FORMULAS AND TABLES FOR THE CALCULATION OF MUTUAL AND SELF-INDUCTANCE

By Edward B. Rosa and Frederick W. Grover

CONTENTS

(See also Index)
Page
INTRODUCTION 5
I. Mutual Inductance of Two Coaxial Circles:
(a) Formulas-
I, 2, Maxwell's formulas in elliptic integrals 6, 7
3, Formulas for the elliptic integrals F and E. 8
4, Maxwell's formula in terms of F_{0} and E_{0} 9
5, Maxwell's formula expressed as a k series 9
6, Maxwell's formula expressed as series in k_{1} IO
7, Weinstein's k^{\prime} series formula 10
8, 9, Nagaoka's q series formulas II
Io, II, Maxwell's series formulas for any two coaxial circles I3
12, Maxwell's series formula for circles of equal radii 13
13, Coffin's extension of (12) 14
14, Series formula for any two circles, extension of (IO) 14
15, Formula for coplanar circles, derived from (14) I4
16, Havelock's formula (extended) for circles near together. 16
17, Havelock's formula, for circles far apart 16
18, Mathy's formula (corrected) 17
19, Simple form of Mathy's formula for the case $r_{1}^{2}=2 r_{2}^{2}$ 18
(b) Choice of formulas 19
(c) Summary of formulas 19
(d) Examples I-19, illustrating the formulas for the mutual inductance of coaxial circles 20
2. Mutual Inductance of Two Coaxial Coils:
(a) Formulas
20, Rowland's formula, equal radii, but unequal section 33
21, Rowland's formula, equal radii and equal section 33
22, Differential coefficients in (20) and (21) 34
23, Rayleigh's formula of quadratures 34
24, Same for coils of equal radii and equal section 35
25, 26, Formulas for errors of formulas (21) and (24) 36, 37
27, 28, Lyle's formulas 38
29- 3I, Rosa's formulas for two equal coils 39
32, Same for coils of equal radii, but unequal sections 39
33, The Rosa-Weinstein formula 40
34, Formula in terms of self-inductance 41
35, Geometric mean-distance formula 42
(b) Choice of formulas 43
(c) Examples 20-33, illustrating the formulas for the mutual inductance of two coaxial coils 44
3. Mutual Inductance of Coaxial Solenoids:
(a) Formulas--
(a) Formulas-- Page Page
36, 37, Maxwell's formulas for two concentric solenoids of
36, 37, Maxwell's formulas for two concentric solenoids of equal length. 53, 55
38, Havelock's formula for concentric solenoids of equal length 56
39, Roiti's formula, inner solenoid the shorter, coils con- centric 57
40, Gray's formula, coaxial coils not concentric 59
4I, Formula for the Gray electrodynamometer 60
42, Searle and Airey's formula, inner coil the shorter, coils concentric 6I
43, Rosa's extension of (42) 62
44, Cohen's absolute formula in elliptic integrals, coils concentric 64
45, Nagaoka's absolute formula for any coaxial solenoids. 65
46, 47, Russell's formulas 67, 68
(b) Mutual inductance of a short secondary, on the outside of a long primary 68
(c) Formulas for single layer coils of equal radii-
48, Rosa's formula
48, Rosa's formula 70 70
49, Rosa's formula, coils of equal breadth 70
50, Rosa-Weinstein formula 71
5I, 52, Mutual inductance by means of self-inductance formulas. 72
(d) Other formulas and O1shausen's absolute formula 73
(e) Choice of formulas. 73
(f) Examples 34-47, illustrating the formulas for the mutual induc- tance of coaxial solenoids 77
4. Mutual Inductance of a Circle and a Coaxial Single-Layer Coil: (a) Formulas
53, Lorenz's series formula 98
54, Jones's formula in elliptic integrals. 99
55, Campbell's form of (54) IOO
56, 57, Rosa's series formulas IOI, IO2
(b) Examples, 48-5I, illustrating the formulas for the mutual induc-
tance of a circle and a coaxial single-layer coil 103
5. The Self-Inductance of a Circular Ring of Circular Section:
(a) Formulas-
58, 59, Kirchhoff's formulas IIO
60, 6I, Maxwell's formulas. IIO
62, Maxwell's formula when the ring is a hollow, circular thin tube III
63, Rayleigh and Niven's formula III
64, Tube bent into a circle II2
65, Tube of infinitely thin walls 112
66, Wien's formula, current density proportional to the dis- tance from the axis of the ring II3
67, Thomson's formula for a ring of elliptical section II3
(b) Examples 52-56, illustrating the formulas for the self inductance of a circular ring of circular section II4
6. The Self-Inductance of a Single Layer Coil or Solenoid:
(a) Formulas
68, Formula for infinitely long solenoid II6
69, 70, Rayleigh and Niven's formulas 16, II7
7I, Coffin's series formula, extension of (69) II7
72, 73, Lorenz's absolute formula in elliptic integrals II8
74, Formula for use with Table IV, derived from (73) II8
75-78, Nagaoka's q series formulas II9-I2I
79, Webster-Havelock formula I2I
So, Rosa's formula for obtaining L from L I22
8I, Summation formula 1236. The Self-Inductance of a Single Laver Coil or Solenoid-Con-tinued.
(a) Formulas-Continued. Page
82, Strasser's formula 124
83, Formula for L_{s} of a toroidal coil of rectangular section. 124
84, Rosa's formula for obtaining L from L_{s} for a toroidal coil 125
(b) Choice of formulas 125
(c) Examples 57-63, illustrating the formulas for the self-inductance of single layer coils or solenoids I26
7. The Self-Inductance of a Circular Coil of Rectangular Sec-TION:
(a) Formulas-85, 86, Maxwell's approximate formulas.I35, I36
87, Perry's approximate formula I36
88, 89, Weinstein's formulas for L_{u} I37
90, Stefan's formula for L_{u} I37
91, Rosa's formula for obtaining L_{u} from L_{s} I38
92, Cohen's approximate formula 140
93, Maxwell's formula (revised) for obtaining L from L_{u}. 140
(b) Choice of formulas 142
(c) Examples 64-69, illustrating the formulas for the self-inductance of a circular coil of rectangular section 142
8. Self and Mutual Inductance of Linear Conductors:
(a) Formulas -
94- 97, Self-inductance of a straight cylindrical wire. 150, 15I
98, 99, Mutual inductance of two parallel wires 151
roo, ror, Self-inductance of a return circuit of two parallel con- ductors 151, 152
IO2, Mutual inductance of two linear conductors in the same straight line 152
IO3, IO4, Self-inductance of a straight rectangular bar 152, 153
105, 106, Self-inductance of a square, circular section 154
107, Self-inductance of a rectangle, circular section 155
108, Self-inductance of a rectangle, rectangular section 155
109, 1 ro, Self-inductance of a square, rectangular section 155
III, II2, Mutual inductance of two equal, parallel rectangles or squares 155, 156
II3, II4, Self-inductance of a straight, thin tape 156
II5, Mutual inductance of parallel tapes in the same plane. 157
II6, Self-inductance of return circuit of two parallel tapes in the same plane 157
117, II8, Self-inductance of return circuit of parallel tapes, not in the same plane 157
119, 120, Self-inductance of a return circuit of two concentric conductors 158, 159
121, 122, Self-inductance of multiple conductors
159
159
(b) Examples 70-81, illustrating the formulas for the self and mutual inductance of linear conductors. 159
9. Formulas for Geometrical and Arithmetical Mean Distances:
I23, G. M. D. of a straight line from itself 167
124, G. M. D. of a rectangular area 167
125, G. M. D. of a square area 167
126, G. M. D. of a circular area 167
127, G. M. D. of an elliptical area. 167
128, Approximate formula for G. M. D. of a rectangle 167
I29, G. M. D. of an annular ring 168
I3O, I3I, G. M. D. of a straight line from another line of the same length in the same straight line. 168
I32, I33, G. M. D. of a line from an equal parallel line. 169
I34, G. M. D. of a circular line from itself 169
I35, G. M. D. of a point from an annular area 169
9. Formulas for Geometrical and Arithmetrcal Mean Distances- Continued. Page
I36, G. M. D. of two circular areas from one another. 170
I37, A. M. D. of a line from itself I7I
I38, A. M. S. D. of a line from itself I7I
I39, I40, A. M. D. and A. M. S. D. of a circular line from itself I7I
14I, A. M. D. of an external point from the circumference of a circle 172
I42, A. M. D. of an external point from a circular area 172
10. High-Frequency Formulas and Examples:
(a) Formulas-
143, 144, Kelvin's formula for the resistance and inductance of straight cylindrical wires I74
144a, Formulas defining W, Y, and I74
145-147, Formulas for the absolute and fractional change of in- ductance of straight wires with frequency 174
148, Defining formulas for ber and bei 175
149, Formulas for W, Y, and Z, small argument. 176
150, Savidge's asymptotic formulas for W, Y, and Z 176
15I, Rayleigh's formulas for straight wires, low frequency 177
r52, I53, Rayleigh's limiting formulas. 178
154, 155, Formulas for limiting change of inductance of straight wires I78
156, Formula for the argument x. I78
I57-160, Resistance and inductance of return circuit of two parallel wires 180
161, I62, Limiting change in inductance of circular ring. I8I
163-166, Resistance and inductance of circular ring 182
(b) Examples 82-85, illustrating the formulas for inductance and re- sistance at high frequency 183
NOTE: Recent formula for coaxial circles (Nagaoka) 187

APPENDIX

TABLES OF CONSTANTS AND FUNCTIONS USEFUL IN THE CALCULATION OF MUTUAL AND SELF-INDUCTANCE
I. Maxwell's table of $\frac{M}{4 \pi \sqrt{A a}}=\left[\left(\frac{2}{k}-k\right) F-\frac{2}{k} E\right]$, for formula (1). 190
II. $\log F$ and $\log E$ as functions of $\tan \gamma$ 193
III. Table of $K^{\prime} s$ for formula 57 193
IV. Table of Q 's for formula 74 I94
V. Table of constants A and B for formula 82 195
VI. Table of constants y_{1} and y_{2} for formula 90 196
VII. Table of constants A for formula 80 197
VIII. Table of constants B for formula 80. 199
IX. Table of constants A_{s} for formula 91 200
X. Table of constants B_{s} for formula 9 I 200
XI. Table of Napierian Logarithms for numbers I-Ioo 201
XII. Values of F and $E, 0^{\circ}$ to 90°. 202
XIII. Values of $\log F$ and $\log E, 45^{\circ}$ to 90°. 204
XIV. Table of binomial coefficients for interpolation formula 213
XV. Values of q, q_{1}, and ϵ for use in formulas $8,9,45,76,77$, and 78 215
XVI. Values of ϵ_{1} and ϵ_{1}^{\prime} as function of q_{1}, for use with formulas 6 and $6 a$. 218
XVII. Coefficients in hypergeometric series of formula 18 220
XVIII. Location and magnitude of maxima and minima of coefficients in Gray's and Searle and Airey's formulas 221
XIX. Values of coefficients in Gray's and Searle and Airey's formulas 40, 43, 56 222
XX. Nagaoka's table of the correction for the ends, as function of θ, formula 75 223

APPENDIX-Continued

TABLES OF CONSTANTS AND FUNCTIONS, ETC.-continued.
XXI. Nagaoka's table of the correction for the ends as function of Page $\frac{\text { diameter }}{\text { length }}$

224
XXII. Values of $\frac{W}{Y}, \frac{x}{2} \frac{W}{Y}, \frac{Z}{Y}$ and $\frac{4}{x} \frac{Z}{Y}$ for use in formulas for high frequency

226

XXIV. Values of argument x in high frequency formulas 230

INDEX .. 23 I

INTRODUCTION

A great many formulas have been given for calculating the mutual and self-inductance of the various cases of electrical circuits occuring in practice. Some of these formulas have subsequently been shown to be wrong, and of those which are correct and applicable to any given case there is usually a choice, because of the greater accuracy or greater convenience of one as compared with the others. For the convenience of those having such calculations to make we have brought together in this paper all the formulas with which we are acquainted which are of value in the calculation of mutual and self-inductance, particularly in nonmagnetic circuits where the frequency of the current is low enough to assure sensibly uniform distribution of current. In the last section some formulas are given for the variation of the self-inductance and resistance with the frequency. A considerable number of formulas which have been shown to be unreliable or which have been replaced by others that are less complicated or more accurate have been omitted, although in most cases we have given references to such omitted formulas. Where several formulas are applicable to the same case we have pointed out the especial advantage of each and indicated which one is best adapted to precision work.

In the second part of each section of the paper we give a number of examples to illustrate and test the formulas. We have given the work in many cases in full to serve as a guide in such calculations in order to make the formulas as useful as possible to students and others not familiar with such calculations, and also to facilitate the work of checking up the results by anyone going over the subject. We have been impressed with the importance of this in reading the work of others.

In the appendix to the paper are a number of tables that will be found useful in numerical calculations of inductance.

In most cases we have given the name of the author of a formula in connection with the formula. This is not merely for the sake of historical interest, or to give proper credit to the authors, but also because we have found it helpful to distinguish in this way the various formulas instead of denoting each merely by a number. The formulas of sections 8 and 9 , which are taken largely from a paper by one of the present authors, ${ }^{1}$ are, however, not so designated, although the authorship of those that are not new is indicated where known.

This paper includes practically all the matter contained in the 1907 paper under the same title by Rosa and Cohen, but in addition to a thorough revision in which some errors are corrected and some formulas extended, a large amount of new matter has been added both in the body of the paper and in the tables. We shall be grateful to anyone detecting any errors either in formulas or tables if he communicates the same to us.

1. MUTUAL INDUCTANCE OF TWO COAXIAL CIRCLES

MAXWELL'S FORMULAS IN ELLIPTIC INTEGRALS

The first and most important of the formulas for the mutual inductance of coaxial circles is the formula in elliptic integrals given by Maxwell: ${ }^{2}$

$$
\begin{equation*}
M=4 \pi \sqrt{A a}\left\{\left(\frac{2}{k}-k\right) F-\frac{2}{k} E\right\} \tag{I}
\end{equation*}
$$

in which A and a are the radii of the two circles, d is the distance between their centers, and

$$
k=\frac{2 \sqrt{A a}}{\sqrt{(A+a)^{2}+d^{2}}}=\sin \gamma=\frac{\sqrt{r_{1}^{2}-r_{2}^{2}}}{r_{1}}
$$

F and E are the complete elliptic integrals of the first and second kind, respectively, to modulus k. Their values may be obtained from the tables of Legendre (see Tables XII and XIII in the Appendix), or the values of $M \div 4 \pi \sqrt{A a}$ may be obtained from Table I in the appendix of this paper, the values of γ being the argument.

[^0]The notation of Maxwell is slightly altered in the above expressions in order to bring it into conformity with the formulas to follow.

Formula (I) is an absolute one, giving the mutual inductance of two coaxial circles of any size at any distance apart. If the two circles have equal or nearly equal radii, and are very near each other, the quantity k will be very nearly equal to unity and γ will be near to 90°. Under these circumstances it may be difficult to obtain a sufficiently exact value of F and E from the tables, as the quantities are varying rapidly and the tabular differences are very large. Under such circumstances the following formula, also given by Maxwel1 ${ }^{2}$ (derived by means of Landen's transformation), is more suitable:

$$
\begin{equation*}
M=8 \pi \frac{\sqrt{A a}}{\sqrt{k_{1}}}\left\{F_{1}-E_{1}\right\} \tag{2}
\end{equation*}
$$

in which F_{1} and E_{1} are complete elliptic integrals to modulus k_{1}, and

$$
k_{1}=\frac{r_{1}-r_{2}}{r_{1}+r_{2}}=\sin \gamma_{1}=\frac{4 A a}{\left(r_{1}+r_{2}\right)^{2}}
$$

r_{1} and r_{2} are the greatest and least distances of one circle from the other (Fig. I); that is,

Fig. 1

$$
\begin{aligned}
& r_{1}=\sqrt{(A+a)^{2}+d^{2}} \\
& r_{2}=\sqrt{(A-a)^{2}+d^{2}}
\end{aligned}
$$

The new modulas k_{1} differs from unity more than k, hence γ_{1} is not so near to 90° as γ and the values of the elliptic integrals can be taken more easily from the tables than when using formula (I) and the modulus k.

Another way of avoiding the difficulty when k is nearly unity is to calculate the integrals F and E directly, and thus not use the
tables of elliptic integrals, expanding F and E in terms of the complementary modulus k^{\prime}, where $k^{\prime}=\sqrt{I-k^{2}}$. k^{\prime} may usually be more accurately calculated by the formula $k^{\prime}=\frac{r_{2}}{r_{1}^{\prime}}$. The expressions for F and E are very convergent when k^{\prime} is small.

$$
\begin{aligned}
& F=\log \frac{4}{k^{\prime}}+\frac{\mathrm{I}^{2}}{2^{2}} k^{\prime 2}\left(\log \frac{4}{k^{\prime}}-\frac{2}{\mathrm{I} .2}\right) \\
& +\frac{\mathrm{I}^{2}}{2^{2}} \frac{3^{2}}{4^{2}} k^{\prime 4}\left(\log \frac{4}{k^{\prime}}-\frac{2}{\mathrm{I} \cdot 2}-\frac{2}{3 \cdot 4}\right) \\
& +\frac{\mathrm{I}^{2}}{2^{2}} \frac{3}{2}^{2} 5^{2} 5^{2} 6^{2} \kappa^{\prime 6}\left(\log \frac{4}{k^{\prime}}-\frac{2}{\mathrm{I} .2}-\frac{2}{3 \cdot 4}-\frac{2}{5 \cdot 6}\right)
\end{aligned}
$$

$$
\begin{align*}
& + \\
& E=\mathrm{I}+\frac{\mathrm{I}}{2} k^{\prime 2}\left(\log \frac{4}{k^{\prime}}-\frac{\mathrm{I}}{\mathrm{I} .2}\right) \tag{3}\\
& +\frac{\mathrm{I}^{2}}{2^{2}} \frac{3}{4} k^{\prime \prime}\left(\log \frac{4}{k^{\prime}}-\frac{2}{\mathrm{I} \cdot 2}-\frac{\mathrm{I}}{3 \cdot 4}\right) \\
& +\frac{\mathrm{I}^{2}}{2^{2}} \frac{3}{2}^{2} \frac{5}{4^{2}} k^{\prime 6}\left(\log \frac{4}{k^{\prime}}-\frac{2}{\mathrm{I} .2}-\frac{2}{3 \cdot 4}-\frac{\mathrm{I}}{5 \cdot 6}\right) \\
& +\frac{\mathrm{I}^{2}}{2^{2}} \frac{3^{2}}{4^{2}} \frac{5}{6^{2}} \frac{7}{8} k^{\prime 8}\left(\log \frac{4}{k^{\prime}}-\frac{2}{\mathrm{I} \cdot 2}-\frac{2}{3: 4}-\frac{2}{5 \cdot 6}-\frac{\mathrm{I}}{7 \cdot 8}\right) \\
& + \text {. }
\end{align*}
$$

The equations (3) are very convergent for $k^{\prime}<0.1$, ($k \geq 0.995$), and satisfactory accuracy will be attained down to $k=0.985$, thus covering the range of values for which interpolation in Legendre's tables becomes difficult.

For values of k near 0.985 it is perhaps more accurate to calculate M from elliptic integrals F_{0} and E_{0} with a modulus k_{0} greater than k. The modulus $k_{0}{ }^{\prime}$ which is complementary to k_{0} is smaller than k^{\prime}, and the values of F_{0} and E_{0} calculated from the series formulas (3) putting $k_{0}{ }^{\prime}$ in place of k^{\prime} converge more rapidly than the values of F and E when calculated by the same series formulas. The formula for making the transformation is not quite so simple as (2). It is most conveniently written

$$
\begin{align*}
M & =4 \pi \sqrt{A a}\left[\frac{F_{0}}{k(\mathrm{I}+k)}-\frac{(\mathrm{I}+k)}{k} E_{0}\right] \\
k_{0}^{\prime} & =\frac{\mathrm{I}-k}{\mathrm{I}+k}=\frac{k^{\prime 2}}{(\mathrm{I}+k)^{2}} \tag{4}\\
k & =\frac{2 \sqrt{A a}}{\sqrt{(A+a)^{2}+d^{2}}} \quad k^{\prime}=\frac{\sqrt{(A-a)^{2}+d^{2}}}{\sqrt{\left(A+a^{2}\right)+d^{2}}}
\end{align*}
$$

When the distance between the circles is large, formula (I) becomes unsuitable for calculation for two reasons, (a) because γ falls outside the range of Table XIII and (b) because the quantity $\left(\frac{2}{k}-k\right) F-\frac{2}{k} E$ comes out as the small difference of two large quantities. The use of formula (4) overcomes the first objection, but makes the matter still worse as far as the second is concerned. We may, however, express (I) in terms of a series by means of the well kiown expressions of Wallis ${ }^{3}$

$$
\begin{aligned}
& \left.F=\frac{\pi}{2}\left[\mathrm{I}+\sum_{1}^{\infty}\left\{\frac{\mathrm{I} \cdot 3 \cdot 5 \cdots \cdot(2 n-1)}{2 \cdot 4 \cdot 6 \cdots \cdot(2 n}\right\}^{2} k^{2 n}\right\}\right] \\
& E=\frac{\pi}{2}\left[\mathrm{I}-\sum_{1}^{\infty}\left\{\frac{\mathrm{I} \cdot 3 \cdot 5 \cdots(2 n-\mathrm{I})}{2 \cdot 4 \cdot 6 \cdots \cdot 2 n}\right\}_{(2 n-1)}^{(2 n}\right]
\end{aligned}
$$

Substituting these values in (I) we find

$$
\begin{equation*}
M=\frac{\pi^{2} k^{3}}{4} \sqrt{A a}\left[\mathrm{I}+\frac{3}{4} k^{2}+\frac{75}{128} k^{4}+\frac{245}{5 \mathrm{II}} k^{6}+\cdots \cdot\right] \tag{5}
\end{equation*}
$$

the general term in the brackets being
$\left(\frac{3 \cdot 5 \cdot 7 \cdots(2 n+1)}{4 \cdot 6 \cdot 8 \cdot(2 n+2)}\right)^{2} \frac{(2 n+2)}{(2 n-1)} k^{2 n}=\left[\frac{3 \cdot 5 \cdot 7 \cdot(2 n+1)}{4 \cdot 6 \cdot 8 \cdots 2 n}\right]_{(2 n-1)(2 n+2)}^{2}$
For values of k up to o.I ($\gamma=5^{\circ} \cdot 7$) the series (5) is very convergent, and may be used for values of k up to $0.2\left(\gamma=1 I^{\circ} .5\right)$ without serious labor. In the latter case and for still larger values of k, we may calculate M in terms of the smaller modulus k_{1} of formula (2). This last expression becomes on expansion

[^1]\[

$$
\begin{equation*}
M=2 \pi^{2} k_{1}^{\frac{3}{2}} \sqrt{A a}\left[\mathrm{I}+\frac{3}{8} k_{1}{ }^{2}+\frac{\mathrm{I} 5}{64} k_{1}^{4}+\frac{\mathrm{I} 75}{\mathrm{IO} 24} k_{1}{ }^{6}+\cdots \cdot\right] \tag{6}
\end{equation*}
$$

\]

the general term in the brackets being

$$
\left(\frac{n+\mathrm{I}}{2 n+\mathrm{I}}\right)\left[\frac{3 \cdot 5 \cdot 7 \cdots(2 n+\mathrm{I})}{4 \cdot 6 \cdot 8 \cdots(2 n+2)}\right]^{2} k^{2 n}
$$

The series (6) converges more rapidly than (5), and may be used with ease for values of k_{1} as great as $\frac{I}{4},\left(\gamma_{1}=14^{\circ} .5\right)$, which corresponds to $k=0.8,\left(\gamma=53^{\circ} 2\right)$.

To recapitulate-
(1) For values of k between zero and 0.2 use (5).
(2) For values of k a little larger and up to 0.8 use (6).
(3) For values of k between about 0.7 and 0.985 the elliptic integrals in (I) may be conveniently taken by interpolation from Legendre's tables or from Table XIII.
(4) For values of k greater than about 0.7 we may use (4).
(5) For values of k greater than about 0.985 we may use (3).

It will be thus seen that the formulas overlap, so that it will be possible in every case to calculate the mutual inductance by at least two different formulas, the less accurate serving as a check on the more accurate.

The choice of formulas is considered more in detail on page 19.

WEINSTEIN'S FORMULA

Weinstein ${ }^{4}$ gives an expression for the mutual inductance of two coaxial circles, in terms of the complementary modulus k^{\prime} used in the preceding series (3). Substituting in equation (I) the values of F and E given above we have Weinstein's equation, which is as follows:

$$
\begin{align*}
M=4 \pi \sqrt{A a} & \left\{\left(\mathrm{I}+\frac{3}{4} k^{\prime 2}+\frac{33}{64} k^{\prime 4}+\frac{107}{256} k^{\prime 6}+\frac{591}{\mathrm{I} 6384} k^{\prime 8}+.\right)\left(\log \frac{4}{k^{\prime}}-\mathrm{I}\right)\right. \\
& \left.-\left(\mathrm{I}+\frac{\mathrm{I} 5}{\mathrm{I} 28} k^{\prime 4}+\frac{\mathrm{I} 85}{\mathrm{I} 536} k^{\prime 6}+\frac{7465}{65536} k^{\prime 8}+\cdots\right)\right\} \tag{7}
\end{align*}
$$

This expression is rapidly convergent when k^{\prime} is small, and hence will give an accurate value of M when the circles are near each other. Otherwise formula (I) may be more suitable.

NAGAOKA'S FORMULAS

Nagaoka ${ }^{5}$ has given formulas for the calculation of the mutual inductance of coaxial circles, without the use of tables of elliptic integrals. These formulas make use of Jacobi's q-series, which is very rapidly convergent. The first is to be used when the circles are not near each other, the second when they are near each other. Either may be employed for a considerable range of distances between the extremes, although the first is more convenient. The first formula is as follows:

$$
\begin{align*}
M & =\mathrm{I} 6 \pi^{2} \sqrt{A a} q^{\frac{3}{2}}(\mathrm{I}+\epsilon) \\
& =4 \pi \sqrt{A a}\left\{4 \pi q^{\frac{3}{2}}(\mathrm{I}+\epsilon)\right\} \tag{8}
\end{align*}
$$

where A and a are the radii of the two circles. The correction term ϵ can be neglected when the circles are quite far apart.

$$
\begin{aligned}
\epsilon & =3 q^{4}-4 q^{6}+9 q^{8}-12 q^{10}+\cdots \\
q & =\frac{l}{2}+2\left(\frac{l}{2}\right)^{5}+15\left(\frac{l}{2}\right)^{9}+\cdots \\
\iota & =\frac{I-\sqrt{k^{\prime}}}{\mathrm{I}+\sqrt{k^{\prime}}} \quad k^{\prime}=\frac{r_{2}}{r_{1}}=\frac{\sqrt{(A-a)^{2}+d^{2}}}{\sqrt{(A+a)^{2}+d^{2}}}
\end{aligned}
$$

d being the distance between the centers of the circles, and k^{\prime} the complementary modulus occurring in equations (3) and (7).

Nagaoka's second formula is as follows :

$$
\begin{aligned}
M & =4 \pi \sqrt{A a} \cdot \frac{\mathrm{I}}{2\left(\mathrm{I}-2 q_{1}\right)^{2}}\left\{\left[\mathrm{I}+8 q_{1}\left(\mathrm{x}-q_{1}+4 q_{1}^{2}-\cdots\right)\right] \log \frac{\mathrm{I}}{q_{1}}-4\right\}[9] \\
& =4 \pi \sqrt{A a} \cdot \frac{\mathrm{I}}{2\left(\mathrm{I}-2 q_{1}\right)^{2}}\left\{\left[\mathrm{I}+8 q_{1}-8 q_{1}^{2}+\epsilon_{1}\right] \log \frac{\mathrm{I}}{q_{1}}-4\right\} \\
q_{1} & =\frac{l_{1}}{2}+2\left(\frac{l_{1}}{2}\right)^{5}+\mathrm{r}_{5}\left(\frac{l_{1}}{2}\right)^{9}+\cdots \\
l_{1} & =\frac{\mathrm{x}-\sqrt{k}}{\mathrm{I}+\sqrt{k}} \quad k=\frac{2 \sqrt{A a}}{\sqrt{(A+a)^{2}+d}} \\
\epsilon_{1} & =32 q_{1}^{3}-40 q_{1}^{4}+48 q_{1}{ }^{5}-\cdots \\
-\epsilon_{1}{ }^{\prime} & =8 q_{1}{ }^{2}-\epsilon_{1}
\end{aligned}
$$

[^2]k is the modulus of equation (I), but is employed here to obtain the value of the q-series instead of the values of the elliptic integrals employed in (I . This formula is ordinarily simpler in use than it appears, because some of the terms in the expressions above are usually negligible. For a third formula see page 187.

Nagaoka has recently published ${ }^{6}$ tables which materially reduce the labor of calculation with these formulas. These are reproduced as Tables XV and XVI of the appendix. From Table XV we obtain directly the small difference $q-\frac{l}{2}$ or $q_{1}-\frac{l_{1}}{2}$ with q or q_{1} as argument. The same table gives also the corresponding values of ϵ and $\log _{10}(\mathrm{I}+\epsilon)$ for use in the formula (8).

To calculate q or q_{1} we enter the table with $\frac{l}{2}$ or $\frac{l_{1}}{2}$ as argument. The difference corresponding in the table when added to $\frac{l}{2}$ or $\frac{l_{1}}{2}$ gives the value of q or q_{1} to a first approximation. This will be sufficient except for the larger values of q or q_{1} which are tabulated here. For these it is sometimes necessary to use this first approximation as argument to obtain a more accurate value of q or q_{1}.

Table XVI gives the values of ϵ_{1} and $-\epsilon_{1}^{\prime}$ for different values of q_{1} and is useful in calculations with formula (9).

For circles at some distance from one another q becomes small, and the expression for l given above becomes inconvenient, because k^{\prime} is so nearly equal to unity. In this case we may calculate l from the somewhat more complicated expression

$$
l=\frac{k^{2}}{\left(\mathrm{I}+k^{\prime}\right)\left(\mathrm{I}+\sqrt{k^{\prime}}\right)^{2}}
$$

the values of k and k^{\prime} being calculated from the formulas already given. The same applies to the calculation of l_{1} in formula ($9 a$), when the circles are very near together, and consequently q_{1} is very small. For this case we use the expression

$$
l_{1}=\frac{k^{\prime 2}}{(\mathrm{I}+k)(\mathrm{I}+\sqrt{k})^{2}}
$$

MAXWELL'S SERIES FORMULA

Maxwel1 ${ }^{7}$ obtained an expression for the mutual inductance between two coaxial circles in the form of a converging series which is often more convenient to use than the elliptical integral formula, and when the circles are nearly of the same radii and relatively near each other the value given is generally sufficiently exact. In the following formula a is the smaller of the two radii, c is their difference, $A-a, d$ is the distance apart of the circles as before, and $r=\sqrt{c^{2}+d^{2}}$. The mutual-inductance is then

$$
\begin{align*}
& M=4 \pi a\left\{\log \frac{8 a}{r}\left(\mathrm{I}+\frac{c}{2 a}+\frac{c^{2}+3 d^{2}}{16 a^{2}}-\frac{c^{3}+3 c d^{2}}{32 a^{3}}+. .\right)\right. \tag{IO}\\
&\left.-\left(2+\frac{c}{2 a}-\frac{3 c^{2}-d^{2}}{16 a^{2}}+\frac{c^{3}-6 c d^{2}}{48 a^{3}}-. .\right)\right\}
\end{align*}
$$

When c and d are small compared with a, we have for an approximate value of the mutual inductance the following simple expression: ${ }^{8}$

$$
M=4 \pi a\left\{\log \frac{8 a}{r}-2\right\}[\mathrm{II}]
$$

When the two radii are equal, as is often the case in practice, the equation (1o) is somewhat simplified, as follows:

$$
\begin{equation*}
M=4 \pi a\left\{\log \frac{8 a}{d}\left(\mathrm{I}+\frac{3 d^{2}}{\mathrm{I} 6 a^{2}}\right)-\left(2+\frac{d^{2}}{16 a^{2}}\right)\right\} \tag{12}
\end{equation*}
$$

The above formulas (IO) and (12) are sufficiently exact for very many cases, the terms omitted in the series being unimportant when $\frac{c}{a}$ and $\frac{d}{a}$ are small. For example, if

Fig. 2 $\frac{d}{a}$ is O.I, the largest term neglected in (I2) is less than two parts in a million. If, however, $d=a$, this term will be more than one per cent, and the formula will be quite inexact.

[^3]Coffin ${ }^{9}$ has extended Maxwell's formula (12) for two equal circles by computing three additional terms for each part of the expression. This enables the mutual inductance to be computed with considerable exactness up to $d=a$. Formula (1) is exact, as stated above, for all distances, and either it or (8) should be used in preference to (I 3) when d is large. Coffin's formula is as follows:

$$
\begin{aligned}
M= & 4 \pi a\left\{\log \frac{8 a}{d}\left(\mathrm{I}+\frac{3 d^{2}}{16 a^{2}}-\frac{\mathrm{I} 5 d^{4}}{8 \times \mathrm{I} 28 a^{4}}+\frac{35 d^{6}}{\mathrm{I} 28^{2} a^{6}}-\frac{\mathrm{I} 575 d^{8}}{2 \times{\mathrm{I} 28^{3} a^{8}}^{8}}+\cdots\right)\right. \\
& \left.-\left(2+\frac{d^{2}}{16 a^{2}}-\frac{3 \mathrm{I} d^{4}}{\mathrm{I} 6 \times \mathrm{I} 28 a^{4}}+\frac{247 d^{6}}{6 \times \mathrm{I} 28^{2} a^{6}}-\frac{7795 d^{8}}{8 \times \mathrm{I} 28^{3} a^{8}}+\cdots\right)\right\}[\mathrm{I} 3]
\end{aligned}
$$

We have extended Maxwell's formula (ro) for unequal circles as follows: ${ }^{10}$

$$
\begin{align*}
M= & 4 \pi a\left\{\operatorname { l o g } \frac { 8 a } { r } \left(\mathrm{I}+\frac{c}{2 a}+\frac{c^{2}+3 d^{2}}{16 a^{2}}-\frac{c^{3}+3 c d^{2}}{32 a^{3}}+\frac{\mathrm{I} 7 c^{4}+42 c^{2} d^{2}-\mathrm{I} 5 d^{4}}{1024 a^{4}}\right.\right. \\
& \left.-\frac{\mathrm{I} 9 c^{5}+30 c^{3} d^{2}-45 c d^{4}}{2048 a^{5}}+\cdots\right)-\left(2+\frac{c}{2 a}-\frac{3 c^{2}-d^{2}}{\mathrm{I} 6 a^{2}}+\frac{c^{3}-6 c d^{2}}{48 a^{3}}\right. \\
& \left.\left.+\frac{\mathrm{I} 9 c^{4}+534 c^{2} d^{2}-93 d^{4}}{6 \mathrm{I} 44 a^{4}}-\frac{379 c^{5}+3030 c^{3} d^{2}-\mathrm{I} 845 c d^{4}}{6 \mathrm{I} 440 a^{5}}\right)\right\} \tag{I4}
\end{align*}
$$

Nagaoka ${ }^{11}$ has confirmed this extension by expanding formula (9). He carried out the expansion, however, no further than terms in $\frac{c^{4}}{a^{4}}$ and $\frac{d^{4}}{a^{4}}$.
When $c=0$, this gives the first part of series (13). When $d=0$, the case of two circles in the same plane, with radii a and $a+c$, we have

$$
\begin{aligned}
& M=4 \pi a\left\{\log \frac{8 a}{c}\left(\mathrm{I}+\frac{c}{2 a}+\frac{c^{2}}{16 a^{2}}-\frac{c^{3}}{32 a^{3}}+\frac{17 c^{4}}{1 \mathrm{1O} 24 a^{4}}-\frac{19 c^{5}}{2048 a^{5}}+\cdots\right)\right. \\
&\left.-\left(2+\frac{c}{2 a}-\frac{3 c^{2}}{16 a^{2}}+\frac{c^{3}}{48 a^{3}}+\frac{19 c^{4}}{6144 a^{4}}-\frac{379 c^{5}}{61440 a^{5}}+\cdots\right)\right\} \quad[\mathrm{I} 5]
\end{aligned}
$$

[^4]These formulas (14) and (15) give the mutual inductance with great precision when the circles are not too far apart. The degree of convergence, of course, indicates approximately in any case the accuracy of the result.

HAVELOCK'S FORMULA

In 1908 Havelock ${ }^{12}$ published a paper in which the calculation of mutual and self-inductance is made to depend on the evaluation of certain definite integrals of Bessel functions of the form $\int_{0}^{\infty} e^{-\rho \mu} J_{1}(\mu) J_{1}(\lambda \mu) \mu^{-n} d \mu$. These he expands in the form of series, which fall into two classes, those suitable for small values of p, and those suitable for large values of p. In the case of the latter, he gives the expressions for the general terms of the series, so that these may be extended as far as desired. In the case of the former only a few terms are given, and the derivation of further terms is very tedious.

He considers first the mutual inductance of two coaxial circles, and points out that the solution may be made to depend on either of two of his integrals. He does not, however, write out the formulas. It is a simple matter to carry out the necessary substitutions, and we find for circles near one another

$$
\begin{aligned}
& M=4 \pi \sqrt{A a}\left\{\left[\mathrm{I}+\frac{3}{\mathrm{I} 6}\left(\frac{r^{2}}{A a}\right)-\frac{\mathrm{I} 5}{\mathrm{IO} 24}\left(\frac{r^{2}}{A a}\right)^{2}+\cdots \cdot\right] \log \frac{8 \sqrt{A a}}{r}\right. \\
&\left.-\left(2+\frac{\mathrm{I}}{\mathrm{I} 6}\left(\frac{r^{2}}{A a}\right)-\frac{3 \mathrm{I}}{2048}\left(\frac{r^{2}}{A a}\right)^{2}+\cdots \cdot\right)\right\}
\end{aligned}
$$

This expression bears some resemblance to Maxwell's series formula (ro); it is, however, simpler for use in calculation. To obtain the coefficients of further terms by Havelock's process would require a good deal of labor. We notice, however, that, putting $A=a$, the formula becomes the same as Coffin's formula (r3) for equal circles. We may evidently, therefore, use the coefficients of the higher order terms in Coffin's formula to obtain an extension of the above, and find the expression
$M=4 \pi \sqrt{A \alpha}\left\{\left[\mathrm{I}+\frac{3}{16} \alpha-\frac{15}{1024} \alpha^{2}+\frac{35}{128^{2}} \alpha^{3}-\frac{1575}{2 \times{ }^{128^{3}}} \alpha^{4}+\cdots\right] \log \frac{8 \sqrt{A \alpha}}{r}\right.$
$\left.-\left(2+\frac{1}{16} \alpha-\frac{3 I}{2048} \alpha^{2}+\frac{247}{6 \times \overline{128^{2}}} \alpha^{3}-\frac{7795}{8 \times 128^{3}} \alpha^{4}+\cdots\right)\right\}$
where

$$
r^{2}=c^{2}+d^{2} \quad \alpha=\frac{a}{A} \frac{r^{2}}{a^{2}}
$$

The expression thus extended ${ }^{13}$ gives very accurate results for values of d almost as great as the radius a. For a given degree of convergence it requires only half as many terms to be calculated as does formula (14), and is much easier to calculate.

The second formula derived from Havelock's paper is not so generally useful, being rapidly convergent only for values of d greater than about $5 A$. It is

$$
\begin{aligned}
M=\frac{2 \pi^{2} a^{2} A^{2}}{d^{3}}[\mathrm{I} & -\frac{3}{2}\left(\mathrm{I}+\frac{a^{2}}{A^{2}}\right) \frac{A^{2}}{d^{2}}+\frac{\mathrm{I} 5}{8}\left(\mathrm{I}+3 \frac{a^{2}}{A^{2}}+\frac{a^{4}}{A^{4}}\right) \frac{A^{4}}{d^{4}} \\
& -\frac{35}{\mathrm{I} 6}\left(\mathrm{I}+6 \frac{a^{2}}{A^{2}}+6 \frac{a^{4}}{A^{4}}+\frac{a^{6}}{A^{6}}\right) \frac{A^{6}}{d^{6}} \\
& +\frac{3 \mathrm{I} 5}{\mathrm{I} 28}\left(\mathrm{I}+10 \frac{a^{2}}{A^{2}}+20 \frac{a^{4}}{A^{4}}+10 \frac{a^{6}}{A^{6}}+\frac{a^{8}}{A^{8}}\right) \frac{A^{8}}{d^{8}} \\
& \left.-\frac{693}{256}\left(\mathrm{I}+\mathrm{I} 5 \frac{a^{2}}{A^{2}}+50 \frac{a^{4}}{A^{4}}+50 \frac{a^{6}}{A^{6}}+\mathrm{I} 5 \frac{a^{8}}{A^{8}}+\frac{a^{10}}{A^{10}}\right) \frac{A^{10}}{d^{10}}+\cdots\right]
\end{aligned}
$$

For the case of $d=\operatorname{IO} A$ and a as great as A, only three terms have to be calculated to obtain M to about one part in a million, and for a smaller value of $\frac{a}{A}$ the convergence would be more rapid still.

MATHY'S FORMULA

In an interesting paper in the Journal de Physique for Igor, ${ }^{14}$ E. Mathy obtained a formula for the mutual inductance of two circles,

[^5]in which the elliptic integral of the third kind, on which the mutual inductance depends, is expanded in a manner still different from that adopted in any of the preceding cases. It is expressed in terms of hypergeometric series involving the absolute invariant J of the Weierstrassian \mathbf{p} function. The final expression as found by Mathy is incorrect as regards the coefficients of the hypergeometric series. The corrected expression, ${ }^{15}$ using the notation of this paper, is as follows :
\[

$$
\begin{gather*}
\frac{M}{4 \pi}=\left[\frac { x ^ { 2 } } { (x ^ { 4 } + 1 2 A ^ { 2 } a ^ { 2 }) ^ { \frac { 1 } { 4 } } } \left\{\frac{P}{\sqrt[4]{27}} F\left(\frac{1}{12}, \frac{5}{12}, \frac{1}{2}, \frac{J-1}{J}\right)-\frac{Q}{6 \sqrt[4]{3}} \sqrt{\frac{J-1}{J}}\right.\right. \\
\left.F\left(\frac{7}{12}, \frac{11}{12}, \frac{3}{2}, \frac{J-1}{J}\right)\right\}-\left(x^{4}+12 A^{2} a^{2}\right)^{\frac{1}{2}}\left\{\frac{Q}{\sqrt[4]{3}} F\left(-\frac{1}{12}, \frac{7}{12}, \frac{1}{2}, \frac{J-1}{J}\right)\right. \\
\left.\left.+\frac{P}{6 \sqrt[4]{27}} \sqrt{\frac{J-1}{J}} F\left(\frac{5}{12}, \frac{13}{12}, \frac{3}{2}, \frac{J-1}{J}\right)\right\}\right] \tag{18}
\end{gather*}
$$
\]

where

$$
\begin{gathered}
x^{2}=a^{2}+A^{2}+d^{2} \\
P=\mathrm{I} .3 \mathrm{IIO28777} . \\
Q=0.5990701 \mathrm{I} 7 \\
\sqrt{\frac{J-\mathrm{I}}{J}}=\frac{\mathrm{I}-36\left(\frac{a A}{x^{2}}\right)^{2}}{\left[\mathrm{I}+\mathrm{I} 2\left(\frac{a A}{x^{2}}\right)^{2}\right]^{\frac{3}{2}}} .
\end{gathered}
$$

and

$$
\begin{aligned}
F(\alpha, \beta, \gamma, z)=\mathrm{I} & +\frac{\alpha \beta}{\mathrm{I} \cdot \gamma} z+\frac{\alpha(\alpha+\mathrm{I}) \cdot \beta(\beta+\mathrm{I})}{\mathrm{I} \cdot 2 \cdot \gamma(\gamma+\mathrm{I})} z^{2} \\
& +\frac{\alpha(\alpha+\mathrm{I})(\alpha+2) \cdot \beta(\beta+\mathrm{I})(\beta+2)}{\mathrm{I} \cdot 2 \cdot 3 \cdot \gamma(\gamma+\mathrm{I})(\gamma+2)} z^{3}+\cdots
\end{aligned}
$$

This formula is by no means so formidable to use as might be expected, since the constants which enter and the coefficients in the hypergeometric series may be calculated once for all. Using seven place logarithms we find

$$
\begin{array}{ll}
\log _{10} \frac{P}{\sqrt[4]{27}}=9.75977 \mathrm{I} 2 & \log _{10} \frac{P}{6 \sqrt[4]{27}}=8.98 \mathrm{I} 6 \mathrm{r} 99 \\
\log _{10} \frac{Q}{\sqrt[4]{3}}=9.658 \mathrm{r} 974 & \log _{10} \frac{Q}{6 \sqrt[4]{3}}=8.880046 \mathrm{r}
\end{array}
$$

The coefficients a_{1}, a_{2}, a_{3} in each of the four series are given in Table XVII. For practical purposes the formula should be used only for values of $\sqrt{\frac{J-1}{J}}$ smaller than about 0.2.

