
NIST GCR 15-990

Proposed recommended practice for
the representation of

schematic symbols in STEP AP 210
(ISO 10303-210)

By

James Stori

SFM Technology

Thomas Thurman
TRThurman Consulting

Craig Lanning

Charleston South Carolina

Michael Benda
Rockwell Collins Inc.,

This publication is available free of charge from:
http://dx.doi.org/10.6028/NIST.GCR.990

http://dx.doi.org/10.6028/NIST.GCR.990

NIST GCR 15-990

Proposed recommended practice for
the representation of

schematic symbols in STEP AP 210
(ISO 10303-210)

Prepared for
U.S. Department of Commerce

Information Technology Laboratory
National Institute of Standards and Technology

Gaithersburg, MD 20899-0897

By
James Stori

SFM Technology

Thomas Thurman
TRThurman Consulting

Craig Lanning
Charleston South Carolina

Michael Benda
Rockwell Collins Inc.,

April 2015

U.S. Department of Commerce
Penny Pritzker, Secretary

National Institute of Standards and Technology
Willie May, Acting Under Secretary of Commerce for Standards and Technology and Acting Director

- -

1

Proposed recommended practice for the representation of
schematic symbols in STEP AP 210 (ISO 10303-210)

Introduction
The purpose of this document is to propose a recommended practice for the
representation of schematic symbols and the integration of schematic symbols with
functional and physical representations of packaged electronic component models in ISO
10303-210 (STEP AP 210). While the representation of AP 210 packages and packaged
parts has been previously validated through existing implementations, the representation
of component functional models and associated schematic symbols has been less
thoroughly exercised.

AP 210 has dedicated concepts for the representation of a functional element, as well as
the association of a functional element with a physical realization through a packaged
part and associated package model. The intent in the development of this recommended
practice was to leverage existing draughting capabilities within the STEP standards for
the presentation of a schematic symbol in AP 210. The schematic symbol is a
presentation of the functional model for human visualization, interpretation, and
manipulation - the schematic symbol should be a draughting representation of a
functional element.

In this document, “functional element” represents the generic domain concept instead of
“functional unit” in order to avoid confusion between the domain concept and the AP 210
information model description. The Application Object (AO) Functional_unit_definition
represents the domain concept “functional element” in the AP 210 Application Reference
Model (ARM). Functional_unit_usage_view represents the domain concept “interface”.
Functional_network_definition represents the domain concept “netlist”.

 - -

2

In order to ensure that the schematic symbol can be unambiguously related to the
interface, several new concepts have been proposed as extensions to the existing AP 210
standard. These proposed extensions have been kept to a minimum, in order to ensure the
greatest degree of interoperability with existing implementations of STEP draughting.

In the remainder of this document, the key AOs and corresponding Modular Integrated
Model (MIM) entities and relationships to be used in the representation of a functional
model, schematic symbol, and packaged part are discussed and illustrated.

Notation
AOs will be denoted with a leading uppercase letter in Arial font (i.e. Functional_unit)
while a MIM entity will be displayed in all lowercase notation (i.e.
component_functional_unit).

Functional Model
Figure 1 shows the top-level AOs relevant in the definition of a functional element.
Because a functional element may be configuration managed, the representation in AP
210 for a functional element includes Functional_product, Functional_version and
Functional_unit_definition. A Functional_product is classified in STEP as an information
product because it is not physically realized. In the context of electronic design, a
Functional_product would correspond to the identification information related to any
functional element desired by the organization. The Functional_product may have
multiple versions (Functional_version). Approval, release, ownership, etc., of functional
elements are supported by AP 210 but are not in the scope of this recommended practice.

The interface to a functional element is the Functional_unit_usage_view. The
Functional_unit_usage_view will as a minum contain the functional terminals that define
the interface structure. Figure 2 illustrates the key AOs needed to represent a simple
interface (Functional_unit_usage_view) for a nand gate consisting of three terminals.

 - -

3

 - -

4

The network definition of a functional element is composed of instances of other
functional elements. Each instance of a functional element will be represented by an
instance of Functional_unit that will have its own definition (interface only or further
decomposition and interface) and its own set of terminals (Functional_unit_terminal).

Functional_unit_terminal instances are uniquely identified by the combination of the
Functional_unit.id and the Scalar_terminal_definition.signal_name specified by the
Functional_unit.definition and therefore introducing a separate slot for a name of a
Functional_unit_terminal would be redundant and AP 210 does not provide that separate
slot. Figure 3 illustrates the use case where an instance of a functional element only
references an interface as its definition.

In the event that further decomposition of the functional element is to be provided, the
Functional_unit.definition would reference that decomposition (an instance of
Functional_unit_network_definition). The interface would be indirectly referenced (by the
Functional_unit_network_definition.usage_view) instead of directly by the
Functional_unit.definition. The terminal references would not change.

 - -

5

Figure 4 illustrates the AO instances needed to represent a network
(Functional_unit_network_definition) composed of two instances of a common
Functional_unit_definition. Each node in the network definition will be associated with
one or more individual Functional_unit_terminal. Each association is accomplished
through a Functional_unit_terminal_node_assignment. In general, there are more than
one Functional_unit_terminal associated with a node. In the particular example of Figure
4, each node is associated with only one terminal because each node will later be used to
define a terminal for the interface of the network. This pattern will continue up through
the functional hierarchy to the top level interface, with the result being the availability of

 - -

6

access to all primitive functional elements included in a component by the mapping of the
top level functional interface to the pins of the Packaged_part.

The downward decomposition terminates when all Functional_units are defined by an
interface. The AO instances that would be used in the creation of a
Functional_unit_usage_view for the network definition of Figure 4 are illustrated in
Figure 5. A Functional_unit_network_terminal_definition_node_assignment is used to
provide a definition for a terminal in the interface.

