# SPECIFIC HEAT AND HEAT OF FUSION OF ICE

By H. C. Dickinson and N. S. Osborne

### CONTENTS

|                                                                         | rage |
|-------------------------------------------------------------------------|------|
| INTRODUCTION                                                            | 49   |
| PREVIOUS WORK                                                           | 50   |
| DESCRIPTION OF CALORIMETRIC METHOD.                                     | 52   |
| MATERIAL AND PREPARATION OF SAMPLES.                                    | 53   |
| EXPERIMENTAL PROCEDURE                                                  | 55   |
| SPECIFIC HEAT OF ICE.                                                   | 63   |
| Experimental results                                                    | 63   |
| Relation between apparent specific heat of ice and dissolved impurities | 69   |
| Discussion of results                                                   | 73   |
| Conclusion                                                              | 76   |
| HEAT OF FUSION OF ICE.                                                  | 77   |
| Summary                                                                 | 78   |
| TABLE OF TOTAL HEAT OF ICE AND WATER.                                   | 79   |

#### INTRODUCTION

The present investigation is one of a series undertaken, at the request of the refrigeration industries, for the determination of constants which are of fundamental importance in the design and operation of refrigeration machinery.

A determination made at the Bureau<sup>1</sup> of the heat of fusion of ice was published in 1913. In this publication is given a review of previous work on this subject. As stated there the results presented are subject to a slight uncertainty on account of the lack of adequate knowledge of the specific heat of ice near the melting point. For this reason and also on account of the direct technical significance of the specific heat of ice, it has been made the subject of the work here presented.

<sup>&</sup>lt;sup>1</sup> Dickinson, Harper, and Osborne, this Bulletin, 10, p. 235, 1913, Scientific Paper No. 209.

PREVIOUS WORK

A review of previous determinations of the heat of fusion of ice is given in the publication cited above.

The results of previous experimental determinations of the specific heat of ice are summarized in Table 1.

| Date    | Observer                                                                                                         | Temperature<br>range                                                                                           | Mean tem-<br>perature | Heat<br>capacity<br>cal/gram<br>degree |
|---------|------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-----------------------|----------------------------------------|
| 1910    | Nernst <sup>2</sup> ,                                                                                            |                                                                                                                | - 7.0                 | 0.57                                   |
|         |                                                                                                                  |                                                                                                                | - 9.5                 | . 550                                  |
| •       |                                                                                                                  |                                                                                                                | - 73                  | .376                                   |
|         |                                                                                                                  |                                                                                                                | - 83                  | . 355                                  |
|         |                                                                                                                  |                                                                                                                | -189.3                | .186                                   |
| 1910. • | Koref 3                                                                                                          | - 2.9 to - 76.9                                                                                                | - 39.9                | . 435                                  |
|         |                                                                                                                  | - 15.3 to - 75.9                                                                                               | - 45.6                | .417                                   |
|         |                                                                                                                  | - 81.7 to -189.5                                                                                               | -135.6                | . 266                                  |
| 1904    | Bogojawlenski 4                                                                                                  |                                                                                                                | - 15                  | . 501                                  |
|         |                                                                                                                  |                                                                                                                | - 29.2                | . 442                                  |
|         |                                                                                                                  |                                                                                                                | - 48.3                | . 398                                  |
| 1849    | Regnault 5                                                                                                       | 0 to - 78                                                                                                      | - 39                  | 6.453                                  |
| 1907    | Nordmeyer and Bernoulli 7                                                                                        | 0 to -185                                                                                                      | - 92.5                | . 345                                  |
| 1905    | Dewar <sup>8</sup>                                                                                               | - 18 to - 78                                                                                                   | - 48                  | . 463                                  |
|         |                                                                                                                  | - 78 to -188                                                                                                   | -133                  | . 286                                  |
|         | 1                                                                                                                | -188 to -252.5                                                                                                 | -220.2                | . 146                                  |
| 1847    | Person 9                                                                                                         |                                                                                                                | - 10                  | . 502                                  |
|         |                                                                                                                  | •                                                                                                              | - 15                  | . 505                                  |
|         | Gadelin 10                                                                                                       |                                                                                                                | - 8.9                 | . 524                                  |
|         | and the second | Conservation of the second |                       |                                        |

 TABLE 1

 Specific Heat of Ice—Results of Previous Observers

<sup>2</sup> Nernst, K. Ak. d. Wiss. Sitzb., 1910, p. 262.

<sup>8</sup> Koref, K. Ak. d. Wiss. Sitzb., 1910, p. 253.

<sup>4</sup> Bogojawlenski, Schr. der Dorpater Naturf. Ges., 13, p. 1.

<sup>5</sup> Regnault, Ann. d. Chim. (3), 26, p. 261, 1849.

<sup>6</sup> Value given by Nernst (loc. cit.), recalculated from original on basis of specific heat of lead.

<sup>7</sup> Nordmeyer and Bernoulli, Verh. d. Deutch. Phys. Ges., 9, p. 175; 1907.

<sup>8</sup> Dewar, Proc. Roy. Soc. Lond., 76, p. 330; 1905.

<sup>9</sup> Person, Ann. Chim. et Phys. (3), 21, p. 295; 1847.

<sup>10</sup> Review by Ångstrom, Ann. d. Phys., 90, p. 509; 1853. Original, Nov. Act. Reg. Soc. Upsala, 5.

Nernst and his associates have deduced an empirical equation expressing their results on the specific heat of ice relative to its temperature. The graphical representation of this equation, together with the observed results of different experimenters, is shown in Fig. 1. The mean temperatures of the determinations

# Specific Heat and Heat of Fusion of Ice



51

Dickinson Osborne

[Vol. 12

are all below  $-7^{\circ}$  C. From the trend of these results in the upper part of the range a very significant increase in the specific heat on approaching the melting point is suggested. This might not appear remarkable except for the fact that A. W. Smith<sup>11</sup> has observed that while with impure ice an apparent increase in specific heat is obtained on approaching the melting point, ice of a high degree of purity shows no such abnormal change in specific heat up to a temperature very close to zero.

The presence of certain dissolved impurities lowers the freezing point of water. At any given temperature not too far below zero a certain proportion of an ice sample containing impurity is unfrozen, due to this lowering. A portion of the heat of fusion is thus made to appear as sensible heat, and the observed apparent heat capacity of such ice, especially near zero, is larger than for ice containing no such impurity. Smith's conclusion that the specific heat of pure ice does not change appreciably on approaching zero is therefore plausible, notwithstanding the fact that it appears to be in contradiction to the results of others.

### DESCRIPTION OF CALORIMETRIC METHOD

The experiments here described were planned with the object of attaining a high precision in the thermal measurements upon ice of a high degree of purity, and especially of extending the experiments to temperatures near zero, where the specific heat is more important technically and is most in doubt.

For making the measurements a calorimeter was adopted which is described in detail elsewhere.<sup>12</sup> An important feature of this calorimeter is the employment of a shell of copper inclosing the specimen under investigation, the copper acting as the calorimetric medium for the transmission and distribution of heat developed in an electric heating coil which is built into the shell. Temperature changes in calorimeter and contents are measured by means of an electric resistance thermometer likewise built into the shell. The calorimeter is suspended in an air space within an inclosing metal jacket. Multiple thermocouples distributed about the surfaces of the calorimeter and the jacket serve to indi-

<sup>&</sup>lt;sup>11</sup> Smith, Physical Review, 17, p. 193; 1903. <sup>12</sup> Dickinson and Osborne, this Bulletin, 12, p. 23, 1915.

#### Dickin son Osborne

cate at any instant the difference between the average temperatures of the surfaces. This enables the corrections for thermal

leakage between calorimeter and its surroundings to be controlled and measured.

The jacket containing the calorimeter is immersed in a stirred liquid bath which, by means of a refrigerating coil using liquid carbon dioxide, an electric heating coil, and a thermoregulator, is maintained at any temperature between  $-55^{\circ}$  C and  $+40^{\circ}$ C to within a few thousandths of a degree. Using current furnished by a storage battery, the heat supplied to the calorimeter and the contained specimen is developed at a nearly constant rate, which is determined by potentiometer measurements of current and of potential drop.

By this method the heat involved in the temperature changes of the material is measured directly in terms of electrical units, from which it may be reduced to customary heat units by using the proper constants.

The ice specimens were contained in a metal cell which fits inside the calorimeter shell. To promote the rapid equalization of temperature, the cell is



provided with radial copper vanes attached to the interior surface. The details of construction of the container are shown in Fig. 2.

### Bulletin of the Bureau of Standards

[Vol. 12

### MATERIAL AND PREPARATION OF SAMPLES

Since even small amounts of impurity would cause considerable increase in the apparent heat capacity, due to incipient melting of portions of the ice, the material used for the determinations of the specific heat and of the heat of fusion of ice was prepared with the object of obtaining specimens of ice as pure as possible. The entire interior surface of the ice container was carefully coated with pure tin to avoid contamination of the sample. The water used was specially prepared by repeated distillations to remove impurities. Four samples of ice were prepared. The water used in samples 1, 2, and 3 was poured into the container through a tin-lined funnel. The water was boiled in the container to expel dissolved gases. Sample No. 1 was frozen in the container directly within the calorimeter by lowering the temperature of the jacket. After the determinations on this sample were completed it was found that this method of freezing had developed sufficient pressure to slightly open the joint at the bottom of the container. The subsequent samples were frozen, beginning at the bottom, by immersing the container into a bath of stirred gasoline cooled to about  $-10^{\circ}$  C, and gradually increasing the depth of immersion as the sample froze.

In the preparation of samples 2 and 3 the residual water was poured from the container after freezing sufficient ice for the sample. The interior cellular construction of the container, however, interfered somewhat with the success of this procedure, and the results on samples 2 and 3 indicated only slightly different purity from sample No. 1.

The results of experiments upon samples 1, 2, and 3 showed a greater increase in the apparent specific heat on approaching zero than would be expected in consideration of Smith's experiments, if the samples possessed the degree of purity sought. On the contrary, they showed less increase than the results of other observers. The results upon sample 3 showed somewhat less increase than samples 1 and 2, which can be accounted for by supposing that sample 3 contained less impurity than the others. To learn, if possible, more in regard to the effect of impurities, an attempt was made to prepare a sample of still greater purity.

Specific Heat and Heat of Fusion of Ice

Dickinson Osborne

Sample No. 4 was distilled directly into the container, the condensed water touching no surface which was not tinned. In doing this the container was first inverted so that the condensed water would drain out, thus washing the entire interior surface with steam and hot distilled water. After about 800 cc had been thus passed through, the container was placed erect and surrounded with ice. Water was condensed until the container was nearly full, leaving about 700 cc in the distilling flask. Thus, only the middle fraction was retained for the sample. The water used in the distilling flask was specially prepared double distilled water. Before sealing the sample in the container, the contained water was boiled to expel any air which might have been absorbed after condensation.

Measurements of the electrical conductivity of the samples, made after the various determinations were completed, failed to show any considerable difference in the observed conductivities of the different samples. These were all of the order of  $3 \times 10^{-6}$  ohm<sup>-1</sup> cm<sup>-1</sup>.

While the specimens were being frozen the calorimeter was cooled to a temperature slightly below zero. The object of this was to avoid melting any considerable portion of the ice when the container was introduced into the calorimeter. The operation of inserting the specimen into the calorimeter at a temperature of zero was accompanied by the unavoidable condensation of moisture on the calorimeter, as the work was done when the dew point was above zero. To absorb this moisture and to maintain the dryness of the air within, a small dish of calcium chloride was placed at the bottom of the jacket.

### EXPERIMENTAL PROCEDURE

A detailed description of the various operations involved in determination of heat capacity is given in the previous paper referred to above. Briefly stated, the sequence as to manipulations and observations is as follows:

The calorimeter containing the specimen is cooled to the initial temperature of the experiment. The jacket is brought under control of the thermoregulator at the temperature of the calorimeter. The resistance of the built-in platinum thermometer is

[Vol. 12

observed to determine the initial temperature 13 of the calorimeter. Electric current is passed through the heating coil of the calorimeter for a measured interval of time. During this time alternate readings of current 14 and potential drop are made at equal intervals of time to determine the rate of energy supply to the calorimeter. Meanwhile by hand control of the jacket heating current the temperature of the jacket is kept as nearly as practicable equal to the rising temperature of the calorimeter. The readings of the thermocouples, which are recorded at intervals of 30 seconds throughout the entire experiment, indicate the temperature difference between the calorimeter and jacket, and serve the double purpose of guiding the jacket control and giving the data for determining the thermal leakage. After the interruption of the calorimeter heating current, the jacket is again brought under control of the thermoregulator, and when the calorimeter attains thermal equilibrium the thermometer resistance is again observed to determine the final temperature.

The rate of thermal leakage is determined by a separate experiment, in which, with the calorimeter and jacket at different temperatures, alternate readings are made of the resistance thermometer and of the thermocouple between calorimeter and jacket. An approximate value of the heat capacity of the calorimeter at the time of this supplementary experiment is adequate to enable the computation of the rate to be made.

The mass of the sample is determined from weighings in air against brass weights of the empty container, and of the container with specimen included. The difference between these weighings corrected for air buoyancy gives the mass of the specimen.

An example of the record of a single experiment in determining the specific heat of an ice specimen is given in Fig. 3.

<sup>13</sup> The temperatures  $\theta$  employed in this paper are expressed in degrees of the centigrade scale determined by a resistance thermometer of the Heraeus purest platinum according to the equations

$$\theta = pt + \delta \left(\frac{\theta}{100} - 1\right) \frac{\theta}{100}, \quad pt = \frac{R\theta - R_0}{R_{100} - R_0} 100, \quad \delta = 1.48$$

<sup>14</sup> All electrical quantities are expressed in terms of the units adopted by the Bureau of Standards, as given in Bureau Circular No. 29, 1st ed.

56

The value of  $\delta$  here taken, viz, 1.48, was obtained by a direct comparison of platinum resistance thermometers of Heraeus purest platinum, in the interval o° to 100° with verre dur thermometers standardized at the Bureau International des Poids et Mesures, and thus serves to reproduce the hydrogen scale of that bureau.

The difference between the scale above defined and the thermodynamic scale as reproduced in the interval  $-50^{\circ}$  to  $+500^{\circ}$  by means of the platinum resistance thermometer standardized at the temperatures of melting ice, steam, and sulphur vapor, consists in the use of  $\partial = 1.48$  instead of 1.49+, which would be the value for platinum of the purity here employed when the sulphur boiling point is taken as  $444^{\circ}$ 6. At  $+50^{\circ}$  the difference between the two scales is less than 9003, which is within the limits of accuracy of reproduction of the hydrogen scale.