For the special case $\sqrt{\frac{J-1}{J}}=0$, it is of interest to note that the mutual inductance is given by the simple expression

$$
\frac{M}{4 \pi}=\left[\frac{x^{2}}{\left(x^{4}+12 A^{2} a^{2}\right)^{\frac{1}{4}}} \cdot \frac{P}{\sqrt[4]{27}}-\left(x^{4}+12 A^{2} a^{2}\right)^{\frac{1}{4}} \cdot \frac{Q}{\sqrt[4]{3}}\right]
$$

which, remembering that $x^{4}=36 A^{2} a^{2}$ in this case, becomes

$$
\begin{align*}
M & =4 \pi \sqrt{A a}(P-2 Q)=4 \pi(0.112888542) \sqrt{A a} \\
& =1.418599262 \sqrt{A a} \tag{19}
\end{align*}
$$

If we introduce the distances r_{1} and r_{2} (Fig. I) into the formula for $\sqrt{\frac{J-1}{J}}$, we see that the necessary and sufficient condition that this remarkably simple formula ${ }^{15 a}$ may be used is that $r_{1}^{2}=2 r_{2}^{2}$, or $k^{\prime}=k=\frac{\mathrm{I}}{\sqrt{2}}$. That is, the greatest distance between the two circumference must be $\sqrt{2}$ times the shortest distance between them. The most important cases satisfying this condition are

$$
\begin{array}{ccl}
\frac{a}{A} & d & \\
\mathrm{I} & 2 A & \text { Equal circles. } \\
3-2 \sqrt{2} & 0 & \text { Circles in the same plane. } \\
\frac{1}{2} & \frac{1}{2} \sqrt{7} A &
\end{array}
$$

[^6]The convergence of the formula (18) will of course be satisfactory for moderate deviations on the either side of the ideal ratio of $\frac{d}{A}$, but the formula must be regarded as of more limited application than most of those above. It gives, however, a very rapid and accurate means of checking other formulas, since in the ideal case the mutual inductance can be calculated by (I 9) to any number of decimal places desired, according to the number of figures retained in Stirling's constants P and Q.

CHOICE OF FORMULAS

With so many to choose among, it is possible to select a favorable formula for any individual case. For this purpose r_{1} and r_{2}, the longest and shortest distances between the circles, need to be considered, since on their relative values the convergence or convenience of the various formulas for calculation depends. The following table gives roughly the range of values of the ratio $\frac{r_{2}}{r_{1}}$ within which the different formulas are capable of giving the best results. Since, however, the determination of such limits is somewhat arbitrary, the values given here should not be regarded as more than a guide. In the case of those formulas which occur in the form of a series the limiting value of the ratio $\frac{r_{2}}{r_{1}}$ has been calculated which makes the last term included not greater than one ten-thousandth of the whole. The values of $\frac{r_{2}}{r_{1}}$ for Nagaoka's formulas have been calculated for the limits of his correction tables.

SUMMARY OF FORMULAS FOR CIRCLES

Formula	Range of values of $\frac{r_{2}}{r_{1}}$	Most favorable values of $\frac{d}{A}$ for equal circles			
Weinstein's	(7)	0	to 0.25	0	to 0.5
Maxwell's	(IO)	0	to 0.02	0	to 0.04
"	(I2)	0	to 0.14	0	to 0.3
"	(14)	0	to 0.22	0	to 0.45
"	(3)	0	to 0.2	0	to 0.4
"	(2)	0.02 to 0.20	0.04 to 0.4		

Formula		Range of values of $\frac{r_{2}}{r_{1}}$	Most favorable values of $\frac{d}{A}$ for equal circles
Havelock's	(16)	0 to 0.4	0 to 0.9
Coffin's	(13)		0 to 0.9
Nagaoka's	(9)	0.04 to 0.4	0.08 to 0.9
Maxwell's	(4)	0 to 0.75	0 to 2.25
"	(I)	0.2 to 0.7	0.4 to 2
Mathy	(I8)	0.65 to 0.75	1.75 to 2.25
"	(19)	$\frac{1}{2} \sqrt{2}$	2
Nagaoka's	(8)	0.3 to I	greater than 0.6
Maxwell's	(6)	0.6 to I	" 1.5
Havelock's	(17)	0.9 to I	" " 4
Maxwell's	(5)	0.98 to I	" " 10

EXAMPLES TO ILLUSTRATE AND TEST THE FORMULAS
 EXAMPLE 1. MAXWELL'S FORMULA (1). FOR ANY COAXIAL CIRCLES

Fig. 3

Let $a=A=25 \mathrm{~cm}$, Fig. 3,

$$
d=20 \mathrm{~cm} .
$$

$$
k=\frac{50}{\sqrt{2500+400}}=0.9284766=\sin \gamma
$$

$$
\gamma=68^{\circ} \mathrm{II}^{\prime} 54^{\prime \prime} 88=68^{\circ} \div 198578 .
$$

From Legendre's tables, we obtain

$$
\begin{aligned}
& \log F=0.385219 \mathrm{I} \\
& \log E=0.0547850
\end{aligned} \quad\left(\frac{2}{k}-k\right) F-\frac{2}{k} E=0.5318500
$$

$$
4 a=100 \quad \therefore \quad M=167.08562 \mathrm{~cm}
$$

To facilitate calculations in such problems as this, we have prepared Table II, which gives F and $\log F, E$ and $\log E$, as functions of $\tan \gamma$. In the above case $\tan \gamma=\frac{50}{20}=2.5$, and from Table II we can take the values of $\log F$ and $\log E$ directly, avoiding the calculation of γ and the interpolation for $\log F$ and $\log E$ in Legendre's tables (or Table XIII). This is only applicable for circles of equal radii, and is especially advantageous when tan γ is one of the values given in the table, when interpolation is unnecessary.

The above problem may also be calculated by means of Table I, taken from Maxwell, as follows :

$$
\begin{array}{rlrl}
\log _{10} \frac{M}{4 \pi a} \text { for } 68 . \mathrm{I} & =\overline{\mathrm{r}} .7230634 \\
\text { for } 68.2 & & =\overline{\mathrm{r}} .725828 \mathrm{I}
\end{array}
$$

$$
\text { for } 68^{\circ} 198578=\overline{\mathrm{r}} .7257888=\log \frac{M}{4 \pi \alpha}
$$

$\therefore M=167.08546 \mathrm{~cm}$, agreeing almost exactly with the above value.
The calculation of mutual inductance by the above methods is simplest for circles not near each other, as then the values of $\log F$, $\log E$, and $\log \frac{M}{4 \pi \sqrt{A a}}$ are very exact when taken by simple interpolation. When γ is nearly 90°, however, second and third differences have to be used in interpolation.

EXAMPLE 2. MAXWELL'S SECOND EXPRESSION (2). FOR CIRCLES NEAR EACH OTHER

$$
\text { Let } a=A=25 \mathrm{~cm}, d=\mathrm{Icm}
$$

In this case $k=\sin \gamma=\frac{50}{\sqrt{250 \mathrm{I}}}=0.9998002 \quad \gamma=88^{\circ} 5 \mathrm{I}^{\prime} 14^{\prime \prime}$
This value of γ is so nearly 90° that it is difficult to obtain accurate values of F and E from tables of elliptic integrals, or of $\frac{M}{4 \pi a}$ from Maxwell's table.

We may therefore use formula (2) instead of (I).

$$
\begin{aligned}
r_{1} & =\sqrt{2501}=50.01 \text { nearly, } r_{2}=1.0 \\
\therefore k_{1} & =\sin \gamma_{1}=\frac{4 A a}{\left(r_{1}+r_{2}\right)^{2}}=0.9607920 \\
\gamma_{1} & =73^{\circ} 54^{\prime} 9 .^{\prime \prime} 67=73^{\circ} .902687
\end{aligned}
$$

From Legendre's tables for $\gamma_{1}=73.902687, F_{1}=2.7024545$
or Table XIII, $\} \quad E_{1}=\underline{1.0852170}$

$$
F_{1}-E_{1}=\overline{1} .6172375
$$

$$
\frac{8 \pi \sqrt{A a}}{\sqrt{k_{1}}}=\frac{200 \pi}{\sqrt{.9607920}} \therefore \frac{8 \pi \sqrt{A a}}{\sqrt{k_{1}}}\left(F_{1}-E_{1}\right)=M=1036.6664 \mathrm{~cm} .
$$

EXAMPLE 3. FORMULA (3). SERIES FOR F AND E, CIRCLES NEAR EACH OTHER

Suppose that, in the last example, we calculate F and E by means of formula (3), instead of taking them from Table XIII.

$$
\begin{gathered}
A=a=25, d=\mathrm{I} \\
k^{\prime 2}=\mathrm{I}-k^{2}=\mathrm{I}-\frac{2500}{250 \mathrm{I}}=\frac{\mathrm{I}}{250 \mathrm{I}} \\
\therefore F=5.298947 \mathrm{I} E=\mathrm{I} .0009594
\end{gathered}
$$

If these values of F and E be substituted in formula (1), k being 0.9998002 , we obtain $M=1036.6652$, which is very closely the same value as by formula (2).

EXAMPLE 4. FORMULA (3). SECOND CASE, CIRCLES NOT NEAR

$$
\begin{aligned}
& A=25, a=20, d=10 \mathrm{~cm} . \quad \text { (See Fig. I.) } \\
& k^{2}=\frac{4 \times 20 \times 25}{(45)^{2}+(\mathrm{IO})^{2}}=\frac{\mathrm{I} 6}{\mathrm{I} 7} \therefore k^{\prime 2}=\frac{\mathrm{I}}{\mathrm{I} 7} \\
& \log \frac{4}{k^{\prime}}=\frac{\mathrm{I}}{2} \log (\mathrm{I} 6 \times \mathrm{I} 7)=\frac{\mathrm{I}}{2} \log _{e} 272=2.8029010 \\
& \frac{k^{\prime 2}}{4}\left(\log \frac{4}{k^{\prime}}-\mathrm{I}\right)=.0265 \mathrm{I} 32 \\
& \frac{9 k^{\prime 4}}{64}\left(\log \frac{4}{k^{\prime}}-\frac{7}{6}\right)=.0007962 \\
& \frac{25 k^{\prime 6}}{256}\left(\log \frac{4}{k^{\prime}}-\frac{\mathrm{III}}{90}\right)=.00003 \mathrm{I} 2 \\
& \frac{1225 k^{\prime 8}}{\mathrm{I} 63^{8} 4}\left(\log \frac{4}{k^{\prime}}-\mathrm{I} .27\right)=.0000014 \\
& \mathrm{I}+\frac{k^{\prime 2}}{2}\left(\log \frac{4}{k^{\prime}}-\frac{\mathrm{I}}{2}\right)=2.8302430 \\
& \frac{3 k^{\prime 4}}{\mathrm{I} 6}\left(\log \frac{4}{k^{\prime}}-\frac{\mathrm{I} 3}{\mathrm{I} 2}\right)=.00677324 \\
& \frac{\mathrm{I} 5 k^{\prime 6}}{\mathrm{I} 28}\left(\log \frac{4}{k^{\prime}}-\mathrm{I} .20\right)=.000038 \mathrm{I} \\
& \frac{\mathrm{I} 75 k^{\prime 8}}{2048}\left(\log \frac{4}{k^{\prime}}-\mathrm{I} .25\right)=.0000017 \\
& \therefore E=\mathrm{I} .0688878
\end{aligned}
$$

To find the value of M we now use equation (I).

$$
\left\{\left(\frac{2}{k}-k\right) F-\frac{2}{k} E\right\}=0.885388
$$

Multiplying by $4 \pi \sqrt{A a}=4 \pi \sqrt{500}$ gives

$$
M=248.7875 \mathrm{~cm} .
$$

EXAMPLE 5. FORMULA (4). CIRCLES NEAR TOGETHER

$$
\begin{aligned}
& A=a=25 \quad d=4 \\
& k=\frac{2 \sqrt{A a}}{\sqrt{(A+a)^{2}+d^{2}}}=\frac{50}{\sqrt{25^{16}}}=0.9968 \mathrm{r} 54 \\
& k^{\prime 2}=\frac{(A-a)^{2}+d^{2}}{(A+a)^{2}+d^{2}}=\frac{16}{25 \mathrm{I} 6}=0.0063593015 \\
& k_{0}^{\prime}=\frac{k^{\prime 2}}{(\mathrm{I}+k)^{2}}=0.0015949004 \\
& \log _{e} \frac{4}{k_{0}^{\prime}}=\log _{e} 2507.9937=7.8272373 \\
& \frac{k_{0}^{\prime 2}}{4}\left(\log _{e} \frac{4}{k_{0}^{\prime}}-\mathrm{I}\right) \quad=\frac{0.0000043}{7.82724 \mathrm{I} 6}=F_{0} \\
& \mathrm{I}+\frac{k_{0}{ }^{\prime 2}}{2}\left(\log _{e} \frac{4}{k_{0}^{\prime}}-\frac{\mathrm{I}}{2}\right)=\mathrm{I} .0000093=E_{0} \\
& \frac{F_{0}}{k(\mathrm{I}+k)}=3.9323856 \\
& \frac{E_{0}}{k}(\mathrm{I}+k)=\frac{2.0032134}{\mathrm{I} .9291722}
\end{aligned}
$$

Multiplying by $4 \pi \sqrt{A a}$ gives

$$
M=606.0674 \mathrm{~cm} .
$$

If we calculate M by formula (3) we find that, to obtain the same precision, terms in $k^{\prime 4}$ in the series for F and E have to be included, and we find

$$
M=606.0678^{\circ} \mathrm{cm}
$$

EXAMPLE 6. FORMULA (5). CIRCLES FAR APART

$$
\begin{array}{rl}
A=\alpha=\mathrm{IO} & d=\mathrm{IOO} \\
k=\frac{2 \mathrm{~L}}{\sqrt{\mathrm{IO} \mathrm{OOO}}=\frac{\mathrm{I}}{\sqrt{26}}} & =0.196 \mathrm{II} 6 \mathrm{I} 5 \\
\mathrm{I}+\frac{3}{4} k^{2} & =\mathrm{I} .028846 \mathrm{I} 6 \\
\frac{75}{\mathrm{I} 28} k^{4} & =0.00086684 \\
\frac{245}{5 \mathrm{I} 2} k^{6} & =0.00002723 \\
\frac{66 \mathrm{I} 5}{\mathrm{I} 28^{2}} k^{8} & =\underline{0.00000088} \\
\mathrm{Sum} & =\mathrm{I} .02974 \mathrm{III} \\
\log \operatorname{sum} & =0.012728 \mathrm{I} \\
\log k^{3} & =\overline{3} .8775400 \\
\log \frac{\pi^{2} \sqrt{A a}}{4} & =\underline{\mathrm{I} .3922398} \\
\log M & =\overline{\mathrm{I}} .2825079 \\
M & =0.19164962 \mathrm{~cm} .
\end{array}
$$

If formula (τ) be used, and the values of F and E be taken by interpolation from Table XII, the value $M=0.191643$ is found, which is in error by more than 5 parts in Ioooo. Using the formula (6) terms in k_{1}^{2} only need be calculated, and we find $M=0$.19164958, which differs by only one part in five million from the value given by (5).

EXAMPLE 7. FORMULA (6). CIRCLES NOT NEAR TOGETHER

$$
\begin{aligned}
& A=25 \quad a=20 \quad d=40 \\
& r_{1}=\sqrt{3625} \quad r_{2}=\sqrt{1625} \\
& k_{1}=\frac{4 A a}{\left(r_{1}+r_{2}\right)^{2}}=0.19793905
\end{aligned}
$$

$$
\begin{array}{rlrl}
\mathrm{I}+\frac{3}{8} k_{1}^{2} & =\mathrm{I} .01469245 & \log \text { sum } & =0.0064929 \\
\frac{15}{64} k_{1}^{4} & =0.00035978 & \log k_{1}^{\frac{3}{2}} & =\overline{2} .9447972 \\
\frac{175}{\mathrm{IO} 24} k_{1}^{6} & =0.00001028 & \log \frac{\pi}{2} \sqrt{A a} & =\underline{\mathrm{I} .5456049} \\
\frac{1225}{128^{2}} k_{1}^{8} & =0.0000003^{2} \\
\text { Sum } & =\text { 1.01 } 50628 & \log \frac{M}{4 \pi} & =0.4968950
\end{array}
$$

$$
\therefore \frac{M}{4 \pi}=3 \cdot 1397496 \mathrm{~cm}
$$

$$
\text { By formula (8) } \quad \frac{M}{4 \pi}=3 \cdot \mathrm{I} 397486
$$

If formula (I) is used and the elliptic integrals be taken from Table XII by interpolation the value $\frac{M}{4 \pi}=3 \cdot 1397656$ is found, which is only five in a million in error.

EXAMPLE 8. WEINSTEIN'S FORMULA (7). FOR ANY COAXIAL CIRCLES NOT TOO FAR APART

Take the same circles as in example 4.

$$
\begin{aligned}
& A=25, a=20, c=5, d=10 \\
& k^{\prime 2}=\frac{\mathrm{I}}{\mathrm{I} 7}, \log \frac{4}{k^{\prime}}-\mathrm{I}=\mathrm{I} .80290 \mathrm{I}
\end{aligned}
$$

$$
\mathrm{I}+\frac{3}{4} k^{\prime 2}=1.0441176 \quad \mathrm{I}+\frac{\mathrm{I} 5}{128} k^{\prime 4}=\quad \mathrm{I} .0004053
$$

$$
\frac{33}{64} k^{\prime 4}=.0017842 \quad \frac{185}{1536} k^{\prime 6}=.0000245
$$

$$
\frac{107}{256} k^{\prime 6}=.000085 \mathrm{I} \quad \frac{7465}{65536} k^{\prime 8}=\quad .0000012
$$

$$
\frac{5913}{16284} k^{\prime 8}=.0000042 \quad \mathrm{I} .00043 \mathrm{IO}=C
$$

$$
\begin{aligned}
& \mathrm{I}_{1684}{ }^{\kappa}=\stackrel{.0000042}{\mathrm{~T} .045991 \mathrm{I}}=B
\end{aligned}
$$

$B \log \left(\frac{4}{k^{\prime}}-\mathrm{I}\right)=\mathrm{I} .8858 \mathrm{I} 84 ;\left\{B \log \left(\frac{4}{k^{\prime}}-\mathrm{I}\right)-C\right\}=0.8853874$
Multiplying by $4 \pi \sqrt{500}$ gives $M=248.7873 \mathrm{~cm}$, agreeing almost exactly with the value previously found, example 4.

EXAMPLE 9. NAGAOKA'S FORMULA (8). CIRCLES NOT NEAR TOGETHER

$$
\begin{aligned}
A & =a=25 \quad d=20 \quad \text { (See Fig. 3.) } \\
\sqrt{k^{\prime}} & =\left(\frac{20}{\sqrt{2900}}\right)^{\frac{1}{2}}=0.6094 \mathrm{I} 83 \\
\frac{l}{2}=\frac{\mathrm{I}-\sqrt{k^{\prime}}}{2\left(\mathrm{I}+\sqrt{k^{\prime}}\right.} & =\frac{\mathrm{I}}{2} \frac{0.39058 \mathrm{I} 7}{\mathrm{I} .6094 \mathrm{I} 83}=0.12 \mathrm{I} 34250
\end{aligned}
$$

From Table XV, $q-\frac{l}{2}=0.00005269$

$$
\begin{array}{rlr}
\therefore q & =\overline{0.12 \mathrm{I} 395 \mathrm{I} 9} \\
\frac{3}{2} \log q & =\overline{2} .6263022
\end{array}
$$

From Table XV, log $(\mathrm{I}+\epsilon)=0.0002775$

$$
\begin{aligned}
\log 400 \pi^{2} & =\underline{3.5963598} \\
\log M & =2.2229395 \\
\therefore M & =167.08577 \mathrm{~cm}
\end{aligned}
$$

or about one in a million higher than the value found for the same circles in example 1.

EXAMPLE 10. NAGAOKA'S FORMULA (8). CIRCLES FAR APART

$$
\begin{array}{r}
A=a=10 \quad d=100 \\
k^{\prime}=\frac{100}{\sqrt{10400}}=0.98058073 \\
k=\frac{20}{\sqrt{10400}}=0.196 \mathrm{II} 6 \mathrm{I} 5 \\
\mathrm{I}+\sqrt{k^{\prime}}=\mathrm{I} .9902427 \\
\frac{l}{2}=\frac{\mathrm{I}}{2} \frac{k^{2}}{\left(\mathrm{I}+k^{\prime}\right)\left(\mathrm{I}+\sqrt{\left.k^{\prime}\right)^{2}}\right.}=0.0024512756
\end{array}
$$

The differences $q-\frac{l}{2}$ and ϵ are negligible, so that we have

$$
M=16 \pi^{2} \sqrt{A a}\left(\frac{l}{2}\right)^{\frac{3}{2}}=0.19164966 \mathrm{~cm}
$$

which is in very close agreement with the valves found by formulas (5) and (6) and Havelock's formula (17) for the same pair of circles. If we calculate $\frac{l}{2}$ by the formula $\frac{1}{2} \frac{\left(I-\sqrt{k^{\prime}}\right)}{\left(I+\sqrt{k^{\prime}}\right)}$ instead we find difficulty in obtaining $\left(\mathrm{I}-\sqrt{k^{\prime}}\right)$ with sufficient precision. The value of M found by using this formula for $\frac{l}{2}$ and with seven place logarithms is in this case $M=0.19164980$, or about one part in a million different.

EXAMPLE 11. NAGAOKA'S SECOND FORMULA (9). FOR CIRCLES NEAR EACH OTHER

$$
A=a=25 \quad d=4
$$

$$
\begin{aligned}
k & =\sin \gamma=\frac{50}{\sqrt{25^{16}}}=0.9968 \mathrm{I} 535 \quad \sqrt{k}=0.99840640 \\
k^{\prime 2} & =\frac{\sqrt{(A-a)^{2}+d^{2}}}{\sqrt{(A+a)^{2}+d^{2}}}=\frac{4}{\sqrt{25^{16}}}=0.0063593014 \\
\frac{l_{1}}{2} & =\frac{k^{\prime 2}}{(\mathrm{I}+k)(\mathrm{I}+\sqrt{\bar{k}})^{2}}
\end{aligned}=0.00039872542=q_{1} .
$$

as $\left(\frac{l_{1}}{2}\right)^{5}$ and higher powers can be neglected.

$$
\log _{e}\left(\frac{\mathrm{I}}{q_{1}}\right)=\log _{e} 2507.9919=7.8272376
$$

From Table XVI

$$
-\epsilon_{1}^{\prime}=0.00000128
$$

$$
\begin{aligned}
8 q_{1}+\epsilon_{1}^{\prime} & =0.00318852 \\
{\left[\mathrm{I}+8 q_{1}+\epsilon_{1}^{\prime}\right] \log _{e}\left(\frac{\mathrm{I}}{q_{1}}\right)-4 } & =3.8521929=P \\
\frac{\mathrm{I}}{2\left(\mathrm{I}-2 q_{1}\right)^{2}} & =0.50079850=Q \\
\therefore M=4 \pi \sqrt{A a} \cdot P Q & =606.0674 \mathrm{~cm}
\end{aligned}
$$

which is exactly the same value as was found for the same circles in example 5 .

Using Table II for the above problem, where $\tan \gamma=12.5$, we have $\log F=0.5932708$ and $\log E=0.0047004$. Using these values in formula (I) we obtain for the mutual inductance

$$
M=606.0666 \mathrm{~cm}
$$

which differs from the value by Nagaoka's formula by I part in a million.

EXAMPLE 12. MAXWELL'S SERIES FORMULA (10). FOR ANY TWO COAXIAL CIRCLES NEAR EACH OTHER

$$
\begin{aligned}
& A=26 \quad a=25 \quad d=\mathrm{I} \quad c=\mathrm{I} \quad r=\sqrt{2} \\
& \text { Since } r=\sqrt{2}, \quad \log _{e} \frac{8 a}{r}=\log _{e} \frac{200}{\sqrt{2}}=4.95 \mathrm{I} 7438 \\
& 1+\frac{c}{2 a}=1.0200000 \quad 2+\frac{c}{2 a}=2.0200000 \\
& \frac{c^{2}+3 d^{2}}{16 a^{2}}=.0004000 \quad-\frac{3 c^{2}-d^{2}}{16 a^{2}}=-.0002000 \\
& -\frac{c^{3}+3 c d^{2}}{32 a^{3}}=-\frac{.0000080}{1.0203920}=B \quad+\frac{c^{3}-6 c d^{2}}{48 a^{3}}=-\frac{.0000067}{2.0197933}=C \\
& B \log \frac{8 a}{r}=5.0527192 \\
& C=\underline{2.0197933} \\
& \left\{B \log \frac{8 a}{r}-C\right\}=3.0329259 \text { Multiply by } 4 \pi a=100 \pi \text { and } \\
& M=952.82 \mathrm{I} 8 \mathrm{~cm} .
\end{aligned}
$$

This formula would be less accurate for the circles of problem 4, but is accurate for circles close together, as this problem shows.

EXAMPLE 13. MAXWELL'S FORMULA (12). FOR CIRCLES OF EQUAL RADII NEAR EACH OTHER

$$
\begin{aligned}
& A=a=25 \quad d=\mathrm{I} \\
& \frac{8 a}{d}=200 \quad \log _{e} 200=5.2983 \mathrm{I} 7 \\
& \log _{e} \frac{8 a}{d}\left(\mathrm{I}+\frac{3 d^{2}}{\mathrm{I} 6 a^{2}}\right)=\mathrm{I} .000300 \times 5.2983 \mathrm{I} 7=5.29990 \\
&\left(2+\frac{d^{2}}{\mathrm{I} 6 a^{2}}\right)=\frac{2.000 \mathrm{IO}}{3.29980} \\
& \text { Multiply by } 4 \pi a=100 \pi \\
& M=1036.663 \mathrm{~cm}
\end{aligned}
$$

nearly agreeing with the more exact value found under problem 2.

This is a very simple and convenient formula for equal circles and gives approximate results for circles still farther apart than in this problem.

EXAMPLE 14. HAVELOCK'S FORMULA (16). FOR CIRCLES AT MODERATE DISTANCES

$$
\begin{aligned}
& A=25 \quad a=20 \quad d=10 \quad \therefore c=5 \\
& r=5 \sqrt{5} \quad \alpha=\frac{r^{2}}{A \alpha}=\frac{1}{4} \quad \frac{8 \sqrt{A a}}{r}=16 \\
& \log _{e} \mathrm{I} 6=2.7725887 \\
& \mathrm{I}+\frac{3}{\mathrm{I} 6} \alpha=1.0468750 \\
& -\frac{15}{1024} \alpha^{2}=-0.0009155 \\
& \frac{35}{128^{8}} \alpha^{3}=0.0000334 \\
& -\frac{1575}{2.128^{3}} \alpha^{4}=-0.00000{ }_{5} \\
& \text { Sum }=\text { I.0459914 } \\
& \text { Multiplied by } \log _{e} 16=2.9001037=B \\
& 2+\frac{\mathrm{I}}{\mathrm{I} 6} \alpha=2.0156250 \\
& -\frac{3 \mathrm{I}}{2048} \alpha^{2}=-0.000946 \mathrm{I} \\
& \frac{247}{6.128^{2}} \alpha^{3}=0.0000393 \\
& -\frac{7795}{8.128^{3}} \alpha^{4}=-\underline{0.0000018} \\
& \text { Sum }=2.0147164=C \\
& B-C=0.8853873 \\
& \text { Multiplied by } 4 \pi \sqrt{A \alpha}=248.7873 \mathrm{~cm}=M
\end{aligned}
$$

which agrees exactly with the value found in example 8.

$$
21674^{\circ}-12-3
$$

If the example 12 be calculated by this formula, no terms of order higher than α^{2} need be calculated, and

$$
\begin{aligned}
\qquad M & =952.822 \mathrm{I} \mathrm{~cm} \\
\text { Formula (10) } M & =952.8218 \\
\text { Formula (3) } M & =952.8219
\end{aligned}
$$

EXAMPLE 15. COFFIN'S FORMULA (13). EXTENSION OF FORMULA (12) FOR CIRCLES OF EQUAL RADII

$$
A=a=25 \quad d=16
$$

$$
\frac{8 a}{d}=12.5 \quad \log _{e} 12.5=2.5257286
$$

First series of terms $=B=1.074478$
Second series of terms $=C=2.023220$

$$
\begin{aligned}
\therefore\left\{B \log \frac{8 a}{d}-C\right\} & =0.690620 \\
4 \pi a=100 \pi \quad \therefore M & =216.9647 \mathrm{~cm} .
\end{aligned}
$$

This agrees with the value given by formula (1) within I part in 200,000 . As the distance apart of the circles increases the accuracy by this formula of course gradually decreases.

EXAMPLE 16. FORMULA (14). EXTENSION OF MAXWELL'S FORMULA (10) FOR CIRCLES OF UNEQUAL RADII

$$
\begin{aligned}
A=25 \quad a=20 \quad c=5 \quad d & =10 \\
r=\sqrt{c^{2}+d^{2}}=5 \sqrt{5} \quad \log _{e} \frac{8 a}{r}=\log _{e} \frac{32}{\sqrt{5}} & =2.6610169 \\
\text { First series of terms }=B \log _{e} \frac{8 a}{r} & =3.112060 \\
\text { Second series of terms }=C \quad & =\frac{2.122114}{0.989946} \\
\text { multiplying by } 4 \pi a=80 \pi \quad M & =248.8006 \mathrm{~cm} .
\end{aligned}
$$

This result is correct to I part in 19,000 (see examples 4,8 , and 14). Using only the first three terms for B and C (that is, formula 10), the result would be too large by I part in 1750 .

EXAMPLE 17. HAVELOCK'S FORMULA (17). CIRCLES FAR APART

$$
\begin{array}{ll}
a=\mathrm{IO}=A & d=\mathrm{IOO} \\
\frac{a}{A}=\mathrm{I} & \frac{A}{d}=0 . \mathrm{I}
\end{array}
$$

$$
\begin{aligned}
\mathrm{I}-\frac{3}{2} \cdot 2 \cdot \frac{A^{2}}{d^{2}} & =0.9700000 \\
\frac{15}{8} \cdot 5 \cdot \frac{A^{4}}{d^{4}} & =0.0009375 \\
-\frac{35}{16} \cdot 14 \cdot \frac{A^{6}}{d^{6}} & =-0.0000306 \\
\frac{315}{128} \cdot 42 \cdot \frac{A^{8}}{d^{8}} & =0.0000010 \\
\text { Sum } & =0.9709079
\end{aligned}
$$

Multiplied by $\frac{2 \pi^{2} A^{2} a^{2}}{d^{3}}=0.19164958 \mathrm{~cm}=M$
which is in exact agreement with the value found by formula (6).

EXAMPLE 18. MATHY'S FORMULA (18)

$$
\begin{aligned}
& A=25 \quad a=20 \quad d=40 \\
& x^{2}=625+400+1600=2625 \\
& \frac{A a}{x^{2}}=\frac{500}{5625}=\frac{4}{21} \\
& x^{4}+12 A^{2} a^{2}=9890625 \\
& \frac{1}{4} \log \left(x^{4}+12 A^{2} a^{2}\right)=1.7488059 \\
& \log \left[\frac{x^{2}}{\left(x^{4}+12 A^{2} a^{2}\right)^{\frac{1}{2}}}\right]=1.6703234 \\
& 1-36 \frac{A^{2} a^{2}}{x^{4}}=-0.3061225 \\
& 1+12 \frac{A^{2} a^{2}}{x^{4}}=1.4353742 \\
& \sqrt{\frac{J-1}{J}}=-0.17801131 \\
& \log z=\quad \overline{2} .5008952
\end{aligned}
$$

Using the constants in Table XVII we calculate the four series

$$
\begin{array}{cccc}
F\left(\frac{\mathrm{I}}{\mathrm{~T} 2}, \frac{5}{\mathrm{I} 2}, \frac{\mathrm{I}}{2}, z\right) & F\left(\frac{7}{\mathrm{I} 2}, \frac{\mathrm{II}}{\mathrm{I} 2}, \frac{3}{2}, z\right) & F\left(-\frac{\mathrm{I}}{\mathrm{I} 2}, \frac{7}{\mathrm{I} 2}, \frac{\mathrm{I}}{2}, z\right) & F\left(\frac{5}{\mathrm{I} 2}, \frac{\mathrm{I} 3}{\mathrm{I} 2}, \frac{3}{2}, z\right) \\
1.0022006 & 1.0112962 & 0.9969192 & 1.0095357 \\
0.0000357 & 0.0002173 & -0.0000473 & 0.0001784 \\
\frac{0.0000008}{\mathrm{I} .002237 \mathrm{I}} & \frac{0.0000049}{\mathrm{I} .0115 \mathrm{I} 84} & \frac{-0.0000010}{0.9968709} & \frac{0.0000040}{1.0097 \mathrm{I} 8 \mathrm{I}}
\end{array}
$$

From these, using the values of the constants already calculated, we find the four terms in the formula for M

$$
\begin{array}{rlrl}
C & =26.981438 & G=25.447327 \\
D & =-0.639427 \\
C-D & =\frac{H}{27.620865} & G-H=-0.966215 \\
\frac{M}{4 \pi} & =27.620865-24.48 \mathrm{IIII} 2=3.139753
\end{array}
$$

By Nagaoka's formula (8) we find $\frac{M}{4 \pi}=3.1397496$

$$
\text { " " (6) " " } \frac{M}{4 \pi}=3 \cdot \mathrm{I} 397486
$$

Mathy's formula suffers here under the inconvenience that M is given as the difference of two quantities considerably larger than itself.

EXAMPLE 19. FORMULA (19). FOR CIRCLES SATISFYING THE CONDI-

$$
\begin{gathered}
\text { TION } \mathrm{r}_{1}{ }^{2}=2 \mathrm{r}_{2}{ }^{2} \text { OR } \mathrm{k}^{\prime}=\mathrm{k}=\frac{1}{\sqrt{2}} \\
A=a=25 \quad d=50 \\
M=1.4 \mathrm{I} 859262 \cdots \sqrt{A a} \\
=35.46498 \mathrm{I} 6 \cdots \cdot \mathrm{~cm} .
\end{gathered}
$$

$$
\text { By Nagaoka's formula (8), } M=35 \cdot 464975
$$

$$
\begin{array}{lll}
" & " & \text { (6), } M=35 \cdot 46498 \mathrm{I} \\
" & " & \text { (1) }, M=35 \cdot 4648 \mathrm{I}
\end{array}
$$

We see that the formulas (8) and (6) here give an accuracy limited only by that of the logarithm tables. The result found by formula (I), using Table XIII, is, however, affected by the fact that the value of the quantity in the parentheses (1.4239167-1.3110287), is only about a tenth as large as the numbers of which it is the difference.

2. MUTUAL INDUCTANCE OF TWO COAXIAL COILS

R.OWLAND'S FORMULA

Let there be two coaxial coils of mean radii A and a, axial breadth of coils b_{1} and b_{2}, radial depth c_{1} and c_{2}, and distance apart of their mean planes d. Suppose them uniformly wound with n_{1} and n_{2} turns of wire. The mutual inductance M_{0} of the two central turns of the coils (Fig. 4), will be given by formula (1) or (7), or any one of the foregoing formulas for the mutual inductance of coaxial circles adapted to the particular case may be used, and the mutual inductance M of the two coils of n_{1} and n_{2} turns will then be, to a first approximation,

$$
M=n_{1} n_{2} M_{0}
$$

The following second approximation was obtained by Rowland by means of Taylor's theorem, following Maxwell, § 700 :

$$
\begin{aligned}
\frac{M}{n_{1} n_{2}} & =M_{0}+\frac{I}{24}\left\{\left(b_{1}^{2}+b_{2}^{2}\right) \frac{d M_{0}}{d x^{2}}\right. \\
& \left.+c_{1}^{2} \frac{d^{2} M_{0}}{d a^{2}}+c_{2}^{2} \frac{d^{2} M_{0}}{d A^{2}}\right\}
\end{aligned}
$$

If the two coils are of equal radii but unequal section,

Fig. 4

$$
\begin{equation*}
\frac{M}{n_{1} n_{2}}=M_{0}+\frac{\mathrm{I}}{24}\left\{\left(b_{1}^{2}+b_{2}^{2}\right) \frac{d^{2} M_{0}}{d x^{2}}+\left(c_{1}^{2}+c_{2}^{2}\right) \frac{d^{2} M_{0}}{d a^{2}}\right\} \tag{20}
\end{equation*}
$$

If the two coils are of equal radii and equal section, this becomes

$$
\begin{equation*}
\frac{M}{n_{1} n_{2}}=M_{0}+\frac{I}{I 2}\left\{b^{2} \frac{d^{2} M_{0}}{d x^{2}}+c^{2} \cdot \frac{d^{2} M_{0}}{d a^{2}}\right\} \tag{2I}
\end{equation*}
$$

The correction terms will be calculated by means of the following:

$$
\begin{align*}
& \frac{d^{2} M_{0}}{d a^{2}}=\pi \frac{k}{a}\left\{\left(2-k^{2}\right) F-\left(2-k^{2} \frac{I-2 k^{2}}{\mathrm{I}-k^{2}}\right) E\right\} \\
& \frac{d^{2} M_{0}}{d x^{2}}=\pi \frac{k^{3}}{a}\left\{F-\frac{I-2 k^{2}}{I-k^{2}} E\right\} \tag{22}
\end{align*}
$$

The equation (2I) is equivalent to Rowland's equation, where 2ξ and 2η are the breadth and depth of the section of the coil, instead of b and c, except that there is an error in the formula as printed in Rowland's ${ }^{16}$ paper, ξ and η being interchanged. The equations (22) are equivalent to those given by Rowland, being somewhat simpler. ${ }^{17}$

Formula (2I) gives a very exact value for the mutual inductance of two coils, provided the cross sections are relatively small and the distance apart d is not too small. But when b or c is large or d is small the fourth differential coefficients which have been neglected become appreciable and the expression may not be sufficiently exact.

RAYLEIGH'S FORMULA

Maxwell ${ }^{18}$ gives a formula, suggested by Rayleigh, for the mutual inductance of two coils, which has a very different form from Rowland's, but is nearly equivalent to it when the coils are not near each other. It has been used by Rayleigh in calculating the mutual inductance of a Lorenz apparatus and by Glazebrook (Phil. Trans., 1883) in calculating the mutual inductance of parallel coils of rectangular section employed in a determination of the ohm. It may also be employed in calculating the attraction between two coils. ${ }^{19}$ It is sometimes called the formula of quadratures, and is as follows: ${ }^{20}$

$$
M=\frac{1}{6}\left(M_{1}+M_{2}+M_{3}+M_{4}+M_{5}+M_{6}+M_{7}+M_{8}-2 M_{0}\right) \quad[23]
$$

[^7]where M_{1} is the mutual inductance of the circle O_{2} and a circle through the point I of radius $A-\frac{c_{1}}{2}$, and similarly for the others, Fig. 5 .

Fig. 5
For two coils of equal radii and equal section this becomes

$$
\begin{equation*}
M=\frac{1}{3}\left(M_{1}+M_{2}+M_{3}+M_{4}-M_{0}\right) \tag{24}
\end{equation*}
$$

Equation (23) is Rayleigh's formula, or the formula of quadratures. Instead of computing the correction to M_{0} by means of the differential coefficients (20), eight additional values are computed, corresponding to the mutual inductances of the single turns at the eight numbered points indicated in Fig. 5, each with reference to the central turn of the other coil. These M^{\prime} 's may be computed by any of the formulas for the mutual inductance of coaxial circles which may be best adapted to the particular case, and the values of the constants for the case of two coils of equal radii are given in the following table, the radius being α in every case.

	Axial distance	Radial distance	r
Using (IO)	d	$-\frac{c_{1}}{2}$	$\sqrt{d^{2}+\frac{c_{1}^{2}}{4}}$
"	d	$+\frac{c_{1}}{2}$	$\sqrt{d^{2}+\frac{c_{1}^{2}}{4}}$
"	d	$-\frac{c_{2}}{2}$	$\sqrt{d^{2}+\frac{c_{2}^{2}}{4}}$
"	d		
Using (I2)	$d-b_{1} / 2$	0	
"	$d+b_{1} / 2$	0	
"	$d+b_{2} / 2$	0	
"	$d-b_{2} / 2$	0	

MAGNITUDE OF THE ERRORS IN ROWLAND'S AND RAYLEIGH'S FORMULAS

The error ϵ_{1} in equation (24), for two coils of equal radii a, distance between centers being d, and section $b \times c$ (Fig. 6), depends on the dimensions of the coil in a manner shown by the following expression: ${ }^{21}$

Fig. 6

$$
\epsilon_{1} \propto 4 \pi a\left\{\frac{3 b^{4}+3 c^{4}-20 b^{2} c^{2}}{480 d^{4}}\right\} \quad[25]
$$

For a square coil the correction is a negative quantity, showing that M by equation (24) is too large, and the error is proportional to the fourth power of $\frac{\mathrm{I}}{d}$, the reciprocal of the
distance between the mean planes of the coils. For a rectangular coil in which b is greater than c the correction is negative so long as b is not more than 2.5 times c. When b is still larger with respect to c the correction becomes plus, the value of M by (24) being too small.

Thus, for a coil of cross section 4 sq . cm , we get the following values of the numerator of (25) as we vary the shape of cross section keeping $b c=4$.

Dimensions of coil	Error proportional to-	
$b=2$	$c=2$	-2.24
$b=2.5$	$c=\mathrm{I} .6$	-
$b=3$	$c=\mathrm{I} .33$	-
$b=4$	$c=\mathrm{I}$	+45 I
$b=8$	$c=0.5$	$+\mathrm{II}, 988$

Thus we see that the value of M as given by the formula of quadratures may be too large or too small according to the shape of the section, and that the error is proportional directly to the fourth power of the dimensions of the section and inversely to the fourth power of the distance between the mean planes of the coils. When the section is small and d large the error will become negligible.

The error by Rowland's formula is- ${ }^{22}$

$$
\begin{equation*}
\epsilon_{2} \propto 4 \pi a \frac{6}{d^{4}}\left\{\frac{b^{4}+c^{4}}{360}-\frac{b^{2} c^{2}}{144}\right\} \propto 4 \pi a\left\{\frac{\left\{8 b^{4}+8 c^{4}-20 b^{2} c^{2}\right.}{480 d^{4}}\right\} \tag{26}
\end{equation*}
$$

This is negative for a square coil, but smaller than ϵ_{1}. For a coil of section such that $b=c \sqrt{2}$, the error is zero, and for sections such that $\frac{b}{c}>\sqrt{2}$, the error is positive. Thus, for a coil of cross section 4 sq. cm, we get the following values of the numerator of (26) which is proportional to the error by Rowland's formula.

Dimensions of coil		Error proportional to-
$b=2$	$c=2$	-
$b=2.5$	$c=\mathrm{I} .6$	+
$b=3$	$c=\mathrm{I} .33$	+353
$b=4$	$c=\mathrm{I}$	$+\mathrm{I}, 736$
$b=8$	$c=\mathrm{O} .5$	$+32,448$

Thus the error is smaller by Rowland's formula for coils having square or nearly square section, but larger for coils having rectangular sections not nearly square.

LYLE'S FORMULA

Professor Lyle ${ }^{23}$ has recently proposed a very convenient method for calculating the mutual inductance of coaxial coils, which gives very accurate results for coils at some distance from each other.

The mutual inductance is calculated from formula (I) or any other formula for two coaxial circles, using, however, a modified radius r instead of the mean radius a, r being given by the following equation when the section is square, b being the side of the square section :

$$
\begin{equation*}
r=a\left(\mathrm{I}+\frac{b^{2}}{24 a^{2}}\right) \tag{27}
\end{equation*}
$$

If the coil has a rectangular section not square, it can be replaced by two filaments (Fig. 7) the distance apart of the filaments being called the equivalent breadth or the equivalent depth of the coil.

$$
\begin{align*}
& \beta^{2}=\frac{b^{2}-c^{2}}{\mathrm{I} 2}, 2 \beta \text { is the equivalent breadth of } \mathrm{A} \\
& \delta^{2}=\frac{c^{2}-b^{2}}{\mathrm{I} 2}, 2 \delta \text { is the equivalent depth of } \mathrm{B} \tag{28}
\end{align*}
$$

The equivalent radius of A is given by the same expression which holds for a square coil, viz:

A

$$
r=a\left(\mathrm{I}+\frac{b^{2}}{24 a^{2}}\right)
$$

The mutual inductance of two coils may now be readily calculated. If each has a square section, it is necessary only to calculate the mutual inductance of the two equivalent filaments. For coils of rectangular sections, as A, B, the mutual inductance will be the sum of the mutual inductances of the two filaments of A on the two

[^8]filaments of B, counting $n / 2$ turns in each. Or, it is $n_{1} n_{2}$ times the mean of the four inductances $M_{13}, M_{14}, M_{23}, M_{24}$, where M_{13} is the mutual inductance of filament I on filament 3 , etc.

Lyle's method is of special value in computing mutual inductances because it applies to coils of unequal as well as of equal radii.

