to deposit a line item. 

 

 

 

 

 

Figure 6-24 HFFillSystem Structure 

 



52 

 

 

6.3.3 HFFillSystem Process 

HFFillSystem has two defined processes.  FillToteBatch is exposed to DemoCFP through calls to the 

fillToteBatch operation of HFFillSystem which has FillToteBatch as a method.  Similarly, FillToteOrder is 

invoked by FillToteBatch through a call operation action on fillOrder operation of HFFillSystem which has 

FillToteOrder as a method.  

FillToteBatch is shown in Figure 6-27 and is very similar to PuckFillOrder Batch, except that there is only 

one process for filling a tote order.  Because FillToteOrder is exposed as an operation of 

HFFillSystemController, the parameter batchIN provides the input of the ToteReleaseBatch directly to the 

HFFillSystemController where it goes into the datastore for subsequent manimpulation by the controller.  

The selectOrder decision can be quite simple, e.g., preserving the order sequence in the ToteReleaseBatch, 

or it could be more complex, depending on the implementation.  When the selected order is “null” (i.e., no 

more orders in the data store) the controller signals that HFFillSystem is ready for another batch.  

FillToteBatch invokes the FillToteOrder process by a call to fillOrder, an operation of HFFillSystem which 

has FillToteOrder as its method.  As shown in Figure 6-26, the parameter ToteOrder provides the order to 

be filled, WorkingOrder directly to the HFFillSystemController, which first assigns it to a specific tote via 

the marryToteOrder operation which has the process Marry as its method.  Once the order is married to a 

tote, the value of wIP is incremented and the tote is routed to a series of stations corresonding to the NDCs 

identified in the order lines. Once the “next line” is “null”, a bagger is selected and the routed to the bagger.  

A simple method for choosing the bagger station is round-robin, but other rules could be implemented.  

 

Figure 6-25 Flows in HFFillSystem 

 



53 

 

 

 

Figure 6-27 FillToteBatch Process 

 

 

Figure 6-26 FillToteOrder Process 

 



54 

 

6.3.4 HFFillSystem Control 

HFFillSystemController makes three decisions that are modeled as activities: 

• HFSelectBagger simply determines which of the available baggers on the tote line will bag the 

order contained in a tote.  The rule could be as simple as round robin, or could be more complex, 

e.g., bagger with fewest queued totes. 

• HFSelectOrder determines the next order to remove from the ToteReleaseBatch, which could be 

as simple as using the sequence in the ToteReleaseBatch. 

• HFSelectWS determines the next order line to fill and the corresponding workstation; this could be 

as simple as taking the next order line in sequence and looking up the workstation for the 

corresponding NDC, or it could determine the line whose corresponding workstation is closest to 

the current location of the tote. 

As with the HSFillSystemController there are a number of control decisions that are simple binary choices 

based on the state of a query to a data store, WIP level relative to WIP target, or occurrence of a dispense 

error. Similarly, the HSFillSystemController has  

 

6.4 VTS Package 

The VTS plays a key role in filling combo orders.  For the VTS to function properly, and for the DemoCFP 

to be able to successfully fill combo orders, the design of the VTS must be integrated with the design of the 

rest of the DemoCFP. 

6.4.1 VTS Product 

The only product of the VTS is a vail corresponding to an order line, deposited into a tote corresponding to 

the order containing the order line. 

6.4.2 VTS Resource 

The VTS has two main components, a robot and a vial store.  The robot in this application is simply an 

equipment (with its own L2 controller) that executes vial transfers on command.  The transfers are from a 

puck to the vial store, or from the vial store to a tote.  The vial store is simply a set of slots where a vial can 

be deposited and later retrieved by the robot.   



55 

 

The components of the VTS are summarized in 

Figure 6-28.  The vTSPick and vTSPut reference 

properties are for the conveyor interface 

locations where the robot, respectively, can pick 

a vial from a puck and put a vial to a tote.  

Because these two locations never change, the 

only “variable” in the robot moves is the slot to 

which the vial is stored after being picked from 

the puck, or from which it is retrieved prior to 

being put in the tote. 

The internal structure of the VTS is shown in 

Figure 6-29. Included in this figure is the VTS 

controller and the robot controller.  The VTS is a 

DELS, and has an ISA-95 Level 3 controller, 

because it must determine which of the conveyor 

interfaces will be served next whenever the robot 

completes a move, as well as which vial slot will 

be involved. The robot, in contrast, only executes the moves determined by the VTS controller, so it is an 

equipment, and has an ISA-95 Level 2 controller. 

An important observation regarding the structure of 

VTS is that at most one puck can occupy vTSPick 

and at most one tote can occupy vTSPut.   

6.4.3 VTS Process 

VTS has two operational processes, VTSGetVial 

and VTSPutVial. VTSGetVial is exposed to 

HSFillSystem via the vTSGetVial operation of the 

VTS which has VTSGetVial as its method.  

