
ON THE DEDUCTION OF WIEN'S DISPLACEMENT LAW

By E. Buckingham

I. Although Wien's displacement law may be regarded as quite

well established by experiment, its great importance seems to

justify attempts to improve or simplify the reasoning by which it

may be deduced a priori as a consequence of the general principles

of thermodynamics and the electromagnetic theory of radiation.

Any such deduction must, in substance, contain the following

four elements

:

(a) The treatment, by Doppler's principle, of the change of

wave length produced when diffuse radiation is compressed or

expanded within a perfectly reflecting shell, i. e., adiabatically.

(6) The evaluation, by means of the principle of the conserva-

tion of energy, of the change of the volume density of the radiant

energy which occurs during the adiabatic change of volume and

accompanies the change of wave length. This step involves the

use of the value of the pressure of diffuse radiation on a bounding

surface, deduced from the electromagnetic theory and confirmed

by experiment.

(c) The demonstration, by means of the second law of thermo-

dynamics, that black radiation remains black when its density

and temperature are changed by adiabatic change of volume.

(d) The use of the Stefan-Boltzmann law to correllate the results

obtained by the steps (a)
, (6) , and (c) so that the displacement law

shall appear as a necessary consequence of those results.
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These parts of the deduction need not be kept entirely separate

nor do they necessarily occur in the order given above, which is

that followed in this paper, but they must be present in some form

or other. In the deductions I have read, the treatment of the

change of wave length seems somewhat difficult or obscure and I

have attempted to simplify this part of the subject and make it

easier to grasp. The remainder of the demonstration contains

little that is at all novel, but is given for the sake of presenting a

connected whole, comprehensible to those who are not already

familiar with the subject. The treatment is elementary and

relates only to radiation in vacuo.

2. Let ds be an infinitesimal plane element of surface at a point

within a field of radiation. A certain amount of radiant energy

passes through ds from the negative to the positive side, in unit

time, in various directions. Let us consider only those directions

comprised within a cone of the infinitesimal solid angle dw described

.

about the positive normal to ds. The amount of energy of wave
lengths between X and \ + d\, which passes through ds from the

negative to the positive side in one second, in directions close

enough to the normal to lie within the cone, may be expressed by

RxdX 'ds-dw

The quantity RxdX may be called the strength of the radiation

and Rx the "radiant vector" at the given point, in the given

direction of the positive normal to ds, and for the wave length X.

If the value of Rx is given for all values of X, for all directions,

and at every point within a given region, the radiation within

that region is, for our purposes, completely specified, since ques-

tions of phase and state of polarization will not enter into our

reasoning.

By speaking of "the energy of wave lengths between X and
X + JX" we make a somewhat violent though familiar assumption,

namely, that no matter what may be the nature of the pulses

which constitute radiation, since our spectral apparatus enables

us to analyze radiation into series of wave trains of assignable

period, the radiation before analysis may be treated as the sum of

these wave trains coexisting independently. However obvious the



Buckingham] Wieti's Displacement Law 547

truth of this assumption may appear from a purely mathematical

standpoint, it is well to recognize that physically it is to be justified

by the agreement with experiment of conclusions drawn from it.

It is in fact thus justified and we shall make a rather full use of

this principle.

3. Let us consider a closed evacuated shell, the walls of which

reflect perfectly, but at least somewhat irregularly. Let a beam
of approximately monochromatic radiation of wave lengths

between X and \ + d\he admitted to the inclosure through a hole,

which is then closed by a cover similar in its properties to the rest

of the walls. After a short time the radiation within the shell

becomes perfectly diffuse, for the directed quality of the original

beam is soon obliterated by the successive irregular reflexions, so

that thereafter the value of Rx is the same at all points and in

all directions. These reflexions, however, do not change the period

of the radiation, since there is no absorption and reemission, but

only pure reflexion. The volume density of the energy is now

p^C?X=47r (l)

where c is the velocity of light; and the whole amount of energy

within the shell is vp^dX, if v is the volume of the shell.

Let M be a small plane piece of the shell wall of area s, and let

M be given a normal velocity l3c outward, /3 being infinitesimal.

This motion will disturb the perfect diffuseness of Rx by an

amount which we shall show to be negligible, but at present we
shall assume that Rx remains diffuse.