ROSA'S FORMULA ${ }^{24}$

Writing the mutual inductance of two coaxial coils of equal radii and equal section as $\frac{M}{n_{1} n_{2}}=M_{0}+\Delta M$, where M_{0} is the mutual inductance of the central circles of the two equal coils of sections $b \times c$, Fig. 5, and ΔM is the correction for the section of the coil, the value of ΔM is as follows:

$$
\begin{gather*}
\Delta M=4 \pi a\left\{\frac{3 b^{2}+c^{2}}{96 a^{2}} \cdot \log \frac{8 a}{d}-\frac{11 b^{2}-3 c^{2}}{192 a^{2}}+\frac{b^{2}-c^{2}}{12 d^{2}}+\frac{2 b^{4}+2 c^{4}-5 b^{2} c^{2}}{120 d^{4}}\right. \\
+\frac{6 b^{4}+6 c^{4}+5 b^{2} c^{2}}{5760 a^{2} d^{2}}+\frac{3 b^{6}-3 c^{6}+14 b^{2} c^{4}-14 b^{4} c^{2}}{504 d^{6}}+\frac{7 c^{2} d^{2}}{1024 a^{4}}\left(\log \frac{8 a}{d}-\frac{163}{84}\right) \\
\left.-\frac{15 b^{2} d^{2}}{102 a^{4}}\left(\log \frac{8 a}{d}-\frac{97}{60}\right)\right\} \tag{29}
\end{gather*}
$$

For a square section, when $b=c$, this becomes

$$
\Delta M=\frac{\pi b^{2}}{6 a}\left\{\log \frac{8 a}{d}-\mathrm{I}-\frac{a^{2} b^{2}}{5 d^{4}}-\frac{3 d^{2}}{16 a^{2}}\left(\log \frac{8 a}{d}-\frac{4}{3}\right)+\frac{17 b^{2}}{240 d^{2}}\right\} \quad \text { [3०] }
$$

The last two terms of equation (30) are relatively small, so that we may write, approximately:

$$
\begin{equation*}
\Delta M=\frac{\pi b^{2}}{6 a}\left\{\log \frac{8 a}{d}-\mathrm{I}-\frac{a^{2} b^{2}}{5 d^{4}}\right\} \tag{3I}
\end{equation*}
$$

For coils of equal radii but unequal sections, the formula is, neglecting differentials of sixth order

$$
\begin{align*}
& \Delta M=4 \pi a\left\{\frac{3\left(b_{1}{ }^{2}+b_{2}{ }^{2}\right)+\left(c_{1}{ }^{2}+c_{2}{ }^{2}\right)}{192 a^{2}} \log \frac{8 a}{d}-\frac{11\left(b_{1}{ }^{2}+b_{2}{ }^{2}\right)-3\left(c_{1}{ }^{2}+c_{2}{ }^{2}\right)}{384 a^{2}}\right. \\
& +\frac{\left(b_{1}{ }^{2}+b_{2}^{2}\right)-\left(c_{1}{ }^{2}+c_{2}^{2}\right)}{24 d^{2}} \tag{32}\\
& \left.+\frac{\left(3 b_{1}^{4}+10 b_{1}{ }^{2} b_{2}^{2}+3 b_{2}{ }^{4}\right)+\left(3 c_{1}^{4}+10 c_{1}{ }^{2} c_{2}^{2}+3 c_{2}^{4}\right)-10\left(b_{1}{ }^{2}+b_{2}^{2}\right)\left(c_{1}^{2}+c_{2}^{2}\right)}{960 d^{4}}\right\}
\end{align*}
$$

${ }^{24}$ This Bulletin, 4, p. 348, equations (38) and (39).

These expressions for ΔM are very exact where the coils are near together or even where they are separated by a considerable distance, but become less exact as d is greater. They are therefore most reliable where formulas (21), (24), and (27) are least reliable. As formula (3I) is exact enough for most purposes, it affords a very easy method of getting the correction for equal coils of square section.

Stefan's formula for the mutual inductance of two equal coaxial coils (originally published ${ }^{25}$ without demonstration) is incorrect and is not given here. It resembles equation (29), but is seriously in error for coils at considerable distances.

THE ROSA-WEINSTEIN FORMULA

Weinstein's formula ${ }^{26}$ for the mutual inductance of equal coaxial coils has been revised and corrected by Rosa, and the value of ΔM, the correction for section, expressed separately. The expression for ΔM is as follows: ${ }^{26 a}$

$$
\begin{equation*}
\Delta M=4 \pi a \sin \gamma\left\{(F-E)\left(A+\frac{c^{2}}{24 a^{2}}\right)+E B\right\} \tag{33}
\end{equation*}
$$

where F and E are the complete elliptic integrals to modulus $\sin \gamma$, Fig. 8 (as in equation I),

Fig. 8

[^9]and
\[

$$
\begin{aligned}
& A=\frac{\cos ^{2} \gamma}{\mathrm{I} 2 d^{2}}\left(\alpha_{1}-\alpha_{2}-\alpha_{3}+\left(2 \alpha_{2}-3 \alpha_{3}\right) \cos ^{2} \gamma+8 \alpha_{3} \cos ^{4} \gamma\right) \\
& B=\frac{\sin ^{2} \gamma}{\mathrm{I} 2 d^{2}}\left(\alpha_{1}+\frac{\alpha_{2}}{2}+2 \alpha_{3}+\left(2 \alpha_{2}+3 \alpha_{3}\right) \cos ^{2} \gamma+8 \alpha_{3} \cos ^{4} \gamma\right)
\end{aligned}
$$
\]

The values of α_{1}, α_{2}, and α_{3} are as follows:

$$
\begin{array}{ll}
\alpha_{1}=b^{2}-c^{2}+\frac{c^{4}}{30 a^{2}} & \text { For square section: } \alpha_{1}=\frac{b^{4}}{30 a^{2}} \\
\alpha_{2}=\frac{5 b^{2} c^{2}-4 c^{4}}{60 a^{2}} & \text { " " " " } \\
\alpha_{3}=\frac{2 b^{4}+2 c^{4}-5 b^{2} c^{2}}{20 d^{2}} & \text { " } \\
b^{4} & \text { " } \\
60 a^{2} \\
20 d^{2}
\end{array}
$$

Formula (33) is a very exact formula for all positions of the two coils, except when they are very close together.

Weinstein's original formula, ${ }^{27}$ which is much less accurate than (33) for coils relatively near together, is not here given.

USE OF FORMULAS FOR SELF-INDUCTANCE IN CALCULATING MUTUAL INDUCTANCE

One can sometimes obtain the mutual inductance of adjacent coils, or of coils at a distance from one another, by means of a formula for the self-inductance of coils. Thus, suppose we have a coil of rectangular section, which we subdivide into three equal parts, I, 2, 3, Fig. 9. Let L be the self-inductance of the whole coil, L_{1} be the self-inductance of any one of the three equal smaller coils, and L_{2} be the selfinductance of two adjacent coils taken together. Also let M_{12} be the mutual inductance of coil I on coil 2, or of coil 2 on coil 3 , and M_{13} be the mutual inductance of coil I on coil 3 . Then,

$$
\begin{aligned}
L & =3 L_{1}+4 M_{12}+2 M_{13} \\
\text { Also, } L_{2} & =2 L_{1}+2 M_{12} \\
\therefore M_{12} & =\frac{L_{2}-2 L_{1}}{2} \\
\text { and } M_{13} & =\frac{L+L_{1}-2 L_{2}}{2}
\end{aligned}
$$

Fig. 9

[^10]Formula (34) will thus enable us to find the mutual inductance of two coils of equal radii adjacent or near each other by the calculation of self-inductances from such formulas as those of Weinstein (88) and Stefan (90). These latter formulas are not, however, exact enough when the section is large to permit us to apply them to coils at any considerable distance from one another.

GEOMETRIC MEAN DISTANCE FORMULA

Fig. 10

The mutual indurctance of two coaxial coils adjacent or very near can sometimes be obtained by means of the geometric mean distances. This method is accurate only when the sections are very small relatively to the radius. It can often be used to advantage in testing other formulas, but not often in determining the mutual inductance of actual coils.

Formula (10) gives the mutual inductance of two very near coaxial coils in terms of the geometric mean distance, if r be replaced by R, the geometric mean distance of the two sections. Formula (Io) gives M_{0} if r be used, where r is the distance between centers. Thus,

$$
\begin{equation*}
\Delta M=4 \pi a\left(\mathrm{I}+\frac{c}{2 a}\right) \log \frac{r}{R} \tag{35}
\end{equation*}
$$

For coils A and C (Fig. Io), $R<r$ and ΔM is positive; $R=0.99770 r$ " " A " $\mathrm{B}, R>r$ and ΔM is negative; $R=1.00655 r$
The same formula may also be used for squares not adjacent, but only when quite near. ${ }^{28}$

For illustrations and tests of the above formulas, see examples 20-33, pages 44-52.

[^11](a) For coils of equal radii and equal cross section (29) should be used if the coils are rather near together. If the cross section is square (29) takes the more simple form (30), and in some cases this may be used in its abbreviated form (3I). For coils at all distances, except near together, (33) gives very good precision; (24) and (2I) are not so accurate as this last, but give good results if the coils are far apart and their cross sections are not too large.
(b) For coils of equal radii but unequal section (32) is accurate for coils not too far away from one another. For coils farther separated (20), (23) or (28) may be used.
(c) For coils of unequal radii (23), (24), (27), and (28) apply, but unfortunately they are not as accurate as some of the others. except when the coils are relatively distant or have very small cross sections. The difficulty can be overcome by subdividing each of the two coils into two, four, or more equal parts, and taking the sum of the mutual inductances of all of the parts of one on all the parts of the other. This is a laborious operation, but in important cases it should be done. As the subdivision is carried further the results will approach a final value,

Fig. 11 and hence the results themselves show when the subdivision has been carried far enough.

Thus, suppose two coils A, B (Fig. Ir) of square section are subdivided into four equal parts and by the method of Lyle, formula (27), the mutual inductance of the whole of B is computed on each of the four parts of A. If the sum differs appreciably from the result obtained by taking A and B as wholes in one calculation, then the four parts of B may be taken separately with respect to the separate parts of A. If one is doubtful whether this is sufficiently accurate, one of the sections of A may be subdivided further and calculated with respect to one section of B, to see whether there is any appreciable
difference due to this further subdivision. For coils of equal radii very accurate results for near coils can be obtained much more easily by using some of the other formulas.

EXAMPLES TO ILLUSTRATE THE FORMULAS FOR THE MUTUAL INDUCTANCE OF COILS OF RECTANGULAR SECTION

EXAMPLE 20. ROWLAND'S FORMULA (21). FOR COAXIAL COILS OF EQUAL RADII

$$
A=a=25 \quad b=c=2 \mathrm{~cm} \quad d=10 \quad \text { (Fig. 12.) }
$$

The mutual inductance of the two coils is $\frac{M}{n_{1} n_{2}}=M_{0}+\Delta M$.
We find M_{0} by formula $\mathrm{I}, 8$, or I 3 , and ΔM by 2 I and 22 .

$$
\begin{aligned}
M_{0} & =107.4885 \pi \\
k=\sin \gamma=\quad \frac{50}{\sqrt{2600}} & =0.9805807 \\
k^{2} & =0.9615383 \\
\log _{10} F & =0.4821754 \\
\log _{10} E & =0.0207625
\end{aligned}
$$

By Table II, since $\tan \gamma=5, \log F=0.4821752$ and $\log E=$ 0.0207626 . These slight differences in the logarithms obtained in the two different ways amount to scarcely one part in two million of F and E, respectively, and may usually be neglected. If more accurate values are required they may be obtained by carrying the interpolations further in Legendre's table, provided the angle γ is obtained with sufficient accuracy.

Substituting these values in formula

Fig. 12
(22) we obtain

$$
\begin{aligned}
& \frac{d^{2} M}{d a^{2}}=-0.908 \mathrm{I} \pi \\
& \frac{d^{2} M}{d x^{2}}=+1.0639 \pi \quad b^{2}=c^{2}=4
\end{aligned}
$$

Substituting these values in formula (2I) we obtain

$$
\begin{aligned}
\Delta M & =.05194 \pi \\
\therefore \frac{M}{n_{1} n_{2}}=M_{0}+\Delta M & =(107.4885+0.0519) \pi \\
& =337.848 \mathrm{I} \mathrm{~cm} .
\end{aligned}
$$

The correction ΔM thus amounts to about I part in 2000 of M. At a distance $d=20 \mathrm{~cm}$, the correction is over I part in 1000. For a coil of section $4 \times 4 \mathrm{~cm}$ at $d=10, \Delta M$ would be four times as large as the value above, or about one part in five hundred, and at 20 cm one part in two hundred and fifty.

EXAMPLE 21. ROWLAND'S FORMULA (20). FOR COILS OF EQUAL RADII BUT UNEQUAL SECTION

Let us take $a=25, d=10$ as in the preceding example, but instead of supposing the sections of the coils to be equal let us take

$$
\begin{array}{ll}
b_{1}=4 & b_{2}=2 \\
c_{\mathrm{i}}=\mathrm{I} & c_{2}=2
\end{array}
$$

The values of $\frac{d^{2} M_{0}}{d x^{2}}$ and $\frac{d^{2} M_{0}}{d a^{2}}$ will be the same as in the preceding example. Substituting these in (20) we find $\Delta M=0.6974 \pi$

$$
\begin{aligned}
M_{0} & =107.4885 \pi \\
\Delta M & =\frac{0.6974 \pi}{M} \\
\therefore \frac{M}{n_{1} n_{2}} & =108.1859 \pi=339.876 \mathrm{I} \mathrm{~cm} .
\end{aligned}
$$

The correction here is fourteen times as great as in the previous example, although the areas of the cross sections of the two coils are the same as in the preceding case.

EXAMPLE 22. RAYLEIGH'S FORMULA (24). FOR COAXIAL COILS OF EQUAL RADII

$$
A=a=25 \quad b=4 \quad c=1 \quad d=10
$$

We now find by formula (1) in accordance with formula (24) the mutual inductance of the following pairs of circles (Fig. I3):

O, I when $a=25, A=25.5, d=1$ 10; O, 4 when $a=25, A=24.5$, $d=1 \mathrm{o} ; \mathrm{O}, 2$ when $a=A=25$ and $d=8 ; \mathrm{O}, 3$ when $A=a=25, d=12$ and finally $\mathrm{O}, \mathrm{O}^{\prime}$ when $A=a=25, d=\mathrm{ro}$. Thus:

$$
21674^{\circ}-12-4
$$

Fig. 13

$$
\begin{aligned}
& M_{1}=109.3217 \pi \\
& M_{4}=105.4287 \pi \\
& M_{2}=127.3949 \pi \\
& M_{3}=\frac{91.9206 \pi}{434.0659 \pi} \\
& M_{0}=\frac{107.4885 \pi}{326.5774 \pi} \\
& \therefore M=108.8591 \pi \\
& M_{0}=107.4885 \pi \\
& \Delta M=1.3706 \pi \\
& \mathrm{~cm} .
\end{aligned}
$$

EXAMPLE 23. RAYLEIGH'S FORMULA (23). COILS OF UNEQUAL RADII AND UNEQUAL SECTION
Let

$$
\begin{array}{rlll}
A=25 & b_{1}=4 & c_{1}=\mathrm{I} & d=\mathrm{IO} \\
a=20 & b_{2}=2 & c_{2}=3 &
\end{array}
$$

We have then to calculate the mutual inductances of the following pairs of circles:

	A	a	d		A	a	d
M_{1}	24.5	20	IO	M_{6}	25	20	II
M_{2}	25	20	8	M_{7}	25	2 I.5	IO
M_{3}	25.5	20	IO	M_{8}	25	20	9
M_{4}	25	20	I2	M_{0}	25	20	IO
M_{5}	25	I8.5	IO				

These have been calculated by means of Havelock's formula (I6), with the following results:

$$
\begin{aligned}
M_{1} & =248.4 \mathrm{I} 280 \\
M_{2} & =28, .04027 \\
M_{3} & =r 8.77440 \quad M_{0}=248.7873 \\
M_{4} & =214.75755 \\
M_{5} & =216.60185 \\
M_{6} & =231.04386 \\
M_{7} & =279.814 \mathrm{I} 7 \\
M_{8} & =268.09410 \\
\mathrm{Sum} & =\frac{\mathrm{I} 996.5390}{} \\
2 \mathrm{M}_{0} & =497.5746 \\
\mathrm{Diff} & =\mathrm{I} 498.9644 \\
\frac{\mathrm{I}}{6} \mathrm{Diff} . & =249.8272=\frac{M}{n_{1} n_{2}}
\end{aligned}
$$

EXAMPLE 24. LYLE'S FORMULA (27). FOR COILS OF SQUARE SECTION

$$
A=a=25 \mathrm{~cm} \quad b=c=2 \mathrm{~cm} \quad d=10 \mathrm{~cm} .
$$

The equivalent radius $r=a\left(\mathrm{I}+\frac{b^{2}}{24 a^{2}}\right)$

$$
r=25\left(I+\frac{4}{15000}\right)=25.00667 \mathrm{~cm} .
$$

M is now found by using formula $\mathrm{I}, 8$, or I 3 , employing r in place of a as the radius.

The result is $M=337.8475$, agreeing very closely with the result found under example 20.

$$
M-M_{0}=\Delta M=.0517 \pi
$$

EXAMPLE 25. LYLE'S FORMULA (28). FOR COILS OF RECTANGULAR SECTION

$$
\begin{gathered}
A=a=25 \quad b=4 \quad c=\mathrm{I} \quad d=10 \\
r=25\left(\mathrm{I}+\frac{\mathrm{I}}{\mathrm{I} 5000}\right)=25.00167
\end{gathered}
$$

$\beta^{2}=\frac{b^{2}-c^{2}}{\mathrm{I} 2}=\frac{\mathrm{I}}{\mathrm{I} 2}=\mathrm{I} .25,2 \beta=2.236 \mathrm{~cm}$, the distance apart of the two filaments which replace the coil (Fig. I4). We now find by formula (I), (8), or (I_{3}) the mutual inductances of two circles $\mathrm{I}, 2$ on the two circles 3,4 , where $a=25.00167$ and d is 7.764 , 10 and I 2.236 cm , respectively. Thus:
$2 M_{13}=215.00228 \pi$
$M_{14}=90.31304 \pi$
$M_{23}=130.14060 \pi$
$4 M=435 \cdot 45592 \pi$
$\therefore M=108.8640 \pi$
$M_{0}=107.4885 \pi$

Fig. 14
$\Delta M=1.3735 \pi$
$\Delta M=$ the correction for section of the coils whose dimensions are given above. These values of M and ΔM agree nearly with the results obtained in example 22 above.

EXAMPLE 26. LYLE'S FORMULA (28). FOR UNEQUAL COILS OF RECTANGULAR SECTION

Let us take the same coils as in example 23

$$
\begin{array}{rlll}
A=25 & b_{1}=4 & c_{1}=\mathrm{I} & d=10 \\
a=20 & b_{2}=2 & c_{2}=3 &
\end{array}
$$

For the first coil we find

$$
\begin{aligned}
& r=25\left(\mathrm{I}+\frac{c_{1}^{2}}{24 A^{2}}\right)=25.001667 \mathrm{~cm} \\
& \beta=\mathrm{I} . \mathrm{II} 8034 \mathrm{~cm}
\end{aligned}
$$

For the second coil

$$
\begin{aligned}
r & =20\left(\mathrm{I}+\frac{b_{1}^{2}}{24 a^{2}}\right)=20.008333 \mathrm{~cm} \\
\delta & =0.645497 \\
r+\delta & =20.653830 \\
r-\delta & =19.362836
\end{aligned}
$$

We then calculate the mutual inductance of the following pairs of circles:

	A	a	d
M_{13}	25.001667	20.653830	II.II8034
M_{14}	$"$	19.362836	II.II8034
M_{23}	$"$	20.653830	8.88 I966
M_{24}	$"$	19.362836	8.88 I 966

The results by Havelock's formula (I6) were

$$
\begin{aligned}
M_{13} & =24 \mathrm{I} .29369 \\
M_{14} & =216.9 \mathrm{I} 302 \\
M_{23} & =286 . \mathrm{I} 3490 \\
M_{24} & =255.0347 \mathrm{I} \\
\mathrm{Sum} & =999.37632 \\
\frac{\mathrm{I}}{4} \mathrm{Sum} & =249.844 \mathrm{I}=\frac{M}{n_{1} n_{2}}
\end{aligned}
$$

which differs from the value by Rayleigh's formula (23) by six or seven in a hundred thousand.

A more accurate value would, in each case, be found if each coil were subdivided and the formulas applied to each of the components as described on page 43. Such a proceeding is, however, rather tedious, although necessary in precise work.

EXAMPLE 27. ROSA'S FORMULA (29). FOR COILS OF EQUAL RADII

$$
\begin{aligned}
& A=a=25 \quad b=4 \quad c=1 \quad d=10 \\
& \text { (same coils as examples 22, 25). } \\
& \log _{e} \frac{8 a}{d}=\log _{e} 20=2.9957 \\
& \frac{3 b^{2}+c^{2}}{96 a^{2}} \cdot \log _{e} \frac{8 a}{d}=\frac{49 \times 2.9957}{60000}=.0024465 \\
& \frac{b^{2}-c^{2}}{12 d^{2}}=\frac{15}{1200}=.0125000 \\
& \frac{2 b^{4}+2 c-5 b^{2} c^{2}}{120 d^{4}}=\frac{434}{1200000}=.0003617 \\
& \frac{3 b^{6}-3 c^{6}+14 b^{2} c^{4}-14 b^{4} c^{2}}{504 d^{6}}=\frac{8925}{504 \times 10^{6}}=.0000177 \\
& \frac{6 b^{4}+6 c^{4}+5 b^{2} c^{2}}{5760 a^{2} d^{2}}=\frac{1622}{360 \times 10^{6}}=.0000045 \\
& \frac{7 c^{2} d^{2}}{\operatorname{IO24a^{4}}}\left(\log _{e} \frac{8 a}{d}-\frac{\mathrm{I63}}{84}\right) \quad=\underline{.00000 \mathrm{I} 8} \text {.OI53322} \\
& -\frac{11 b^{2}-3 c^{2}}{192 a^{2}}=-\frac{\mathrm{I} 73}{\mathrm{I} 20000}=-.0014417 \\
& -\frac{15 b^{2} d^{2}}{1024 a^{4}}\left(\log _{e} \frac{8 a}{d}-\frac{97}{60}\right)=-\underline{.0000827}-\frac{.0015244}{.0138078} \\
& 4 a=\mathrm{IOO}, \quad \therefore \quad \Delta M=\mathrm{I} .38 \mathrm{o} 8 \pi \mathrm{~cm} \text {. }
\end{aligned}
$$

This is a little larger value than found by formulas (24) and (28), and we shall see later that it is more nearly correct than either of the other values.

EXAMPLE 28. ROSA'S FORMULAS (30) AND (31). FOR COILS OF EQUAL RADII AND SQUARE SECTION

$$
\begin{aligned}
& A=a=25 \quad b=c=2 \quad d=10 \\
& \log _{e} \frac{8 a}{d}-\mathrm{I}=2.9957-\mathrm{I}=\mathrm{I} .9957 \\
& \frac{17 b^{2}}{240 d^{2}}=\frac{68}{24000}=\underline{.0028} \mathrm{I} .9985 \\
& \frac{-a^{2} b^{2}}{5 d^{4}}=-\frac{2500}{50000}=-.0500 \\
& \frac{-3 d^{2}}{16 a^{2}}\left(\log _{e} \frac{8 a}{d}-\frac{4}{3}\right)=-\frac{300 \times 1.6624}{10000}=-\frac{.0499}{-.0999}
\end{aligned}
$$

$$
\frac{b^{2}}{6 a}=\frac{4}{150} \quad \therefore \quad \Delta M=.05063 \pi
$$

The approximate formula (31) would have given .0519 (agreeing with formulas 21 and 27), which would be amply accurate for any experimental purpose. When the section is larger these small terms are, however, more important.

EXAMPLE 29. SECOND EXAMPLE BY FORMULA (30)

$$
\begin{gathered}
A=a=25 \quad b=c=5 \quad d=10 \\
\log _{e} \frac{8 a}{d}-\mathrm{I}=\mathrm{I} .9957 \\
\frac{\mathrm{I} 7 b^{2}}{240 d^{2}}=\underline{.0177} \quad 2.0 \mathrm{I} 34 \\
\frac{-a^{2} b^{2}}{5 d^{4}}=-.3125 \\
\frac{-3 d^{2}}{\mathrm{I} 6 a^{2}}\left(\log _{e} \frac{8 a}{d}-\frac{4}{3}\right)=-\underline{.0499} \quad-\frac{.3624}{\mathrm{I} .6510} \\
\frac{b^{2}}{6 a}=\frac{25}{\mathrm{I} 50} \\
\therefore \Delta M=0.2752 \pi \\
\frac{M_{0}}{M}=107.4885 \pi \\
\therefore \frac{n_{1}}{n_{1} n_{2}}
\end{gathered}=107.7637 \pi \mathrm{~cm} . \quad \text { (see example 20) }
$$

This is a very simple formula for computing ΔM, and within a considerable range (i. e., d not larger than a and yet the coils not in contact) it is very accurate.

EXAMPLE 30. FORMULA (32). COILS OF EQUAL RADII, BUT UNEQUAL SECTION

For this we will take the coils of example 21

$$
\begin{array}{ll}
a=25 & d=10 \\
b_{1}=4 & b_{2}=2 \\
c_{1}=1 & c_{2}=2
\end{array}
$$

$$
\begin{aligned}
\text { Ist term } & =0.0016227 \\
\text { 2d } " & =-0.0008542 \\
3 \mathrm{~d} \quad " & =0.0062500 \\
4 \text { th } " & =0.0000570 \\
\text { Sum } & =0.0070755 \\
\therefore \Delta M & =0.70755 \pi \\
M_{0} & =107.4885 \pi \\
\text { Sum } & =108.1960 \pi \\
\therefore \frac{M}{n_{1} n_{2}} & =339.9078 \mathrm{~cm} .
\end{aligned}
$$

This example shows that the fourth differentials neglected in (20) here amount to one part in ten thousand.

EXAMPLE 31. ROSA-WEINSTEIN FORMULA (33). FOR COILS OF EQUAL RADII AND EQUAL SECTION

$$
\begin{array}{rlrl}
a=25 \quad b=4 & c=1 \quad d=10 \\
\alpha_{1}=15.0000533 & \sin ^{2} \gamma=\frac{2500}{2600}=\frac{25}{26} \\
\alpha_{2}= & 0.0020267 & \cos ^{2} \gamma & =\frac{100}{2600}=\frac{1}{26} \\
\alpha_{3}= & 0.2170000 & \frac{c^{2}}{24 a^{2}}=.0000667 \\
\alpha_{1}-\alpha_{2}-\alpha_{3}+\left(2 \alpha_{2}-3 \alpha_{3}\right) \cos ^{2} \gamma+8 \alpha_{3} \cos ^{4} \gamma=14.7587120 \\
\alpha_{1}+\frac{\alpha_{2}}{2}+2 \alpha_{3}+\left(2 \alpha_{2}+3 \alpha_{3}\right) \cos ^{2} \gamma+8 \alpha_{3} \cos ^{4} \gamma=15.4628292 \\
A=0.0004730 & \text { A1so } F & =3.0351168 \\
B=0.0123901 & E & =1.0489686 \\
(F-E)\left(A+\frac{c^{2}}{24 a^{2}}\right) & =0.0010719 \\
E B & =0.0129968 \\
S u m & =0.0140687
\end{array}
$$

$$
4 \pi a \sin \gamma=100 \pi \sqrt{\frac{25}{\mathrm{I} 6}} \therefore \Delta M=\mathrm{I} .3795 \pi \mathrm{~cm}
$$

This is not as simple to calculate as (29) and when d is less than $a / 2$ is less accurate than (29). But for $d=a$ or greater it is more accurate than (29), and indeed the most accurate of all the formulas.

EXAMPLE 32. FORMULA (34). MUTUAL INDUCTANCE IN TERMS OF SELFINDUCTANCE. FOR COILS RELATIVELY NEAR

For $a=25, b=\mathrm{I}, c=\mathrm{I}$, we have, n being the number of turns in one of the two equal coils,

$$
L_{1}=4 \pi a n^{2}(4 \cdot \mathrm{Io} 38 \mathrm{I} 6)
$$

For $b=2, c=\mathrm{I}$,

$$
L_{2}=4 \pi a n^{2}(4 \times 3.698695)
$$

For $b=3, c=\mathrm{I}$,

$$
L=4 \pi a n^{2}(9 \times 3.4 \mathrm{II} 766)
$$

Then the mutual inductance of I on 3 is by formula (34)

Fig. 15

$$
\begin{aligned}
& M=4 \pi a n^{2}\left[\frac{L+L_{1}-2 L_{2}}{2}\right] \\
&=4 \pi a n^{2}\left[\frac{30.705894+4.103816-29.589560}{2}\right] \\
&=4 \pi a n^{2} \times 2.610075 \\
&=819.979 n^{2} \mathrm{~cm} . \\
& \text { If } n=100,
\end{aligned}
$$

$$
M=8.19979 \text { millihenrys, }
$$

as the mutual inductance of coil I on coil 3 , Fig. I 5 .

EXAMPLE 33. FORMULA (35). MUTUAL INDUCTANCE BY GEOMETRICAL MEAN DISTANCE

$$
\begin{aligned}
A & =25.1 \\
a & =25.0 \\
b & =c=0.1 \mathrm{~cm} \\
d & =0.1 \mathrm{~cm} .
\end{aligned}
$$

The geometrical mean distance of two coils, corner to corner, as in Fig. IO, is 0.99770I, and $\log \frac{r}{R}=0.002302$

$$
\begin{aligned}
\therefore \Delta M & =100 \times 0.002302(\mathrm{I} .002) \pi \\
& =0.2307 \pi \mathrm{~cm}
\end{aligned}
$$

3. MUTUAL INDUCTANCE OF COAXIAL SOLENOIDS

There are several formulas for the calculation of the mutual inductance of coaxial solenoids. Although few of these formulas
are exact, the approximate formulas often permit inductances to be calculated with very great accuracy by using a sufficient number of terms of the series by which they are expressed.

CONCENTRIC, COAXIAL SOLENOIDS OF EQUAL LENGTH MAXWELL'S FORMULA ${ }^{29}$

The mutual inductance M of two coaxial solenoids of equal length (Fig. 16) is given by the following expression, due to Maxwell, where A and a are the radii of the outer and inner solenoids, respectively, l is the common length, and n_{1} and n_{2} the number of turns of wire per cm on the single layer winding of the outer and inner solenoids, respectively:

$$
M=4 \pi^{2} a^{2} n_{1} n_{2}[l-2 A \alpha]
$$

where

$$
\begin{align*}
& r=\sqrt{l^{2}+A^{2}} \\
& \alpha=\frac{A-r+l}{2 A}-\frac{a^{2}}{\mathrm{I} 6 A^{2}}\left(\mathrm{I}-\frac{A^{3}}{r^{3}}\right)-\frac{a^{4}}{64 A^{4}}\left(\frac{\mathrm{I}}{2}+2 \frac{A^{5}}{r^{5}}-\frac{5}{2} \frac{A^{7}}{r^{7}}\right) \\
& -\frac{35}{2048} \frac{a^{6}}{A^{6}}\left(\frac{\mathrm{r}}{7}-\frac{8}{7} \frac{A^{7}}{r^{7}}+4 \frac{A^{9}}{r^{9}}-3 \frac{A^{11}}{r^{11}}\right) \\
& --\frac{53}{2.128^{2}} \frac{a^{8}}{A^{8}}\left(\frac{5}{9}+\frac{64}{9} \frac{A^{9}}{r^{9}}-48 \frac{A^{11}}{r^{11}}+88 \frac{A^{13}}{r^{13}}-\frac{143}{3} \frac{A^{15}}{r^{15}}\right) \\
& -\frac{231}{512^{2}} \frac{a^{10}}{A^{10}}\left(\frac{7}{\text { II }}-\frac{128}{\text { II }} \frac{A^{11}}{r^{11}}+128 \frac{A^{13}}{r^{13}}-416 \frac{A^{15}}{r^{15}}+520 \frac{A^{17}}{r^{17}}-221 \frac{A^{19}}{r^{19}}\right) \\
& -\frac{429}{2 . \overline{1024}} \frac{a^{12}}{A^{12}}\left(\frac{2 \mathrm{I}}{\mathrm{I} 3}+\frac{5 \mathrm{I} 2}{\mathrm{I} 3} \frac{A^{13}}{r^{13}}-640 \frac{A^{15}}{r^{15}}+3200 \frac{A^{17}}{r^{17}}-6800 \frac{A^{19}}{r^{19}}\right. \\
& \left.+6460 \frac{A^{21}}{r^{21}}-226 \mathrm{I} \frac{A^{23}}{r^{23}}\right) \tag{36}
\end{align*}
$$

$$
\begin{array}{r}
-\frac{6435}{8 \mathrm{I} 2^{2}} \frac{a^{14}}{A^{14}}\left(\frac{\mathrm{II}}{5}-\frac{1024}{\mathrm{I} 5} \frac{A^{15}}{r^{15}}+1536 \frac{A^{17}}{r^{17}}-10880 \frac{A^{19}}{r^{19}}+\frac{103360}{3} \frac{A^{21}}{r^{21}}\right. \\
\left.-54264 \frac{A^{23}}{r^{23}}+\frac{208012}{5} \frac{A^{25}}{r^{25}}-\frac{37145}{3} \frac{A^{27}}{r^{27}}\right)-\ldots \ldots . .
\end{array}
$$

[^12]Putting

$$
M=M_{0}-\Delta M
$$

$M_{0}=4 \pi^{2} a^{2} n_{1} n_{2} l$ is the mutual inductance of an infinite outer solenoid and the finite inner solenoid, while ΔM is the correction due to the ends.

Equation (36) is Maxwell's expression, except that we have carried it out much further than Maxwell did. We would, however, emphasize that in the great majority of cases only three or four terms need be calculated in α, and in these only the first few terms in each parenthesis, to obtain a satisfactory accuracy.

Fig. 16
Since, however, this formula is the most valuable single expression known for the case of solenoids of equal length, it has seemed advisable to extend the series far enough to take care of the most unfavorable cases, which may arise in practice. At the same time the extra terms found have proved of use in checking our extension of Ròiti's formula below.

It should be noticed that the algebraic sums of the coefficients in each of the parentheses is equal to zero. For very long coils $\left(\frac{A}{r}\right.$ small) the quantities in the parentheses are sensibly equal to the absolute term inside. For very short coils the parentheses are a little larger, reaching a maximum in the region $\frac{A}{r}=0.9$, but falling abruptly to zero at the limit $\frac{A}{\gamma}=I$. The expression for α is
therefore rapidly convergent for coils of all lengths, even when the inner radius is nearly as great as the outer radius. In such cases the number of terms to be calculated in the above formula may become considerable, but even then it is simpler to use this series than to make the calculation with an absolute formula, such as those of Cohen or Nagaoka.

Equation (36) shows that the mutual inductance is proportional to $l-2 A \alpha$; or the length l must be reduced by $A \alpha$ on each end. When a is small and l is large, α is $\mathrm{I} / 2$ approximately. That is, the length l is reduced by A, the radius of the outer solenoid.

For the case of two coils each of more than one layer the above formula may be used, A and a being the mean radii, and n_{1} and n_{2} the total number of turns per cm in all the layers. The result will be only approximate, but usually less in error than if one uses the formula of Maxwell § 679 quoted by Mascart and Joubert. ${ }^{30}$

When the solenoids are very long in comparison with the radii, formula (36) may be simplified by omitting the terms in $A / l, A^{3} / r^{3}$, A^{5} / r^{5}, etc. The expression for α then becomes

$$
\begin{equation*}
\alpha=\frac{\mathrm{I}}{2}-\frac{a^{2}}{\mathrm{I} 6 A^{2}}-\frac{a^{4}}{\mathrm{I} 28 A^{4}}-\frac{5 a^{6}}{2048 A^{6}}-\ldots . \tag{37}
\end{equation*}
$$

Heaviside ${ }^{31}$ gives an extension of formula (37), but as it neglects $\frac{A}{l}, \frac{A^{3}}{r^{3}}$, etc., the additional terms are of no importance, being smaller than the terms already neglected in (37).

HAVELOCK'S FORMULA ${ }^{32}$

This formula for coaxial, concentric solenoids of equal length bears a close resemblance to the preceding, the main difference being that here l enters in place of the quantity $r=\sqrt{l^{2}+A^{2}}$ in

[^13]equation (36). Using the same notation as in the latter this formula reads:
$$
M=4 \pi^{2} a^{2} n_{1} n_{2}[l-2 A \beta]
$$
where
\[

$$
\begin{align*}
\beta=\left[\frac{\mathrm{I}}{2}-\right. & \frac{\mathrm{I}}{\mathrm{I} 6} \frac{a^{2}}{A^{2}}-\frac{\mathrm{I}}{\mathrm{I} 28} \frac{a^{4}}{A^{4}}-\frac{5}{2048} \frac{a^{6}}{A^{6}}-\frac{35}{3^{2} 768} \frac{a^{8}}{A^{8}}-\cdots \cdot \\
& -\frac{1}{4} \frac{A}{l}+\frac{1}{16}\left(\mathrm{I}+\frac{a^{2}}{A^{2}}\right)\left(\frac{A}{l}\right)^{3}-\frac{1}{32}\left(\mathrm{I}+\frac{3 a^{2}}{A^{2}}+\frac{a^{4}}{A^{4}}\right)\left(\frac{A}{l}\right)^{5} \\
& \left.+\frac{5}{25^{6}}\left(\mathrm{I}+6 \frac{a^{2}}{A^{2}}+6 \frac{a^{4}}{A^{4}}+\frac{a^{6}}{A^{6}}\right)\left(\frac{A}{l}\right)^{7}-\cdots\right] \tag{38}
\end{align*}
$$
\]

Havelock gives the expressions for the general terms in $\frac{A}{a}$ and $\frac{A}{l}$, so that the computation of β may be carried out so as to include terms of higher order when necessary. These expressions are

$$
-\frac{(2 n-1)[\mathrm{I} \cdot 3 \cdot 5 \cdots \cdots(2 n-3)]^{2}}{2^{2 n+1} n!(n+1)!}\left(\frac{a}{A}\right)^{2 n}
$$

and

$$
\frac{(-\mathrm{I})^{s}(2 s)!F\left(-s-\mathrm{I},-s, 2, \frac{a^{2}}{A^{2}}\right)}{\left.2^{2_{s}+2} s!\left(\frac{A}{l}\right)^{2_{s+1}}, \mathrm{I}\right)!}
$$

where F is a hypergeometric series in $\frac{a^{2}}{A^{2}}$, all of whose terms after that in $\left(\frac{a}{A}\right)^{2 s}$ are zero.

$$
\begin{aligned}
F(\alpha, \beta, \gamma, z)=\mathrm{I}+\frac{\alpha \beta}{\mathrm{I} \cdot \gamma} z & +\frac{\alpha(\alpha+\mathrm{I}) \beta(\beta+\mathrm{I})}{\mathrm{I} \cdot 2 \cdot \gamma(\gamma+\mathrm{I})} z^{2} \\
& +\frac{\alpha(\alpha+\mathrm{I})(\alpha+2) \beta(\beta+\mathrm{I})(\beta+2)}{\mathrm{I} \cdot 2 \cdot 3 \cdot \gamma(\gamma+\mathrm{I})(\gamma+2)} z^{3}+\cdots
\end{aligned}
$$

Formula (38) may be regarded as intermediate between (3^{6}) and (37), being applicable only to coils whose length is greater than the radius of the larger coil. In such cases, however, it furnishes a valuable check on Maxwell's formula.

CONCENTRIC COAXIAL SOLENOIDS, INNER COIL SHORTER THAN THE OUTER

ROIITI'S FORMULA

For a pair of concentric, coaxial solenoids of which the inner solenoid is shorter than the outer, we have the following: ${ }^{33}$

Fig. 17

$$
\begin{align*}
& M=4 \pi^{2} a^{2} n_{1} n_{2}\left[\rho_{2}-\rho_{1}+\frac{a^{2} A^{2}}{8}\left(\frac{\mathrm{I}}{\rho_{1}^{3}}-\frac{\mathrm{I}}{\rho_{2}^{3}}\right)-\frac{a^{4} A^{2}}{\mathrm{I} 6}\left(\frac{\mathrm{I}}{\rho_{1}^{5}}-\frac{\mathrm{I}}{\rho_{2}^{5}}\right)\right. \\
&+\frac{5}{64} a^{4} A^{4}\left(\mathrm{I}+\frac{\mathrm{I}}{2} \frac{a^{2}}{A^{2}}\right)\left(\frac{\mathrm{I}}{\rho_{1}^{7}}-\frac{\mathrm{I}}{\rho_{2}^{7}}\right) \\
&-\frac{35}{256} a^{6} A^{4}\left(\mathrm{I}+\frac{\mathrm{I}}{5} \frac{a^{2}}{A^{2}}\right)\left(\frac{\mathrm{I}}{\rho_{1}^{9}}-\frac{\mathrm{I}}{\rho_{2}^{9}}\right) \\
&+\frac{\mathrm{IO} 5}{\mathrm{IO} 24} a^{6} A^{6}\left(\mathrm{I}+\frac{9}{5} \frac{a^{2}}{A^{2}}+\frac{\mathrm{I}}{5} \frac{a^{4}}{A^{4}}\right)\left(\frac{\mathrm{I}}{\rho_{1}^{11}}-\frac{\mathrm{I}}{\rho_{2}^{11}}\right) \tag{39}\\
&-\frac{693}{2048} a^{8} A^{6}\left(\mathrm{I}+\frac{2}{3} \frac{a^{2}}{A^{2}}+\frac{\mathrm{I}}{2 \mathrm{I}} \frac{a^{4}}{A^{4}}\right)\left(\frac{\mathrm{I}}{\rho_{1}^{13}}-\frac{\mathrm{I}}{\rho_{2}^{13}}\right) \\
&+\frac{3003}{\mathrm{I} 6384} a^{8} A^{8}\left(\mathrm{I}+4 \frac{a^{2}}{A^{2}}+\frac{\mathrm{IO}}{7} \frac{a^{4}}{A^{4}}+\frac{\mathrm{I}}{\mathrm{I} 4} \frac{a^{6}}{A^{6}}\right)\left(\frac{\mathrm{I}}{\rho_{1}^{15}}-\frac{\mathrm{I}}{\rho_{2}^{15}}\right)-\cdots
\end{align*}
$$

in which (see Fig. 17)

[^14]\[

$$
\begin{aligned}
\rho_{1} & =\sqrt{l_{1}^{2}+A^{2}} \text { where } l_{1}=\frac{x-l}{2} \\
\rho_{2} & =\sqrt{l_{2}^{2}+A^{2}} \quad \text { " } l_{2}=\frac{x+l}{2} \\
l & =l_{2}-l_{1}=\text { length of inner solenoid. } \\
x & =\text { length of outer solenoid and } A \text { and } a \text { the radii. }
\end{aligned}
$$
\]

When $\frac{l}{x}$ is small (case of short inner coil), $\left(\rho_{2}-\rho_{1}\right)$ is most accu1rately calculated by the exact formula $\left(\rho_{2}-\rho_{1}\right)=\frac{x l}{\rho_{1}+\rho_{2}}$, the denominator being calculated from the above expressions for ρ_{1} and ρ_{2}.

For long coils $\left(\frac{2 A}{x}\right.$ small $)$ the above formula is rapidly convergent, especially if the inner coil is considerably shorter than the outer. This formula may also be used for short coils $\left(\frac{x}{2 A}\right.$ small $)$, the convergence being most rapid when the radius of the inner coil is small in comparison with that of the outer. For very short coils, we have expanded formula (39) in a series in ascending powers of $\frac{a^{2}}{A^{2}}$. This formula is, however, not so accurate, nor so simple to use as that of Searle and Airey, and has not been included in this collection.

A peculiarity of Roiti's formula is that the successive terms, especially in the case of short coils, are nearly equal in pairs. Thus the terms in $\left(\frac{I}{\rho_{1}^{5}}-\frac{I}{\rho_{2}^{5}}\right)$ and $\left(\frac{I}{\rho_{1}^{7}}-\frac{I}{\rho_{2}^{7}}\right)$ are of the same order of magnitude, but of opposite sign; similarly for the terms involving the ninth and eleventh powers of ρ_{1} and ρ_{2}, and so on. For the limiting case $x=l$, Ròiti's formula goes over into Maxwell's (36), as would be expected, since both are derived by integration of the same original expression between appropriate limits. To obtain, however, the same precision, twice as many terms have to be calculated in Ròiti's formula as in Maxwell's. We see from these considerations, that in using Roiti's formula, the inner coil need not be very different in length from the outer coil, although in general the convergence is better with a relatively short inner solenoid.

GRAY'S FORMULA

Gray ${ }^{34}$ gives a general expression for the mutual kinetic energy of two solenoidal coils which may or may not be concentric, and their axes may be at any angle ϕ. The most important case in practice is when the two coils are coaxial. In that case the zonal harmonic factors in each term reduce to unity, and half the terms become zero. Putting the current in each equal to unity, the mutual kinetic energy becomes the mutual inductance M.