Dickinson Osborne

### Observers, N. S. O., C. H. M.

### CALORIMETER RECORD

Date, Aug. 6, 1914 Experiment No. 5

| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Time                     | Potentiometer<br>readings across<br>volt box | Time    | Thermo-<br>couple<br>readings | Resistance<br>thermome-<br>ter readings | Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|----------------------------------------------|---------|-------------------------------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                          |                                              |         |                               | 01                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | m                        | 0 117602                                     | ms      | mm                            | 20 10050                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                        | 0.11/083                                     | 30      | 200.0                         | 30.10930                                | Bridge B S No 7481 at 33° C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5                        | 708                                          | 1       | 196.0                         |                                         | Diage D. D. Ho. Hor at 55 C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7                        | 712                                          | 30      | 199.9                         |                                         | Bridge calibration of Aug. 29.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 11       723<br>Mean       30<br>(202.3)       203.0<br>(202.3)       Ratio 100 R         Corr. for potentiometer<br>Corr. for yold box<br>Corr. for yold box<br>Corr. for yold box<br>(Example 10 E)       11.7711 volts       30<br>(202.3)       203.0<br>(202.3)       7       7         Potential drop (E)       11.7711 volts       5       195.5<br>(202.2)       30<br>(202.0)       201.0<br>(202.0)       7       7       30<br>(202.0)       203.6<br>(202.0)       7       7       30<br>(202.0)       205.7<br>(202.0)       7       7       30<br>(202.0)       205.7<br>(202.0)       7       7       30<br>(202.0)       205.7<br>(202.0)       7       7       30<br>(202.0)       205.7<br>(202.0)       7       7       7       30<br>(202.0)       105.5<br>(202.0)       7       7       7       30<br>(202.0)       200.0       200.0       200.0       200.0       200.0       200.0       200.0       200.0       200.0       200.0       200.0       200.0       200.0       200.0       200.0       200.0       200.0       200.0       200.0 <td>9</td> <td>717</td> <td>2</td> <td>202.2</td> <td></td> <td>1914</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9                        | 717                                          | 2       | 202.2                         |                                         | 1914                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Mean       .117706<br>Orr. for yoit box       3       202.3<br>(197.6)       Thermometer No. 11510         Corr. for yoit box                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 11                       | 723                                          | 30      | 203.0                         |                                         | Ratio 100 R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Corr. for potentiometer<br>Corr. for yold bax<br>Corrected reading<br>Time       9<br>Potential drop (E)       30<br>117711       30<br>199, 5<br>30       201, 0<br>199, 5<br>30       Thermometer No. 11510         Time       Potential drop (E)       11.7711 Notts       5<br>30       30<br>199, 5<br>30       201, 0<br>199, 5<br>30       Thermometer No. 11510         Time       Potential drop (E)       11.7711 Notts       5<br>30       30<br>199, 2       201, 0<br>200, 0       Calorimeter No. 11510       Calorimeter No. 11510         m       0.129893       30       205, 3       200, 0       200, 0       200, 0       200, 0       Mass of specimen No. 4, 460.7 g         m       0.129893       10       202, 2       200, 0       200, 0       200, 0       200, 0       200, 0       200, 0       200, 0       Mass of specimen No. 4, 460.7 g         m       0.129893       10       202, 0       200, 0       200, 0       200, 0       200, 0       200, 0       200, 0       200, 0       200, 0       200, 0       200, 0       200, 0       200, 0       200, 0       200, 0       200, 0       200, 0       200, 0       200, 0       200, 0       200, 0       200, 0       200, 0       200, 0       200, 0       200, 0       200, 0       200, 0       200, 0       200, 0       200, 0       200, 0 <td>I</td> <td>Mean .117706</td> <td>3</td> <td>202.3</td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | I                        | Mean .117706                                 | 3       | 202.3                         |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Corr. for volt box $1+3$ $3$ $197.8$ $197.8$ $197.8$ $197.8$ $197.8$ $197.8$ $197.8$ $197.8$ $197.8$ $197.8$ $197.8$ $197.8$ $197.8$ $197.8$ $197.8$ $197.8$ $197.8$ $197.8$ $197.8$ $197.8$ $197.8$ $197.8$ $197.8$ $197.8$ $197.8$ $197.8$ $197.8$ $197.8$ $197.8$ $197.8$ $197.8$ $197.8$ $197.8$ $197.8$ $197.8$ $197.8$ $197.8$ $197.8$ $197.8$ $197.8$ $197.8$ $197.8$ $197.8$ $197.8$ $197.8$ $197.8$ $197.8$ $102.02$ $200.2$ $200.2$ $200.2$ $200.2$ $107.6$ $107.6$ $107.6$ $107.6$ $107.6$ $107.6$ $107.6$ $107.6$ $102.02.8$ $200.2$ $200.2$ $200.2$ $200.2$ $200.2$ $200.2$ $200.2$ $200.2$ $200.2$ $200.2$ $200.2$ $200.2$ $200.2$ $200.2$ $200.2$ $200.2$ $200.2$ $200.2$ $200.2$ $200.2$ $200.2$ $200.2$ $200.2$ $200$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Corr. for potentiomet    | er 0                                         | 30      | 201.0                         |                                         | Thermometer No. 11510                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Corrected readings 1.12711 rolts 5 30 156.3<br>Time readings across sid. resistance 5 30 126.5<br>Time readings across sid. resistance 7 30 200.0<br>$\frac{10}{200}$ 2020 128 6<br>$\frac{10}{200}$ 2020 128 7<br>$\frac{10}{200}$ 2020 129 200 220 120 200 200 128 7<br>$\frac{10}{200}$ 2000 120 200 125.2<br>$\frac{10}{200}$ 2000 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Corr. for volt box       | +5                                           | 4 20    | 199.5                         |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Corrected reading        | 11 7711 volts                                | 5 30    | 197.0                         |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Potential drop (E)       | 11.7711 10105                                | 30      | 196.3                         |                                         | Calorimeter No. 11510, with ice                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| TimePotentiometer<br>readings across<br>std. resistance7<br>30 $\frac{30}{200.2}$<br>200.8<br>30 $\frac{200.2}{200.0}$<br>30Mass of specimen No. 4,<br>460.7 gm0.129893<br>200.610<br>200.5200.5 R<br>200.530<br>200.5 T<br>200.5 T<br>200.5 T<br>200.5 T<br>200.5 T<br>200.6 To std. resistance<br>corr. for potentiometer<br>0 and 1.29980 amp.<br>15Mass of specimen No. 4,<br>460.7 gCorr. for potentiometer<br>corr. for yold-resistance<br>corr. for yold-resistance<br>corr. for yold-resistance<br>corr. for yold-resistance<br>corr. for yold-resistance<br>corr. for yold-resistance<br>corrected reading<br>1.29980 amp.<br>1515<br>190.2<br>10Mass of specimen No. 4,<br>460.7 gCorr. for yold-resistance<br>corrected reading<br>corrected reading<br>corrected reading<br>for a 1.0.70<br>correction of calorimeter current<br>m<br>for all time<br>corrected reading<br>for all time<br>for all time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                          |                                              | 6       | 197.2                         |                                         | specimen No. 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Timereacting across<br>std. resistance7<br>30200.2<br>202.8<br>30200.2<br>202.8<br>30Mass of specimen No. 4,<br>460.7 g $m$<br>2<br>2<br>$\frac{1}{2}$ 0.129803<br>9<br>9<br>$\frac{1}{2}$ 10<br>9<br>9<br>$\frac{1}{2}$ 200.2<br>30<br>205.3<br>$\frac{1}{2}$<br>$\frac{1}{2}$<br>$\frac{1}{2}$<br>$\frac{1}{2}$<br>$\frac{1}{2}$<br>$\frac{1}{2}$<br>$\frac{1}{2}$<br>$\frac{1}{2}$<br>$\frac{1}{2}$<br>$\frac{1}{2}$<br>$\frac{1}{2}$<br>$\frac{1}{2}$<br>$\frac{1}{2}$<br>$\frac{1}{2}$<br>$\frac{1}{2}$<br>$\frac{1}{2}$<br>$\frac{1}{2}$<br>$\frac{1}{2}$<br>$\frac{1}{2}$<br>$\frac{1}{2}$<br>$\frac{1}{2}$<br>$\frac{1}{2}$<br>$\frac{1}{2}$<br>$\frac{1}{2}$<br>$\frac{1}{2}$<br>$\frac{1}{2}$<br>$\frac{1}{2}$<br>$\frac{1}{2}$<br>$\frac{1}{2}$<br>$\frac{1}{2}$<br>$\frac{1}{2}$<br>$\frac{1}{2}$<br>$\frac{1}{2}$<br>$\frac{1}{2}$<br>$\frac{1}{2}$<br>$\frac{1}{2}$<br>$\frac{1}{2}$<br>$\frac{1}{2}$<br>$\frac{1}{2}$<br>$\frac{1}{2}$<br>$\frac{1}{2}$<br>$\frac{1}{2}$<br>$\frac{1}{2}$<br>$\frac{1}{2}$<br>$\frac{1}{2}$<br>$\frac{1}{2}$<br>$\frac{1}{2}$<br>$\frac{1}{2}$<br>$\frac{1}{2}$<br>$\frac{1}{2}$<br>$\frac{1}{2}$<br>$\frac{1}{2}$<br>$\frac{1}{2}$<br>$\frac{1}{2}$<br>$\frac{1}{2}$<br>$\frac{1}{2}$<br>$\frac{1}{2}$<br>$\frac{1}{2}$<br>$\frac{1}{2}$<br>$\frac{1}{2}$<br>$\frac{1}{2}$<br>$\frac{1}{2}$<br>$\frac{1}{2}$<br>$\frac{1}{2}$<br>$\frac{1}{2}$<br>$\frac{1}{2}$<br>$\frac{1}{2}$<br>$\frac{1}{2}$<br>$\frac{1}{2}$<br>$\frac{1}{2}$<br>$\frac{1}{2}$<br>$\frac{1}{2}$<br>$\frac{1}{2}$<br>$\frac{1}{2}$<br>$\frac{1}{2}$<br>$\frac{1}{2}$<br>$\frac{1}{2}$<br>$\frac{1}{2}$<br>$\frac{1}{2}$<br>$\frac{1}{2}$<br>$\frac{1}{2}$<br>$\frac{1}{2}$<br>$\frac{1}{2}$<br>$\frac{1}{2}$<br>$\frac{1}{2}$<br>$\frac{1}{2}$<br>$\frac{1}{2}$<br>$\frac{1}{2}$<br>$\frac{1}{2}$<br>$\frac{1}{2}$<br>$\frac{1}{2}$<br>$\frac{1}{2}$<br>$\frac{1}{2}$<br>$\frac{1}{2}$<br>$\frac{1}{2}$<br>$\frac{1}{2}$<br>$\frac{1}{2}$<br>$\frac{1}{2}$<br>$\frac{1}{2}$<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                          | Detentiometer                                | 30      | 198.6                         |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Time                     | Potentiometer                                | 7       | 200.2                         |                                         | the second s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Time                     | atd resistance                               | 30      | 202.0                         |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                        | Star resistance                              | 8       | 203.8                         |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                                              | 30      | 205.3                         |                                         | Mass of specimen No. 4,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $\frac{1}{2}$<br>4<br>$\frac{903}{10}$ $10$ $\frac{10}{30}$ $\frac{205}{205}$<br>$\frac{30}{205}$<br>$\frac{909}{11}$ $10$ $\frac{205}{3}$<br>$\frac{205}{20}$<br>$\frac{909}{10}$ $11$<br>$\frac{909}{202}$ $11$<br>$\frac{900}{202}$ $11$<br>$\frac{900}{200}$ $11$<br>$\frac{900}{200}$ $11$<br>$\frac{900}{200}$ $11$<br>$\frac{1000}{2000}$ $11$<br>$\frac{10000}{2000}$ $11$<br>$\frac{10000}{2000}$ $11$<br>$\frac{10000}{2000}$ $11$<br>$\frac{10000}{2000}$ $11$<br>$\frac{100000}{2000}$ $11$<br>$1000000000000000000000000000000000000$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | m                        |                                              | 30      | 205.0                         |                                         | 400+7 g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2                        | 0.129893                                     | 10      | 205.3                         |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4                        | 903                                          | 30      | 205.7                         |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 8       898       30       202. 5       Thermocouple zero-200         Mrean .129997       12       30       197. 2       30       197. 2         Corr. for potnitometer 0       0       13       195. 2       30       195. 2         Corr. for oth-bor current .129680       13       30       195. 3       197. 6       30       197. 6         Current (1)       1.29680 amp.       15       30       197. 6       30       201. 0       30       197. 6         Duration of calorimeter current       0       17       30       202. 3       30       199. 8       30       200. 0       30. 67709         Orn 1       0.70       18       200. 0       20       200. 0       20       200. 0       20       200. 0       20       20       200. 0       30. 67708       30. 67708       30. 67708       30. 67708       30. 67708       30. 67708       30. 67708       30. 67708       30. 67708       30. 67708       30. 67708       30. 67708       30. 67708       30. 67708       30. 67708       30. 67708       30. 67708       30. 67708       30. 67708       30. 67708       30. 67708       30. 67708       30. 67708       30. 67708       30. 67708       30. 67708       30. 67708                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6                        | 899                                          | 11      | 212.0                         |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8                        | 898                                          | 30      | 202.5                         |                                         | Thermocouple zero=200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| $\begin{array}{c} \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10                       | 892                                          | 12      | 197.2                         |                                         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Corr. for solid residuation of the section $f(x) = 10^{-10}$ for the section $f(x) = 10^{-10}$ for the section $f(x) = 10^{-10}$ for $f(x) = 10^{-10}$ fo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | N                        | Iean .129897                                 | 30      | 195.2                         |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Corrected reading 1.29680 amp.<br>Current (1) 1.29680 amp.<br>Current (1) 1.29680 amp.<br>Current (1) 1.29680 amp.<br>Current (1) 1.29680 amp.<br>Total time 600.01 seconds<br>m = s<br>0  ft  1171<br>Total time 600.01 seconds<br>19<br>202.8<br>30 $202.330$ $202.330$ $202.330$ $202.330$ $202.330$ $202.330$ $202.330$ $202.330$ $202.330$ $202.330$ $202.330$ $202.330$ $202.330$ $202.330$ $202.330$ $202.330$ $202.330$ $202.330$ $202.330$ $200.020$ $200.020$ $200.020$ $200.030$ $6770930$ $6770830$ $6770830$ $6770830$ $6770830$ $6770830$ $6770830$ $6770830$ $6770830$ $6770830$ $6770830$ $6770830$ $6770830$ $6770830$ $6770830$ $6770830$ $6770830$ $6770830$ $6770830$ $6770830$ $6770830$ $6770830$ $6770830$ $6770830$ $6770830$ $6770830$ $6770830$ $6770830$ $6770830$ $6770830$ $6770830$ $6770830$ $6770830$ $6770830$ $6770830$ $6770830$ $6770830$ $6770830$ $6770830$ $6770830$ $6770830$ $6770830$ $6770830$ $6770830$ $6770830$ $6770830$ $6770830$ $6770830$ $6770830$ $6770830$ $6770830$ $6770830$ $6770830$ $6770830$ $6770830$ $6770830$ $6770830$ $6770830$ $6770830$ $6770830$ $6770830$ $6770830$ $6770830$ $6770830$ $6770830$ $6770830$ $6770830$ $6770830$ $6770830$ $6770830$ $6770830$ $6770830$ $6770830$ $6770830$ $6770830$ $6770830$ $6770830$ $6770830$ $6770830$ $6770830$ $6770830$ $6770830$ $6770830$ $6770830$ $6770830$ $6770830$ $6770830$ $6770830$ $6770830$ $6770830$ $6770830$ $6770830$ $6770830$ $6770830$ $6770830$ $6770830$ $6770830$ $6770830$ $6770830$ $6770830$ $6770830$ $6770830$ $6770830$ $6770830$ $6770830$ $6770830$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Corr. for atd register   |                                              | 13      | 194.8                         |                                         | Without Instant In and Instant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Corrected reading 129630<br>Current (I) 1.29680 amp<br>1.29680 amp<br>1.202.8<br>30 202.3<br>17 30 202.3<br>17 30 202.3<br>18 200.3<br>19 199.8<br>19 199.7<br>30 200.0<br>20 20.0<br>20 200.0<br>20 200.