
FIPS 203

Federal Information Processing Standards Publication

Module-Lattice-Based
Key-Encapsulation Mechanism Standard
Category: Computer Security Subcategory: Cryptography

Information Technology Laboratory
National Institute of Standards and Technology
Gaithersburg, MD 20899-8900

This publication is available free of charge from:
https://doi.org/10.6028/NIST.FIPS.203

Published August 13, 2024

U.S. Department of Commerce
Gina M. Raimondo, Secretary

National Institute of Standards and Technology

Laurie E. Locascio, NIST Director and Under Secretary of Commerce for Standards and Technology

https://doi.org/10.6028/NIST.FIPS.203
https://crossmark.crossref.org/dialog/?doi=10.6028/NIST.FIPS.203

Foreword

The Federal Information Processing Standards (FIPS) Publication Series of the National Institute of Stan-
dards and Technology is the official series of publications relating to standards and guidelines developed
under 15 U.S.C. 278g-3, and issued by the Secretary of Commerce under 40 U.S.C. 11331.

Comments concerning this Federal Information Processing Standard publication are welcomed and should
be submitted using the contact information in the “Inquiries and Comments” clause of the announcement
section.

Kevin M. Stine, Director
Information Technology Laboratory

FIPS 203 MODULE-LATTICE-BASED KEY-ENCAPSULATION MECHANISM

Abstract

A key-encapsulation mechanism (KEM) is a set of algorithms that, under certain conditions, can be
used by two parties to establish a shared secret key over a public channel. A shared secret key that
is securely established using a KEM can then be used with symmetric-key cryptographic algorithms
to perform basic tasks in secure communications, such as encryption and authentication. This
standard specifies a key-encapsulation mechanism called ML-KEM. The security of ML-KEM is
related to the computational difficulty of the Module Learning with Errors problem. At present,
ML-KEM is believed to be secure, even against adversaries who possess a quantum computer.
This standard specifies three parameter sets for ML-KEM. In order of increasing security strength
and decreasing performance, these are ML-KEM-512, ML-KEM-768, and ML-KEM-1024.

Keywords: computer security; cryptography; encryption; Federal Information Processing Stan-
dards; key-encapsulation mechanism; lattice-based cryptography; post-quantum; public-key
cryptography.

FIPS 203 MODULE-LATTICE-BASED KEY-ENCAPSULATION MECHANISM

Federal Information Processing Standards Publication 203

Published: August 13, 2024
Effective: August 13, 2024

Announcing the

Module-Lattice-Based Key-Encapsulation
Mechanism Standard

Federal Information Processing Standards (FIPS) publications are developed by the National
Institute of Standards and Technology (NIST) under 15 U.S.C. 278g-3 and issued by the Secretary
of Commerce under 40 U.S.C. 11331.

1. Name of Standard. Module-Lattice-Based Key-Encapsulation Mechanism Standard (FIPS
203).

2. Category of Standard. Computer Security. Subcategory. Cryptography.

3. Explanation. A cryptographic key (or simply “key”) is represented in a computer as a string of
bits. A shared secret key is a cryptographic key that is computed jointly by two parties (e.g.,
Alice and Bob) using a set of algorithms. Under certain conditions, these algorithms ensure
that both parties will produce the same key and that this key is secret from adversaries. Such
a shared secret key can then be used with symmetric-key cryptographic algorithms (specified
in other NIST standards) to perform tasks such as encryption and authentication of digital
information.

This standard specifies a set of algorithms for establishing a shared secret key. While there
are many methods for establishing a shared secret key, the particular method described in
this standard is a key-encapsulation mechanism (KEM).

In a KEM, the computation of the shared secret key begins with Alice generating a decapsu-
lation key and an encapsulation key. Alice keeps the decapsulation key private and makes
the encapsulation key available to Bob. Bob then uses Alice’s encapsulation key to generate
one copy of a shared secret key along with an associated ciphertext. Bob then sends the
ciphertext to Alice. Finally, Alice uses the ciphertext from Bob along with Alice’s private
decapsulation key to compute another copy of the shared secret key.

The security of the particular KEM specified in this standard is related to the computational
difficulty of solving certain systems of noisy linear equations, specifically the Module Learn-
ing With Errors (MLWE) problem. At present, it is believed that this particular method of
establishing a shared secret key is secure, even against adversaries who possess a quantum
computer. In the future, additional KEMs may be specified and approved in FIPS publications
or in NIST Special Publications.

4. Approving Authority. Secretary of Commerce.

5. Maintenance Agency. Department of Commerce, National Institute of Standards and Tech-
nology, Information Technology Laboratory (ITL).

i

FIPS 203 MODULE-LATTICE-BASED KEY-ENCAPSULATION MECHANISM

6. Applicability. Federal Information Processing Standards apply to information systems used or
operated by federal agencies or by a contractor of an agency or other organization on behalf
of an agency. They do not apply to national security systems as defined in 44 U.S.C. 3552.

This standard, or other FIPS or NIST Special Publications that specify alternative mechanisms,
shall be used wherever the establishment of a shared secret key (or shared secret from which
keying material can be generated) is required for federal applications, including the use of
such a key with symmetric-key cryptographic algorithms, in accordance with applicable Office
of Management and Budget and agency policies.

The adoption and use of this standard are available to private and commercial organizations.

7. Implementations. A key-encapsulation mechanism may be implemented in software, firmware,
hardware, or any combination thereof. For every computational procedure that is specified
in this standard, a conforming implementation may replace the given set of steps with any
mathematically equivalent set of steps. In other words, different procedures that produce
the correct output for every input are permitted.

NIST will develop a validation program to test implementations for conformance to the
algorithms in this standard. Information about validation programs is available at https:
//csrc.nist.gov/projects/cmvp. Example values will be available at https://csrc.nist.gov/proj
ects/cryptographic-standards-and-guidelines/example-values.

8. Other Approved Security Functions. Implementations that comply with this standard
shall employ cryptographic algorithms that have been approved for protecting Federal
Government-sensitive information. Approved cryptographic algorithms and techniques
include those that are either:

(a) Specified in a Federal Information Processing Standards (FIPS) publication,

(b) Adopted in a FIPS or NIST recommendation, or

(c) Specified in the list of approved security functions in SP 800-140C.

9. Export Control. Certain cryptographic devices and technical data regarding them are subject
to federal export controls. Exports of cryptographic modules that implement this standard
and technical data regarding them must comply with all federal laws and regulations and
be licensed by the Bureau of Industry and Security of the U.S. Department of Commerce.
Information about export regulations is available at https://www.bis.doc.gov.

10. Patents. NIST has entered into two patent license agreements to facilitate the adoption of
NIST’s announced selection of the PQC key-encapsulation mechanism CRYSTALS-KYBER. NIST
and the licensing parties share a desire, in the public interest, the licensed patents be freely
available to be practiced by any implementer of the ML-KEM algorithm as published by NIST.
ML-KEM is the name given to the algorithm in this standard derived from CRYSTALS-KYBER.
For a summary and extracts from the license, please see https://csrc.nist.gov/csrc/media/P
rojects/post-quantum-cryptography/documents/selected-algos-2022/nist-pqc-license-sum
mary-and-excerpts.pdf. Implementation of the algorithm specified in the standard may be
covered by U.S. and foreign patents of which NIST is not aware.

ii

https://csrc.nist.gov/projects/cmvp
https://csrc.nist.gov/projects/cmvp
https://csrc.nist.gov/projects/cryptographic-standards-and-guidelines/example-values
https://csrc.nist.gov/projects/cryptographic-standards-and-guidelines/example-values
https://www.bis.doc.gov
https://csrc.nist.gov/csrc/media/Projects/post-quantum-cryptography/documents/selected-algos-2022/nist-pqc-license-summary-and-excerpts.pdf
https://csrc.nist.gov/csrc/media/Projects/post-quantum-cryptography/documents/selected-algos-2022/nist-pqc-license-summary-and-excerpts.pdf
https://csrc.nist.gov/csrc/media/Projects/post-quantum-cryptography/documents/selected-algos-2022/nist-pqc-license-summary-and-excerpts.pdf

FIPS 203 MODULE-LATTICE-BASED KEY-ENCAPSULATION MECHANISM

11. Implementation Schedule. This standard becomes effective immediately upon final publica-
tion.

12. Specifications. Federal Information Processing Standards (FIPS) 203, Module-Lattice-Based
Key-Encapsulation Mechanism Standard (affixed).

13. Qualifications. In applications, the security guarantees of a KEM only hold under certain
conditions (see SP 800-227 [1]). One such condition is the secrecy of several values, including
the randomness used by the two parties, the decapsulation key, and the shared secret key
itself. Users shall, therefore, guard against the disclosure of these values.

While it is the intent of this standard to specify general requirements for implementing
ML-KEM algorithms, conformance to this standard does not ensure that a particular imple-

mentation is secure. It is the responsibility of the implementer to ensure that any module
that implements a key establishment capability is designed and built in a secure manner.

Similarly, the use of a product containing an implementation that conforms to this standard
does not guarantee the security of the overall system in which the product is used. The re-
sponsible authority in each agency or department shall ensure that an overall implementation
provides an acceptable level of security.

NIST will continue to follow developments in the analysis of the ML-KEM algorithm. As with
its other cryptographic algorithm standards, NIST will formally reevaluate this standard every
five years.

Both this standard and possible threats that reduce the security provided through the use of
this standard will undergo review by NIST as appropriate, taking into account newly available
analysis and technology. In addition, the awareness of any breakthrough in technology or
any mathematical weakness of the algorithm will cause NIST to reevaluate this standard and
provide necessary revisions.

14. Waiver Procedure. The Federal Information Security Management Act (FISMA) does not allow
for waivers to Federal Information Processing Standards (FIPS) that are made mandatory by
the Secretary of Commerce.

15. Where to Obtain Copies of the Standard. This publication is available by accessing https:
//csrc.nist.gov/publications. Other computer security publications are available at the same
website.

16. How to Cite This Publication. NIST has assigned NIST FIPS 203 as the publication identifier
for this FIPS, per the NIST Technical Series Publication Identifier Syntax. NIST recommends
that it be cited as follows:

National Institute of Standards and Technology (2024) Module-Lattice-Based Key-
Encapsulation Mechanism Standard. (Department of Commerce, Washington,
D.C.), Federal Information Processing Standards Publication (FIPS) NIST FIPS 203.
https://doi.org/10.6028/NIST.FIPS.203

17. Inquiries and Comments. Inquiries and comments about this FIPS may be submitted to
fips-203-comments@nist.gov.

iii

https://csrc.nist.gov/publications
https://csrc.nist.gov/publications
https://www.nist.gov/document/publication-identifier-syntax-nist-technical-series-publications
https://doi.org/10.6028/NIST.FIPS.203
fips-203-comments@nist.gov

FIPS 203 MODULE-LATTICE-BASED KEY-ENCAPSULATION MECHANISM

Federal Information Processing Standards Publication 203

Specification for the

Module-Lattice-Based Key-Encapsulation
Mechanism Standard

Table of Contents

1 Introduction 1

1.1 Purpose and Scope 1

1.2 Context 1

2 Terms, Acronyms, and Notation 2

2.1 Terms and Definitions 2

2.2 Acronyms 4

2.3 Mathematical Symbols 5

2.4 Interpreting the Pseudocode 6

2.4.1 Data Types 7
2.4.2 Loop Syntax 7
2.4.3 Arithmetic With Arrays of Integers 7
2.4.4 Representations of Algebraic Objects 8
2.4.5 Arithmetic With Polynomials and NTT Representations 9
2.4.6 Matrices and Vectors 9
2.4.7 Arithmetic With Matrices and Vectors 10
2.4.8 Applying Algorithms to Arrays, Examples 11

3 Overview of the ML-KEM Scheme 12

3.1 Key-Encapsulation Mechanisms 12

3.2 The ML-KEM Scheme 13

3.3 Requirements for ML-KEM Implementations 15

4 Auxiliary Algorithms 18

4.1 Cryptographic Functions 18

4.2 General Algorithms 20

4.2.1 Conversion and Compression Algorithms 20
4.2.2 Sampling Algorithms 22

4.3 The Number-Theoretic Transform 24

iv

FIPS 203 MODULE-LATTICE-BASED KEY-ENCAPSULATION MECHANISM

4.3.1 Multiplication in the NTT Domain 27

5 The K-PKE Component Scheme 28

5.1 K-PKE Key Generation 28

5.2 K-PKE Encryption 29

5.3 K-PKE Decryption 31

6 Main Internal Algorithms 32

6.1 Internal Key Generation 32

6.2 Internal Encapsulation 32

6.3 Internal Decapsulation 33

7 The ML-KEM Key-Encapsulation Mechanism 35

7.1 ML-KEM Key Generation 35

7.2 ML-KEM Encapsulation 36

7.3 ML-KEM Decapsulation 37

8 Parameter Sets 39

References 41

Appendix A — Precomputed Values for the NTT 44

Appendix B — SampleNTT Loop Bounds 46

Appendix C — Differences From the CRYSTALS-KYBER Submission 47

C.1 Differences Between CRYSTALS-KYBER and FIPS 203 Initial Public Draft 47

C.2 Changes From FIPS 203 Initial Public Draft 47

v

FIPS 203 MODULE-LATTICE-BASED KEY-ENCAPSULATION MECHANISM

List of Tables

Table 1 Decapsulation failure rates for ML-KEM 15
Table 2 Approved parameter sets for ML-KEM 39
Table 3 Sizes (in bytes) of keys and ciphertexts of ML-KEM 39
Table 4 While-loop limits and probabilities of occurrence for SampleNTT 46

List of Figures

Figure 1 A simple view of key establishment using a KEM 12

List of Algorithms

Algorithm 1 ForExample() . 8
Algorithm 2 SHAKE128example(str1,…,str𝑚, 𝑏1,…,𝑏ℓ) 19

. 20Algorithm 3 BitsToBytes(𝑏)
Algorithm 4 BytesToBits(𝐵) . 20
Algorithm 5 ByteEncode𝑑(𝐹) . 22
Algorithm 6 ByteDecode𝑑(𝐵) . 22
Algorithm 7 SampleNTT(𝐵) . 23
Algorithm 8 SamplePolyCBD𝜂(𝐵) . 23
Algorithm 9 NTT(𝑓) . 26
Algorithm 10 NTT−1(𝑓)̂ . 26
Algorithm 11 MultiplyNTTs(𝑓 ,̂ 𝑔)̂ . 27
Algorithm 12 BaseCaseMultiply(𝑎0,𝑎1, 𝑏0, 𝑏1,𝛾) 27
Algorithm 13 K-PKE.KeyGen(𝑑) . 29
Algorithm 14 K-PKE.Encrypt(ekPKE,𝑚,𝑟) . 30
Algorithm 15 K-PKE.Decrypt(dkPKE, 𝑐) . 31
Algorithm 16 ML-KEM.KeyGen_internal(𝑑,𝑧) . 32
Algorithm 17 ML-KEM.Encaps_internal(ek,𝑚) 33
Algorithm 18 ML-KEM.Decaps_internal(dk, 𝑐) . 34
Algorithm 19 ML-KEM.KeyGen() . 35
Algorithm 20 ML-KEM.Encaps(ek) . 37
Algorithm 21 ML-KEM.Decaps(dk, 𝑐) . 38

vi

FIPS 203 MODULE-LATTICE-BASED KEY-ENCAPSULATION MECHANISM

1. Introduction

1.1 Purpose and Scope

This standard specifies the Module-Lattice-Based Key-Encapsulation Mechanism (ML-KEM). A
key-encapsulation mechanism (KEM) is a set of algorithms that can be used to establish a shared
secret key between two parties communicating over a public channel. A KEM is a particular type
of key establishment scheme. Other NIST-approved key establishment schemes are specified
in NIST Special Publication (SP) 800-56A, Recommendation for Pair-Wise Key-Establishment
Schemes Using Discrete Logarithm-Based Cryptography [2], and SP 800-56B, Recommendation
for Pair-Wise Key Establishment Schemes Using Integer Factorization Cryptography [3].

The key establishment schemes specified in SP 800-56A and SP 800-56B are vulnerable to
attacks that use sufficiently-capable quantum computers. ML-KEM is an approved alternative
that is presently believed to be secure, even against adversaries in possession of a large-scale
fault-tolerant quantum computer. ML-KEM is derived from the round-three version of the
CRYSTALS-KYBER KEM [4], a submission in the NIST Post-Quantum Cryptography Standardization
project. For the differences between ML-KEM and CRYSTALS-KYBER, see Appendix C.

This standard specifies the algorithms and parameter sets of the ML-KEM scheme. It aims
to provide sufficient information to implement ML-KEM in a manner that can pass validation
(see https://csrc.nist.gov/projects/cryptographic-module-validation-program). For
general definitions and properties of KEMs, including requirements for the secure use of KEMs
in applications, see SP 800-227 [1].

This standard specifies three parameter sets for ML-KEM that offer different trade-offs in security
strength versus performance. All three parameter sets of ML-KEM are approved to protect
sensitive, non-classified communication systems of the U.S. Federal Government.

1.2 Context

Over the past several years, there has been steady progress toward building quantum computers.
If large-scale quantum computers are realized, the security of many commonly used public-key
cryptosystems will be at risk. This would include key-establishment schemes and digital signature
schemes whose security depends on the difficulty of solving the integer factorization and discrete
logarithm problems (both over finite fields and elliptic curves). As a result, in 2016, NIST initiated
a public Post-Quantum Cryptography (PQC) Standardization process to select quantum-resistant
public-key cryptographic algorithms. A total of 82 candidate algorithms were submitted to NIST
for consideration.

After three rounds of evaluation and analysis, NIST selected the first four algorithms for stan-
dardization. These algorithms are intended to protect sensitive U.S. Government information
well into the foreseeable future, including after the advent of cryptographically-relevant quan-
tum computers. This standard specifies a variant of the selected algorithm CRYSTALS-KYBER,
a lattice-based key-encapsulation mechanism (KEM) [4]. Throughout this standard, the KEM
specified here will be referred to as ML-KEM, as it is based on the Module Learning With Errors
assumption.