Fig. 18
Let $2 x, A, n_{1}$ be respectively the length, radius, and number of turns per cm of one of the coils, and $2 l, a, n_{2}$ be the corresponding quantities for the other solenoid. Let, further, x_{1} and x_{2} be the distances, along the axis, between the center of the coil with radius a and the nearer and further end planes, respectively, of the coil with radius A, and let r_{1} and r_{2} be the diagonals (Fig. I8).

$$
r_{1}=\sqrt{x_{1}^{2}+A^{2}} \quad r_{2}=\sqrt{x_{2}^{2}+A^{2}}
$$

Gray's expression with these changes becomes

$$
\begin{equation*}
M=\pi^{2} a^{2} A^{2} n_{1} n_{2}\left[K_{1} k_{1}+K_{3} k_{3}+K_{5} k_{5}+\cdots\right] \tag{40}
\end{equation*}
$$

where K_{1}, K_{3}, etc., are functions of x and A, and k_{1}, k_{3}, etc., are functions of l and $a .^{35}$

[^15]\[

$$
\begin{aligned}
& K_{1}=\frac{2}{A^{2}}\left(\frac{x_{2}}{r_{2}}-\frac{x_{1}}{r_{1}}\right) \\
& K_{3}=\frac{\mathrm{I}}{2}\left(\frac{x_{1}}{r_{1}^{5}}-\frac{x_{2}}{r_{2}^{5}}\right)
\end{aligned}
$$
\]

$$
\begin{aligned}
& =-\frac{A^{2}}{8}\left\{\frac{x_{1}}{r_{1}^{9}} X_{2}^{\prime}-\frac{x_{2}}{r_{2}^{9}} X_{2}^{\prime \prime}\right\} \\
& K_{7}=\frac{A^{4}}{8}\left\{\frac{x_{1}}{r_{1}^{13}}\left(\frac{5}{2}-10 \frac{x_{1}^{2}}{A^{2}}+4 \frac{x_{1}^{4}}{A^{4}}\right)-\frac{x_{2}}{r_{2}^{13}}\left(\frac{5}{2}-10 \frac{x_{2}^{2}}{A^{2}}+4 \frac{x_{2}^{4}}{A^{4}}\right)\right\} \\
& =\frac{A^{4}}{8}\left\{\frac{x_{1}}{r_{1}^{13}} X_{4}^{\prime}-\frac{x_{2}}{r_{2}^{13}} X_{4}^{\prime \prime}\right\} \\
& k_{1}=2 l \\
& k_{3}=-a^{2} l\left(3-4 \frac{l^{2}}{a^{2}}\right)=-a^{2} l L_{2} \\
& k_{5}=a^{4}\left(\frac{5}{2}-\operatorname{Io} \frac{l^{2}}{a^{2}}+4 \frac{l^{4}}{a^{4}}\right)=a^{4} l L_{4} \\
& k_{7}=-a^{6} r\left(\frac{35}{16}-\frac{35}{2} \frac{l^{2}}{a^{2}}+2 \mathrm{I} \frac{l^{4}}{a^{4}}-4 \frac{l^{6}}{a^{6}}\right)=-a^{6} l L_{6}
\end{aligned}
$$

This formula is simple and convenient for calculation, if only a few terms need be evaluated. This is the case when r_{1} and r_{2} are large (coils relatively far apart). The coefficients $L_{2 n}, X^{\prime}{ }_{2 n}$ and $X^{\prime \prime}{ }_{2 n}$ are derived from the same polynomial $S_{2 n}$ by substituting $\frac{l^{2}}{a^{2}} \frac{x_{1}{ }^{2}}{A^{2}}$, and $\frac{x_{2}{ }^{2}}{A^{2}}$, respectively.

For short coils relatively far apart these polynomials are all small. Table XVIII gives values of the polynomial $S_{2 n}$ with varying argument, to aid in calculations where great accuracy is not desired, or to aid in making preliminary calculations to see whether the convergence will be satisfactory in any particular case.

If the coils are concentric, and the ratio of the length of the winding of the outer coil to the radius is $\sqrt{3}$ to $\mathrm{I}, K_{5}=0$, and if the same condition holds for the inner coil, $k_{3}=0$. If in addition a is considerably smaller than A, the terins of higher order become negligible and (40) reduces to

$$
\begin{equation*}
M=\frac{2 \pi^{2} a^{2} N_{1} N_{2}}{d} \tag{4I}
\end{equation*}
$$

where d is half the diagonal of the outer coil, $=\sqrt{x^{2}+A^{2}}$. When the dimensions depart slightly from these theoretical ratios the small correction terms to (41) can be calculated. ${ }^{35}$. The general case for concentric coils is treated in the next section.

SEARLE AND AIREY'S FORMULA

The following expression for the mutual inductance of two concentric, coaxial solenoidal coils (Fig. 19) has been given by Searle and Airey ${ }^{36}$

$$
\begin{aligned}
M & =g_{1} G_{1}+g_{3} G_{3}+g_{5} G_{5}+g_{7} G_{7}+\cdots \\
& =\frac{2 \pi^{2} a^{2} N_{1} N_{2}}{d}\left[1-\frac{A^{2}}{2 d^{4}} \frac{4 l^{2}-3 a^{2}}{4}-\frac{A^{2}\left(4 x^{2}-3 A^{2}\right)}{8 d^{8}} \cdot \frac{8 l^{4}-20 l^{2} a^{2}+5 a^{4}}{8}\right. \\
& \left.-\frac{A^{2}\left(8 x^{4}-20 x^{2} A^{2}+5 A^{4}\right)}{16 d^{12}} \cdot \frac{\left(64 l^{6}-336 l^{4} a^{2}+280 l^{2} a^{4}-35 a^{6}\right)}{64}-\cdots\right]
\end{aligned}
$$

The notation of (42) differs slightly from that used by Searle and Airey.

Fig. 19
Equation (42) has been extended and put for greater convenience in calculation into the form ${ }^{37}$ shown on next page.

```
\mp@subsup{}{}{35a}\mathrm{ Rosa, this Bulletin, 3, p. 22I; 1907.}
36 The Electrician (London), 56, p. 318; 1905.
\mp@subsup{}{}{37}\mathrm{ Rosa, this Bulletin, 3, p. 224; 1907.}
```

$21674^{\circ}-\mathrm{I} 2-5$

$$
\begin{align*}
M=\frac{2 \pi^{2} a^{2} N_{1} N_{2}}{d}[\mathrm{I} & +\frac{A^{2} a^{2}}{8 d^{4}} L_{2}+\frac{A^{4} a^{4}}{32 d^{8}} X_{2} L_{4} \\
& +\frac{A^{6} a^{6}}{32 d^{12}} X_{4} L_{6}+\frac{A^{8} a^{8}}{32 d^{16}} X_{6} L_{8}+\cdots \\
& +\frac{1}{32}\left(\frac{A a}{d^{2}}\right)^{2 n} X_{2 n-2} L_{2 n}+\cdots \tag{43}
\end{align*}
$$

where

$$
\left.\begin{array}{rlrl}
X_{2} & =3-4 \frac{x^{2}}{A^{2}} & L_{2} & =3-4 \frac{l^{2}}{a^{2}}
\end{array} \quad d=\sqrt{x^{2}+A^{2}}\right]\left(L_{4}=\frac{5}{2}-10 \frac{l^{2}}{a^{2}}+4 \frac{l^{4}}{a^{4}} .\right.
$$

$N_{1}=2 x n_{1}$ and $N_{2}=2 l n_{2}$ are the total number of turns on the two solenoids. This formula reduces to (41) when the terms after the first are negligible, as they are when the conditions assumed for (4I) are fulfilled. The above expressions for L_{2}, X_{2} show what these conditions are in order to make the second and third terms zero. If l^{2} / a^{2} is slightly more or less than $3 / 4$, (43) gives the value of the second term which is neglected in (4r), etc.

The degree of convergence of Searle and Airey's formula depends primarily on the magnitude of the quantity $\frac{A^{2} a^{2}}{d^{4}}$; in certain cases, however, the values of the coefficients become of equal importance, making it necessary to examine carefully into the degree of convergence of the formula, since the terms of higher order are sometimes larger than those immediately preceding. Since the X and L
coefficients are polynomials in $\frac{l^{2}}{a^{2}}$ and $\frac{x^{2}}{A^{2}}$, each one will have a finite number of roots depending on the degree of the polynomial. The values of these coefficients will therefore, with increasing $\frac{l}{a}$ or $\frac{x}{A}$, oscillate between positive and negative values, each maximum or minimum being greater than that preceding, until, for values of the argument greater than the largest root, the values of the functions increase indefinitely without limit.

For short coils $\left(\frac{x}{A}\right.$ and $\frac{l}{a}$ small $)$ the coefficients will evidently be confined to moderate values, and if, further, the inner radius is small relatively to the outer, the convergence will be very rapid. For longer coils the coefficients may attain very large values, and the convergence become very unsatisfactory, in spite of the fact that $\frac{A^{2} a^{2}}{d^{4}}$ is, for given radii, smaller with long coils than with short coils. The conditions are so complicated that we have calculated (Table XIX) certain values of the coefficients to aid in deciding whether, in any given case, the convergence will be satisfactory or not. The values given for $\frac{x}{A}$ and $\frac{l}{a}$ less than unity will also be found useful in calculations of the mutual inductance of short coils by Searle and Airey's formula, when the highest precision is not required. Coefficients of higher order than those given above are calculated by the formula
$L_{2 n}=\sum_{p=0}^{p=n} \frac{(-1)^{n-p}(2 n+1) 2 n(2 n-1) \cdots[2 n-(2 p-2)]}{\left(\frac{p+1}{4}\right) 2^{2} \cdot 4^{2} \cdot 6^{2} \cdots \cdots(2 p)^{2}}\left(\frac{l}{a}\right)^{2 n-2 p}$
$X_{2 n}$ is calculated by the same expression in $\frac{x}{A}$ instead of $\frac{l}{a}$.
Table XVIII includes all the positive and negative maxima as well as the zero points of the coefficients up to and including L_{14} or X_{14}, together with the values at a number of intermediate points. Although, from the nature of the case, a table to serve as the basis of accurate calculations would be somewhat bulky, those given should suffice to simplify the use of this valuable formula.

COHEN'S FORMULA ${ }^{38}$ FOR ANY TWO COAXIAL, CONCENTRIC SOLENOIDS

This is an absolute formula for two coaxial, concentric solenoids of lengths $2 l_{1}$ and $2 l_{2}$, Fig. 20.

$$
\begin{align*}
& M=4 \pi n_{1} n_{2}\left(V-V_{1}\right) \\
& V=-\left(A^{2}-a^{2}\right) c\left[F\left\{F\left(k^{\prime}, \theta\right)-E\left(k^{\prime}, \theta\right)\right\}-E F\left(k^{\prime}, \theta\right)\right] \\
&+\frac{c^{4}-\left(A^{2}-6 A a+a^{2}\right) c^{2}-2\left(A^{2}-a^{2}\right)^{2}}{3 \sqrt{(A+a)^{2}+c^{2}}} \cdot F \tag{44}\\
&+\frac{2\left(A^{2}+a^{2}\right)-c^{2}}{3} \sqrt{(A+a)^{2}+c^{2}} \cdot E-c\left(A^{2}-a^{2}\right) \frac{\pi}{2}
\end{align*}
$$

V_{1} is obtained from V by replacing c by c_{1},

$$
c=l_{1}+l_{2} \quad c_{1}=l_{1}-l_{2},
$$

F and E are the complete elliptic integrals of the first and second kind to modulus k, where $k^{2}=\frac{4 A a}{(A+a)^{2}+c^{2}}$
$F\left(k^{\prime}, \theta\right)$ and $E\left(k^{\prime}, \theta\right)$ are the incomplete elliptic integrals of modulus k^{\prime} and amplitude θ,

$$
\begin{aligned}
k^{\prime 2} & =\mathrm{I}-k^{2}=\mathrm{I}-\frac{4 A a}{(A+a)^{2}+c^{2}} \\
& =\frac{(A-a)^{2}+c^{2}}{(A+a)^{2}+c^{2}} \\
\sin ^{2} \theta & =\frac{\left(A^{2}-a^{2}\right)^{2}+c^{2}(A-a)^{2}}{\left(A^{2}-a^{2}\right)^{2}+c^{2}(A+a)^{\frac{2}{2}}}
\end{aligned}
$$

Fig. 20

NAGAOKA'S FORMULA FOR ANY COAXIAL SOLENOIDS

Nagaoka has recently given ${ }^{39}$ an absolute formula for the mutual inductance of two coaxial solenoids, whether concentric or not, and

[^16]has expanded this in q functions in a form suitable for calculation. In the notation of Fig. 18,
\[

$$
\begin{equation*}
M=4 \pi n_{1} n_{2} A a\left(I_{1}-I_{2}-I_{3}+I_{4}\right) \tag{45}
\end{equation*}
$$

\]

where I_{1}, I_{2}, I_{3}, and I_{4} are the values of the integral I, given below with the arguments

$$
c=d+(x+l), d+(x-l), d-(x-l) \text { and } d-(x+l)
$$

respectively, where d is the distance between centers.
The expression for I is, in the Weierstrassian notation,

$$
I=2\left\{\left(\frac{g_{2}}{6}-\mathrm{p}^{2} v\right) \omega_{1}+\mathrm{p} v \cdot \eta_{1}+\frac{\mathrm{p}^{\prime} v}{2}\left(\eta_{1} v-\omega_{1} \frac{\sigma^{\prime}}{\sigma}(v)\right)\right\}
$$

where v is an auxiliary quantity, and ω_{1} and g_{2} are respectively the real semiperiod and invariant of the Weierstrassian function $\mathrm{p} u$.

To calculate I, Nagaoka divides it in two parts

$$
\begin{aligned}
& I^{\prime}=\left(\frac{g_{2}}{6}-\mathrm{p}^{2} v\right) \omega_{1}+\mathrm{p} v \cdot \eta_{1} \\
& I^{\prime \prime}=\frac{\mathrm{p}^{\prime} v}{2}\left(\eta_{1} v-\omega_{1} \frac{\sigma^{\prime}}{\sigma}(v)\right)
\end{aligned}
$$

We then calculate the following auxiliary quantities

$$
\begin{aligned}
& \alpha=\left(\frac{2}{A a}\right)^{\frac{1}{3}} \\
& P_{1}=\left(\mathrm{p} v-e_{1}\right)=-\frac{c^{3}}{2 A \alpha \alpha} \\
& P_{2}=\left(\mathrm{p} v-e_{2}\right)=\frac{(A-a)^{3}}{2 A a \alpha} \\
& P_{3}=\left(\mathrm{p} v-e_{3}\right)=\frac{(A+a)^{2}}{2 A a \alpha}
\end{aligned}
$$

and thence $\left(e_{1}-e_{2}\right),\left(e_{1}-e_{3}\right)$, and $\left(e_{2}-e_{3}\right)$, which with the relation $\left(e_{1}+e_{2}+e_{3}\right)=0$ enable us to find $\mathbf{p} v$.

The very small quantity q is found, as in formula (8), by the relations (see also Table XV)

$$
\begin{gathered}
q=\frac{l}{2}+2\left(\frac{l}{2}\right)^{5}+15\left(\frac{l}{2}\right)^{9}+\cdots \\
k^{2}=\frac{e_{2}-e_{3}}{e_{1}-e_{3}} \quad k^{\prime 2}=\frac{e_{1}-e_{2}}{e_{1}-e_{3}} \quad l=\frac{\mathrm{I}-\sqrt{k^{\prime}}}{\mathrm{I}+\sqrt{k^{\prime}}}=\frac{k^{2}}{\left(\mathrm{I}+k^{\prime}\right)\left(\mathrm{I}+\sqrt{\left.k^{\prime}\right)^{2}}\right.}
\end{gathered}
$$

and ω_{1} may be calculated by any one of the foilowing equations (the other two serving as checks):

$$
\begin{aligned}
& \omega_{1}=\frac{2 \pi \sqrt{q}}{\sqrt{e_{2}-e_{3}}}\left(\mathrm{I}+q^{2}+q^{6}+q^{12}+\cdots \cdot\right)^{2} \\
& \omega_{1}=\frac{\pi}{2 \sqrt{e_{1}-e_{3}}}\left(\mathrm{I}+2 q+2 q^{4}+2 q^{9}+\cdots \cdot\right)^{2} \\
& \omega_{1}=\frac{\pi}{2 \sqrt{e_{1}-e_{2}}}\left(\mathrm{I}-2 q+2 q^{4}-2 q^{9}+\cdots \cdot\right)^{2}
\end{aligned}
$$

The term I^{\prime} is now given by either of the following two formulas, which give a check on the calculation:

$$
\begin{aligned}
& I^{\prime}=-\left\{\frac{\left\{P_{1}\left(P_{2}+P_{3}\right)\right.}{2}+\frac{\left(P_{1}+2 P_{2}\right)\left(e_{2}-e_{3}\right)}{6}\right\} \omega_{1}-\frac{\mathrm{p} v}{4 \omega_{1}} \frac{\theta^{\prime \prime}{ }_{3}(\mathrm{o})}{\theta_{3}(\mathrm{o})} \\
& I^{\prime}=-\left\{\frac{\left\{P_{1}\left(P_{2}+P_{3}\right)\right.}{2}-\frac{\left(P_{1}+2 P_{3}\right)\left(e_{2}-e_{3}\right)}{6}\right\} \omega_{1}-\frac{\mathrm{p} v}{4 \omega_{1}} \frac{\theta_{0}^{\prime \prime}(\mathrm{o})}{\theta_{0}(o)}
\end{aligned}
$$

The quotients of the θ functions are easily calculated from the known value of q and the relations

$$
\begin{aligned}
& \frac{\theta_{3}^{\prime \prime}(\mathrm{o})}{\theta_{3}(\mathrm{o})}=-\frac{8 \pi^{2}\left(q+4 q^{4}+9 q^{9}+\cdots \cdot\right)}{\mathrm{I}+2 q+2 q^{4}+2 q^{9}+\cdots \cdot} \\
& \frac{\theta_{0}^{\prime \prime}(\mathrm{o})}{\theta_{0}(\mathrm{o})}=\frac{8 \pi^{2}\left(q-4 q^{4}+9 q^{9}-\cdots \cdot\right)}{\mathrm{I}-2 q+2 q^{4}-2 q^{9}+\cdots \cdot}
\end{aligned}
$$

To calculate $I^{\prime \prime}$ we have

$$
I^{\prime \prime}=-\frac{\pi c}{8 A a}\left(A^{2}-a^{2}\right)\left[\sqrt{\frac{b-\mathrm{I}}{b+\mathrm{I}}}+4 q^{2} \sqrt{b^{2}-\mathrm{I}}\left\{\mathrm{I}-q^{2}(2 b-\mathrm{r})\right\}\right]
$$

the expression in the brackets being nearly equal to unity. The quantity b is calculated from the equations

$$
\begin{aligned}
-b & =\cos 2 \pi w=\frac{s}{q}\left(\mathrm{I}+2 q^{4} \cos 4 \pi w+\cdots \cdot\right) \\
s & =\frac{\mathrm{I} \sqrt[4]{e_{1}-e_{3}} \sqrt{P_{2}}-\sqrt[4]{e_{1}-e_{2}} \sqrt{P_{3}}}{2 \sqrt[4]{e_{1}-e_{3}} \sqrt{P_{2}}+\sqrt[4]{e_{1}-e_{2}} \sqrt{P_{3}}}
\end{aligned}
$$

first putting $\cos 2 \pi w$ equal to its approximate value $\frac{s}{q}$, and then computing the small correction in $\cos 4 \pi w$ from $\cos 2 \pi w$, remembering that w is a pure imaginary. The correction to b thus found is often negligible.

The term $I^{\prime \prime}$ becomes less important as the difference of the radii of the solenoids becomes small, and vanishes for equal radii. If, further, the lengths of the solenoids be equal also, $I_{2}=I_{3}$, and we have only three of the integrals to evaluate, and only the first term I^{\prime} in each of these.

For concentric, coaxial solenoids $d=0$, and consequently $I_{1}-I_{2}=I_{4}-I_{3}$, so that only two integrals must be calculated.

On account of the number of auxiliary quantities involved, Nagaoka's formula should not be employed except when the various series formulas given in this section are all shown to be inadequate. It is, however, simpler to use Nagaoka's formula than the elliptic integral formula from which it is derived, or any other expression in incomplete integrals yet derived, even supposing Legendre's table of incomplete integrals to be available.

RUSSELL'S FORMULAS ${ }^{40}$

Russell's formula for coaxial solenoids in the notation of this paper is

$$
\begin{aligned}
& M=4 \pi^{2} a^{2} n_{1} n_{2}\left[R _ { 1 } \left\{\mathrm{I}-\frac{\mathrm{I}}{2} q_{2} k_{1}{ }^{2}-\frac{\mathrm{I}}{2} \cdot \frac{\mathrm{I}}{4} q_{3} k_{1}{ }^{4}-\frac{\mathrm{I} \cdot \mathrm{I} \cdot 3}{2 \cdot 4 \cdot 6} q_{4} k_{1}{ }^{6}\right.\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left.-R_{2}\left\{\mathrm{I}-\frac{\mathrm{I}}{2} q_{2} k_{2}^{2}-\frac{\mathrm{I}}{2} \cdot \frac{\mathrm{I}}{4} q_{3} k_{2}^{4}-\text { terms with above coefs. }\right\}\right][46]
\end{aligned}
$$

where

$$
\begin{array}{ll}
R_{1}^{2}=(A+a)^{2}+\left(l_{1}+l_{2}\right)^{2} & k_{1}{ }^{2}=\frac{4 A a}{R_{1}^{2}} \\
R_{2}{ }^{2}=(A+a)^{2}+\left(l_{1}-l_{2}\right)^{2} & k_{2}{ }^{2}=\frac{4 A a}{R_{2}{ }^{2}}
\end{array}
$$

${ }^{40}$ Alexander Russell, Phil. Mag., Apr. 1907, p. 420.

$$
\begin{aligned}
& q_{n}=\frac{(A+a)^{2}}{4 A a} q_{n-1}-\frac{11 \cdot 3 \cdot 5 \ldots 2 n-3}{n 24 \cdot 6 \ldots 2 n-2} \frac{A}{a} \\
& q_{2}=\frac{(A+a)^{2}}{4 A a}-\frac{\mathrm{II}}{22} \frac{A}{a} \\
& q_{3}=\frac{(A+a)^{2}}{4 A a} q_{2}-\frac{1 \text { I. } 3 .}{32.4} \frac{A}{a}
\end{aligned}
$$

etc.
A and a are the radii of the outer and inner cylinders respectively, $2 l_{1}$ and $2 l_{2}$ their lengths, Fig. 20, and n_{1}, n_{2} the number of turns of wire per cm in the two windings. This formula applies only when the inner coil is shorter than the outer. For two coils of equal length the second part of the above formula is not convergent, and hence it must be replaced by an expression in elliptic integrals. The formula thus becomes (equation 42 in Russell's paper)

$$
\begin{gather*}
M=4 \pi^{2} a^{2} n_{1} n_{2}\left[R_{1}\left\{\mathrm{I}-\frac{1}{2} q_{2} k_{1}{ }^{2}-\frac{\mathrm{I}}{8} q_{3} k_{1}{ }^{4}-\cdots \text { as above }\right\}\right] \\
+\frac{32 \pi A a}{3(A+a)} n_{1} n_{2}\left[\left(A^{2}+a^{2}\right)(F-E)-2 A a F\right] \tag{47}
\end{gather*}
$$

the modulus of the elliptic integrals being $k_{2}=\frac{2 \sqrt{A a}}{A+a}$
This formula gives an accurate result for equal solenoids of considerable length, but Maxwell's formula (36) is just as accurate and much more convenient.

For short coils neither (46) nor (47) will apply, but for that case as well as other cases Russell's general formula may be used. As the latter is equivalent to (44) it is not here given.

MUTUAL INDUCTANCE OF A SHORT SECONDARY ON THE OUTSIDE OF A LONG PRIMARY

This is an important case in practice. Havelock ${ }^{41}$ has shown that the mutual inductance of two such solenoids is the same as that of two coils with the same radii and lengths, but with the shorter coil inside. That is, the mutual inductance of a coil of length l and radius A outside of a coil of length x and radius a is the same as

[^17]the mutual inductance of a coil of length x and radius A outside of a coil of length l and radius a.

The series formulas already given for the latter case may therefore be applied to the present case directly if the quantities l and x, or l_{1} and l_{2}, be interchanged.

In Ròiti's formula we put, therefore, $l_{1}=\frac{l-x}{2}$ instead of $\frac{x-l}{2}$. The values of ρ_{1} and ρ_{2} are, however, unchanged and the formula. may be used just as it stands.

Russell's fornula being symmetrical in l_{1} and l_{2} requires no change whatever.

In Searle and Airey's formula we have to put

$$
\begin{array}{ll}
d=\sqrt{l^{2}+A^{2}} & L_{2}=3-4 \frac{x^{2}}{a^{2}} \\
X_{2}=3-4 \frac{l^{2}}{A^{2}} & \\
& L_{4}=\frac{5}{2}-10 \frac{x^{2}}{a^{2}}+4 \frac{x^{4}}{a^{4}}
\end{array}
$$

etc.
Cohen's and Nagaoka's formulas apply without change as would be expected.

ROSA'S FORMULAS FOR SINGLE LAYER COILS OF EQUAL RADII

The mutual inductance of two coaxial single layer coils of equal radii is given by the following expression:

$$
\frac{M}{N_{1} N_{2}}=M_{0}+\Delta M
$$

where M_{0} is the mutual inductance of the two parallel circles at the centers of the coils and ΔM is given by the following expression: ${ }^{42}$

[^18]\[

$$
\begin{align*}
& \Delta M=4 \pi a\left[\frac { \mathrm { I } } { 2 4 } \frac { b _ { 1 } ^ { 2 } + b _ { 2 } ^ { 2 } } { d ^ { 2 } } \left\{\mathrm{I}+\frac{3}{8} \frac{d^{2}}{a^{2}}\left(\log \frac{8 a}{d}-\frac{\mathrm{II}}{6}\right)-\frac{45}{256} \frac{d^{4}}{a^{4}}\left(\log \frac{8 a}{d}-\frac{97}{60}\right)\right.\right. \\
& \left.+\frac{1050}{128^{2}} \frac{d^{6}}{a^{6}}\left(\log \frac{8 a}{d}-\frac{54}{35}\right)-\frac{44100}{128^{3}} \frac{d^{8}}{a^{8}}\left(\log \frac{8 a}{d}-\frac{3793}{2520}\right)+\cdots \cdot\right\} \\
& +\frac{\left(b_{1}{ }^{4}+b_{2}{ }^{4}+\frac{10}{3} b_{1}{ }^{2} b_{2}{ }^{2}\right)}{320 d^{4}}\left\{I+\frac{1}{16} \frac{d^{2}}{a^{2}}-\frac{15}{256} \frac{d^{4}}{a^{4}}\left(\log \frac{8 a}{d}-\frac{187}{60}\right)\right. \tag{48}\\
& \left.+\frac{2100}{128^{2}} \frac{d^{6}}{a^{6}}\left(\log \frac{8 a}{d}-\frac{893}{420}\right)-\cdots\right\} \\
& +\frac{b_{1}^{6}+b_{2}^{6}+7\left(b_{1}^{4} b_{2}^{2}+b_{1}^{2} b_{2}^{4}\right)}{2688 d^{6}}\left\{I+\frac{3}{160} \frac{d^{2}}{a^{2}}-\frac{3}{1024} \frac{d^{4}}{a^{4}}+\cdots \cdot\right\} \\
& \left.+\frac{\left(b_{1}{ }^{8}+b_{2}^{8}\right)+12\left(b_{1}{ }^{8} b_{2}{ }^{2}+b_{1}{ }^{2} b_{8}{ }^{6}\right)+\frac{126}{5} b_{1}^{4} b_{2}^{4}}{1843^{2} d^{8}}\left\{\mathrm{I}+\frac{\mathrm{I}}{\mathrm{II} 2} \frac{d^{8} \bar{a}^{8}}{}+\cdots\right\}\right]
\end{align*}
$$
\]

For coils of equal breadth and equal radii (Fig. 2I) $b_{1}=b_{2}=b$ and we may write the equation (48) as follows:

Fig. 21

$$
\begin{align*}
& \Delta M=4 \pi a\left[\frac{b^{2}}{12 d^{2}} \left\lvert\, \mathrm{I}+\frac{3}{8} \frac{d^{2}}{a^{2}}\left(\log \frac{8 a}{d}-\frac{1 \mathrm{I}}{6}\right)-\frac{45}{256} \frac{d^{4}}{a^{4}}\left(\log \frac{8 a}{d}-\frac{97}{60}\right)\right.\right. \\
& \left.+\frac{1050}{128^{8}} \frac{d^{6}}{a^{6}}\left(\log \frac{8 a}{d}-\frac{54}{35}\right)-\frac{44100}{128^{3}} \frac{d^{8}}{a^{8}}\left(\log \frac{8 a}{d}-\frac{3793}{2520}\right)+\cdot \cdot\right\} \\
& +\frac{1}{60} \frac{b^{4}}{d^{4}}\left\{I+\frac{1}{16} \frac{d^{2}}{a^{2}}-\frac{15}{256} \frac{d^{4}}{a^{4}}\left(\log \frac{8 a}{d}-\frac{187}{60}\right)\right. \tag{49}\\
& \left.+\frac{2100}{\overline{128^{8}} \frac{d^{6}}{a^{6}}}\left(\log \frac{8 a}{d}-\frac{893}{420}\right)-\cdots\right\} \\
& \left.+\frac{\mathrm{I}}{\mathrm{I} 68} \frac{b^{6}}{d^{6}}\left\{I+\frac{3}{\mathrm{I} 60} \frac{d^{2}}{a^{2}}-\frac{3}{\mathrm{IO} 24} \frac{d^{4}}{a^{4}}+\cdots\right\}+\frac{\mathrm{I}}{360} \frac{b^{8}}{d^{8}}\left\{I+\frac{1}{112} \frac{d^{2}}{a^{2}}-\cdots\right\}\right]
\end{align*}
$$

This expression will give a very accurate value of ΔM for two coils not nearer together than their breadth if a is considerably greater than b, the breadth of the coil.

For coils which are not so near together the Rosa-Weinstein formula ${ }^{43}$ may be used.

$$
\begin{equation*}
\Delta M=4 \pi a \sin \gamma[(F-E) P+E Q] \tag{50}
\end{equation*}
$$

where

$$
\begin{aligned}
P & =\frac{\cos ^{2} \gamma}{24 d^{2}}\left[\alpha_{1}-\alpha_{3}-3 \alpha_{3} \cos ^{2} \gamma+8 \alpha_{3} \cos ^{4} \gamma\right] \\
Q & =\frac{\sin ^{2} \gamma}{24 d^{2}}\left[\alpha_{1}+2 \alpha_{3}+3 \alpha_{3} \cos ^{8} \gamma+8 \alpha_{3} \cos ^{4} \gamma\right] \\
\alpha_{1} & =\left(b_{1}{ }^{2}+b_{2}{ }^{2}\right) \quad \alpha_{3}=\frac{3\left(b_{1}{ }^{4}+b_{2}^{4}\right)+10 b_{1} b_{2}{ }^{3}}{80 d^{2}} \\
\sin ^{2} \gamma & =\frac{4 a^{2}}{4 a^{2}+d^{2}} \quad \cos ^{2} \gamma=\frac{d^{2}}{4 a^{2}+d^{2}}
\end{aligned}
$$

and F and E are the complete elliptic integrals of the first and second kinds with modulus $k=\sin \gamma$.

When the coils have equal breadth $b_{1}=b_{2}=b$ and $\alpha_{1}=b^{2}, \alpha_{3}=\frac{b^{4}}{5 d^{2}}$.
If the lengths of the coils are not very small in comparison with d a greater precision may be attained by adding to (50) the last two terms of (48) or (49) which depend on differentials of the sixth and eighth order.

MUTUAL INDUCTANCE BY MEANS OF SELF-INDUCTANCE FORMULA

The mutual inductance of two coils having the same radii and the same number of turns per unit of length may be calculated with great accuracy from a knowledge of several self-inductances.

If the two coils be designated as A and B and a coil C having the same radius and number of turns per unit length be imagined to exactly fill up the space between A and B, the self-inductance of coils A, B and C in series will be

$$
L_{\mathrm{ABC}}=L_{\mathrm{A}}+L_{\mathrm{B}}+L_{\mathrm{C}}+2 M_{\mathrm{AC}}+2 M_{\mathrm{BC}}+2 M_{\mathrm{AB}}
$$

[^19]Similarly the self-inductances of the coils A and C in series, and of B and C in series are given by the equations.

$$
\begin{aligned}
& L_{\mathrm{AC}}=L_{\mathrm{A}}+L_{\mathrm{C}}+2 M_{\mathrm{AC}} \\
& L_{\mathrm{BC}}=L_{\mathrm{B}}+L_{\mathrm{C}}+2 M_{\mathrm{BC}}
\end{aligned}
$$

Eliminating M_{AC} and M_{BC} in the equation above we find

$$
\begin{equation*}
2 M_{\mathrm{AB}}=\left(L_{\mathrm{ABC}}+L_{\mathrm{C}}\right)-\left(L_{\mathrm{AC}}+L_{\mathrm{BC}}\right) \tag{5I}
\end{equation*}
$$

The self-inductances may be calculated with all the accuracy desired by Lorenz's or Nagaoka's formulas. Formula (5I) is of especial value in testing new formulas and in the case where the two coils are in contact. In the latter case the formula becomes

$$
\begin{equation*}
2 M_{\mathrm{AB}}=L_{\mathrm{AB}}-\left(L_{\mathrm{A}}+L_{\mathrm{B}}\right) \tag{52}
\end{equation*}
$$

OTHER FORMULAS

Himstedt has given several formulas for different cases of coaxial solenoids. The first ${ }^{44}$ is for the case of a short secondary on the outside of a long primary. The formula is very complicated, and the calculation tedious. The formulas of Ròiti and Searle and Airey may be used to much better advantage.

Himstedt's second expression is for the case of two coaxial solenoids not concentric, the distance between their mean planes having any value; the radius of one is supposed to be considerably smaller than the other. This also is a very complicated formula, involving second and fourth derivatives of expressions containing the elliptic integrals F and E. Gray's general equation is much simpler to calculate. This is not, however, an important case in practice, and we do not therefore give Himstedt's equation. Himstedt's third equation is general and applies to two coaxial solenoids of nearly equal or very different radii, which may or may not be concentric. This expression of Himstedt's consists of four terms, each of which is a somewhat complicated expression involving both complete and incomplete elliptic integrals. A less inconvenient general expression for M in elliptic integrals is given above (44).

Havelock ${ }^{45}$ gave a formula for the mutual inductance of two coaxial, concentric solenoids, which resembles somewhat the formula

[^20]of Ròiti. It is, however, not so convergent as the latter, except when one coil is very short in comparison with the other.

After the present work had gone to press a valuable article appeared ${ }^{45 a}$ by Olshausen, in which the author derived a general absolute expression for the mutual inductance of two coaxial solenoids. Adopting the same nomenclature as in Nagaoka's formula (45), the integral I is in this case given by
$I=m^{\frac{3}{2}} \sqrt{2 A a}\left[\left(\frac{g_{2}}{6}-\mathrm{p}^{2} v\right) \omega_{1}+\mathrm{p} v \cdot \eta_{1}+\frac{\mathbf{p}^{\prime} v}{2}\left\{\eta_{1} v-\omega_{1} \frac{\sigma_{1}}{\sigma}(v)+n \pi \imath\right\}\right] \quad[52 a]$
Here m is a parameter, which is to be arbitrarily assigned, and consequently ($52 a$) may be put into various special forms depending on the value assumed for m. The integer n, which may be positive or negative, enters because of the many-valuedness of a logarithm, and is to be found from the equation defining v.

If we place $m=\left(\frac{2}{A a}\right)^{\frac{1}{3}}$ and let $n=0$, the result is Nagaoka's equation (45). The author shows further that by expressing the quantities in (52a) in terms of the elliptic integrals of Legendre, Cohen's absolute formula (44) may be shown to be a special case of the general equation ($5^{2 \alpha}$).

As a third example, the author shows that the absolute formula of Kirchhoff, published for the first time by Coffin ${ }^{45 b}$ in a form subsequently shown by Cohen ${ }^{450}$ to be in error, is included in (52a), and the correct expression is given in Olshausen's equation (38).

Olshausen showed further that if the value $\frac{(A+a)^{2}+c^{2}}{2 A a}$ be assigned to m, the expressions for some of the auxiliary quantities become very simple. For the details of calculation as arranged by him we refer to the original article.

CHOICE OF FORMULAS

1. Coaxial solenoids, not concentric.-(a) For the general case, if the greatest precision is required, Nagaoka's absolute formula (45) should be used. Since, however, the mutual inductance of such

[^21]coils will not in general be needed with extreme accuracy, it will usually be found sufficient to apply Gray's formula (40), taking the precaution to determine by a rough preliminary calculation, whether or not the terms of higher order will have an appreciable effect in the case at hand. For this purpose Table XVIII will be found of material aid.

If the convergence is not satisfactory, or if more than three or four terms must be calculated, it will be found advantageous to subdivide one or both of the coils, and to apply Gray's formula to the calculation of the mutual inductance of the several pairs of sections; for these the convergence will be more rapid. For example, if coil A be divided into two parts, C and D , and the coil B into sections E and F , then the mutual inductance of A or B will be given by the relation

$$
M_{\mathrm{AB}}=M_{\mathrm{CE}}+M_{\mathrm{CF}}+M_{\mathrm{DE}}+M_{\mathrm{DF}}
$$

It may be stated as a general criterion for the rapid convergence of Gray's formula, that the distance between the coils should be great relatively to the radii, and that the coils should not be very long. With long coils it is necessary to carry the subdivision further than with short coils, with a corresponding increase in the number of terms to be calculated, but even then the labor will generally be much less than in using Nagaoka's formula.

If the coils be relatively far apart, and great precision is not desired, the formula of quadratures (23) may be adapted to this case, by making the radial dimension of the cross section of the coils in Fig. 4 equal to zero. We have then

$$
M_{1}=M_{3}=M_{5}=M_{7}=M_{0}
$$

and the formula of quadratures becomes

$$
M=\frac{1}{6}\left(2 M_{0}+M_{2}+M_{4}+M_{6}+M_{8}\right)
$$

It is, therefore, only necessary to calculate, by an appropriate formula or formulas, the mutual inductances of the five pairs of circles, and to take the weighted mean indicated. This formula is more accurate, the shorter the axial lengths of the solenoids in comparison with their distance apart, and the process of subdivision above described will be, in general, necessary. Gray's formula is, however, to be preferred.
(b) An important case in practice is that of solenoids of equal radii. If the coils be in contact or very near together the formulas (52) or (5r), respectively, should be employed.

If the solenoids be separated so that the distance between their medial planes is greater than the axial length of either, the mutual inductance may be calculated from the mutual inductance of the two circles at their centers, a correction being applied to take account of the lengths of the coils. For this purpose formula (48) should be used for coils relatively near together and (50) for coils farther apart. The corresponding formulas, for coils of equal radii and equal length are (49) and (50).
2. Coaxial, concentric solenoids of equal length.-If the solenoids be long relatively to their radii, Havelock's formula (38) will be found to be very accurate. Maxwell's formula (36), however, is applicable to both long and short solenoids, provided the radii are not too nearly equal, and should be given the preference, using Havelock's, when desired, as a check on the result. It may be necessary in rare cases to use the absolute formulas of Nagaoka or Cohen. One should also bear in mind that Roiti's and Searle and Airey's formulas also hold for equal length solenoids, and may be used in checking the results.
3. Coaxial, concentric solenoids-Inner coil the shorter.-For relatively long coils Roiti's formula (39) will give very accurate values, whatever the length of the inner solenoid, provided the radius of the inner coil is not closely equal to that of the outer. Roiti's formula is also applicable to short solenoids in case the inner radius is considerably smaller than the outer. For short solenoids, however, Searle and Airey's formula (43) is preferable, and gives a very rapidly converging value unless the inner radius be nearly equal to the outer. Russell's formula (46) is most convergent for long solenoids, of which the inner one is a good deal shorter than the outer one.

In those cases for which none of the above formulas converge rapidly, and great precision is desired, Nagaoka's or Cohen's absolute formula should be used.
4. Coaxial, concentric solenoids-Outer coil the shorter.-The formulas of the preceding section are to be used interchanging x and l, or l_{1} and l_{2} as the case may be. The formulas of Roiti,

Russell, Cohen, and Nagaoka are unchanged in form; Searle and Airey's is slightly changed as regards the coefficients L and X.

Usually, it will be found that more than one formula will apply to a given case. The advantage of such a check can not be overestimated.

For illustrations and tests of the above formulas, see examples 34-47.

In taking the dimensions of coils where an accurate value of the mutual inductance is sought it should be borne in mind that the above formulas have been derived on the supposition that the current is uniformly distributed over the length of the coaxial solenoids; in other words, these formulas are all current-sheet formulas. Hence, for coils made up of many turns of wire we must meet the conditions imposed by current-sheet formulas. In calculating self-inductances, this requires an accurate determination of the size of the wire and of the distance between the axes of successive wires, from which we can calculate two correction terms to be combined with the value of L given by the current-sheet formulas. ${ }^{46}$

In the case of mutual inductances, however, there are no correction terms to calculate; but we must take the dimensions of the current sheets that are equivalent to the coils of wire; that is, the radius of each coil will be the mean distance to the center of the wire, and the length of each will be the over-all length, including the insulation, when the coil is wound of insulated wire in contact, or the length from center to center of a winding of $n+1$ turns, where n is the whole number of turns used. ${ }^{47}$ It is also very important that the winding on both coils shall be uniform, ${ }^{48}$ and that the leads shall be brought out so that there shall be no mutual inductance due to them.

The mutual inductance will of course be different at high frequencies from its value at low frequencies. We assume, however, that for all purposes for which an extremely acturate mutual inductance is desired the frequency of the current would be low, say,

[^22]not more than a few hundred per second. If the value at very high frequency is desired the coil should be wound with stranded wire, each strand of which is separately insulated.

EXAMPLES ILLUSTRATING THE FORMULAS FOR THE MUTUAL INDUCTANCE OF COAXIAL SOLENOIDS

EXAMPLE 34. MAXWELL'S FORMULA (36) AND COHEN'S (44)
Two solenoids, Fig. 22, of equal length, 200 cm , each wound with a single layer coil.

Fig. 22
$A=10=$ radius of outer.
$a=5=$ radius of inner.
Substituting in (36) for α we have the following:

$$
\begin{aligned}
\alpha & =0.487508-\frac{1}{16} \frac{a^{2}}{A^{2}}(0.999875)-\frac{1}{64} \frac{a^{4}}{A^{4}}(0.500001)-\frac{35}{2048} \frac{a^{6}}{A^{6}}\left(\frac{1}{7}\right) \\
& =0.487508-0.015623-0.000488-0.000038 \\
& =0.471359 \\
\therefore M & =4 \pi^{2} a^{2} n^{2}(200-9.42718) \\
M & =19057.28 \pi^{2} n^{2}
\end{aligned}
$$

If $n=$ Io turns per $\mathrm{cm}, M=\frac{100 \pi^{2} \times 19057.28}{10^{9}}$ henry $=0.01880878$ henry .
The effect of the next term in the series for α beyond those calculated is to raise the value of M by only one part in five million.

By the approximate formula of Maxwell (37)

$$
\begin{aligned}
2 \alpha= & I-\frac{I}{8 \times 4}-\frac{I}{64 \times 16}-\frac{I}{1024 \times 64}-\cdots \\
& =0.96773
\end{aligned}
$$

$\therefore M=0.018784$ henry.
$21674^{\circ}-12 — 6$

This example by Heaviside's extension of Maxwell's formula (see p. 55) has exactly the same value of M; that is, the added terms do not amount to as much as a millionth of a henry in this particular case.

To show that the result by Maxwell's formula (36) is very accurate for this case we may now calculate M by Cohen's absolute formula:

$$
M=4 \pi n^{2}\left(V-V_{1}\right)
$$

Substituting in (44) for V we have the following terms:

$$
\begin{aligned}
V & =7863.79+4200532.04-4169106.25-23561.95 \\
& =15727.63 \\
V_{1} & =1392.18-632.16=760.02 \\
\therefore M & =4 \pi n^{2}(15727.63-760.02)=4 \pi n^{2}(14967.6 \mathrm{I}) \\
& =19057.36 \pi^{2} n^{2} \\
M & =0.01880886 \text { henry. }
\end{aligned}
$$

This agrees with the result by Maxwell's formula to within five parts in a million, the value by Maxwell's formula being more nearly correct, as is shown in the next example.

The example by Cohen's formula illustrates the disadvantage of that formula for numerical calculations. Aside from the fact that it is complicated, and involves the use of both complete and incomplete elliptic integrals, the value of M depends on the difference between very large positive and negative terms, so that in order to get a value of M correct to one part in one hundred thousand it is necessary in the above example to calculate the large terms to one part in twenty-five million. As a means of testing other formulas, however, this absolute formula is of great value.