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Corr for volt-box curr   | rent                                         | 30      | 195.3                         | 1.000                                   | when jacket is colder than                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $\begin{array}{c} \hline \text{Current (1)} & 1.29630 \text{ amp.} \\ \hline 15 & 30 & 19.5 & 30 \\ \hline 19.2 & 201.0 \\ \hline 30 & 202.3 \\ \hline 30 & 202.3 \\ \hline 30 & 200.0 \\ \hline 30 & 200.0 \\ \hline 30 & 200.0 \\ \hline 200$                                                                                                                                                                                                                                                                                   | Corrected reading        | .129680                                      | 14 30   | 190.5                         |                                         | couple reading is above 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Duration of calorimeter current1030201.0Duration of calorimeter current1630202.3On10.7017205.0Off 11.71200.3Power Exi15.2648 watts30200.0Total energy9159.1joulesCorrected energy9156.0 joules20Zorrected energy9156.0 joules20Zorrected energy9156.0 joulesZorrected energy9156.0 joulesZorrected energy9156.0 joulesZorrected energy9156.0 mlesZorrected energy9159.1 mlesZorrected energy9159.1 mlesZorrected energy9159.1 mlesZorrected energy9159.1 mlesZorrected energy9159.1 mlesZorrected energy9159.1 mlesZorrected energy9159.2 mlesZorrected energy9159.3 mlesZorrected energy9160.0 mlesZorrected energy9160.0 mlesZorrected energy9160.0 mlesZorrected energy9160.0 mlesZorrected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Current (I)              | 1.29680 amp.                                 | 15      | 197.0                         |                                         | couple leading is above 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                          | -                                            | 30      | 201.0                         |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                                              | 16      | 202.8                         |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Duration of cale         | rimeter current                              | 30      | 204.7                         |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | D BILLION OF CUIC        |                                              | 17      | 205.0                         |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | m                        | S                                            | 30      | 202.3                         |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | On 1                     | 0.70                                         | 18      | 200.3                         |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Total time600.01 seconds1930192.0192.0919192.7192.7192.7192.7192.79101101200.0200.0200.0200.020200.021200.021200.020200.02230200.030.6770820202030.6770830.6770830.677082020200.02230.677082020200.030.6770821200.02430.6770823200.030.677082424200.652524200.652610845 $R_{3=30.67605}$ 470.56760 $R_{m=30.39225}$ 494.5787 $\theta_{2}=-22725$ 2010845199.7 j/deg201099.7 j/deg202.0807 j/deg · g202.0807 j/deg · g9er g2.0807 j/deg · g $\theta_1$ to $\theta_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Off 11                   | .71                                          | 20      | 100.8                         |                                         | Date of thermal leakage from                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 19 30200.0200.0200.0200.0200.0200.0200.0200.0200.0200.0200.0200.0200.0200.0200.0200.0200.0200.0200.0200.0200.0200.0200.0200.0200.0200.0200.0200.0200.0200.0200.0200.0200.0200.0200.0200.0200.0200.0200.0200.0200.0200.0200.0200.0200.0200.0200.0200.0200.0200.0200.0200.0200.0200.0200.0200.0200.0200.0 <td>Total time</td> <td>600.01 seconds</td> <td>10 30</td> <td>100 7</td> <td></td> <td>inchet to calorimeter 0.2</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Total time               | 600.01 seconds                               | 10 30   | 100 7                         |                                         | inchet to calorimeter 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                                              | 30      | 200.0                         |                                         | joules per minute per mil-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Power $E \times I$ 15. 2648 waits<br>Total energy       30       200.0       200.0         Corr. forthermalleakage -3.1       1.       200.0       30.67709         Corrected energy       9156.0 joules       21       200.0       30.67709         Initial       Final       23       200.0       30.67708         Obs. R       30.10950       30.67005       30.67708       30.67708         Bridge.corr.       -105       -103       24       30.67708         Correction loss R       30.67708       30.67708       30.67708         Correction loss R       30.67708       30.67708       30.67708         Correction loss R       9.010950       30.67705       30.67708         Correction loss R       9.0000       24       30.67708         Mean       200.65       Mean       200.65         Mean       2.00.65       Mean       200.65         Total heat capacity of calo-<br>rimeter       104.11.1       Heat capacity of calo-<br>rimeter       104.7 g.2698         Heat capacity of ice<br>per g       2.0807 j/deg·g       2.0807 j/deg·g       2.0807 j/deg·g $\theta_1$ to $\theta_2$ 0.4974       Calao<br>g·deg       10.4974       Calao<br>g·deg <td></td> <td></td> <td>. 20</td> <td>200.0</td> <td></td> <td>limeter deflection above 200</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                          |                                              | . 20    | 200.0                         |                                         | limeter deflection above 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $ \begin{array}{c} \mbox{Total energy} & 9159.1 & joules \\ \mbox{Corr. forthermalleakage-3.1 } i. \\ \mbox{Obs. R} & 30.10950 & 30.67708 \\ \mbox{Bridge.corr.} & -105 & -103 \\ \mbox{Corr. R_1} & -30.10845 & R_{3} = 30.67605 \\ \mbox{Corr. R_1} & -30.10845 & R_{3} = 30.67605 \\ \mbox{Mean} & 200.65 \\ Mea$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Power EXI                | 15.2648 watts                                | 30      | 200.0                         |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Total energy             | 9159.1 joules                                | 21      | 200.0                         |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Corrected corrected      | age - 3,1 j.                                 | 30      | 200.0                         | 00 0000                                 | and the second s |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Confected energy         | 130.0 Joules                                 | 22 20   | 200.0                         | 30.67709                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                          |                                              | 23 30   | 200.0                         | 30 67709                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Obs. R       30.10950       30.67708       Correction for thermal leak-<br>age to calorimeter $= -0.2 \times$<br>6.5×24 $= -3.1 j$ Bridge.corr. $-105$ $-103$ Mean       200.65       Sector       Correction for thermal leak-<br>age to calorimeter $= -0.2 \times$<br>6.5×24 $= -3.1 j$ Mean       200.65       Mean       200.65       Potentiometer No. 9143<br>Std. cell No. 2682         Total heat capacity of calo-<br>rimeter       1099.7 j/deg<br>Heat capacity of calo-<br>rimeter       101.1 Heat capacity of calo-<br>ger g       Potentiometer No. 9143<br>Std. cell No. 2682         Mean specific heat       0.4974 $\frac{cal_{20}}{g \cdot deg}$ Potention       Temp. std. res., 2699                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | T-111-1                  | 71                                           | 30      | 200.0                         | 00.07700                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Obs. R 30. 10950         | 30. 67708                                    | 24      |                               | 30.67708                                | Correction for thermal leak-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $\begin{array}{c} \text{Corr. R_1} & \text{Corr. R_2} & \text{Corr. R_3} &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Bridge.corr105           | -103                                         | Mean    | 200.65                        |                                         | $6.5 \times 24 = -3.1$ i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $ \begin{array}{c} \begin{array}{c} 3 \text{ K} & 0.30700 & \text{Km} = 30.39263 \\ \lambda \theta & 4.5787 & \theta_2 = -72304 \\ \lambda \theta & 4.5787 & \theta_2 = -29725 \end{array} \end{array} \\ \hline \begin{array}{c} \text{Total heat capacity 1999.7 j/deg} \\ \text{Heat capacity of ceo} \\ \text{rimeter} & 1041.1 \\ \text{Heat capacity of ice} & 988.6 \\ \text{Mass of ice specimen 460.7 g} \\ \text{Heat capacity of ice} \\ \text{per g} & 2.0807 j/deg \cdot g \\ \theta_1 \text{ to } \theta_2 \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \begin{array}{c} \text{Potentiometer No. 9143} \\ \text{Std. cell No. 2682} \\ \text{Volt bor No. 5245} \\ \text{Temp. volt box, 2678} \\ \text{Std. res. No. 7354} \\ \text{Temp. std. res., 2699} \end{array} \\ \hline \end{array} \\ \\ \hline $ \\ \hline  \\ \hline \end{array} \\ \hline \end{array} \\ \\ \hline \end{array} \\ \\ \hline \end{array} \\ \hline \end{array} \\ \\ \hline \end{array}  \\ \hline  \\ \hline  \\ \hline  \\ \hline \end{array} \\ \\ \hline \end{array}  \\ \hline  \\ \\ \\ \end{array} \\ \\ \\ \end{array}  \\ \hline  \\ \\ \\ \\ \end{array}  \\ \hline  \\ \\ \\ \hline  \\ \hline  \\ \hline  \\ \\ \\ \\ \hline  \\ \hline  \\ \hline  \\ \\ \\ \\ | Coff. $R_1 = 30.10845$   | $R_2 = 30.67605$                             | Inclair | 100.00                        | and the second second                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $\begin{array}{c} \text{Figure 1} & \text{Figure 2} \\ \hline & & & & & & & \\ \hline & & & & & & & \\ \hline & & & &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AR 0.50/00               | $R_m = 30.39225$                             |         |                               |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Jord Horor $012 - 2.1123$ Potentiometer No. 9143Total heat capacity 1999.7 j/degFormula for the state of the state                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 18 4 578                 | $\theta_1 = -75304$                          |         |                               |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Std. cell No. 2682Total heat capacity 1999.7 j/degHeat capacity of celo-rimeter1041.1Heat capacity of ice958.6Mass of ice specimen 460.7 gHeat capacity of iceper g2.0807 j/deg·gMean specific heat0.4974calmg' deg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 20 1.010                 | . 02                                         |         | 1                             |                                         | Potentiometer No. 9143                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Total heat capacity 1999.7 j/deg<br>Heat capacity of calo-<br>rimeter 1041.1<br>Heat capacity of ice 958.6<br>Mass of ice specimen 460.7 g<br>Heat capacity of ice<br>per g 2.0807 j/deg• g<br>$\theta_1$ to $\theta_2$<br>Volt bor No. 5245<br>Temp. volt box, 2698<br>Std. res. No. 7354<br>Temp. std. res., 2699                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                          |                                              |         |                               | 10000                                   | Std. cell No. 2682                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Volt box No. 5245<br>Temp. volt box, 2628<br>Std. res. No. 7354Mass of ice specimen 460.7 g<br>Heat capacity of ice<br>per g2.0807 j/deg· g<br>g· degMean specific heat $0.4974 \frac{cal_{20}}{g \cdot deg}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Total heat canacity      | 1000 7 i/deg                                 |         |                               |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| rimeter1041.1Temp. volt box, 2698Heat capacity of ice958.6Std. res. No. 7354Mass of ice specimen 460.7 gTemp. std. res., 2699Heat capacity of ice $2.0807 \text{ j/deg} \cdot \text{g}$ per g $2.0807 \text{ j/deg} \cdot \text{g}$ $\theta_1$ to $\theta_2$ $\theta_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Heat capacity of celo-   | 1999.7 Juck                                  |         |                               | 1                                       | Volt box No. 5245                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Heat capacity of ice     958.6     Std. res. No. 7354       Mass of ice specimen 460.7 g     Feat capacity of ice     Feat capacity of ice       per g     2.0807 j/deg• g     Temp. std. res., 2699       Mean specific heat     0.4974 cal_{20}/g• deg     Ge deg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | rimeter                  | 1041.1                                       |         |                               |                                         | Temp. volt box, 2698                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Mass of ice specimen 460.7 gTemp. std. res., 269Heat capacity of ice<br>per g2.0807 j/deg• gMean specific heat $0.4974 \frac{cal_{20}}{g•deg}$ $\theta_1$ to $\theta_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Heat capacity of ice     | 958.6                                        |         |                               |                                         | Std. res. No. 7354                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Heat capacity of ice<br>per g 2.0807 j/deg· g<br>Mean specific heat 0.4974 $\frac{cal_{20}}{g \cdot deg}$<br>$\theta_1$ to $\theta_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Mass of ice specimer     | 1 460.7 g                                    |         |                               |                                         | Tomp and rog 2600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| per g 2.0807 j/deg• g<br>Mean specific heat $0.4974 \frac{cal_{20}}{g \cdot deg}$<br>$\theta_1$ to $\theta_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Heat capacity of ice     | 8                                            |         |                               | and the second                          | 1 cmp. stu. tes., 2019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $\frac{\text{Mean specific heat}}{\theta_1 \text{ to } \theta_2} \xrightarrow{0.4974 \frac{\text{Cal}_{20}}{\text{g} \cdot \text{deg}}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | per g                    | 2.0807 j/deg• g                              |         |                               |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $\theta_1$ to $\theta_2$ g• deg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Mean specific heat       | 0.4974 cal20                                 |         |                               | 1.000                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\theta_1$ to $\theta_2$ | g• deg                                       |         |                               |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