The MIM mappings of the ARM concepts and relationships related to the functional
element are illustrated graphically in Figures 6 through 8. In the figures, key AOs are
represented in blue overlapping with the corresponding mapped MIM entity. Figure 6
illustrates the mappings for Functional_product, Functional_unit_usage_view and
Functional_unit_network_definition. Functional_unit, Functional_unit_usage_view and

 - -

7

Functional_unit_usage_view map to the entity functional_unit; Functional_unit is
ABSTRACT and not instantiable. Consequently the product_definition_context specified
by product_definition_context_association.frame_of_reference must be used to
discriminate between Functional_unit_usage_view and
Functional_unit_network_definition. The pre-processor is required to populate the
product_definition_context_role.name value of ‘part definition type’ for the AOs
Functional_unit_usage_view and Functional_unit_network_definition. The post-processor
shall ignore the product_definition_context_role.name string. The product corresponding
to a Functional_product should be associated with both ‘functional’ and ‘information’
product_related_product_categories. Figure 7 illustrates the mappings for key
relationships between Functional_unit_network_definition,
Functional_unit_network_node_definition, Functional_unit_terminal, Functional_unit, and
Scalar_terminal_definition. In Figure 7, the name attribute of
component_functional_terminal is provided. There is no mapping that specifies this value
but a concatenation of the Scalar_teminal_definition.name and of the Functional_unit.
reference_designation may prove useful for debugging. In Figure 8, mappings
corresponding to the relationship between the Functional_unit_usage_view and
Functional_unit_network_definition are illustrated.

 - -

8

 - -

9

 - -

10

Gate and Pin Swapping
In the functional hierarchy each Functional_unit is a node in a path from a leaf element to
the top-level block. In the process of mapping a functional element to a Packaged_part,
the AOs Reference_composition_path and
Reference_functional_unit_assignment_to_part are populated in order to capture the
name for the relative location of the functional element in the component. This is
necessary because the hierarchical definition may be more than one level deep, and thus
the Functional_unit.reference_designation cannot be relied upon to disambiguate relative
location because the reference_designation is unique only within the context of a single
hierarchical block (Functional_unit_network_definition). Instead, the attribute
Reference_functional_unit_assignment_to_part.path_alias is used to convey the name
that designates the relative location in the part. In a NAND gate example where there are
four NAND gates in a component, the relative locations are denoted by {“A”, “B”, “C”,
“D”}. In a design after packaging, the reference designators for individual gates would be
for example {“U1A”, “U1B”, “U1C”, “U1D”}. The path_alias attribute is not dependent
on the particular hierarchical definition chosen and therefore facilitates synchronizing
different CAD libraries. It is important to note that even in the case that the functional
element definition is a single layer of hierarchy, the above-mentioned AOs must be

 - -

11

populated in order to support the library to design mapping that occurs during the
packaging operation. In the process of realizing a functional design, each path through
the functional design hierarchy (Design_composition_path) is associated with a physical
component1. There may be more than one Design_composition_path associated with the
same physical component. An AP 210 model design constraint is that one design
functional element is associated with exactly one physical component for a specific
design definition. At the packaging step, a mapping between functional and physical
terminals is specified. One of the important mechanisms through which improvements in
a physical layout can be realized is through gate and pin swapping. AP 210 provides a
mechanism to explicitly indicate that a set of functional terminals is equivalent through
the AO Equivalent_functional_terminals_assignment.

Population of that AO does not necessarily mean that pins can be swapped in a particular
library component or on a particular component instance in a particular design because
part and component level properties may disallow certain swaps. This additional
information is conveyed separately through user interaction with the design tools. The act
of pin swapping occurs during physical Printed Circuit Board (PCB) layout. At this time,
connections between part terminals and functional terminals may be swapped (if
permitted). It is generally the case that the swap take place only on an instance of a
component, rather than in the library definition of a component. The AO
Terminal_swap_specification documents a particular terminal swap as a design change.
The notion of whether two functional elements (i.e gates) are functionally equivalent will
often be explicit in the definition of the functional object. In the example of Figure 4, the
top-level network definition is composed of two functional element instances. The two
functional element instances share a common definition (the same functional element).
This means that they are functionally interchangeable. The interchangeability is asserted
because the same Functional_product_version is referenced (indirectly) by each
functional element instance. AP 210 provides an additional mechanism for explicitly
stating equivalents between functional element definitions via the AO
Equivalent_functional_unit_definition_assignment (typically used when synchronizing
different libraries that use different naming conventions). The
Component_swap_specification supports changing to a different structural
representation (e.g., from a NAND representation to a NOR representation) which
requires a different library hierachical functional model. Swapping a gate from one quad
nand component to another quad nand component can be accomplished with the
Gate_path_swap_specification.

Schematic Symbol
The functional model discussed previously includes the strutural concepts that are to be
presented in a schematic symbol. In the context of an AP 210 model, a schematic symbol
is a visual presentation of a functional interface (Functional_unit_usage_view).

1 The association is accomplished through population of AOs Design_composition_path,
Design_functional_unit_allocation_to_assembly_component,
Design_functional_unit_allocation_to_reference_functional_unit, Reference_composition_path and
Reference_functional_unit_assignment_to_part.

 - -

12

A drawing_sheet_revision is a representation that includes in its items a collection of
annotation elements that will be visually depicted on a drawing page of specified size.
The drawing_sheet_revision is explicitly related to the represented content through a
presented_item_representation. It is proposed that two new specialized subtypes of
presented_item_representation be defined, tentatively named
schematic_symbol_representation and part_level_schematic_symbol_representation.
The schematic_symbol_representation subtype is needed to constrain the size of the
applied_presented_item.items attribute to be exactly one and to constrain the
represented_item to be of type Functional_unit_usage_view (functional_unit). The
schematic_symbol_representation will be declared in a module2 MIM EXPRESS file.
Figure 9 illustrates the relationship between a Functional unit usage view
(functional_unit) and a drawing_sheet_revision through a
schematic_symbol_representation.

The part_level_schematic_symbol_representation (not illustrated in Figure 9) provides
additional constraints to ensure consistency between the number of terminal symbols on
the symbol and the number of terminals on the part.

The drawing sheet has a defined size (presentation_size) and may be configuration
controlled through the drawing_revision and drawing_definition. The
drawing_sheet_revision should be associated with a global unit context as shown in the
figure. The schematic_symbol_representation is represented in red to indicate its status
as a proposed entity in the schematic_symbol module. The new SELECT type
scms_presented_item_select is also in the schematic_symbol module but is not
illustrated.