1

https://csrc.nist.gov/projects/cryptographic-module-validation-program

FIPS 203 MODULE-LATTICE-BASED KEY-ENCAPSULATION MECHANISM

2. Terms, Acronyms, and Notation

2.1 Terms and Definitions

approved FIPS-approved and/or NIST-recommended. An algorithm or technique
that is either 1) specified in a FIPS or NIST recommendation, 2) adopted
in a FIPS or NIST recommendation, or 3) specified in a list of NIST-approved
security functions.

(KEM) ciphertext A bit string that is produced by encapsulation and used as an input to
decapsulation.

cryptographic
module

The set of hardware, software, and/or firmware that implements ap-
proved cryptographic functions (including key generation) that are con-
tained within the cryptographic boundary of the module.

decapsulation The process of applying the Decaps algorithm of a KEM. This algorithm
accepts a KEM ciphertext and the decapsulation key as input and pro-
duces a shared secret key as output.

decapsulation key A cryptographic key produced by a KEM during key generation and used
during the decapsulation process. The decapsulation key must be kept
private and must be destroyed after it is no longer needed. (See Section
3.3.)

decryption key A cryptographic key that is used with a PKE in order to decrypt cipher-
texts into plaintexts. The decryption key must be kept private and must
be destroyed after it is no longer needed.

destroy An action applied to a key or other piece of secret data. After a piece
of secret data is destroyed, no information about its value can be re-
covered.

encapsulation The process of applying the Encaps algorithm of a KEM. This algorithm
accepts the encapsulation key as input, requires private randomness,
and produces a shared secret key and an associated ciphertext as out-
put.

encapsulation key A cryptographic key produced by a KEM during key generation and used
during the encapsulation process. The encapsulation key can be made
public. (See Section 3.3.)

encryption key A cryptographic key that is used with a PKE in order to encrypt plaintexts
into ciphertexts. The encryption key can be made public.

equivalent process Two processes are equivalent if the same output is produced when the
same values are input to each process (either as input parameters, as
values made available during the process, or both).

fresh random value An output that was produced by a random bit generator and has not
been previously used.

2

FIPS 203

hash function

input checking

key

key-encapsulation
mechanism (KEM)

key establishment

key pair

little-endian

party

pseudorandom

public channel

MODULE-LATTICE-BASED KEY-ENCAPSULATION MECHANISM

A function on bit strings in which the length of the output is fixed.
Approved hash functions (such as those specified in FIPS 180 [5] and
FIPS 202 [6]) are designed to satisfy the following properties:

1. (One-way) It is computationally infeasible to find any input that
maps to any new pre-specified output.

2. (Collision-resistant) It is computationally infeasible to find any two
distinct inputs that map to the same output.

Examination of a potential input to an algorithm for the purpose of
determining whether it conforms to certain requirements.

A bit string that is used in conjunction with a cryptographic algorithm,
such as the encapsulation and decapsulation keys (of a KEM), the shared
secret key (produced by a KEM), and the encryption and decryption
keys (of a PKE). (See Section 3.3.)

A set of three cryptographic algorithms (KeyGen, Encaps, and Decaps)
that can be used by two parties to establish a shared secret key over a
public channel.

A procedure that results in secret keying material that is shared among
different parties.

A set of two keys with the property that one key can be made public
while the other key must be kept private. In this standard, this could
refer to either the (encapsulation key, decapsulation key) key pair of a
KEM or the (encryption key, decryption key) key pair of a PKE.

The property of a byte string having its bytes positioned in order of
increasing significance. In particular, the leftmost (first) byte is the
least significant, and the rightmost (last) byte is the most significant.
The term “little-endian” may also be applied in the same manner to
bit strings (e.g., the 8-bit string 11010001 corresponds to the byte
20 +21 +23 +27 = 139).

An individual person, organization, device, or process. In this specifica-
tion, there are two parties (e.g., Party A and Party B, or Alice and Bob)
who jointly perform the key establishment process using a KEM.

A process (or data produced by a process) is said to be pseudorandom
when the outcome is deterministic yet also appears random as long
as the internal action of the process is hidden from observation. For
cryptographic purposes, “effectively random” means “computationally
indistinguishable from random within the limits of the intended security
strength.”

A communication channel between two parties. Such a channel can be
observed and possibly also corrupted by third parties.

3

FIPS 203 MODULE-LATTICE-BASED KEY-ENCAPSULATION MECHANISM

public-key
encryption scheme
(PKE)

A set of three cryptographic algorithms (KeyGen, Encrypt, and Decrypt)
that can be used by two parties to send secret data over a public channel.
Also known as an asymmetric encryption scheme.

shared secret A secret value that has been computed during a key-establishment
scheme, is known by both participants, and is used as input to a key-
derivation method to produce keying material.

shared secret key A shared secret that can be used directly as a cryptographic key in
symmetric-key cryptography. It does not require additional key deriva-
tion. The shared secret key must be kept private and must be destroyed
when no longer needed.

security category A number associated with the security strength of a post-quantum
cryptographic algorithm, as specified by NIST (see [7]).

security strength A number associated with the amount of work (i.e., the number of op-
erations) that is required to break a cryptographic algorithm or system.

shall Used to indicate a requirement of this standard.

should Used to indicate a strong recommendation but not a requirement of
this standard. Ignoring the recommendation could lead to undesirable
results.

2.2 Acronyms

AES Advanced Encryption Standard

CBD Centered Binomial Distribution

FIPS Federal Information Processing Standard

KEM Key-Encapsulation Mechanism

LWE Learning with Errors

MLWE Module Learning with Errors

NIST National Institute of Standards and Technology

NISTIR NIST Interagency or Internal Report

NTT Number-Theoretic Transform

PKE Public-Key Encryption

PQC Post-Quantum Cryptography

PRF Pseudorandom Function

RBG Random Bit Generator

SHA Secure Hash Algorithm

4

FIPS 203 MODULE-LATTICE-BASED KEY-ENCAPSULATION MECHANISM

SHAKE Secure Hash Algorithm KECCAK

SP Special Publication

XOF Extendable-Output Function

2.3 Mathematical Symbols

𝑛 Denotes the integer 256 throughout this document.

𝑞 Denotes the prime integer 3329 = 28 ⋅ 13+1 throughout this document.

𝜁 Denotes the integer 17, which is a primitive 𝑛-th root of unity modulo 𝑞.

𝔹 The set {0,1,…,255} of unsigned 8-bit integers (bytes).

ℚ The set of rational numbers.

ℤ The set of integers.

ℤ𝑚 The ring of integers modulo 𝑚 (i.e., the set {0,1,…,𝑚 − 1} equipped with
the operations of addition and multiplication modulo 𝑚.)

ℤ𝑛
𝑚 The set of 𝑛-tuples over ℤ𝑚 equipped with ℤ𝑚-module structure. As a data

type, this is the set of length-𝑛 arrays whose entries are in ℤ𝑚.

𝑅𝑞 The ring ℤ𝑞[𝑋]/(𝑋𝑛 + 1) consisting of polynomials of the form 𝑓 = 𝑓0 +
𝑓1𝑋 +⋯+𝑓255𝑋255 , where 𝑓𝑗 ∈ ℤ𝑞 for all 𝑗. The ring operations are addi-
tion and multiplication modulo 𝑋𝑛 +1.

𝑇𝑞 The image of 𝑅𝑞 under the number-theoretic transform. Its elements are
called “NTT representations” of polynomials in 𝑅𝑞. (See Section 4.3.)

D𝜂(𝑅𝑞) A certain distribution of polynomials in 𝑅𝑞 with small coefficients, from
which noise is sampled. The distribution is parameterized by 𝜂 ∈ {2,3}. (See
Section 4.2.2.)

𝑆∗ If 𝑆 is a set, this denotes the set of finite-length tuples (or arrays) of elements
from the set 𝑆, including the empty tuple (or empty array).

𝑆𝑘 If 𝑆 is a set, this denotes the set of 𝑘-tuples (or length-𝑘 arrays) of elements
from the set 𝑆.

𝑓𝑗 The coefficient of 𝑋𝑗 of a polynomial 𝑓 = 𝑓0 +𝑓1𝑋 +⋯+𝑓255𝑋255 ∈ 𝑅𝑞.

𝑓 ̂ The element of 𝑇𝑞 that is equal to the NTT representation of a polynomial

𝑓 ∈ 𝑅𝑞. (See Sections 2.4.4 and 4.3.)

𝐯𝑇 , 𝐀𝑇 The transpose of a row or column vector 𝐯. In general, the transpose of a
matrix 𝐀.

5

FIPS 203 MODULE-LATTICE-BASED KEY-ENCAPSULATION MECHANISM

∘ Denotes linear-algebraic composition with coefficients in 𝑅𝑞 or 𝑇𝑞 (e.g.,
𝐀 ∘ 𝐯 denotes the vector resulting from applying matrix 𝐀 to vector 𝐯). (See
Section 2.4.7.)

Denotes the operation on coefficient arrays that implements product in the ×𝑇𝑞

ring 𝑇𝑞. (See Sections 2.4.5 and 4.3.1.)

𝐴‖𝐵 The concatenation of two arrays or bit strings 𝐴 and 𝐵.

𝐵[𝑖] The entry at index 𝑖 in the array 𝐵. All arrays have indices that begin at zero.

𝐵[𝑘 ∶ 𝑚] The subarray (𝐵[𝑘],𝐵[𝑘 + 1],…,𝐵[𝑚 − 1]) of the array 𝐵.

|𝐵| If 𝐵 is a number, this denotes the absolute value of 𝐵. If 𝐵 is an array, this
denotes its length.

⌈𝑥⌉ The ceiling of 𝑥 (i.e., the smallest integer greater than or equal to 𝑥).

⌊𝑥⌋ The floor of 𝑥 (i.e., the largest integer less than or equal to 𝑥).

⌈𝑥⌋ The rounding of 𝑥 to the nearest integer. If 𝑥 = 𝑦 +1/2 for some 𝑦 ∈ ℤ, then
⌈𝑥⌋ = 𝑦 +1.

∶= Denotes that the left-hand side is defined to be the expression on the right-
hand side.

𝑟 mod 𝑚 The unique integer 𝑟′ in {0,1,…,𝑚 − 1} such that 𝑚 divides 𝑟 − 𝑟′ .

BitRev7(𝑟) Bit reversal of a seven-bit integer 𝑟. Specifically, if 𝑟 = 𝑟0 +2𝑟1 +4𝑟2 +⋯+
64𝑟6 with 𝑟𝑖 ∈ {0,1}, then BitRev7(𝑟) = 𝑟6 +2𝑟5 +4𝑟4 +⋯+64𝑟0.

𝑠 ← 𝑥 In pseudocode, this notation means that the variable 𝑠 is assigned the value
of the expression 𝑥.

𝑠 ←
$
− 𝔹ℓ In pseudocode, this notation means that the variable 𝑠 is assigned the value

of an array of ℓ random bytes. The bytes must be freshly generated using
randomness from an approved RBG. (See Section 3.3.)

⊥ A symbol indicating failure or the lack of output from an algorithm.

2.4 Interpreting the Pseudocode

This section outlines the conventions of the pseudocode used to describe the algorithms in
this standard. All algorithms are understood to have access to two global integer constants:
𝑛 = 256 and 𝑞 = 3329. There are also five global integer variables: 𝑘, 𝜂1, 𝜂2, 𝑑𝑢, and 𝑑𝑣. All
other variables are local. The five global variables are set to particular values when a parameter
set is selected (see Section 8).

When algorithms in this specification invoke other algorithms as subroutines, all arguments (i.e.,
inputs) are passed by value. In other words, a copy of the inputs is created, and the subroutine
is invoked with the copy. There is no “passing by reference.”

Pseudocode assignments are performed using the symbol “←.” For example, the statement
𝑧 ← 𝑦 means that the variable 𝑧 is assigned the value of variable 𝑦. Pseudocode comparisons

6

FIPS 203 MODULE-LATTICE-BASED KEY-ENCAPSULATION MECHANISM

are performed via the symbol “==.” For example, the expression 𝑥 == 𝑤 is a boolean value
that is TRUE if and only if the variables 𝑥 and 𝑤 have the same value.

In regular text (i.e., outside of the pseudocode), a different convention is applied. There, the
“=” symbol is used both for assigning values and for comparisons, in keeping with standard
mathematical notation. When emphasis is needed, assignments will be made with “∶=” instead.

Variables will always have a valid value that is appropriate to their data type, with two exceptions:

1. The outputs of a random bit generator (RBG) have the byte array data type but are also
allowed to have the special value NULL. This value indicates that randomness generation
failed. This can only occur in ML-KEM.KeyGen and ML-KEM.Encaps.

2. The outputs of ML-KEM.KeyGen and ML-KEM.Encaps have the byte array data type but
are also allowed to have the special value �. When ML-KEM.KeyGen or ML-KEM.Encaps
return the value �, this indicates that the algorithm failed due to a failure of randomness
generation.

2.4.1 Data Types

For variables that represent the input or output of an algorithm, the data type (e.g., bit, byte,
array of bits) will be explicitly described at the start of the algorithm. For most local variables
in the pseudocode, the data type is easily deduced from context. For all other variables, the
data type will be declared in a comment. In a single algorithm, the data type of a variable is
determined the first time that the variable is used and will not be changed. Variable names can
and will be reused across different algorithms, including with different data types.

In addition to standard atomic data types (e.g., bits, bytes) and data structures (e.g., arrays),
integers modulo 𝑚 (i.e., elements of ℤ𝑚) will also be used as an abstract data type. It is implicit
that reduction modulo 𝑚 takes place whenever an assignment is made to a variable in ℤ𝑚. For
example, for 𝑧 ∈ ℤ𝑚 and integers 𝑥 and 𝑦, the statement

𝑧 ← 𝑥+𝑦 (2.1)

means that 𝑧 is assigned the value 𝑥 + 𝑦 mod 𝑚. The pseudocode is agnostic regarding how
an integer modulo 𝑚 is represented in actual implementations or how modular reduction is
computed.

2.4.2 Loop Syntax

The pseudocode will make use of both “while” and “for” loops. The “while” syntax is self-
explanatory. In the case of “for” loops, the syntax will be in the style of the programming language
C. Two simple examples are given in Algorithm 1. The standard mathematical expression (e.g.,
∑𝑛

𝑖←1(𝑖 + 3)) will be used for simple summations instead of a “for” loop.

2.4.3 Arithmetic With Arrays of Integers

This standard makes extensive use of arrays of integers modulo 𝑚 (i.e., elements of ℤℓ
𝑚). In a

typical case, the relevant values are 𝑚 = 𝑞 = 3329 and ℓ = 𝑛 = 256. Arithmetic with arrays in

7

FIPS 203 MODULE-LATTICE-BASED KEY-ENCAPSULATION MECHANISM

Algorithm 1 ForExample()

Performs two simple “for” loops.

1: for (𝑖 ← 0; 𝑖 < 10; 𝑖++)
2: 𝐴[𝑖] ← 𝑖 ▷ 𝐴 is an integer array of length 10
3: end for ▷ 𝐴 now has the value (0,1,2,3,4, 5,6,7, 8,9)
4: 𝑗 ← 0
5: for (𝑘 ← 256; 𝑘 > 1; 𝑘 ← 𝑘/2)
6: 𝐵[𝑗] ← 𝑘 ▷ 𝐵 is an integer array of length 8
7: 𝑗 ← 𝑗 + 1
8: end for ▷ 𝐵 now has the value (256,128,64,32,16,8,4,2)

ℤℓ will follows. Let𝑚 be done as 𝑎 ∈ ℤ and𝑚 𝑋,𝑌 ∈ ℤℓ .𝑚 The statements

𝑍 ← 𝑎 ⋅𝑋 (2.2)

𝑊 ← 𝑋 +𝑌 (2.3)

will result in two arrays 𝑍,𝑊 ∈ ℤℓ
𝑚, with the property that 𝑍[𝑖] = 𝑎⋅𝑋[𝑖] and 𝑊[𝑖] = 𝑋[𝑖]+𝑌 [𝑖]

for all 𝑖. Multiplication of arrays in ℤℓ
𝑚 will only be meaningful when 𝑚 = 𝑞 and ℓ = 𝑛 = 256, in

which case it corresponds to multiplication in a particular ring. This operation will be described
in (2.8).

2.4.4 Representations of Algebraic Objects

An essential operation in ML-KEM is the number-theoretic transform (NTT), which maps a poly-
nomial 𝑓 in a certain ring 𝑅𝑞 to its “NTT representation” 𝑓 in̂ an isomorphic ring 𝑇𝑞. The rings 𝑅𝑞
and 𝑇𝑞 and the NTT are discussed in detail in Section 4.3. This standard will represent elements
of 𝑅𝑞 and 𝑇𝑞 in pseudocode using arrays of integers modulo 𝑞 as follows.

An element 𝑓 of 𝑅𝑞 is a polynomial of the form

𝑓 = 𝑓0 + 𝑓1𝑋 + ⋯ + 𝑓255𝑋255 ∈ 𝑅𝑞 (2.4)

and will be represented in pseudocode by the array

(𝑓0,𝑓1,…,𝑓255) ∈ ℤ256,𝑞 (2.5)

whose entries contain the coefficients of 𝑓. Overloading notation, the array in (2.5) will also be
denoted by 𝑓. The 𝑖-th entry of the array 𝑓 will thus contain the 𝑖-th coefficient of the polynomial
𝑓 (i.e., 𝑓[𝑖] = 𝑓𝑖).

An element (sometimes called “NTT representation”) 𝑔 ̂of 𝑇𝑞 is a tuple of 128 polynomials, each
of degree at most one. Specifically,

𝑔0,0 +𝑔0,1𝑋, 𝑔1,0 +𝑔1,1𝑋, …, 𝑔127,0 + 𝑔 = (𝑔127,1 𝑋) ∈ 𝑇𝑞 . (2.6)̂ ̂ ̂ ̂ ̂ ̂ ̂

8

FIPS 203 MODULE-LATTICE-BASED KEY-ENCAPSULATION MECHANISM

Such an algebraic object will be represented in pseudocode by the array

(𝑔1,1,…, . 𝑔127,1) ∈ ℤ256𝑔0,0,𝑔0,1,𝑔1,0, 𝑔127,0, 𝑞 ̂ ̂ ̂ ̂ ̂ (2.7)̂

Overloading notation, the array in (2.7) will also be denoted by 𝑔.̂ In this case, the mapping
between array entries and coefficients is ̂ 𝑔𝑖,0̂ and 𝑔[2𝑖 + 1] = 𝑔𝑖,1̂ for 𝑖 ∈ {0,1,…,127}.𝑔[2𝑖] = ̂

̂Converting between a polynomial 𝑓 ∈ 𝑅𝑞 and its NTT representation 𝑓 ∈ 𝑇𝑞 will be done via the
algorithms NTT (Algorithm 9) and NTT−1

(Algorithm 10). These algorithms act on arrays of
coefficients, as described above, and satisfy 𝑓 ̂= NTT(𝑓) and 𝑓 = NTT−1(𝑓)̂ .