EXAMPLE 35. HAVELOCK'S FORMULA (38)

We will take the same problem as in the preceding example:

$$
\begin{gathered}
\begin{array}{c}
a=5
\end{array} \quad A=10 \quad l=200 \\
\frac{I}{2}-\frac{I}{16} \frac{a^{2}}{A^{2}}=0.484375 \\
-\frac{I}{128} \frac{a^{4}}{A^{4}}=-0.000488
\end{gathered}
$$

$$
\begin{array}{r}
-\frac{5}{2048} \frac{a^{6}}{A^{6}}=-0.000038 \\
-\frac{\mathrm{I}}{4} \frac{A}{l}=-0.012500 \\
\frac{\mathrm{I}}{\mathrm{I} 6}\left(\mathrm{I}+\frac{a^{2}}{A^{2}}\right) \frac{A^{3}}{l^{3}}=+0.000010 \\
\mathrm{Sum}=\beta=0.471359
\end{array}
$$

which is exactly the same as the value of α found by Maxwell's formula in the preceding example. The value of the mutual inductance agrees, therefore, exactly to seven significant figures with the value given by Maxwell's formula. For this example, accordingly, we see that Maxwell's and Havelock's formulas give a more accurate value than Cohen's formula, unless the quantities in the latter are carried out to a greater number of places of decimals. This was pointed out by Havelock. ${ }^{49}$

EXAMPLE 36. MAXWELL'S FORMULA (36). FOR EQUAL SHORT SOLENOIDS

$$
\begin{aligned}
& a=5 \quad A=10 \quad l=2 \\
& r=\sqrt{104} \quad \frac{A}{r}=0.9805808 \quad \frac{a}{A}=\frac{1}{2} \\
& \frac{A-r+l}{2 A}=0.09009805 \\
& -\frac{\mathrm{I}}{\mathrm{I}} \frac{a^{2}}{A^{2}}\left(\mathrm{I}-\frac{A^{3}}{r^{3}}\right)=-0.0008927 \mathrm{I} \\
& -\frac{\mathrm{I}}{64} \frac{a^{4}}{A^{4}}\left(\frac{\mathrm{I}}{2}+2 \frac{A^{5}}{r^{5}}-\frac{5}{2} \frac{A^{7}}{r^{7}}\right)=-0.00013073 \\
& -\frac{35}{2048}(0.080378) \frac{a^{6}}{A^{6}}=-0.00002146 \\
& -\frac{63}{2.128^{2}}(0.5079) \frac{a^{8}}{A^{8}}=-0.0000038 \mathrm{I} \\
& -\frac{23 \mathrm{I}}{5 \mathrm{I}^{2}} \text { (0.788) } \frac{a^{10}}{A^{10}}=-0.00000068 \\
& -\frac{429}{2 . \overline{\mathrm{IO} 24}^{2}} \text { (2.43) } \frac{a^{12}}{A^{12}}=-\underline{0.00000012} \\
& \mathrm{Sum}=\alpha=0.08904854
\end{aligned}
$$

[^23]\[

$$
\begin{aligned}
2 A \alpha & = & 1.7809708 \\
l-2 A \alpha & = & 0.2190292 \\
\frac{\therefore M}{4 \pi n_{1} n_{2}} & = & 17.20251
\end{aligned}
$$
\]

The formula is not so favorable in this case as for long coils, since the quantity $2 A \alpha$ is nearly equal to l. Further, the quantities involved in the parentheses are rather large, although their sum is in only one case greater than unity. There is, however, no difficulty in obtaining these factors with all the accuracy required. We have carried out the calculation with this formula further than would in practice be desired, in order to test the formula. We find that to get the same order of accuracy by Searle and Airey's formula terms including the product $X_{12} L_{14}$ must be calculated. The result found was

$$
\frac{M}{4 \pi n_{1} n_{2}}=17.20252
$$

or only one part in two million different. We have also calculated the mutual inductance of these coils by Nagaoka's formula and obtained a value not very different, but this is a very unfavorable case for this formula, no great accuracy being obtainable using seven-place logarithms.

EXAMPLE 37. RÒITI'S FORMULA (39) COMPARED WITH SEARLE AND AIREY'S (43)

We will now calculate the example, Fig. 23 (originally given by Searle and Airey ${ }^{50}$), by Roiti's formula, and also by the formula of Searle and Airey.

Fig. 23
${ }^{50}$ Electrician (London), 56, p. 319 ; 1905.

$$
\begin{aligned}
& 30 \mathrm{~cm}=\text { length } \text { of outer solenoid. } \\
& 5 \text { " = " " inner " } \\
& A=5 "=\text { radius " outer " } \\
& a=4 \text { " = " " inner " } \\
& N_{1}=300 \text { turns } \therefore n_{1}=\frac{300}{30}=10 \text { per cm } \\
& N_{2}=200 \quad \text { " } \quad n_{2}=\frac{200}{5}=40 \text { per cm } \\
& l_{1}=12.5 \\
& \rho_{1}=\sqrt{12.5^{2}+25}=13.462912 \\
& l_{2}=17.5 \\
& \rho_{2}=\sqrt{{ }^{17 \cdot 5^{2}+25}}=\underline{18.200275} \\
& \therefore \rho_{2}-\rho_{1}=4.737363 \\
& \rho_{1}+\rho_{2}=31.663187
\end{aligned}
$$

It is more accurate to calculate $\left(\rho_{2}-\rho_{1}\right)$ by the formula

$$
\rho_{2}-\rho_{1}=\frac{x l}{\rho_{1}+\rho_{2}}
$$

This gives $\left(\rho_{2}-\rho_{1}\right)=4.7373620$, which value will be used in the calculation of M.

$$
\begin{aligned}
\rho_{2}-\rho_{1} & =4.7373620 \\
\frac{A^{2} a^{2}}{8}\left(\frac{\mathrm{I}}{\rho_{1}^{3}}-\frac{\mathrm{I}}{\rho_{2}^{3}}\right) & =+.012 \mathrm{I} 975 \\
-\frac{A^{4} a^{2}}{\mathrm{I} 6}\left(\frac{\mathrm{I}}{\rho_{1}^{5}}-\frac{\mathrm{I}}{\rho_{2}^{5}}\right) & =-.000704 \mathrm{I} \\
\frac{5}{64} A^{4} a^{4}\left(\mathrm{I}+\frac{\mathrm{I}}{2} \frac{a^{2}}{A^{2}}\right)\left(\frac{\mathrm{I}}{\rho_{1}^{7}}-\frac{\mathrm{I}}{\rho_{2}^{7}}\right) & =+.0001808 \\
-\frac{35 A^{4} a^{6}}{256}\left(\mathrm{I}+\frac{\mathrm{I}}{5} \frac{a^{2}}{A^{2}}\right)\left(\frac{\mathrm{I}}{\rho_{1}^{9}}-\frac{\mathrm{I}}{\rho_{2}^{9}}\right) & =-.0000254 \\
+\frac{\mathrm{IO} 5 A^{6} a^{6}}{\mathrm{IO} 24}\left(\mathrm{I}+\frac{9}{5} \frac{a^{2}}{A^{2}}+\frac{\mathrm{I}}{5} \frac{a^{4}}{A^{4}}\right)\left(\frac{\mathrm{I}}{\rho_{1}^{11}}-\frac{\mathrm{I}}{\rho_{2}^{11}}\right) & =+.0000054 \\
2048 A^{6} a^{8}\left(\mathrm{I}+\frac{2}{3} \frac{a^{2}}{A^{2}}+\frac{\mathrm{I}}{2 \mathrm{I}} \frac{a^{4}}{A^{4}}\right)\left(\frac{\mathrm{I}}{\rho_{1}^{13}}-\frac{\mathrm{I}}{\rho_{2}^{13}}\right) & =-.0000010 \\
\frac{3003 A^{8} a^{8}}{\mathrm{I6} 384}\left(\mathrm{I}+4 \frac{a^{2}}{A^{2}}+\frac{\mathrm{IO}}{7} \frac{a^{4}}{A^{4}}-\frac{\mathrm{I}}{\mathrm{I} 4} \frac{a^{6}}{A^{6}}\right)\left(\frac{\mathrm{I}}{\rho_{1}^{15}}-\frac{\mathrm{I}}{\rho_{2}^{15}}\right) & =+.0000002 \\
\mathrm{Sum} & =4.7490149
\end{aligned}
$$

$$
\begin{aligned}
4 \pi^{2} a^{2} n_{1} n_{2} & =25600 \pi^{2} \\
\therefore M & =\frac{25600 \pi^{2} \times 4.7490149}{10^{9}} \text { henry }
\end{aligned}
$$

$$
\text { or } M=0.0011998950 \text { henry } .
$$

The sum of the next two terms in the series is equal to about one part in ten million. The value of the mutual inductance is therefore given with great precision by this formula. If the inner radius had been relatively smaller, the convergence would have been more rapid. We have, however, carried the computation much further than would in practice be necessary.

Calculating the same problem by Searle and Airey's formula we have

The terms neglected are less than one part in ten million. The value of the mutual inductance found is only six parts in ten million greater than that found by Roiti's formula, and for this problem the convergence of Searle and Airey's formula is the more satisfactory.

$$
\begin{aligned}
& 2 x=30 \quad 2 l=5 \quad A=5 \quad a=4 \\
& N_{1}=300 \quad N_{2}=200 \\
& d=\sqrt{250} \quad \frac{A^{2} a^{2}}{d^{4}}=\frac{4}{625} \\
& X_{2}=-33.00 \quad L_{2}=1.43750 \\
& X_{4}=236.5 \quad L_{4}=-0.7959 \\
& X_{6}=-\mathrm{I} 370 \quad L_{6}=-\mathrm{I} .7 \mathrm{I} \\
& X_{8}=4869 \quad L_{8}=-0.72 \\
& \mathrm{I}+\frac{A^{2} a^{2}}{d^{4}} \cdot \frac{L_{2}}{8}=1.0011500 \\
& \frac{A^{4} a^{4}}{d^{8}} \frac{L_{4} X_{2}}{3^{2}}=0.0000344 \\
& \frac{A^{6} a^{6}}{d^{12}} \frac{L_{6} X_{4}}{32}=-0.0000033 \\
& \text { Sum }=\text { I.00II8II } \\
& \frac{2 \pi^{2} a^{2} N_{1} N_{2}}{d}=1198480.5 \\
& \therefore M=0.0011998957 \text { henry. }
\end{aligned}
$$

The same problem by Russell's formula (46) (extended to include six terms in each part of the formula) gives

$$
M=0.00119989 \text { henry } .
$$

Of the three formulas Searle and Airey's is for this case the most convergent, and Russell's the least convergent. If the ratio of the radii was still more nearly equal to unity, Searle and Airey's formula would still be satisfactory; the convergence of Roiti's formula would, however, become poorer.

If in the above problem the length $2 l$ of the inner coil be increased without changing the radii, the quantities $L_{2 n}$ in Searle and Airey's formula would become rapidly larger, and the convergence would become poorer. Ròiti's formula also becomes less satisfactory as l is increased. For $2 l=24$, however, Searle and Airey's formula will still give the correct result to about one part in rooooo, but Roiti's formula in this case converges very slowly. On the other hand, if the radius of the inner coil were smaller in the latter case, Roiti's formula could be used, but Searle and Airey's would not converge rapidly enough. This is shown in the next example.

EXAMPLE 38. ROITI'S FORMULA COMPARED WITH SEARLE AND AIREY'S FORMULA. COILS OF NEARLY EQUAL LENGTH

Length of outer solenoid $=30 \mathrm{~cm}$
" inner " $=24$

$$
a=2 \quad A=5 \quad n_{1}=10 \quad n_{2}=40
$$

In Ròiti's formula:

$$
\begin{aligned}
& \rho_{2}-\rho_{1}=21.628108 \\
& \text { 2d term }=+0.062447 \\
& \text { 3d " }=-0.003707 \\
& \text { 4th " }=+0.003682 \\
& \text { 5th " }=-0.000724 \\
& \text { 6th " }=+0.000501 \\
& 7 \text { th " }=-0.000170 \\
& \text { 8th " }=+0.000159 \\
& \text { Sum }=\overline{21.690296} \\
& 4 \pi^{2} a^{2} n_{1} n_{2}=6400 \pi^{2} \\
& \therefore M=0.00137008 \text { henry. }
\end{aligned}
$$

In Searle and Airey's formula

$$
\begin{array}{ll}
X_{2}=-33 & L_{2}=-14 \mathrm{I} \\
X_{4}=236.5 & L_{4}=4826.5 \\
X_{6}=-1370.3 & L_{6}=-160036 \\
X_{8}=4869 & L_{8}=5.019 \times 10^{7} \\
X_{10}=15746 & L_{10}=-1.57 \mathrm{I} \times 10^{8} \\
& L_{12}=4.483 \times 10^{9} \\
d^{2}=250 &
\end{array}
$$

$$
\text { 2d term }=-0.028200000
$$

$$
3 \mathrm{~d} \quad *=-0.012742
$$

$$
4 \text { th } "=-0.004845
$$

$$
5 \text { th } 6=-0.001409
$$

$$
\text { 6th } 6=-0.00025 \mathrm{I}
$$

$$
7 \text { th } "=+0.000037
$$

$$
\operatorname{Sum}=\overline{0.95^{2} 590}
$$

$$
\frac{2 \pi^{2} a^{2} N_{1} N_{2}}{d}=\frac{2304000 \pi^{2}}{d}
$$

$$
\therefore M=0.00136999 \text { henry }
$$

In this case we see that the higher order terms in Ròiti's formula arrange themselves in pairs of nearly equal values with opposite signs. The convergence is, therefore, better than appears at first sight, and the terms here neglected do not amount to more than one part in a million in M. Searle and Airey's formula does not converge so rapidly, the eighth and still higher order terms being appreciable. If the length of the inner solenoid were made still greater the L coefficients would become even larger than they are here, and the convergence would become unsatisfactory.

EXAMPLE 39. RÒITI'S AND SEARLE AND AIREY'S FORMULAS IN THE CASE OF SHORT COILS

Length of the outer solenoid $=5 \mathrm{~cm}$
" " " inner " $=2$

$$
a=2 \quad A=10
$$

In Ròiti's formula:

$$
\begin{aligned}
& \rho_{1}=10.111873 \\
& \rho_{2}=10.594808
\end{aligned}
$$

which used in the formula $\frac{x l}{\rho_{1}+\rho_{2}}$ give a more accurate value of $\rho_{2}-\rho_{1}$, viz:

$$
\begin{aligned}
\rho_{2}-\rho_{1} & =0.4829359 \\
2 \mathrm{~d} \text { term } & =0.0063160 \\
3 \mathrm{~d} " & =-0.0001968 \\
\text { 4th } " & =0.0003286 \\
5 \text { th } " & =-0.0000274 \\
6 \text { th } " & =0.0000250 \\
7 \text { th } " & =-0.0000035 \\
\text { 8th } " & =0.0000023 \\
\text { Sum } & =0.489380 \mathrm{I} \\
4 \pi^{2} a^{2} & =16 \pi^{2} \\
\therefore \frac{M}{n_{1} n_{2}} & =77.2798 \mathrm{I}
\end{aligned}
$$

In Searle and Airey's formula

$$
\begin{array}{ll}
X_{2}=2.75 & L_{2}=2 \\
X_{4}=\frac{121}{64} & L_{4}=\frac{1}{4} \\
X_{6}=\frac{1203}{1024} & L_{6}=-\frac{15}{16} \\
X_{8}=\frac{9265}{16384} & L_{8}=-\frac{77}{64} \\
d^{2}=106.25 & L_{10}=-\frac{9}{16} \\
& 1.0000000
\end{array}
$$

$$
\text { Ist term }=0.008858 \mathrm{r}
$$

$$
2 \mathrm{~d} "=0.0000270
$$

$$
3 \mathrm{~d} \quad "=-0.0000025
$$

$$
4^{\text {th }} "=-0.0000001
$$

$$
\text { Sum }=T .0088825
$$

$$
\frac{2 \pi^{2} a^{2} N_{1} N_{2}}{d}=\frac{80 \pi^{2} n_{1} n_{2}}{d}
$$

$$
\therefore \frac{M}{n_{1} n_{2}}=77.27980
$$

The neglected terms in Searle and Airey's forumula are entirely inappreciable. The convergence of Roiti's formula is not quite so
good. The sum of the next two terms is such as to reduce M by three units in the last place, but the following terms do not decrease very rapidly. We may evidently regard the use of either formula as entirely justified in the problem. If the radius of the outer coil had been only one-half as great, the lengths of the two coils and the radius of the inner remaining unchanged, the value found by Roiti's formula would be in error by more than one part in ten thousand; the convergence of Searle and Airey's would, however, be satisfactory in this case. This formula would, on the other hand, be less convergent when the length of the inner coil is nearly as great as that of the outer coil. In general, it will be found that these two formulas between them cover sufficiently well the cases which may arise in practice.

EXAMPLE 40. GRAY'S FORMULA (41) COMPARED WITH RÒITIS (39)

Let the winding be 20 turns per cm on each coil (Fig. 24), $n_{1}=n_{2}=20$.

$$
\begin{array}{ll}
A=25 \mathrm{~cm} & N_{1}=n_{1} A \sqrt{3} \\
a=10 \mathrm{~cm} & N_{2}=n_{2} a \sqrt{3}
\end{array}
$$

$$
\therefore N_{1} N_{2}=3 n_{1} n_{2} A a
$$

Fig. 24

$$
\begin{gathered}
d=\sqrt{x^{2}+A^{2}}=\frac{A}{2} \sqrt{7} \\
\therefore \quad M=\frac{2 \pi^{2} a^{2} N_{1} N_{2}}{d}=4 \pi^{2} a^{2} n_{1} n_{2}\left[\frac{3 a}{\sqrt{7}}\right] \\
M=.0179057 \text { henry. }
\end{gathered}
$$

We have also calculated the mutual inductance for these coils by Roiti's formula (39).

The value is, $M=.0179058$, which is practically identical with the value by Gray's formula.
When $A=25 \mathrm{~cm}$ and $a=10 \mathrm{~cm}, N_{1}=20 A \sqrt{3}=866.025$ and $N_{2}=$ $20 \alpha \sqrt{3}=346.4$. As there must be an integral number of turns, let us suppose the winding is exactly 20 turns per cm on each coil and the lengths therefore 43.3 cm and 17.3 cm , respectively. Then $d=\sqrt{x^{2}+A^{2}}=\sqrt{625+\left(\frac{43.3}{2}\right)^{2}}=33.0715 \mathrm{~cm}$. This does not exactly
conform to the condition imposed in deriving the simple formula (4I) of Gray used above. Hence (4I) will not be as exact with these slightly altered dimensions, and we must calculate at least one correction term to get an accurate value of M.

By Gray's formula (4r), $M=\frac{2 \pi^{2} \mathrm{IOO} \times 866 \times 346}{33.07 \mathrm{I} 5 \times 10^{9}}=.0178842$ henry.
The first correction term in (43) increases this value to .or 78854 henry.

We will now calculate the mutual inductance of these coils by Ròiti's formula (39) :

$A=25$	$2 x=43 \cdot 3$	$l_{1}=13.0 \mathrm{~cm}$		$=$	28.17800
$a=10$	$2 l=17 \cdot 3$	$l_{2}=30.3 \mathrm{~cm}$		$=$	39.28218
					IT.10418
			2nd	$=$	+ .22030
			3 rd		- .01781
$M=\frac{4 \pi^{2} a^{2} n_{1} n_{2} \times 11.32596}{10^{9}}$ henry,			4th		+ .01952
			5 th		$+. .00156$
$=.0178853$ henry.			6th		- .00453
			7th	$=$	$+.00274$
			Sum $=\overline{11.32596}$		

This differs from the result by Gray's formula by only I part in ${ }_{7} 78000$.

EXAMPLE 41. GRAY'S FORMULA (40) COMPARED WITH NAGAOKA'S FORMULA (45)

We will next consider a practical problem suggested by Prof. Nasmyth.

$$
\begin{array}{rlll}
2 x=20.55 & A=6.44 & & N_{1}=15 \text { turns. } \\
2 l=27.38 & a=4.435 & & N_{2}=75 \quad " \quad
\end{array}
$$

The distance between the adjacent ends of the two solenoids was 7.2 cm . From this we find

$$
\begin{array}{ll}
n_{1}=0.7296 \text { turns per cm } \\
n_{2}=2.737 \quad " \quad " \quad & k_{1} K_{1}=0.042937 \\
x_{1}=20.89 & k_{3} K_{3}=0.018274 \\
x_{2}=4 \mathrm{I} .44 & k_{5} K_{5}=0.005193 \\
& k_{7} K_{7}=0.001423 \\
& k_{9} K_{9}=0.000116 \\
& \text { Sum }=0.067943 \\
& \therefore \mathrm{M}=1092.3 \mathrm{~cm} .
\end{array}
$$

It is evident that the convergence is not rapid enough to give a very precise value for the mutual inductance. We next divide the longer coil S into two sections C and D, such that C has 37 turns and D has 38 turns, C being the section nearer the other coil R. The axial lengths of these sections are, respectively, 13.5 I and 13.87 cm . It would be just as well, if not better, to divide the coil into two equal sections of $37 \mathrm{I} / 2$ turns each. The division chosen was for greater convenience in the solution of the same problem by the method of quadratures. (Example 42.)

We now proceed to find M_{RC} and M_{RD}. The L coefficients are much smaller than before on account of the ratio $\frac{l}{a}$ being now smaller than was previously the case, and the convergence is much more satisfactory. These coefficients would be still smaller if we had divided coil R instead of S into two sections, measuring the x 's from the center of R instead of using S for the reference coil as is done here. This advantage would, nevertheless, be in large measure offset by the smaller values of the distances r_{1} and r_{2}.

We find for $M_{\text {rc }}$

$$
\begin{aligned}
k_{1} K_{1} & =0.048894 \\
k_{3} K_{3} & =0.006520 \\
k_{5} K_{5} & =0.00005 \mathrm{I} \\
S \mathrm{Sum} & =0.055465 \\
\therefore M_{\mathrm{RC}} & =89 \mathrm{I} .7 \mathrm{~cm}
\end{aligned}
$$

and for M_{RD}

$$
\begin{aligned}
k_{1} K_{1} & =0.011549 \\
k_{3} K_{3} & =0.0006 \mathrm{I} 3 \\
k_{5} K_{5} & =0.000004 \\
\mathrm{Sum} & =0.012166 \\
\therefore M_{\mathrm{RD}} & =195.6 \mathrm{~cm} .
\end{aligned}
$$

Consequently $M=M_{\mathrm{RC}}+M_{\mathrm{RD}}=1087.3 \mathrm{~cm}$.
To test the correctness of this value, the coil R was divided into two sections A and $B(B$ being the section nearer to S), and the four mutual inductances between these sections and the two sections C and D of the coil S were calculated.

M_{Ac}	M_{BC}	M_{AD}	M_{BD}
$k_{1} K_{1}=0.012024$	0.036869	0.003893	0.007657
$k_{3} K_{3}=0.000863$	0.005654	0.00014 I	0.00047 I
$k_{5} K_{5}=\frac{0.000004}{0.01289 \mathrm{I}}$	$\frac{0.000047}{0.042570}$	$\underline{0.00000 \mathrm{I}}$	0.000004
$M_{\mathrm{AC}}=207.2$	$M_{\mathrm{BC}}=684.4$	$M_{\mathrm{AD}}=64.9$	$M_{\mathrm{BD}}=13008 \mathrm{I} 32$
$M=\mathrm{Sum}=1087.2 \mathrm{~cm}$.			

The only component for which the convergence was not entirely satisfactory was M_{BC}. Here the sections are relatively near together and the coefficients L and X are not very favorable. Accordingly M_{BC} was calculated by two other methods (a) by dividing B into two sections, H and J , and by calculating M_{HC} and M_{JC}, (b) by dividing C into two sections, F and G , and by calculating M_{BF} and M_{BG}. The first procedure, on account of the relatively smaller values of r_{1} and r_{2}, did not give a satisfactory degree of convergence. The latter, however, is better, the values found being

$$
\dot{M}_{\mathrm{BC}}=463.8+220.0=683.8
$$

Using this value instead of the above the value of M is 1086.6 cm.

As the final check we have calculated the mutual inductance by Nagaoka's formula (45). The entire calculation has to be carried through for four different values of c, viz, $55.13,34.58,27.75$, and 7.20 . The corresponding values of I are

$$
\begin{aligned}
& I_{1}=60.041802 \\
& I_{2}=38.047638 \\
& I_{3}=30.8 \mathrm{I} 1676 \\
& I_{4}=10.333503
\end{aligned}
$$

and $\left(I_{1}+I_{4}\right)-\left(I_{2}+I_{3}\right)=70.375305-68.859314$
$=1.515991$

$$
\therefore M=4 \pi n_{1} n_{2} A a\left(\mathrm{I} .5^{\mathrm{I}} 599 \mathrm{I}\right)=1086.55 \mathrm{~cm} .
$$

An inspection of the various details of the calculation shows that the last figure may be in error by several units, although the utmost precision of which the seven-place logarithms are capable was striven
for. Of course by carrying the computation of the various quantities to a still greater number of decimal places, the accuracy of the result would be enhanced. Similarly the component values of the mutual inductance by Gray's formula would have been more accurate if we had not stopped with $k_{5} K_{5}$. Since the dimensions of such coils would not ordinarily be obtained with greater precision than the accuracy here attained by Gray's formula, it is evident that the latter is for such cases much to be preferred to Nagaoka's formula, and the same would be true if the number of components were considerably increased. Nagaoka's formula has nevertheless the advantage in checking other formulas.

EXAMPLE 42. FORMULA OF QUADRATURES

The problem treated in the preceding example may also be solved by the formula of quadratures, using formula (8) for the calculation of the mutual inductance of the various pairs of circles. In general the method is not so accurate as that in the preceding example, and no time is saved. Only the results are here given, together with those by Gray's formula for comparison.

$$
\begin{array}{lclll}
\text { Single coils } & \text { Two sections } & \text { Four sections } & \\
M=964 . \mathrm{I} & M_{\mathrm{RC}}=848 . \mathrm{I} & M_{\mathrm{AC}}=205.7 & & M_{\mathrm{BF}}=504.5 \\
& M_{\mathrm{RD}}=193.7 & \frac{M_{\mathrm{BC}}=669.5}{} & \frac{M_{\mathrm{BG}}=182.2}{M_{\mathrm{RC}}=686.7} \\
\hline M=104 \mathrm{I} .8 & M_{\mathrm{RC}}=675.2 & M_{\mathrm{BC}} \\
& & M_{\mathrm{AD}}=66.5 & & \\
& & \frac{M_{\mathrm{BD}}=130.4}{M_{\mathrm{RD}}=} & & 196.9 \\
& & & M=1072 . \mathrm{I} &
\end{array}
$$

Using the value of M_{BC} in the last column, $M=1089.3$.
By Gray's formula:

\[

\]

Using the value of M_{BC} in the last column, $M=$ Io86.6.

EXAMPLE 43. MUTUAL INDUCTANCE OF CONCENTRIC COAXIAL SOLENOIDS BY NAGAOKA'S FORMULA (45)

$$
\begin{aligned}
2 x & =200 \mathrm{~cm} \\
2 l & =20 \\
A & =15 \\
a & =10
\end{aligned}
$$

This pair of coils was used by Cohen ${ }^{51}$ in testing his absolute formula. He gave as the result $M=4 \pi n_{1} n_{2}$ (6213.4). The same problem was worked out by Nagaoka ${ }^{52}$ as an illustration of the use of his formula, the value of M found by him being $M=4 \pi n_{1} n_{2}$ (6213.5 I). We have repeated his calculation, which was given only in abbreviated form, and agree substantially with his result, the value found being $M=4 \pi n_{1} n_{2}$ (6213.52). Using seven-place logarithms it is very difficult to be sure of the last place of decimals given here. On the other hand, we find with Ròiti's formula, only three terms being necessary $M=4 \pi n_{1} n_{2}(6213.509)$, and the same number of terms in Searle and Airey's formula give $M=4 \pi n_{1} n_{2}$ (6213.510) with no uncertainty greater than one unit in the last place given. Olshausen found for the same coils the values $4 \pi n_{1} n_{2}$ (6213.77), and $4 \pi n_{1} n_{2}(6213.63)$, using two methods of calculation in his formulas (2I) and (6I) and with $m=\frac{(A+a)^{2}+c^{2}}{2 a A}$. By the Kirchhoff formula he found $4 \pi n_{1} n_{2}(6212.9)$. This is, however, an unfavorable case for this formula, since the angles φ and θ, on which the incomplete integrals $E\left(\varphi, k^{\prime}\right)$ and $F\left(\varphi, k^{\prime}\right)$ depend, are too near 90° to allow of accurate interpolation in Legendre's tables.

These differing results by the various absolute formulas, which arise from the fact, that in all of them the auxiliary quantities must be calculated with a considerably greater degree of accuracy than that desired in the result, serve to emphasize the advantage of the series formulas. In the great majority of practical cases the values, found by the use of series formulas, are not only obtained with a much smaller expenditure of labor, but are more accurate than when an absolute formula is used.

[^24]We reproduce below the principal results in the calculation of this problem by Nagaoka's formula.

$$
\begin{array}{cccc}
A+a & =25 & A-a & =5 \\
(A+a)^{2} & =625 & (A-a)^{2} & =25
\end{array} \quad A^{2}-a^{2}=125
$$

The argument of $I_{1}=-I_{3}$ is $c=1$ IO; that of $I_{2}=-I_{4}$ is $c=90$.
$\mathrm{C}=110$
I. 3749796
$\mathrm{C}=90$
I. 3749796
1.8521009

- 113.86339
$+\quad 0.3514302$
+8.7857551
- 34.908733
8.4343249
I 22.64916
114.21483
0.9650037

1. 9823461
$\overline{2} .8373857$
0.00445280 Io
T.I 594886
I.I 594886
ㄷ.1594887
9.1371853

- II3.16053
- 96.29188
-520.19542
- 159.07205
679.26747
98.068477
21.064838
77.003639
77.003659

$$
\begin{array}{rlr}
s & =-0.33164947 & -0.33084473 \\
-\frac{s}{q} & =109.86656 & 74.300356
\end{array}
$$

$$
\begin{array}{rlrl}
4 q^{2} \sqrt{b^{2}-\mathrm{I}\left[\mathrm{I}-q^{2}(2 b-\mathrm{I})\right]} & =0.0039964 \mathrm{I} & 0.00587502 \\
\mathrm{Sum} & = & 0.99493550 & 0.99250570 \\
I^{\prime \prime} & =- & 35.8 \mathrm{I} 5107 & -29.23 \mathrm{I} 710 \\
\frac{I}{2}=I^{\prime}+I^{\prime \prime} & =58.127814 & 47.771939 \\
I_{1}-I_{2} & =2(58.127814-47.771939) \\
& =2(10.355875) & \\
M & =4 \pi n_{1} n_{2} A a .2\left(I_{1}-I_{2}\right) & \\
& =4 \pi n_{1} n_{2}(62133.52)
\end{array}
$$

In the calculation of I we have used the second value found for I^{\prime} with $c=1$ IO and the mean of the two values for I^{\prime} with $c=90$.

EXAMPLE 44. SHORT SECONDARY ON THE OUTSIDE OF A LONG PRIMARY

Length of primary $=200 \mathrm{~cm}$
" " secondary $=5$
Radius of primary $=4=a$
" " secondary $=5=A$

$$
n_{1}=10 \quad n_{2}=40
$$

In Ròiti's formula:

$$
\begin{aligned}
\rho_{1} & =97.628 \mathrm{II} \\
\rho_{2} & =102.62 \mathrm{I} 88 \\
\rho_{2}-\rho_{1}=\frac{x l}{\rho_{1}+\rho_{2}} & =4.9937586 \\
\frac{A^{2} a^{2}}{8}\left(\frac{\mathrm{I}}{\rho_{1}^{3}}-\frac{\mathrm{I}}{\rho_{2}^{3}}\right) & =0.0000075 \\
\mathrm{Sum} & =4.993766 \mathrm{I} \\
4 \pi^{2} a^{2} n_{1} n_{2} & =25600 \pi^{2} \\
\therefore M & =0.00126 \mathrm{I} 7342 \text { henry. }
\end{aligned}
$$

[^25]In Searle and Airey's formula:

$$
\begin{aligned}
d^{2} & =10025 \quad N_{1} N_{2} & =400000 \\
\frac{l}{A} & =20 \quad \frac{x}{a}=\frac{5}{8} & \\
X_{2} & =-1597 & \begin{array}{ll}
L_{2} & =1.4375 \\
L_{4} & =-0.796
\end{array}
\end{aligned}
$$

1.00000000

$$
\text { Ist term }=0.0000007 \mathrm{I}
$$

$$
2 \mathrm{~d} \quad \mathrm{n}=-1.3 \times 10^{-10}
$$

$$
\operatorname{Sum}=\overline{1.0000007 \mathrm{I}}
$$

$$
\therefore M=0.00126 \mathrm{r} 7342 \text { henry }
$$

in exact agreement with the above. Both formulas are very rapidly convergent, and give as nearly the same value for M as can be calculated with seven-place logarithms.

EXAMPLE 45. COILS OF EQUAL RADII NEAR TOGETHER, BY FORMULA (48)

Lengths of the coils 4 cm and $6 \mathrm{~cm}=b_{1}$ and b_{2}
Radius " " " $20 \mathrm{~cm}=a$
Distance between centers ro $\mathrm{cm}=d$
The calculation of the quantities in the parentheses is as follows:

The expression for ΔM then gives:
First term $=0.0233240$
Second " =0.0011047
Third " =0.0000973
Fourth " =0.0000II3
Sum $\quad=0.0245373$

The value of M_{0} calculated for two circles of radius 20 cm and at a distance apart $=10 \mathrm{~cm}$ was found by (4) and checked by (I) to be

$$
\begin{aligned}
& \frac{M_{0}}{N_{1} N_{2}}=4 \pi a(0.8853877) \\
& \frac{\Delta M_{0}}{N_{1} N_{2}}=4 \pi a(0.0245373) \\
\therefore \quad & \frac{M}{N_{1} N_{2}}=4 \pi a(0.9099250)
\end{aligned}
$$

This was checked by means of (5I) with the result, (assuming one turn per cm of the length of the coils)

$$
\begin{array}{ll}
L_{\mathrm{ABC}} & =4 \pi a(430.339736) \\
L_{\mathrm{c}} & =4 \pi a(74.324564) \\
\mathrm{Sum} & =4 \pi a(504.664300) \\
L_{\mathrm{AC}} & =4 \pi a(194.2 \mathrm{IOI} 35) \\
L_{\mathrm{BC}} & =4 \pi a(266.777705) \\
\mathrm{Sum} & =4 \pi a(460.987840) \\
\frac{\mathrm{I}}{2} \mathrm{Diff} & =4 \pi a \quad(21.838230)
\end{array}
$$

Dividing by 24 , the product of the number of turns assumed in calculating the self-inductances,

$$
\frac{M}{N_{1} N_{2}}=4 \pi a(0.9099264)
$$

which agrees with the value by (48) to about one and a half in a million.

For these coils, therefore, (48) is adequate to give a high degree of precision. If the distance between the same coils were, however, smaller, or if the lengths of the coils were greater the accuracy would not be so great, and it might be necessary to use (5I). The latter, should, however, not be used when (48) converges well, since to get the same accuracy the calculation of the four self-inductances must be carried out to a greater number of decimal places than appear in the value of M. For the rapid convergence of (48) the ratios $\frac{b_{1}}{d}, \frac{b_{2}}{d}$ and $\frac{d}{a}$ should all be small.

For the more unfavorable case $b_{1}=6, b_{2}=10, d=10, a=20$ the value of ΔM comes out too small by three parts in ten thousand.

EXAMPLE 46. ROSA-WEINSTEIN FORMULA (50). FOR COILS FARTHER APART

As a rather unfavorable case we may take

$$
\begin{aligned}
& b_{1}=10 \quad b_{2}=20 \quad d=50 \quad a=25 \\
& k=\sin \gamma=\frac{50}{\sqrt{5000}}=\frac{I}{\sqrt{2}}=\cos \gamma \\
& \frac{\cos ^{2} \gamma}{24 d^{2}}=\frac{\sin ^{2} \gamma}{24 d^{2}}=\frac{1}{120000} \\
& \alpha_{1}=500 \quad \alpha_{1}=500 \\
& -\alpha_{3}=-4.55 \\
& 2 \alpha_{3}=9.10 \\
& -3 \alpha_{3} \cos ^{2} \gamma=-6.825 \quad+3 \alpha_{3} \cos ^{2} \gamma=+6.825 \\
& 8 \alpha_{3} \cos ^{4} \gamma=+\underline{9.10} \quad 8 \alpha_{3} \cos ^{4} \gamma=\quad \text { 9.10 } \\
& \operatorname{Sum}=\overline{497.725} \quad \text { Sum }=\overline{525.025} \\
& P=.0041477 \\
& F=1.854075 \\
& E=\underline{1.350644} \\
& F-E=0.503431 \\
& (F-E) P+E Q=0.0079974 \\
& \therefore \Delta M=1.7766 \\
& \text { Terms in the 6th and 8th differentials }=0.0016 \\
& \mathrm{Sum}=\overline{1.7782}
\end{aligned}
$$

From formula (19) which applies to the two circles at the centers of these coils

$$
\begin{aligned}
M_{0} & =1.4 \mathrm{I} 8599 \times 25=35.4650 \\
\therefore \frac{M}{N_{1} N_{2}} & =35.4650+\mathrm{I} .7782=37.2432
\end{aligned}
$$

If we calculate the mutual inductance by formula (5I) we find

$$
\begin{array}{rlrl}
L_{\mathrm{ABC}} & =3792.226 \mathrm{I} & L_{\mathrm{AC}}=2350.4870 \\
L_{\mathrm{C}} & =\frac{\mathrm{I} 667.7268}{5459.9529} & & L_{\mathrm{BC}}=\frac{3062.0405}{54 \mathrm{I} 2.5275} \\
\frac{\mathrm{I}}{2} \text { Diff. } & =23.7127 & &
\end{array}
$$

Dividing by $200=0.1185635=\frac{M}{4 \pi \alpha N_{1} N_{2}}$

$$
\therefore \frac{M}{N_{1} N_{2}}=37.2478
$$

which is more than one in ten thousand greater than the value by (50). If the coils had been shorter and their diameter had been greater than the distance between their medial planes, the quantities P and Q in (50) would have been more convergent and the value of ΔM would have been more nearly correct. The accuracy here obtained would, however, suffice in many cases.

This formula when applied to the coils in the preceding problem gives a very accurate result viz, $\frac{M}{N_{1} N_{2}}=4 \pi \alpha(0.909932)$, or about six in a million too large. (The terms in the sixth and eight order differentials as calculated by (48) are taken into account in this result.)

The mutual inductance of the coils in this example could also be calculated with a good degree of accuracy by Gray's formula.

EXAMPLE 47. METHOD OF OBTAINING THE DIMENSIONS OF THE EQUIVALENT CURRENT SHEETS

Suppose it is desired to obtain the mutual inductance of two solenoids, whose measured dimensions are as follows:

Coil I is wound with roo turns of insulated wire of 0.15 cm covered diameter, the successive turns being in contact. The measured external diameter of the coil is 50.4 cm .

Coil II is wound with 50 turns of bare wire, 0.1 cm in diameter, in a thread of 2 mm pitch. The diameter measured over the wire is 10.25 cm .

Then the mean radius of coil I , to the center of the wire, is equal to $\frac{1}{2}(50.4-0.15)$ or 25.125 cm . The length of the equivalent current sheet will be the distance between the center of the first and the one hundred and first wire, or one hundred times the covered diameter of the wire; that is, 15 cm . Since the turns are in contact, the equivalent length may, in this case, also be found by measuring the over-all length of the winding, including the insulation. Both these methods are equivalent to taking one hundred times the pitch of the winding, which, in this case, is equal to the covered diameter of the wire.

For coil II, the equivaleut radius is $\frac{\mathrm{I}}{2}(10.25-0.1)=5.075 \mathrm{~cm}$. The equivalent length is fifty times $0.2=10 \mathrm{~cm}$.

The dimensions found in this way for coils I and II are to be used in the appropriate current sheet formula. (See p. 73.)

4. THE MUTUAL INDUCTANCE OF A CIRCLE AND A COAXIAL SINGLE-LAYER COIL

LORENZ'S FORMULA

The problem of finding the mutual inductance of a circle and a coaxial single layer winding was first solved by Lorenz. ${ }^{53}$ Assuming that the current was uniformly distributed over the surface of the cylinder, forming a current sheet, he integrated over the length of the cylinder the expression for the mutual inductance of a circular element and the given circle. This expression is an elliptic integral. Lorenz reduced the integrated form to a series and gave the following formula for the mutual inductance of the disk and solenoid of what is now called the Lorenz apparatus. He called it, however, the constant of the apparatus instead of mutual inductance, and denoted it by C. It is of course the whole number of lines of magnetic force passing through the disk due to unit current in the surrounding solenoid.

$$
\begin{align*}
& M=\frac{\pi q r^{2}}{d}\left[Q\left(\alpha_{1}\right)+Q\left(\alpha_{2}\right)\right] \\
& \begin{aligned}
Q(\alpha)= & =2 \pi q \sqrt{\frac{\alpha-1}{\alpha}}\left[\mathrm{I}+\frac{3}{8} \frac{q^{2}}{\alpha^{2}}+\frac{5}{\mathrm{I} 6} \frac{q^{4}}{\alpha^{4}}\left(\frac{7}{4}-\alpha\right)\right. \\
& \quad+\frac{35}{\mathrm{I} 28} \frac{q^{6}}{\alpha^{6}}\left(\frac{33}{8}-\frac{9}{2} \alpha+\alpha\right)+\cdots
\end{aligned} \tag{53}
\end{align*}
$$

$\rho=$ radius of the disk, Fig. 25 .
$r=$ radius of the solenoid.
$2 x=$ length of winding of solenoid.
$q=\rho / r=$ ratio of the two radii.
$d=\frac{2 x}{n}=$ distance between centers of successive turns of wire.
$\alpha=\frac{x^{2}+r^{2}}{r^{2}}$

[^26]If the disk be not exactly in the mean plane of the solenoid, and x_{1} be the distance from the plane of the disk to one end of the solenoid and x_{2} to the other,

$$
\alpha_{1}=\frac{x_{1}{ }^{2}+r^{2}}{r^{2}} \quad \alpha_{2}=\frac{x_{2}{ }^{2}+r^{2}}{r^{2}}
$$

Then $Q\left(\alpha_{1}\right)$ is found by substituting the values of α_{1} in equation (53) above, and $Q\left(\alpha_{2}\right)$ by using the value of α_{2} for α in the same equation. The sum of these two quantities multiplied by $\frac{\pi q r^{2}}{d}$ gives the constant of the instrument; that is, the mutual inductance sought.

As Lorenz gave the expression

Fig: 25
for the general term of (53), his equation can be extended. The following is the general term:

$$
Q(\alpha)=2 \pi \sum_{m=0}^{m=\infty} q^{2 m+1} \frac{\mathrm{I} \cdot 3 \cdots 2 m-\mathrm{I} .}{2 \cdot 4 \cdots \cdot 2 m} \frac{\mathrm{I}}{\mathrm{I} \cdot 2 \cdots(m+\mathrm{I})} \cdot \frac{\alpha^{m}}{d a^{m}}\left(\frac{\alpha-\mathrm{I}}{\alpha}\right)^{m+\frac{1}{2}}
$$

JONES'S FORMULAS

Two solutions of the above problem were given by Jones, ${ }^{54}$ both in terms of elliptic integrals. The current was considered to flow not in a current sheet, but along a spiral winding or helix. The first solution was in the form of a series, convergent only when $\mathrm{O}_{1} \mathrm{~A}$, Fig. 26, is less than the difference in the radii of inner and outer coils; that is, when $\mathrm{O}_{1} \mathrm{~A}$ is less than $A-a$. As this is a serious limitation, and the formula is a laborious one to use, it is not here given. The second solution is exact and general, and is in terms of elliptic integrals of all three kinds. The second formula is as follows:

$$
\begin{equation*}
M_{\theta}=\Theta(A+a) c k\left\{\frac{F-E}{k^{2}}+\frac{c^{\prime 2}}{c^{2}}(F-\Pi)\right\} \tag{54}
\end{equation*}
$$

[^27]$M_{\theta}=$ mutual inductance of helix $\mathrm{O}_{1} \mathrm{~A}$, Fig. 26, with respect to the disk S in the plane of one end.
$\Theta=2 \pi n, \mathrm{I} / n=$ pitch of winding, $\Theta=$ whole angle of winding. F, E, and Π are the complete elliptic integrals to modulus k, where
$$
k^{2}=\frac{4 A a}{(A+a)^{2}+x^{2}}=\sin ^{2} \gamma, c^{2}=\frac{4 A a}{(A+a)^{2}}, c^{\prime 2}=\mathrm{I}-c^{2} .
$$
Π, the complete elliptic integral of the third kind, can be expressed in terms of incomplete integrals of the first and second kinds, and the value of M_{θ} can then be calculated by the help of Legendre's tables. (See example 50.) The calculation is, however, extremely tedious, especially when the value is to be determined with high precision.

Campbell has given Jones's formula (54) a slightly different form, ${ }^{55}$ somewhat more convenient in calculation, as follows:

$$
\begin{equation*}
M=2 \pi n_{1} n_{2}(A+a)\left\{\frac{c}{k}(F-E)+\frac{A-a}{b} \psi\right\} \tag{55}
\end{equation*}
$$

where n_{1} is the same as n above, the number of turns per cm on the solenoid, n_{2} is the number of turns in the secondary coil (in the

Fig. 27 above case it was taken as one), A is the greater and a the less of the two radii (in the above case A was the radius of the solenoid and a of the circle within), and

$$
\begin{aligned}
& \psi=F(k) E\left(k^{\prime}, \beta\right)- \\
& {[F(k)-E(k)] F\left(k^{\prime}, \beta\right)-\frac{\pi}{2}}
\end{aligned}
$$

where $F(k)$ and $E(k)$ are the complete elliptic integrals to modulus k, and $H^{\prime}\left(k^{\prime}, \beta\right)$ and $E\left(k^{\prime}, \beta\right)$ are the incomplete elliptic integrals to modulus k^{\prime} and amplitude $\beta ; k^{\prime}=\cos \gamma, \sin \beta=c^{\prime} \mid k^{\prime} ; k, c$, and c^{\prime} are given above. If a second-

[^28]ary circle or coil has a radius greater than that of the solenoid, the same formula can be used if A is taken for the radius of the larger secondary and a is the radius of the solenoid (Fig. 27).