2 The module is tentatively titled schematic_symbol. A document number is to be
assigned.

 - -

13

Annotation_occurrence
The primary mechanism for placing annotations within the drawing_sheet_revision is
through the annotation_text_occurrence, annotation_symbol_occurrence, and
annotation_curve_occurrence subtypes of annotation_occurrence. These annotations
may be added directly as items of the drawing_sheet_revision that is a subtype through
intermediate entities of representation. Usage of the annotation_occurrence within a
schematic_symbol_representation is identical to present practice in draughting
implementations. The relevant entities and relationships for population of an

 - -

14

annotation_curve_occurrence and annotation_symbol_occurrence are illustrated in
Figure 10.

Annotation text will be discussed in the following section.

Annotation text
An annotation_text_occurrence is typically coupled with a text_literal through the item
attribute inherited from styled_item. A text_literal enables literal textual content to be
added to a drawing sheet as an annotation. An additional requirement for the schematic
symbol is to accurately reflect the functional model interface, and to provide the

 - -

15

capability for defining presentation properties (including font and placment information
among others) for textual data that is to be populated during application of the functional
element to either a specific part or to a specific design. This additional annotation is not
literal text but is a type reference. In industrial usage this concept is usually referred to as
text block or text slot.

There are several scenarios considered:

1. The schematic symbol is a symbol for a functional element that is to be displayed as a
separate graphic on a schematic. The value of the text string is known and contained
in the functional model.

a. An example is a 2 input NAND symbol.

b. The value of the text string may be overridden in the design schematic after
the packaging operation.

c. This scenario occurs in the context of a primitive element in a CAD symbol
library.

d. Sub-cases:

i. It is desired to display the name attribute of a
functional_unit_terminal_definition.

ii. It is desired to display the name of the functional element (contained in
the product.id attribute) as annotation in the symbol.

2. The schematic symbol is a symbol for a part level functional model.

a. There is a special requirement in this case in that there are two coordinated
strings: the functional model terminal name and the part pin number. The two
are bound with the functional allocation to part capability.

b. This scenario occurs in the context of a part level library defintion.3

3. The schematic symbol is created in the design. A schematic symbol template is
defined in the library and includes basic geometric properties but does not include the
final symbol shape nor does it include the terminals nor does it include the name. It
usually includes an initial template shape (e.g., a rectangle) that may be scaled in the
design schematic. The instance of the schematic symbol defines an explicit shape, a
name, and terminals. This scenario occurs during hierarchical electrical design where
one or several of the top-level decompositions may use dynamic symbol creation
techniques (which imply that the creation of the Functional_unit_usage_view is also
dynamic). Because there is no fixed dependency on a library context in AP 210, this
scenario appears to require schematic symbol template and instance extensions. Thes
extensions should be the subject of a future recommended practice.

4. The value of the text string is undefined, but an attribute predefined in the AP 210
schema defines the data type for population in a design schematic.

3 There is also the case where there is no separate part level schematic symbol created. This would occur if the part is
not intended to ever be placed as a whole function in the schematic.

 - -

16

a. Sub-case 1: It is desired to maintain a visual placeholder for the reference
designator (e.g., U1, R1) of the component in a particular design realization.
In this example, the location, size, font, etc., are maintained in the schematic
symbol, and a final text value is provided in the instantiated symbol in the
design schematic after the packaging activity is performed. This sub-case
occurs for both scenario 1 and scenario 2. It may occur for scenario 3.

b. Sub-case 2: It is desired to maintain a visual placeholder for the pin number of
the AO Packaged_part.4 This sub-case only occurs for scenario 1, and in this
case in most schematic systems the pin number of the Packaged_part will be
diaplayed after packaging instead of displaying the
Functional_unit_terminal_definition.name.

c. Sub-case 3: It is desired to maintain a visual placeholder for the name
denoting the relative location of the functional element in the part (e.g., “A”,
“B”, “C”, “D”). Note that the placement of this placeholder will need to be
coordinated with the placement of the placeholder for the reference designator
of the component so as to appear as one string in the schematic design.

5. The value of the text string is undefined, but a type declaration for the combination of
a user defined property name and value is necessary.

a. For example, a schematic may be used to display intended, simulated, or
measured power dissipation values for a component.

i. The symbol should have a text slot for the property name.

ii. The symbol should have a text slot for the property value.

6. The value of the text string is undefined, but a type declaration for terms defined in
IEC 81714-2:2006 is necessary. IEC 81714-2:2006 is based on STEP draughting
concepts and provides process details from the perspective of a CAD tool user
interface about how to build exchangeable schematic symbols. IEC 81714-2:2006 is
not a data exchange standard. IEC 81714-2:2006 specifies four cases to be supported
in a symbol model:

a. Identifying block (e.g., REF_DES_N),

b. Descriptive block (e.g., COUNTRY_CODE),

c. Connect node block (e.g., PROD_TERM_DES).

d. Directions for drawing connecting lines onto schematic connect nodes. The
following is extracted from the document.
In order to facilitate computer-aided tools supporting automatic routing of connecting lines

in diagrams, each schematic connect node of a reference symbol should be provided with
information providing the permitted directions for drawing connecting lines onto the schematic
connect node. The permitted directions shall be defined as one or more sectors under which

4 In the design application there are two use cases for schematic presentation: pre-packaged and post-packaged. Pre-
packaged names are those directly from the symbol library (e.g., IN1 and NAND) and are not cognizant of the design
hiearchy. That is, Functional_unit reference designators are local to a node in the hierarchical definition. Post-
packaged names are dependent on the component reference designator assigned and the relative placement in the
component of the particular primitive (e.g., pin 1 and U1-A). Refer to scenario number (4) for the post-packaged case.

 - -

17

the connecting lines may be drawn onto the schematic connect node. … Due to drawing
practice, the sectors are defined in multiple steps of 45° based on the depicted reference
system. Each sector shall be described by the start angle and end angle based on a counter-
clockwise direction.

 - -

18

 - -

19

 - -

20

Proposed recommendations to address scenarios
1. The value of the text string is known and contained in the functional model. The

schematic symbol model is explicitly bound to the functional model through the
entity schematic_symbol_representation. Adding an extensible SELECT type

 - -

21

annotation_text_occurrence_item and a new ABSTRACT entity type
text_reference will extend the domain of annotation_text_occurrence.item. The
attribute annotation_text_occurrence.item shall specify the subtype
explicit_text_reference. The attribute explicit_text_reference.source_instance
shall specify the entity type instance that contains the relevant attribute and the
attribute explicit_text_reference.name shall specify the name of the attribute in
the entity type instance that is the text string to be displayed. This scenario is
illustrated in Figure 11, along with the supporting entities needed to define the
font, style, size, and placement of the text annotation element.