2.4.5 Arithmetic With Polynomials and NTT Representations

The algebraic operations of addition and scalar multiplication in 𝑅𝑞 and 𝑇𝑞 are done coordinate-
wise. For example, if 𝑎 ∈ ℤ𝑞 and 𝑓 ∈ 𝑅𝑞, the 𝑖-th coefficient of the polynomial 𝑎 ⋅ 𝑓 ∈ 𝑅𝑞 is
equal to 𝑎 ⋅ 𝑓𝑖 mod 𝑞. In pseudocode, elements of both 𝑅𝑞 and 𝑇𝑞 are represented by coefficient
arrays (i.e., elements of ℤ256

𝑞). The algebraic operations of addition and scalar multiplication are
thus performed by addition and scalar multiplication of the corresponding coefficient arrays,
as in (2.3) and (2.2). For example, the addition of two NTT representations in pseudocode is
performed by a statement of the form ̂ ̂ ̂ ̂ ̂ ̂ are coefficient arrays. ℎ ← 𝑓 + 𝑔, where ℎ,𝑓, 𝑔 ∈ ℤ256

𝑞

The algebraic operations of multiplication in 𝑅𝑞 and 𝑇𝑞 are treated as follows. For efficiency
reasons, multiplication in 𝑅𝑞 will not be used. The algebraic meaning of multiplication in 𝑇𝑞 is
discussed in Section 4.3.1. In pseudocode, it will be performed by the algorithm MultiplyNTTs
(Algorithm 11). Specifically, if ̂ ̂ are a pair of arrays (each representing the NTT of some𝑓,𝑔 ∈ ℤ256

𝑞
polynomial), then

̂ 𝑔 means ℎ ← MultiplyNTTs(ℎ ← 𝑓 ×𝑇𝑞
 𝑓,𝑔) . ̂ ̂ ̂ ̂ (2.8)̂

The result is an array ̂
𝑞 .ℎ ∈ ℤ256

2.4.6 Matrices and Vectors

In addition to arrays of integers modulo 𝑞, the pseudocode will also make use of arrays whose
entries are themselves elements of ℤ256

𝑞 . For example, an element 𝐯 ∈ (ℤ256
𝑞)3 will be a length-

three array whose entries 𝐯[0], 𝐯[1], and 𝐯[2] are themselves elements of ℤ256
𝑞 (i.e., arrays). One

can think of each of these entries as representing a polynomial in 𝑅𝑞 so that 𝐯 itself represents
an element of the module 𝑅𝑞

3 .

When arrays are used to represent matrices and vectors whose entries are elements of 𝑅𝑞, they
will be denoted with bold letters (e.g., 𝐯 for vectors and 𝐀 for matrices). When arrays are used
to represent matrices and vectors whose entries are elements of 𝑇𝑞, they will be denoted with a

“hat” (e.g., �̂� and �̂�). Unless an explicit transpose operation is performed, it is understood that
vectors are column vectors. One can then view vectors as the special case of matrices with only
one column.

Converting between matrices over 𝑅𝑞 and matrices over 𝑇𝑞 will be done coordinate-wise. For

9

FIPS 203 MODULE-LATTICE-BASED KEY-ENCAPSULATION MECHANISM

)𝑘 example, if 𝐯 ∈ (ℤ256
𝑞 , then the statement

̂ 𝐯 ← NTT(𝐯) (2.9)

will result in ̂)𝑘 such that 𝐯[𝑖]̂ = NTT(𝐯[𝑖]) for all 𝑖. This involves running NTT a total 𝐯 ∈ (ℤ256
𝑞

of 𝑘 times.

2.4.7 Arithmetic With Matrices and Vectors

The following describes how to perform arithmetic with matrices over 𝑅𝑞 and 𝑇𝑞 with vectors as
a special case.

Addition and scalar multiplication are performed coordinate-wise, so the addition of matrices
over 𝑅𝑞 and 𝑇𝑞 is straightforward. In the case of 𝑇𝑞, scalar multiplication is done via (2.8). For

example, if 𝑓 ∈ ℤ256 and ̂ ̂ 𝑞 , then̂
𝑞 𝐮, 𝐯 ∈ (ℤ256)𝑘

𝐰 ← 𝑓 ⋅ 𝐮 ̂ ̂ ̂ (2.10)

̂ 𝐯 𝐳 ← 𝐮 + ̂ ̂ (2.11)

will result in ̂ ̂ 𝑞)𝑘 satisfying 𝐰[𝑖] = ̂ ̂ ̂ ̂ ̂𝐰,𝐳 ∈ (ℤ256 ̂ 𝑓 ×𝑇𝑞
𝐮[𝑖] and 𝐳[𝑖] = 𝐮[𝑖] + 𝐯[𝑖] for all 𝑖. Here, the

multiplication and addition of individual entries are performed using the appropriate arithmetic
for coefficient arrays of elements of 𝑇𝑞 (i.e., as in (2.3)).

It will also be necessary to multiply matrices with entries in 𝑇𝑞, which is done by using standard
matrix multiplication with the base-case multiplication (i.e., multiplication of individual entries)
being multiplication in 𝑇𝑞. If �̂� and �̂� are two matrices with entries in 𝑇𝑞, their matrix product

will be denoted 𝐀 ∘̂ 𝐁.̂ Some example pseudocode statements involving matrix multiplication
are given in (2.12), (2.13), and (2.14). In these examples, �̂� is a 𝑘 × 𝑘 matrix, while �̂� and �̂� are
vectors of length 𝑘. All three of these objects are represented in pseudocode by arrays: a 𝑘 × 𝑘
array for �̂� and length-𝑘 arrays for �̂� and �̂�. The entries of �̂� , �̂�, and �̂� are elements of ℤ256

𝑞 . In
(2.12) and (2.13), the pseudocode statement on the left produces a new length-𝑘 vector whose
entries are specified on the right. In (2.14), the pseudocode statement on the left computes a

𝑧 of ℤ256dot product. The result is in the base ring (i.e., 𝑇𝑞) and is represented by an element ̂ 𝑞 .

𝑘−1

𝐰 ← 𝐀∘ 𝐮 𝐰[𝑖] = ∑𝐀[𝑖,𝑗]×𝑇𝑞
𝐮[𝑗]

𝑗=0

̂ ̂ ̂ ̂ ̂ ̂ (2.12)

𝑘−1

𝐲 ← 𝐀⊺ ∘𝐮 𝐲[𝑖] = ∑𝐀[𝑗, 𝑖]×𝑇𝑞
𝐮[𝑗]

𝑗=0

̂ ̂ ̂ ̂ ̂ ̂ (2.13)

𝑘−1

𝑧 ← 𝑧 = ∑𝐮[𝑗]×𝑇𝑞
𝐯[𝑗] 𝐮⊺ ∘𝐯

𝑗=0

̂ ̂ ̂ ̂ (2.14)̂ ̂

The multiplication ×𝑇𝑞
of individual entries above is performed using MultiplyNTTs, as described

in (2.8).

10

FIPS 203 MODULE-LATTICE-BASED KEY-ENCAPSULATION MECHANISM

2.4.8 Applying Algorithms to Arrays, Examples

In the previous examples, arithmetic over ℤ𝑚 was extended to arithmetic with arrays over ℤ𝑚
and then further extended to arithmetic with matrices whose entries are themselves arrays over
ℤ𝑚. Similarly, algorithms defined with a given data type as input will be applied to arrays and
matrices over that data type. When the pseudocode invokes such an algorithm on an array or
matrix input, it is implied that the algorithm is invoked repeatedly and applied to each entry of
the input.

For example, consider the function Compress𝑑
∶ ℤ𝑞 → ℤ2𝑑 defined in Section 4. It can be invoked

on an array input 𝐹 ∈ ℤ256
𝑞 with the statement

𝐾 ← Compress𝑑(𝐹) . (2.15)

The result will be an array 𝐾 ∈ ℤ256 such that 𝐾[𝑖] = Compress𝑑(𝐹 [𝑖]) for every 𝑖 ∈ {0,1,…,255}.
The computation (2.15) involves

2𝑑

running the Compress algorithm 256 times.

For a second example, consider the algorithm NTT defined in Section 4.3. It takes an array 𝑓 ∈
ℤ256 ̂(representing an element of 𝑅𝑞) as input and outputs another array 𝑓 ∈ ℤ256 (representing 𝑞 𝑞

an element of 𝑇𝑞). If the NTT algorithm is invoked on a vector 𝐬 ∈ (ℤ256
𝑞)𝑘 (representing an

element of 𝑅𝑞
𝑘) with the pseudocode statement

̂ 𝐬 ← NTT(𝐬) , (2.16)

the result is a vector ̂ 𝑞)𝑘 such that 𝐬[𝑖] = NTT(𝐬[𝑖]) for all 𝑖 ∈ {0,1,…,𝑘−1}. The vector 𝐬 ∈ (ℤ256 ̂
𝐬 ̂ represents an element of 𝑇𝑞

𝑘 . The computation (2.16) involves running the NTT algorithm 𝑘
times.

For a third example, consider line 2 of K-PKE.Encrypt in Section 5.2:

̂𝐭 ← ByteDecode12(ekPKE[0 ∶ 384𝑘]) . (2.17)

ByteDecode12
is defined to receive a byte array of length 32 ⋅ 12 = 384 as input and produce

an integer array in ℤ256
𝑞 as output. The computation (2.17) is run on the first 384𝑘 bytes of

byte array ekPKE and results in ̂ 𝑞)𝑘 𝐭 ∈ (ℤ256 . ByteDecode12
will thus be applied 𝑘 times, once for

̂each subarray ekPKE[384 ⋅ 𝑗,384 ⋅ (𝑗 + 1)], and will result in an integer array 𝐭[𝑗] ∈ ℤ256
𝑞 such that

̂ [384 ⋅ 𝑗,384 ⋅ (𝑗 +1)]) for each 𝑗 from 0 to 𝑘 − 1.𝐭[𝑗] = ByteDecode12(ekPKE

11

FIPS 203 MODULE-LATTICE-BASED KEY-ENCAPSULATION MECHANISM

3. Overview of the ML-KEM Scheme

This section gives a high-level overview of the ML-KEM scheme.

3.1 Key-Encapsulation Mechanisms

The following is a high-level overview of key-encapsulation mechanisms (KEMs). For details, see
SP 800-227 [1].

A KEM is a cryptographic scheme that, under certain conditions, can be used to establish a shared
secret key between two communicating parties. This shared secret key can then be used for
symmetric-key cryptography.

A KEM consists of three algorithms and a collection of parameter sets. The three algorithms are:

1. A probabilistic key generation algorithm denoted by KeyGen

2. A probabilistic ”encapsulation” algorithm denoted by Encaps

3. A deterministic ”decapsulation” algorithm denoted by Decaps

The collection of parameter sets is used to select a trade-off between security and efficiency.
Each parameter set in the collection is a list of specific (typically numerical) values, one for each
parameter required by the three algorithms.

Figure 1. A simple view of key establishment using a KEM

12

Alice Bob

decapsulation key

Decaps ciphertext

Alice’s copy of the
shared secret key

Encaps

Bob’s copy of the
shared secret key

encapsulation key

KeyGen

𝐾′ 𝐾

FIPS 203 MODULE-LATTICE-BASED KEY-ENCAPSULATION MECHANISM

In the typical application, a KEM is used to establish a shared secret key between two parties
(here referred to as Alice and Bob) as described in Figure 1. Alice begins by running KeyGen in
order to generate a (public) encapsulation key and a (private) decapsulation key. Upon obtaining
Alice’s encapsulation key, Bob runs the Encaps algorithm, which produces Bob’s copy 𝐾 of the
shared secret key along with an associated ciphertext. Bob sends the ciphertext to Alice, and
Alice completes the process by running the Decaps algorithm using her decapsulation key and
the ciphertext. This final step produces Alice’s copy 𝐾′ of the shared secret key.

After completing this process, Alice and Bob would like to conclude that their outputs satisfy
𝐾′ = 𝐾 and that this value is a secure, random, shared secret key. However, these properties
only hold if certain important conditions are satisfied, as discussed in SP 800-227 [1].

3.2 The ML-KEM Scheme

ML-KEM is a key-encapsulation mechanism based on CRYSTALS-KYBER [4], a scheme that was
initially described in [8]. The following is a brief and informal description of the computational
assumption underlying ML-KEM and how the ML-KEM scheme is constructed.

The computational assumption. The security of ML-KEM is based on the presumed hardness
of the so-called Module Learning with Errors (MLWE) problem [9], which is a generalization of
the Learning With Errors (LWE) problem introduced by Regev in 2005 [10]. The hardness of the
MLWE problem is itself based on the presumed hardness of certain computational problems in
module lattices [9]. This motivates the name of the scheme ML-KEM.

In the LWE problem, the input is a set of random “noisy” linear equations in some secret
variables 𝑥 ∈ ℤ𝑛

𝑞 , and the task is to recover 𝑥. The noise in the equations is such that standard
algorithms (e.g., Gaussian elimination) are intractable. The LWE problem naturally lends itself to
cryptographic applications. For example, if 𝑥 is interpreted as a secret key, then one can encrypt
a one-bit plaintext value by sampling either an approximately correct linear equation (if the
plaintext is zero) or a far-from-correct linear equation (if the plaintext is one). Plausibly, only a
party in possession of 𝑥 can distinguish these two cases. Encryption can then be delegated to
another party by publishing a large collection of noisy linear equations, which can be combined
appropriately by the encrypting party. The result is an asymmetric encryption scheme.

The MLWE problem is similar to the LWE problem. An important difference is that, in MLWE, ℤ𝑛
𝑞

is replaced by a certain module 𝑅𝑞
𝑘 , which is constructed by taking the 𝑘-fold Cartesian product

of a certain polynomial ring 𝑅𝑞. In particular, the secret in the MLWE problem is an element 𝐱 of
the module 𝑅𝑞

𝑘 . The ring 𝑅𝑞 is discussed in detail in Section 4.3.

The ML-KEM construction. At a high level, the construction of the scheme ML-KEM proceeds in
two steps. First, the ideas discussed previously are used to construct a public-key encryption (PKE)
scheme from the MLWE problem. Second, this PKE scheme is converted into a key-encapsulation
mechanism using the so-called Fujisaki-Okamoto (FO) transform [11, 12]. Due to certain prop-
erties of the FO transform, the resulting KEM provides security in a significantly more general
attack model than the PKE scheme. As a result, ML-KEM is believed to satisfy so-called IND-CCA2
security [1, 4, 13, 14].

13

FIPS 203 MODULE-LATTICE-BASED KEY-ENCAPSULATION MECHANISM

The specification of the ML-KEM algorithms in this standard will follow the same pattern. Specif-
ically, this standard will first describe a public-key encryption scheme called K-PKE (in Section 5)
and then use the algorithms of K-PKE as subroutines when describing the algorithms of ML-KEM
(in Sections 6 and 7). The cryptographic transformation from K-PKE to ML-KEM is crucial for
achieving IND-CCA2 security. The scheme K-PKE is not IND-CCA2-secure and shall not be used as
a stand-alone scheme (see Section 3.3).

A notable feature of ML-KEM is the use of the number-theoretic transform (NTT). The NTT
̂converts a polynomial 𝑓 ∈ 𝑅𝑞 to an alternative representation as a vector 𝑓 of linear polynomials.

Working with NTT representations enables significantly faster multiplication of polynomials.
Other operations (e.g., addition, rounding, and sampling) can be done in either representation.

ML-KEM satisfies the essential KEM property of correctness. This means that in the absence
of corruption or interference, the process in Figure 1 will result in 𝐾′ = 𝐾 with overwhelming
probability. ML-KEM also comes with a proof of asymptotic theoretical security in a certain
heuristic model [4]. Each of the parameter sets of ML-KEM comes with an associated security
strength that was estimated based on current cryptanalysis (see Section 8 for details).

Parameter sets and algorithms. Recall that a KEM consists of algorithms KeyGen, Encaps, and
Decaps, along with a collection of parameter sets. In the case of ML-KEM, the three aforemen-

tioned algorithms are:

1. ML-KEM.KeyGen (Algorithm 19)

2. ML-KEM.Encaps (Algorithm 20)

3. ML-KEM.Decaps (Algorithm 21)

These algorithms are described and discussed in detail in Section 7.

ML-KEM comes equipped with three parameter sets:

• ML-KEM-512 (security category 1)

• ML-KEM-768 (security category 3)

• ML-KEM-1024 (security category 5)

These parameter sets are described and discussed in detail in Section 8. The security categories
1-5 are defined in SP 800-57, Part 1 [7]. Each parameter set assigns a particular numerical value
to five integer variables: 𝑘, 𝜂1, 𝜂2, 𝑑𝑢, and 𝑑𝑣. The values of these variables in each parameter
set are given in Table 2 of Section 8. In addition to these five variable parameters, there are also
two constants: 𝑛 = 256 and 𝑞 = 3329.