FIG. 3.—Sample record of experiment

### Bulletin of the Bureau of Standards

[Vol. 12

The initial and final readings of thermometer resistance corrected for bridge errors give the initial and final thermometer resistances  $R_1$  and  $R_2$ . The difference between the initial and final resistances,  $\Delta R$ , multiplied by the difference factor,  $K_m$ , gives the change in temperature of the calorimeter,  $\Delta \theta$ . In obtaining  $K_m$  from the chart Fig. 4 the mean resistance  $R_m$  is used.

The average thermocouple deflection multiplied by the rate and by the time between initial and final thermometer readings gives the correction for thermal leakage.

The mean potentiometer readings for potential drop and for current, corrected for instrumental errors, and multiplied by the proper reduction factors, give the potential drop, E, and current I. The product of the current and potential drop is the power, and this multiplied by the time is the total energy electrically supplied to the calorimeter. This total energy corrected for thermal leakage gives the corrected energy, i. e., the amount of energy received by the calorimeter and contents during the experiment.

The corrected energy divided by the change in temperature,  $\Delta \theta$ , gives the heat capacity of calorimeter and specimen in joules per degree.

The heat capacity of the calorimeter is obtained from the curve, Fig. 5, at a point corresponding to the mean temperature,

# $\frac{1}{2}(\theta_1+\theta_2).$

Deducting from the total mean heat capacity the heat capacity of the calorimeter, the mean heat capacity of the specimen is obtained over the temperature interval of the experiment.

The mean heat capacity of the specimen divided by the mass and by the number of joules<sup>15</sup> in one 20° calorie,<sup>16</sup> gives the mean specific heat of the ice specimen in 20° calories per gram per degree.

#### 1 calorie<sub>20</sub>=4.183 joules

58

 $<sup>^{15}</sup>$  The relation between the  $_{20}^\circ$  calorie and the joule (international watt second) is taken as represented by the equation

<sup>&</sup>lt;sup>16</sup> The  $20^{\circ}$  calorie used in this paper is taken as the quantity of heat per gram (mass) per degree centigrade required to raise the temperature of water at  $20^{\circ}$  C.

Dickinson] Osborne



FIG. 4.-Calibration of resistance thermometer in calorimeter

•

The initial temperature,  $\theta_1$ , may be computed from  $R_1$ , using the thermometer resistance at o<sup>°</sup> ( $R_0$ ), determined at the time of calibration, and the value K corresponding to a resistance which is the mean of  $R_0$  and  $R_1$ . The final temperature  $\theta_2$  may be computed similarly from  $R_2$ .



FIG. 5.—Heat capacity of calorimeter

The method of calculation may be summarized as follows: Supposing the observed data to be corrected for all instrumental errors, the specific heat is given by the formula

$$S = \frac{\frac{IET + Btd}{\varDelta RK_m} - C}{MJ}$$

60

[Vol. 12

### Specific Heat and Heat of Fusion of Ice

Dickinson Osborne

- S = mean specific heat of specimen in 20° calories per gram per degree over the interval of temperature employed.
- C = mean heat capacity of calorimeter in joules per degree.
- I =current in amperes (mean value).
- E =potential drop in volts (mean value).
- T = duration of energy supply to calorimeter in seconds.
- d = average thermocouple deflection in millimeters during experiment.
- t =time in minutes between initial and final readings of calorimeter resistance thermometer.
- B = rate of thermal leakage to calorimeter from surroundings in joules per minute per millimeter thermocouple deflection.
- $R_1$  = initial resistance of thermometer in ohms.
- $R_2$  = final resistance of thermometer in ohms.
- $\Delta R$  = difference between initial and final resistance of the thermometer in ohms.
- $K_m$  = the difference factor for the resistance thermometer,

i. e.,  $\frac{\Delta\theta}{\Delta R}$  in degrees per ohm.

M = mass of specimen in grams.

The current and potential drop were always so nearly constant that the approximation in taking the product of their mean values multiplied by the time as the total energy is well within the limit of allowable error.

A complete description of the method and results of the calibration of the calorimeter resistance thermometer and of the determinations of the heat capacity of the calorimeter are given in a preceding paper.<sup>17</sup>

The values of the difference factor K as there determined are given graphically in Fig. 4. This chart was used in making calculations of specific heat determinations, the difference factor for any observed interval being taken from the curve at the point corresponding to the mean between the initial and final thermometer resistances. Since the performance of the thermometer

<sup>&</sup>lt;sup>17</sup> Dickinson and Osborne, this Bulletin, **12**, p. 23, 1915, Scientific Paper No. 247. 6844°—15——5

was found to depend upon the previous thermal treatment, in the use of the chart the appropriate calibration line was chosen to correspond with the initial temperature of the experiments on the particular day.

The values of the heat capacity of the calorimeter are given graphically in Fig. 5. The two curves there shown represent the values obtained with the two arrangements of the thermocouples which were used in the determinations. When the earlier arrangement was used, consisting of a single set of thermocouples, the junctions of which were so placed as to indicate the difference in temperature between the surface of the calorimeter and a point in the liquid near the jacket, the upper curve was obtained. The lower curve was obtained with the later arrangement, making use of an additional set of couples the junctions of which were so placed that when joined in series the two sets of couples indicated the difference in temperature between the calorimeter and the jacket surfaces.

These later results showed that in the original arrangement the true temperature difference between calorimeter and jacket had not been indicated owing to the effect of lag in liquid and jacket. The significance of this fault in the apparatus did not appear until after the experimental work on samples 1, 2, and 3 had been completed, but errors from this cause in the final results for these samples could be avoided in the manner explained below.

The value of the observed total heat capacity of the empty calorimeter and of the calorimeter containing a specimen would be affected to the same extent by the improper placing of the thermocouple, provided that in the two experiments the manipulation of the jacket was similar. If, therefore, in computing the result of a specific heat determination a value of heat capacity of the calorimeter be used, determined under experimental conditions similar to those in the specific heat determination, no error is introduced into the resulting value of specific heat. It was necessary therefore to employ the false values of heat capacity shown by the upper curve in Fig. 5 in computing the earlier results.

It was ascertained that the variations in manipulation which did occur, such as the use of different amounts of refrigeration and compensating heating, etc., were not sufficient to cause any large systematic error.

62

[Vol. 12

### Specific Heat and Heat of Fusion of Ice

Dickinson Osborne

### SPECIFIC HEAT OF ICE

**Experimental Results.**—The results of experiments to determine the specific heat of ice are given in Tables 2, 4, 6, and 8, in which the observed mean specific heats of the several samples are expressed with reference to the initial and final temperatures  $\theta_1$ ,  $\theta_2$  of the respective experiments ( $S_m = \frac{H_2 - H_1}{\theta_2 - \theta_1}$ , where  $H_2 - H_1$  represents the total heat per gram over the interval  $\theta_2 - \theta_1$ ).

#### TABLE 2

#### Determinations of Specific Heat of Ice

Sample No. 1, Experimental Results

| [Mass, | 468.7 | grams] |  |
|--------|-------|--------|--|
|--------|-------|--------|--|

| Date   | Exp | Total<br>energy | Cor-<br>rection<br>for<br>ther-<br>mal<br>leak-<br>age | Cor-<br>rected<br>total<br>energy | Initial tem-<br>pera-<br>ture $\theta_1$ | Final temperature $\theta_2$ | $\begin{array}{c} \text{Tem-}\\ \text{perature}\\ \text{differ-}\\ \text{ence}\\ \theta_2 \text{ to } \theta_1 \end{array}$ | $\begin{array}{c} {\rm Total}\\ {\rm mean}\\ {\rm heat}\\ {\rm capacity}\\ \theta_1 \ {\rm to} \ \theta_2 \end{array}$ | $\begin{array}{c} {\rm Mean} \\ {\rm heat} \\ {\rm capacity} \\ {\rm of \ calo-} \\ {\rm rimeter} \\ \theta_1 \ {\rm to} \ \theta_2 \end{array}$ | $\begin{array}{c} \mathbf{Mean}\\ \mathbf{heat}\\ \mathbf{capacity}\\ \mathbf{of ice}\\ \theta_1 \ \mathbf{to} \ \theta_2\\ \mathbf{j/deg} \end{array}$ | $\begin{array}{c} \mathbf{Mean} \\ \mathbf{specific} \\ \mathbf{heat} \\ \theta_1 \ \mathbf{to} \ \theta_2 \\ \mathbf{S_m} \end{array}$ |
|--------|-----|-----------------|--------------------------------------------------------|-----------------------------------|------------------------------------------|------------------------------|-----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|
|        |     |                 |                                                        |                                   |                                          |                              |                                                                                                                             |                                                                                                                        |                                                                                                                                                  |                                                                                                                                                         | calm                                                                                                                                    |
| 1914   |     | joules          | joules                                                 | joules                            | deg C                                    | deg C                        | deg C                                                                                                                       | j/deg                                                                                                                  | j deg                                                                                                                                            | j/deg                                                                                                                                                   | g•deg                                                                                                                                   |
| June 2 | 1   | 19245.7         | +22.3                                                  | 19268                             | _41.840                                  | -31.559                      | 10.281                                                                                                                      | 1874.1                                                                                                                 | 1016.5                                                                                                                                           | 857.6                                                                                                                                                   | 0. 4374                                                                                                                                 |
|        | 2   | 19212.9         | - 3.5                                                  | 19209                             | 31.559                                   | 21.553                       | 10.006                                                                                                                      | 1919.7                                                                                                                 | 1026.7                                                                                                                                           | 893.0                                                                                                                                                   | . 4555                                                                                                                                  |
|        | 3   | 19162.3         | + 0.8                                                  | 19163                             | 21.548                                   | 11.799                       | 9.7495                                                                                                                      | 1965.5                                                                                                                 | 1035.4                                                                                                                                           | 930.1                                                                                                                                                   | . 4744                                                                                                                                  |
|        | - 4 | 9574.3          | - 1.0                                                  | 9573                              | 11.799                                   | 7.014                        | 4.7848                                                                                                                      | 2000.7                                                                                                                 | 1041.2                                                                                                                                           | 960.5                                                                                                                                                   | . 4899                                                                                                                                  |
|        | 5   | 5740. 7         | 0.0                                                    | 5740.7                            | 7.016                                    | 4.182                        | 2.8339                                                                                                                      | 2025.7                                                                                                                 | 1044.2                                                                                                                                           | 981.5                                                                                                                                                   | . 5006                                                                                                                                  |
|        | 6   | 3816.7          | 0.0                                                    | 3816.7                            | 4. 183                                   | 2.327                        | 1.8564                                                                                                                      | 2056.0                                                                                                                 | 1045.7                                                                                                                                           | 1010.3                                                                                                                                                  | . 5153                                                                                                                                  |
|        | 7   | 1909.3          | + 3.2                                                  | 1912.5                            | 2.327                                    | 1.419                        | .9079                                                                                                                       | 2106.5                                                                                                                 | 1046.5                                                                                                                                           | 1060.0                                                                                                                                                  | . 5407                                                                                                                                  |
|        | 8   | 1909.0          | + 6.1                                                  | 1915.1                            | 1.419                                    | . 583                        | . 8362                                                                                                                      | 2290.2                                                                                                                 | 1047.0                                                                                                                                           | 1243.2                                                                                                                                                  | . 6341                                                                                                                                  |
|        | 9   | 953.9           | +12.2                                                  | 966.1                             | . 584                                    | . 284                        | . 3001                                                                                                                      | 3219.3                                                                                                                 | 1047.4                                                                                                                                           | 2171.9                                                                                                                                                  | 1.1078                                                                                                                                  |
| June 3 | 1   | 19106.4         | +34.3                                                  | 19141                             | -41.853                                  | -31.648                      | 10.205                                                                                                                      | 1875.6                                                                                                                 | 1016.5                                                                                                                                           | 859.1                                                                                                                                                   | . 4382                                                                                                                                  |
|        | 2   | 19055.0         | + 0.6                                                  | 19056                             | 31.648                                   | 21.729                       | 9.9188                                                                                                                      | 1921.2                                                                                                                 | 1026.7                                                                                                                                           | 894.5                                                                                                                                                   | . 4563                                                                                                                                  |
|        | 3   | 19084.8         | - 3.9                                                  | 19081                             | 21.726                                   | 12.016                       | 9.7100                                                                                                                      | 1965.1                                                                                                                 | 1035.2                                                                                                                                           | 929.9                                                                                                                                                   | . 4743                                                                                                                                  |
|        | 4   | 9483. 5         | - 3.4                                                  | 9480                              | 12.017                                   | 7.279                        | 4.7378                                                                                                                      | 2000.9                                                                                                                 | 1041.1                                                                                                                                           | 959.8                                                                                                                                                   | . 4896                                                                                                                                  |
|        | . 5 | 5763.7          | 0.0                                                    | 5763.7                            | 7.279                                    | 4.430                        | 2.8488                                                                                                                      | 2023. 2                                                                                                                | 1043.8                                                                                                                                           | 979.4                                                                                                                                                   | . 4996                                                                                                                                  |
|        | 6   | 3801.6          | + 3.1                                                  | 3804.7                            | 4.430                                    | 2.570                        | 1.8608                                                                                                                      | 2044.7                                                                                                                 | 1045.6                                                                                                                                           | 999.1                                                                                                                                                   | . 5096                                                                                                                                  |
|        | 7   | 1988.4          | + 2.8                                                  | 1991.2                            | 2.570                                    | 1.614                        | . 9558                                                                                                                      | 2083.3                                                                                                                 | 1046.5                                                                                                                                           | 1036.8                                                                                                                                                  | . 5289                                                                                                                                  |
|        | 8   | 1988.1          | - 1.6                                                  | 1986.5                            | 1.615                                    | . 714                        | . 9012                                                                                                                      | 2204.3                                                                                                                 | 1047.0                                                                                                                                           | 1157.3                                                                                                                                                  | . 5903                                                                                                                                  |
|        | 9   | 993.2           | + 1.8                                                  | 995.0                             | . 714                                    | . 356                        | . 3581                                                                                                                      | 2778.6                                                                                                                 | 1047.4                                                                                                                                           | 1731.2                                                                                                                                                  | . 8830                                                                                                                                  |
|        |     |                 |                                                        |                                   |                                          | 1                            |                                                                                                                             |                                                                                                                        |                                                                                                                                                  |                                                                                                                                                         |                                                                                                                                         |