2. The schematic symbol is a symbol for a part level functional model.

a. A part_level_schematic_symbol_representation subtype of
schematic_symbol_representation represents the schematic symbol.

b. The part_level_schematic_symbol_representation will specify an
applied_presented_item that will specify the functional_unit and the
packaged_part in its items attribute.

c. The part_level_schematic_symbol_representation will specify a
drawing_sheet_revision that contains (using the inverse attribute
item_identified_representation_usage.used_representation) an
item_identified_representation_usage for each
Functional_usage_view_to_part_terminal_assignment related to the
packaged_part in its drawing_sheet_revision.items attribute. The
item_identified_representation_usage.definition attribute shall specify the
Functional_usage_view_to_part_terminal_assignment. There may be
other contents of the drawing_sheet_revision (e.g.,
schematic_property_symbol_callouts).

d. For terminal and pin numbering, the
part_level_schematic_symbol_representation will constrain each
item_identified_representation_usage specified in (c) to specify a
part_terminal_schematic_symbol_callout. Figure 13 illustrates the
schematic symbol data population. The following constraints apply:

i. First annotation_text_occurrence.item shall specify an instance of
explicit_text_reference. The attribute
explicit_text_reference.source_instance shall specify an instance
of functional_terminal_definition and the attribute
explicit_text_reference.attribute_name shall specify ‘name’.

ii. Second annotation_text_occurrence.item shall specify a second
instance of explicit_text_reference. The attribute
explicit_text_reference.source_instance shall specify an instance
of packaged_part_terminal and the attribute
explicit_text_reference. attribute_name shall specify ‘name’.

e. For general property presentation see scenario (5) that uses
schematic_property_symbol_callouts.

 - -

22

f. Sub element symbols shall only be displayed in the schematic symbol for
a part level functional model through the use of geometric transforms
using mapped_item and representation_map. This sub-scenario occurs
often in the process and industrial plane industry but is seldom seen to
date in the electronics industry. The capability may be useful for complex
parts like FPGAs.

The result is that the functional terminal name and part pin number assigned in the
symbol are explicitly definitional and are displayed as such at the schematic design level
independently of the packaged state of the symbol in the schematic.

3. Recommendations for the parametric symbol template are deferred to a future
recommended practice.

4. The value of the text string is undefined, but an attribute predefined in the AP 210
schema defines the data type for population in a design schematic.

a. The subtype schematic_property_symbol_callout shall be instantiated if
the callout is not a terminal_schematic_symbol_callout.

b. The attribute annotation_text_occurrence.item shall specify an instance of
the new subtype implicit_text_reference (#4a).

c. The attribute implicit_text_reference.entity_name shall specify the entity
type name that contains the relevant attribute and the attribute
implicit_text_reference.attribute_name shall specify the name of the
attribute in the entity type that is the text string to be displayed.

d. For the example of a reference designator in a design,
implicit_text_reference.entity_name =
‘NEXT_ASSEMBLY_USAGE_OCCURRENCE’ and
implicit_text_reference.attribute_name =
‘REFERENCE_DESIGNATION’.5 Figure 11 illustrates symbol data
populated for this example.

At the time of schematic creation, an instance of
explicit_text_reference_occurrence (explicit_text_reference_occurrence is a subtype
of explicit_text_reference) will be populated that will specify:

1. The implicit_text_reference (#4a) is specified by
explicit_text_reference_occurrence.type_declaration.

2. The next_assembly_usage_occurrence is specified by
explicit_text_reference_occurrence\explicit_text_reference.source_in
stance. In order to determine the correct instance of
next_assembly_usage_occurrence, a processor will need to query the
relevant Design_composition_path,
Design_functional_unit_allocation_to_assembly_component,
Design_functional_unit_allocation_to_reference_functional_unit,

5 String references to entity and attribute names are usually uppercase in EXPRESS schemas.

 - -

23

Reference_composition_path and
Reference_functional_unit_assignment_to_part instances.

3. The attribute ‘attribute_name’ inherited from explicit_text_reference
is redeclared as DERIVEd and is not provided in the exchange data.

e. For the example of a part pin number, implicit_text_reference.entity_name
= ‘PACKAGED_PART_TERMINAL’ and
implicit_text_reference.attribute_name =
‘PACKAGED_PART_TERMINAL.NAME’. Note that the name attribute of
Packaged_part_terminal is inherited from Shape_element. This example
occurs when the schematic symbol is not a part level schematic symbol.
Figure 12 illustrates the symbol data population for this example.

After the packaging operation, an instance of explicit_text_reference_occurrence
(explicit_text_reference_occurrence is a subtype of explicit_text_reference) will
be populated that will specify:

1. The implicit_text_reference (#4a) is specified by
explicit_text_reference_occurrence.type_declaration.

2. The packaged_part_terminal is specified by
explicit_text_reference_occurrence\explicit_text_reference.source
_instance. In order to determine the correct instance of
packaged_part_terminal, a processor will need to query the
relevant Design_composition_path,
Design_functional_unit_allocation_to_assembly_component,
Design_functional_unit_allocation_to_reference_functional_unit,
Reference_composition_path and
Reference_functional_unit_assignment_to_part instances.

3. The attribute ‘attribute_name’ inherited from text_reference is
redeclared as DERIVEd and is not provided in the exchange data.

f. For the example of a name denoting a relative location of the functional
element in the part, implicit_text_reference.entity_name =
‘REFERENCE_FUNCTIONAL_ASSIGNMENT_TO_PART’ and
implicit_text_reference.attribute_name =
‘REFERENCE_FUNCTIONAL_ASSIGNMENT_TO_PART.PATH_ALIAS’
. This example occurs when the schematic symbol is for a primitiv
element or for an intermediate element defined by the part manufacturer
(e.g., xxHC244xx octal buffer has both primitive elements and higher
level elements that may be instantiated in a design). When a higher level
element is instantiated, that blocks lower level elements that would
ordinarily be the decomposition of the higher level element from being
instantiated. Note that the EXPRESS string values in this example denote
AO names and not MIM entity names.