Decapsulation failures. Provided that all inputs are well-formed and randomness generation is
successful, the key establishment procedure of ML-KEM will never explicitly fail, meaning that
both ML-KEM.Encaps and ML-KEM.Decaps will each output a 256-bit value. Moreover, if no
corruption or interference is present, the two 256-bit values produced by ML-KEM.Encaps and
ML-KEM.Decaps will be equal with overwhelming probability (i.e., 𝐾′ will equal 𝐾 in the process
described in Figure 1). The event that 𝐾′ ≠ 𝐾 under these conditions is called a decapsulation

14

FIPS 203 MODULE-LATTICE-BASED KEY-ENCAPSULATION MECHANISM

failure. Formally, the decapsulation failure probability is defined to be the probability (conditioned
on no RGB failures) that the process

1. (ek,dk) ← ML-KEM.KeyGen() (3.1)

2. (𝑐,𝐾) ← ML-KEM.Encaps(ek) (3.2)

3. 𝐾′ ← ML-KEM. (, 𝑐) Decaps dk (3.3)

results in 𝐾′ ≠ 𝐾. The probability is taken over uniformly random seeds 𝑑,𝑧 (sampled in
ML-KEM.KeyGen) and 𝑚 (sampled in ML-KEM.Encaps) and under the heuristic assumption that
hash functions and XOFs behave like uniformly random functions. The decapsulation failure rates
for ML-KEM are listed in Table 1. For details, see Theorem 1 in [8] and the scripts in [15].

Table 1. Decapsulation failure rates for ML-KEM

Parameter set Decapsulation failure rate

ML-KEM-512 2−138.8

ML-KEM-768 2−164.8

ML-KEM-1024 2−174.8

Terminology for keys. A KEM involves three different types of keys: encapsulation keys, de-
capsulation keys, and shared secret keys. ML-KEM is built on top of the component public-key
encryption scheme K-PKE, which has two additional key types: encryption keys and decryption
keys. In the literature, encapsulation keys and encryption keys are sometimes referred to as
“public keys,” while decapsulation keys and decryption keys are sometimes referred to as “pri-
vate keys.” In order to reduce confusion, this standard will not use the terms “public key” or
“private key.” Instead, keys will be referred to only using the more specific terms, i.e., one of
“encapsulation key”, “decapsulation key”, “encryption key”, “decryption key”, and “shared secret
key”.

3.3 Requirements for ML-KEM Implementations

This section describes several requirements for cryptographic modules that implement ML-KEM.
Implementation requirements specific to particular algorithms will be described in later sections.
Additional requirements, including requirements for using ML-KEM in specific applications,
are given in SP 800-227 [1]. While conforming implementations must adhere to all of these
requirements, adherence does not guarantee that the result will be secure (see Point 13 in the
announcement).

K-PKE is only a component. The public-key encryption scheme K-PKE described in Section 5 shall
not be used as a stand-alone cryptographic scheme. Instead, the algorithms that comprise K-PKE
may only be used as subroutines in the algorithms of ML-KEM. In particular, the algorithms
K-PKE.KeyGen (Algorithm 13), K-PKE.Encrypt (Algorithm 14), and K-PKE.Decrypt (Algorithm 15)
are not approved for use as a public-key encryption scheme.

15

FIPS 203 MODULE-LATTICE-BASED KEY-ENCAPSULATION MECHANISM

Controlled access to internal functions. The key-encapsulation mechanism ML-KEM makes use
of internal, “derandomized” functions ML-KEM.KeyGen_internal, ML-KEM.Encaps_internal, and
ML-KEM.Decaps_internal, specified in Section 6. The interfaces for these functions should not
be made available to applications other than for testing purposes. In particular, the sampling of
random values required for key generation (as specified in ML-KEM.KeyGen) and encapsulation
(as specified in ML-KEM.Encaps) shall be performed by the cryptographic module.

Equivalent implementations. For every algorithm that is specified in this standard, a conforming
implementation may replace the given set of steps with any mathematically equivalent set of
steps. In other words, the specified algorithm may be replaced with a different procedure that
produces the correct output for every input (where “input” includes the specified input as well
as all parameter values and all randomness).

Approved usage of the shared secret key. If randomness generation is successful, the values
𝐾 and 𝐾′ returned by ML-KEM.Encaps and ML-KEM.Decaps, respectively, are always 256-bit
values. Under appropriate conditions (see Sections 3.1 and 3.2, and SP 800-227 [1]), these values
match (i.e., 𝐾′ = 𝐾) and can be used directly as a shared secret key for symmetric cryptography.
If further key derivation is needed, the final symmetric keys shall be derived from this 256-bit
shared secret key in an approved manner, as specified in SP 800-108 and SP 800-56C [16, 17].

As discussed in Section 3.2, ML-KEM is an IND-CCA2-secure KEM. However, a combined KEM
that includes ML-KEM as a component might not meet IND-CCA2 security. Implementers should
assess the security of any procedure in which the key derivation methods of SP 800-56C are
applied to ML-KEM in combination with another key establishment procedure. More guidance
regarding combined KEMs is given in SP 800-227 [1].

Randomness generation. Two algorithms in this standard require the generation of randomness
as an internal step: ML-KEM.KeyGen and ML-KEM.Encaps. In pseudocode, this randomness

$
generation is denoted by a statement of the form 𝑚 ←− 𝔹32 . A fresh string of random bytes
must be generated for every such invocation. These random bytes shall be generated using an
approved RBG, as prescribed in SP 800-90A, SP 800-90B, and SP 800-90C [18, 19, 20]. Moreover,
this RBG shall have a security strength of at least 128 bits for ML-KEM-512, at least 192 bits for
ML-KEM-768, and at least 256 bits for ML-KEM-1024.

Input checking. The algorithms ML-KEM.Encaps and ML-KEM.Decaps require input checking.
Implementers shall ensure that ML-KEM.Encaps and ML-KEM.Decaps are only executed on
inputs that have been checked, as described in Section 7.

Destruction of intermediate values. Data used in intermediate computation steps of KEM
algorithms could be used by an adversary to compromise security. Therefore, implementers
shall ensure that intermediate data is destroyed as soon as it is no longer needed. In particular,
for ML-KEM.KeyGen, ML-KEM.Encaps, and ML-KEM.Decaps, only the designated output can be
retained in memory after the algorithm terminates. All other data shall be destroyed prior to

16

FIPS 203 MODULE-LATTICE-BASED KEY-ENCAPSULATION MECHANISM

the algorithm terminating.

There are two exceptions to this rule:

1. The seed (𝑑,𝑧) generated in steps 1 and 2 of ML-KEM.KeyGen can be stored for later
expansion using ML-KEM.KeyGen_internal. As this seed can be used to compute the
decapsulation key, it is sensitive data and shall be treated with the same safeguards as a
decapsulation key (see SP 800-227 [1]).

2. The matrix �̂� generated in steps 3-7 of K-PKE.KeyGen (as a subroutine of ML-KEM.KeyGen)
can be stored so that it need not be recomputed in later operations (e.g., ML-KEM.Decaps).
The same matrix �̂� is also generated in steps 4-8 of K-PKE.Encrypt (as a subroutine of
ML-KEM.Encaps or ML-KEM.Decaps); it can also then be stored. In either case, the matrix
�̂� is data that is easily computed from the public encapsulation key and thus does not
require any special protections.

No floating-point arithmetic. Implementations of ML-KEM shall not use floating-point arithmetic,
as rounding errors in floating-point operations may lead to incorrect results in some cases. In
all pseudocode in this standard in which division is performed (e.g., 𝑥/𝑦) and 𝑦 may not divide
𝑥, either ⌊𝑥/𝑦⌋, ⌈𝑥/𝑦⌉, or ⌈𝑥/𝑦⌋ is used. All of these can be computed without floating-point
arithmetic, as ordinary integer division 𝑥/𝑦 computes ⌊𝑥/𝑦⌋, and ⌈𝑥/𝑦⌉ = ⌊(𝑥 + 𝑦 − 1)/𝑦⌋ for
non-negative integers 𝑥 and positive integers 𝑦.

17

FIPS 203 MODULE-LATTICE-BASED KEY-ENCAPSULATION MECHANISM

4. Auxiliary Algorithms

4.1 Cryptographic Functions

The algorithms specified in this publication require the use of several cryptographic functions.
Each function shall be instantiated by means of an approved hash function or an approved
eXtendable-Output Function (XOF), as prescribed below. The relevant hash functions and XOFs
are described in detail in FIPS 202 [6]. They will be used as follows.

SHA3-256 and SHA3-512 are hash functions with one variable-length input and one fixed-length
output. In this standard, invocations of these functions on an input 𝑀 will be denoted by
SHA3-256(𝑀) and SHA3-512(𝑀), respectively. The inputs and outputs for both SHA3-256 and
SHA3-512 are always byte arrays.

SHAKE128 and SHAKE256 are XOFs with one variable-length input and one variable-length output.
This standard will adhere to the following conventions [6]:

• The inputs and outputs for both SHAKE128 and SHAKE256 are always byte arrays.

• When invoking SHAKE128 or SHAKE256, desired output length is always specified in bits.

For example, the expression
𝑟 ∶= SHAKE128(𝑀,8 ⋅ 64) (4.1)

implies that 𝑀 is an array of bytes and that 𝑟 is an array of 64 bytes.

The aforementioned functions play several different roles in the algorithms specified in this
standard and will only be invoked using the wrapper functions defined below. Importantly, these
wrappers will avoid any potential “byte array” versus “bit-length” confusion by only working with
bytes and byte array lengths.

Pseudorandom function (PRF). The function PRF takes a parameter 𝜂 ∈ {2,3}, one 32-byte
input, and one 1-byte input. It produces one (64 ⋅ 𝜂)-byte output. It will be denoted by

PRF ∶ {2,3}×𝔹32 ×𝔹 → 𝔹64𝜂 , (4.2)

and it shall be instantiated as

PRF𝜂(𝑠,𝑏) ∶= SHAKE256(𝑠‖𝑏,8 ⋅ 64 ⋅ 𝜂) , (4.3)

where 𝜂 ∈ {2,3}, 𝑠 ∈ 𝔹32 , and 𝑏 ∈ 𝔹. Note that 𝜂 is only used to specify the desired output
length and not to perform domain separation.

Hash functions. The specification will also make use of three hash functions H, J and G, which
are defined as follows.

The functions H and J each take one variable-length input and produce one 32-byte output. They
will be denoted by H ∶ 𝔹∗ → 𝔹32 and J ∶ 𝔹∗ → 𝔹32 , respectively, and shall be instantiated as

H(𝑠) ∶= SHA3-256(𝑠) and J(𝑠) ∶= SHAKE256(𝑠,8 ⋅ 32) (4.4)

18

FIPS 203 MODULE-LATTICE-BASED KEY-ENCAPSULATION MECHANISM

where 𝑠 ∈ 𝔹∗ .

The function G takes one variable-length input and produces two 32-byte outputs. It will be
denoted by G ∶ 𝔹∗ → 𝔹32 × 𝔹32 . The two outputs of G will be denoted by (𝑎,𝑏) ← G(𝑐), where
𝑎,𝑏 ∈ 𝔹32 , 𝑐 ∈ 𝔹∗ , and G(𝑐) = 𝑎‖𝑏. The function G shall be instantiated as

G(𝑐) ∶= SHA3-512(𝑐) . (4.5)

eXtendable-Output Function (XOF). This standard uses a XOF wrapper defined in terms of the
incremental API for SHAKE128 in SP 800-185 [21]. This SHAKE128 API consists of three functions:

• ctx ← SHAKE128.Init()
Initializes a XOF “context” ctx.

• ctx ← SHAKE128.Absorb(ctx,str)
Injects data to be used in the “absorbing” phase of SHAKE128 and updates the context
accordingly.

• (ctx,𝐵) ← SHAKE128.Squeeze(ctx,8 ⋅ 𝑧)
Extracts 𝑧 output bytes produced during the “squeezing” phase of SHAKE128 and updates
the context accordingly.

While the above functions are constructed using the Keccak-𝑓 permutation rather than the XOF
SHAKE128 directly, they are defined so that a single SHAKE128 call of the form

output ← SHAKE128(str1‖…‖str𝑚,8𝑏1 +…+8𝑏ℓ) (4.6)

is equivalent to performing Algorithm 2. This equivalence holds whether or not |str𝑖| and 𝑏𝑗 are
multiples of the SHAKE128 block length.

Algorithm 2 SHAKE128example(str1,…,str𝑚, 𝑏1,…,𝑏ℓ)

Performs a sequence of absorbing operations followed by a sequence of squeezing operations.

Input: byte arrays str1,…,str𝑚.
Input: positive integers 𝑏1,…,𝑏ℓ.
Output: a byte array of length ∑ℓ

𝑗=1
𝑏𝑗.

1: ctx ← SHAKE128.Init() ▷ initialize context
2: for (𝑖 ← 1; 𝑖 ≤ 𝑚; 𝑖++)
3: ctx ← SHAKE128.Absorb(ctx,str𝑖) ▷ absorb byte array str𝑖
4: end for
5: for (𝑗 ← 1; 𝑗 ≤ ℓ; 𝑗++)
6: (ctx,out𝑗) ← SHAKE128.Squeeze(ctx,8 ⋅ 𝑏𝑗) ▷ squeeze 𝑏𝑗-many bytes
7: end for
8: output ← out1‖…‖outℓ ▷ return the concatenation of all the results

In this standard, the incremental API for SHAKE128 will only be invoked through a wrapper XOF,
19

FIPS 203 MODULE-LATTICE-BASED KEY-ENCAPSULATION MECHANISM

which is defined as follows.

1. XOF.Init() = SHAKE128.Init().

2. XOF.Absorb(ctx, str) = SHAKE128.Absorb(ctx,str).

3. XOF.Squeeze(ctx, ℓ) = SHAKE128.Squeeze(ctx,8 ⋅ ℓ).

Note that XOF.Squeeze requires the input length to be specified in bytes. This is consistent with
the convention that all wrapper functions treat inputs and outputs as byte arrays and measure
the lengths of all such arrays in terms of bytes.

4.2 General Algorithms

This section specifies a number of algorithms that will be used as subroutines in ML-KEM.

4.2.1 Conversion and Compression Algorithms

This section specifies several algorithms for converting between bit arrays, byte arrays, and arrays
of integers modulo 𝑚. It also specifies a certain operation for compressing integers modulo 𝑞,
and the corresponding decompression operation.

Algorithm 3 BitsToBytes(𝑏)

Converts a bit array (of a length that is a multiple of eight) into an array of bytes.

Input: bit array 𝑏 ∈ {0,1}8⋅ℓ .
Output: byte array 𝐵 ∈ 𝔹ℓ .

1: 𝐵 ← (0,…,0)
2: for (𝑖 ← 0; 𝑖 < 8ℓ; 𝑖++)
3: 𝐵[⌊𝑖/8⌋] ← 𝐵[⌊𝑖/8⌋]+𝑏[𝑖] ⋅ 2𝑖 mod 8

4: end for
5: return 𝐵

Algorithm 4 BytesToBits(𝐵)

Performs the inverse of BitsToBytes, converting a byte array into a bit array.

Input: byte array 𝐵 ∈ 𝔹ℓ .
Output: bit array 𝑏 ∈ {0,1}8⋅ℓ .

1: 𝐶 ← 𝐵 ▷ copy 𝐵 into array 𝐶 ∈ 𝔹ℓ

2: for (𝑖 ← 0; 𝑖 < ℓ; 𝑖++)
3: for (𝑗 ← 0; 𝑗 < 8; 𝑗++)
4: 𝑏[8𝑖+𝑗] ← 𝐶[𝑖] mod 2
5: 𝐶[𝑖] ← ⌊𝐶[𝑖]/2⌋
6: end for
7: end for
8: return 𝑏

20

FIPS 203 MODULE-LATTICE-BASED KEY-ENCAPSULATION MECHANISM

Converting between bits and bytes. The algorithms BitsToBytes (Algorithm 3) and BytesToBits
(Algorithm 4) convert between bit arrays and byte arrays. The inputs to BitsToBytes and the
outputs of BytesToBits are bit arrays, with each segment of eight bits representing a byte in
little-endian order. As an example, the 8-bit string 11010001 corresponds to the byte 20 +21 +
23 +27 = 139.

Compression and decompression. Recall that 𝑞 = 3329, and that the bit length of 𝑞 is 12. For
𝑑 < 12, define

Compress𝑑
∶ ℤ𝑞 ⟶ ℤ2𝑑

𝑥 ⟼ ⌈(2𝑑/𝑞) ⋅ 𝑥⌋ mod 2𝑑 .
Decompress𝑑

∶ ℤ2𝑑 ⟶ ℤ𝑞

𝑦 ⟼ ⌈(𝑞/2𝑑) ⋅ 𝑦⌋.

(4.7)

(4.8)

The input and output types of these functions are integers modulo 𝑚 (see Section 2.4.1). Division
and rounding in the computation of these functions are performed in the set of rational numbers.
Floating-point computations shall not be used.

The Compress and Decompress algorithms satisfy two important properties. First, decompression
followed by compression preserves the input. That is, Compress𝑑(Decompress𝑑(𝑦)) = 𝑦 for
all 𝑦 ∈ ℤ2𝑑 and all 𝑑 < 12. Second, if 𝑑 is large (i.e., close to 12), compression followed by
decompression does not significantly alter the value.

Encoding and decoding. The algorithms ByteEncode (Algorithm 5) and ByteDecode (Algorithm
6) will be used for conversion between integers modulo 𝑚 and bytes. The algorithm ByteEncode
converts an array of 𝑛 = 256 integers modulo 𝑚 into a corresponding array of bytes. ByteDecode
performs the inverse operation, converting an array of bytes into an array of integers modulo 𝑚.
Specifying the modulus 𝑚 is done as described below.

For the following description, it is convenient to view ByteDecode and ByteEncode as converting
between integers and bits. The conversion between bits and bytes is straightforward and done
using BitsToBytes and BytesToBits. The valid range of values for the parameter 𝑑 is 1 ≤ 𝑑 ≤ 12.
Bit arrays are divided into 𝑑-bit segments. The operations are performed in two different ways,
depending on the value of 𝑑:

• For 𝑑 satisfying 1 ≤ 𝑑 ≤ 11, the conversion is one-to-one. ByteDecode𝑑
converts each

𝑑-bit segment of its input into one integer modulo 2𝑑 , while ByteEncode𝑑
performs the

inverse operation.