63

### TABLE 3

### Specific Heat of Ice

#### Sample No. 1, Reduction of Results

| Initial<br>tem-<br>pera-<br>ture<br>$\theta_1$ | Final temperature $\theta_2$ | $\sqrt{\theta_1 \theta_2} = \theta$ | $\frac{\theta_1+\theta_2}{2}=\theta'$ | θ-θ'  | $\mathbf{A}(\theta - \theta')$ | $\begin{array}{c} \mathbf{M}\mathbf{e}\mathbf{a}\mathbf{n}\\ \mathbf{s}\mathbf{p}\mathbf{e}\mathbf{c}\mathbf{i}\mathbf{f}\mathbf{c}\\ \mathbf{h}\mathbf{e}\mathbf{a}\mathbf{t}\\ \boldsymbol{\theta}_{1}\mathbf{t}\mathbf{o}\boldsymbol{\theta}_{2}\mathbf{=}\\ \mathbf{S}_{\mathbf{m}}\\ \end{array}$ | Specific<br>heat<br>corrected<br>to $\theta$<br>S<br>$\theta$ obs | $S_{\theta calc.}$ | $S_{\theta_{obs}}$ |
|------------------------------------------------|------------------------------|-------------------------------------|---------------------------------------|-------|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|--------------------|--------------------|
| deg C                                          | deg C                        | deg C                               | deg C                                 | deg C |                                | $\frac{cal_{20}}{g \cdot deg}$                                                                                                                                                                                                                                                                         |                                                                   |                    |                    |
| -41.840                                        | -31.559                      | -36.338                             | -36.700                               | 0.362 | 0.0007                         | 0.4374                                                                                                                                                                                                                                                                                                 | 0.4381                                                            | 0.4381             | 0.0000             |
| 41.853                                         | 31.648                       | 36.395                              | 36.750                                | . 355 | . 0007                         | . 4382                                                                                                                                                                                                                                                                                                 | . 4389                                                            | . 4380             | + .0009            |
| 31.559                                         | 21.553                       | 26.080                              | 26.556                                | .476  | . 0009                         | . 4555                                                                                                                                                                                                                                                                                                 | . 4564                                                            | . 4572             | 0008               |
| 31.648                                         | 21.729                       | 26.224                              | 26.688                                | . 464 | . 0009                         | . 4563                                                                                                                                                                                                                                                                                                 | . 4572                                                            | . 4569             | + .0003            |
| 21.548                                         | 11.799                       | 15.945                              | 16.674                                | . 729 | .0014                          | . 4744                                                                                                                                                                                                                                                                                                 | . 4758                                                            | . 4764             | 0006               |
| 21.726                                         | 12.016                       | 16.157                              | 16.871                                | .714  | . 0013                         | . 4743                                                                                                                                                                                                                                                                                                 | . 4756                                                            | . 4760             | 0004               |
| 11.799                                         | 7.014                        | 9.097                               | 9.406                                 | . 309 | . 0006                         | . 4899                                                                                                                                                                                                                                                                                                 | . 4905                                                            | . 4900             | + .0005            |
| 12.017                                         | 7.279                        | 9.353                               | 9.648                                 | . 295 | .0006                          | . 4896                                                                                                                                                                                                                                                                                                 | . 4902                                                            | . 4894             | + .0008            |
| 7.016                                          | 4.182                        | 5.417                               | 5. 599                                | . 182 | .0003                          | . 5006                                                                                                                                                                                                                                                                                                 | . 5009                                                            | . 4990             | + .0019            |
| 7.279                                          | 4.430                        | 5.679                               | 5.854                                 | . 176 | . 0003                         | . 4996                                                                                                                                                                                                                                                                                                 | . 4999                                                            | . 4982             | + .0017            |
| 4.183                                          | 2.327                        | 3.120                               | 3.255                                 | . 135 | . 0003                         | . 5153                                                                                                                                                                                                                                                                                                 | . 5156                                                            | . 5101             | + .0055            |
| 4.430                                          | 2.570                        | 3.374                               | 3.500                                 | .126  | . 0002                         | . 5096                                                                                                                                                                                                                                                                                                 | . 5098                                                            | . 5081             | + .0017            |
| 2.327                                          | 1.419                        | 1.817                               | 1.873                                 | . 056 | .0001                          | . 5407                                                                                                                                                                                                                                                                                                 | . 5408                                                            | . 5325             | + .0083            |
| 2.570                                          | 1.614                        | 2.037                               | 2.092                                 | . 055 | .0001                          | . 5289                                                                                                                                                                                                                                                                                                 | . 5290                                                            | . 5261             | + .0029            |
| 1.419                                          | . 583                        | . 9095                              | 1.001                                 | . 092 | .0002                          | . 6341                                                                                                                                                                                                                                                                                                 | . 6343                                                            | . 6244             | + .0099            |
| 1.615                                          | . 714                        | 1.074                               | 1.164                                 | . 090 | . 0002                         | . 5903                                                                                                                                                                                                                                                                                                 | . 5905                                                            | . 5901             | + .0004            |
| . 584                                          | . 284                        | . 4073                              | . 434                                 | . 027 | .0001                          | 1.1078                                                                                                                                                                                                                                                                                                 | 1.1079                                                            | 1.1059             | + .0020            |
| .714                                           | . 356                        | . 5041                              | . 535                                 | . 031 | .0001                          | . 8830                                                                                                                                                                                                                                                                                                 | .8831                                                             | . 8966             | 0135               |
|                                                | 1 percent 1 1                | 1 -                                 |                                       | 1     |                                | 1                                                                                                                                                                                                                                                                                                      |                                                                   |                    |                    |

.

Dickinson] Osborne]

# Specific Heat and Heat of Fusion of Ice

### TABLE 4

### Determinations of Specific Heat of Ice

### Sample No. 2, Experimental Results

[Mass, 399.8 grams]

| Date    | Exp | Total<br>energy | Cor-<br>rection<br>for<br>ther-<br>mal<br>leak-<br>age | Cor-<br>rected<br>total<br>energy | Initial temperature $\theta_1$ | Final temperature $\theta_2$ | Tem-<br>perature<br>differ-<br>ence<br>$\theta_2 - \theta_1$ | Total<br>mean<br>heat<br>capacity<br>$\theta_1$ to $\theta_2$ | $\begin{array}{c} {\rm Mean} \\ {\rm heat} \\ {\rm capacity} \\ {\rm of \ calo-} \\ {\rm rimeter} \\ \theta_1 \ {\rm to} \ \theta_2 \end{array}$ | $\begin{array}{c} \mathbf{Mean}\\ \mathbf{heat}\\ \mathbf{capacity}\\ \mathbf{of} \ \mathbf{ice}\\ \boldsymbol{\theta}_1 \ \mathbf{to} \ \boldsymbol{\theta}_2 \end{array}$ | $\begin{array}{c} \textbf{Mean} \\ \textbf{specific} \\ \textbf{heat} \\ \theta_1 \text{ to } \theta_2 \\ \textbf{S}_m \end{array}$ |
|---------|-----|-----------------|--------------------------------------------------------|-----------------------------------|--------------------------------|------------------------------|--------------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
|         | -   |                 |                                                        | _                                 |                                |                              |                                                              |                                                               |                                                                                                                                                  |                                                                                                                                                                             | cal 20                                                                                                                              |
| 1914    |     | joules          | joules                                                 | joules                            | deg C                          | deg C                        | deg C                                                        | j/deg                                                         | j/deg                                                                                                                                            | j/deg                                                                                                                                                                       | g · deg                                                                                                                             |
| June 12 | 1   | 18068.7         | + 0.5                                                  | 18069                             | -45.509                        | -35.094                      | 10.416                                                       | 1734.8                                                        | 1012.8                                                                                                                                           | 722.0                                                                                                                                                                       | 0. 4317                                                                                                                             |
| -       | 2   | 18060.5         | + 4.8                                                  | 18065                             | 35.094                         | 24.915                       | 10.178                                                       | 1774.9                                                        | 1023.5                                                                                                                                           | 751.4                                                                                                                                                                       | . 4493                                                                                                                              |
| -       | 3   | 18042.8         | - 4.2                                                  | 18039                             | 24.915                         | 14.974                       | 9.9412                                                       | 1814.6                                                        | 1032.7                                                                                                                                           | 781.9                                                                                                                                                                       | . 4676                                                                                                                              |
|         | 4   | 18035.3         | -11.8                                                  | 18023                             | 14.974                         | 5.262                        | 9.7118                                                       | 1855.8                                                        | 1040.7                                                                                                                                           | 815.1                                                                                                                                                                       | . 4874                                                                                                                              |
|         | 6   | 3604.1          | - 1.1                                                  | 3603.0                            | 3.344                          | 1.459                        | 1.8853                                                       | 1911.1                                                        | 1046.2                                                                                                                                           | 864.9                                                                                                                                                                       | . 5172                                                                                                                              |
| -       | 7   | 1914.6          | - 0.3                                                  | 1914.3                            | 1.459                          | . 530                        | . 9289                                                       | 2060.8                                                        | 1047.1                                                                                                                                           | 1013.7                                                                                                                                                                      | . 6062                                                                                                                              |
| June 13 | 1   | 18352.7         | - 9.1                                                  | 18344                             | -26.561                        | -16.409                      | 10.152                                                       | 1807.0                                                        | 1031.3                                                                                                                                           | 775.7                                                                                                                                                                       | . 4639                                                                                                                              |
|         | 2   | 18311.8         | 0.0                                                    | 18312                             | 16.371                         | 6.470                        | 9.9013                                                       | 1849.5                                                        | 1039.6                                                                                                                                           | 809.9                                                                                                                                                                       | . 4843                                                                                                                              |
|         | 3   | 5487.6          | + 2.6                                                  | 5490.2                            | 6.470                          | 3.551                        | 2.9189                                                       | 1880.9                                                        | 1044.7                                                                                                                                           | 836.2                                                                                                                                                                       | . 5000                                                                                                                              |
|         | 4   | 5484.9          | - 2.2                                                  | 5482.7                            | 3. 551                         | . 722                        | 2.8286                                                       | 1938.3                                                        | 1046.5                                                                                                                                           | 891.8                                                                                                                                                                       | . 5333                                                                                                                              |
|         | 5   | 914.7           | - 4.2                                                  | 910.5                             | . 722                          | . 352                        | . 3702                                                       | 2459.5                                                        | 1047.3                                                                                                                                           | 1412.2                                                                                                                                                                      | . 8445                                                                                                                              |
|         | 6   | 456.3           | + 1.0                                                  | 457.3                             | . 352                          | . 238                        | .1137                                                        | 4022.0                                                        | 1047.5                                                                                                                                           | 2974.5                                                                                                                                                                      | 1.779                                                                                                                               |
|         |     |                 |                                                        |                                   |                                |                              |                                                              |                                                               |                                                                                                                                                  |                                                                                                                                                                             |                                                                                                                                     |

### TABLE 5

### Specific Heat of Ice

Sample No. 2, Reduction of Results

| Initial temperature $\theta_1$ | Final temperature $\theta_2$ | $\sqrt{\theta_1 \theta_2} = \theta$ | $\frac{\theta_1 + \theta_2}{2} = \theta'$ | θ-θ'  | <b>Α</b> (θ-θ') | $\begin{array}{c} \mathbf{Mean} \\ \mathbf{specific} \\ \mathbf{heat} \\ \theta_1 \operatorname{to} \theta_2 = \\ \mathbf{S}_{\mathrm{m}} \end{array}$ | Specific<br>heat<br>corrected<br>to $\theta$<br>S<br>$\theta$ obs | S <sub>Øcalc.</sub> | S <sub>θobs</sub> _<br>S <sub>θcalc</sub> |
|--------------------------------|------------------------------|-------------------------------------|-------------------------------------------|-------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|---------------------|-------------------------------------------|
| deg C                          | deg C                        | deg C                               | deg C                                     | deg C |                 | $\frac{cal_{20}}{g \cdot deg}$                                                                                                                         |                                                                   |                     |                                           |
| -45.509                        | -35.094                      | -39.964                             | -40.302                                   | 0.338 | 0.0006          | 0.4317                                                                                                                                                 | 0. 4323                                                           | 0.4313              | +0.0010                                   |
| 35.094                         | 24.915                       | 29.570                              | 30.004                                    | . 434 | . 0008          | . 4493                                                                                                                                                 | . 4501                                                            | . 4507              | 0006                                      |
| 26.561                         | 16.409                       | 20.877                              | 21.485                                    | . 608 | . 0011          | . 4639                                                                                                                                                 | . 4650                                                            | . 4670              | 0020                                      |
| 24.915                         | 14.974                       | 19.315                              | 19.944                                    | . 629 | . 0012          | . 4676                                                                                                                                                 | . 4688                                                            | . 4700              | 0012                                      |
| 16.371                         | 6.470                        | 10.292                              | 11.420                                    | 1.128 | . 0021          | . 4843                                                                                                                                                 | . 4864                                                            | . 4874              | 0010                                      |
| 14.974                         | 5.262                        | 8.877                               | 10.118                                    | 1.241 | . 0023          | . 4874                                                                                                                                                 | . 4897                                                            | . 4904              | 0007                                      |
| 6.470                          | 3.551                        | 4.793                               | 5.010                                     | . 217 | . 0004          | . 5000                                                                                                                                                 | . 5004                                                            | . 5007              | 0003                                      |
| 3.551                          | . 722                        | 1.601                               | 2.136                                     | . 535 | . 0010          | . 5333                                                                                                                                                 | . 5343                                                            | . 5399              | 0056                                      |
| 3.344                          | 1.459                        | 2.209                               | 2.402                                     | . 193 | . 0004          | . 5172                                                                                                                                                 | . 5176                                                            | . 5212              | 0136                                      |
| 1.459                          | . 530                        | . 879                               | . 994                                     | . 115 | .0002           | . 6062                                                                                                                                                 | . 6064                                                            | . 6282              | 0218                                      |
| . 722                          | . 352                        | . 5041                              | . 537                                     | . 033 | . 0001          | . 8445                                                                                                                                                 | . 8446                                                            | . 8812              | 0366                                      |
| . 352                          | . 238                        | . 2894                              | . 295                                     | . 006 | . 0000          | 1.779                                                                                                                                                  | 1.779                                                             | 1.6522              | + .1268                                   |