Similarly, VTSPutVial is exposed to HFFillSystem 

via the vTSPutVial operation of the VTS which has 

VTSPutVial as its method. 

The design of the VTS is predicated upon a key 

assumption about the way HSFillSystem and 

HFFilSystem interact with VTS.  In particular, 

vTSGetVial is not called until the puck conveyor 

has delivered the target puck to vTSPick, and 

likewise, vTSPutVial is not called until the tote 

conveyor has delivered the target tote to vTSPut. 

6.4.4 VTS Control 

When the VTS operation vTSGetVial is called by HSFillSystem the corresponding FillOrderLine is added 

to PickTaskTable a part property of the VTSController. Similarly, when the VTS operation vTSPutVial is 

called by HFFillSystem the corresponding FillOrderLine is added to PutTaskTable, a part property of the 

VTSController.   

The controller process VTS_Control is illustrated in Figure 6-30.  

 

Figure 6-28 VTS Structure 

 

 

Figure 6-29 VTS Internal Structure 

 



56 

 

 

 

Figure 6-30 VTS Control Process 

 



57 

 

Once   the control process is initiated it runs continuously.  The VTS operates in one of two regimes, serving 

either the puck conveyor or the tote conveyor.  In either regime, it focuses on the corresponding interface 

location until a decision is made to change regime. To illustrate, at the beginning of the day, since combo 

orders are run first on HSFillSystem, it would make sense for the VTS to focus on picking vials from the 

puck conveyor.  At some point, it would make sense for the VTS to switch regime and begin to put vials in 

to totes on HFFillSystem.  The setRegime operation of the VTSController has as its method the SetRegime 

decision process. There are a number of ways to make the decision in SetRegime, for example, alternating, 

or first-come-first-served.  One might even contemplate a SetRegime process that takes into account the 

numbers of combo orders in a batch, or currently active plus not yet released, etc. 

In a similar fashion, the selectSlot operation has as its method the SelectSlot decision activity. The slot 

selection might attempt to minimize robot travel, for example.  

The other decision processes for VTSController essentially are administrative functions in support of either 

decision making or the execution of vial transfers. 

Note that the design decision to augment the FillOrder and FillOrderLine with additional information 

makes it possible for the VTS to control itself, based on nothing more than the tasks specified in calls to 

vTSGetVial and vTSPutVial. It knows the order line ID for a vail being retrieved from a puck, and it decides 

the slot in the VialStore and can associate the order line ID with that slot.  When there is a subsequent call 

to retrieve a vial, that call specifies the FillOrderLine which allows VTSController to match it with the 

correct vial storage slot. 

6.5 SortSystem Package 

The SortSystem plays a key role in DemoCFP by assembling the StoreTotes containing customer orders for 

a particular store. 

6.5.1 SortSystem Product 

The product of the SortationSystem is the sealed store totes. 

6.5.2 SortSystem Resource 

The major components of the SortSystem are shown in Figure 6-3, and the flows are shown in Figure 6-31. 

As bagged orders reach the SortSystem, they are scanned to identify the bagID and thus the corresponding 

 

Figure 6-31 Flows in the Sortsystem 

 



58 

 

store ID, then diverted to the appropriate sort lane.  Because the SortationConveyor may have some lanes 

re-assigned during the day, partially filled StoreTotes may be placed temporarily in the StoreToteBuffer and 

then returned to the SortationConveyor when a subsequent re-assignment gives their store a sort lane. At 

the end of the day, StoreTotes are sealed for shipment to the corresponding stores. 

6.5.3 SortSystem Process 

The fundamental process is Sort as shown in Figure 6-32.  Streams of bagged orders enter the 

TakeAwayConveyor from the HSFillSystem and the HFFillSystem, and are conveyed to a scanner that reads 

the bag ID,  Based on the bag ID, the SortationController determines the assigned sort lane, and then the 

SortationConveyor conveys the bag to its designated sort lane and diverts it. 

6.5.4 SortSystem Control 

The only local control decision made in the SortSystem is the assignment of an incoming bagged order to a 

specific sort lane.  This is determined by the setup of the SortSystem which is determined by the 

DemoCFPController.  The model presented here does not address this configuration management issue. 

6.6 Modeling Summary 
A careful reading of this chapter will reveal some modeling practices that have been followed.  As 

pointed out earlier, there currently are no significant SysML-based system models of production systems 

of a meaningful scale, so there are no “best practices” to follow.  The practices followed here may be 

good, but there may be better practices.  Nevertheless, here is a summary of the most significant modeling 

practices followed here: 

• An active resource that has capabilities, modeled as activities, exposes its capabilities through its 

operations, which can become call operation actions in the behavior of owning or referencing 

active resources. The signature for these operations is defined in the activity which is the method 

of the operation. This approach allows the activity model to be modified in any way that does not 

change its signature, without impacting the called operation actions, which may appear in many 

places in the system model. 