• For 𝑑 = 12, ByteDecode12
produces integers modulo 𝑞 as output, while ByteEncode12

receives integers modulo 𝑞 as input. Specifically, ByteDecode12
converts each 12-bit

segment of its input into an integer modulo 212 = 4096 and then reduces the result
modulo 𝑞. This is no longer a one-to-one operation. Indeed, some 12-bit segments could
correspond to an integer greater than 𝑞 − 1 = 3328 but less than 4096. However, this
cannot occur for arrays produced by ByteEncode12. These aspects of ByteDecode12

and

21

FIPS 203 MODULE-LATTICE-BASED KEY-ENCAPSULATION MECHANISM

ByteEncode12
will be important when considering checking of the ML-KEM encapsulation

key in Section 7.

Algorithm 5 ByteEncode (𝐹) 𝑑

Encodes an array of 𝑑-bit integers into a byte array for 1 ≤ 𝑑 ≤ 12.
Input: integer array 𝐹 ∈ ℤ256 , where 𝑚 = 2𝑑 if 𝑑 < 12, and 𝑚 = 𝑞 if 𝑑 = 12.𝑚
Output: byte array 𝐵 ∈ 𝔹32𝑑 .

1: for (𝑖 ← 0; 𝑖 < 256; 𝑖++)
2: 𝑎 ← 𝐹[𝑖] ▷ 𝑎 ∈ ℤ𝑚
3: for (𝑗 ← 0; 𝑗 < 𝑑; 𝑗++)
4: 𝑏[𝑖 ⋅ 𝑑 +𝑗] ← 𝑎 mod 2 ▷ 𝑏 ∈ {0,1}256⋅𝑑

5: 𝑎 ← (𝑎−𝑏[𝑖 ⋅ 𝑑 +𝑗])/2 ▷ note 𝑎 − 𝑏[𝑖 ⋅ 𝑑 + 𝑗] is always even
6: end for
7: end for
8: 𝐵 ← BitsToBytes(𝑏)
9: return 𝐵

Algorithm 6 ByteDecode (𝐵) 𝑑

Decodes a byte array into an array of 𝑑-bit integers for 1 ≤ 𝑑 ≤ 12.
Input: byte array 𝐵 ∈ 𝔹32𝑑 .
Output: integer array 𝐹 ∈ ℤ256 , where 𝑚 = 2𝑑 if 𝑑 < 12 and 𝑚 = 𝑞 if 𝑑 = 12.𝑚

1: 𝑏 ← BytesToBits(𝐵)
2: for (𝑖 ← 0; 𝑖 < 256; 𝑖++)
3: 𝐹 [𝑖] ← ∑𝑑−1

𝑗←0
𝑏[𝑖 ⋅ 𝑑 + 𝑗] ⋅ 2𝑗 mod 𝑚

4: end for
5: return 𝐹

4.2.2 Sampling Algorithms

The algorithms of ML-KEM require two sampling subroutines that are specified in Algorithms 7
and 8. Both of these algorithms can be used to convert a stream of uniformly random bytes into
a sample from some desired distribution. In this standard, these algorithms will be invoked with
a stream of pseudorandom bytes as the input. It follows that the output will then be a sample
from a distribution that is computationally indistinguishable from the desired distribution.

Uniform sampling of NTT representations. The algorithm SampleNTT (Algorithm 7) converts
a seed together with two indexing bytes into a polynomial in the NTT domain. If the seed is
uniformly random, the resulting polynomial will be drawn from a distribution that is computa-

tionally indistinguishable from the uniform distribution on 𝑇𝑞. The output of SampleNTT is an
array in ℤ256

𝑞 that contains the coefficients of the sampled element of 𝑇𝑞 (see Section 2.4.4). See
Appendix B for a note on (optionally) safely bounding the algorithm’s while-loop iterations.

22

FIPS 203 MODULE-LATTICE-BASED KEY-ENCAPSULATION MECHANISM

Algorithm 7 SampleNTT(𝐵)

Takes a 32-byte seed and two indices as input and outputs a pseudorandom element of 𝑇𝑞.

Input: byte array 𝐵 ∈ 𝔹34 . ▷ a 32-byte seed along with two indices
Output: array ̂ 𝑞 .𝑎 ∈ ℤ256 ▷ the coefficients of the NTT of a polynomial

1: ctx ← XOF.Init()
2: ctx ← XOF.Absorb(ctx,𝐵) ▷ input the given byte array into XOF
3: 𝑗 ← 0
4: while 𝑗 < 256 do
5: (ctx,𝐶) ← XOF.Squeeze(ctx,3) ▷ get a fresh 3-byte array 𝐶 from XOF
6: 𝑑1 ← 𝐶[0]+256 ⋅ (𝐶[1] mod 16) ▷ 0 ≤ 𝑑1 < 212

7: 𝑑2 ← ⌊𝐶[1]/16⌋+16 ⋅𝐶[2] ▷ 0 ≤ 𝑑2 < 212

8: if 𝑑1 < 𝑞 then
9: ̂ ▷ 𝑎 ∈ ℤ256

𝑞 𝑎[𝑗] ← 𝑑1 ̂
10: 𝑗 ← 𝑗 +1
11: end if
12: if 𝑑2 < 𝑞 and 𝑗 < 256 then
13: ̂𝑎[𝑗] ← 𝑑2
14: 𝑗 ← 𝑗 +1
15: end if
16: end while
17: return 𝑎̂

Sampling from the centered binomial distribution. ML-KEM makes use of a special distribution
D𝜂(𝑅𝑞) of polynomials in 𝑅𝑞 with small coefficients. Such polynomials are sometimes referred
to as “errors” or “noise.” The distribution is parameterized by an integer 𝜂 ∈ {2,3}. To sample a
polynomial from D𝜂(𝑅𝑞), each of its coefficients is independently sampled from a certain cen-
tered binomial distribution (CBD) on ℤ𝑞. The algorithm SamplePolyCBD (Algorithm 8) samples
the coefficient array of a polynomial 𝑓 ∈ 𝑅𝑞 according to the distribution D𝜂(𝑅𝑞), provided that

Algorithm 8 SamplePolyCBD (𝐵) 𝜂

Takes a seed as input and outputs a pseudorandom sample from the distribution D𝜂(𝑅𝑞).
Input: byte array 𝐵 ∈ 𝔹64𝜂 .
Output: array 𝑓 ∈ ℤ256

𝑞 . ▷ the coefficients of the sampled polynomial

1: 𝑏 ← BytesToBits(𝐵)
2: for (𝑖 ← 0; 𝑖 < 256; 𝑖++)
3: 𝑥 ← ∑𝜂−1 ▷ 0 ≤ 𝑥 ≤ 𝜂 𝑗←0

𝑏[2𝑖𝜂 + 𝑗]
4: 𝑦 ← ∑𝜂−1 ▷ 0 ≤ 𝑦 ≤ 𝜂 𝑗←0

𝑏[2𝑖𝜂 + 𝜂 + 𝑗]
5: 𝑓[𝑖] ← 𝑥−𝑦 mod 𝑞 ▷ 0 ≤ 𝑓[𝑖] ≤ 𝜂 or 𝑞 −𝜂 ≤ 𝑓[𝑖] ≤ 𝑞 −1
6: end for
7: return 𝑓

23

FIPS 203 MODULE-LATTICE-BASED KEY-ENCAPSULATION MECHANISM

its input is a stream of uniformly random bytes.

4.3 The Number-Theoretic Transform

The Number-Theoretic Transform (NTT) can be viewed as a specialized, exact version of the
discrete Fourier transform. In the case of ML-KEM, the NTT is used to improve the efficiency of
multiplication in the ring 𝑅𝑞. Recall that 𝑅𝑞 is the ring ℤ𝑞[𝑋]/(𝑋𝑛 +1) of polynomials of the
form 𝑓 = 𝑓0 +𝑓1𝑋 +⋯+𝑓255𝑋255 (where 𝑓𝑗 ∈ ℤ𝑞 for all 𝑗), with the ring operations defined
by arithmetic modulo 𝑋𝑛 +1.

The ring 𝑅𝑞 is isomorphic to another ring 𝑇𝑞, which is a direct sum of 128 quadratic extensions
of ℤ𝑞. The NTT is a computationally efficient isomorphism between these two rings. When a

polynomial 𝑓 ∈ 𝑅𝑞 is input, the NTT outputs an element ̂ ̂𝑓 ∶= NTT(𝑓) of the ring 𝑇𝑞, where 𝑓 is
called the “NTT representation” of 𝑓. The isomorphism property implies that

𝑓 ×𝑅𝑞
𝑔 = NTT−1(𝑓 × 𝑇𝑞

𝑔), ̂ ̂ (4.9)

where ×𝑅𝑞
and ×𝑇𝑞

denote multiplication in 𝑅𝑞 and 𝑇𝑞, respectively. Moreover, since 𝑇𝑞 is a
product of 128 rings that each consist of polynomials of degree at most one, the operation ×𝑇𝑞

is much more efficient than the operation ×𝑅𝑞
. For these reasons, the NTT is considered to be

an integral part of ML-KEM and not merely an optimization.

As the rings 𝑅𝑞 and 𝑇𝑞 have a vector space structure over ℤ𝑞, the most natural abstract data
type to represent elements from either of these rings is ℤ𝑛

𝑞 . For this reason, the choice of data
structure for the inputs and outputs of NTT and NTT−1

are length-𝑛 arrays of integers modulo
𝑞. These arrays are understood to represent elements of 𝑇𝑞 or 𝑅𝑞, respectively (see Section
2.4.4). Algorithms 9 and 10 describe an efficient means of computing NTT and NTT−1

in place.
However, to clarify the distinction between the algebraic objects before and after the conversion,
the algorithms are written with explicit inputs and outputs. This is consistent with this standard’s
convention that all inputs are passed by copy.

The mathematical structure of the NTT. In ML-KEM, 𝑞 is the prime 3329 = 28 ⋅ 13 + 1, and
𝑛 = 256. There are 128 primitive 256-th roots of unity and no primitive 512-th roots of unity in
ℤ𝑞. Note that 𝜁 = 17 ∈ ℤ𝑞 is a primitive 256-th root of unity modulo 𝑞. Thus, 𝜁128 ≡ −1.

Define BitRev7(𝑖) to be the integer represented by bit-reversing the unsigned 7-bit value that
corresponds to the input integer 𝑖 ∈ {0,…,127}.

The polynomial 𝑋256 +1 factors into 128 polynomials of degree 2 modulo 𝑞 as follows:

127

𝑋256 +1 = (𝑋2 −𝜁2BitRev7(𝑖)+1) . ∏
𝑖=0

(4.10)

Therefore, 𝑅𝑞 ∶= ℤ𝑞[𝑋]/(𝑋256 + 1) is isomorphic to a direct sum of 128 quadratic extension

24

FIPS 203 MODULE-LATTICE-BASED KEY-ENCAPSULATION MECHANISM

fields of ℤ𝑞, denoted 𝑇𝑞. Specifically, this ring has the structure

127

𝑇𝑞 ∶= ⨁ℤ𝑞[𝑋]/(𝑋2 −𝜁2BitRev7(𝑖)+1) .
𝑖=0

(4.11)

̂Thus, the NTT representation 𝑓 ∈ 𝑇𝑞 of a polynomial 𝑓 ∈ 𝑅𝑞 is the vector that consists of the
corresponding residues of degree at most one:

̂𝑓 ∶= (𝑓 mod (𝑋2 −𝜁2BitRev7(0)+1),…,𝑓 mod (𝑋2 −𝜁2BitRev7(127)+1)) . (4.12)

As discussed in Section 2.4.4, the algorithms in this standard represent 𝑓 ̂as an array of 256
integers modulo 𝑞. Specifically,

𝑓 mod (𝑋2 −𝜁2BitRev7(𝑖)+1) = 𝑓[2𝑖] + 𝑓[2𝑖 + 1]𝑋, ̂ ̂ (4.13)

for 𝑖 from 0 to 127.

The ML-KEM NTT algorithms. An algorithm for the ML-KEM NTT is described in Algorithm 9. An
algorithm for the inverse operation (NTT−1

) is described in Algorithm 10. These two algorithms
will be used to transform elements of 𝑅𝑞 to elements of 𝑇𝑞 (using NTT) and vice versa (using
NTT−1

). In addition, as discussed in Section 2.4.8, these algorithms represent the coordinate-
wise transformation of structures over those rings. Specifically, they map matrices/vectors with
entries in 𝑅𝑞 to matrices/vectors with entries in 𝑇𝑞 (using NTT) and vice versa (using NTT−1

).

The values 𝜁BitRev7(𝑖) mod 𝑞 for 𝑖 = 1,…,127 used in line 5 of Algorithm 9 and line 5 of Algorithm
10 may be precomputed into an array. This array is given in Appendix A.

25

FIPS 203 MODULE-LATTICE-BASED KEY-ENCAPSULATION MECHANISM

Algorithm 9 NTT(𝑓)

̂Computes the NTT representation 𝑓 of the given polynomial 𝑓 ∈ 𝑅𝑞.

Input: array 𝑓 ∈ ℤ256
𝑞 . ▷ the coefficients of the input polynomial

̂Output: array 𝑓 ∈ ℤ256
𝑞 . ▷ the coefficients of the NTT of the input polynomial

̂1: 𝑓 ← 𝑓 ▷ will compute in place on a copy of input array
2: 𝑖 ← 1
3: for (len ← 128; len ≥ 2; len ← len/2)
4: for (start ← 0; start < 256; start ← start +2 ⋅ len)

zeta ← 𝜁BitRev7(𝑖) mod 𝑞 5:

6: 𝑖 ← 𝑖+1
7: for (𝑗 ← start; 𝑗 < start + len; 𝑗++)

̂8: 𝑡 ← zeta ⋅ 𝑓[𝑗 + len] ▷ steps 8-10 done modulo 𝑞
̂ ̂9: 𝑓[𝑗 + len] ← 𝑓[𝑗]− 𝑡
̂ ̂10: 𝑓[𝑗] ← 𝑓[𝑗]+ 𝑡

11: end for
12: end for
13: end for
14: return 𝑓 ̂

 −1
Algorithm 10 NTT (𝑓) ̂

̂Computes the polynomial 𝑓 ∈ 𝑅𝑞 that corresponds to the given NTT representation 𝑓 ∈ 𝑇𝑞.

̂Input: array 𝑓 ∈ ℤ256
𝑞 . ▷ the coefficients of input NTT representation

Output: array 𝑓 ∈ ℤ256
𝑞 . ▷ the coefficients of the inverse NTT of the input

1: 𝑓 ← 𝑓 ̂ ▷ will compute in place on a copy of input array
2: 𝑖 ← 127
3: for (len ← 2; len ≤ 128; len ← 2⋅ len)
4: for (start ← 0; start < 256; start ← start +2 ⋅ len)

zeta ← 𝜁BitRev7(𝑖) mod 𝑞 5:

6: 𝑖 ← 𝑖−1
7: for (𝑗 ← start; 𝑗 < start + len; 𝑗++)
8: 𝑡 ← 𝑓[𝑗]
9: 𝑓[𝑗] ← 𝑡+𝑓[𝑗 + len] ▷ steps 9-10 done modulo 𝑞

10: 𝑓[𝑗 + len] ← zeta ⋅ (𝑓[𝑗 + len] − 𝑡)
11: end for
12: end for
13: end for
14: 𝑓 ← 𝑓 ⋅3303 mod 𝑞 ▷ multiply every entry by 3303 ≡ 128−1 mod 𝑞
15: return 𝑓

26

FIPS 203 MODULE-LATTICE-BASED KEY-ENCAPSULATION MECHANISM

4.3.1 Multiplication in the NTT Domain

The addition and scalar multiplication of elements of 𝑇𝑞 can be done using the corresponding
coordinate-wise arithmetic operations on the coefficient arrays (see Section 2.4.5). This section
describes how to do the remaining ring operation (i.e., multiplication in 𝑇𝑞).

̂Recall from (4.12) that 𝑓 ∈ 𝑇𝑞 is a vector of 128 degree-one residues modulo quadratic polyno-
mials. Algebraically, multiplication in the ring 𝑇𝑞 consists of independent multiplication in each
of the 128 coordinates with respect to the quadratic modulus of that coordinate. Specifically,
the 𝑖-th coordinate in 𝑇𝑞 of the product ℎ̂ = 𝑓 ×̂ 𝑇𝑞

𝑔 ̂ is determined by the calculation

̂ ̂ ̂ ̂ ̂ ̂ℎ[2𝑖]+ ℎ[2𝑖+1]𝑋 = (𝑓[2𝑖]+ 𝑓[2𝑖+1]𝑋)(𝑔[2𝑖]+ 𝑔[2𝑖+1]𝑋) mod (𝑋2 −𝜁2BitRev7(𝑖)+1).
(4.14)

Algorithm 11 MultiplyNTTs(𝑓, 𝑔) ̂ ̂
Computes the product (in the ring 𝑇𝑞) of two NTT representations.

Input: Two arrays 𝑓 ∈ ℤ256
𝑞 ̂ 𝑞 . ▷ the coefficients of two NTT representations ̂ and 𝑔 ∈ ℤ256

̂Output: An array ℎ ∈ ℤ256
𝑞 . ▷ the coefficients of the product of the inputs

1: for (𝑖 ← 0; 𝑖 < 128; 𝑖++)
̂ ̂ ̂ ̂ ̂ ̂2: (ℎ[2𝑖],ℎ[2𝑖+1]) ← BaseCaseMultiply(𝑓[2𝑖],𝑓[2𝑖 + 1],𝑔[2𝑖], 𝑔[2𝑖 + 1],𝜁2BitRev7(𝑖)+1)

3: end for
4: return ℎ̂

Thus, one can compute the product of two elements of 𝑇𝑞 using the algorithm MultiplyNTTs (Al-
gorithm 11), which uses BaseCaseMultiply (Algorithm 12) as a subroutine. The values 𝜁2BitRev7(𝑖)+1

used in Algorithm 11 may be precomputed and stored in an array (see Appendix A). MultiplyNTTs
also enables linear-algebraic arithmetic with matrices and vectors whose entries are in 𝑇𝑞 (see
Section 2.4.7).

Algorithm 12 BaseCaseMultiply(𝑎0,𝑎1, 𝑏0, 𝑏1,𝛾)

Computes the product of two degree-one polynomials with respect to a quadratic modulus.