After the packaging operation, an instance of explicit_text_reference_occurrence
will be populated that will specify:

 - -

24

1. The implicit_text_reference (#4a) is specified by
explicit_text_reference_occurrence.type_declaration.

2. The reference_functional_assignment_to_part is specified by
explicit_text_reference_occurrence\explicit_text_reference.source
_instance. In order to determine the correct instance of
reference_functional_assignment_to_part, a processor will need to
query the relevant Design_composition_path,
Design_functional_unit_allocation_to_assembly_component, and
Design_functional_unit_allocation_to_reference_functional_unit
instances.

3. The attribute ‘attribute_name’ inherited from text_reference is
redeclared as DERIVEd and is not provided in the exchange data.

g. This is the case where it is desired to combine use case (e) and (f) above
so as to display the reference designator and relative location of the
functional element in the component into what appears to be one string for
display at the schematic design application (e.g. “U1-A” is displayed). A
delimiter between the two references is required. A new entity
composite_sequential_text_reference would be populated that would
specify the reference designator related explicit_text_occurrence from (e)
as composite_sequential_text_reference.collected_references[1], a
text_literal “-“ as
composite_sequential_text_reference.collected_references[2], and the
explicit_text_occurrence from (f) above as
composite_sequential_text_reference.collected_references[3]. The
specific geometric transforms necessary to support this must be provided
by the pre-processor and are not explicitly defined in the schematic
extension to ISO 10303-46.

5. The value of the text string is undefined, but a type declaration for the
combination of a user defined property name and value is necessary. A schematic
may be used to display intended, simulated, or measured power dissipation values
for a component. This is an extension of scenario (4).

a. Model_parameter,

b. Parameter_assignment,

c. Independent_property,

d. Applied_independent_property

Another new subtype of callout is proposed: schematic_property_symbol_callout.
This callout will contain annotation_text_occurrence instances that specify
implicit_text_references that are the composition of e.g., Model_parameter or
Parameter_assignment or of Independent_property or of Assigned_property.
The key extension here is to add these items to
item_identified_representation_usage.definition so as to allow an aggregate to be
created of the components of the above entity types. In order to specify a

 - -

25

particular display sequence the new entity type
composite_sequential_text_reference is provided.

6. The value of the text string is undefined, but a type declaration for terms defined
in IEC 81714-2:2006 is necessary.

A preliminary review of the requirements results in the conclusion that the
current recommendations for extensions can support the requirements of IEC
81714 but it is future activity to do an implementation to validate that
conclusion.

Terminal schematic symbol callout
It is mandatory to establish an explicit relationship between the collection of annotation
on the schematic symbol that is presenting an instance of a terminal of the interface and
the instance of the terminal. This applies whether the symbol is a part level symbol or a
block symbol. A draughting_callout is a well-established concept in STEP draughting
implementations that is widely employed for dimensions, notes, and GD&T annotations.
A draughting_callout is typically associated with predefined draughting concepts such as
leaders, and serves as a grouping mechanism for a collection of related annotation
elements. To enable grouping and association of the annotation elements associated with
a terminal in a schematic symbol, a clone of draughting_callout is proposed, titled
terminal_schematic_symbol_callout. A clone is required because the contents of
draughting_callout are not appropriate for a terminal. The proposed
terminal_schematic_symbol_callout would be employed to group annotation elements
related to a terminal in the interface (Functional_unit_usage_view).

For the case of a block symbol that is not a part level symbol, it is proposed to use an
item_identified_representation_usage to associate a functional_unit_terminal_definition
with a block_terminal_schematic_symbol_callout subtype of
terminal_schematic_symbol_callout for this purpose. For the case of a block symbol that
is not a part level symbol, block_terminal_schematic_symbol_callout will have a rule to
enforce a one to one relationship to a terminal through an
item_identified_representation_usage. Figure 12 illustrates that case.

Figure 13 illustrates a potential schematic symbol representation of a terminal for a part.
In this example, two text annotations are present, one for the signal name, and one for the
associated pin number. This is possible because of the availability of the
part_level_schematic_symbol_representation and of the availability of the
part_terminal_schematic_symbol_callout subtype of terminal_schematic_symbol_callout.

The proposal for the case of a part level symbol is described in detail in the previous
section in scenario two (2).

In addition to the text annotations, there is an annotation_symbol_occurrence and an
annotation_curve_occurrence. The recommended practice is for the placement of the
annotation_symbol_occurrence to represent the terminal connection point in the
schematic symbol.

 - -

26

To meet the requirements of IEC 81714:2006 for approach angle allowed ranges, an
additional property with range is required but the details will be covered in a forthcoming
recommendation.

Summary of proposed changes to ISO 10303
The added entity types in visual presentation (ISO 10303-46) include:
 composite_sequential_text_reference,

schematic_symbol_representation,
 schematic_symbol_callout,
 explicit_text_reference,
 explicit_text_reference_occurrence,
 implicit_text_reference,
 text_reference.

The SELECT types text_reference_source and text_literal_or_text_reference are added
to visual presentation (ISO 10303-46).
The SELECT type annotation_text_occurrence_item in visual presentation (ISO 10303-
46) is changed to an EXTENSIBLE GENERIC_ENTITY SELECT.
The entity type draughting_annotation_occurrence in aic_draughting_annotation (ISO
10303-504) is modified.
A schematic_symbol module is created with the following EXPRESS declarations:
 scms_presented_item_select,
 schematic_symbol_representation,
 part_level_schematic_symbol_representation,
 terminal_schematic_symbol_callout,
 block_terminal_schematic_symbol_callout,
 part_terminal_schematic_symbol_callout,
 scms_text_reference_source,
 scms_get_presented_function,
 scms_get_presented_functional_terminal.

Case Study – Unified representation of a quad nand packaged component
In order to exercise and validate the proposed concepts, a detailed example was populated
and analyzed for the representation of a quad nand packaged component. The part-level
interface includes 14 terminals. A network definition is populated containing 4 instances
of a single nand functional element, and a single instance of a power block. A simple
schematic symbol is populated for each of the three interfaces that include annotation
symbols, text, and curves. The part level symbol is a
part_level_schematic_symbol_representation. The gate and power block symbols are
schematic_symbol_representation. The text_reference is populated in both scenarios – a
direct reference (explicit_text_reference) to an existing entity (i.e. pin number) in the top-
level block; and implicit_text_reference for placeholder values (i.e. reference designator).
The functional and schematic model was integrated with a previously existing fully
populated package model. The fully populated model successfully passed validation rule
checking based on the modified long form schema based on the LKSoft Express
validation implementation.