### TABLE 6

## Determinations of Specific Heat on Ice

### Sample No. 3, Experimental Results

### [Mass, 415.8 grams]

|         |     |                 | the second se | the second s | the second s |                                        |                                                                                                                             |                                                               |                                                                                                                                                               |                                                                                                                            |                                                                                                                             |
|---------|-----|-----------------|-----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
| Date    | Exp | Total<br>energy | Cor-<br>rection<br>for<br>ther-<br>mal<br>leak-<br>age                                                          | Cor-<br>rected<br>total<br>energy                                                                              | Initial temperature $\theta_1$                                                                                 | Final tem-<br>pera-<br>ture $\theta_2$ | $\begin{array}{c} \text{Tem-}\\ \text{perature}\\ \text{differ-}\\ \text{ence}\\ \theta_2 \text{ to } \theta_1 \end{array}$ | Total<br>mean<br>heat<br>capacity<br>$\theta_1$ to $\theta_2$ | $\begin{array}{c} \mathbf{Mean}\\ \mathbf{heat}\\ \mathbf{capacity}\\ \mathbf{of \ calo-}\\ \mathbf{rimeter}\\ \theta_1 \ \mathbf{to} \ \theta_2 \end{array}$ | $\begin{array}{c} \text{Mean}\\ \text{heat}\\ \text{capacity}\\ \text{of ice}\\ \theta_1 \text{ to } \theta_2 \end{array}$ | $\begin{array}{c} \text{Mean} \\ \text{specific} \\ \text{heat} \\ \theta_1 \text{ to } \theta_2 \\ \text{S}_m \end{array}$ |
|         |     |                 |                                                                                                                 |                                                                                                                |                                                                                                                |                                        |                                                                                                                             |                                                               |                                                                                                                                                               |                                                                                                                            | cal <sub>20</sub>                                                                                                           |
| 1914    | i   | joules          | joules                                                                                                          | joules                                                                                                         | deg C                                                                                                          | deg C                                  | deg C                                                                                                                       | j/deg                                                         | j deg                                                                                                                                                         | j/deg                                                                                                                      | g·deg                                                                                                                       |
| June 17 | 1   | 20120.          | -6.0                                                                                                            | 20114.                                                                                                         | -43.284                                                                                                        | -31.964                                | 11.320                                                                                                                      | 1776.8                                                        | 1015.7                                                                                                                                                        | 761.1                                                                                                                      | 0.4376                                                                                                                      |
|         | 2   | 18685.8         | -9.2                                                                                                            | 18677.                                                                                                         | 31.956                                                                                                         | 21.701                                 | 10.2546                                                                                                                     | 1821.3                                                        | 1026.5                                                                                                                                                        | 794.8                                                                                                                      | . 4570                                                                                                                      |
| -       | 3   | 18662.4         | +0.6                                                                                                            | 18663.                                                                                                         | 21.701                                                                                                         | 11.689                                 | 10.0121                                                                                                                     | 1864.0                                                        | 1035.6                                                                                                                                                        | 828.4                                                                                                                      | . 4763                                                                                                                      |
|         | 4   | 9325.1          | +0.8                                                                                                            | 9326.                                                                                                          | 11.689                                                                                                         | 6.769                                  | 4.9202                                                                                                                      | 1895.5                                                        | 1041.6                                                                                                                                                        | 853.9                                                                                                                      | . 4910                                                                                                                      |
|         | 5   | 5593.2          | -0.9                                                                                                            | 5592.3                                                                                                         | 6.769                                                                                                          | 3.848                                  | 2.9213                                                                                                                      | 1914.3                                                        | 1044.5                                                                                                                                                        | 869.8                                                                                                                      | . 5001                                                                                                                      |
|         | 6   | 3726.8          | -1.1                                                                                                            | 3725.7                                                                                                         | 3.848                                                                                                          | 1.924                                  | 1.9240                                                                                                                      | 1936.4                                                        | 1046.0                                                                                                                                                        | 890.4                                                                                                                      | . 5120                                                                                                                      |
|         | 7   | 1931.6          | -2.4                                                                                                            | 1929.2                                                                                                         | 1.924                                                                                                          | . 954                                  | . 9690                                                                                                                      | 1990.9                                                        | 1046.7                                                                                                                                                        | 944.2                                                                                                                      | . 5429                                                                                                                      |
| June 18 | 1   | 18620.4         | -1.2                                                                                                            | 18619.                                                                                                         | -16.720                                                                                                        | - 6.800                                | 9.9206                                                                                                                      | 1876.8                                                        | 1039.9                                                                                                                                                        | 836.9                                                                                                                      | . 4812                                                                                                                      |
|         | 2   | 5664.6          | 0.0                                                                                                             | 5664.6                                                                                                         | 6.809                                                                                                          | 3.847                                  | 2.9619                                                                                                                      | 1912.5                                                        | 1044.4                                                                                                                                                        | 868.1                                                                                                                      | . 4991                                                                                                                      |
|         | 3   | 1912.4          | -1.9                                                                                                            | 1910.5                                                                                                         | 3.847                                                                                                          | 2.857                                  | . 9902                                                                                                                      | 1929.4                                                        | 1045.6                                                                                                                                                        | 883.8                                                                                                                      | . 5082                                                                                                                      |
|         | 4   | 1913.1          | +.9                                                                                                             | 1914.0                                                                                                         | 2.857                                                                                                          | 1.873                                  | . 9844                                                                                                                      | 1944.3                                                        | 1046.1                                                                                                                                                        | 898.2                                                                                                                      | . 5164                                                                                                                      |
| -       | 5   | 1899.5          | -1.4                                                                                                            | 1898.1                                                                                                         | 1.877                                                                                                          | . 925                                  | . 9521                                                                                                                      | 1993.6                                                        | 1046.7                                                                                                                                                        | 946.9                                                                                                                      | . 5444                                                                                                                      |
|         | 6   | 952.2           | -1.5                                                                                                            | 951.7                                                                                                          | . 925                                                                                                          | . 494                                  | . 4309                                                                                                                      | 2208.6                                                        | 1047.1                                                                                                                                                        | 1161.5                                                                                                                     | . 6678                                                                                                                      |
|         | 7   | 951.3           | 0.0                                                                                                             | 951.3                                                                                                          | . 495                                                                                                          | . 211                                  | . 2837                                                                                                                      | 3353.2                                                        | 1047.2                                                                                                                                                        | 2306.0                                                                                                                     | 1.3259                                                                                                                      |
|         |     |                 |                                                                                                                 |                                                                                                                |                                                                                                                |                                        |                                                                                                                             |                                                               |                                                                                                                                                               |                                                                                                                            |                                                                                                                             |

### TABLE 7

### Specific Heat of Ice

Sample No. 3, Reduction of Results

| Initial tem-<br>pera-<br>ture $\theta_1$ | Final temperature $\theta_2$ | $\sqrt{\theta_1 \theta_2} = \theta$ | $\frac{\theta_1+\theta_2}{2}=\theta'$ | θ-θ'  | <b>Α</b> (θ-θ') | $\begin{array}{c} \mathbf{Mean} \\ \mathbf{specific} \\ \mathbf{heat} \\ \theta_1 \operatorname{to} \theta_2 = \\ \mathbf{S}_m \end{array}$ | $\begin{array}{c} \text{Specific} \\ \text{heat} \\ \text{corrected} \\ \text{to } \theta \\ \text{S} \\ \theta \text{obs} \end{array}$ | $S_{\theta_{\text{calc.}}}$ | $S_{\theta_{obs}}$ |
|------------------------------------------|------------------------------|-------------------------------------|---------------------------------------|-------|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|--------------------|
|                                          |                              |                                     |                                       |       |                 | cal <sub>20</sub>                                                                                                                           |                                                                                                                                         |                             |                    |
| deg C                                    | degC                         | degC                                | degC                                  | deg C |                 | g•deg                                                                                                                                       |                                                                                                                                         |                             |                    |
| -43.284                                  |                              | 37.196                              | 37.624                                | 0.428 | 0.0008          | 0.4376                                                                                                                                      | 0.4384                                                                                                                                  | 0.4366                      | +0.0018            |
| 31.956                                   | 21.701                       | 26.334                              | 26.828                                | . 494 | . 0009          | .4570                                                                                                                                       | .4579                                                                                                                                   | . 4566                      | + .0013            |
| 21.701                                   | 11.689                       | 15.927                              | 16.695                                | .768  | .0014           | . 4763                                                                                                                                      | .4777                                                                                                                                   | . 4760                      | + .0017            |
| 16.720                                   | 6.800                        | 10.663                              | 11.760                                | 1.097 | . 0020          | . 4812                                                                                                                                      | . 4832                                                                                                                                  | . 4859                      | 0027               |
| 11.689                                   | 6.769                        | 8.895                               | 9.229                                 | . 334 | . 0006          | . 4910                                                                                                                                      | . 4916                                                                                                                                  | . 4892                      | + .0024            |
| 6.769                                    | 3.848                        | 5.104                               | 5.308                                 | . 204 | .0004           | . 5001                                                                                                                                      | . 5005                                                                                                                                  | . 4965                      | + .0040            |
| 6.809                                    | 3.847                        | 5.118                               | 5.328                                 | . 210 | .0004           | . 4991                                                                                                                                      | . 4995                                                                                                                                  | . 4965                      | + .0030            |
| 3.848                                    | 1.924                        | 2.721                               | 2.886                                 | .165  | . 0003          | . 5120                                                                                                                                      | . 5123                                                                                                                                  | .5108                       | + .0015            |
| 3.847                                    | 2.857                        | 3.315                               | 3.352                                 | .037  | . 0001          | . 5082                                                                                                                                      | . 5083                                                                                                                                  | . 5064                      | + .0019            |
| 2.857                                    | 1.873                        | 2.313                               | 2.365                                 | .052  | . 0001          | . 5164                                                                                                                                      | . 5165                                                                                                                                  | . 5155                      | + .0010            |
| 1.924                                    | . 954                        | 1.355                               | 1.439                                 | .084  | . 0002          | . 5429                                                                                                                                      | . 5431                                                                                                                                  | . 5444                      | 0013               |
| 1.877                                    | . 925                        | 1.318                               | 1.401                                 | .083  | . 0002          | . 5444                                                                                                                                      | . 5446                                                                                                                                  | . 5468                      | 0022               |
| . 925                                    | . 494                        | . 676e                              | .710                                  | .034  | .0001           | . 6678                                                                                                                                      | . 6679                                                                                                                                  | . 6701                      | 0022               |
| . 495                                    | . 211                        | . 3232                              | . 353                                 | .030  | . 0001          | 1.3259                                                                                                                                      | 1.3260                                                                                                                                  | 1.2311                      | + .0949            |

Dickinson] Osborne]

### TABLE 8

### **Determinations of Specific Heat of Ice**

### Sample No. 4, Experimental Results

[Mass, 460.7 grams]

| Date   | Exp | Total<br>energy | Cor-<br>rection<br>for<br>ther-<br>mal<br>leak-<br>age | Cor-<br>rected<br>total<br>energy | Initial<br>tem-<br>pera-<br>ture<br>θι | Final temperature $\theta_2$ | Tem-<br>perature<br>differ-<br>ence<br>$\theta_2$ to $\theta_1$ | Total<br>mean<br>heat<br>capacity<br>$\theta_1$ to $\theta_2$ | Mean<br>heat<br>capacity<br>of calo-<br>rimeter<br>$\theta_1$ to $\theta_2$ | $\begin{array}{c} \mathbf{Mean} \\ \mathbf{heat} \\ \mathbf{capacity} \\ \mathbf{of ice} \\ \theta_1 \ \mathbf{to} \ \theta_2 \end{array}$ | Mean<br>specific<br>heat<br>$\theta_1$ to $\theta_2$ |
|--------|-----|-----------------|--------------------------------------------------------|-----------------------------------|----------------------------------------|------------------------------|-----------------------------------------------------------------|---------------------------------------------------------------|-----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|
| 1914   |     | joules          | joules                                                 | joules                            | deg C                                  | deg C                        | deg C                                                           | j deg                                                         | j deg                                                                       | j/deg                                                                                                                                      | $\frac{cal_{20}}{g \cdot deg}$                       |
| A110 5 | 1   | 15167 4         | +6.2                                                   | 15174                             | 36 0626                                | 27 0733                      | 8 0893                                                          | 1875.8                                                        | 1018.5                                                                      | 857.3                                                                                                                                      | 0 4440                                               |
| aug. J | 2   | 15156.1         | +2.6                                                   | 15159                             | 27.9733                                | 20.0447                      | 7.9286                                                          | 1911.9                                                        | 1026.8                                                                      | 885.1                                                                                                                                      | 4593                                                 |
|        | 3   | 17942.7         | -2.2                                                   | 17941                             | 19.8574                                | 10.6655                      | 9, 1919                                                         | 1951.8                                                        | 1033.3                                                                      | 918.5                                                                                                                                      | . 4766                                               |
|        | 4   | 8959.0          | -1.2                                                   | 8957.8                            | 10.6655                                | 6.1438                       | 4. 5217                                                         | 1981.1                                                        | 1038.7                                                                      | 942.4                                                                                                                                      | . 4890                                               |
|        | 5   | 4468.6          | +2.9                                                   | 4471.5                            | 6.1438                                 | 3.8982                       | 2.2456                                                          | 1991.2                                                        | 1041.2                                                                      | 950.0                                                                                                                                      | . 4930                                               |
|        | 6   | 4478.1          | -7.2                                                   | 4470.9                            | 3.8982                                 | 1.6695                       | 2.2287                                                          | 2006.1                                                        | 1042.8                                                                      | 963.3                                                                                                                                      | . 4999                                               |
|        | 7   | 1789.7          | 0.0                                                    | 1789.7                            | 1.6695                                 | .7827                        | . 8868                                                          | 2018.1                                                        | 1043.9                                                                      | 974.2                                                                                                                                      | . 5055                                               |
| Aug. 6 | 1   | 9154.1          | 0.0                                                    | 9154                              | 40.8110                                | 35.8648                      | 4.9462                                                          | 1850.7                                                        | 1013.4                                                                      | 837.3                                                                                                                                      | .4345                                                |
|        | 2   | 18356.7         | +3.1                                                   | 18360                             | 35.8648                                | 26.1189                      | 9.7459                                                          | 1883.8                                                        | 1020.2                                                                      | 863.6                                                                                                                                      | . 4481                                               |
|        | 3   | 18325.1         | -1.4                                                   | 18324                             | 26.1189                                | 16.6050                      | 9.5139                                                          | 1926.0                                                        | 1028.4                                                                      | 897.6                                                                                                                                      | . 4658                                               |
|        | 4   | 18313.1         | +1.2                                                   | 18314                             | 16.6045                                | 7.3042                       | 9.3003                                                          | 1969.2                                                        | 1035.9                                                                      | 933.3                                                                                                                                      | . 4843                                               |
|        | 5   | 9159.1          | -3.1                                                   | 9156                              | 7.3037                                 | 2.7250                       | 4.5787                                                          | 1999.7                                                        | 1041.1                                                                      | 958.6                                                                                                                                      | . 4974                                               |
| -      | 6   | 1836.4          | -3.4                                                   | 1833.0                            | 2.7236                                 | 1.8116                       | . 9119                                                          | 2010.0                                                        | 1043.1                                                                      | 966.9                                                                                                                                      | . 5017                                               |
|        | 7   | 1835.8          | -2.5                                                   | 1833.3                            | 1.8116                                 | . 9028                       | . 9088                                                          | 2017.2                                                        | 1043.8                                                                      | 973.4                                                                                                                                      | . 5051                                               |
|        | 8   | 1146.6          | +1.2                                                   | 1147.8                            | . 9028                                 | . 3401                       | . 5627                                                          | 2039.8                                                        | 1044.3                                                                      | 995.5                                                                                                                                      | . 5166                                               |
| Aug. 7 | 1   | 18288.0         | -3.3                                                   | 18285                             | 39.5670                                | 29.7674                      | 9.7996                                                          | 1865.9                                                        | 1016.9                                                                      | 849.0                                                                                                                                      | . 4405                                               |
|        | 2   | 18297.4         | -5.3                                                   | 18292                             | 29.7674                                | 20.1960                      | 9.5714                                                          | 1911.0                                                        | 1025.4                                                                      | 885.6                                                                                                                                      | . 4596                                               |
|        | 3   | 18276. <b>0</b> | -8.5                                                   | 18267                             | 20.1960                                | 10.8384                      | 9.3576                                                          | 1952.2                                                        | 1033.2                                                                      | 919.0                                                                                                                                      | . 4769                                               |
|        | 4   | 18280.0         | -4.6                                                   | 18275                             | 10.8360                                | 1.6742                       | 9.1618                                                          | 1994.7                                                        | 1040.3                                                                      | 954.4                                                                                                                                      | . 4952                                               |
|        | 5   | 2287.6          | -1.4                                                   | 2286.2                            | 1.9562                                 | .8220                        | 1.1342                                                          | 2015.7                                                        | 1042.3                                                                      | 973.4                                                                                                                                      | .5051                                                |
|        | 6   | 1141.9          | 0.0                                                    | 1141.9                            | .8220                                  | . 2656                       | . 55635                                                         | 2052.5                                                        | 1044.4                                                                      | 1008.1                                                                                                                                     | . 5231                                               |
|        | 7   | 454.2           | -1.4                                                   | 452.8                             | . 2656                                 | .0727                        | . 19290                                                         | 2347.3                                                        | 1044.7                                                                      | 1302.6                                                                                                                                     | . 6759                                               |
|        | 8   | 122.6           | -0.2                                                   | 122.4                             | . 0733                                 | . 0453                       | . 02795                                                         | 4379.3                                                        | 1044.7                                                                      | 3334.6                                                                                                                                     | 1.730                                                |