ROSA'S FORMULA ${ }^{56}$

The following formula gives the mutual inductance of a single layer coil of length x and a coaxial circle of radius a in the plane of one end of the coil, as shown in Fig. 26. It is the same quantity represented by M of equations (53) and (55) and M_{θ} of (54).

$$
\begin{align*}
& M_{\mathrm{OA}}=\frac{2 \pi^{2} a^{2} N}{d}\left[\mathrm{I}+\frac{3}{8} \frac{a^{2} A^{2}}{d^{4}}+\frac{5}{64} \frac{a^{4} A^{4}}{d^{8}} X_{2}+\frac{35}{5 \mathrm{I}^{2}} \frac{a^{6} A^{6}}{d^{12}} X_{4}+\frac{63}{1024} \frac{a^{8} A^{8}}{d^{16}} X_{6}\right. \\
& \left.+\frac{231}{4096} \frac{a^{10} A^{10}}{d^{20}} X_{8}+\frac{429}{8192} \frac{a^{12} A^{12}}{d^{24}} X_{10}+\cdots\right] \tag{56}\\
& X_{2}=3-4 \frac{x^{2}}{A^{2}} \\
& X_{4}=\frac{5}{2}-10 \frac{x^{2}}{A^{2}}+4 \frac{x^{4}}{A^{4}} \\
& X_{6}=\frac{35}{16}-\frac{35}{2} \frac{x^{2}}{A^{2}}+21 \frac{x^{4}}{A^{4}}-4 \frac{x^{6}}{A^{6}} \\
& X_{8}=\frac{63}{32}-\frac{\operatorname{Io} 5}{4} \frac{x^{2}}{A^{2}}+63 \frac{x^{4}}{A^{4}}-36 \frac{x^{6}}{A^{6}}+4 \frac{x^{8}}{A^{8}} \\
& X_{10}=\frac{23 I}{128}-\frac{1155}{3^{2}} \frac{x^{2}}{A^{2}}+\frac{1155}{8} \frac{x^{4}}{A^{4}}-165 \frac{x^{6}}{A^{6}}+55 \frac{x^{8}}{A^{8}}-4 \frac{x^{10}}{A^{10}}
\end{align*}
$$

(For general coefficient, see p. 63 .)
$a=$ radius of disk or circle S, Fig. 26.
$A=$ radius of the solenoid.
$x=$ length $\mathrm{O}_{1} \mathrm{~A}$ of one end of the solenoid.
$d=\sqrt{x^{2}+A^{2}}=$ half the diagonal of the solenoid.
N is the whole number of turns of wire in the length x.
This formula is very easy to use in numerical calculation, notwithstanding it looks somewhat elaborate. The logarithm of $\frac{a^{2} A^{2}}{d^{4}}$, multiplied by $2,3,4$, etc., gives the logarithm of the corresponding factor in each of the other terms. Similarly, the various terms X_{2}, X_{4}, etc., contain only powers of $\frac{x^{2}}{A^{2}}$ besides the numerical
coefficients. It is hence a far simpler matter to compute M with high precision by this formula than by Jones's formula, the latter containing as it does elliptic integrals of all three kinds and involving the tedius interpolations for incomplete elliptic integrals.

If the secondary circle has a larger radius than the solenoid, A will be the radius of the circle and a the radius of solenoid. In every case A is the greater and a the less of the two radii, and d is $\sqrt{A^{2}+x^{2}}$.
Equation (56) may be written

$$
M=\frac{2 \pi^{2} a^{2} n_{1} x}{d} S
$$

where n_{1} is the number of turns of wire per cm, x is the length of the coil, Fig. 26, and S is the value of the quantity in brackets in (56), which is always somewhat greater than unity. This may also be put as follows:

$$
M=a^{2} n_{1}\left(\frac{2 \pi^{2} x}{d}\right) S=a^{2} n_{1} R S
$$

or,

$$
\begin{equation*}
M=a^{2} n_{1} K \tag{57}
\end{equation*}
$$

The quantity R depends on x / d; that is, only upon the shape of the solenoid. S depends upon x / A,

Fig. 28 $a \mid A$, and $A \mid d$; that is, upon the relative sizes of the inner circle and the solenoid and the shape of the solenoid. If we have the value of $R S$, or K of equation (57) for a given solenoid and circle, we can get M by multiplying by $a^{2} n_{1}$, and for any other system of similar shape but different size by multiplying the same value of K by $a^{2} n_{1}$. The values of the constant K for various values of a / A and x / A are given in Table III, page 193.
If the disk or circle be in the center of a solenoid of length $2 x$ (Fig. 28), the value of M is of course double that given by using x. If it be not quite in the center, the value of M must be calculated for each end separately.

For illustrations and tests of the above formulas, see examples 48 to 51, pages 1o3-rio.

examples illustrating the formulas for the mutual inducTANCE OF A CIRCLE AND A COAXIAL SOLENOID

EXAMPLE 48. ROSA'S FORMULA (56) COMPARED WITH JONES'S FORMULA (54)
Professor Jones gave the calculations by formula (54) of the con-. stant of the Lorenz apparatus made for McGill University, obtaining the values given below, the second value being that obtained after the plate had been reground and again measured.

A calculation ${ }^{57}$ of the same two cases by formula (56) gives very closely agreeing results.

	rst value	2nd value, disk slight
By formula	(54) $M=18,056.36$	18,042.52
"	(56) $M=18,056.46$	18,042.74
ifference	-.I	. 2

These differences, amounting to five parts in a million in the first case and twelve parts in a million in the second case, are wholly negligible in the most refined experimental work.
EXAMPLE 49. FORMULA (56) COMPARED WITH JONES'S FIRST FORMULA
Take as a second example the case given by Jones ${ }^{58}$ to illustrate his first formula.

$$
\begin{aligned}
& A=\text { ro inches } \quad a=5 \text { inches } \quad x=2 \text { inches } \\
& d^{2}=104 \quad \frac{a^{2} A^{2}}{d^{4}}=\frac{2500}{108 \mathrm{I} 6} \quad \log \frac{a^{2} A^{2}}{d^{4}}=\overline{\mathrm{I}} .3638733 \\
& \text { ist term }=1.0000000 \\
& X_{2}=2.8400 \\
& X_{4}=2.1064 \\
& X_{6}=\mathrm{I} .5208 \\
& X_{8}=1.0173 \\
& X_{10}=0.5815 \\
& \frac{2 \pi^{2} a^{2}}{d}=48.38972 \\
& \begin{array}{lll}
2 & \text { " } & =.086677 \text { I } \\
3 & \text { " } & =.0118537 \\
4 & " & =.0017781 \\
5 & " & =.0002670 \\
6 & \text { " } & =.0000379 \\
7 & " & =.0000046
\end{array} \\
& \text { Sum }=1.1006184
\end{aligned}
$$

[^29]$\therefore M=53.2586$ I N, N being the number of turns of wire on the coil.

Jones gives $M=53.25879 \mathrm{~N}$.
The difference between these values is three parts in a million.

EXAMPLE 50. CALCULATION OF CONSTANT OF AYRTON-JONES CURRENT BALANCE BY FORMULAS (54) AND (56)

As a further test of the formulas let us calculate the constant of an electro-dynamometer or current balance of the Ayrton-Jones type, ${ }^{50}$ of which AB, Fig. 29, is the upper fixed coil and ED is the moving coil, the circle S at the upper end lying in the plane through the middle of $A B$ and the circle R at the lower end of ED lying in the middle plane of the lower fixed coil BC .

Fig. 29
Assume the dimensions as follows:
$A=16 \mathrm{~cm}=$ radius of fixed coil, Fig. 29.
$a=10 \mathrm{~cm}=$ radius of moving coil.
$x_{1}=8 \mathrm{~cm}=$ half length of $\mathrm{AB}=\mathrm{O}_{1} \mathrm{~A}$
$x_{2}=24 \mathrm{~cm}=1.5$ times $\mathrm{AB}=\mathrm{O}_{2} \mathrm{~A}$
$n_{1}=10 \quad=$ number of turns per cm
$N_{1}=80=$ number of turns in distance $\mathrm{O}_{1} \mathrm{~A}=x_{1}$, Fig. 29.
$N_{2}=240 \quad=$ number of turns in distance $\mathrm{O}_{2} \mathrm{~A}=x_{2}$
${ }^{59}$ This Bulletin, 3, p. 226; 1907.

$$
\begin{aligned}
& d_{1}=\sqrt{A^{2}+x_{1}^{2}}=8 \sqrt{5}=\text { diagonal } \mathrm{AP}_{1} \text {, Fig. } 29 . \\
& d_{2}=\sqrt{A^{2}+x_{2}^{2}}=8 \sqrt{\mathrm{I}_{3}}=\text { diagonal } \mathrm{AP}_{2}
\end{aligned}
$$

We have to determine two mutual inductances, namely, M_{s} between the coil $\mathrm{O}_{1} \mathrm{~A}$ of 80 turns on the circle S , and M_{R} between the coil $\mathrm{O}_{2} \mathrm{~A}$ of 240 turns on the circle R. In each case the circle is in the plane passing through the lower end of the coil.

Formula (56) will be used, taking N_{1}, x_{1}, and d_{1} in the first case and N_{2}, x_{2}, and d_{2} in the second case.

For M_{s}

106	Bulletin of the Bureau of Standards					[Vol. 8, No. 1
$\log S_{1}{ }_{\text {" }} 2 \pi^{2}$	=	0.0427660			=	0.0057083
	=	I. 2953298		$2 \pi^{2}$	$=$	I. 2953298
" a^{2} (=100)	=	2.0000000	"	$a^{2}(=100)$	=	2.0000000
" $N_{1}(=80)$	=	1.9030900	"	$N_{2}(=240)$	=	$\underline{2.3802112}$
		5.24 II 858				5.6812493
" d_{1}	=	1.2525750	,	d_{2}	=	1.4600616
$\log M_{\text {s }}$	=	3.9886108	log		$=$	4.2211877
	$=$	II.16		$M_{\text {R }}$		I. 32

THE SAME EXAMPLE BY JONES'S FORMULA

We will now calculate M_{s} and M_{R} by Jones's second formula given above, using also the following equation to find $F-\Pi$:

$\frac{k^{\prime 2} \sin \beta \cos \beta(F-\Pi)}{c}=F(k) E\left(k^{\prime}, \beta\right)+E(k) F\left(k^{\prime}, \beta\right)-F(k) F\left(k^{\prime}, \beta\right)-\frac{\pi}{2}$		
	For M_{s}	For M_{R}
A	16 cm	16 cm
a	10	10
x	8	24
$\Theta=2 \pi N$	160π	480π
$c=\frac{2 \sqrt{A a}}{A+a}$	0.9730085	0.9730085
$c^{\prime}=\sqrt{\mathrm{I}-c^{2}}$	0.2307692	0.2307692
$k=\frac{2 \sqrt{A a}}{\sqrt{(A+a)^{2}+x^{2}}}$	0.9299812	0.7149701
$k^{\prime}=\sqrt{\mathrm{I}-k^{2}}$	0.3676073	0.6991550
$\log \sin \beta\left(\sin \beta=\frac{c^{\prime}}{k^{\prime}}\right)$	9.7977938	9.5186043
$F(k)$	2.437337 I	1.863666 I
$E(k)$	1.1323456	1.3449927
$\frac{F-E}{k^{2}}$	1.5088957	1.0146546
$F\left(k^{\prime}, \beta\right)$	0.6852557	0.3394833
$E\left(k^{\prime}, \beta\right)$	0.6721988	0.3333201
$\frac{k^{\prime 2} \sin \beta \cos \beta(F-\Pi)}{c}$	-0.8266738	-I .1256799
$\frac{c^{\prime 2}}{c^{2}}(F-\Pi)$	-0.6851799	-0.4045298

$\log \left\{\frac{F-E}{k^{2}}+\frac{c^{\prime 2}}{2^{2}}(\mathrm{~F}-\mathrm{\Pi})\right\}$	$\overline{\mathrm{I}} .9157773$	$\overline{\mathrm{I}} .7854 \mathrm{I} 87$
$\log (\Theta(A+a) c k)$	$\frac{4.0728340}{3.9886 \mathrm{II} 3}$	$\underline{4.4357689}$
$\log M$	4.22 II 876	

$$
M_{\mathrm{s}}=974 \mathrm{I} .17 \mathrm{~cm} \quad M_{\mathrm{R}}=1664 \mathrm{I} .32
$$

M_{s} differs from the value obtained by formula (16) by one part in a million, M_{R} is identical.
M_{s} is the mutual inductance of the winding $\mathrm{O}_{1} \mathrm{~A}$ on S . The inductance M_{1} of the whole coil AB on S is twice as much, that is

$$
M_{1}=19482.34
$$

The inductance of AB on R is M_{R} above, minus the inductance of $\mathrm{O}_{2} \mathrm{~B}$ on R which is the same as that of $\mathrm{O}_{1} \mathrm{~A}$ on S , that is, M_{s}. Therefore,

$$
M_{2}=16641.32-9741.17=6900.15
$$

Hence $M_{1}-M_{2}=12582.19 \mathrm{~cm}$.
The force of attraction of the one winding AB in dynes is

$$
\frac{I}{2} f=i_{1} i_{2} n_{2}\left(M_{1}-M_{2}\right) .
$$

The force due to the second winding BC is equal to this. Suppose $i_{1}=i_{2}=\mathrm{I}$ ampere $=\mathrm{o}$.I c.g.s. unit of current and $n_{2}=10$ turns per cm . Then
$i_{1} i_{2} n_{2}=0.10$
$\therefore f=0.20 \times 12582.19$ dynes $=2516.438$ dynes
$2 f=5032.876$ dynes $=$ change of force on reversal of current $=5.1356$ gms where $g=980$.

If there are two sets of coils, one on each side of the balance, as in the ampere balance built for the National Physical Laboratory, the force would be doubled again.

In calculating the mutual inductance of the disk and surrounding solenoid in the Lorenz apparatus the series (56) will be more convergent when the winding is long, and of course more convergent when the disk is not of too great diameter.

EXAMPLE 51. MUTUAL INDUCTANCE OF CAMPBELL'S FORM OF STANDARD BY FORMULAS (55) AND (56)

A cylinder 20 cm in diameter has two coils of 50 turns each wound as shown in Fig. 30, each covering $5 \mathrm{~cm}(=\mathrm{AB})$ with an interval of io cm between ($=\mathrm{AA}^{\prime}$). A secondary coil of rooo turns of finer wire is wound in a channel S , with a mean radius of 14.5 cm . The magnetic field near S, due to the double solenoid, is very weak, and is zero at some point; at this place M will be a maximum, and variations in M due to small changes in A will be very small. To calculate M for the solenoid AB and the coil S , we take two cases, as in the preceding example. First, M for S and a winding $\mathrm{O}_{2} \mathrm{~B}$ of 100 turns; second, M for S and $\mathrm{O}_{2} \mathrm{~A}$ of 50 turns. The difference will be M for S and the actual winding AB . Or, supposing

0000000
0000000
Fig. 30
AB to have roo turns, M will be the same as for AB of 50 and $\mathrm{A}^{\prime} \mathrm{B}^{\prime}$ of 50 . Using formula (55) we have the following values:

$$
M=\quad M_{1}-M_{2}=9.1760 \text { millihenrys. }
$$

Campbell gives ${ }^{60}$ the value of M as 9.1762 millihenrys, but for want of any particulars of his calculation we do not know wherein the difference lies.

We have worked this problem out also by formula (56) with the following results:

$$
\begin{aligned}
& M_{1}=24.3 \mathrm{I} 387 \text { millihenrys } \\
& M_{2}=15.13857 \quad " \quad " \\
& M=9.17530 \quad " \quad "
\end{aligned}
$$

The value of M_{1} agrees with that found by (55) to about two parts in a million. $\quad M_{2}$ is, however, a little larger, making M smaller. This is due to the fact that formula (56) is not as convergent for

$$
\begin{aligned}
& \text { For } M_{1} \quad \text { For } M_{2} \\
& a=\text { IO } \quad=10 \\
& A=14.5 \quad=\quad 14.5 \\
& x=b=10 \quad=5.0 \\
& \log k=1.9590874=1.98366715 \\
& \gamma=65^{\circ} 3 I^{\prime} 7^{\prime \prime} .32=74^{\circ} 23^{\prime} 38^{\prime \prime} .88 \\
& k^{\prime}=\sqrt{0.17 \mathrm{I} 7243}=\sqrt{0.07237 \mathrm{II}} \\
& \beta=26^{\circ} I 8^{\prime} 36^{\prime \prime} .85=43^{\circ} 3^{\prime} 33^{\prime \prime} .06 \\
& \gamma^{\prime}=24^{\circ} 28^{\prime} 52^{\prime \prime} .68=15^{\circ} 36^{\prime} 2 I^{\prime \prime} .12 \\
& F=2.326780 \mathrm{I}=2.7312000 \\
& E=1.1590043 \quad=1.0812388 \\
& \frac{c}{k}(F-E)=\text { I.26I } 3045=1.6839704 \\
& F\left(k^{\prime}, \beta\right)=0.4618972=0.7561693 \\
& E\left(k^{\prime}, \beta\right)=0.4565314=0.7469284 \\
& \psi=-1.0479404 \quad=-0.7784352 \\
& \frac{A-a}{b} \psi=-0.4715732 \quad=-0.7005918 \\
& \frac{c}{k}(F-E)+\frac{A-a}{b} \psi=0.78973 \mathrm{I} 3 \quad=0.9833786 \\
& n_{1} n_{2}=200,000=100,000 \\
& M_{1}=24,3 \mathrm{I} 3,940 \mathrm{~cm} \quad M_{2}={ }^{1} 5, \mathrm{I} 37,940 \mathrm{~cm} \\
& =24.3 \text { I } 394 \text { millihenrys }=\text { I5.I } 3794 \text { milli- } \\
& \text { henrys }
\end{aligned}
$$

$x=5$ in this problem as for $x=10$, and hence the terms neglected after the seventh are appreciable. Hence, for so short a coil as this, formula (54) or (55) will give a moze accurate result than (56).

5. THE SELF-INDUCTANCE OF A CIRCULAR RING OF CIRCULAR SECTION

KIRCHHOFF'S FORMULA

The formula for the self-inductance of a circle was first given by Kirchhoff ${ }^{61}$ in the following form:

Fig. 31

$$
\begin{equation*}
L=2 l\left\{\log \frac{l}{\rho}-1.508\right\} \tag{58}
\end{equation*}
$$

where l is the circumference of the circular conductor and ρ is the radius of its cross section. This is equivalent to the following:

$$
\begin{equation*}
L=4 \pi a\left\{\log \frac{8 a}{\rho}-\mathrm{I} .75\right\} \tag{59}
\end{equation*}
$$

a being the radius of the circle, Fig. 31. These formulas are approximate, being more nearly correct as the ratio ρ / a is smaller

MAXWELL'S FORMULA

A more accurate expression, obtained by means of Maxwell's principle of the geometrical mean distance, is the following:

$$
\begin{equation*}
L=4 \pi a\left\{\left(\mathrm{I}+\frac{3}{16} \frac{R^{2}}{a^{2}}\right) \log \frac{8 a}{R}-\left(2+\frac{R^{2}}{16 a^{2}}\right)\right\} \tag{60}
\end{equation*}
$$

Substituting in this equation the value of the geometrical mean distance for a circular area, $R=\rho e^{-\frac{1}{2}}=.7788 \rho$, we obtain ${ }^{62}$

$$
\begin{equation*}
L=4 \pi a\left\{\left(\mathrm{I}+\mathrm{O.1137} \frac{\rho^{2}}{a^{2}}\right) \log \frac{8 a}{\rho}-.0095 \frac{\rho^{2}}{a^{2}}-\mathrm{I} .75\right\} \tag{6I}
\end{equation*}
$$

This is a very accurate formula for circles in which the radius of section ρ is very small in comparison with the radius a of the circle. The geometrical mean distance R has, however, been computed on the supposition of a linear conductor, and can only

[^30]be applied to circles of relatively small value of ρ / a, and the square of the geometrical mean distance is used for the arithmetical mean square distance in the second order terms. We must therefore expect an appreciable error in formula (61) when the ratio ρ / a is not very small. Formulas (58), (59), and (6r) have been deduced on the supposition of a uniform distribution of the current over the cross section of the ring.

If the ring is a hollow, circular, thin tube, or if the current in the ring is alternating and of extremely high frequency, so that it can be regarded as flowing on the surface of the ring, the geometrical mean distance for the section would be the radius ρ, and we should have instead of (61) the following by substituting $R=\rho$,

$$
\begin{equation*}
L=4 \pi \alpha\left\{\left(\mathrm{I}+\frac{3}{16} \frac{\rho^{2}}{a^{2}}\right) \log \frac{8 a}{\rho}-\frac{\rho^{2}}{\mathrm{I} 6 a^{2}}-2\right\} \tag{62}
\end{equation*}
$$

In the case of solid rings carrying alternating currents of moderate frequency the value of L would be somewhere between the values given by (6I) and (62).

RAYLEIGH AND NIVEN'S FORMULA

Rayleigh and Niven gave, ${ }^{63}$ without proof, the following formula for a circular coil of n turns and of circular section, ${ }^{64}$ which is more nearly exact than either of the preceding:

$$
\begin{equation*}
L=4 \pi n^{2} a\left\{\left(\mathrm{I}+\frac{\rho^{2}}{8 a^{2}}\right) \log \frac{8 a}{\rho}+\frac{\rho^{2}}{24 a^{2}}-\mathrm{I} .75\right\} \tag{63}
\end{equation*}
$$

When $n=\mathrm{I}$, this will be the self-inductance of a single circular ring. ${ }^{65}$ This formula neglects higher powers of $\frac{\rho}{a}$ than the second,

[^31]and its error therefore depends on the magnitude of the ratio of the radius of the cross section to the radius of the ring. Assuming, as is probably justified, that the coefficients of the terms in $\left(\frac{\rho}{a}\right)^{4}$, are of the same magnitude, or smaller, than those of the terms in $\left(\frac{\rho}{a}\right)^{2}$, the error will not be greater than $\frac{I}{100000}$ even for $\frac{\rho}{a}=0.1$, an exceptionally unfavorable case.

If used for a coil of more than one turn, the expression for L must be corrected for the space occupied by the insulation between the wires and for the shape of the section. ${ }^{66}$

SELF-INDUCTANCE OF A TUBE BENT INTO A CIRCLE

Suppose that the cross section of the ring is not solid, but is an annulus bounded by two concentric circles of radii ρ_{1} and ρ_{2}, ρ_{2} being the larger. Then assuming the current to be uniformly distributed over the cross section, we find ${ }^{67}$ by means of Wien's method

$$
\begin{align*}
L=4 \pi a & {\left[\left(\mathrm{I}+\frac{\rho_{1}^{2}+\rho_{2}{ }^{2}}{8 a^{2}}\right) \log \frac{8 a}{\rho_{2}}-\mathrm{I} \cdot 75+\frac{2 \rho_{2}^{2}+\rho_{1}{ }^{2}}{32 a^{2}}\right.} \\
& -\frac{\rho_{1}{ }^{2}}{2\left(\rho_{2}^{2}-\rho_{1}{ }^{2}\right)}+\frac{\rho_{1}^{4}}{\left(\rho_{2}{ }^{4}-\rho_{1}{ }^{2}\right)^{2}}\left(\mathrm{I}+\frac{\rho_{1}{ }^{2}}{8 a^{2}}\right) \log \frac{\rho_{2}}{\rho_{1}} \tag{64}\\
& \left.-\frac{\rho_{2}^{4}+\rho_{1}{ }^{2} \rho_{2}{ }^{2}+\rho_{2}^{4}}{48 a^{2}\left(\rho_{2}^{2}-\rho_{1}^{2}\right)}\right]
\end{align*}
$$

In this formula terms of higher order than $\frac{\rho_{2}^{2}}{a^{2}}$ and $\frac{\rho_{1}^{2}}{a^{2}}$ have been neglected. Expanding (64) in terms of $\frac{\rho_{2}^{2}-\rho_{1}^{2}}{a^{2}}$ and letting ρ_{1} approach ρ_{2} we find for the case of a tube with infinitely thin walls, or of a tube carrying a current of infinitely high frequency,

$$
\begin{equation*}
L=4 \pi a\left[\left(\mathrm{I}+\frac{\rho^{2}}{4 a^{2}}\right) \log \frac{8 a}{\rho}-2\right] \tag{65}
\end{equation*}
$$

${ }^{66}$ See Rosa, this Bulletin, 3, p. 1 ; 1907.
${ }^{67}$ Grover, Phys. Rev., 30, p. 787; 1910.
a result which was also found by direct integration, ${ }^{68}$ and which was subsequently communicated to us by Mr. T. J. Bromwich.

This corresponds to Maxwell's equation (62), but as might be expected gives a slightly greater value for the inductance.

If we expand (64) in terms of $\frac{\rho_{1}}{\rho_{2}}$ and let ρ_{1} approach zero, we find for the limiting case of a ring with a solid cross section, the same formula (63) as was derived by directly performing the integration for this case.

An important case is that of a ring of solid cross section, where the current is not distributed uniformly over the cross section, but the current density is proportional to the distance from the axis of the ring. This would apply to the case of a ring revolving about a diameter in a uniform magnetic field. For this Wien (loc. cit.) derived the formula

$$
\begin{equation*}
L=4 \pi a\left\{\left(\mathrm{I}+\frac{3}{8} \frac{\rho^{2}}{a^{2}}\right) \log \frac{8 a}{\rho}-.092 \frac{\rho^{2}}{a^{2}}-\mathrm{I} .75\right\} \tag{66}
\end{equation*}
$$

J. J. THOMSON'S FORMULA FOR RING OF ELLIPTICAL SECTION

If the circular ring has an elliptical section the approximate formula for its self-inductance (corresponding to (59) for a circular section) is ${ }^{69}$

$$
\begin{equation*}
L=4 \pi a\left\{\log \frac{\mathrm{I} 6 a}{\alpha+\beta}-\mathrm{I} .75\right\} \tag{67}
\end{equation*}
$$

where α and β are the semiaxes of the ellipse, and α is the mean radius of the circular ring.

The formulas of Minchin, ${ }^{70}$ Hicks, ${ }^{71}$ and Bláthy ${ }^{72}$ we have elsewhere ${ }^{73}$ shown to be incorrect, and hence they are not here given.
${ }^{68}$ Russell also gives equation (65) but without the term in $\frac{\rho^{2}}{a^{2}}$ in Phil. Mag., 13, p. $430 ; 1907$.
${ }^{69}$ J. J. Thomson, Phil. Mag., 28, p. 384; 1886.
${ }^{70}$ Phil. Mag., 37, p. 300; 1894.
${ }^{71}$ Phil. Mag.. 38, p. 456; 1894.
${ }^{72}$ London Electrician, 24, p. 630; Apr. 25, 1890.
${ }^{73}$ This Bulletin, 4, p. 149; 1907.

EXAMPLES ILLUSTRATING THE FORMULAS FOR THE SELF-INDUCTANCE OF CIRCULAR RINGS OF CIRCULAR SECTION

EXAMPLE 52. COMPARISON OF FOUR FORMULAS FOR THE SELF-INDUCTANCE OF CIRCLES

For a circle of radius $\alpha=25 \mathrm{~cm}$ and $\rho=0.05 \mathrm{~cm}$ we obtain from the four formulas the following values of L :

By Kirchhoff's formula (59)
$L=654.40496 \pi \mathrm{~cm}$
By Maxwell's formula (6r)
$L=654.40533 \pi \mathrm{~cm}$
By Rayleigh and Niven's (63)
$L=654.40548 \pi \mathrm{~cm}$
By Wien's second formula (66)
$L=654 \cdot 40617 \pi \mathrm{~cm}$.
Thus for so small a value of $\frac{\rho}{\alpha}$ as $I / 500$ any of these formulas is sufficiently accurate, the greatest difference being less than one in a million, except in the case of formula (66).

EXAMPLE 53. SECOND COMPARISON OF FOUR FORMULAS FOR CIRCLES
For a circle of radius $a=25 \mathrm{~cm}, \rho=0.5 \mathrm{~cm}, \frac{\rho}{a}$ being $\mathrm{I} / 50$.

By Kirchhoff's formula (59)
By Maxwell's formula (6I)
By Rayleigh and Niven's formula (63)
By Wien's second formula (66)
$L=424.1464 \pi \mathrm{~cm}$
$L=424.1734 \pi \mathrm{~cm}$
$L=424.1781 \pi \mathrm{~cm}$
$L=424.2326 \pi \mathrm{~cm}$.

EXAMPLE 54. THIRD COMPARISON OF FOUR FORMULAS FOR CIRCLES
For a circle of radius $\alpha=10 \mathrm{~cm}, \rho=\mathrm{I} .0, \frac{\rho}{a}=1 / \mathrm{IO}$.

By Kirchhoff's formula (59)	$L=105.281 \pi \mathrm{~cm}$
By Maxwell's formula (6I)	$L=105.476 \pi \mathrm{~cm}$
By Rayleigh and Niven's formula (63)	$L=105.517 \pi \mathrm{~cm}$
By Wien's second formula (66)	$L=105.902 \pi \mathrm{~cm}$.

It will be seen that for the smallest ring of radius 10 cm and diameter of section 2 cm Maxwell's formula gives a result I part in 2500 too small, while the simple approximate formula of Kirchhoff is in error by one in four hundred. For the larger rings the differences are much smaller.

Wien's second formula gives appreciably larger values than the others, as it should do.

EXAMPLE 55. COMPARISON OF FORMULAS (62) AND (65) FOR VERY THIN WALLED TUBES
(a) $a=25 \quad \rho=0.05 \mathrm{~cm}$

By Maxwell's formula (62)	$L=629 \cdot 40556 \pi \mathrm{~cm}$
By Formula (65)	$L=629.40579 \pi \mathrm{~cm}$
Solid ring (63)	$L=654 \cdot 40548 \pi \mathrm{~cm}$

(b) $a=25 \quad \rho=0.5 \mathrm{~cm}$

By Maxwell's formula (62)
$L=399.1889 \pi \mathrm{~cm}$
$L=399.2064 \pi \mathrm{~cm}$
$L=424.1781 \pi \mathrm{~cm}$
(c) $a=10 \quad \rho=1.0 \mathrm{~cm}$

By Maxwell's formula (62)
By Formula (65)
$L=95 \cdot 585 \pi \mathrm{~cm}$
Solid ring (63)
$L=95.719 \pi \mathrm{~cm}$
$L=105.517 \pi \mathrm{~cm}$.
Maxwell's expression is nearly correct for the larger ring, but the error increases rapidly as the ratio $\frac{\rho}{\alpha}$ is increased.

EXAMPLE 56. FORMULA (64) FOR A TUBULAR RING

$a=20 \quad \rho_{2}=0.5 \mathrm{~cm}=$ external radius of the cross section.
The calculation has been carried through for different thicknesses of the walls of the tube $\left(\rho_{2}-\rho_{1}\right)$ ranging from zero (infinitely thinwalled tube) to ρ_{2} (solid cross section).

ρ_{1}	$\frac{\rho_{1}}{\rho_{2}}$		$\begin{gathered} L \\ \mathrm{~cm} \end{gathered}$
\bigcirc	-	Solid ring	1010.032
0.125	1/4		1003.210
0.25	1/2		987.528
0.375	3/4		968.045
0.5	I	Infinitely thin walls	947.308

In formula (64), next to the first two terms, the fourth and fifth terms are the most important.

6. THE SELF-INDUCTANCE OF A SINGLE LAYER COIL OR SOLENOID

The following approximate formula for the self-inductance of a long solenoid is often given:

$$
\begin{equation*}
L=4 \pi^{2} a^{2} n_{1}^{2} b \tag{68}
\end{equation*}
$$

where a is the mean radius, n_{1} is the number of turns of wire per cm , and b is the length, supposed great in comparison with a. There is a considerable error in this formula, due to the end effect, but the variations in L due to changes in l are almost exactly proportional to the changes in l, and hence this formula may be used for calculating the corresponding variations in L.

RAYLEIGH AND NIVEN'S FORMULAS

The following formula ${ }^{74}$ for the self-inductance of a single layer winding on a solenoid is very accurate when the length b is small compared with the radius a, Fig. 32 :

$$
\begin{equation*}
L_{s}=4 \pi a n^{2}\left\{\log \frac{8 a}{b}-\frac{\mathrm{I}}{2}+\frac{b^{2}}{3^{2} a^{2}}\left(\log \frac{8 a}{b}+\frac{\mathrm{I}}{4}\right)\right\} \tag{69}
\end{equation*}
$$

n is the whole number of turns of wire on the coil, and the radius is measured to the center of the wire. The length b is the mean
 over-all length including the insulation on the first and last wires if the coil is wound closely with insulated wire. (See also p. 97.)

The self-inductance L_{s} is, however, not the actual self-inductance of the coil, but the current sheet value; that is, it is the value of the self-inductance if the winding were of infinitely thin tape, so that the current would cover the entire length b. To get the actual self-inductance L for any given case one must correct L_{s} by formula (80) below. The same remark applies to all the formulas in this section for L_{8}. The approximate formula (68) is too rough to make it worth while to apply such a correction.

For a coil in which the axial dimension b is zero and the radial depth is c, the following current sheet forFig. 32 mula of Rayleigh and Niven gives the self-inductance:

[^32]\[

$$
\begin{equation*}
L_{s}=4 \pi a n^{2}\left\{\log \frac{8 a}{c}-\frac{1}{2}+\frac{c^{2}}{96 a^{2}}\left(\log \frac{8 a}{c}+\frac{43}{12}\right)\right\} \tag{70}
\end{equation*}
$$

\]

This is not an important case in practice.
Formulas (69) and (70) may be obtained from (88) by making first $c=0$ and then $b=0$.

COFFIN'S FORMULA

Coffin ${ }^{75}$ has extended formula (69) so that it is very accurate for coils of length as great as the radius, and sufficiently accurate for most purposes for coils considerably longer than this.

$$
\begin{gathered}
L_{s}=4 \pi a n^{2}\left\{\log \frac{8 a}{b}-\frac{\mathrm{I}}{2}+\frac{b^{2}}{32 a^{2}}\left(\log \frac{8 a}{b}+\frac{\mathrm{I}}{4}\right)-\frac{\mathrm{I}}{\mathrm{1O} 24} \frac{b^{4}}{a^{4}}\left(\log \frac{8 a}{b}-\frac{2}{3}\right)\right. \\
\left.+\frac{10}{\mathrm{I} 3107^{2}} \frac{b^{6}}{a^{6}}\left(\log \frac{8 a}{b}-\frac{109}{120}\right)-\frac{35}{4 \mathrm{I} 94304} \frac{b^{8}}{a^{8}}\left(\log \frac{8 a}{b}-\frac{43 \mathrm{I}}{42 \mathrm{O}}\right)\right\} \quad[7 \mathrm{I}] \\
\text { LORENZ'S FORMULA }
\end{gathered}
$$

Lorenz first gave ${ }^{76}$ an exact formula for the self-inductance of a

single layer solenoid. It is, like the others, a current sheet formula, and requires correction by (8o) for a winding of wire, but applies to a solenoid of any length. Changing the notation slightly Lorenz's formula as originally given is as follows:

[^33]\[

$$
\begin{equation*}
L_{s}=\frac{32}{3} \frac{\pi n^{2} a^{3}}{b^{2}}\left\{\frac{2 k^{2}-\mathrm{I}}{k^{3}} \cdot E+\frac{\mathrm{I}-k^{2}}{k^{3}} F-\mathrm{I}\right\} \tag{72}
\end{equation*}
$$

\]

where $k^{2}=\frac{4 a^{2}}{4 a^{2}+b^{2}}$ and F and E are complete elliptic integrals of the first and second kind of modulus k, and a, b, and n are the radius (Fig. 33), length, and whole number of turns of wire, respectively. By simple substitutions the formula may be put into the following form, where d is the diagonal of the solenoid $=\sqrt{4 a^{2}+b^{2}}$;

$$
\begin{equation*}
L_{s}=\frac{4 \pi n^{2}}{3 b^{2}}\left\{d\left(4 a^{2}-b^{2}\right) E+d b^{2} F-8 a^{3}\right\} \tag{73}
\end{equation*}
$$

Coffin derived ${ }^{77}$ an expression for L in elliptic integrals which is equivalent to (73), and also obtained (73) from an expression ${ }^{78}$ attributed to Kirchhoff.

Formula (73) may be written

$$
\begin{equation*}
L_{s}=a n^{2}\left[\frac{8 \pi}{3}\left\{\sqrt{1+\frac{b^{2}}{4 a^{2}}}\left(\frac{4 a^{2}}{b^{2}}-\mathrm{I}\right) E+\sqrt{1+\frac{b^{2}}{4 a^{2}}} F-\frac{4 a^{2}}{b^{2}}\right\}\right] \tag{74}
\end{equation*}
$$

or

$$
L_{s}=a n^{2} Q
$$

where a is the radius of the solenoid, n is the whole number of turns on the coil, and Q is the function of $\frac{2 a}{b}(=\tan \gamma)$ contained in the square brackets. We have calculated Q for various values of $\tan \gamma$ from 0.2 to 4.0 and given them in Table IV, page 194. This table will be found useful in calculating L_{s} for solenoids when $\tan \gamma$ has one of the values given in the table, as all calculation of elliptic integrals is avoided. In problems where the length and diameter can be chosen at will, as in the designing of apparatus, this method of calculating L will be most frequently useful. The values of the constant Q given in the table have been computed with great care, so that they give very accurate values of L_{s}, for long as well as short solenoids.

In calculating the value of L_{s} by means of formula (69), (7r), (73), or (74) and the following, one should use for the length b the over-all

[^34]length including the insulation (A B, Fig. 34, and not $a b$) for a close winding of insulated wire, or n times the pitch for a uniform winding of bare or covered wire, which is, of course, the same as the length from center to center of $n+1$ turns. The radius a is the mean radius to the center of the wire. The same method of taking the breadth and depth b and c applies in the formulas of section 7 .

Fig. 34
(See also remarks under example 47.)

NAGAOKA'S FORMULAS AND TABLES

In a recent paper ${ }^{79}$ Nagaoka has derived formulas and prepared tables by which the self-inductance of a cylindrical current sheet of any dimensions whatever may be accurately and conveniently calculated. Starting from his absolute formula (45) for the mutual inductance of coaxial solenoids, he passes to the special case that the two solenoids coincide, and shows that the resulting expression for the self-inductance is equivalent to Lorenz's absolute formula (73), which he then expands in terms of q or q_{1} functions.

He expresses the inductance of a coil of finite length by means of the expression (68) for an infinitely long coil, introducing a correction factor K, which is less than unity, to take account of the effect of the ends of the coil.

Thus

$$
\begin{equation*}
L=4 \pi^{2} a^{2} n_{1}^{2} b K=4 \pi^{2} a^{2} \frac{n^{2}}{b} K \tag{75}
\end{equation*}
$$

where K is a function of half the angular aperture θ of the coil at the center. Nagaoka has prepared tables giving K with θ as argument and also as function of the $\frac{\text { diameter }}{\text { length }}=\frac{2 a}{b}$. These tables are reproduced here as Tables XX and XXI, and enable K to be obtained by interpolation with all the accuracy that will usually be required. In case, however, it becomes necessary to obtain a more accurate value of K than can be obtained from these tables, or in such cases as fall outside the range of the tables, or in a portion where the function is changing so rapidly as to make interpolation difficult, the following formulas may be used to calculate K directly.
${ }^{79}$ Jour. Coll. Sci. Tokyo, 27, art. 6, pp. 18-33; 1909.

For short solenoids
$K=\frac{\mathrm{I}}{3 \pi \sqrt{q_{1}\left(\mathrm{I}+\alpha_{1}\right)^{2}}}\left[\mathrm{I}-\frac{k^{\prime 2}}{k^{2}}+\left\{\frac{k^{\prime 2}}{k^{2}}\left(\mathrm{I}+\frac{8 \beta_{1}}{\mathrm{I}+\alpha_{1}}\right)+\frac{8 \gamma_{1}}{\mathrm{I}-\delta_{1}}\right\} \frac{\mathrm{I}}{2} \log _{e} \frac{\mathrm{I}}{q_{1}}\right]-\frac{4}{3 \pi} \frac{k}{k^{\prime}}$
where

$$
\begin{array}{ll}
\alpha_{1}=q_{1}^{2}+q_{1}{ }^{6}+q_{1}^{12}+\cdots & \tag{76}\\
\beta_{1}=q_{1}^{2}+3 q_{1}^{6}+6 q_{1}^{12}+\cdots \cdot & k^{2}=\frac{4 a^{2}}{4 a^{2}+b^{2}} \\
\gamma_{1}=q_{1}-4 q_{1}^{4}+9 q_{1}^{9}-\cdots & k^{\prime 2}=\frac{b^{2}}{4 a^{2}+b^{2}} \\
\delta_{1}=2 q_{1}-2 q_{1}^{4}+2 q_{1}{ }^{9}-\cdots \cdots & \\
q_{1}=\frac{l_{1}}{2}+2\left(\frac{l_{1}}{2}\right)^{5}+\mathrm{I} 5\left(\frac{l_{1}}{2}\right)^{9}+\cdots \cdots \\
l_{1}=\frac{\mathrm{I}-\sqrt{k}}{\mathrm{I}+\sqrt{k}}=\frac{k^{\prime 2}}{(\mathrm{I}+k)(\mathrm{I}+\sqrt{k})^{2}}
\end{array}
$$

For relatively long coils

$$
\begin{equation*}
K=\frac{2}{3(\mathrm{I}-\delta)^{2}}\left\{\mathrm{I}+\frac{8 \beta}{\mathrm{I}+\alpha}+\frac{k^{\prime 2}}{k^{2}} \cdot \frac{8 \gamma}{\mathrm{I}-\delta}\right\}-\frac{4}{3 \pi} \frac{k}{k^{\prime}} \tag{77}
\end{equation*}
$$

where k and k^{\prime} have the same values as in (76) and

$$
\begin{aligned}
& q=\frac{l}{2}+2\left(\frac{l}{2}\right)^{5}+\mathrm{I}_{5}\left(\frac{l}{2}\right)^{9}+\cdots \\
& l=\frac{\mathrm{I}-\sqrt{k^{\prime}}}{\mathrm{I}+\sqrt{k^{\prime}}}=\frac{k^{2}}{\left(\mathrm{I}+k^{\prime}\right)\left(\mathrm{I}+\sqrt{k^{\prime}}\right)^{2}}
\end{aligned}
$$

and $\alpha, \beta, \gamma, \delta$ are given by the same equations as $\alpha_{1}, \beta_{1}, \gamma_{1}, \delta_{1}$ in (76) substituting q in place of q_{1}. Table XV will be found convenient in obtaining q and q_{1} from $\frac{l}{2}$ and $\frac{l_{1}}{2}$. The more complicated expressions for the latter are to be used only when it becomes difficult to obtain $\mathrm{I}-\sqrt{k^{\prime}}$ and $\mathrm{I}-\sqrt{k}$ without carrying out the calculation of k and k^{\prime} to an inconvenient number of decimal places.

For relatively long coils, for which the angle $\theta=\tan ^{-1} \frac{2 a}{b}$ is not greater than 45°, the simple formula

$$
\begin{align*}
K=\mathrm{I} & -\frac{4}{3 \pi} \frac{k}{k^{\prime}}+2 q+12 q^{2}+44 q^{3}+116 q^{4}+260 q^{5} \\
& +576 q^{6}+\frac{3760}{3} q^{7}+\cdots \tag{78}
\end{align*}
$$

will give values of K correct to a few parts in ten million in the most unfavorable case.

The formulas $(76),(77)$, and (78) between them cover the entire range of values of θ with all the precision desired, since the general terms of the series are known. The formula (76) for short coils is the least convenient to use, and for very short coils (69) is preferable. However, by including terms in q^{9} in (77) the range of its applicability may be extended to $\theta=80^{\circ}$, so that (76) need not be used except as a check.

THE WEBSTER-HAVELOCK FORMULA

Webster ${ }^{80}$ in 1905 by the evaluation of a definite integral, involving Bessel functions, derived a formula for the inductance of relatively long solenoids, which is very simple in form. Havelock ${ }^{81}$ gives the same formula as a special application of his formulas for the values of certain integrals of Bessel functions, and stated that the first four terms had already been found by Russel1, ${ }^{82}$ but seems to have been unacquainted with the work of Webster. This formula is

$$
\begin{gather*}
L=4 \pi^{2} \frac{a^{2} n^{2}}{b}\left\{\mathrm{I}-\frac{8}{3 \pi} \frac{a}{b}+\frac{\mathrm{I}}{2} \frac{a^{2}}{b^{2}}-\frac{\mathrm{I}}{4} \frac{a^{4}}{b^{4}}+\frac{5}{16} \frac{a^{6}}{b^{6}}\right. \\
 \tag{79}\\
\left.-\frac{35}{64} \frac{a^{8}}{b^{8}}+\frac{147}{128} \frac{a^{10}}{b^{10}}-\cdots \cdot\right\}
\end{gather*}
$$

Both Webster and Havelock gave the same expression for the general term of this series, viz:

$$
\frac{(-1)^{s}(2 s)!(2 s+2)!}{s!(s+2)!\{(s+1)!\}^{2} 2^{2 s+1}}\left(\frac{a}{b}\right)^{2 s+2}
$$

[^35]but in all the terms of Webster's final equation (20), except the first two, a factor 2 has been omitted in the denominator of the coefficients.

This expression (79) is in the form adopted by Nagaoka, the expression in the brackets being equivalent to the correction for the ends K tabulated by Nagaoka.