 - -

27

Appendix: Details of proposed extensions to support schematic symbol
representation
In order to exercise the proposed concepts for schematic symbol representation, a number
of minor changes were made to stepmod modules and resources. These changes represent
a full implementation, unless otherwise noted, of the proposed concepts, but need further
evaluation and documentation as part of the formal STEP modular development process.

A longform file is located at
http://stepmod.cvs.sourceforge.net/viewvc/stepmod/stepmod/data/modules/schematic_sy
mbol/dvlp/express/schematic_symbol_mim_lf.exp.

Further development may be monitored at:

http://locke.dcnicn.com/bugzilla/iso10303/show_bug.cgi?id=3889.

The initial changes are as follows:
(* in module schematic_symbol *)
SCHEMA Schematic_symbol_mim;
USE FROM Drawing_definition_mim; -- ISO/TS 10303-1309
USE FROM Mechanical_design_presentation_representation_with_draughting_mim; -- ISO/TS
10303-1315
--USE FROM Picture_representation_mim; -- ISO/TS 10303-1308
--USE FROM Shape_feature_mim; -- ISO/TS 10303-1764
USE FROM Text_representation_mim; -- ISO/TS 10303-1750
--USE FROM Wireframe_2d_mim; -- ISO/TS 10303-1347
USE FROM Packaged_part_black_box_model_mim;
USE FROM Associative_text_mim;
USE FROM draughting_element_schema;
USE FROM presentation_definition_schema;
USE FROM Functional_decomposition_to_design_mim;
USE FROM Functional_assignment_to_part_mim;
USE FROM aic_draughting_annotation;

--schema collection for schematic symbol project.
--file mim.exp
--creation date: 2/9/2011
--modified date: 3/6/2011

TYPE scms_presented_item_select = EXTENSIBLE GENERIC_ENTITY SELECT BASED_ON
presented_item_select WITH (
 functional_unit,
 packaged_part);
 END_TYPE;

 (*
 modification to ISO 10303-46:
 TYPE annotation_text_occurrence_item = EXTENSIBLE GENERIC_ENTITY SELECT(
 text_literal,
 text_reference,
 annotation_text,
 annotation_text_character,
 defined_character_glyph,
 composite_text);
 END_TYPE;

 - -

28

http://stepmod.cvs.sourceforge.net/viewvc/stepmod/stepmod/data/modules/schematic_symbol/dvlp/express/schematic_symbol_mim_lf.exp
http://stepmod.cvs.sourceforge.net/viewvc/stepmod/stepmod/data/modules/schematic_symbol/dvlp/express/schematic_symbol_mim_lf.exp
http://locke.dcnicn.com/bugzilla/iso10303/show_bug.cgi?id=3889

 *)
(* in module schematic_symbol *)

ENTITY schematic_symbol_representation
 SUBTYPE OF (presented_item_representation);
 SELF\presented_item_representation.presentation : drawing_sheet_revision;
 SELF\presented_item_representation.item : applied_presented_item;
 DERIVE
 presented_function : functional_unit := scms_get_presented_function(item);
 presented_functional_terminal : SET OF functional_unit_terminal_definition :=
scms_get_presented_functional_terminal(SELF, presentation);
 terminal_symbol_map : SET OF item_identified_representation_usage :=
bag_to_set(QUERY(iiru <* (USEDIN(presentation,
'PRODUCT_PROPERTY_REPRESENTATION_SCHEMA.ITEM_IDENTIFIED_REPRESENTATI
ON_USAGE.USED_REPRESENTATION'))|
'SCHEMATIC_SYMBOL_MIM.SCHEMATIC_TERMINAL_CALLOUT' IN
TYPEOF(iiru\item_identified_representation_usage.identified_item)));
 schematic_terminal_callout : SET OF terminal_schematic_symbol_callout := QUERY(it <*
presentation.items |
'SCHEMATIC_SYMBOL_MIM.TERMINAL_SCHEMATIC_SYMBOL_CALLOUT' IN TYPEOF(it));
 WHERE
 WR1 : SIZEOF(QUERY(pft <* presented_functional_terminal | NOT
(pft\shape_aspect.of_shape = presented_function))) = 0;
 --each presented_functional_terminal shall specify the presented_function as its of_shape;
 WR2 : SIZEOF(terminal_symbol_map) = SIZEOF(schematic_terminal_callout);
--- each schematic_terminal_symbol shall be mapped to a functional terminal.
---note that the size of the functional terminals need not be the same as the number of symbol
callouts to handle the case of a part level symbol.
 WR3 :
('SCHEMATIC_SYMBOL_MIM.PART_LEVEL_SCHEMATIC_SYMBOL_REPRESENTATION' IN
TYPEOF(SELF)) OR (SIZEOF(presented_functional_terminal) =
SIZEOF(terminal_symbol_map));
---Either the symbol shall be a part level symbol or only functional terminals may map to
schematic_terminal_symbols;
END_ENTITY;

(* in module schematic_symbol *)
FUNCTION scms_get_presented_function(input : applied_presented_item) : functional_unit;
LOCAL
 fun : SET OF functional_unit := (QUERY(it <* (input\applied_presented_item.items) |
'FUNCTIONAL_USAGE_VIEW_MIM.FUNCTIONAL_UNIT' IN TYPEOF(it)));
END_LOCAL;
RETURN(fun[LOINDEX(fun)]);
END_FUNCTION;

(* in module schematic_symbol *)
FUNCTION scms_get_presented_functional_terminal(input1 : schematic_symbol_representation;
 input2 : drawing_sheet_revision) : SET OF
functional_unit_terminal_definition;
LOCAL
 function_only : BOOLEAN :=
NOT('SCHEMATIC_SYMBOL_MIM.PART_LEVEL_SCHEMATIC_SYMBOL_REPRESENTATIO
N' IN TYPEOF(input1));
 iiru : SET OF item_identified_representation_usage := bag_to_set(USEDIN(input2,