 

Figure 6-32 Sort Process 

 



59 

 

• A corollary is that operations should have methods which are activities. The activity referenced in 

an operation can be updated, improved, or replaced without changing the way the owning 

resource’s capabilities are accessed. 

• An active resource is defined in a package, where the block representing it specifies its parts, 

references, values and operations (and maybe state) along with a bdd and ibd to understand the 

organization and interactions of its owned resources.  In addition, a good practice is to have 

owned packages that define: 

o its context and requirements, i.e., what products/services it provides to its users and its 

capacities (execution rate) for each product/service 

o its owned active resources; note that if these resources also have owned parts, then they 

will require their own set of defining packages. An exception can be made for “leaf” 

active resources, where the creation of a package of packages may be less understandable 

than simply adding all the model elements to the block representing the active resource.  

o its processes, or how its capabilities are realized.  These processes define the “signature” 

of the operation used for invoking the capability 

o Its controls, including the controller with all its value, part and reference properties, and 

operations, along with owned packages addressing the decision processes (modeled as 

activities), other control processes (modeled as activities) and task definitions.  The latter 

correspond to the parameters required in any call operation action of a control decision or 

other control process. 

• Many of the process models presented in this chapter use swim lanes. While swim lanes may 

make it look like actions are being performed by resources, in fact, the “resource” swim lanes 

often model the call behavior action that invokes the behavior of the resource.  

• Finally, the controller is a part property of a DELS or equipment.  It does not have a co-equal 

status, rather it is a co-equal to any of the owned resources of the DELS or equipment. 

 

  



60 

 

 

7 Simulating the DemoCFP 

The purpose that drives the development of a model like the one presented in Chapter 6 is to support 

decision making in both system design and system operation.  The SysML model itself primarily captures 

decisions about resource structure and behavior and about control architecture and decision-making.  The 

focus in this report is on smart operations management, and the appropriate mechanism for evaluating and 

improving a proposed Level 3 control system is discrete event simulation (DES).  This chapter describes a 

DES model based on the DemoCFP SysML model presented in Chapter 6 and intended to support 

experimentation with alternative operational control policy parameters and decision algorithms. This is not 

a detailed documentation of the simulation model, but rather a description of how it represents the 

DemoCFP, some initial experimental results, and issues that arise id developing such a DES model. 

7.1 The Simulation Platform 

There are many different DES platforms that might have been used, and each offers advantages and 

disadvantages.  The chosen platform is Simevents™ and MATLAB™ from MATHWORKS.  Simevents 

provides a fairly typical visual editor for constructing the part of the simulation model representing the flow 

of entities through a system of resources. Like most DES platforms, Simevents supports a variety of queue 

dispatch disciplines and routing switches but has limited capability for tracking system state or modeling 

complex control decisions.  What Simevents does provide is a mechanism to “escape” from Simevents into 

MATLAB for computations that are difficult or impossible to implement directly in Simevents, such as 

maintaining a state database or executing complex decision logic. The escape mechanism is used 

extensively in the simulated DemoCFP as it allows the maintenance of system state information and 

decisions that are more than simple queue dispatching. 

Examples of state information include the orders that have been accepted but not released in a batch and 

the orders that have been released and are being processed in the fulfillment systems.  This kind of 

information simply cannot be represented using standard simulation modeling constructs.  A number of 

decisions in the DemoCFP are very different from queue dispatching, including the decision to switch 

waves, the batching decisions, and the tote routing decision. 

7.2 What is Simulated? 

The DemoCFP simulation model discussed below corresponds to the left hand side of the system illustrated 

in Figure 6-6 and the control decisions illustrated in Figure 6-6, i.e., it includes the accept/reject decision 

for incoming orders, and all the fulfillment operations up to the point where a bagged customer order is 

placed on the take-away conveyor to the sorting process.  Sorting and the accumulation of customer orders 

in store-specific totes is not included. 

7.3 Overview of the Simulation Model 

The simulated order stream is based on data for two months of operations for a specific CFP. The data is in 

the form of a table in which each record corresponds to an order line, with an order ID, a line ID, an NDC, 

the arrival time of the order and other attributes.  The simulation model uses this table to create simulation 

entities corresponding to each order line and releases these order lines to the simulated DemoCFP at the 

simulated time of the actual order arrivals.   



61 

 

The simulation model uses MATLAB function blocks to gain access to the capabilities of generic 

MATLAB for storing and manipulating data and for implementing control decision algorithms.  Figure 7-1 

illustrates this for the accept/reject decision.  The block labelled “Attribute Function” accesses a MATLAB 

function that compares the NDC in the order line entity to the NDC’s in a preloaded NDCMaster and routes 

the entity to the appropriate port, i.e., either rejected or admitted. 

Admitted order entities are assigned a wave ID attribute, corresponding to the originating store, and then 

the attributes of the entities are used to create entries in the pending order table, as illustrated in Figure 7-2. 