## TABLE 9

### Specific Heat of Ice

### Sample No. 4, Reduction of Results

| Initial tem-<br>pera-<br>ture $\theta_1$ | Final temperature $\theta_2$ | $\sqrt{\theta_1 \theta_2} = \theta$ | $\frac{\theta_1 + \theta_2}{2} = \theta'$ | θ-θ'   | <b>Α</b> (θ-θ') | $\begin{array}{c} \mathbf{M}\mathbf{ean}\\ \mathbf{specific}\\ \mathbf{h}\mathbf{eat}\\ \theta_1 \mathbf{to}  \theta_2 = \\ \mathbf{S}_{\mathbf{m}} \end{array}$ | Specific<br>heat<br>corrected<br>to $\theta$<br>S<br>$\theta$ obs | S <sub>θcalc.</sub> | S <sub>θobs</sub> |
|------------------------------------------|------------------------------|-------------------------------------|-------------------------------------------|--------|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|---------------------|-------------------|
|                                          |                              |                                     |                                           |        |                 | calo                                                                                                                                                             |                                                                   |                     |                   |
| deg C                                    | degC                         | deg C                               | degC                                      | degC   |                 | g.deg                                                                                                                                                            |                                                                   |                     |                   |
| -40.811                                  | -35.865                      | - 38. 258                           | -38.338                                   | 0.080  | 0.0001          | 0.4345                                                                                                                                                           | 0.4346                                                            | 0.43.44             | +0.0002           |
| 39.567                                   | 29.767                       | 34.319                              | 34.667                                    | . 348  | . 0006          | . 4405                                                                                                                                                           | .4411                                                             | . 4418              | 0007              |
| <b>3</b> 5.865                           | 26.119                       | 30. 607                             | 30.992                                    | . 385  | .0007           | . 4481                                                                                                                                                           | . 4488                                                            | . 4487              | + .0001           |
| 36.063                                   | 27.973                       | 31.761                              | 32.018                                    | . 257  | . 0005          | . 4449                                                                                                                                                           | . 4454                                                            | . 4465              | 0011              |
| 27.973                                   | 20.045                       | 23.680                              | 24.009                                    | . 329  | . 0006          | . 4593                                                                                                                                                           | . 4599                                                            | .4616               | 0017              |
| 29.767                                   | 20. 196                      | 24.519                              | 24.982                                    | . 463  | . 0009          | . 4596                                                                                                                                                           | . 4605                                                            | .4600               | + .0005           |
| 26.119                                   | 16.605                       | 20.826                              | 21.362                                    | . 536  | . 0010          | . 4658                                                                                                                                                           | . 4668                                                            | . 4669              | 0001              |
| 20.196                                   | 10.834                       | 14.792                              | 15.515                                    | . 723  | .0013           | . 4769                                                                                                                                                           | . 4782                                                            | . 4781              | + .0001           |
| 19.857                                   | 10.665                       | 14.552                              | 15.261                                    | . 709  | .0013           | . 4766                                                                                                                                                           | . 4779                                                            | . 4786              | 0007              |
| 16.604                                   | 7.304                        | 11.012                              | 11.954                                    | .942   | .0018           | . 4843                                                                                                                                                           | . 4861                                                            | . 4852              | + .0009           |
| 10.665                                   | 6.144                        | 8.095                               | 8.404                                     | .309   | .0006           | . 4890                                                                                                                                                           | . 4896                                                            | . 4907              | 0011              |
| 10.836                                   | 1.674                        | 4.259                               | 6.255                                     | 1.996  | .0037           | . 4952                                                                                                                                                           | . 4989                                                            | . 4980              | + .0009           |
| 7.304                                    | 2.725                        | 4.461                               | 5.014                                     | . 553  | .0010           | . 4974                                                                                                                                                           | . 4984                                                            | . 4976              | + .0008           |
| 6.144                                    | 3.898                        | 4.894                               | 5.021                                     | . 127  | .0002           | . 4930                                                                                                                                                           | . 4932                                                            | . 4968              | 0036              |
| 3.898                                    | 1.670                        | 2.552                               | 2.784                                     | . 232  | .0004           | . 4999                                                                                                                                                           | . 5003                                                            | . 5015              | 0012              |
| 2.724                                    | 1.812                        | 2.222                               | 2.268                                     | . 046  | .0001           | . 5017                                                                                                                                                           | . 5018                                                            | . 5024              | 0006              |
| 1.956                                    | . 822                        | 1.268                               | 1.389                                     | . 121  | .0002           | . 5051                                                                                                                                                           | . 5053                                                            | . 5058              | 0005              |
| 1.812                                    | . 903                        | 1.279                               | 1.358                                     | . 079  | . 0001          | . 5051                                                                                                                                                           | . 5052                                                            | . 5057              | 0005              |
| 1.669                                    | . 783                        | 1.143                               | 1.226                                     | . 083  | . 0002          | . 5055                                                                                                                                                           | . 5057                                                            | . 5066              | 0009              |
| . 903                                    | . 340                        | . 554                               | . 622                                     | .068   | . 0001          | . 5166                                                                                                                                                           | . 5167                                                            | . 5177              | 0010              |
| . 822                                    | . 266                        | . 468                               | . 544                                     | .076   | .0001           | . 5231                                                                                                                                                           | . 5232                                                            | . 5234              | 0002              |
| . 266                                    | .073                         | . 139                               | . 170                                     | . 031  | .0001           | . 6759                                                                                                                                                           | .6760                                                             | .7116               | 0356              |
| . 073a                                   | . 045a                       | . 057\$                             | . 0598                                    | . 0017 | .0000           | 1.730                                                                                                                                                            | 1.730                                                             | 1.7326              | 0026              |

Dickinson Osborne

A preliminary examination of these results was made by plotting the observed mean specific heats with reference to the average temperatures,  $\frac{1}{2}(\theta_1 + \theta_2)$  taken as abscissas. This examination tion indicated that the curves of specific heat were asymptotic to a straight line, the departure from which was apparent only above  $-8^{\circ}$  for samples 1, 2, and 3, and above  $-2^{\circ}$  for sample 4. Qualitatively, Smith's <sup>18</sup> observation that the specific heat of ice tends toward constancy as the impurities in the ice are reduced appeared to be corroborated.

The degree of purity of the several samples was not known. Conductivity tests did not indicate great difference in purity, but this fact might be accounted for by the difficulty in transferring a sample from the container to the conductivity apparatus without contaminating the specimen. It was supposed from consideration of the refinement in method of preparing the samples that progress toward purity had been achieved, at least in sample 4.

Before proceeding further with the analysis of the experimental data it is necessary to consider the relation between the apparent specific heat of ice and the presence of dissolved impurities.

Relation Between Apparent Specific Heat of Ice and Dissolved Impurities.—Consideration of the form of specific heat curves referred to above appeared to indicate that over the range of temperature employed the specific heat of pure ice bears a linear relation to the temperature, and that the departure from this linear relation is attributable to the fusion of a portion of the sample due to contained impurity. As a basis for the analysis of the results this is assumed.

From experiment it is known that for dilute solutions of substances which lower the freezing point the lowering is very nearly proportional to the concentration. Since the samples of water used here were extremely dilute solutions of the impurities, it is assumed that over the range of temperature within which the impurities produce any significant effect upon the apparent specific heat, this proportionality of the concentration to the lowering of the freezing point holds true.

<sup>18</sup>Loc. cit., note 11.

Consider a specimen of ice containing a small amount of impurity which lowers the initial freezing point from that of pure ice. Let

- l = the lowering of the initial freezing point
- K = the concentration of impurity when sample is all melted  $\theta$  = any temperature below l
- m = amount of unfrozen solution per gram of entire specimen at temperature  $\theta$
- L = latent heat of fusion of ice
- s = true specific heat of pure ice at temperature  $\theta$
- S = apparent specific heat of ice specimen at temperature  $\theta$

 $H_f$ =total heat of fusion of the portion unfrozen at temperature  $\theta$ , per gram of the specimen;  $H_f = mL$ .

Since the total amount of impurity is fixed, the concentration of the unfrozen portion of the sample is equal to  $\frac{K}{m}$ Hence

$$\frac{\theta}{l} = \frac{K}{mK}$$
 or  $m = \frac{l}{\theta}$ 

By definition

$$H_f = mL$$

substituting for m,

$$H_{f} = \frac{lL}{\theta} \tag{1}$$

differentiating with respect to  $\theta$ 

$$\frac{dH_f}{d\theta} = -\frac{lL}{\theta^2} \tag{2}$$

The apparent specific heat of the specimen may be separated into four parts, namely, that due to the specific heat of the ice, that due to the specific heat of the water present, that due to fusion of a part of the ice, and that due to dilution of the solution present. Let these be designated, respectively,

$$\frac{dH_i}{d\theta}, \quad \frac{dH_w}{d\theta}, \quad \frac{dH_f}{d\theta}, \quad \frac{dH_s}{d\theta}.$$

Dickinson Osborne

Since the amount of ice at temperature  $\theta$  is 1 - m per gram of specimen,

$$\frac{dH_i}{d\theta} = (I - m) \, s,$$

calling  $s_w$  the specific heat of water

$$\frac{dH_w}{d\theta} = s_w m.$$

The expression for apparent specific heat of ice may now be written

$$S = s (1-m) + s_w m - L \frac{l}{\theta^2} + \frac{dH_s}{d\theta},$$

or since  $m = \frac{l}{\theta}$ ,

$$S = s + (s_w - s)\frac{l}{\theta} - L\frac{l}{\theta^2} + \frac{dH_s}{d\theta}.$$

For the dilute solutions here considered the last term may be entirely neglected. Since  $s_w - s$  is small compared to L the constant value 1.01 - 0.50 = 0.51 is taken for this term. Taking 79.75 for L, the equation becomes

$$S = s + 0.51 \frac{l}{\theta} - 79.75 \frac{l}{\theta^2}.$$

Since by assumption  $s = B + A\theta$ , this equation becomes

$$S = B + A\theta + 0.51 \frac{l}{\theta} - 79.75 \frac{l}{\theta^2}.$$
 (3)

In order to determine whether the experimental data satisfies equation 3 it is necessary to refer the observed mean specific heats to definite temperatures instead of the temperature intervals in terms of which they are derived.

The term 0.51  $\frac{l}{\theta}$  may be neglected, since for small values of  $\theta$  it is small compared with 79.75  $\frac{l}{\theta^2}$  and for other values of  $\theta$  it is small compared to S.

Equation 3 then becomes

$$S_{\theta} = B + A\theta - 79.75 \frac{l}{\theta^2} \tag{4}$$

Integrating between  $\theta_1$  and  $\theta_2$  gives the total heat for this temperature interval, which is written

$$H_2 - H_1 = B \left(\theta_2 - \theta_1\right) + \frac{A}{2} \left(\theta_2^2 - \theta_1^2\right) + 79.75 \left(\frac{l}{\theta_2} - \frac{l}{\theta_1}\right),$$

dividing by  $\theta_2 - \theta_1$  gives the mean specific heat

$$\frac{H_2 - H_1}{\theta_2 - \theta_1} = S_m = B + A \frac{\theta_2 + \theta_1}{2} - 79.75 l \frac{I}{\theta_1 \theta_2}.$$

If  $\theta_1 \theta_2 = \theta^2$ 

$$S_m = B + A \frac{\theta_2 + \theta_1}{2} - 79.75 l \frac{1}{\theta^2},$$

but

$$S_{\theta} = B + A\theta - 79.75 \ l \ \frac{1}{\theta^2}$$

and therefore

$$S_{\theta} - S_m = A\left(\theta - \frac{\theta_2 + \theta_1}{2}\right)$$

if A is known the value of  $S_{\theta} - S_m$  may be calculated from this equation. If this term is added as a correction to the observed values of  $S_m$  and  $\theta$  be chosen equal to  $-\sqrt{\theta_1 \theta_2}$ , there is obtained a series of values of S determined experimentally, referred to corresponding values of  $\theta$  which may now be examined with respect to their agreement with equation 4.

The value of A used for this reduction was 0.00186, obtained from the preliminary graph of the data.

In Tables 3, 5, 7, and 9 are given the steps in reduction of the data, resulting in a series of values of  $S_{\theta}$  given in column 8 referred to corresponding values of  $\theta$  given in column 3. In column 9 are given values of S calculated from equation 4, using the values for B, A, and l as follows:

|               | Sample. | l.       |
|---------------|---------|----------|
| B = 0.5057    | I       | -0.00125 |
| A = 0. 001863 | 2       | 00120    |
|               | 3       | 00095    |
| •             | 4       | 00005    |

The differences between the experimental and calculated values of S are given in column 10 headed  $S_{gobs} - S_{geal}$ .