 - -

29

'PRODUCT_PROPERTY_REPRESENTATION_SCHEMA.ITEM_IDENTIFIED_REPRESENTATI
ON_USAGE.USED_REPRESENTATION'));
 futd : SET OF functional_unit_terminal_definition := [];
 sar : SET OF shape_aspect_relationship := [];
END_LOCAL;
IF function_only
THEN
 REPEAT i := LOINDEX(iiru) TO HIINDEX(iiru);
 IF (('FUNCTIONAL_USAGE_VIEW_MIM.FUNCTIONAL_UNIT_TERMINAL_DEFINITION') IN
TYPEOF(iiru[i]\item_identified_representation_usage.definition)) THEN
 futd := futd + iiru[i]\item_identified_representation_usage.definition;
 END_IF;
END_REPEAT;
RETURN(futd);
ELSE
 REPEAT i := LOINDEX(iiru) TO HIINDEX(iiru);
 IF ((('PRODUCT_PROPERTY_DEFINITION_SCHEMA.SHAPE_ASPECT_RELATIONSHIP')
IN TYPEOF(iiru[i]\item_identified_representation_usage.definition)) AND
 ((iiru[i]\item_identified_representation_usage.definition\shape_aspect_relationship.name =
'functional terminal allocation')))
 THEN
 futd := futd +
iiru[i]\item_identified_representation_usage.definition\shape_aspect_relationship.relating_shape_
aspect;
 END_IF;
END_REPEAT;
RETURN(futd);
END_IF;

(*
this function has a switch to look for a functional terminal as either the direct
item_identified_representation_usage.definition or
as the sar.relating_shape_aspect of the item_identified_representation_usage.definition.
The first case is when the symbol is NOT part level symbol.
The second case is when the symbol IS a part level symbol.
The path is:
drawing_sheet_revision <-
item_identified_representation_usage.used_representation
item_identified_representation_usage.definition ->
functional_unit_terminal_definition;
or
drawing_sheet_revision <-
item_identified_representation_usage.used_representation
item_identified_representation_usage.definition ->
sar
{sar.name = 'functional terminal allocation'}
sar.relating_shape_aspect;
*)
END_FUNCTION;

(* in module schematic_symbol *)
ENTITY part_level_schematic_symbol_representation
 SUBTYPE OF (schematic_symbol_representation);
 DERIVE
 presented_part : packaged_part := scms_get_presented_part(item);

 - -

30

 presented_part_terminal : SET OF packaged_part_terminal :=
scms_get_presented_part_terminal(presentation);
WHERE
 WR1 : SIZEOF(QUERY(pft <* presented_part_terminal | NOT (pft\shape_aspect.of_shape =
presented_part))) = 0;
 --each presented_part_terminal shall specify the presented_part as its of_shape;
 WR2 : (SIZEOF(presented_part_terminal) = SIZEOF(terminal_symbol_map));
 --each presented_part_terminal shall have a symbol;
END_ENTITY;

(* in module schematic_symbol *)
FUNCTION scms_get_presented_part_terminal(input : drawing_sheet_revision) : SET OF
functional_unit_terminal_definition;
LOCAL
 iiru : SET OF item_identified_representation_usage := bag_to_set(USEDIN(input,
'PRODUCT_PROPERTY_REPRESENTATION_SCHEMA.ITEM_IDENTIFIED_REPRESENTATI
ON_USAGE.USED_REPRESENTATION'));
 ppt : SET OF packaged_part_terminal := [];
 sar : SET OF shape_aspect_relationship := [];
END_LOCAL;

 REPEAT i := LOINDEX(iiru) TO HIINDEX(iiru);
 IF (('PRODUCT_PROPERTY_DEFINITION_SCHEMA.SHAPE_ASPECT_RELATIONSHIP' IN
TYPEOF(iiru[i]\item_identified_representation_usage.definition)) AND
 ((iiru[i]\item_identified_representation_usage.definition\shape_aspect_relationship.name =
'functional terminal allocation')))
 THEN
 ppt := ppt +
iiru[i]\item_identified_representation_usage.definition\shape_aspect_relationship.related_shape_
aspect;
 END_IF;
END_REPEAT;
RETURN(ppt);
END_FUNCTION;

(* in module schematic_symbol *)
FUNCTION scms_get_presented_part(input : applied_presented_item) : packaged_part;
LOCAL
 pp : SET OF packaged_part := (QUERY(it <* (input\applied_presented_item.items) |
'PACKAGED_PART_BLACK_BOX_MODEL_MIM.PACKAGED_PART' IN TYPEOF(it)));
END_LOCAL;
RETURN(pp[LOINDEX(pp)]);
END_FUNCTION;

(*
addition to draughting_elements_schema: ISO 10303-101
ENTITY schematic_symbol_callout-- include in p101
 SUBTYPE OF (geometric_representation_item);
 contents : SET [1:?] OF draughting_callout_element;
INVERSE
 presented_concept : item_identified_representation_usage FOR identified_item;
END_ENTITY;
*)

(* in module schematic_symbol *)

 - -

31

ENTITY terminal_schematic_symbol_callout
 ABSTRACT SUPERTYPE OF (ONEOF(block_terminal_schematic_symbol_callout,
part_terminal_schematic_symbol_callout))
 SUBTYPE OF (schematic_symbol_callout);
END_ENTITY;

(* in module schematic_symbol *)
ENTITY block_terminal_schematic_symbol_callout
 SUBTYPE OF (terminal_schematic_symbol_callout);
DERIVE
 functional_terminal : functional_unit_terminal_definition :=
presented_concept\item_identified_representation_usage.definition;
 signal_name_data : SET [1:?] OF explicit_text_reference :=
bag_to_set(USEDIN(functional_terminal,
'PRESENTATION_DEFINITION_SCHEMA.EXPLICIT_TEXT_REFERENCE.SOURCE'));
 annotation_text_occurrence : SET OF annotation_text_occurrence := QUERY(c <*
SELF\schematic_symbol_callout.contents |
('PRESENTATION_DEFINITION_SCHEMA.ANNOTATION_TEXT_OCCURRENCE' IN
TYPEOF(c)) AND
('PRESENTATION_DEFINITION_SCHEMA.EXPLICIT_TEXT_REFERENCE' IN
TYPEOF(c\annotation_text_occurrence.item)));
WHERE
 WR1 : SIZEOF(QUERY(ato <* annotation_text_occurrence | (signal_name_data[1] =
ato\annotation_text_occurrence.item\explicit_text_reference.source))) = 1;
END_ENTITY;