Input: 𝑎0,𝑎1, 𝑏0, 𝑏1 ∈ ℤ𝑞. ▷ the coefficients of 𝑎0 + 𝑎1𝑋 and 𝑏0 + 𝑏1𝑋
Input: 𝛾 ∈ ℤ𝑞. ▷ the modulus is 𝑋2 −𝛾
Output: 𝑐0, 𝑐1 ∈ ℤ𝑞. ▷ the coefficients of the product of the two polynomials

1: 𝑐0 ← 𝑎0 ⋅ 𝑏0 +𝑎1 ⋅ 𝑏1 ⋅ 𝛾 ▷ steps 1-2 done modulo 𝑞
2: 𝑐1 ← 𝑎0 ⋅ 𝑏1 +𝑎1 ⋅ 𝑏0
3: return (𝑐0, 𝑐1)

27

FIPS 203 MODULE-LATTICE-BASED KEY-ENCAPSULATION MECHANISM

5. The K-PKE Component Scheme

This section describes the component scheme K-PKE. As discussed in Section 3.3, K-PKE is not
approved for use in a stand-alone fashion. It serves only as a collection of subroutines for use in
the algorithms of the approved scheme ML-KEM, as described in Section 7.

K-PKE consists of three algorithms:

1. Key generation (K-PKE.KeyGen)

2. Encryption (K-PKE.Encrypt)

3. Decryption (K-PKE.Decrypt)

When K-PKE is instantiated as part of ML-KEM, K-PKE inherits the parameter set selected for
ML-KEM. Each parameter set specifies numerical values for each parameter. While 𝑛 is always
256 and 𝑞 is always 3329, the values of the remaining parameters 𝑘, 𝜂1, 𝜂2, 𝑑𝑢, and 𝑑𝑣 vary
among the three parameter sets. Parameters and parameter sets are described in Section 8.

The algorithms in this section do not perform any input checking because they are only invoked as
subroutines of the main ML-KEM algorithms. The algorithms of ML-KEM themselves do perform
input checking as needed.

Each of the algorithms of K-PKE is accompanied by a brief, informal description in text. For
simplicity, this description is written in terms of vectors and matrices whose entries are elements
of 𝑅𝑞. In the actual algorithm, most of the computations occur in the NTT domain in order to
improve the efficiency of multiplication. The relevant vectors and matrices will then have entries
in 𝑇𝑞. Linear-algebraic arithmetic with such vectors and matrices (e.g., line 18 of K-PKE.KeyGen)
is performed as described in Sections 2.4.7 and 4.3.1. The encryption and decryption keys of
K-PKE are also stored in the NTT form.

5.1 K-PKE Key Generation

The key generation algorithm K-PKE.KeyGen of K-PKE (Algorithm 13) receives a seed as input and
outputs an encryption key ekPKE and a decryption key dkPKE. As is typically the case for public-key
encryption, the encryption key can be made public, while the decryption key and the randomness
must remain private. Indeed, the encryption key of K-PKE will serve as the encapsulation key of
ML-KEM (see ML-KEM.KeyGen below) and can thus be made public. Meanwhile, the decryption
key and seed of K-PKE.KeyGen must remain private as they can be used to perform decapsulation
in ML-KEM.

The matrix �̂� generated in steps 3-7 of K-PKE.KeyGen can be stored, as specified in Section 3.3.
This allows later operations to use �̂� directly rather than re-expanding it from the public seed 𝜌.

Informal description. The decryption key of K-PKE.KeyGen is a length-𝑘 vector 𝐬 of elements
of 𝑅𝑞 (i.e., 𝐬 ∈ 𝑅𝑞

𝑘). Roughly speaking, 𝐬 is a set of secret variables, while the encryption key is
a collection of “noisy” linear equations (𝐀,𝐀𝐬 + 𝐞) in the secret variables 𝐬. The rows of the
matrix 𝐀 form the equation coefficients. This matrix is generated pseudorandomly using XOF
with only a seed stored in the encryption key. The secret 𝐬 and the “noise” 𝐞 are sampled from

28

FIPS 203 MODULE-LATTICE-BASED KEY-ENCAPSULATION MECHANISM

Algorithm 13 K-PKE.KeyGen(𝑑)

Uses randomness to generate an encryption key and a corresponding decryption key.

Input: randomness 𝑑 ∈ 𝔹32 .
∈ 𝔹384𝑘+32Output: encryption key ekPKE .
∈ 𝔹384𝑘 Output: decryption key dkPKE .

1: (𝜌,𝜎) ← G(𝑑‖𝑘) ▷ expand 32+1 bytes to two pseudorandom 32-byte seeds1

2: 𝑁 ← 0
̂)𝑘×𝑘

3: for (𝑖 ← 0; 𝑖 < 𝑘; 𝑖++) ▷ generate matrix 𝐀∈ (ℤ256
𝑞

4: for (𝑗 ← 0; 𝑗 < 𝑘; 𝑗++)
̂5: 𝐀[𝑖,𝑗] ← SampleNTT(𝜌‖𝑗‖𝑖) ▷ 𝑗 and 𝑖 are bytes 33 and 34 of the input

6: end for
7: end for

)𝑘
8: for (𝑖 ← 0; 𝑖 < 𝑘; 𝑖++) ▷ generate 𝐬 ∈ (ℤ256

𝑞

9: 𝐬[𝑖] ← SamplePolyCBD𝜂1
(PRF𝜂1

(𝜎,𝑁)) ▷ 𝐬[𝑖] ∈ ℤ256 sampled from CBD𝑞

10: 𝑁 ← 𝑁 +1
11: end for

)𝑘
12: for (𝑖 ← 0; 𝑖 < 𝑘; 𝑖++) ▷ generate 𝐞 ∈ (ℤ256

𝑞

13: 𝐞[𝑖] ← SamplePolyCBD𝜂1
(PRF𝜂1

(𝜎,𝑁)) ▷ 𝐞[𝑖] ∈ ℤ256 sampled from CBD𝑞

14: 𝑁 ← 𝑁 +1
15: end for
16: ̂ ▷ run NTT 𝑘 times (once for each coordinate of 𝐬)𝐬 ← NTT(𝐬)
17: ̂ ▷ run NTT 𝑘 times𝐞 ← NTT(𝐞)

̂ ̂18: 𝐭 ← 𝐀∘ 𝐬+̂ 𝐞̂ ▷ noisy linear system in NTT domain
̂ ̂19: ekPKE ← ByteEncode12(𝐭)‖𝜌 ▷ run ByteEncode12

𝑘 times, then append 𝐀-seed
20: dkPKE ← ByteEncode12(𝐬)̂ ▷ run ByteEncode12

𝑘 times
21: return (ekPKE,dkPKE)

centered binomial distributions using randomness expanded from another seed 𝜎 via PRF. Once
𝐀, 𝐬, and 𝐞 are generated, the computation of the final part 𝐭 = 𝐀𝐬+𝐞 of the encryption key
takes place. The results are appropriately encoded into byte arrays and output.

In K-PKE.KeyGen, the choice of parameter set affects the length of the secret 𝐬 (via the parameter
𝑘) and, as a consequence, the sizes of the noise vector 𝐞 and the pseudorandom matrix 𝐀. The
choice of parameter set also affects the noise distribution (via the parameter 𝜂1) used to sample
the entries of 𝐬 and 𝐞.

5.2 K-PKE Encryption

The encryption algorithm K-PKE.Encrypt of K-PKE (Algorithm 14) takes an encryption key ekPKE,
a 32-byte plaintext 𝑚, and randomness 𝑟 as input and produces a single output: a ciphertext 𝑐.
1Byte 33 of the input to G is the module dimension 𝑘 ∈ {2,3,4} ⊂ 𝔹. This is included to establish domain separation
between the three parameter sets. For implementations that use the seed in place of the private key, this ensures
that the expansion will produce an unrelated key if the seed is mistakenly expanded using a parameter set other
than the originally intended one.

29

FIPS 203 MODULE-LATTICE-BASED KEY-ENCAPSULATION MECHANISM

The matrix �̂� generated in steps 4-8 of K-PKE.Encrypt can be stored, as specified in Section 3.3.
This allows later operations to use �̂� directly rather than re-expanding it from the public seed 𝜌.

Algorithm 14 K-PKE.Encrypt(ekPKE,𝑚,𝑟)

Uses the encryption key to encrypt a plaintext message using the randomness 𝑟.
∈ 𝔹384𝑘+32Input: encryption key ekPKE .

Input: message 𝑚 ∈ 𝔹32 .
Input: randomness 𝑟 ∈ 𝔹32 .
Output: ciphertext 𝑐 ∈ 𝔹32(𝑑𝑢𝑘+𝑑𝑣).

1: 𝑁 ← 0
̂ ̂)𝑘

2: 𝐭 ← ByteDecode12(ekPKE[0 ∶ 384𝑘]) ▷ run ByteDecode12
𝑘 times to decode 𝐭 ∈ (ℤ256

3: 𝜌 ← ekPKE[384𝑘 ∶ 384𝑘 + 32] ▷ extract 32-byte seed from
𝑞
ekPKE

̂4: for (𝑖 ← 0; 𝑖 < 𝑘; 𝑖++) ▷ re-generate matrix 𝐀 ∈ (ℤ256
𝑞)𝑘×𝑘 sampled in Alg. 13

5: for (𝑗 ← 0; 𝑗 < 𝑘; 𝑗++)
̂6: 𝐀[𝑖,𝑗] ← SampleNTT(𝜌‖𝑗‖𝑖) ▷ 𝑗 and 𝑖 are bytes 33 and 34 of the input

7: end for
8: end for

)𝑘
9: for (𝑖 ← 0; 𝑖 < 𝑘; 𝑖++) ▷ generate 𝐲 ∈ (ℤ256

𝑞

10: 𝐲[𝑖] ← SamplePolyCBD𝜂1
(PRF𝜂1

(𝑟,𝑁)) ▷ 𝐲[𝑖] ∈ ℤ256 sampled from CBD𝑞

11: 𝑁 ← 𝑁 +1
12: end for

)𝑘
13: for (𝑖 ← 0; 𝑖 < 𝑘; 𝑖++) ▷ generate 𝐞𝟏 ∈ (ℤ256

𝑞

14: 𝐞𝟏[𝑖] ← SamplePolyCBD𝜂2
(PRF𝜂2

(𝑟,𝑁)) ▷ 𝐞𝟏[𝑖] ∈ ℤ256 sampled from CBD𝑞

15: 𝑁 ← 𝑁 +1
16: end for
17: 𝑒2 ← SamplePolyCBD𝜂2

(PRF𝜂2
(𝑟,𝑁)) ▷ sample 𝑒2 ∈ ℤ256 from CBD𝑞

18: ̂ ▷ run NTT 𝑘 times𝐲 ← NTT(𝐲)
19: 𝐮 ← NTT−1(�̂� ⊺ ∘ 𝐲) + 𝐞𝟏 ▷ run NTT−1 𝑘 timeŝ
20: 𝜇 ← Decompress1(ByteDecode1(𝑚))

21: 𝑣 ← NTT−1(𝐭⊺̂ ∘𝐲)+𝑒2 +𝜇 ▷ encode plaintext 𝑚 into polynomial 𝑣 ̂
22: 𝑐1 ← ByteEncode𝑑𝑢

(Compress𝑑𝑢
(𝐮)) ▷ run ByteEncode𝑑𝑢

and Compress𝑑𝑢
𝑘 times

23: 𝑐2 ← ByteEncode𝑑𝑣
(Compress𝑑𝑣

(𝑣))

24: return 𝑐 ← (𝑐1‖𝑐2)

Informal description. The algorithm K-PKE.Encrypt begins by extracting the vector 𝐭 and the
seed from the encryption key. The seed is then expanded to re-generate the matrix 𝐀 in the same
manner as was done in K-PKE.KeyGen. If 𝐭 and 𝐀 are derived correctly from an encryption key
produced by K-PKE.KeyGen, then they are equal to their corresponding values in K-PKE.KeyGen.

Recall from the description of key generation that the pair (𝐀,𝐭 = 𝐀𝐬+𝐞) can be thought of as
a system of noisy linear equations in the secret variables 𝐬. One can generate an additional noisy
linear equation in the same secret variables — without knowing 𝐬 — by picking a random linear

30

FIPS 203 MODULE-LATTICE-BASED KEY-ENCAPSULATION MECHANISM

combination of the noisy equations in the system (𝐀,𝐭). One can then encode information in the
“constant term” (i.e., the entry that is a linear combination of entries of 𝐭) of such a combined
equation. This information can then be deciphered by a party in possession of 𝐬. For example,
one could encode a single bit by deciding whether or not to significantly alter the constant term,
thus making either a nearly correct equation that corresponds to the decrypted bit value of 0 or a
far-from-correct equation that corresponds to the decrypted bit value of 1. In the case of K-PKE,
the constant term is a polynomial with 256 coefficients, so one can encode more information:
one bit in each coefficient.

To this end, K-PKE.Encrypt proceeds by generating a vector 𝐲 ∈ 𝑅𝑞
𝑘 and noise terms 𝐞𝟏 ∈ 𝑅𝑞

𝑘

and 𝑒2 ∈ 𝑅𝑞, all of which are sampled from the centered binomial distribution using pseudoran-
domness expanded via PRF from the input randomness 𝑟. One then computes the “new noisy
equation,” which is (up to some details) (𝐀⊺𝐲 + 𝐞1, 𝐭⊺𝐲 + 𝑒2). An appropriate encoding 𝜇 of
the input message 𝑚 is then added to the latter term in the pair. Finally, the resulting pair (𝐮,𝑣)
is compressed, serialized into a byte array, and output as the ciphertext.

5.3 K-PKE Decryption

The decryption algorithm K-PKE.Decrypt of K-PKE (Algorithm 15) takes a decryption key dkPKE
and a ciphertext 𝑐 as input, requires no randomness, and outputs a plaintext 𝑚.

Informal description. The algorithm K-PKE.Decrypt begins by recovering a pair (𝐮′,𝑣′) from the
ciphertext 𝑐 (see the description of K-PKE.Encrypt). Here, one can think of 𝐮′ as the coefficients
of the equation and 𝑣′ as the constant term. The decryption key dkPKE contains the vector of
secret variables 𝐬. The decryption algorithm can thus use the decryption key to compute the
true constant term 𝑣 = 𝐬⊺𝐮′ and calculate 𝑣′ −𝑣. The decryption algorithm ends by decoding
the plaintext message 𝑚 from 𝑣′ −𝑣 and outputting 𝑚.

Algorithm 15 K-PKE.Decrypt(dkPKE, 𝑐)

Uses the decryption key to decrypt a ciphertext.

∈ 𝔹384𝑘 Input: decryption key dkPKE .
Input: ciphertext 𝑐 ∈ 𝔹32(𝑑𝑢𝑘+𝑑𝑣).
Output: message 𝑚 ∈ 𝔹32 .

1: 𝑐1 ← 𝑐[0 ∶ 32𝑑𝑢𝑘]
2: 𝑐2 ← 𝑐[32𝑑𝑢𝑘 ∶ 32(𝑑𝑢𝑘 +𝑑𝑣)]
3: 𝐮′ ← Decompress𝑑𝑢

(ByteDecode𝑑𝑢
(𝑐1)) ▷ run Decompress𝑑𝑢

and ByteDecode𝑑𝑢
𝑘 times

4: 𝑣′ ← Decompress𝑑𝑣
(ByteDecode𝑑𝑣

(𝑐2))

5: ̂)𝐬 ← ByteDecode12(dkPKE ▷ run ByteDecode12
𝑘 times

6: 𝑤 ← 𝑣′ − NTT−1(𝐬⊺̂ ∘ NTT(𝐮′)) ▷ run NTT 𝑘 times; run NTT−1
once

7: 𝑚 ← ByteEncode1(Compress1(𝑤)) ▷ decode plaintext 𝑚 from polynomial 𝑣
8: return 𝑚

31

FIPS 203 MODULE-LATTICE-BASED KEY-ENCAPSULATION MECHANISM

6. Main Internal Algorithms

This section specifies three algorithms: ML-KEM.KeyGen_internal, ML-KEM.Encaps_internal,
and ML-KEM.Decaps_internal. These three algorithms are all deterministic, meaning that their
output is completely determined by their input. No randomness is sampled inside of these
algorithms. These three algorithms will be used to construct ML-KEM in Section 7. The algorithms
in this section make use of the parameters 𝑛, 𝑞, 𝑘, 𝑑𝑢, and 𝑑𝑣. The subroutines they invoke
additionally make use of the parameters 𝜂1 and 𝜂2. While 𝑛 is always 256 and 𝑞 is always 3329,
the remaining parameters vary among the possible parameter sets (see Section 8).

The interfaces specified in this section will be used to test ML-KEM implementations through
the Cryptographic Algorithm Validation Program (CAVP). The key generation function in this
section may also be used to re-expand a key from a seed (see Section 3.3), including when
obtaining assurance of private key possession via regeneration. As prescribed in Section 3.3, the
interfaces specified in this section should not be made available to applications other than for
testing purposes, and the random seeds (as specified in ML-KEM.KeyGen and ML-KEM.Encaps
in Section 7) shall be generated by the cryptographic module.

6.1 Internal Key Generation

The algorithm ML-KEM.KeyGen_internal (Algorithm 16) accepts two random seeds as input, and
produces an encapsulation key and a decapsulation key.

Informal description. The core subroutine of ML-KEM.KeyGen_internal is the key generation
algorithm of K-PKE (Algorithm 13). The encapsulation key is simply the encryption key of K-PKE.
The decapsulation key consists of the decryption key of K-PKE, the encapsulation key, a hash
of the encapsulation key, and a random 32-byte value. This random value will be used in the
”implicit rejection” mechanism of the internal decapsulation algorithm (Algorithm 18).

Algorithm 16 ML-KEM.KeyGen_internal(𝑑,𝑧)

Uses randomness to generate an encapsulation key and a corresponding decapsulation key.

Input: randomness 𝑑 ∈ 𝔹32 .
Input: randomness 𝑧 ∈ 𝔹32 .
Output: encapsulation key ek ∈ 𝔹384𝑘+32 .
Output: decapsulation key dk ∈ 𝔹768𝑘+96 .