The reflexion from M also causes a change of period which we
must now proceed to evaluate. If a wave train of period T strikes

M at an angle of incidence ep, it is easily seen that the period T'

of arrival of the waves at a given point of M is

I — /8 cos ^

The period at a point of the moving surface is therefore greater than

at a fixed point in space in the ratio

ra = I -\-fi cos (p (2)
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terms of higher orders in /3 being neghgible. A disturbance start-

ing with the period T' at a point of the moving surface and propa-

gated at an angle -^^ with the normal has, upon arrival at a fixed

point in space, the period

T''=:T'(i+/3cost)

so that the effect of departure is to increase the period in the ratio

^d = I +/3cOSn/r (3)

Our problem is to find the total effect on the original period T,

of all the arrivals and departures, at all possible angles (p and i/r

from o to 7r/2, during a long time t; and to do this we must find the

number of times that each of these effects is produced on every

wave; i. e., every element of the radiation existing within the shell.

4. We base our reasoning on the consideration that in a very

long time—^though not in a short one—every element of the energy

within the shell must undergo reflexion from M at the angles

{^Pj'^) just as many times as every other element. The number of

times that any particular effect of reflexion at M is produced on

each element of the energy is therefore the ratio of the total amount
of energy thus affected in the time t to the total amoimt present

within the shell. The changes of period in the ratios r^ and r^,

caused by arrival and departure, occur alternately; and in finding

the total effect of a number of successive arrivals and departures

we have evidently to evaluate a product of the form

yard'y'ar'd'r"ax''d, etc.

But since multiplication is commutative, we shall get the same
result if we ptirsue the more convenient method of treating all the

arrivals by themselves, then all the departiures by themselves, and
finally multiplying the two resulting ratios together to get the com-
bined effect of both arrivals and departures.

We start, then, with the arrivals. In any time t, the amoimt of

energy which strikes M at angles between cp and cp-\-dcp is

t ' Rxd\ s cos (p • 27r sin (p dcp
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The total amount present within the shell to be affected is, by

equation (i),

/yrrRxdX

Hence the number of times n that each element of the energy

arrives at M at angles between (p and cp+dcp within the long time

i is

t ' RxdX s cos (p ' 2'Tr smcp dcp

AirRidK''-^
(4)

n =

cts=— Qos CD sm a) dcp
2V

By equation (2) the effect of all these n arrivals is to increase the

period in the ratio

ra^={i-^pQ.oscpY=i+nP doscp (5)

the remaining terms being of higher orders in yS. Inserting the

value of n from (4) we have

ra^ = i -\ cos^ Q) sm o) dcp

and since /Sets is the infinitesimal increase of volume, z/ v, which

occurs within the time t as a result of the motion of M, this last

equation may be written in the form

r
I ^v

a^ = I H cos^ cp sin ^ dcp (6)
2 V

So far we have considered only the directions between cp and

<p + dcp
; but meanwhile the given element of energy has also been

arriving a large number of times at every other possible angle

between o and 77/2, and equation (6) , with the appropriate value of

cp, is applicable to every such angle. The total effect of all the

arrivals at all possible angles will therefore be to change the period

in the ratio given by the product of all the expressions of the form

(6) for all values of 9?; and dropping terms of higher order in jS,

the value of this product will be
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cos^^ sin<^ a^ = I
+-

—

(7)

If we go on to treat the effects of the departures, the reasoning

will be found to be the same all the way through, with the mere
substitution of -x/r for ^, and the total effect will be fotmd as before to

be to increase the period in the ratio 1+7— . Hence the combined

result of the two sets of effects, which have in reality been occurring

alternately, is to increase the period of every element of the

radiation in the ratio

T +JT ( ^ J'v\
,

I Jv ,Q.

T \ d v ) 37;

Replacing the period by the wave length we therefore have

^=3^ (9)

Since this result is independent of the original value of the wave-

length X, it is valid for any value. Hence X + d\, and therefore

d\, the interval within which the wave-lengths are included, is

changed in the same ratio as X.

The result is also valid for any element of the surface of the

shell which is small enough to be treated as plane, and for motion

either in or out, so that equation (9) may be integrated into the

form

X = const. X-v't; (10)

The meaning of equation (10), reduced to its simplest terms, is as

follows : If the shell changes its volume while retaining its shape,

the dimensions of the waves change in the same ratio as those of

the shell. The whole system of waves and shell remains geo-

metrically similar to itself, the number of waves present being

unchanged.