ROSA'S CORRECTION FORMULA

Rosa has shown ${ }^{83}$ that the above formulas (69 to 79) apply accurately only to a winding of infinitely thin strip which completely covers the solenoid (the successive turns being supposed to meet at the edges without making electrical contact) and so realizing the uniform distribution of current over the cylindrical surface which has been assumed in the derivation of all the formulas. A winding of insulated wire or of bare wire in a screw thread may have a greater or less self-inductance than that given by the current sheet formulas above according to the ratio of the diameter of the wire to the pitch of the winding. Putting L for the actual self-inductance of a winding and L_{s} for the current sheet value given by one of the above formulas,

$$
L=L_{s}-\Delta L
$$

The correction ΔL is given by the following expression:

$$
\begin{equation*}
\Delta L=4 \operatorname{an} n[A+B] \tag{8o}
\end{equation*}
$$

where as above α is the radius, n the whole number of turns of wire and A and B are constants given in Tables VII and VIII, pages 197 and 199.

The correction term A depends on the size of the (bare) wire (of diameter d) as compared with the pitch D of the winding; that is, on the value of the ratio d / D. For values of d / D less than $0.58, A$ is negative, and in such cases when the numerical values of A are greater than the value of B, which is always positive, the correction ΔL will be negative, and hence L will be greater than L_{s}. (See examples 58 and 63 .)

If we have a single layer winding on a cylinder (Fig. 35), the selfinductance is equal to the sum of the self-inductances of the separate turns plus the sum of the mutual inductances of each wire on all the others. Thus, if there are n turns

$$
L=n L_{1}+2(n-1) M_{12}+2(n-2) M_{13}+2(n-3) M_{14}+\cdots+2 M_{1 n} \quad[8 \mathrm{I}]
$$

where L_{1} is the self-inductance of a single turn, M_{12} is the mutual inductance of the first and second turns or any two adjacent turns, M_{13} is the mutual inductance of the first and third or of any two turns separated by one, etc., and $M_{1 n}$ is the mutual inductance of the first and last turns. For a coil of four turns this becomes

Fig. 35

$$
L=4 L_{1}+6 M_{12}+4 M_{13}+2 M_{14}
$$

L_{1} should be calculated by formula (6_{3}) or any formula for a circular ring and M_{12}, etc., by (12) or (13). When the number of turns on the coil is small, formula (8I) is very convenient, and gives very accurate results.

STRASSER'S FORMULA

Strasser ${ }^{85}$ has derived a formula for the self-inductance of a single layer coil of few turns from (81) by substituting for L_{1} its value as given by formula (59) and for the various M 's their values as given by (12). Strasser's formula with slight correction and some changes in notation is as shown on next page: ${ }^{86}$
${ }^{84}$ Kirchhoff, Gesammelte Abhandlungen, p. I77.
${ }^{85}$ Wied. Annal., 17, p. 763; 1905.
${ }^{86}$ Strasser uses the formula for L as: $L=4 \pi a\left(\log \frac{a}{\rho}+0.333\right)$. This is not quite correct. It should be

$$
L_{1}=4 \pi a\left(\log \frac{8 a}{\rho}-\mathrm{r} .75\right)=4 \pi a \log \left(\frac{a}{\rho}-\mathrm{r} .75+\log _{e} 8\right)=4 \pi a\left(\log \frac{a}{\rho}+\mathrm{o} .32944\right)
$$

$$
\begin{align*}
L=4 \pi a & {\left[n\left(\log \frac{8 a}{\rho}-\mathrm{I} .75\right)+n(n-\mathrm{I})\left(\log \frac{8 a}{d}-2\right)-A\right.} \\
& \left.+\frac{d^{2}}{8 a^{2}}\left\{\left(3 \log \frac{8 a}{d}-\mathrm{I}\right)\left(\frac{n^{2}\left(n^{2}-\mathrm{I}\right)}{\mathrm{I} 2}\right)-B\right\}\right] \tag{82}
\end{align*}
$$

where n is the whole number of turns, d is the pitch, or distance between the centers of two adjacent turns, a is the mean radius of the coil, ρ is the radius of the section of the wire, and A and B are constants given by Table V, page 195, for values of n up to 30 . For coils of a larger number of turns (or indeed any number of turns) the value of L can be accurately calculated by (90) and (93) or by (73) and (80).

SELF-INDUCTANCE OF TOROIDAL COIL OF RECTANGULAR SECTION

The first approximation to the self-inductance of a toroidal coil (that is, a circular solenoid) of rectangular section, wound with a single layer of n turns of wire is

$$
\begin{equation*}
L_{s}=2 n^{2} h \log \frac{r_{2}}{r_{1}} \tag{83}
\end{equation*}
$$

where h is the axial depth of the coil, and r_{1} and r_{2} are the inner and outer radii of the ring, Fig. 36. Formula (83) is exact for a toroidal

Fig. 36
core enveloped by a current sheet, or for a winding of n turns of infinitely thin tape covering the core completely, the core within
the current sheet being $h \mathrm{~cm}$ in axial height and $\left(r_{2}-r_{1}\right) \mathrm{cm}$ in radial breadth.

When the core is wound with round insulated wire, the selfinductance is affected by those lines of force within the cross section of the wire itself, and by those linked with each separate turn of wire in addition to those running through the core. Rosa has shown ${ }^{87}$ that the total self-inductance may be more or less than the current sheet value given by (83) according to the size of the wire and the pitch of the winding. In every case, however, the correct value of the self-inductance is derived from the current sheet value L_{s} by subtracting a correction term ΔL, which is equal to twice the length of the wire multiplied by the sum of two quantities A and B. Thus

$$
\begin{equation*}
L=L_{s}-2 n l(A+B) \tag{84}
\end{equation*}
$$

where n is the whole number of turns in the winding, l is the length of one turn, A is a quantity, depending on the diameter of the wire and the pitch of the winding, given in Table VII, and B is 0.332 . When A is negative and greater than B, L is greater than L_{8}. This occurs when the pitch of the winding is more than 2.5 times the diameter of the (uncovered) wire.

Fröhlich's formula ${ }^{88}$ based on the assumption that a winding of round wires is equivalent to a thick current sheet has been shown to be incorrect. ${ }^{89}$

CHOICE OF FORMULAS

For a coil of only a few turns the summation formula (81), or Strasser's formula (82) give the inductance with great accuracy without the necessity of correction by Tables VII or VIII. Strasser's formula is, however, accurate only for short solenoids, so that the pitch of the winding can not be very great.

For very short solenoids Rayleigh and Niven's formula (69) will give values correct to one in ten thousand for coils whose axial length is as great as one-quarter the diameter of the coil; Coffin's

[^36]$$
21674^{\circ}-12-9
$$
extension of this expression (7 I) gives as great an accuracy for coils as long as one-half the diameter. These two formulas are probably the most convenient for very short solenoids.

For solenoids longer than about one-fifth their diameter the inductance may perhaps most readily be calculated by Nagaoka's formula (75), and the Tables XX and XXI. Havelock's formula (79) is accurate and convenient for coils whose axial length is greater than about one and a quarter times the diameter.

For purposes of great precision, formulas (76), (77), and (78) may be used, (76) being indicated for coils shorter than about one-fifth the diameter, (77) for coils longer than this, and (78) for coils longer than the diameter. Lorenz's absolute formula (73) is of course applicable to coils of all lengths. The interpolation of the elliptic integrals is, however, most easily carried out for coils whose length ranges between one-fifth of the diameter and equality with the latter. The form of this formula is such as to make it necessary in some cases to calculate the separate terms to a greater number of places than are required in the result.

It must be remembered that all these formulas, with the exception of Strasser's and the summation formula (8I) give values for a current sheet, and must be corrected to reduce to the actual winding of round wires. This requires the use of formula (80) and Tables VII and VIII.

EXAMPLES ILLUSTRATING THE FORMULAS FOR THE INDUCTANCE OF SINGLE LAYER SOLENOIDS

EXAMPLE 57. RAYLEIGH AND NIVEN'S FORMULA (69) AND CORRECTION FORMULA (80) COMPARED WITH THE SUMMATION FORMULA (81)
$a=25 \mathrm{~cm}, b=1 \mathrm{~cm}, n=10$ turns Fig. 37. Suppose the bare wire is 0.8 mm diameter, the covered wire 1.0 mm .

By formula (69)

$$
\begin{aligned}
L_{s} & =4 \pi \times 25 \times 100\left\{\log _{e} 200-\frac{1}{2}+\frac{1}{20,000}\left(\log _{e} 200+\frac{1}{4}\right)\right\} \\
& =10,000 \pi \times 4.798595 \\
& =47,985.95 \pi \mathrm{~cm}
\end{aligned}
$$

which is the value of L for a current sheet.

The correction ΔL by formula (80) is $\Delta L=1000 \pi(A+B)$
Since $D=1.0 \mathrm{~mm}$ and $d=0.8 \mathrm{~mm}, d \mid D=0.8$

$$
\begin{aligned}
\text { By Table VII, } A & =0.3337 \\
" \quad " \quad \text { VIII, } B & =0.2664 \\
A+B & =\overline{0.6001} \\
\therefore \quad \Delta L & =600 . \mathrm{I} \pi \mathrm{~cm} .
\end{aligned}
$$

The value of ΔL calculated to one place more of decimals is $\Delta L=600.16 \pi \mathrm{~cm}$

$$
\begin{aligned}
\therefore \quad L & =47985.95 \pi-600.16 \pi \\
& L=47385.79 \pi \mathrm{~cm} .
\end{aligned}
$$

or,
The value of L may also be calculated by the summation formula (81), using Rayleigh and Niven's formula (63) for L_{1} and Maxwell's formula (12), for the M 's. The following are the values of the ten terms of (8I) and the resulting value of L :

$$
\begin{aligned}
\text { 1o } L_{1} & =6767.196 \pi \mathrm{~cm} \\
\text { 18 } M_{12} & =1008 \mathrm{r} .664 \pi \\
16 M_{13} & =7852.535 \pi \\
14 M_{14} & =6303.439 \pi \\
12 M_{15} & =5057.868 \pi \\
10 M_{16} & =3991.888 \pi \\
8 M_{17} & =3047.787 \pi \\
6 M_{18} & =2193.465 \pi \\
4 M_{19} & =1408.982 \pi \\
2 M_{110} & =680.982 \pi \\
\text { Sum } L & =47385.806 \pi \mathrm{~cm} .
\end{aligned}
$$

Fig. 37

The difference of less than one in a million between the results obtained by formulas (69) and (80) combined and formula (8r) is a good check on the corrections of (80), which amount in this case to more than I per cent of the value of the self-inductance. Formula (69) for as short a coil as this is very accurate, the next term, the fourth term of (7r), being inappreciable.

If we attempt to use Lorenz's formula in the above example we notice, first, that γ is nearly 89°. The elliptic integrals must consequently be calculated by the series formulas (3), which give their value with all the accuracy desired. We meet, however, with the difficulty that the first and third terms are very nearly equal to one
another and are several hundred times as large as the second term and the sum of the three terms. Consequently, using seven-place logarithms, it is impossible to obtain the self-inductance closer than about five parts in one hundred thousand.

This is also an unfavorable case for (76). Using seven-place logarithms we find

$$
K=2 \mathrm{I} .28 \mathrm{I} 755-2 \mathrm{I} .220657=0.06 \mathrm{IO} 98
$$

and consequently

$$
L_{s}=47986.27 \pi
$$

which is about one part in one hundred thousand larger than the correct value.

EXAMPLE 58

As an extreme case to test the use of formulas (69) and (80) we may calculate the self-inductance of a single turn of wire. Let us take the particular case already calculated by Maxwell's and Rayleigh and Niven's formulas (6r) and (63), example 52. The radius $a=25 \mathrm{~cm}$, the diameter of the bare wire $=\mathrm{r} \mathrm{mm}$. We may now assume that the wire is covered and that the diameter D is 2 mm . Then $\frac{d}{D}=0.5$. In using Rayleigh's current sheet formula we take the length of the equivalent current sheet as equal to D. We thus have

$$
\begin{aligned}
L_{s} & =4 \pi a\left\{\log _{e} \frac{200}{0.2}-\frac{1}{2}+\frac{0.04}{20000}\left(\log _{e} \frac{200}{0.2}+\frac{\mathrm{I}}{4}\right)\right\} \\
& =100 \pi\left\{6.907755-0.5+\frac{7.16}{500000}\right\} \\
& =640.777 \pi \mathrm{~cm}
\end{aligned}
$$

From Tables VII and VIII $A=-0.1363$ and $B=0$. Carrying the value of A to one place of decimals more the value is $A=-0.13628$. Thus, since $n=1, \Delta L=4 \pi a(-0.13628)=-13.628 \pi$, and being negative is added to L_{s}. Hence

$$
\begin{aligned}
L & =(640.777+13.628) \pi \\
& =654.405 \pi .
\end{aligned}
$$

This is identical with the value given by the other formulas, example 52 .

If we had taken the bare wire of diameter 0.1 cm as equivalent to a current sheet 0.1 cm long in the above formulas for L_{s}, we should have obtained a different value for L_{s}, but in that case $\frac{d}{D}$ would be unity and A would be +.5568 . The resulting value of L would, however, be the same as above.

EXAMPLE 59. COFFIN'S FORMULA (71) COMPARED WITH LORENZ'S (73)
We will use for this case a single layer coil wound on an accurately measured marble cylinder belonging to the Bureau of Standards.

$$
\begin{aligned}
& \text { Length of winding, } l=30.5510 \mathrm{~cm}=b \text { in formula (73) } \\
& \text { Radius " " } \quad a=27.0862 \mathrm{~cm} \\
& \text { Number of turns } \quad n=440
\end{aligned}
$$

By (7x)

$$
\begin{aligned}
& L_{s}= 4 \pi \overline{440}^{2} \times 27.0862\{\mathrm{r} .4590686+0.087824 \mathrm{I}-0.0020427 \\
&+.000165 \mathrm{I}-0.0000204\} \\
&= 4 \pi \overline{440}^{2} \times 27.0862 \times 1.5449947 \\
&=10180999 \mathrm{~cm}=0.10180999 \text { henry } .
\end{aligned}
$$

By (73)

$$
\begin{aligned}
d^{2}=4 a^{2}+b^{2} & =3868.0128 \\
4 a^{2}-b^{2} & =2001.2858 \\
\gamma & =60^{\circ} 34^{\prime} 43 .^{\prime \prime} 655 \\
\log F & =0.3369388 \\
" E & =0.0811833
\end{aligned}
$$

Then
or, $\quad L_{s}=$ IOI810100 $\mathrm{cm}=0.1018$ roio henry.

The correction to be applied to these values is as follows, the diameter of the bare wire being 0.0634 cm , and consequently $\frac{d}{D}$ $=0.9135$:

$$
\begin{aligned}
A & =0.4664 \\
B & =0.3353 \\
\hline(A+B) & =0.8017 \\
4 \pi n a & =108.3448 \times 440 \pi=47671.7 \pi \\
\therefore \Delta L & =120067 \mathrm{~cm}
\end{aligned}
$$

and

$$
\begin{aligned}
& L=0.10168992 \text { henry by Coffin's formula } \\
& L=0.10169003 \text { " by Lorenz's formula. }
\end{aligned}
$$

The agreement between these two formulas is very satisfactory, although in Coffin's formula b is greater than a. For shorter coils the accuracy of this formula is better; for longer coils the error rapidly increases.

EXAMPLE 60. NAGAOKA'S FORMULAS (75) AND (77)

We will take for this the coil in the preceding example

$$
a=27.0862 \quad b=30.5510 \quad n=440
$$

Here $\frac{2 a}{b}=1.77318$ and by interpolation in Table XXI using third differences we find

$$
\begin{aligned}
K & =0.557885-.003165-.000023-.000001 \\
& =0.554696
\end{aligned}
$$

For this case $\theta=60^{\circ} 34^{\prime} 43 . .^{\prime \prime} 655=60^{\circ} .57879$, which gives, by interpolation in Table XX,

$$
\begin{aligned}
K & =0.560382-.005712+.000027-.000001 \\
& =0.554696
\end{aligned}
$$

Substituting this value of K in (75) we find

$$
L_{s}=0.1018 \mathrm{IOI} 3
$$

which differs only three parts in ten million from the value found by Lorenz's formula.

Calculating K by (77) we find

$$
\begin{aligned}
\sqrt{k^{\prime}} & =0.70087516 \\
\frac{l}{2} & =0.087932623
\end{aligned}
$$

$$
\begin{aligned}
& q=0.087943142 \\
& q^{2}=0.007733997 \\
& q^{4}=5.9815 \times \mathrm{IO}^{-5} \\
& q^{6}=4.626 \times \text { 10 }^{-7} \\
& \begin{aligned}
\therefore \alpha & =0.00773446 \quad \gamma & =0.087703884
\end{aligned} \\
& \beta=0.007735385 \quad \mathrm{I}-\delta=0.82423335 \\
& \frac{8 \gamma}{(\mathrm{I}-\delta)} \cdot \frac{k^{\prime 2}}{k^{2}}=0.27074040 \\
& \mathrm{I}+\frac{8 \beta}{\mathrm{I}+\alpha}=1.06140809 \\
& \text { Sum }=1.33214849
\end{aligned}
$$

multiplied by

$$
\begin{array}{r}
\frac{2}{3(\mathrm{I}-\delta)^{2}}=\mathrm{I} .3072568 \\
\frac{4}{3 \pi} \frac{k}{k^{\prime}}=0.75^{2} 5609 \\
\therefore K=0.5546959
\end{array}
$$

If we make the calculation with formula (76)

$$
\begin{aligned}
& \mathrm{I}+\sqrt{k}=\mathrm{I} .93329106 \\
& \mathrm{I}+k=\mathrm{I} .871032 \mathrm{IO} \\
& \log _{10} k^{\prime 2}=\overline{\mathrm{I}} .3825629 \\
& \therefore \frac{l_{1}}{2}=\frac{k^{\prime 2}}{(\mathrm{I}+k)(\mathrm{I}+\sqrt{k})^{2}}=0.017252700 \\
& q_{1}=0.017252703 \\
& q_{1}^{2}=0.0002976555 \\
& q_{1}{ }^{4}=8.86 \times 10^{-8} \\
& \log _{10} \frac{I}{q_{1}}=1.7631429 \\
& \therefore \frac{I}{2} \log _{e} \frac{I}{q_{1}}=2.0298933 \\
& \mathrm{I}+\alpha_{1}=\mathrm{I} .00029766 \\
& \mathrm{I}+\frac{8 \beta_{1}}{\mathrm{I}+\alpha_{1}}=\mathrm{I} .00238054 \\
& \frac{k^{\prime 2}}{k^{2}}\left(\mathrm{I}+\frac{8 \beta_{1}}{\mathrm{I}+\alpha_{1}}\right)=0.3 \mathrm{I} 880658 \\
& \frac{8 \gamma_{1}}{\mathrm{I}-\delta_{1}}=0.14295127 \\
& \text { Sum }=0.46175785 \\
& \times \frac{\mathrm{I}}{2} \log _{e} \frac{\mathrm{I}}{q_{1}}=0.9373 \mathrm{I} 902
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{I}-\frac{k^{\prime 2}}{k^{2}} & =0.68 \mathrm{r} 95058 \\
\text { Sum } & =\mathrm{I} .6 \mathrm{r} 926960
\end{aligned}
$$

multiplied by $\frac{\mathrm{I}}{3 \pi \sqrt{q_{1}}\left(\mathrm{I}+\alpha_{1}\right)^{2}}=\mathrm{I} .3072565$

$$
\begin{aligned}
& \frac{4}{3 \pi} \frac{k}{k^{\prime}}=0.75^{2} 5609 \\
& \therefore K=0.5546956
\end{aligned}
$$

The two formulas give the same value of K within about one part in two million.

The corresponding values of L_{8} are:

$$
\begin{aligned}
& L_{s}=0.10181010 \text { by }(77) \\
& L_{s}=0.10181005 \text { " }(76)
\end{aligned}
$$

the former value being identical with that found by Lorenz's formula. This example illustrates well the advantage of obtaining K from Tables XX and XXI rather than by calculation. The accuracy of these tables is ordinarily more than sufficient.

The correction to be applied to these current sheet values L_{s} to obtain the self-inductance L, is the same as that calculated in the preceding example.
EXAMPLE 61. WEBSTER-HAVELOCK FORMULA (79) COMPARED WITH NAGAOKA'S FORMULA (78). LONG COIL

$$
a=10 \quad b=40 \quad N=400
$$

and suppose the diameter of the bare wire to be 0.05 cm

$$
\begin{aligned}
1+\frac{1}{2} a^{2} & =1.03125000 \\
-\frac{1}{4} \frac{a^{4}}{b^{4}} & =-0.00097656 \\
\frac{5}{16} \frac{a^{6}}{b^{6}} & =0.00007629 \\
-\frac{35}{64} \frac{a^{8}}{b^{8}} & =-0.00000834 \\
\frac{147}{128} \frac{a^{10}}{b^{10}} & =0.00000110 \\
-\frac{693}{512} \frac{a^{12}}{b^{12}} & =-0.00000008 \\
\text { Sum } & =1.03034241
\end{aligned}
$$

$$
\begin{aligned}
-\frac{8}{3 \pi} \frac{a}{b} & =-\frac{0.21220657}{} \\
K & =0.81813584
\end{aligned}
$$

which gives

$$
L_{s}=0.012919483 \text { henry }
$$

By (78)

$$
\begin{aligned}
& k^{2}=\frac{\mathrm{I}}{5} \quad k^{\prime 2}=\frac{4}{5} \quad \sqrt{k^{\prime}}=0.94574152 \\
& \mathrm{I}+k^{\prime}=\mathrm{I} .894427 \mathrm{I} 4 \\
& \therefore \frac{l}{2}=\frac{\mathrm{I}}{2\left(\mathrm{I}+\sqrt{k^{\prime}}\right)^{2}\left(\mathrm{I}+k^{\prime}\right)}=0.013942859 \\
& q=0.013942860 \\
& \mathrm{I}+2 q=1.02788572 \\
& 12 q^{2}=0.00233284 \\
& 44 q^{3}=0.00011926 \\
& 116 q^{4}=0.00000438 \\
& 260 q^{5}=0.00000014 \\
& 576 q^{6}=0.00000000 \\
& \mathrm{Sum}=1.03034234 \\
& \frac{4}{3 \pi} \frac{k}{k^{\prime}}=0.21220657 \\
& K=0.81813577 \\
& \therefore L_{s}=0.012919482 \text { henry }
\end{aligned}
$$

which differs by only one part in ten million from the value by the Webster-Havelock formula. The value of K found by interpolation in Nagaoka's tables is $K=0.818136$.

If we solve this problem by means of Lorenz's formula we are met by the difficulty that $\gamma=26^{\circ}$, and therefore the integrals F and E must be taken from Table XII where their values can not be found more accurately than one part in a million.
We find

$$
\begin{array}{rlr}
d\left(4 a^{2}-b^{2}\right) E & =-87909.94 \\
d b^{2} F & =\begin{array}{r}
18752.95 \\
-8 a^{3}
\end{array}=-8000.00 \\
\text { Sum } & =\frac{30843.01}{} \\
\therefore L_{s} & =0.01291949 \text { henry. }
\end{array}
$$

To find the correction to the current sheet value we have $\frac{d}{D}=0.5$, $n=400$

$$
\begin{aligned}
A & =-0.1363 \\
B= & +0.3351 \\
A+B & =\frac{0.1988}{} \\
4 \pi n a(A+B) & =9999 \mathrm{~cm} \\
& =0.00001000 \text { henry },
\end{aligned}
$$

which must be subtracted from the values of L_{s} to obtain the selfinductance.

EXAMPLE 62. STRASSER'S FORMULA (82) COMPARED WITH (69) AND (80) AND WITH (81)
Take the coil of ro turns used in example 57

$$
a=25, \quad d=0.10 \quad \rho=0.04, \quad n=10 .
$$

From Table V, $\quad A=97.9226 \quad B=424$ I. 59
Substituting in (82),

$$
\begin{aligned}
L=100 \pi & {\left[10\left(\log _{e} \frac{200}{.04}-1.75\right)+90\left(\log _{e} \frac{200}{0.1}-2\right)-97.9226\right.} \\
& \left.+\frac{0.01}{5000}\left\{\left(3 \log _{e} \frac{200}{0.1}-1\right) \frac{9900}{12}-4241.59\right\}\right]
\end{aligned}
$$

or, $\quad L=100 \pi[473.8306+0.0275]=47385.8 \mathrm{I} \pi \mathrm{cm}$.
This very close agreement with the results by the other two methods (see example 57) is a confirmation of the accuracy of the constants A and B of Table V. Of course, a close agreement with (81) is to be expected, for (82) is derived directly from (8I).

EXAMPLE 63. FORMULAS (83) AND (84) FOR TOROIDAL COILS

Professor Fröhlich's standard of self-inductance had the following dimensions:

$$
\begin{aligned}
& r_{2}=35.05377 \mathrm{~cm}=\text { outer mean radius. } \\
& r_{1}=24.97478 \mathrm{~cm}=\text { inner mean radius. } \\
& h=20.08455 \mathrm{~cm}=\text { height, center to center of wire. } \\
& \rho=0.011147 \mathrm{~cm}=\text { radius of wire. } \\
& n=2738 \quad=\text { whole number of turns. }
\end{aligned}
$$

These values substituted in (83) give

$$
L_{s}=0.1020893 \text { henry } .
$$

The correction $\Delta L=-2 n l(A+B)$ to be substituted in (84) to give the true value of L is found as follows:

The mean spacing of the winding is $D=\pi \frac{r_{1}+r_{2}}{n}=0.0689$
The diameter of the bare wire

$$
\begin{array}{ll}
d=2 \rho & =0.0223 \\
\therefore \quad d / D & =0.324
\end{array}
$$

From Table VII,

$$
\begin{aligned}
A & =-0.572 \\
B & =+0.332^{90} \\
\therefore A+B & =-0.240
\end{aligned}
$$

$2 n l=2 \times 2738 \times 60.327=330300 \mathrm{~cm}=$ whole length of wire in winding.

$$
\begin{aligned}
-2 n l(A+B) & =+79,300 \mathrm{~cm} \\
& =0.0000793 \text { henry } \\
L_{s} & =0.1020893 \\
L & =0.1021686
\end{aligned}
$$

Thus, the correction increases the value of the self-inductance. If the insulation were thinner and the wire thicker (with the same pitch) the correction might be of opposite sign. Thus, if ρ were 0.02 and hence d / D were $0.58, A$ would be +0.012 and ΔL would then be o.0001I30 and $L=0.1019763$ henry, considerably less than the preceding value.

7. THE SELF-INDUCTANCE OF A CIRCULAR COIL OF RECTANGULAR SECTION

MAXWELL'S APPROXIMATE FORMULA

Maxwell first gave ${ }^{91}$ an approximate formula for the important case of a circular coil or conductor of rectangular section, Fig. 38, as follows:

$$
\begin{equation*}
L=4 \pi a n^{2}\left(\log \frac{8 a}{R}-2\right) \tag{85}
\end{equation*}
$$

[^37]where R is the geometrical mean distance of the cross section of the coil or conductor. The current is supposed uniformly distributed over this section.

The value of R for any given shape of rectangular section is given by (124). Its value for several particular cases is

Fig. 38 given in the table on page 168 . It is very nearly proportional to the perimeter of the rectangle and approximately equal to $0.2235(\alpha+\beta)$ where α and β are the length and breadth of the rectangle.

Formula (85) is derived from (in) by putting R, the geometrical mean distance of the area of the section of the coil from itself, in place of r, the distance between two circles. If we use (12) instead of (ir) for this purpose, we shall have a closer approximation to the value of L. Thus,

$$
\begin{equation*}
L=4 \pi a n^{2}\left\{\log \frac{8 a}{R} \cdot\left(1+\frac{3 R^{2}}{16 a^{2}}\right)-\left(2+\frac{R^{2}}{16 a^{2}}\right)\right\} \tag{86}
\end{equation*}
$$

We have placed R^{2} in place of d^{2} in the second order terms, which is of course not strictly correct, as we should use an arithmetical mean square distance instead of a geometrical mean square distance. (See p. I7I.) Nevertheless, (86) is a much closer approximation than (85).

PERRY'S APPROXIMATE FORMULA

Professor Perry has given ${ }^{92}$ the following empirical expression for the self-inductance of a short circular coil of rectangular section:

$$
\begin{equation*}
L=\frac{4 \pi n^{2} a^{2}}{0.2317 a+0.44^{b}+0.39 c} \tag{87}
\end{equation*}
$$

in which n is the whole number of turns of wire, a the mean radius, b the axial breadth, c the radial depth. As in all the formulas of this paper, the dimensions are in centimeters and the value of L is in centimeters. This formula gives a good approximation to L as long as b and c are small compared with a.

[^38]
WEINSTEIN'S FORMULA

Maxwell's more accurate expression for the self-inductance of a circular coil of rectangular section ${ }^{93}$ was not quite correct. The investigation was repeated by Weinstein, ${ }^{94}$ who gave the following formula:

$$
L_{u}=4 \pi a n^{2}(\lambda+\mu)
$$

where

$$
\begin{gather*}
\lambda=\log \frac{8 a}{c}+\frac{\mathrm{I}}{12}-\frac{\pi x}{3}-\frac{\mathrm{I}}{2} \log \left(\mathrm{I}+x^{2}\right)+\frac{\mathrm{I}}{\mathrm{I} 2 x^{2}} \log \left(\mathrm{I}+x^{2}\right) \\
+\frac{\mathrm{I}}{\mathrm{I} 2} x^{2} \log \left(\mathrm{I}+\frac{\mathrm{I}}{x^{2}}\right)+\frac{2}{3}\left(x-\frac{\mathrm{I}}{x}\right) \tan ^{-1} x
\end{gathered} \begin{gathered}
\mu=\frac{c^{2}}{96 a^{2}}\left[\left(\log \frac{8 a}{c}-\frac{\mathrm{I}}{2} \log \left(\mathrm{I}+x^{2}\right)\right)\left(\mathrm{I}+3 x^{2}\right)+3 \cdot 45 x^{2}+\frac{22 \mathrm{I}}{60}\right. \\
\left.-\mathrm{I} .6 \pi x^{3}+3 \cdot 2 x^{3} \tan ^{-1} x-\frac{\mathrm{I}}{\mathrm{IO}} \frac{\mathrm{I}}{x^{2}} \log \left(\mathrm{I}+x^{2}\right)+\frac{\mathrm{I}}{2} x^{4} \log \left(\mathrm{I}+\frac{\mathrm{I}}{x^{2}}\right)\right] \tag{88}
\end{gather*}
$$

b and c are the breadth and depth of the coil and $x=\frac{b}{c}$.
Weinstein's formula for the case of a square section, where $b=c$ reduces to the following simpler expression:

$$
\begin{equation*}
L_{u}=4 \pi a n^{2}\left\{\left(\mathrm{I}+\frac{c^{2}}{24 a^{2}}\right) \log \frac{8 a}{c}+.03657 \frac{c^{2}}{a^{2}}-\mathrm{I} .1949 \mathrm{I} 4\right\} \tag{89}
\end{equation*}
$$

This is a very accurate formula as long as c / a is a small quantity. The current is supposed distributed uniformly over the section of the coil, and hence for a winding of round insulated wire, correction must be made by formula (93).

STEFAN'S FORMULA

Stefan ${ }^{95}$ simplified Weinstein's expression (88) by collecting together terms depending on the ratio of b to c and computing two short tables of constants y_{1} and y_{2}. His formula is as follows:

$$
\begin{equation*}
L=4 \pi a n^{2}\left\{\left(\mathrm{I}+\frac{3 b^{2}+c^{2}}{96 a^{2}}\right) \log \frac{8 a}{\sqrt{b^{2}+c^{2}}}-y_{1}+\frac{b^{2}}{16 a^{2}} y_{2}\right\} \tag{90}
\end{equation*}
$$

[^39]The values of y_{1} and y_{2} are given in Table VI, page 196, as functions of $x=b / c$ or c / b; that is, x is the ratio of the breadth to the depth of the section, or vice versa, being always less than unity. This formula must be corrected by the quantity $\Delta_{2} L$ as shown below.

For the method of taking the dimensions b and c of the cross section, see page 116, section 6; also example 47, page 97 .

LONG COIL OF RECTANGULAR SECTION; I. E., SOLENOID OF MORE THAN ONE LAYER

ROSA'S METHOD

When the coil is so long that the formula of Stefan is no longer accurate, the self-inductance may be accurately calculated by a method given by Rosa. ${ }^{96}$

In Figs. 39, 40, and 41 are shown three coils, having the same length and mean radius. The first is a single winding of thin tape and the self-inductance, calculated by a current sheet formula, is L_{s}. The second is a single layer of wire of square section (length b, depth c, and b / c turns) and its selfinductance is L_{u}, the current being supposed uniformly distributed over the area of the square conductors. The third is a winding of round insulated wire of length b, depth c, and any number of layers, and its self-inductance is L. These different self-inductances are related as follows:

$$
\begin{aligned}
& L_{s}-\Delta_{1} L=L_{u} \\
& L_{u}+\Delta_{2} L=L \\
& \therefore L=L_{s}-\Delta_{1} L+\Delta_{2} L
\end{aligned}
$$

L_{s} is calculated by any current sheet formula as (69), (71), (72), or (73). The correction $\Delta_{1} L$ for the depth of the coil is given by the following formula:

$$
\begin{equation*}
\Delta_{1} L=4 \pi a n^{\prime}\left[A_{s}+B_{s}\right] \tag{9I}
\end{equation*}
$$

[^40]This formula has the same form as (80), but some of the quantities have a different meaning; a is the mean radius as before, n^{\prime} is b / c, the number of square conductors in the length b, Fig. 40, and A_{s} and B_{s} are given in Tables IX and X.

Fig. 40

Fig. 41

The correction $\Delta_{2} L$ is calculated in precisely the same way as for a short coil, as described below, formula (93). The above formula for $\Delta_{1} L$ gives a very accurate value of the correction to be applied to L_{s} to obtain L_{u}, and permits a test to be made for the error of Stefan's formula when applied to longer coils than the latter is intended for. Such a calculation shows that for a coil as long as its diameter Stefan's formula (and Weinstein's also, of course) is I per cent in error, giving too large a value.

COHEN'S APPROXIMATE FORMULA

Cohen has given the following approximate formula ${ }^{97}$ for the selfinductance of a long coil or solenoid of several layers:

$$
\begin{align*}
& L=\Delta \pi^{2} n^{2} m\left\{\frac{2 a_{0}^{4}+a_{0}{ }^{2} l^{2}}{\sqrt{4 a_{0}^{2}+l^{2}}}-\frac{8 a_{0}^{3}}{3 \pi}\right\} \\
&+8 \pi^{2} n^{2}\left[\left\{(m-\mathrm{r}) a_{1}^{2}+(m-2) a_{2}{ }^{2}+\cdots \cdot\right\}\left(\sqrt{a_{1}{ }^{2}+l^{2}}-\frac{7}{8} a_{1}\right)\right. \\
&\left.\left.+\frac{\mathrm{I}}{2} \right\rvert\, m(m-\mathrm{I}) a_{1}{ }^{2}+(m-\mathrm{I})(m-2) a_{2}^{2}+\cdots\right\}\left(\frac{a_{1} \delta a}{\sqrt{a_{1}^{2}+l^{2}}}-\delta a\right) \\
&\left.-\frac{\mathrm{I}}{2}\left\{m(m-\mathrm{I}) a_{1}^{2}+(m-2)(m-3) a_{2}{ }^{2} \cdot \cdots\right\} \frac{\delta a}{8}\right] \tag{92}
\end{align*}
$$

where a_{0} is the mean radius of the solenoid, $a_{1}, a_{2}, \cdots a_{m}$ are the mean radii of the various layers in the order of their magnitudes, m is the number of layers and δa is the distance between centers for any two consecutive layers, and n is the number of turns per unit length.

For long solenoids, where the length is, say, four times the diameter, we can neglect the last term in equation (92).

This formula is sufficiently accurate for most purposes; it will give results accurate to within one-half of I per cent even for short solenoids, where the length is only twice the diameter.

MAXWELL'S CORRECTIOIN FORMULA ${ }^{98}$

GIVING THE VALUE OF $\Delta_{2} L$

Maxwell has shown that when a coil of rectangular section (Fig. 4 I) is wound with round insulated wire and the self-inductance is calculated by a formula in which the current is assumed to be distributed uniformly over the section, as in Wein-

Fig. 42 stein's and Stefan's, the calculated value L_{u} is subject to three corrections, each of which tends to increase the calculated value of the self-inductance. Thus:

$$
\begin{equation*}
L=L_{u}+\Delta_{2} L \tag{93}
\end{equation*}
$$

and $\Delta_{2} L=4 \pi a n\left\{\log _{e} \frac{D}{d}+0.13806+E\right\}$
Maxwell showed that the first term takes account of the effect of the insulation, d and D being the diameters of the bare and covered wire, respectively, Fig. 42. The second correction term (0.13806)
reduces from a square section to a circular section for the conductor. The third correction term E takes account of the differences in the mutual inductances of the separate turns of wire on one another when the wire has a round section from what the mutual inductances would be if the wire were of square section and no space was occupied by insulation. This term was stated by Maxwell to be equal to -o.0197r; it was subsequently stated by Stefan to be equal to + o.or688. Rosa has shown ${ }^{99}$ that its value is variable, depending on the number of turns of wire in the coil and the shape of the cross section of the latter, and has given the values of E for a number of particular cases.

From the following table one can interpolate for E for any particular case not included in the table.

Summary of the values of E found for the various cases considered:

	turns		$E=$	0.006528
3	"	(one layer)	$E=$. 009045
4	"	(two layers)	$E=$.or691
4	"	(one layer)	$E=$. 01035
8	"	(two layers)	$E=$.oI335
ı	"	(one layer)	$E=$.ol 276
20	"	(one layer)	$E=$.or 357
16	"	(four layers)	$E=$.or 512
100	"	(ten layers)	$E=$.or 713
400	"	(20) 20)	$E=$.or 764
1,000	"	(50×20)	$E=$.oi778
Infinite	num	ber of turns	$E=$. 01806

The correction $\Delta_{2} L$ is much smaller than $\Delta_{1} L$, and can be neglected except when the highest accuracy is sought. The value

[^41]$21674^{\circ}-12-10$
of L_{s} and $\Delta_{1} L$ can be calculated with accuracy if the dimensions are accurately known, and this is possible if one uses enameled wire of uniform section and takes proper care in winding and measuring the coil. However, such a coil can not be recommended for a standard of the highest precision, and the full theory is given for the sake of completeness and to show the magnitude of the smaller corrections, rather than because all the corrections are likely to be generally needed in practice.

CHOICE OF FORMULAS

If the dimensions of the cross section be very small relatively to the mean radius, formula (86) may be used. Formula (85) is a still rougher approximation, as is also (87).

For somewhat larger cross section Weinstein's formula (88) will give good results. Stefan's form (90) of Weinstein's expression is more convenient to use. Formula (89) is convenient and accurate for coils of square cross section. All these formulas assume that the current is uniformly distributed over the cross section of the coil, and must consequently be corrected by formula (93) to reduce to a winding of round wires.

The formulas (88) and (90) begin to be in error for long coils. Cohen's formula (92), however, is most accurate for long solenoids, whose length is more than about four times the diameter.

The most accurate formulas are those of Rosa's method (91) and (93). Since the current sheet value may be very accurately obtained by any of the suitable formulas in section 6 , this method may be applied to any solenoidal coil whatever.

EXAMPLES ILLUSTRATING THE FORMULAS FOR THE SELF-INDUCTANCE OF CIRCULAR COILS OF RECTANGULAR SECTION

EXAMPLE 64. MAXWELL'S APPROXIMATE FORMULAS (85), (86) AND PERRY'S APPROXIMATE FORMULA (87) COMPARED WITH WEINSTEIN'S FORMULA (89)

Suppose a coil of mean radius 4 cm , with roo turns of insulated wire, wound in a square channel $\mathrm{I} \times \mathrm{Icm}$. (Fig. 43.)

Substituting in (85) $a=4, n=10, R=0.44705$ (the g. m. d. of a square 1 cm on a side) we have

$$
\begin{aligned}
L & =4 \pi \cdot 4 \cdot \overline{\mathrm{IOO}}\left[\log _{e} \frac{32}{\cdot 447 \mathrm{O} 5}-2\right] \\
& =\mathrm{I} .14 \mathrm{I} \text { millihenrys. }
\end{aligned}
$$

This is a first approximation to the self-inductance of the coil.
Formula (86) gives a second approximation as follows:

$$
\begin{aligned}
L & =4 \pi .4 \cdot \overline{\mathrm{IOO}}^{2}\left[\log _{e} \frac{32}{0.44705}\left(1+\frac{3 \times \overline{0.447^{2}}}{256}\right)-\left(2+\frac{\overline{0.447}^{2}}{256}\right)\right] \\
& =1.146 \text { millihenrys. }
\end{aligned}
$$

Perry's approximate formula, which applies only to relatively short coils, happens to give a very close approximation for this case. Substituting in (87), the above values, and also $b=c=\mathrm{I}$,

$$
\begin{aligned}
L & =\frac{4 \pi \overline{\mathrm{IOO}}^{2} \times 16}{0.9268+0.44+0.39} \\
& =1.144 \text { millihenrys. }
\end{aligned}
$$

Substituting in the more accurate formula (89) of Weinstein we shall obtain a value with which to compare the above approximations.

$$
\begin{aligned}
L & =160000 \pi\left[\left(\mathrm{I}+\frac{\mathrm{I}}{384}\right) \log _{e} \frac{32}{\mathrm{I}}+0.03657 \times \frac{\mathrm{I}}{\mathrm{I} 6}-\mathrm{I} .194914\right] \\
& =1.147 \text { millihenrys. }
\end{aligned}
$$

For $a=4, \quad b=2, \quad c=1 \quad n=200$
Formula (85) gives 3.750 millihenrys

"	(86)	"	3.787	"
"	(87)	$"$	3.66 I	"
	(89)	$"$	3.805	"

For $a=10, \quad b=1, \quad c=1, \quad n=100$
Formula (85) gives 4.005 millihenrys

"	(86)	$"$	4.007	$"$
$"$	(87)	$"$	3.994	$"$
$"$	(89)	$"$	4.008	$"$

It will be seen that formula (87) does not give as close approximations as the others, except in the case of the first example, where it
happens to give a value very close to that given by (89). All the values, those of (89) included, are subject to correction by (93) when the coil is wound with round insulated wire.

EXAMPLE 65. FORMULAS (89) AND (90) COMPARED WITH CURRENTSHEET FORMULAS

As a test of these formulas we may calculate the self-inductance of a single turn of wire, using the case already calculated in example 52 ; that is, a circle of radius $a=25 \mathrm{~cm}$, and the diameter of
 the bare wire is I mm. Substituting these values in (89) we have

$$
\begin{aligned}
L & =100 \pi\left[\left(\mathrm{I}+\frac{.01}{\mathrm{I} 5000}\right) \log _{e} 2000+\frac{.03657}{(250)^{2}}-1.194914\right] \\
& =640.5995 \pi \mathrm{~cm} .
\end{aligned}
$$

Substituting in (90),

$$
\begin{aligned}
L= & 100 \pi\left[\left(1+\frac{.01}{15000}\right) \log _{e} \frac{200}{\sqrt{.02}}-0.848340+\frac{.01 \times .8162}{10000}\right] \\
& =640.5995 \pi \mathrm{~cm},
\end{aligned}
$$

- agreeing with the value by (89).

Fig. 44 These values are for a conductor of square cross section (Fig. 44). To reduce to a circular section of same diameter (0.1 cm) we must apply the second correction term of (93); that is, add to the above value

$$
\begin{aligned}
\Delta L & =4 \pi a \times 0.138060 \\
\text { Thus, } L & =(640.5995+\mathrm{r} 3.8060) \pi \\
& =654.4055 \pi \mathrm{~cm}
\end{aligned}
$$

which agrees with the value found for the self-inductance of a round wire 0.1 cm diameter, bent into a circle of 25 cm radius, by formula (63) example 52 and formulas (69) and (80), example 58.

EXAMPLE 66. STEFAN'S FORMULA (90) COMPARED WITH (69) BY MEANS OF ROSA'S CORRECTION FORMULA (91)

Suppose a coil of mean radius 10 cm , wound with 100 turns in a square channel $\mathrm{I} \times \mathrm{Icm}$. Assuming the current uniformly distributed we obtain from (90), in which $y_{1}=0.848340, y_{2}=0.8162$,

$$
\begin{aligned}
& \qquad \log _{e} \frac{8 a}{\sqrt{b^{2}+c^{2}}}=\log _{e} \frac{80}{\sqrt{2}}=4.03545 \\
& L_{u}
\end{aligned}=4 \pi \times 100,000\left[\left(\mathrm{I}+\frac{4}{9600}\right) 4.03545-0.84834+0.0005 \mathrm{I}\right] \overline{ }=4 \pi \times 3 \mathrm{I} 8,930 \mathrm{~cm} .
$$

By formula (69) we have for the self-inductance of a current sheet for which $a=\mathrm{Io}, b=\mathrm{I}, n=\mathrm{I}$,

$$
L_{s}=4 \pi \times 38.83475 \mathrm{~cm} .
$$

This is larger than the value for the coil of section $\mathrm{I} \times \mathrm{I}$ by $\Delta_{1} L$, the value of the latter being given by formula (9r).