1: (ekPKE,dkPKE) ← K-PKE.KeyGen(𝑑) ▷ run key generation for K-PKE
2: ek ← ekPKE ▷ KEM encaps key is just the PKE encryption key
3: dk ← (dkPKE‖ek‖H(ek)‖𝑧) ▷ KEM decaps key includes PKE decryption key
4: return (ek,dk)

6.2 Internal Encapsulation

The algorithm ML-KEM.Encaps_internal (Algorithm 17) accepts an encapsulation key and a ran-
dom byte array as input and outputs a ciphertext and a shared key.

32

FIPS 203 MODULE-LATTICE-BASED KEY-ENCAPSULATION MECHANISM

Algorithm 17 ML-KEM.Encaps_internal(ek,𝑚)

Uses the encapsulation key and randomness to generate a key and an associated ciphertext.

Input: encapsulation key ek ∈ 𝔹384𝑘+32 .
Input: randomness 𝑚 ∈ 𝔹32 .
Output: shared secret key 𝐾 ∈ 𝔹32 .
Output: ciphertext 𝑐 ∈ 𝔹32(𝑑𝑢𝑘+𝑑𝑣).

1: (𝐾,𝑟) ← G(𝑚‖H(ek)) ▷ derive shared secret key 𝐾 and randomness 𝑟
2: 𝑐 ← K-PKE.Encrypt(ek,𝑚,𝑟) ▷ encrypt 𝑚 using K-PKE with randomness 𝑟
3: return (𝐾,𝑐)

Informal description. The core subroutine of ML-KEM.Encaps_internal is the encryption algo-
rithm of K-PKE, which is used to encrypt a random value 𝑚 into a ciphertext 𝑐. A copy of the
shared secret key 𝐾 and the randomness used during encryption are derived from 𝑚 and the
encapsulation key ek via hashing. Specifically, H is applied to ek, and the result is concatenated
with 𝑚 and then hashed using G. Finally, the algorithm outputs the shared secret key 𝐾 and the
ciphertext 𝑐.

6.3 Internal Decapsulation

The algorithm ML-KEM.Decaps_internal (Algorithm 18) accepts a decapsulation key and a cipher-
text as input, does not use any randomness, and outputs a shared secret key.

Informal description. The algorithm ML-KEM.Decaps_internal begins by parsing out the com-

ponents of the decapsulation key dk of ML-KEM. These components are an (encryption key,
decryption key) pair for K-PKE, a hash value ℎ, and a random value 𝑧. The decryption key of
K-PKE is then used to decrypt the input ciphertext 𝑐 to get a plaintext 𝑚′ . The decapsulation
algorithm then re-encrypts 𝑚′ and computes a candidate shared secret key 𝐾′ in the same
manner as should have been done in encapsulation. Specifically, 𝐾′ and the encryption ran-
domness 𝑟′ are computed by hashing 𝑚′ and the encryption key of K-PKE, and a ciphertext 𝑐′ is
generated by encrypting 𝑚′ using randomness 𝑟′ . Finally, decapsulation checks whether the
resulting ciphertext 𝑐′ matches the provided ciphertext 𝑐. If it does not, the algorithm performs
an “implicit rejection”: the value of 𝐾′ is changed to a hash of 𝑐 together with the random value
𝑧 stored in the ML-KEM secret key (see the discussion of decapsulation failures in Section 3.2).
In either case, decapsulation outputs the resulting shared secret key 𝐾′ .

The “implicit reject” flag computed in step 9 (by comparing 𝑐 and 𝑐′) is a secret piece of interme-

diate data. As specified in the requirements in Section 3.3, this flag shall be destroyed prior to
ML-KEM.Decaps_internal terminating. In particular, returning the value of the flag as an output
in any form is not permitted.

33

FIPS 203 MODULE-LATTICE-BASED KEY-ENCAPSULATION MECHANISM

Algorithm 18 ML-KEM.Decaps_internal(dk, 𝑐)

Uses the decapsulation key to produce a shared secret key from a ciphertext.

Input: decapsulation key dk ∈ 𝔹768𝑘+96 .
Input: ciphertext 𝑐 ∈ 𝔹32(𝑑𝑢𝑘+𝑑𝑣).
Output: shared secret key 𝐾 ∈ 𝔹32 .

1: dkPKE ← dk[0 ∶ 384𝑘] ▷ extract (from KEM decaps key) the PKE decryption key
2: ekPKE ← dk[384𝑘 ∶ 768𝑘 + 32] ▷ extract PKE encryption key
3: ℎ ← dk[768𝑘 + 32 ∶ 768𝑘 + 64] ▷ extract hash of PKE encryption key
4: 𝑧 ← dk[768𝑘 + 64 ∶ 768𝑘 + 96] ▷ extract implicit rejection value
5: 𝑚′ ← K-PKE.Decrypt(dkPKE, 𝑐) ▷ decrypt ciphertext
6: (𝐾′, 𝑟′) ← G(𝑚′‖ℎ)

̄7: 𝐾 ← J(𝑧‖𝑐)
8: 𝑐′ ← K-PKE.Encrypt(ekPKE,𝑚′, 𝑟′) ▷ re-encrypt using the derived randomness 𝑟′

9: if 𝑐 ≠ 𝑐′ then
10: 𝐾′ ← �̄� ▷ if ciphertexts do not match, “implicitly reject”
11: end if
12: return 𝐾′

34

FIPS 203 MODULE-LATTICE-BASED KEY-ENCAPSULATION MECHANISM

7. The ML-KEM Key-Encapsulation Mechanism

This section describes the three main algorithms of the ML-KEM scheme:

1. Key generation (ML-KEM.KeyGen)

2. Encapsulation (ML-KEM.Encaps)

3. Decapsulation (ML-KEM.Decaps)

To instantiate ML-KEM, one must select a parameter set. Each parameter set is associated with
a particular trade-off between security and performance. The three possible parameter sets are
called ML-KEM-512, ML-KEM-768, and ML-KEM-1024 and are described in detail in Table 2 of
Section 8. Each parameter set assigns specific numerical values to the individual parameters 𝑛,
𝑞, 𝑘, 𝜂1, 𝜂2, 𝑑𝑢, and 𝑑𝑣. While 𝑛 is always 256 and 𝑞 is always 3329, the remaining parameters
vary among the three parameter sets. Implementers shall ensure that the three algorithms of
ML-KEM listed above are only invoked with a valid parameter set, and that this parameter set is
selected appropriately for the desired application. Moreover, implementers shall ensure that the
parameter set used in any particular invocation of ML-KEM.Encaps or ML-KEM.Decaps matches
the parameter set associated to the provided inputs.

7.1 ML-KEM Key Generation

The key generation algorithm ML-KEM.KeyGen for ML-KEM (Algorithm 19) accepts no input,
generates randomness internally, and produces an encapsulation key and a decapsulation key.
While the encapsulation key can be made public, the decapsulation key shall remain private.

The seed (𝑑,𝑧) generated in steps 1 and 2 of ML-KEM.KeyGen can be stored for later expan-
sion using ML-KEM.KeyGen_internal (see Section 3.3). As the seed can be used to compute
the decapsulation key, it is sensitive data and shall be treated with the same safeguards as a
decapsulation key (see SP 800-227 [1]).

Algorithm 19 ML-KEM.KeyGen()

Generates an encapsulation key and a corresponding decapsulation key.

Output: encapsulation key ek ∈ 𝔹384𝑘+32 .
Output: decapsulation key dk ∈ 𝔹768𝑘+96 .

$
1: 𝑑 ←− 𝔹32 ▷ 𝑑 is 32 random bytes (see Section 3.3)

$
2: 𝑧 ←− 𝔹32 ▷ 𝑧 is 32 random bytes (see Section 3.3)
3: if 𝑑 == NULL or 𝑧 == NULL then
4: return ⊥ ▷ return an error indication if random bit generation failed
5: end if
6: (ek, dk) ← ML-KEM.KeyGen_internal(𝑑,𝑧) ▷ run internal key generation algorithm
7: return (ek,dk)

Secure key establishment depends on the use of key pairs that have been properly generated
via ML-KEM.KeyGen. If the owner of a KEM key pair did not generate the key pair but instead
received it from a trusted third party or other source, the owner may optionally perform certain

35

test ← ByteEncode12(ByteDecode12(ek[0 ∶ 384𝑘]))

FIPS 203 MODULE-LATTICE-BASED KEY-ENCAPSULATION MECHANISM

checks on the key pair. While these checks can detect certain corruptions, they do not guarantee
that the key pair was properly generated.

Key pair check. To check a candidate key pair1

1In discussions of input checking, the “low overline” in the notation indicates that the input has not yet been
checked (e.g., ek has not yet been checked, while ek has passed the check).

(ek,dk), perform the following checks:

1. (Seed consistency) If a seed (𝑑,𝑧) is available, run ML-KEM.KeyGen_internal(𝑑,𝑧), and
verify that the output is equal to (ek,dk).

2. (Encapsulation key check) Check ek as specified in Section 7.2.

3. (Decapsulation key check) Check dk as specified in Section 7.3.

4. (Pair-wise consistency) Perform the following steps:
$

i. Generate an array of 32 random bytes by performing 𝑚 ←− 𝔹32 .

ii. Perform (𝐾,𝑐) ← ML-KEM.Encaps_internal(ek,𝑚).

iii. Perform 𝐾′ ← ML-KEM.Decaps_internal(dk, 𝑐).

iv. Reject unless 𝐾 == 𝐾′ .

It is important to note that this checking process does not guarantee that the key pair is a properly
produced output of ML-KEM.KeyGen.

7.2 ML-KEM Encapsulation

The encapsulation algorithm ML-KEM.Encaps of ML-KEM (Algorithm 20) accepts an encapsula-
tion key as input, generates randomness internally, and outputs a ciphertext and a shared key.
This algorithm requires input checking, as specified below.

Encapsulation key check. To check a candidate encapsulation key ek, perform the following:

1. (Type check) If ek is not an array of bytes of length 384𝑘 + 32 for the value of 𝑘 specified
by the relevant parameter set, then input checking failed.

2. (Modulus check) Perform the computation

(7.1)

(see Section 4.2.1). If test ≠ ek[0 ∶ 384𝑘], then input checking failed. This check ensures
that the integers encoded in the public key are in the valid range [0,𝑞 − 1].

If both checks pass, then ML-KEM.Encaps can be run with input ek ∶= ek. It is important to
note that this checking process does not guarantee that ek is a properly produced output of
ML-KEM.KeyGen.

ML-KEM.Encaps shall not be run with an encapsulation key that has not been checked as above.
However, checking of the encapsulation key need not be performed by the encapsulating party,

36

test ← H(dk[384𝑘 ∶ 768𝑘 +32])) .

FIPS 203 MODULE-LATTICE-BASED KEY-ENCAPSULATION MECHANISM

nor with every execution of ML-KEM.Encaps. Instead, assurance that these checks have been
performed can be acquired through other means (see SP 800-227 [1]).

Algorithm 20 ML-KEM.Encaps(ek)

Uses the encapsulation key to generate a shared secret key and an associated ciphertext.

Checked input: encapsulation key ek ∈ 𝔹384𝑘+32 .
Output: shared secret key 𝐾 ∈ 𝔹32 .
Output: ciphertext 𝑐 ∈ 𝔹32(𝑑𝑢𝑘+𝑑𝑣).

1:

2:

$𝑚 ←− 𝔹32

if 𝑚 == NULL then
▷ 𝑚 is 32 random bytes (see Section 3.3)

3: return ⊥ ▷ return an error indication if random bit generation failed
4: end if
5:

6:

(𝐾,𝑐) ← ML-KEM.Encaps_internal(ek,𝑚)
return (𝐾,𝑐)

▷ run internal encapsulation algorithm

7.3 ML-KEM Decapsulation

The decapsulation algorithm ML-KEM.Decaps of ML-KEM (Algorithm 21) accepts a decapsulation
key and an ML-KEM ciphertext as input, does not use any randomness, and outputs a shared
secret. This algorithm requires input checking, as specified below.

Decapsulation input check. To check a candidate decapsulation key dk and ciphertext 𝑐, perform
the following checks:

1. (Ciphertext type check) If 𝑐 is not a byte array of length 32(𝑑𝑢𝑘 + 𝑑𝑣) for the values of 𝑑𝑢,
𝑑𝑣, and 𝑘 specified by the relevant parameter set, then input checking has failed.

2. (Decapsulation key type check) If dk is not a byte array of length 768𝑘 + 96 for the value of
𝑘 specified by the relevant parameter set, then input checking has failed.

3. (Hash check) Perform the computation

(7.2)

If test ≠ dk[768𝑘 + 32 ∶ 768𝑘 + 64], then input checking has failed.

If all of the above checks pass, then ML-KEM.Decaps can be run with inputs dk ∶= dk and 𝑐 ∶= 𝑐. It
is important to note that this checking process does not guarantee that dk is a properly produced
output of ML-KEM.KeyGen, nor that 𝑐 is a properly produced output of ML-KEM.Encaps.

ML-KEM.Decaps shall not be run with a decapsulation key or a ciphertext unless both have
been checked. However, checking of the decapsulation key need not be performed by the
decapsulating party, nor with every execution of ML-KEM.Decaps. Instead, assurance that this
check has been performed can be acquired through other means (see SP 800-227 [1]). Ciphertext
checking shall be performed with every execution of ML-KEM.Decaps.

37

FIPS 203 MODULE-LATTICE-BASED KEY-ENCAPSULATION MECHANISM

Algorithm 21 ML-KEM.Decaps(dk, 𝑐)

Uses the decapsulation key to produce a shared secret key from a ciphertext.

Checked input: decapsulation key dk ∈ 𝔹768𝑘+96 .
Checked input: ciphertext 𝑐 ∈ 𝔹32(𝑑𝑢𝑘+𝑑𝑣).
Output: shared secret key 𝐾 ∈ 𝔹32 .

1: 𝐾′ ← ML-KEM.Decaps_internal(dk, 𝑐) ▷ run internal decapsulation algorithm
2: return 𝐾′

38

FIPS 203 MODULE-LATTICE-BASED KEY-ENCAPSULATION MECHANISM

8. Parameter Sets

ML-KEM is equipped with three parameter sets, each of the which comprises five individual
parameters: 𝑘, 𝜂1, 𝜂2, 𝑑𝑢, and 𝑑𝑣. There are also two constants: 𝑛 = 256 and 𝑞 = 3329. The
following is a brief and informal description of the roles played by the variable parameters in the
algorithms of K-PKE and ML-KEM. See Section 5 for details.

• The parameter 𝑘 determines the dimensions of the matrix �̂� that appears in K-PKE.KeyGen
and K-PKE.Encrypt. It also determines the dimensions of vectors 𝐬 and 𝐞 in K-PKE.KeyGen
and the dimensions of vectors 𝐲 and 𝐞1 in K-PKE.Encrypt.

• The parameter 𝜂1 is required to specify the distribution for generating the vectors 𝐬 and 𝐞
in K-PKE.KeyGen and the vector 𝐲 in K-PKE.Encrypt.

• The parameter 𝜂2 is required to specify the distribution for generating the vectors 𝐞1 and
𝑒2 in K-PKE.Encrypt.

• The parameters 𝑑𝑢 and 𝑑𝑣 serve as parameters and inputs for the functions Compress,
Decompress, ByteEncode, and ByteDecode in K-PKE.Encrypt and K-PKE.Decrypt.

This standard approves the parameter sets given in Table 2. Each parameter set is associated
with a required security strength for randomness generation (see Section 3.3). The sizes of the
ML-KEM keys and ciphertexts for each parameter set are summarized in Table 3.

Table 2. Approved parameter sets for ML-KEM

𝑛 𝑞 𝑘 𝜂1 𝜂2 𝑑𝑢 𝑑𝑣 required RBG strength (bits)

ML-KEM-512 256 3329 2 3 2 10 4 128

ML-KEM-768 256 3329 3 2 2 10 4 192

ML-KEM-1024 256 3329 4 2 2 11 5 256

Table 3. Sizes (in bytes) of keys and ciphertexts of ML-KEM

encapsulation key decapsulation key ciphertext shared secret key

ML-KEM-512 800 1632 768 32

ML-KEM-768 1184 2400 1088 32

ML-KEM-1024 1568 3168 1568 32

A parameter set name can also be said to denote a (parameter-free) KEM. Specifically, ML-KEM-𝑥
can be used to denote the parameter-free KEM that results from instantiating the scheme
ML-KEM with the parameter set ML-KEM-𝑥.

The three parameter sets included in Table 2 were designed to meet certain security strength
categories defined by NIST in its original Call for Proposals [4, 22]. These security strength
categories are explained further in SP 800-57, Part 1 [7].

Using this approach, security strength is not described by a single number, such as “128 bits of
security.” Instead, each ML-KEM parameter set is claimed to be at least as secure as a generic

39

FIPS 203 MODULE-LATTICE-BASED KEY-ENCAPSULATION MECHANISM

block cipher with a prescribed key size or a generic hash function with a prescribed output
length. More precisely, it is claimed that the computational resources needed to break ML-KEM
are greater than or equal to the computational resources needed to break the block cipher or
hash function when those computational resources are estimated using any realistic model of
computation. Different models of computation can be more or less realistic and, accordingly,
lead to more or less accurate estimates of security strength. Some commonly studied models
are discussed in [23].

Concretely, ML-KEM-512 is claimed to be in security category 1, ML-KEM-768 is claimed to be
in security category 3, and ML-KEM-1024 is claimed to be in security category 5. For additional
discussion of the security strength of MLWE-based cryptosystems, see [4].

Selecting an appropriate parameter set. When initially establishing cryptographic protections
for data, the strongest possible parameter set should be used. This has a number of advantages,
including reducing the likelihood of costly transitions to higher-security parameter sets in the
future. At the same time, it should be noted that some parameter sets might have adverse
performance effects for the relevant application (e.g., the algorithm may be unacceptably slow,
or objects such as keys or ciphertexts may be unacceptably large).

NIST recommends using ML-KEM-768 as the default parameter set, as it provides a large security
margin at a reasonable performance cost. In cases where this is impractical or even higher
security is required, other parameter sets may be used.

40

FIPS 203 MODULE-LATTICE-BASED KEY-ENCAPSULATION MECHANISM

References

[1] National Institute of Standards and Technology (2024) Recommendations for key-
encapsulation mechanisms, (National Institute of Standards and Technology, Gaithers-
burg, MD), NIST Special Publication (SP) 800-227. [Forthcoming; will be available at
https://csrc.nist.gov/publications].