5. In the foregoing reasoning we have treated the radiation as

perfectly diffuse, for the cancellation of Rx from the numerator
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and denominator of equation (4) and the corresponding equation

for the case of departure, involved the assumption that Rj, was

the same at all points and in all directions. This assumption is

not exact, for upon reflection from a moving mirror the angle of

departure yjr' differs from the angle ^fr at which the ray would

leave a fixed mirror by a quantity of the order of magnitude of the

ratio of the velocity of the mirror to the velocity of light. The
result of this is that at any point within our shell the radiant vec-

tor in directions away from the moving piece M has not exactly

the mean value R^, but a value Rx^ = Rx(i -\- e) , where e is an

infinitesimal of the same order as /3. This departure from perfect

diffuseness is not cumulative, but remains of the same order of

magnitude whatever the lapse of time, for the disturbing effect

of reflection from M is continually being damped out by the dif-

fusing effect of the irregular reflections from the stationary walls.

If we now review our reasoning, we find that Rx appears only

in the expressions for the total energy within the shell and for the

total energy which strikes or leaves M at a given angle within the

time /. If Rx represents the average value which satisfies the

equation

/
pxdX • dV = ATT V^ c

the numerator of equation (4) ought to contain not Rx but

Rx{i +r)), where rj is an infinitesimal of the order fiq, q being the

ratio of the area ^9 to the whole area of the shell walls. The error

in n caused by the omission of this factor (i +^) is infinitesimal

and negligible. The changes caused in equations (5) to (10) by
using the exact value instead of the mean value of Rx would all

be of a lower order of magnitude than the terms which have been

retained. Hence the error incurred by our treating the radiation

as completely diffuse is infinitesimal, and the result expressed in

equations (9) and (10) remains valid.

One further point may be worth notice. If ''the long time f'

appears to the reader to be possibly not long enough to give all

the finite amount of energy within the shell an equal opportunity

of being reflected from M in every one of the infinite number of

conceivable ways, there is no objection to his making it longer, in
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other words, infinite. If this is done, we may still make Jv or

ct^s infinitesimal, as we want it to be, by making ^s of the order

-; and this may be accompHshed either by making ^ =—-—

with s finite, or by making both ^ and s of the order -. There is

nothing to prevent our adopting either course. The use of the

more concrete expression a ''long" time instead of an ''infinite"

time did not, therefore, involve an error in the reasoning, while it

obviated the necessity of interrupting the argument at an incon-

venient point.

6. We have next to consider the change of the energy of the

radiation which accompanies its change of period, and we assume

that diffuse radiation exerts a pressure equal to one-third of its

density on the walls of a containing envelope. This proposition

may be deduced in several ways from Maxwell's theory of the

electromagnetic field, which has been confirmed in so many
respects that we need not regard it as doubtful but accept its con-

sequences without further discussion.

During an expansion Jv, the work given out is then expressed

by -pidX • Jv; and since the expansion of radiation within a perfect

reflector is adiabatic, this work is equal to the simultaneous

decrease of the energy within the shell, and we have

-pxdX ' Jv = —J (pxdX • v)

whence upon developing, rearranging, and dividing by pxdX-v^

we have

3 ^ dX px

But since dX changes in the same ratio as X, --j-~ =—— , and if we
dX X

eliminate v by equation (9) we have

jJX Jpx , ^5^+-^=o (11)
^ Px

or

/0;iA.5 = const. (12)



Buckingham] Wien's Displacement Law 553

The meaning of this result is that" if approximately monochromatic

diffuse radiation of strength RxdX and density p^dX is compressed

or expanded adiabatically and infinitely slowly, the quantity px

changes as the inverse 5^^ power of the wave length, \ itself being

subject to equation (10). If the strip A (Fig. i), of width dX and

height px, represents the original energy density, the strip B which

represents the energy density after compression, has its height

increased in the ratio of the 5*^ power of * the ratio of decrease of

the width or of mean wave length. Its area is therefore propor-

tional to the inverse 4^^ power of the wave length.

Pa

I

B

Fig. 1

This change of density and the accompanying change of Rxdk

do not interfere with the validity of the reasoning by which we
found the value of n in equation (4). For since the motion is

infinitely slow, the values of Rxd\ which have been canceled from

the numerator and denominator may be treated as always -equal,

within an infinitesimal amount, in spite of the fact that they are

not constant in time.

The width d\ may be as small as we please, so that the change

of px may be assigned definitely to the particular wave length X.