Note that MATLAB functions are used both to assign the wave ID to the entity and to create the entries in 

the pending order table, which is persistent in the MATLAB workspace.  Once the entry in the pending 

order table is created, the store order entity is discarded. 

The structure and flow of the DemoCFP simulation model closely follows the system model presented in 

Chapter 6, although there are some differences.  The basic structure of the simulation is shown in Figure 

7-3 below.  There are two controllers, shown on the left side of the figure.  The Batch Controller releases 

batches of customer orders to fulfillment.  The Fulfillment Controller releases individual orders and order 

lines to the high flex and high speed fulfillment subsystems, respectively.   

The Batch Controller in Figure 7-3 corresponds to the BatchRelease activity shown in Figure 6-7.  The 

implementation of the Batch Controller is somewhat different from Figure 6-7, however.  The approach 

taken in Figure 6-7 is to release separate order batches to the puck and tote systems, by duplicating the 

combo lines in the tote orders, and also sequencing the released orders so that combo lines in the puck 

system are done first and combo lines in the tote system are done last.  The release rate is controlled by 

 

Figure 7-2 Creating the Pending Order Table 

 

 

Figure 7-1 Accept/Reject Decision 

 



62 

 

limiting the number of pucks and totes with assigned order lines or orders. The implementation of the Batch 

Controller in Figure 7-3 simply selects the first b order lines from the pending orders table, plus any 

remaining order lines to complete an order.  The batch is released to the Fulfillment Controller, where 

sequencing decisions are made. The resource assignment decision (in the case of multiple feeders with the 

same NDC) are made in the simulation model Batch Controller as they are in the system model 

BatchRelease. 

Finally, before releasing the batch, the Batch Controller assigns the feeder for each of the lines in the batch, 

based on the assignment of NDC to feeders.  If the specified NDC for a puck line is available in multiple 

feeders, the feeder with the least pending work is selected.  

The Fulfillment Controller takes the batch of pending orders and releases them in FIFO sequence.  The tote 

system lines are combined into a single simulation entity and released to the HighFlex block and the puck 

system lines are converted, one-by-one into simulation entities and released to the HighSpeed block.  In 

effect, all the lines in the batch of pending orders are released at the same time, and the two fulfillment 

systems manage the assignment of lines to pucks and totes. 

The next three sections address, in turn, the HighSpeed, HighFlex and Merge_HighSpeedToHighFlex 

models. 

7.3.1 HighSpeed Model 

The HighSpeed block explicitly represents the fulfillment resources identified in Chapter 6, using library 

blocks developed specifically for modeling central fill pharmacy resources.  The library for HighSpeed 

blocks is shown in Figure 7-4.  Note that many of these blocks are subsystem masks, meaning they contain 

a subsystem model and specify parameters that can be set for the subsystem. 

 

Figure 7-3 Structure of the DemoCFP Simulation 

 



63 

 

The HighSpeed subsystem models both the flow of pucks through fulfillment resources and control 

decisions associated with sequencing release of order lines and their association with specific pucks.  The 

puck conveyor system is modeled not as a single unified subsystem, but as individual conveyor components 

connecting fulfillment resources, that execute transport, divert and merge operations on individual pucks. 

This is possible because once a puck is assigned an order line, it is given a set of attribute values 

corresponding to the locations it must visit, including whether it goes to a bagger or to the VTS.  At each 

possible divert, the attributes are read, and if the attribute associated with that divert is set, the puck is 

diverted.  

Figure 7-5 shows the HighSpeed subsystem model.  Pucks flow from the labeler to the FillSystem, 

CappingSystem, ExceptionsSystem, and to a routing switch, where they either continue to the 

 

Figure 7-4 High Speed Resource Library 

 



64 

 

BaggingSystem or are diverted to the VTS. Operational control in the HighSpeed subsystem consists of 

assigning order lines to the LabelingSystem to dispense and label a vial, insert it into a puck and tare weigh 

the puck. The LabelingSysem “pulls” orders from the OpCONTROL_HighSpeedSystem whenever one of 

the labelers is idle.  In the current implementation, order lines are selected in the sequence released by the 

FulfillmentController although other logic could be implemented. 

The model of the BaggingSystem allows for an assigned bagging station to be blocked, i.e., its associated 

puck queue is full, so pucks would recirculate through the FillSystem, CappingSystem, etc, returning to the 

bagging station until the queue has available capacity. 

The model in Figure 7-5 may seem simple, but that is because the FillSystem block is itself a rather complex 

subsystem, as shown in Figure 7-6.  It consists of three “fingers” or conveyor spurs, each containing three 

machines, and each machine containing of six individual feeders.  Each  feeder has a small queue for pucks 

 

Figure 7-5 HighSpeed Subsystem Model 

 



65 

 

waiting for their vials to be filled. The attributes associated with a puck entity allow the entity to be routed 

to the appropriate finger, and then routed to the appropriate feeder within the finger.  If the queue for that 

feeder is at capacity, the puck will recirculate in the finger, if possible, but if the entire finger is blocked, 

the puck will recirculate all the way through the bagger stations and back to the FillSystem. 