[2] Barker EB, Chen L, Roginsky AL, Vassilev A, Davis R (2018) Recommendation for pair-wise
key-establishment schemes using discrete logarithm cryptography (National Institute of
Standards and Technology, Gaithersburg, MD), NIST Special Publication (SP) 800-56A Revi-
sion 3. https://doi.org/10.6028/NIST.SP.800-56Ar3.

[3] Barker EB, Chen L, Roginsky AL, Vassilev A, Davis R, Simon S (2019) Recommendation for
pair-wise key-establishment using integer factorization cryptography (National Institute
of Standards and Technology, Gaithersburg, MD), NIST Special Publication (SP) 800-56B
Revision 2. https://doi.org/10.6028/NIST.SP.800-56Br2.

[4] Avanzi R, Bos J, Ducas L, Kiltz E, Lepoint T, Lyubashevsky V, Schanck JM, Schwabe P, Seiler G,
Stehlé D (2020) CRYSTALS-Kyber algorithm specifications and supporting documentation,
Third-round submission to the NIST’s post-quantum cryptography standardization process.
Available at https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cry
ptography-standardization/round-3-submissions.

[5] National Institute of Standards and Technology (2015) Secure hash standard (SHS), (U.S.
Department of Commerce, Washington, DC), Federal Information Processing Standards
Publication (FIPS) 180-4. https://doi.org/10.6028/NIST.FIPS.180-4.

[6] National Institute of Standards and Technology (2015) SHA-3 standard: Permutation-based
hash and extendable-output functions, (U.S. Department of Commerce, Washington, DC),
Federal Information Processing Standards Publication (FIPS) 202. https://doi.org/10.6028/
NIST.FIPS.202.

[7] Barker EB (2020) Recommendation for key management: Part 1 - General, (National Institute
of Standards and Technology, Gaithersburg, MD), NIST Special Publication (SP) 800-57 Part
1, Rev. 5 [or as amended]. https://doi.org/10.6028/NIST.SP.800-57pt1r5.

[8] Bos J, Ducas L, Kiltz E, Lepoint T, Lyubashevsky V, Schanck JM, Schwabe P, Seiler G, Stehlé
D (2018) CRYSTALS-Kyber: A CCA-secure module-lattice-based KEM. 2018 IEEE European
Symposium on Security and Privacy (EuroS&P), pp 353–367. https://doi.org/10.1109/Euro
SP.2018.00032.

[9] Langlois A, Stehlé D (2015) Worst-case to average-case reductions for module lattices.
Designs, Codes and Cryptography 75(3):565–599. https://doi.org/10.1007/s10623-014-9
938-4.

[10] Regev O (2005) On lattices, learning with errors, random linear codes, and cryptography.
Proceedings of the Thirty-Seventh Annual ACM Symposium on Theory of Computing STOC
’05 (Association for Computing Machinery, New York, NY, USA), pp 84––93. https://doi.org/
10.1145/1060590.1060603.

41

https://csrc.nist.gov/publications
https://doi.org/10.6028/NIST.SP.800-56Ar3
https://doi.org/10.6028/NIST.SP.800-56Br2
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://doi.org/10.6028/NIST.FIPS.180-4
https://doi.org/10.6028/NIST.FIPS.202
https://doi.org/10.6028/NIST.FIPS.202
https://doi.org/10.6028/NIST.SP.800-57pt1r5
https://doi.org/10.1109/EuroSP.2018.00032
https://doi.org/10.1109/EuroSP.2018.00032
https://doi.org/10.1007/s10623-014-9938-4
https://doi.org/10.1007/s10623-014-9938-4
https://doi.org/10.1145/1060590.1060603
https://doi.org/10.1145/1060590.1060603

FIPS 203 MODULE-LATTICE-BASED KEY-ENCAPSULATION MECHANISM

[11] Fujisaki E, Okamoto T (2013) Secure integration of asymmetric and symmetric encryption
schemes. Journal of Cryptology 26:80–101. https://doi.org/10.1007/s00145-011-9114-1.

[12] Hofheinz D, Hövelmanns K, Kiltz E (2017) A modular analysis of the Fujisaki-Okamoto trans-
formation. Theory of Cryptography, eds Kalai Y, Reyzin L (Springer International Publishing,
Cham), pp 341–371. https://doi.org/10.1007/978-3-319-70500-2_12.

[13] Katz J, Lindell Y (2020) Introduction to Modern Cryptography (Chapman & Hall/CRC), 3rd Ed.

[14] Almeida JB, Olmos SA, Barbosa M, Barthe G, Dupressoir F, Grégoire B, Laporte V, Léchenet JC,
Low C, Oliveira T, Pacheco H, Quaresma M, Schwabe P, Strub PY (2024) Formally verifying Ky-
ber episode V: Machine-checked IND-CCA security and correctness of ML-KEM in EasyCrypt,
Cryptology ePrint Archive, Paper 2024/843. Available at https://eprint.iacr.org/2024/843.

[15] Ducas L, Schanck J (2021) Security estimation scripts for Kyber and Dilithium, Github reposi-
tory. Available at https://github.com/pq-crystals/security-estimates.

[16] Chen L (2022) Recommendation for key derivation using pseudorandom functions, (National
Institute of Standards and Technology, Gaithersburg, MD), NIST Special Publication (SP)
800-108r1-upd1, Includes updates as of February 2, 2024. https://doi.org/10.6028/NIST.SP.
800-108r1-upd1.

[17] Barker EB, Chen L, Davis R (2020) Recommendation for key-derivation methods in key-
establishment schemes (National Institute of Standards and Technology, Gaithersburg, MD),
NIST Special Publication (SP) 800-56C Revision 2. https://doi.org/10.6028/NIST.SP.800-56C
r2.

[18] Barker EB, Kelsey JM (2015) Recommendation for random number generation using deter-
ministic random bit generators, (National Institute of Standards and Technology, Gaithers-
burg, MD), NIST Special Publication (SP) 800-90A, Rev. 1. https://doi.org/10.6028/NIST.SP.
800-90Ar1.

[19] Sönmez Turan M, Barker EB, Kelsey JM, McKay KA, Baish ML, Boyle M (2018) Recom-

mendation for the entropy sources used for random bit generation, (National Institute
of Standards and Technology, Gaithersburg, MD), NIST Special Publication (SP) 800-90B.
https://doi.org/10.6028/NIST.SP.800-90B.

[20] Barker E, Kelsey J, McKay K, Roginsky A, Turan MS (2024) Recommendation for random bit
generator (RBG) constructions, (National Institute of Standards and Technology, Gaithers-
burg, MD), NIST Special Publication (SP) 800-90C 4pd. https://doi.org/10.6028/NIST.SP.80
0-90C.4pd.

[21] Kelsey J, Chang S, Perlner R (2016) SHA-3 Derived Functions: cSHAKE, KMAC, TupleHash
and ParallelHash, (National Institute of Standards and Technology, Gaithersburg, MD), NIST
Special Publication (SP) 800-185 [or as amended]. https://doi.org/10.6028/NIST.SP.800-1
85.

[22] National Institute of Standards and Technology (2016) Submission requirements and eval-
uation criteria for the post-quantum cryptography standardization process. Available at
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-f
or-proposals-final-dec-2016.pdf.

42

https://doi.org/10.1007/s00145-011-9114-1
https://doi.org/10.1007/978-3-319-70500-2_12
https://eprint.iacr.org/2024/843
https://github.com/pq-crystals/security-estimates
https://doi.org/10.6028/NIST.SP.800-108r1-upd1
https://doi.org/10.6028/NIST.SP.800-108r1-upd1
https://doi.org/10.6028/NIST.SP.800-56Cr2
https://doi.org/10.6028/NIST.SP.800-56Cr2
https://doi.org/10.6028/NIST.SP.800-90Ar1
https://doi.org/10.6028/NIST.SP.800-90Ar1
https://doi.org/10.6028/NIST.SP.800-90B
https://doi.org/10.6028/NIST.SP.800-90C.4pd
https://doi.org/10.6028/NIST.SP.800-90C.4pd
https://doi.org/10.6028/NIST.SP.800-185
https://doi.org/10.6028/NIST.SP.800-185
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf

FIPS 203 MODULE-LATTICE-BASED KEY-ENCAPSULATION MECHANISM

[23] Alagic G, Apon D, Cooper D, Dang Q, Dang T, Kelsey J, Lichtinger J, Liu YK, Miller C, Moody
D, Peralta R, Perlner R, Robinson A, Smith-Tone D (2022) Status report on the third round
of the NIST post-quantum cryptography standardization process (National Institute of
Standards and Technology, Gaithersburg, MD), NIST Interagency or Internal Report (IR)
8413. https://doi.org/10.6028/NIST.IR.8413-upd1.

[24] CRYSTALS-Kyber submission team (2023) “Discussion about Kyber’s tweaked FO transform”,
PQC-Forum Post. Available at https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/W
FRDl8DqYQ4.

[25] CRYSTALS-Kyber submission team (2023) “Kyber decisions, part 2: FO transform”, PQC-
Forum Post. Available at https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/C0D3W
1KoINY/m/99kIvydoAwAJ.

43

https://doi.org/10.6028/NIST.IR.8413-upd1
https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/WFRDl8DqYQ4
https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/WFRDl8DqYQ4
https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/C0D3W1KoINY/m/99kIvydoAwAJ
https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/C0D3W1KoINY/m/99kIvydoAwAJ

FIPS 203 MODULE-LATTICE-BASED KEY-ENCAPSULATION MECHANISM

Appendix A — Precomputed Values for the NTT

The following 128 numbers are the values of 𝜁BitRev7(𝑖) mod 𝑞 for 𝑖 ∈ {0,…,127}. These numbers
are used in Algorithms 9 and 10.

{ 1 1729 2580 3289 2642 630 1897 848

1062 1919 193 797 2786 3260 569 1746

296 2447 1339 1476 3046 56 2240 1333

1426 2094 535 2882 2393 2879 1974 821

289 331 3253 1756 1197 2304 2277 2055

650 1977 2513 632 2865 33 1320 1915

2319 1435 807 452 1438 2868 1534 2402

2647 2617 1481 648 2474 3110 1227 910

17 2761 583 2649 1637 723 2288 1100

1409 2662 3281 233 756 2156 3015 3050

1703 1651 2789 1789 1847 952 1461 2687

939 2308 2437 2388 733 2337 268 641

1584 2298 2037 3220 375 2549 2090 1645

1063 319 2773 757 2099 561 2466 2594

2804 1092 403 1026 1143 2150 2775 886

1722 1212 1874 1029 2110 2935 885 2154 }

44

FIPS 203 MODULE-LATTICE-BASED KEY-ENCAPSULATION MECHANISM

When implementing Algorithm 11, the values 𝜁2BitRev7(𝑖)+1 mod 𝑞 need to be computed. The
following array contains these values for 𝑖 ∈ {0,…,127}:

{ 17 -17 2761 -2761 583 -583 2649 -2649

1637 -1637 723 -723 2288 -2288 1100 -1100

1409 -1409 2662 -2662 3281 -3281 233 -233

756 -756 2156 -2156 3015 -3015 3050 -3050

1703 -1703 1651 -1651 2789 -2789 1789 -1789

1847 -1847 952 -952 1461 -1461 2687 -2687

939 -939 2308 -2308 2437 -2437 2388 -2388

733 -733 2337 -2337 268 -268 641 -641

1584 -1584 2298 -2298 2037 -2037 3220 -3220

375 -375 2549 -2549 2090 -2090 1645 -1645

1063 -1063 319 -319 2773 -2773 757 -757

2099 -2099 561 -561 2466 -2466 2594 -2594

2804 -2804 1092 -1092 403 -403 1026 -1026

1143 -1143 2150 -2150 2775 -2775 886 -886

1722 -1722 1212 -1212 1874 -1874 1029 -1029

2110 -2110 2935 -2935 885 -885 2154 -2154 }

45

FIPS 203 MODULE-LATTICE-BASED KEY-ENCAPSULATION MECHANISM

Appendix B — SampleNTT Loop Bounds

In SampleNTT (Algorithm 7), the algorithm repeatedly generates byte arrays from the XOF to
create an element of 𝑇𝑞. If a generated byte array value is out of bounds for a coefficient of 𝑇𝑞,
the algorithm tries again until all 256 coefficients are created. On average, this while loop will
resolve within a reasonable number of iterations. However, there may be cases in which the
generated byte arrays are consistently out of bounds and the algorithm may run for a higher
number of iterations.

Implementations should not bound this loop, if at all possible. An incorrect limit will cause
interoperability errors, and the chances for SampleNTT to iterate longer become exponentially
rare. If an implementation does bound the number of iterations of SampleNTT, it shall not use a
limit lower than those presented in Table 4. The calculated probability of SampleNTT exceeding
the limit is included and calculated under standard assumptions about the output distributions
of XOFs and hash functions.

Table 4. While-loop limits and probabilities of occurrence for SampleNTT

Number of iterations Probability of reaching limit

280 2−261

If a limit is used and the number of iterations exceeds the limit, then the algorithm shall destroy
all intermediate results. If a return value or exception is produced, it shall be the same value for
any execution in which the maximum number of iterations is exceeded.

46

FIPS 203 MODULE-LATTICE-BASED KEY-ENCAPSULATION MECHANISM

Appendix C — Differences From the CRYSTALS-Kyber Submission

This appendix lists the differences between CRYSTALS-KYBER (as described in [4]) and the ML-KEM
scheme (specified in this document) that result in differing input-output behavior of the main
algorithms (i.e., KeyGen, Encaps, Decaps). Since a conforming implementation need only match
the input-output behavior of these three algorithms (see “Implementations” and Section 3.3
below), the list does not include any of the numerous differences in how the main algorithms actu-
ally produce outputs from inputs (e.g., via different computational steps or different subroutines),
nor any differences in presentation between this standard and [4].

C.1 Differences Between CRYSTALS-Kyber and FIPS 203 Initial Pub-
lic Draft

• In the third-round specification [4], the shared secret key was treated as a variable-length
value whose length depended on how it would be used in the relevant application. In this
specification, the length of the shared secret key is fixed to 256 bits. It can be used directly
in applications as a symmetric key, or symmetric keys can be derived from it, as specified
in Section 3.3.

• The ML-KEM.Encaps and ML-KEM.Decaps algorithms in this specification use a different
variant of the Fujisaki-Okamoto transform (see [24, 25]) than the third-round specifica-
tion [4]. Specifically, ML-KEM.Encaps no longer includes a hash of the ciphertext in the
derivation of the shared secret, and ML-KEM.Decaps has been adjusted to match this
change.

• In the third-round specification [4], the initial randomness 𝑚 in the ML-KEM.Encaps algo-
rithm was first hashed before being used. Specifically, between lines 1 and 2 in Algorithm
20, there was an additional step that performed the operation 𝑚 ← 𝐻(𝑚). The purpose
of this step was to safeguard against the use of flawed randomness generation processes.
As this standard requires the use of NIST-approved randomness generation, this step is
unnecessary and is not performed in ML-KEM.

• This specification includes explicit input checking steps that were not part of the third-round
specification [4]. For example, ML-KEM.Encaps requires that the byte array containing the
encapsulation key correctly decodes to an array of integers modulo 𝑞 without any modular
reductions.

C.2 Changes From FIPS 203 Initial Public Draft

The differences between CRYSTALS-KYBER and ML-KEM as described in Appendix C were included
in the initial public draft (ipd) of FIPS 203, which was posted on August 24, 2023. Based on
comments submitted on the draft ML-KEM, domain separation was added to K-PKE.KeyGen to
prevent the misuse of keys generated to target one security level from being used for a different
security level when saving a key as a seed.

Additionally, FIPS 203 ipd had inadvertently swapped the indices of matrix �̂� in K-PKE.KeyGen and
K-PKE.Encrypt. This was changed back in the final version of ML-KEM to match CRYSTALS-KYBER.

47

	Module-Lattice-Based Key-Encapsulation Mechanism Standard
	Preamble
	Foreword
	Abstract
	Keywords

	Contents
	Table of Contents
	List of Tables
	List of Figures
	List of Algorithms

	1 Introduction
	1.1 Purpose and Scope
	1.2 Context

	2 Terms, Acronyms, and Notation
	2.1 Terms and Definitions
	2.2 Acronyms
	2.3 Mathematical Symbols
	2.4 Interpreting the Pseudocode
	2.4.1 Data Types
	2.4.2 Loop Syntax
	2.4.3 Arithmetic With Arrays of Integers
	2.4.4 Representations of Algebraic Objects
	2.4.5 Arithmetic With Polynomials and NTT Representations
	2.4.6 Matrices and Vectors
	2.4.7 Arithmetic With Matrices and Vectors
	2.4.8 Applying Algorithms to Arrays, Examples

	3 Overview of the ML-KEM Scheme
	3.1 Key-Encapsulation Mechanisms
	3.2 The ML-KEM Scheme
	3.3 Requirements for ML-KEM Implementations

	4 Auxiliary Algorithms
	4.1 Cryptographic Functions
	4.2 General Algorithms
	4.2.1 Conversion and Compression Algorithms
	4.2.2 Sampling Algorithms

	4.3 The Number-Theoretic Transform
	4.3.1 Multiplication in the NTT Domain

	5 The K-PKE Component Scheme
	5.1 K-PKE Key Generation
	5.2 K-PKE Encryption
	5.3 K-PKE Decryption

	6 Main Internal Algorithms
	6.1 Internal Key Generation
	6.2 Internal Encapsulation
	6.3 Internal Decapsulation

	7 The ML-KEM Key-Encapsulation Mechanism
	7.1 ML-KEM Key Generation
	7.2 ML-KEM Encapsulation
	7.3 ML-KEM Decapsulation

	8 Parameter Sets
	References
	Appendix A — Precomputed Values for the NTT
	Appendix B — SampleNTT Loop Bounds
	Appendix C — Differences From the CRYSTALS-Kyber Submission
	C.1 Differences Between CRYSTALS-Kyber and FIPS 203 Initial Public Draft
	C.2 Changes From FIPS 203 Initial Public Draft