There is no occasion for the formation of any new waves; the

change in energy is a change in the amplitude of waves already

present, which occinrs in coimection with the change of period

56109°—12 8
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upon reflection from the moving surface. In a short time, reflection

from the moving mirror would introduce inhomogeneity into the

radiation, which v/ould not have time to be all equally affected by

reflection at M; but ill a long time, the radiation again becomes

homogeneous to the same degree as at first, and equation (12) is

satisfied for each wave length.

7. Hitherto we have considered only a small interval of wave

lengths, but suppose that the strip in question is merely a part of

a continuous distribution of diffuse radiation which may be repre-

sented by a curve such as is shown in figure 2. If we take full

advantage of the principle of the independence of the separate

Fig. 2

elements composing the whole spectrum, we must admit that the

reasoning given above for an isolated strip is applicable without

change to every wave length of the spectrum, no matter what

may be the form of the energy curve px -=/(X) . We then have the

proposition that when any completely diffuse radiation is com-

pressed infinitely slowly within a perfectly reflecting inclosure,

the energy curve is changed in such a way that the abscissa of

every point is multiplied by some fraction / while the ordinate is

multiplied by /~^ so that the area under the curve, or the integral

density of the energy present, is multiplied by /"-. This is true

for any continuous or discontinuous spectral distribution and not

merely for black radiation.

8. The remainder of the deduction contains nothing new, but

may be given for the sake of completeness. lyCt the shell be
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filled with black radiation of temperature 6 and density p, by first

covering a hole in the shell with an ordinary body of tempera-

ture 6, and then, after equilibritun has been established, closing

the hole with a cover which has the same reflecting properties as

the rest of the shell wall. Let the volume of the shell, which may,

if we prefer, have the form of a cylinder closed by a piston, be

decreased a finite amoimt by an infinitely slow compression. The

fact that this requires an infinite time need not concern us. The

density of the energy is increased on account both of the work

done and of the decrease of volume of the energy already present.

The spectral distribution also changes in the manner already given.

At the end of the compression we introduce into the shell a

particle of ordinary matter so small as to be of negligible thermal

capacity. If the spectral distribution after compression was not

that of black radiation of the same integral density, absorption

and reemission by the particle cause a redistribution and a "black-

ening" of the radiation without change of density. This estab-

lishment of stable equilibritun by redistribution of the energy

among the different periods is spontaneous and therefore irre-

versible.

We now expand to the original volume. The radiation remains

black on accoimt of the presence of the particle, and the work

given out is the same as that put in during the compression,

because the pressiure depends only on the total density of the

energy present and not on its spectral distribution. At the end

of the cycle, which may be completed by removing the particle,

we have therefore reestablished the original state exactly. No
heat has been added to or taken from any outside body, the work
done has been regained, and no changes remain. The cycle is

therefore reversible and can not have included any irreversible

element. Hence the introduction of the particle after compression

did not cause any change in the spectral distribution of the energy

which must therefore aheady have been that of radiation from a

black body. Hence we conclude that during infinitely slow

adiabatic change of density, radiation which was initially black

remains black.
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9. We may now apply equation (12) to an adiabatic change of

the volume and density of black radiation. The integral density

changes from that needed for equilibrium with an absorbing shell

at the absolute temperature 6^ to that needed for some other tem-

perature $2. The abscissa \ of any point on the original energy

curve is changed to a new value Xj? such that

At the same time the ordinate of the point changes so that

(^=1 (14)

and the area under the curve, which represents the integral den-

sity p, changes so that

But we know by the Stefan-Boltzmann law that for diffuse black

radiation at 6^ and 6^

Pi

Pi

Pl =f^\
P. W (16)

whence it follows that

.4; (X7)

From equations (13) and (17) we thus obtain the*relation

\A = \02 (18)

and the displacement law contained in equations (12) and (18)

may be stated as follows : Given the spectral energy curve of

black radiation at any temperature 6^, to construct the curve for

any other temperature 62, multiply the abscissa of each point by

-^ and the coordinate by
( ^ ) . ''Corresponding" points on the

two curves have the same value of \0,
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From this we may easily deduce the more familiar special forms

of the displacement law

^ max <^= const,

Pmax^-^max = COnSt,

and

P max = const X ^^

as well as the fact that if the displacement and Stefan-Boltzmann

laws are to be satisfied, the complete equation must have the gen-

eral form

The only novelties in the above deduction, if there are any at

all, occiu- in sections 4 to 7 ; but it seems to me that greater clear-

ness has been attained without any real sacrifice of rigor and with

only very elementary reasoning.

Washington, February 28, 191 2.