# Dickinson] Specific Heat and Heat of Fusion of Ice

Consideration of the sources of error which may affect the values of S shows that  $S_{obs} - S_{eal}$  is more affected by errors in temperature measurement the smaller the numerical value of  $\theta$  or of  $\theta_2 - \theta_1$ . Greater differences between the experimental and calculated values may therefore be expected at temperatures near zero than elsewhere. Making due allowance for this fact, examination of the values of  $S_{obs} - S_{eal}$  shows that the agreement between experimental and calculated values is within the limits of experimental precision. In other words, the specific heat of ice samples numbers 1, 2, 3, and 4 in the range of temperature from  $-40^{\circ}$  C to  $-.05^{\circ}$  C is represented within the limit of experimental error by the equation

$$S_{\theta} = 0.5057 + 0.001863\theta - 79.75\frac{l}{\theta^2}$$

where l has the following values:

| Sample. | l        |
|---------|----------|
| I       | -0.00125 |
| 2       | 00120    |
| 3       | 00095    |
| 4       | 00005    |

**Discussion of Results.**—The results of the determinations of specific heat are graphically represented in Fig. 6. The curve of calculated values for sample No. 2 is omitted because it is scarcely distinguishable from that of sample No. 1. The results in the range of temperature -10 to  $0^{\circ}$  C are shown in Fig. 7 plotted to a larger scale of temperature.

In arriving at the above results the assumption has been made that the measure of the departure of the specific heat of any specimen of impure ice from a linear function of the temperature can be expressed in terms of a constant representing the initial freezing point and depending upon the degree of purity.

The results upon four samples of ice all of high degree of purity, yet differing among themselves in purity, agree with this assumption, but it does not necessarily follow that the assumption is substantially correct. It is quite possible that the relation of

73



# Bulletin of the Bureau of Standards

\$

[Vol. 12



# Specific Heat and Heat of Fusion of Ice



.

75

the specific heat of pure ice to temperature is other than linear, perhaps rapidly increasing near zero and the departure from its value with increasing contamination could yet be approximately represented in terms of l, the initial freezing point.

It is obvious that with the experimental means at our command there are two ultimate limitations, one as to the degree of purity of ice attainable, another as to the proximity to zero of the temperatures between which total heats can be measured. On account of these limitations no rigid conclusion from a purely experimental standpoint can be drawn as to the ultimate value which the specific heat of pure ice may attain in the range of temperature just before melting takes place; and therefore the separation of experimental determinations of total heat of ice into the elements of sensible heat and heat of fusion is to some extent arbitrary.

obtained the departure was not more than  $\frac{0.004}{\theta^2}$ .

In order to state the specific heat of ice in definite terms and permit the deduction from experimental data of a definite figure for the heat of fusion of ice, it seems justifiable, for technical purposes at least, to express the specific heat of pure ice in 20° calories per gram per degree by the equation

$$s = 0.5057 + 0.001863 \theta$$

76

### HEAT OF FUSION OF ICE

Upon three of the samples used in the specific heat determinations observations were made to determine the heat of fusion. The data and results are given in Table 10.

#### TABLE 10

| Sample                              | Date                               | Initial temper-<br>ature $\theta_1$ | Final<br>temper-<br>ature<br>θ <sub>2</sub> | Total<br>energ                       | Correc-<br>tion for<br>ther-<br>mal<br>leak-<br>age | Cor-<br>rected<br>energy             | Ice<br>θ1 to 0                         | Water<br>0° to $\theta_2$                         | Calo-<br>rimeter $\theta_1$ to $\theta_2$ | Total<br>sen-<br>sible<br>heat    | Total<br>latent<br>heat                      |
|-------------------------------------|------------------------------------|-------------------------------------|---------------------------------------------|--------------------------------------|-----------------------------------------------------|--------------------------------------|----------------------------------------|---------------------------------------------------|-------------------------------------------|-----------------------------------|----------------------------------------------|
| 1                                   | 1914<br>June 5<br>June 13<br>Aug 8 | -396220<br>-0.2398<br>-1.6353       | +497463<br>+4.7549<br>+3.6024               | joules<br>177812<br>146330<br>167642 | joules<br>+25<br>-19<br>+96                         | joules<br>177837<br>146311<br>167743 | joule.<br>3561. (<br>202. 3<br>1586. ( | <i>joules</i><br>9367.8<br>8005.1<br>6993.6       | joules<br>8763. 8<br>5233. 9<br>5475. 8   | joules<br>21693<br>13441<br>14056 | <i>joules</i><br>156144<br>132870<br>5153687 |
| Sample                              |                                    |                                     |                                             | Mass of<br>ice                       | Heat                                                | of                                   | Heat of<br>fusion                      | Correc<br>for mel<br>below                        | $tion ting \theta_1$                      | Corrected<br>heat of<br>fusion    |                                              |
| 1 (contin<br>2 (contin<br>4 (contin | ued)<br>ued)<br>ued)               |                                     |                                             |                                      | grams<br>468.7<br>399.8<br>460.7                    | joule<br>333.<br>332.<br>333.        | s/g<br>14<br>34<br>59                  | <i>cal</i> 2/ <i>g</i><br>79.65<br>79.45<br>79.75 | cal <sub>20</sub> /<br>+.0<br>+.4<br>+.0  | /g<br>03<br>10<br>00              | cal2)/g<br>79.68<br>79.85<br>79.75           |

### Heat of Fusion of Ice-Results of Present Investigation

Since partial fusion of the sample, due to presence of impurities, takes place at temperatures below zero, as pointed out in the preceding discussion, it is necessary to apply a correction to the observed heat of fusion for the heat involved in the fusion which has already taken place at the initial temperature of the determination.

This correction is given by equation (1).  $H_f = \frac{lL}{\theta}$ .

The values of l have been given above. The corrections for previous fusion are given in next to the last column. The corrected values for heat of fusion of ice are given in the last column. The mean of the three samples gives for the heat of fusion of ice 79.76 20° calories per gram.

6844°---15-----6

### TABLE 11

| Method     | Samples | Kind of<br>ice | Initial<br>tempera-<br>ture of ice | Heat of<br>fusion | Corrected<br>heat of<br>fusion | Corrected<br>heat of<br>fusion |
|------------|---------|----------------|------------------------------------|-------------------|--------------------------------|--------------------------------|
|            |         |                | deg C                              | cal15/g           | cal15/g                        | cal20/g                        |
| Electrical | 13      | ∫Plate<br>Can  | } -0:72                            | 79.65             | 79.66                          | 79.74                          |
| Mixtures   | 8       | Natural        | 72                                 | 79.61             | 79.62                          | 79.70                          |
| Electrical | 12      | Can            | -3.78                              | 79.65             | 79.70                          | 79.78                          |
| Mean       |         |                |                                    |                   |                                | 79.74                          |
|            |         |                |                                    |                   |                                |                                |

### Heat of Fusion of Ice-Results of Previous Determinations

The results of the previous investigation <sup>19</sup> at the Bureau to determine the heat of fusion of ice, using the stirred water calorimeter, are given in column 5 of Table 11.

The earlier results were computed using an assumed value for specific heat of ice = 0.52 cal/g • deg. Correcting the results by using the newly determined value for the specific heat of ice, the figures given in column 6 are obtained. The results reduced to 20° calories are given in column 7. The mean of the three sets is 79.74 20° calories per gram.

The agreement of the results obtained by the widely different methods is within the limit of experimental error. The mean result of the two investigations is 79.75 20° calories per gram mass.

### SUMMARY

By means of a calorimeter of the aneroid type—that is, employing the thermal conductivity of copper instead of the convectivity of a stirred liquid to distribute heat supplied electrically—the specific heat and heat of fusion of ice were determined.

The specific heat was determined upon four samples of ice, all of a high but yet of different degrees of purity.

A variation in the specific heat of ice is found which depends upon the degree of purity.

It is found that at a given temperature  $\theta$ , between  $-40^{\circ}$  and  $-2^{\circ}$ , for the purest ice experimented on, the specific heat in  $20^{\circ}$ 

Dickinson Osborne

79

calories per gram per degree is represented within the limit of experimental accuracy by the equation

$$s = 0.5057 + 0.001863 \theta$$

and that from  $-2^{\circ}$  to  $-0^{\circ}.05$  the specific heat does not exceed the value given by the above equation by more than  $\frac{0.004}{4^2}$ .

The specific heat of impure ice at any temperature  $\theta$  above  $-40^{\circ}$  is greater than that of pure ice by  $\frac{lL}{\theta^2}$  where L is the heat of fusion and l the initial freezing point.

The value found for the heat of fusion of ice is  $79.76 \ 20^{\circ}$  calories per gram, which is within 1/4000 of the value previously determined at the Bureau by a different method employing a stirred water calorimeter.

#### TABLE OF TOTAL HEAT OF ICE AND WATER

For the convenience of those accustomed to the use of total heats expressed in terms of British thermal units <sup>20</sup> Table 12 has been prepared, giving in Btu per pound (weighed in air) the difference in total heat per pound,  $H_{32} - H_t$ , between ice at  $t^\circ$  F and ice at  $32^\circ$  F;  $h_{32} - H_t$ , between ice at  $t^\circ$  F and water at  $32^\circ$  F;  $h_{t'} - h_{32}$ , between water at  $32^\circ$  F and at  $t'^\circ$  F.

If the specific heat s of ice in  $cal_{20}/g \cdot deg C$  at the temperature  $\theta$  is expressed by the equation

$$s = 0.5057 + 0.001863 \theta$$

and the relation between units be taken as

I Btu/lb • deg  $\mathbf{F} = 1.001 \text{ cal}_{20}/\text{g} \cdot \text{deg C}$ ,

the specific heat s' of ice in Btu/lb  $\bullet$  deg F at the temperature t is given by the equation

s' = 0.5052 + 0.001861 (t - 32).

<sup>&</sup>lt;sup>20</sup> The British thermal unit used here is defined as the quantity of heat required to raise the temperature of 1 pound of water (weighed in air) 1° Fahrenheit at 60° F.

### TABLE 12

### Table of Total Heat of Ice and Water

| Temperature<br>of ice | Difference in total ice a                     | heat per pound from at t° to                    | Temperature | Difference in total<br>heat per pound<br>from water at 32°<br>to water at $t^1$<br>$h_t-h_{32}$ |  |
|-----------------------|-----------------------------------------------|-------------------------------------------------|-------------|-------------------------------------------------------------------------------------------------|--|
| deg. F                | Ice at 32°<br>H <sub>32</sub> —H <sub>t</sub> | Water at 32°<br>h <sub>32</sub> -H <sub>t</sub> | ti ti       |                                                                                                 |  |
|                       | Btu/lb                                        | Btu/lb                                          | deg. F      | Btu/lb                                                                                          |  |
| -20                   | 23.8                                          | 167.2                                           | +32°        | 0.0                                                                                             |  |
| -18                   | 22.9                                          | 166.3                                           | 34          | 2.0                                                                                             |  |
| -16                   | 22.1                                          | 165.5                                           | 36          | 4.0                                                                                             |  |
| -14                   | 21.3                                          | 164.7                                           | 38          | 6.0                                                                                             |  |
| -12                   | 20.4                                          | 163.8                                           | 40          | 8.1                                                                                             |  |
| -10                   | 19.6                                          | 163.0                                           | 42          | 10.1                                                                                            |  |
| - 8                   | 18.7                                          | 162. 1                                          | 44          | 12.1                                                                                            |  |
| - 6                   | 17.9                                          | 161.3                                           | 46          | 14.1                                                                                            |  |
| - 4                   | 17.0                                          | 160.4                                           | 48          | 16.1                                                                                            |  |
| - 2                   | 16.1                                          | 159.5                                           | 50          | 18.1                                                                                            |  |
| 0                     | 15.2                                          | 158.6                                           | 52          | 20.1                                                                                            |  |
| + 2                   | 14.3                                          | 157.7                                           | 54          | 22.1                                                                                            |  |
| 4                     | 13.4                                          | 156.8                                           | 56          | 24.1                                                                                            |  |
| б                     | 12.5                                          | 155.9                                           | 58          | 26.1                                                                                            |  |
| 8                     | 11.6                                          | 155.0                                           | 60          | 28.1                                                                                            |  |
| 10                    | 10.7                                          | 154.1                                           | 62          | 30.1                                                                                            |  |
| 12                    | 9.7                                           | 153. 1                                          | 64          | 32.1                                                                                            |  |
| 14                    | 8.8                                           | 152. 2                                          | 66          | 34.1                                                                                            |  |
| 16                    | 7.8                                           | 151. 2                                          | 68          | 36.1                                                                                            |  |
| 18                    | 6.9                                           | 150.3                                           | 70          | 38.1                                                                                            |  |
| 20                    | 5.9                                           | 149.3                                           | 72          | 40.1                                                                                            |  |
| 22                    | 5.0                                           | 148.4                                           | 74          | 42.1                                                                                            |  |
| 24                    | 4.0                                           | 147. 4                                          | 76          | 44.1                                                                                            |  |
| 26                    | 3.0                                           | . 146. 4                                        | 78          | 46.1                                                                                            |  |
| 28                    | 2.0                                           | 145.4                                           | 80          | 48.1                                                                                            |  |
| 30                    | 1.0                                           | 144. 4                                          | 82          | 50.1                                                                                            |  |
| 32                    | 0.0                                           | 143. 4                                          | 84          | 52.1                                                                                            |  |
|                       |                                               |                                                 | 86          | 54.1                                                                                            |  |
|                       |                                               |                                                 | 88          | 56.1                                                                                            |  |
|                       |                                               |                                                 | 90          | 58.0                                                                                            |  |
|                       |                                               |                                                 | 95          | 63.0                                                                                            |  |
|                       |                                               |                                                 | 100         | 68. 0                                                                                           |  |

Dickinson Osborne

The difference in total heat between ice at temperatures t and 32 is given by the equation

$$H_{32} - H_t = \int_t^{3^2} s' \, dt = -0.5052 \ (t - 32) - 0.00093 \ (t - 32)^2$$

If the heat of fusion of ice is taken as  $79.75 \operatorname{cal}_{20}/g$  and the relation between units be taken as

$$I Btu/lb = 0.556 cal_{20}/g$$

the heat of fusion of ice is

### 143.4 Btu/lb

EXAMPLE.—Required the number of Btu per pound required to change ice at 8° F into water at 68° F:

Column 3, opposite 8°,  $h_{32} - H_8 = 155.0$ Column 5, opposite 68°,  $h_{68} - h_{32} = 36.1$ 

adding  $h_{68} - H_8 = 191.1$ 191.1 is the number of Btu per pound required.

WASHINGTON, D. C., February 23, 1915.