7.3.2 HighFlex Model 

As with the HighSpeed subsystem, the HighFlex subsystem explicitly represents the fulfillment resources 

identified in Chapter 6, using library blocks developed specifically for modeling central fill pharmacy 

resources.  The library for HighFlex blocks is shown in Figure 7-7.  Note that many of these blocks are 

subsystem masks, meaning they contain a subsystem model and specify parameters that can be set for the 

subsystem. 

The HighFlex subsystem models both the flow of totes through the fulfillment resources and the control 

decisions that associate a tote with a specific customer order.  Note that there is no sequencing decision for 

the HighFlex subsystem because customer orders are released one at a time by the Fulfillment Controller. 

As with the HighSpeed subsystem, the tote conveyor is not modeled as a unified subsystem, but rather as 

 

Figure 7-6 HighSpeed FillSystem Model 

 



66 

 

individual conveyor components connecting fulfillment resources.  When an order line is assigned to a tote, 

the tote entity is given a set of attributes indicating the stations it must visit and what must be dispensed at 

each station, including the vial transfer system. At each conveyor segment that represents a potential divert, 

the attributes of the tote entity are read, and if one of them indicates the tote should be diverted then it is 

diverted. 

The HighFlex subsystem model does not have the same kind of hierarchical structure as the HighSpeed 

subsystem.  In the DemoCFP there are 34 different fulfillment stations, counting the robotic stations, the 

manual fill stations, the pharmacist stations and the bagging stations.  There also is the interface to the vial 

transfer system.  Figure 7-8 shows the two “ends” of the HighFlex subsystem, simply to illustrate the basic 

flow structure. Empty totes are married to customer order at the right side of the figure and basically flow 

in a clockwise loop through the fulfillment stations.  At the left end of the figure is a spur that goes to the 

vial transfer station.  At every fulfillment station, there is a tote queue, which a tote bypasses if it does not 

need to visit the station or if the queue is full. 

 

Figure 7-7 HighFlex Resource Library 

 



67 

 

 

 

Figure 7-8 HighFlex Subsystem Model (partial) 



68 

 

7.3.3 Vial Transfer System Model 

The Merge_HighSpeedToHighFlex model is a simplified implimentation of the VTS model in Chapter 6.  

There is no explicit vial store, but rather a table that records which order lines are currently stored in the 

VTS.  The maximum size of the table is an input parameter. The robot operations are modeled as a simple 

delay.  There is a finite queue for tote entities but an infinite queue for puck entities.  The puck and tote 

entities are served in FCFS sequence. 

7.4 Initial Experimentation 

This project has been fortunate to have access to almost 9 weeks of operational data on customer orders 

and the timing of receipt and other key operations including labeling and bagging.  As always, there have 

been challenges with using “real” data.  Simple issues, such as multiple NDCs for the same drug, can present 

major challenges to a research team with limited access to the data sources.   

The arrival rate of orders has a significant impact on operational performance and should be a significant 

consideration in designing the control system.  An analysis of the nine weeks of data regarding the 

distribution of arrival times is summarized in Figure 7-9.  A relatively small fraction of orders are received 

overnight, but there is a significant “surge” of orders shortly after daily operations begin.  The consequence 

is that the observed workload during the period from 9 am to 11 am is perhaps 2.5 times the observed 

workload for the remainder of the day.  What this suggests is the need for an operations management 

strategy that can smooth the workload over the day without jeopardizing the service level, i.e., the fraction 

of eligible orders that are completed in time to be shipped to the store on the same day. 

Not surprisingly, because the existing system basically releases orders as fast as possible, the average cycle 

time is relatively larger early in the day and diminishes over the day as order volume subsides.  This is 

 

Figure 7-9 Distribution of Order Received Time 

 



69 

 

illustrated in Figure 7-10.  Not only does the arrival rate of order diminish over the day, the large work in 

process due to the surge of orders from the early part of the shift gets worked down. Again, this suggest a 

need for an operations management approach that can balance the workload over the day. 

The desire to exploit this large realistic dataset prompted the development of a Python-based GUI to 

simplify the specification of parameters, selection of datasets and assembly of computational results.  One 

study looked at all 50+days (the CFP did not operate on Saturdays), ran the simulation for the arriving 

orders and compiled cycle time data as illustrated in Figure 7-11.  A few of the daily results are eliminated 

from the chart because of simulation issues, specifically that a significant number of orders did not exit the 

system.  An interesting observation is the four outlier points where cycle time is two to three times larger 

than other cycle times for the same 

throughput.  Closer examination 

reveals that these four days all are 

Sundays, and the increased cycle 

time is due to orders on the HighFlex 

system, where there are manual 

workstations.  The most likely 

explanation is that on Sundays, the 

staffing of these manual workstations 

is much lower than it is on other days, 

so their utilizations are much higher, 

causing much more work-in-process, 

which from Little’s Law would 

indicate much longer cycle times for 

a given throughput level. For the 

other days, where standard staffing 

likely applies, cycle time increases as 

throughput increases, as one would 

expect. 