(* in module schematic_symbol *)
ENTITY part_terminal_schematic_symbol_callout
 SUBTYPE OF (terminal_schematic_symbol_callout);
DERIVE
 functional_allocation_to_part : shape_aspect_relationship :=
SELF\schematic_symbol_callout.presented_concept\item_identified_representation_usage.definit
ion;
 functional_terminal : functional_unit_terminal_definition :=
functional_allocation_to_part\shape_aspect_relationship.relating_shape_aspect;
 part_terminal: packaged_part_terminal :=
functional_allocation_to_part\shape_aspect_relationship.related_shape_aspect;
 signal_name_data: SET [1:?] OF explicit_text_reference :=
bag_to_set(USEDIN(functional_terminal,
'PRESENTATION_DEFINITION_SCHEMA.EXPLICIT_TEXT_REFERENCE.SOURCE'));
 pin_number_data: SET [1:?] OF explicit_text_reference := bag_to_set(USEDIN(part_terminal,
'PRESENTATION_DEFINITION_SCHEMA.EXPLICIT_TEXT_REFERENCE.SOURCE'));
 annotation_text_occurrence : SET OF annotation_text_occurrence :=
 QUERY(c <* SELF\schematic_symbol_callout.contents |
('PRESENTATION_DEFINITION_SCHEMA.ANNOTATION_TEXT_OCCURRENCE' IN
TYPEOF(c)) AND
('PRESENTATION_DEFINITION_SCHEMA.EXPLICIT_TEXT_REFERENCE' IN
TYPEOF(c\annotation_text_occurrence.item)));

WHERE
 WR1 : SIZEOF(QUERY(ato <* annotation_text_occurrence | (signal_name_data[1] =
ato\annotation_text_occurrence.item\explicit_text_reference.source))) = 1;
 WR2 : SIZEOF(QUERY(ato <* annotation_text_occurrence | (pin_number_data[1] =
ato\annotation_text_occurrence.item\explicit_text_reference.source))) = 1;
 WR3 : 'PRODUCT_PROPERTY_DEFINITION_SCHEMA.SHAPE_ASPECT_RELATIONSHIP' IN

 - -

32

TYPEOF(SELF\schematic_symbol_callout.presented_concept\item_identified_representation_us
age.definition);
END_ENTITY;

--These will need to be split apart and placed in the appropriate module MIMs.
TYPE scms_text_reference_source = EXTENSIBLE GENERIC_ENTITY SELECT BASED_ON
text_reference_source WITH (
 product,
 model_parameter,
 parameter_assignment,
 functional_unit_terminal_definition,
 packaged_part_terminal);
END_TYPE;

--following are in presentation_definition_schema;
--ISO 10303-46
(*
TYPE text_reference_source = EXTENSIBLE GENERIC_ENTITY SELECT();--will include
SELECT type in p46.
END_TYPE;

TYPE text_literal_or_text_reference = SELECT(
 text_literal,
 text_reference);
END_TYPE;

ENTITY text_reference -- include in p46
 ABSTRACT SUPERTYPE OF (ONEOF(composite_sequential_text_reference,
explicit_text_reference, implicit_text_reference))
 SUBTYPE OF(representation_item);
END_ENTITY;

ENTITY composite_sequential_text_reference
 SUBTYPE OF (text_reference);
 collected_references : LIST[2:?] of text_literal_or_text_reference;
WHERE
 WR1 : SIZEOF(QUERY(cr <* collected_references | '
PRESENTATION_DEFINITION_SCHEMA.COMPOSITE_TEXT_REFERENCE' IN TYPEOF(cr)))
= 0;
 --no member of collected_references shall be a composite_text_reference.
 --the list is one level only, not an array.
 END_ENTITY;

ENTITY explicit_text_reference-- include in p46
SUBTYPE OF(text_reference);
 attribute_name : STRING;
 geometric_property : text_literal;
 source : text_reference_source;
WHERE
 WR1 : geometric_property\text_literal.literal = '';
END_ENTITY;

ENTITY explicit_text_reference_occurrence-- include in p46
SUBTYPE OF(explicit_text_reference);
 type_declaration : implicit_text_reference;

 - -

33

DERIVE
 SELF\explicit_text_reference.attribute_name : STRING :=
type_declaration\implicit_text_reference.attribute_name;
END_ENTITY;

ENTITY implicit_text_reference -- include in p46
SUBTYPE OF(text_reference);
 attribute_name : STRING;
 entity_name : STRING;
 geometric_property : text_literal;
WHERE
 WR1 : geometric_property\text_literal.literal = '';
END_ENTITY;
*)

(*
modified entity in aic_draughting_annotation ISO 10303-504:
ENTITY draughting_annotation_occurrence
 SUBTYPE OF (annotation_occurrence);
WHERE
---...
 WR7 : (NOT('AP
210_ELECTRONIC_ASSEMBLY_INTERCONNECT_AND_PACKAGING_DESIGN_MIM_LF.AN
NOTATION_TEXT_OCCURRENCE' IN TYPEOF (SELF))) OR
 (SIZEOF (TYPEOF(SELF.item) *
 ['AP
210_ELECTRONIC_ASSEMBLY_INTERCONNECT_AND_PACKAGING_DESIGN_MIM_LF.CO
MPOSITE_TEXT', 'AP
210_ELECTRONIC_ASSEMBLY_INTERCONNECT_AND_PACKAGING_DESIGN_MIM_LF.TEX
T_LITERAL', 'AP
210_ELECTRONIC_ASSEMBLY_INTERCONNECT_AND_PACKAGING_DESIGN_MIM_LF.TEX
T_REFERENCE']) = 1);
END_ENTITY;
*)

END_SCHEMA;

 - -

34

	Introduction
	Notation
	Functional Model
	Gate and Pin Swapping
	Schematic Symbol
	Annotation_occurrence
	Annotation text

	Proposed recommendations to address scenarios
	Terminal schematic symbol callout

	Summary of proposed changes to ISO 10303
	Case Study – Unified representation of a quad nand packaged component