 

Figure 7-11 Simulated Cycle Time vs Throughput 

 

0

20

40

60

80

100

120

140

160

180

200

0 5000 10000 15000 20000

A
vg

 C
yc

le
 T

im
e

Throughput

Cycle Time vs Throughput

 

Figure 7-10 Cycle Time vs Received Time 

 



70 

 

The simulation model allows the user to specify the numbers of pucks and totes in the system.  These are 

expected to have at least some influence on cycle time and perhaps on throughput as well.  One set of 

experiments looked at the impact of varying the numbers of pucks and totes. Figure 7-12 illustrates the 

impact of varying the number of 

pucks in the HighSpeed system and 

represents a simulation over a fixed 

period of time with the number of 

totes in the HighFlex system fixed at 

200.  If there are not enough pucks, 

the work-in-process is limited and for 

a given capacity, the throughput also 

is limited.  As the figure shows, 

throughput (during the fixed time 

interval) will increase as more pucks 

are added, up to a saturation level, in 

this case, around 400 pucks.  

Interestingly, the figure also indicates 

that throughput might actually decline 

if there are too many pucks in the 

system, as they all must be 

somewhere, and create congestion. 

The impact of increasing the number 

of totes is shown in Figure 7-13.  

When there are 250 totes, increasing 

the number of pucks beyond the 

saturation level of 400 actually 

causes throughput to become erratic.  

While it is not completely clear why 

this would happen, it likely is a 

consequence of interaction between 

the numbers of carriers in the system, 

the size of the order release batches, 

and the mechanism for releasing 

each individual order into the 

fulfillment processes. 

Clearly, there is a great deal that 

might be learned from more 

extensive experimentation with the 

DemoCFP simulation. 

 

7.5 Modeling Issues 

There are a number of challenges in transitioning from the relatively platform independent system model, 

rendered in a standardized system modeling language to the relatively platform specific simulation model 

rendered in a particular DES language.   

 

Figure 7-12 Throughput vs Number of Pucks; 200 Totes 

 

5000

5500

6000

6500

7000

7500

2 5 0 3 0 0 3 5 0 4 0 0 4 5 0 5 0 0 7 5 0 1 0 0 0

THROUGHPUT VS.  #PUCKS

SO Released SO Bagged

 

Figure 7-13 Throughput vs Number of Pucks; 250 Totes 

 

0

1000

2000

3000

4000

5000

6000

7000

8000

2 5 0 3 0 0 3 5 0 4 0 0 4 5 0 5 0 0 7 5 0 1 0 0 0

ST
O

R
EO

R
D

ER
S

#PUCKS

STOREORDERS VS #PUCKS ( FOR #TOTES=250)

SO Released SO Bagged



71 

 

In the system model, there are both object flows and control flows between activities.  In Simevents, object 

flows are represented as entity flows, and there can be a very close correspondence between object flows 

modeled as blocks and entity flows modeled as entities.  Control flows from the system model also become 

entity flows in the Simevents model, and typically require “splitting” an entity representing either an object 

or another control flow into two entities, one still representing the original entity flow and the other 

representing the desired control flow. 

A related issue is the representation of controller behavior.  In the system model, a controller is an object 

(block) with its own identity and sets of behaviors—modeled as activities—representing decision-making 

or state model management.  These behaviors can be invoked by calling an operation of the controller for 

which the activity is a method and these invocations can appear in multiple process models with no 

ambiguity or confusion; every invocation refers to the same controller block and the associated decision 

logic or plant model manipulation can be arbitrarily intricate.  In Simevents, simple control decisions, such 

as queue dispatching, are associated with a specific queue.  If you want to change the controller logic, you 

must locate every corresponding queue and modify it.  Controller decisions that are more than local queue 

dispatching and plant model maintenance processes can be modeled only by escaping to MATLAB. In the 

current implementation of the DemoCFP simulation, each controller behavior is a stand-alone MATLAB 

function, i.e., there is not a “controller object” in Simevents that corresponds to the controller block in the 

system model.  As a consequence, the controller model is fragmented as MATLAB escapes and may appear 

in many locations.  Unless a very disciplined block naming convention is followed, it can be challenging 

to determine exactly what controller is being invoked by one of these escapes. 

Similarly, modeling the transforming behavior of active resources is straightforward if the transformation 

is merely a delay, and can be modeled with one of the standard “queue” blocks.  However, if the 

transformation requires changing the plant model, e.g., availability of resources or changing the identity of 

a part, then several steps are involved.  The entity representing the input to the process is split, creating a 

control flow that is used to invoke a MATLAB escape where the plant model can be updated, or a new 

entity created with new attributes. 

Conveyor modeling presents some particular challenges, not just for Simevents but for almost all COTS 

simulation languages.  The behavior of a conveyor in the DemoCFP system model is simply an activity, 

move(origin, destination) and that captures the general capability of the conveyor.  In the simulation model, 

representing that behavior must represent both the location state change and the time required for the state 

change.  In the current version of the DemoCFP simulation model, conveyor segments are represented by 

an “N server queue” where N represents the number of flow entities that can be in motion at one time and 

the server processing time is the time to traverse the conveyor segment. It should be noted that the original 

development of the DemoCFP was started in a version of Simevents that now is two major releases out of 

date.  In the most recent version of Simevents there is a standard library object modeling conveyor segments 

with fixed speed, fixed carrier size and fixed interval between carriers.   Any revision or further 

development of the DemoCFP as a testbed should explore this newer modeling capability. 

A further issue related to the modeling of conveyors is that in the system model, carriers always remain on 

the conveyor, and when a conveyor move operation is completed the appropriate controller is notified and 

invokes the desired behavior at the workstation to which the carrier has been delivered.  This architecture 

allows for operations management decisions that can consider the states of system parts other than the 

conveyor and the workstation to which the carrier has been delivered.  In contrast, the implementation in 

the DemoCFP simulation has the entity corresponding to the carrier (either puck or tote) exchanged between 

blocks representing the conveyor and the workstation, and the only information the workstation has is 

contained in the attributes of the carrier entity. This significantly limits the scope of any   decision making 

at the workstation.  



72 

 

7.6 Future Simulation Model Development 

The DemoCFP simulation is a large and complicated simulation.  It has been developed over a period of 

three years, with significant contributions from at least five developers.  While it goes a long way to ward 

the goal of creating a testbed for experimenting with smart operations management, there are a number of 

opportunities for improvement. 

An obvious improvement would be to upgrade the model to the latest release of the modeling platform, 

which would provide some improved modeling capabilities  and also probably significantly improve the 

runtime performance. 

Improvements to the Python-based user interface would significantly reduce the time and effort required to 

conduct parametric studies of key design parameters, such as carrier counts, batch sizes, VTS capacity, etc. 

Finally, there is need for a simulation modeling approach that mirrors the active resource modeling 

approach in the DemoCFP system model.  There an active resource has both resource and controller part 

properties.  There are clearly identified interfaces for the active resource in terms of both object flows and 

control flows.  This enables a nicely object-oriented approach to system specification.  This is missing in 

the current implementation of DemoCFP where there is not a unified representation of active resources that 

integrates their resource and control parts. With such a unified representation, it also should be possible to 

have the Matlab escapes for control decision making more closely conform to the control decision 

framework outlined in (Sprock, Bock, & McGinnis, 2019).



73 

 

8 Conclusions 
The fundamental thesis of the research reported here is that achieving the full realization of smart 

manufacturing operations management will remain elusive until two fundamental requirements are met: 

1. The manufacturing system can be specified with the same degree of completeness and precision as 

can the products that it produces, and  

2. There is a generic and broadly reusable architecture or pattern for the structure and behavior of 

manufacturing operational controllers. 

Meeting the first requirement requires a manufacturing system reference model providing both an 

ontology and a syntax enabling the creation of computational representations of manufacturing systems.  

Meeting the second requires developing and demonstrating smart manufacturing operations controllers. 

The work reported here does not completely meet these two requirements, but it makes a significant 

contribution toward them. The approach and some of the tools employed have been motivated by, 

informed by, and significantly improved by recent developments in Model-Based Systems Engineering as 

applied to the design and development of space missions ( (Bayer) and aircraft programs ( (Sheeleey, 

2014).  The foundation for the work includes the ISA-95 standard for planning and control ( (The 

International Society of Automation, 2019) and two recent dissertations ( (Thiers, 2014), (Sprock T. A., 

2016)). 

Chapter 2 briefly introduces the concept of discrete event logistics systems, the basic elements of the 

reference model, and the conceptual framework for a generic operational controller. Much more detail 

may be found in (Sprock, Thiers, McGinnis, & Bock, 2019).  The chapter also demonstrates the 

relationship between the DELS reference model and the basic elements of the modeling framework 

supporting the ISA95 specification, in particular, that the DELS reference model generalizes some of the 

key elements of the ISA95 reference model.  This is important, because it establishes the DELS reference 

model not as replacing ISA95 but as extending it. 

Chapter 3 is a deeper dive into the implications for operational controller requirements, functions and 

architecture. Key elements include the notion of event-driven control decisions, fundamental behavior of 

active resources, the fundamental concepts behind transfer of product between active resources, and the 

importance of a plant model in the controller architecture. 

The demonstration use case is presented in Chapter 4.  It is a large-scale, highly automated central fill 

pharmacy. The presentation is based on publicly available information, and is the basis for the particular 

CFP, referred to as DemoCFP that is subsequently modeled and simulated. 

Chapters 5 and 6 use the OMG SysML™ as implemented in MagicDraw™ to create a computational 

representation of the DemoCFP system that explicitly represents the product flowing through the system, 

the active resources that transform the product, including material transport, and the operational 

controllers responsible for batching orders, releasing orders and managing transportation.  It appears that 

this is the only such production system model currently available in the public domain. There are a 

number of journal and conference papers that mention SysML and manufacturing, but the focus is almost 

always on a specific manufacturing process, rather than operational control of the entire system, or 

addresses the issue at a very high level of abstraction. Among the contributions of these two chapters are: 

(1) a reusable pattern for organizing the DELS model; (2) the explicit and formal integration of activity 



74 

 

models of processes, and invocable behaviors of resources and controllers; (3) the controller as a part 

property of the active resource (domain) whose part property active resources are managed by the 

controller. 

Chapter 7 presents a discrete-event simulation model for DemoCFP, rendered in the 

SimEvents™/MATLAB™ platform, and based on the SysML model from Chapter 6.  The simulation 

model allows experimentation with some parametric aspects of the DemoCFP specification, such as batch 

sizes, numbers of material transport carriers, and capacity of some active resources. The chapter contains 

some observations about the challenges of going from a computational but analysis-agnostic system 

model to a simulation analysis specific model. 

These chapters break new ground in the ongoing development of smart manufacturing and provide 

important contributions to addressing the two fundamental requirements—manufacturing system 

modeling and generic operational controller architecture.  Much remains to be done.  The current state of 

DELS system modeling does not yet have a “best practice” for handling the transition from defining a 

class of systems to defining particular systems.  More DELS use cases are needed addressing other types 

of DELS, including fabrication, assembly and services.  The shortcomings of available COTS discrete 

event simulation packages in modeling control need to be more fully catalogued and defined, leading to 

improved simulation tools and perhaps to automation in creating simulation models from system models.  



75 

 

9 References 

Bayer, T. J. (n.d.). Model Based Systems Engineering on the Europa Mission Concept Study. Retrieved 

from https://trs.jpl.nasa.gov/bitstream/handle/2014/45000/11-5594_A1b.pdf?sequence=1 

Cho, H., Son, Y., & Jones, A. (2006). Design and conceptual development of shop-floor controllers through 

the manipulation of process plans. International Journal of Computer Integrated Manufacturing, 

359-376. 

Davis, W., Jones, A., & Saleh, a. A. (1992). Generic architecture for intelligent control systems. Computer 

Integrated Manufacturing Systems, 105–113. 

Dilts, D., Boyd, N., & Whorms, H. (1991). The evolution of control architectures for automated 

manufacturing systems. Journal of manufacturing systems, 79–93. 

Galloway, B., & Hancke, G. (2013). Introduction to industrial control networks. Communications Surveys 

& Tutorials, IEEE, 860–880. 

Jans, R., & Degraeve, Z. (2008). Modeling industrial lot sizing problems: a review. International Journal 

of Production Research, 1619–1643. 

Sheeleey, B. ,. (2014). MBSE Implementation Across Diverse Domains at The Boeing Company. Retrieved 

from https://www.omgwiki.org/MBSE/lib/exe/fetch.php?media=mbse:02-iw14-mbse_workshop-

mbse_implementation_across_diverse_domains_at_boeing-carsonmalonepalmersheeley.pptx 

Silver, E., & Peterson, R. (1998). Inventory management and production planning and scheduling. John 

Wiley and Sons. 

Smith, J., Joshi, S., & Qiu, a. R. (2003). Message-based Part State Graphs (MPSG): a formal model for. 

International journal of production research, 1739–1764. 

Sprock, T. A. (2016). A Metamodel of Operational Control for Discrete Event Logistics Systems. Retrieved 

from https://smartech.gatech.edu/handle/1853/54946 

Sprock, T., Bock, C., & McGinnis, a. L. (2019). Survey and classification of operational control problems 

in discrete event logistics systems (DELS). International Journal of Production Research, 5215-

5238. 

Sprock, T., Thiers, G., McGinnis, L., & Bock, C. (2019). Theory of Discrete Event Logistics Systems 

(DELS) Specification. NIST Interagency/Internal Report. Retrieved from 

https://doi.org/10.6028/NIST.IR.8262 

The International Society of Automation. (2019, November 21). ISA95, Enterprise-Control System 

Integration. Retrieved from https://www.isa.org/isa95/ 

Thiers, G. G. (2014). A Model-Based Systems Engineering Methodology to Make Engineering Analysis of 

Discrete-Event Logistics Systems More Cost-Accessible. Retrieved from 

https://smartech.gatech.edu/bitstream/handle/1853/52259/THIERS-DISSERTATION-2014.pdf 



76 

 

Vogel-Heuser, B., Witsch, D., & Katzke, U. (2005). Automatic code generation from a UML model to IEC 

61131-3 and system configuration tools. ICCA’05. International Conference on Control and 

Automation, 1034–1039. 

 

 

 

 

 

 