By Table IX, $A_{s}=0.6942$. More closely, it is $0.69415 .{ }^{100}$
By Table X, $B_{s}=0$. In this case $n^{\prime}=\mathrm{I}$. Hence,

$$
\begin{aligned}
& \Delta_{1} L=4 \pi \times 10 \times 0.69415=4 \pi \times 6.9415 \mathrm{~cm} \\
& \therefore L_{1}=4 \pi(38.83475-6.9415)=400.782 \mathrm{~cm} .
\end{aligned}
$$

This is the value of the self-inductance for one turn only, the current being uniformly distributed. For roo turns L is 10^{4} times as great.

$$
\therefore L_{u}=4.00782 \text { millihenrys. }
$$

This value agrees with the above value by Stefan's formula within less than one part in one hundred thousand.

For a coil of insulated round wires, this result must be corrected by formula (93).

For a coil of the same radius, but of length $b=10 \mathrm{~cm}, c=1 \mathrm{~cm}$, wound with io layers of roo turns each, we have the following values:
By Stefan's formula, $y_{1}=0.59243, y_{2}=0.1325$

$$
\begin{aligned}
L_{u} & =4 \pi \times 10 \times \overline{\mathrm{IOOO}}^{2} \times \mathrm{I} .55536 \\
& =195.452 \text { millihenrys. }
\end{aligned}
$$

By (69) the current sheet value of L for io turns is

$$
\begin{aligned}
L_{10} & =4 \pi \times 10 \times 100 \times 1.65095 \\
& =4 \pi \times 1650.95 .
\end{aligned}
$$

The correction for depth of section by (91) is, since by Tables IX and X, $A_{s}=0.6942, B_{s}=0.2792$, and therefore $A_{s}+B_{s}=0.9734$

$$
\begin{aligned}
\Delta_{1} L & =4 \pi \mathrm{Io} \times \mathrm{Io} \times 0.9734 \\
& =4 \pi \times 97.34 \\
\therefore L_{u} & =L_{10}-\Delta_{1} L
\end{aligned}=4 \pi(\mathrm{I} 650.95-97.34) .
$$

For $n=1000$ turns the self-inductance will be $\overline{\mathrm{IOO}}^{2}$ times as great.

$$
\begin{aligned}
L_{u} & =4 \pi \times 15.536 \mathrm{I} \times 10^{6} \mathrm{~cm} \\
& =195.232 \text { millihenrys. }
\end{aligned}
$$

This value is about I part in 900 smaller than the above value, showing that Stefan's formula gives too large results by that amount for a coil of this length. If the coil were twice as long, the error would be about ten times as great.

It is interesting to obtain by this method an estimate of the error by Stefan's formula for coils longer than those for which it is intended. For short coils it is seen to be very accurate, subject always to the corrections of formula (93), and for longer coils it gives a good approximation. The method of (91), however, applies to coils of any length.

EXAMPLE 67. STEFAN'S FORMULA (90) COMPARED WITH (81) AND WITH STRASSER'S (82) FOR COILS OF FEW TURNS, USING THE CORRECTION FORMULA (93)

Coil of 2 turns of wire, 0.4 mm diameter, wound in a circle of I .46 cm radius with a pitch of 2 mm . Stefan's formula assumes a uniform distribution over a rectangular section. Suppose a section as shown in Fig. 45, $4 \times 2 \mathrm{~mm}$, with one turn of wire in the center of each square. For the rectangular section, with the current uniformly distributed, the self-inductance by Stefan's formula is with $a=$ I.46, $c / b=0.5, y_{1}=0.7960, y_{2}=0.3066, L_{u}=4 \pi_{a n}{ }^{2} \times$ $2.4763=4 \pi a n \times 4.9526, n$ being 2. To reduce this to the case of a
winding of 2 turns of wire as shown we must apply the corrections given by (93) thus:

$$
\begin{aligned}
& \log D / d=\log _{e} 5=\mathrm{r} .60944 \\
& \text { second term }=0.13806 \\
& \text { third term } E=\frac{0.00653}{\mathrm{I} .7540} \\
& \therefore \begin{aligned}
& \Delta_{2} L=4 \pi a n \times 1.7540 \\
& L=L_{u}+\Delta_{2} L=4 \tan \times 6.7066 \\
&=
\end{aligned}+246 . \mathrm{I} \mathrm{cm.} .
\end{aligned}
$$

By the summation formula (81) we have in this case

$$
\begin{aligned}
L & =2 L_{1}+2 M_{12} \\
& =4 \pi a[9.2400+4 . \mathrm{r} 606] \\
& =245.86 \mathrm{~cm} .
\end{aligned}
$$

Fig. 45

The value by Strasser's formula is the same as by the summation formula to which it is equivalent. We have also used formulas (69) and (80) for this case and have obtained 246.0.

This is one of several problems calculated by Drude ${ }^{101}$ by Stefan's formula. Drude concluded that Stefan's formula was inapplicable to such coils, as it gave results from to to 25 per cent too large. His trouble was, however, due to taking the length of the coil as the distance between the center of the first wire and the center of the last (instead of n times the pitch) and neglecting the correction terms of formula (93). As we have seen above, Stefan's formula when properly used can be depended upon to give accurate results for short coils, and results within less than I per cent for coils of length equal to the radius of the coil.

We have calculated several other cases given by Drude and give below the results, together with his experimental values. The radius is the same in each case, and the numbers in the first column are the number of turns in the several coils.

\mathbf{n}	By Stefan's Formula (90) and (93)	By Rayleigh's Formula (69) and (80)	By Strasser's Formula (82) or (81)	Drude's Observed Values (Values of L in Centimeters)
2	246.1	246.0	245.9	238.5
4	711.9	711.1	710.8	697.9
6	1298.7	1297.7	1297.8	1271.4
9	2318.0	2313.0	2315.7	2300.1

It will be seen that the values by the different formulas agree very closely, and that the experimental values agree as closely as could be expected for such small inductances.

EXAMPLE 68. FORMULAS (69) AND (80) COMPARED WITH (90) AND (93) FOR COIL OF 20 TURNS WOUND WITH A SINGLE LAYER

$$
a=25 \quad b=2 \mathrm{~cm} \quad c=0.1 \mathrm{~cm} \quad n=20
$$

Diameter of bare wire 0.6 mm , of covered wire 1.0 mm .
In the last case we obtained the self-inductance of the coil by two distinct methods, the first being the method of summation, the second by assuming the current uniformly distributed over the section, and then applying the three corrections C, F, E. In this problem we may first calculate L by use of the current sheet formula (69), and then apply the corrections for section, A and B formula (80); and, second, by Stefan's formula for uniform distribution, and apply the three corrections C, F, E, which give the value for a winding of round insulated wires.

Rayleigh's formula for this example gives:

$$
\left.\begin{array}{c}
L=4 \pi a n^{2}\left\{\log _{e} \mathrm{IOO}-0.5+\frac{4}{20,000}\left(\log _{e} \mathrm{IOO}+\frac{\mathrm{I}}{4}\right)\right\} \\
\log _{e} \mathrm{IOO}=4.605 \mathrm{I} 70
\end{array} \quad \begin{array}{rl}
\frac{4}{20,000}\left(\log _{e} \mathrm{IOO}+\frac{\mathrm{I}}{4}\right)=\frac{0.00097 \mathrm{I}}{4.606 \mathrm{I} 4 \mathrm{I}} \\
-\frac{0.500000}{4.106 \mathrm{I} 4 \mathrm{I}}
\end{array}\right] \begin{aligned}
2 \pi n_{s}^{2}=40,000 \pi \quad \mathrm{I} 64245.64 \pi \mathrm{~cm} .
\end{aligned}
$$

This is the self-inductance of a winding of 20 turns of infinitely thin tape, each turn being I mm wide, with edges touching without
making electrical contact, which arrangement fulfills the conditions of a current sheet. To reduce this to the case of round wires we must apply the corrections A and B for self and mutual induction. ${ }^{102}$

$$
\begin{aligned}
& \text { By Table VII, for } d / D=0.6, A=0.0460 \\
& \text { By Table VIII, for } n=20, \quad B=0.2974 \\
& A+B=0.3434 \\
& 4 \pi a n=2,000 \pi \\
& \Delta L=4 \tan (A+B)=686.8 \pi \mathrm{~cm} \\
& L=L_{s}-\Delta L=163558.84 \pi \mathrm{~cm} .
\end{aligned}
$$

By Stefan's formula we find, sustituting the above values of a, n, b, c, and taking $y_{1}=0.548990$ and $y_{2}=0.1269$

$$
L_{u}=162234.60 \pi \mathrm{~cm} .
$$

The correction E for a single layer coil of 20 turns is given on page 141. The three corrections are then as follows:

$$
\begin{aligned}
& C=0.13806 \\
& F=0.51082=\log _{e} \frac{10}{6} \\
& E=0.01357 \\
& \operatorname{Sum}=\overline{0.66245} \\
& \therefore \Delta L=4 \pi a n(C+F+E)=1324.90 \pi \mathrm{~cm} . \\
& \therefore L=L_{u}+\Delta L=163559.50 \pi \mathrm{~cm} .
\end{aligned}
$$

This value of L is greater than the value found by the other method by only four parts in a million. Thus we see that the method of calculating L_{u} by Stefan's or Weinstein's formula and applying the corrections C, F, E gives practically identical results with the method of summation and also with the current sheet method for short coils. When, however, the coils are longer, the agreement is not so good, for the reason that the formula of Weinstein (and Stefan's, derived from it) is not as accurate when the section of the coil is greater. Thus if the coil in the above problem had been 5 cm long and 2.5 mm deep and wound with 20 turns of heavier wire, the difference would have been one part in twenty-five thousand (still very good agreement), and if it were 10 cm long and
0.5 cm deep (the radius being 25 cm) it would have been one part in two thousand two hundred. For most experimental work, therefore, Stefan's formula is amply accurate.

EXAMPLE 69. COHEN'S FORMULA (92) COMPARED WITH (91)
A solenoid of length $l=50 \mathrm{~cm}$, mean radius 5 cm , depth of winding 0.4 cm , is wound with 4 layers of wire of 500 turns each. Substituting these values in (92) we have ($n=10$)

$$
\begin{aligned}
L_{s} & =16 \pi^{2} n^{2}(\text { 1 } 144.3+3336.0-10.84-1.04) \\
& =70.562 \text { millihentys. }
\end{aligned}
$$

By the second method we first find L_{s} by (69), then $\Delta_{1} L$ by (91), and $\Delta_{2} L$ by (93)

$$
\begin{aligned}
L_{3} & =72.648 \text { millihenrys } \\
-\Delta_{1} L & =-2.167 \\
\Delta_{2} L & =\frac{0.048}{} \\
L & =70.529
\end{aligned}
$$

This shows a very close agreement between (92) and (91).
In calculating L_{s} we may use Table IV. Since $d \mid l=0.2$

$$
\begin{aligned}
& Q=3.6324, \quad a n^{2}=5 \times \overline{2000}^{2}=20,000,000 \\
& L_{s}=3.6324 \times 20,000,000 \mathrm{~cm}
\end{aligned}
$$

or,

$$
L_{s}=72.648 \text { millihenrys. }
$$

8. SELF AND MUTUAL INDUCTANCE OF LINEAR CONDUCTORS ${ }^{103}$

SELF-INDUCTANCE OF A STRAIGHT CYLINDRICAL WIRE

The self-inductance of a length l of straight cylindrical wire of radius ρ is

$$
\begin{align*}
L & =2\left[l \log \frac{l+\sqrt{l^{2}+\rho^{2}}}{\rho}-\sqrt{l^{2}+\rho^{2}}+\frac{l}{4}+\rho\right] \tag{94}\\
& =2 l\left[\log \frac{2 l}{\rho}-\frac{3}{4}\right] \text { approximately. } \tag{95}
\end{align*}
$$

Where the permeability of the wire is μ, and that of the medium outside is unity, (95) appears in the form

$$
\begin{equation*}
L=2 l\left[\log \frac{2 l}{\rho}-\mathrm{I}+\frac{\mu}{4}\right] \tag{96}
\end{equation*}
$$

This formula was originally given by Neumann.
For a straight cylindrical tube of infinitesimal thickness, or for alternating currents of great frequency, when there is no magnetic field within the wire, the self-inductance is

$$
\begin{equation*}
L=2 l\left[\log \frac{2 l}{\rho}-\mathrm{I}\right] \tag{97}
\end{equation*}
$$

This is obtained by subtracting from (95) $/ / 2$ or from (96) $\mu / / 2$, the magnetic flux within the conductor due to unit current.

THE MUTUAL INDUCTANCE OF TWO PARALLEL WIRES

The mutual inductance of two parallel wires of length l, radius ρ, and distance apart d is the number of lines of force, due to unit current in one, which cut the other when the current disappears.

This is

$$
\begin{align*}
& M=2\left[l \log \frac{l+\sqrt{l^{2}+d^{2}}}{d}-\sqrt{l^{2}+d^{2}}+d\right] \\
\therefore & M=2 l\left[\log \frac{2 l}{d}-\mathrm{r}+\frac{d}{l}\right] \text { approximately } \tag{99}
\end{align*}
$$

when the length l is great in comparison with d.
Equation (98), which is an exact expression when the wires have no appreciable cross section, is not an exact expression for the mutual inductance of two parallel cylindrical wires, but is not appreciably in error even when the section is large and d is small if l is great compared with d.

the self-inductance of a return circuit

If we have a return circuit of two parallel wires each of length l (the current then flowing in opposite direction in the two wires) the self-inductance of the circuit, neglecting the effect of the end connections shown by dotted lines, Fig. 46, will be very approximately

$$
\begin{equation*}
L=4 l\left[\log \frac{d}{\rho}+\frac{\mu}{4}-\frac{d}{l}\right] \tag{100}
\end{equation*}
$$

In the usual case of $\mu=\mathrm{I}$ this will be, when d / l is small

$$
\begin{equation*}
L=4 l\left[\log \frac{d}{\rho}+\frac{1}{4}\right] \tag{IOI}
\end{equation*}
$$

If the end effect is large, as when the wires are relatively far apart, use the expression for the self-inductance of a rectangle below (107); or, better, add to the value of (100) the self-inductance of $\mathrm{AB}+\mathrm{CD}$, using equation (94) in which $l=2 \mathrm{AB}$.

Experimental work at the Bureau of Standards, not yet published, has shown that formula (100), and therefore (94) and (98) are consistent with the formula $\left(6_{3}\right)$ for the inductance of a circular ring.
[This is equivalent to the following formula in which the logarithms are common:
$L=0.74$ I I $\log _{10} \frac{d}{\rho}+.0805$ in millihenrys per mile of conductor, $=0.4605 \log _{10} \frac{d}{\rho}+.050$ in millihenrys per kilometer of conductor. d and ρ being expressed in centimeters, inches, or any other unit.]

MUTUAL INDUCTANCE OF TWO LINEAR CONDUCTORS IN THE SAME STRAIGHT LINE

The mutual inductance of two adjacent linear conductors of lengths l and m in the same straight line is

$$
M_{l m}=l \log \frac{l+m}{l}+m \log \frac{l+m}{m}, \text { approximately. } \quad[\mathrm{IO} 2]
$$

This approximation is very close indeed if the radius of the conductor (which has been assumed zero) is very small.

THE SELF-INDUCTANCE OF A STRAIGHT RECTANGULAR BAR

The self-inductance of a straight bar of rectangular section is, to within the accuracy of the approximate formula (99), the same as the mutual inductance of two parallel straight filaments of the same length separated by a distance equal to the geometrical mean distance of the cross section of the bar. Thus,

$$
\begin{equation*}
L=2 i\left[\log \frac{2 l}{R}-\mathrm{I}+\frac{R}{l}\right] \tag{3}
\end{equation*}
$$

where R is the geometrical mean distance of the cross section of the rod or bar. If the section is a square, $R=0.447 \alpha, \alpha$ being the side of the square. If the section is a rectangle, the value of R is given by Maxwell's formula (124).

This is equivalent to the following:

$$
\begin{equation*}
L=2 l\left[\log \frac{2 l}{\alpha+\beta}+\frac{1}{2}+\frac{0.2235(\alpha+\beta)}{l}\right] \tag{IO4}
\end{equation*}
$$

In the above formula L is the self-inductance of a straight bar or wire of length l and having a rectangular section of length α and breadth β.

TWO PARALLEL BARS. SELF AND MUTUAL INDUCTANCE

The mutual inductance of two parallel straight, square, or rectangular bars is equal to the mutual inductance of two parallel wires or filaments of the same length and at a distance apart equal to the geometrical mean distance of the two areas from one another. This is very nearly equal in the case of square sections to the distance between their centers for all distances, the g . m . d. being a very little

Fig. 47
greater for parallel squares, and a very little less for diagonal squares ${ }^{104}$ (Fig. 47). We should, therefore, use equation (99) with d equal to $\mathrm{g} . \mathrm{m} . \mathrm{d}$. of the sections from one another; that is, substantially, to the distances between the centers.

The self-inductance of a return circuit of two such parallel bars is equal to twice the self-inductance of one minus twice their mutual inductance. That is,

$$
L=2\left[L_{1}-M\right]
$$

in which L_{1} is calculated by (104) and M by (99).

SELF-INDUCTANCE OF A SQUARE

The self-inductance of a square may be derived from the expressions for the self and mutual inductance of finite straight wires from the consideration that the self-inductance of the square is the sum of the self-inductances of the four sides minus the mutual inductances. That is,

$$
L=4 L_{1}-4 M
$$

the mutual inductance of two mutually perpendicular sides being zero. Substituting a for l and d in formulas (94) and (98) we have, neglecting $\rho^{2} / a^{2}, L=8 a\left(\log \frac{a}{\rho}+\frac{\rho}{a}-.5^{24}\right)$
[105]
where a is the length of one side of the square and ρ is the radius of the wire. If we put $l=4 a=$ whole length of wire in the square,

$$
\begin{gathered}
L=2 l\left(\log \frac{l}{\rho}+\frac{4 \rho}{l}-\mathrm{r} .910\right) \\
\text { or, } L=2 l\left(\log \frac{l}{\rho}-\mathrm{r} .910\right) \text { approximately. }
\end{gathered}
$$

Formulas (105) and (106) were first given by Kirchhoff ${ }^{105}$ in 1864.

SELF-INDUCTANCE OF A RECTANGLE

(a) The conductor having a circular section

The self-inductance of the rectangle of length a and breadth b is

$$
L=2\left(L_{a}+L_{b}-M_{a}-M_{b}\right)
$$

where L_{a} and L_{b} are the self-inductances of the two sides of length a and b taken alone, M_{a} and M_{b} are the mutual inductances of the two opposite pairs of length a and b, respectively.

From (94) and (98) we therefore have, neglecting ρ^{2} / a^{2}, and putting d for the diagonal of the rectangle $=\sqrt{a^{2}+b^{2}}$

$$
\begin{gather*}
L=4\left[(a+b) \log \frac{2 a b}{\rho}-a \log (a+d)-b \log (b+d)\right. \\
\left.-\frac{7}{4}(a+b)+2(d+\rho)\right] \tag{107}
\end{gather*}
$$

(b) The conductor having a rectangular section

For a rectangle made up of a conductor of rectangular section $\alpha \times \beta$,

$$
\begin{gather*}
L=4\left[(a+b) \log \frac{2 a b}{\alpha+\beta}-a \log (a+d)-b \log (b+d)\right. \\
\left.-\frac{a+b}{2}+2 d+0.447(\alpha+\dot{\beta})\right] \tag{108}
\end{gather*}
$$

where as before d is the diagonal of the square. This is equivalent to Sumec's exact formula ${ }^{106}$ ($6 a$).

For $a=b$, a square,

$$
\begin{equation*}
L=8 a\left[\log \frac{a}{\alpha+\beta}+0.2235 \frac{\alpha+\beta}{a}+0.726\right] \tag{109}
\end{equation*}
$$

If $\alpha=\beta$, that is, the section of the conductor is a square,

$$
\begin{equation*}
L=8 a\left[\log \frac{a}{\alpha}+0.447 \frac{\alpha}{a}+0.033\right] \tag{IrO}
\end{equation*}
$$

mUTUAL INDUCTANCE OF TWO EQUAL PARALLEL RECTANGLES

For two equal parallel rectangles of sides a and b and distance apart d the mutual inductance, which is the sum of the several mutual inductances of parallel sides, is,

$$
\begin{aligned}
& M=4\left[a \log \left(\frac{a+\sqrt{a^{2}+d^{2}}}{a+\sqrt{a^{2}+b^{2}+d^{2}}} \cdot \frac{\sqrt{b^{2}+d^{2}}}{d}\right)\right. \\
& \left.+b \log \left(\frac{b+\sqrt{b^{2}+d^{2}}}{b+\sqrt{a^{2}+b^{2}+d^{2}}} \cdot \frac{\sqrt{a^{2}+d^{2}}}{d}\right)\right] \\
& +8\left[\sqrt{a^{2}+b^{2}+d^{2}}-\sqrt{a^{2}+d^{2}}-\sqrt{b^{2}+d^{2}}+d\right][\mathrm{III}]
\end{aligned}
$$

${ }^{106}$ Elektrotech. Zs., 27, p. II75; 1906.

For a square, where $a=b$, we have

$$
\begin{align*}
M=8 & {\left[a \log \left(\frac{a+\sqrt{a^{2}+d^{2}}}{a+\sqrt{2 a^{2}+d^{2}}} \cdot \frac{\sqrt{a^{2}+d^{2}}}{d}\right)\right] } \\
& +8\left[\sqrt{2 a^{2}+d^{2}}-2 \sqrt{a^{2}+d^{2}}+d\right] \tag{II2}
\end{align*}
$$

Formula (III) was first given by F. E. Neumann ${ }^{107}$ in 1845.
The case of two rectangles symmetrically placed about a common vertical axis, the horizontal sides of the smaller rectangle being equidistant from those of the larger rectangle, has been discussed by Martens ${ }^{108}$ and a formula derived which enables the mutual inductance to be found for any angle ξ between the planes of the rectangles. This formula is, however, very elaborate and calculations therewith laborious.

SELF AND MUTUAL INDUCTANCE OF THIN TAPES

The self-inductance of a straight, thin tape of length l and breaath b (and of negligible thickness), Fig. 48 (I), is equal to the mutual inductance of two parallel lines of distance apart R_{1} equal to the geometrical mean distance of the section, which is $0.22313 b$, or $\log R_{1}=\log b-\frac{3}{2}$.

Thus we have approximately

$$
\begin{align*}
L & =2 l\left[\log \frac{2 l}{R_{1}}-\mathrm{I}\right] \\
& =2 l\left[\log \frac{2 l}{b}+\frac{\mathrm{r}}{2}\right] \tag{array}
\end{align*}
$$

If the thickness of the tape is not negligible, this formula becomes, when a is the thickness of the tape,

$$
\begin{equation*}
L=2 l\left[\log \frac{2 l}{b}-\frac{a}{b}+\frac{\mathrm{I}}{2}\right] \tag{114}
\end{equation*}
$$

A closer approximation to L is given by (104), in which α is the thickness and β is the breadth of the tape. For two such tapes in the same plane, coming together at their edges with-

[^42]out making electrical contact, Fig. 48 (2), the mutual inductance is
\[

$$
\begin{align*}
M & =2 l\left[\log \frac{2 l}{R_{2}}-\mathrm{I}\right] \\
& =2 l\left[\log \frac{2 l}{b}-0.8863\right] \tag{array}
\end{align*}
$$
\]

where R_{2} is the geometrical mean

$L=2 L_{1}-2 M$
$=4 l\left(\log \frac{R_{2}}{R_{1}}\right)=4 l \log _{e} 4 \quad[$ I1 6$]$
$=5.545 \times$ length of one tape .
Fig. 48
Thus the self-inductance of such a circuit is independent of the width of the tapes. If the tapes are separated by the distance b, Fig. 48 (3), equal to the width of the tapes, $R_{2}=1.95653 b$ and $L=8.685 l$.

If the two tapes are not in the same plane, but parallel, Fig. 48 (4),

$$
\begin{equation*}
L=2 L_{1}-2 M=4 l \log \frac{R_{2}}{R_{1}} \tag{array}
\end{equation*}
$$

and when the distance apart is equal to the breadth of the tapes, Fig. 48 (5), we have

$$
\log \frac{R_{2}}{R_{1}}=\frac{\pi}{2}
$$

and

$$
\begin{equation*}
L=4 l \frac{\pi}{2}=2 \pi l \tag{II8}
\end{equation*}
$$

In this case, also, the self-inductance [$2 \pi \mathrm{~cm}$ per unit of length] of the pair of thin strips is independent of their width so long as the distance apart is equal to their width. Formula (II7) with (I32)

$$
21674^{\circ}-\mathrm{I} 2-\mathrm{II}
$$

may be employed to calculate the self-inductance of a noninductive shunt made up of a sheet of thin metal doubled on itself.

CONCENTRIC CONDUCTORS

The self-inductance of a thin, straight tube of length l and radius a_{2}, when a_{2} / l is very small, is given by (97),

$$
L_{2}=2 l\left[\log \frac{2 l}{a_{2}}-\mathrm{I}\right]
$$

The mutual inductance of such a tube on a conductor within it is equal to its self-inductance, since all the lines of force due to the outer tube cut through the inner when they collapse on the cessation of current. The self-inductance of the inner conductor, supposed a solid cylinder, is

$$
L_{1}=2 l\left[\log \frac{2 l}{a_{1}}-\frac{3}{4}\right]
$$

If the current goes through the latter and returns through the outer tube, the self-inductance of the circuit is

$$
L=L_{1}+L_{2}-2 M=L_{1}-L_{2}
$$

since M equals L_{2}

$$
\begin{equation*}
\therefore L=2 l\left[\log \frac{a_{2}}{a_{1}}+\frac{\mathrm{I}}{4}\right] \tag{119}
\end{equation*}
$$

This result can also be obtained by integrating the expression for the force outside a_{1} between the limits a_{1} and a_{2}, and adding the term for the field within a_{1}, there being no magnetic field outside a_{2}.

If the outer tube has a thickness $a_{3}-a_{2}$ and the current is distributed uniformly over its cross section the self-inductance will be a little greater, the geometrical mean distance from a_{1} to the tube, which is more than a_{2} and less than a_{3}, being given by the expression

$$
\log a_{g}=\frac{a_{3}^{2} \log a_{3}-a_{2}^{2} \log a_{2}}{a_{3}^{2}-a_{2}^{2}}-\frac{1}{2}
$$

Putting this value of $\log a$ in (119) in place of $\log a_{2}$, we should have the self-inductance of the return circuit.

If the current is alternating and of very high frequency, the current would flow on the outer surface of a_{1} and on the inner surface
of the tube, and L for the circuit would be

$$
\begin{equation*}
L=2 l \log \frac{a_{2}}{a_{1}} \tag{array}
\end{equation*}
$$

MULTIPLE CONDUCTORS

If a current be divided equally between two wires of length l, radius ρ and distance d apart, the self-inductance of the divided conductor is the sum of their separate self-inductances plus twice their mutual inductance.

Thus, when $d \mid l$ is small,

$$
\begin{equation*}
L=2 l\left[\log \frac{2 l}{(\rho d)^{\frac{1}{2}}}-\frac{7}{8}\right]=2 l\left[\log \frac{2 l}{\left(r_{g} d\right)^{\frac{1}{2}}}-\mathrm{I}\right] \tag{array}
\end{equation*}
$$

where r_{g}, the $\mathrm{g} . \mathrm{m}$. d. of the section of the wire is 0.7788ρ for a round section.

If there are three straight conductors in parallel and distance d apart, the self-inductance is similarly

$$
\begin{equation*}
L=2 l\left[\log \frac{2 l}{\left(r_{g} d^{2}\right)^{\frac{1}{3}}}-\mathrm{I}\right] \tag{122}
\end{equation*}
$$

The expression $\left(r_{g} d^{2}\right)^{\frac{1}{3}}$ is the $\mathrm{g} . \mathrm{m}$. d. of the multiple conductor.

examples illustrating the formulas for the self and MUTUAL INDUCTANCE OF LINEAR CONDUCTORS

EXAMPLE 70. FORMULAS (94), (95), (96), AND (97)
A straight copper wire 100 cm long and 0.2 cm diameter will have a self-inductance by formula (95) of

$$
L=200\left(\log _{e} \frac{200}{0.1}-\frac{3}{4}\right)=1370.18 \mathrm{~cm} .
$$

If it were twice as long

$$
L=400\left(\log _{e} \frac{400}{0.1}-\frac{3}{4}\right)=3017.62 \mathrm{~cm} .
$$

The more exact formula (94) gives practically the same result where ρ is so small compared with l.

If the wire were of iron with a permeability of 1000 , we should have in the first case for $l=100$

$$
L=200\left(\log _{e} 2000-\mathrm{I}+250\right)=51320 \mathrm{~cm} .
$$

For sufficiently rapid oscillations so that the current may be considered to be confined to the surface of the wire

$$
L=200\left(\log _{e} 2000-\mathrm{I}\right)=\mathrm{I} 320.18 \mathrm{~cm} .
$$

If the length of the conductor were 10 meters and the diameter 0.2 cm as before, the self-inductance by (95) would be

$$
\begin{aligned}
L=2000\left(\log _{e} 20000-\frac{3}{4}\right) & =18307.0 \mathrm{~cm} \\
& =18.307 \text { microhenrys. }
\end{aligned}
$$

EXAMPLE 71. FORMULAS (98) AND (99)

Two parallel copper wires of length 100 cm and distance apart 200 cm will have a mutual inductance of

$$
\begin{aligned}
M & =2\left[100 \log _{e} \frac{100+100 \sqrt{5}}{200}-100 \sqrt{5}+200\right] \\
& =200\left[\log _{e} \frac{1+\sqrt{5}}{2}-\sqrt{5}+2\right] \\
& =200\left(\log _{e} 1.61803-0.2361\right) \\
& =49.02 \mathrm{~cm} .
\end{aligned}
$$

If the length of each conductor were 200 cm and the distance apart 100 cm , then

$$
M=400\left[\log _{e} \frac{2+\sqrt{5}}{\mathrm{I}}-\frac{\sqrt{5}}{2}+\frac{1}{2}\right]=330.24 \mathrm{~cm} .
$$

The approximate formula (99) is only applicable when the length of the conductors is great compared with their distance apart. Suppose two conductors io meters long are 10 cm apart, then by (99)

$$
\begin{aligned}
M & =2000\left[\log _{e} \frac{2000}{10}-\mathrm{I}+\frac{10}{1000}\right] \\
& =2000[5.2983-0.9900] \\
& =8616.6 \mathrm{~cm}=8.6166 \text { microhenrys. }
\end{aligned}
$$

The formula (98) gives a value less than two parts in one hundred thousand greater.

EXAMPLE 72. FORMULAS (100) AND (101)
Suppose a return circuit of two parallel wires, each io meters long and 0.2 cm diameter, distant apart 10 cm , center to center, Fig. 49. The self-inductance of the circuit, neglecting the ends, is by (IOO)

$$
\begin{aligned}
L & =4000\left[\log _{e} \frac{10}{0.1}+\frac{1}{4}-\frac{10}{1000}\right] \\
& =4000 \times 4.8452 \\
& =19380.8 \mathrm{~cm}=19.3808 \text { microhenrys. }
\end{aligned}
$$

We have already calculated (example 70) the selfinductance of one of these two wires by itself. Doubling the value we have 36.6140 microhenrys as the selfinductance of two wires in series. In example 71 we calculated the mutual inductance of these two wires. Doubling the value for M we have 17.2332 microhenrys. The resultant self-inductance of the circuit (neglecting the ends) is

Fig. 49

$$
\begin{aligned}
L=2 L_{1}-2 M & =36.6140-17.2332 \\
& =19.3808 \text { microhenrys. }
\end{aligned}
$$

as found above by formula (ioo).
Taking account of the ends neglected above, we should find that $2 L_{1}$ for the two ends by (95) is 18 r .9 cm and $2 M$ by (98) is practically zero. Hence the self-inductance of the circuit is, including the ends,

$$
L=19.5627 \text { microhenrys. }
$$

EXAMPLE 73. FORMULA (102) FOR THE MUTUAL INDUCTANCE OF ADJACENT CONDUCTORS IN THE SAME STRAIGHT LINE

When the two conductors are of equal length, $l=m$, and (ro2) becomes

$$
M=2 l \log _{e} 2=2 l \times 0.69315 \mathrm{~cm} .
$$

If $l=1000 \mathrm{~cm}, M=1386.3 \mathrm{~cm}$.

If $m=1000 l$, (8I) gives

$$
\begin{aligned}
M & =l \log _{e} \mathrm{IOOI}+1000 l \log \mathrm{I} .00 \mathrm{I} \\
& =l \log _{e} \mathrm{IOOI}+l \text { approximately }
\end{aligned}
$$

If $l=\mathrm{I} \mathrm{cm}$, we have

$$
\begin{aligned}
M & =\log _{e} \mathrm{IOOI}+\mathrm{IOOO} \log _{e} \mathrm{I} .00 \mathrm{I} \\
& =6.909+0.999=7.908 \mathrm{~cm}
\end{aligned}
$$

The self-inductance of the short wire $A B$, supposed I cm long and of 1 mm radius, is

$$
L=2\left(\log _{e} \frac{2}{\mathrm{O.I}}-.75\right)=2(2.9957-.75)=4.49 \mathrm{I} 5 \mathrm{~cm}
$$

which is a little more than one-half of the mutual inductance of $A B$ and $B C, B C$ being one thousand times the length of $A B$.

In closed circuits, all the magnetic lines due to a circuit are effective in producing self-inductance, and hence the self-inductance is always greater than the mutual inductance of that circuit with any other, assuming one turn in each. But with open circuits, as in this case, we may have a mutual inductance between two single conductors greater than the self-inductance of one of them.

EXAMPLE 74. FORMULA (104) FOR THE SELF-INDUCTANCE OF A RECTANGULAR BAR

In formula (IO 4), substituting $l=1000$, and $\alpha+\beta=2$ for a square bar 1000 cm long and 1 square cm section, we have, neglecting the small last term,

$$
\begin{aligned}
L & =2000\left[\log _{e} \frac{2000}{2}+\frac{1}{2}\right] \\
& =2000(6.908+0.5)=14816 \mathrm{~cm} \\
& =14.816 \text { microhenrys. }
\end{aligned}
$$

This would also be the self-inductance for any section having $\alpha+\beta=2 \mathrm{~cm}$.

EXAMPLE 75. FORMULAS (105) AND (106) FOR THE SELF-INDUCTANCE OF A SQUARE MADE UP OF A ROUND WIRE
If the side of the square is I meter, $a=100 \mathrm{~cm}, \rho=0.1 \mathrm{~cm}$, we have from (105)

$$
\begin{aligned}
L & =800\left(\log _{e} 1000-0.524\right) \\
& =5107 \mathrm{~cm}=5.107 \text { microhenrys. }
\end{aligned}
$$

If $\rho=.05 \mathrm{~cm}$,

$$
L=5662 \mathrm{~cm}=5.662 \text { microhenrys. }
$$

That is, the self-inductance of such a rectangle of round wire is about II per cent greater for a wire I mm in diameter than for one 2 mm in diameter.

If l / ρ is constant, L is proportional to l, that is, if the thickness of the wire is proportional to the length of the wire in the square, the self-inductance of the square is proportional to its linear dimensions.

EXAMPLE 76. FORMULA (107) FOR THE SELF-INDUCTANCE OF A RECTANGLE OF ROUND WIRE

Suppose a rectangle 2 meters long and I meter broad.
Substituting $a=200 \mathrm{~cm}, b=100, \rho=0.1$, in (107) we have

$$
L=8017.1 \mathrm{~cm}=8.017 \text { microhenrys. }
$$

We can obtain the same result from the values of self and mutual inductances calculated in examples 70 and 7 r . That is, the resultant self-inductance of the rectangle is the sum of the self-inductances of the four sides, minus twice the mutual inductances of the two pairs of opposite sides. Thus

$$
L=\left(L_{1}+L_{3}\right)+\left(L_{2}+L_{4}\right)-2 M_{13}-2 M_{24}
$$

By example 70, $L_{1}+L_{3}=6035.24$

$$
L_{2}+L_{4}=2740.36 \quad 8775.60
$$

By example $7 \mathrm{I}, 2 M_{13}=660.48$

$$
\begin{aligned}
2 M_{24}=\frac{98.04}{\therefore L} & =\frac{758.52}{8017.08} \mathrm{~cm} \\
& =8.017 \mathrm{I} \text { microhenrys. }
\end{aligned}
$$

The agreement of this result with that obtained from formula (107) serves as a check on the latter formula, and also illustrates how the values of the self and mutual inductances of open circuits may be combined to give the self-inductance of a closed circuit.

EXAMPLE 77. FORMULAS (108), (109), AND (110) FOR THE SELF-INDUCTANCE OF A RECTANGLE OR SQUARE MADE UP OF A BAR OF RECTANGULAR SECTION

$$
\text { Let } a=200 \quad b=100 \quad a=\beta=1.0 \mathrm{~cm} \text {. }
$$

Substituting these values in (108) we obtain

$$
\begin{aligned}
L & =4(2971.05-1209.76-577.95-150+447.2 \mathrm{I}+0.99) \\
& =5926.16 \mathrm{~cm} .
\end{aligned}
$$

For a square io meters on a side, made of square bar isq cm cross section we have $a=1000, a=\mathrm{I}$; substituting in (110)

$$
\begin{aligned}
L & =8000(6.908+.033) \\
& =8000 \times 6.941 \mathrm{~cm}=55.53 \text { microhenrys. }
\end{aligned}
$$

For a circular section, diameter I cm, $\rho=0.5$; substituting in (105)

$$
\begin{aligned}
L & =8000\left(\log _{e} 2000+\frac{\mathrm{I}}{2000}-0.524\right) \\
& =8000 \times 7.076 \mathrm{~cm}=56.61 \text { microhenrys },
\end{aligned}
$$

a little more than for a square section, as would be expected.

EXAMPLE 78. FORMULA (112) FOR THE MUTUAL INDUCTANCE OF PARALLEL SQUARES

Suppose two parallel squares each I meter on a side, io cm distant from one another.

$$
\begin{aligned}
& a=\mathrm{IOO}, d=\mathrm{IO} . \quad \text { Substituting in (II2), } \\
& M=8\left[100 \log _{e}\left(\frac{I+\sqrt{\text { I.OI }}}{I+\sqrt{2.01}} \cdot \frac{\sqrt{\text { IOI }}}{\mathrm{I}}\right)+\sqrt{20100}-2 \sqrt{\mathrm{IOIOO}}+10\right] \\
& =800\left[\log _{e}\left(\frac{\mathrm{IO.I}+\sqrt{\text { IOI }}}{\mathrm{I}+\sqrt{2.0 \mathrm{I}}}\right)+\sqrt{2.0 \mathrm{I}}-2 \sqrt{\mathrm{I} .0 \mathrm{I}}+0.1\right] \\
& =1142.5 \mathrm{~cm}=1.1425 \text { microhenrys. }
\end{aligned}
$$

EXAMPLE 79. FORMULAS (113), (114), AND (115) FOR THE SELF AND MUTUAL INDUCTANCE OF THIN STRAIGHT STRIPS OR TAPES

Let the tape of thin copper be 10 meters long and I cm wide.

Substituting $l=1000$ and $b=1$ in (II3) we have

$$
\left.\begin{array}{rl}
L & =2000\left(\log _{e} 2000+\frac{1}{2}\right) \\
& =2000 \times 8.1009
\end{array}\right)=16202 \mathrm{~cm},
$$

as the self-inductance when the conducting strip is very thin. If the tape is 2 mm thick we may allow for the effect of the thickness by using (II4) and we find

$$
L=2000 \times 7.9009 \mathrm{~cm}=15.802 \text { microhenrys },
$$

which differs slightly from the preceding value.
Two such tapes edge to edge in one plane will have a mutual inductance by (II 5) of

$$
\begin{aligned}
M & =2000\left(\log _{e} 2000-0.8863\right) \\
& =2000 \times 6.7146 \mathrm{~cm} \\
& =\mathrm{I} 3.4^{2} 9 \text { microhenrys. }
\end{aligned}
$$

EXAMPLE 80. FORMULA (117) FOR THE SELF-INDUCTANCE OF A RETURN CIRCUIT OF TWO PARALLEL SHEETS; NONINDUCTIVE SHUNTS

Suppose the dimensions of a thin manganin sheet which has been doubled on itself be as follows:

$$
\begin{aligned}
& l=30 \mathrm{~cm} \quad b=10 \mathrm{~cm} \quad d=\mathrm{Icm.} \\
& \text { By }(\mathrm{I} 32) \log R_{2}=1.0787 \\
& \log R_{1}=\log _{e} \mathrm{IO}-\frac{3}{2}=0.8026 \\
& L=4 l\left(\log R_{2}-\log R_{1}\right) \\
&=120 \times 0.2761 \\
&=33.13 \mathrm{~cm} \\
&=.033 \mathrm{I} \text { microhenrys. }
\end{aligned}
$$

EXAMPLE 81. FORMULA (122), 3 CONDUCTORS IN MULTIPLE

Suppose three cylindrical conductors, each io meters long and 4 mm diameter, the distance apart of their centers being I cm . Substitute in (122) as follows:

$$
l=1000 \mathrm{~cm} \quad \rho=2 \mathrm{~mm} \quad d=1 \mathrm{~cm} .
$$

Then

$$
\left(r_{g} a^{2}\right)^{\frac{1}{3}}=0.538 \mathrm{~cm}
$$

and

$$
\begin{aligned}
L & =2000\left(\log _{e} \frac{2000}{0.538}-\mathrm{I}\right) \\
& =2000 \times 7.22 \mathrm{Icm}=14.442 \text { microhenrys. }
\end{aligned}
$$

If the whole current flowed through a single one of the three conductors the self-inductance would be

$$
L=2000\left(\log _{e} \frac{2000}{0.2}-\frac{3}{4}\right)=17.92 \text { microhenrys, }
$$

or about 25 per cent more than when divided among the three.

9. FORMULAS FOR GEOMETRICAL AND ARITHMETICAL MEAN DISTANCES

GEOMETRICAL MEAN DISTANCES

Maxwell showed how to calculate mutual and self-inductances in several important cases by means of what he called the geometrical mean distance, either of one conductor from another or of a conductor from itself. On account of the importance of this method we give below some of the most useful of these formulas. The geometrical mean distance of a point from a line is the $n^{\text {th }}$ root of

Fig. 50 the product of the n distances from the point P to the various points in the line, n being increased to infinity in determining the value of R. Or, the logarithm of R is the mean value of $\log d$ for all the infinite values of the distance d. Similarly, the geometrical mean distance of a line from itself is the $n^{\text {th }}$ root of the product of the n distances between all the various pairs of points in the line, n being infinity. ${ }^{109}$

Similar definitions apply to the g. m. d. of one area from another, or of an area from itself.

The geometrical mean distance R of a line of length a from itself is given by

$$
\begin{align*}
\log R & =\log a-\frac{3}{2} \\
R & =a e^{-\frac{3}{2}} \tag{array}\\
\text { or } R & =0.22313 a
\end{align*}
$$

The g. m. d. of a rectangular area of sides a and b from itself is given by

$$
\begin{gather*}
\log R=\log \sqrt{a^{2}+b^{2}}-\frac{1}{6} \frac{a^{2}}{b^{2}} \log \sqrt{\mathrm{I}+\frac{b^{2}}{a^{2}}}-\frac{1}{6} \frac{b^{2}}{a^{2}} \log \sqrt{\mathrm{I}+\frac{a^{2}}{b^{2}}} \\
+\frac{2}{3} \frac{a}{b} \tan ^{-1} \frac{b}{a}+\frac{2}{3} \frac{b}{a} \tan ^{-1} \frac{a}{b}-\frac{25}{\mathrm{I} 2} \tag{124}
\end{gather*}
$$

When the area is a square, and hence $a=b$,

$$
\begin{align*}
& \log R=\log a+\frac{1}{3} \log 2+\frac{\pi}{3}-\frac{25}{12} \tag{array}\\
& \therefore R=0.44705 a
\end{align*}
$$

For a circular area of radius a,

$$
\begin{align*}
\log R & =\log a-\frac{1}{4} \\
R & =a e^{-\frac{1}{4}} \tag{126}\\
R & =0.7788 a
\end{align*}
$$

For an ellipse of semi-axes a and b,

$$
\begin{equation*}
\log R=\log \frac{a+b}{2}-\frac{\mathrm{I}}{4} \tag{127}
\end{equation*}
$$

An approximate expression for the $\mathrm{g} . \mathrm{m}$. d. of a rectangular area of length a and breadth b is

$$
\begin{equation*}
R=0.2235(a+b) \tag{128}
\end{equation*}
$$

which is nearly true for all values of a and b; that is, the geometrical mean distance of the rectangular area from itself is approximately proportional to the perimeter of the rectangle. The following table gives the ratio $R /(a+b)$ for a series of rectangles of different proportions, from a square to a ratio of 20 to I between length and breadth, and finally when the breadth is infinitesimal in comparison with the length. By interpolating for any other case between the
values given in the table one can obtain a quite accurate value without the trouble of calculating it by formula (124).

Geometrical Mean Distances of Rectangles of Different Proportions

[a and b are the Length and Breadth of the Rectangles. R is the Geometrical Mean Distance of its Area]

Ratio	R	$\frac{R}{a+b}$
$1:: 1$	$0.44705 a$	$0.40235 a$
$1.25: 1$	$0.37258 a$	0.22353
$1.5: 1$	$0.33540 a$	0.22353
$2: 1$	$0.27961 a$	0.22355
$4: 1$	$0.24596 a$	0.22360
10	0.1	$0.23463 a$
20	$: 1$	$0.22315 a$

The g. m. d. of an annular area of radii a_{1} and a_{2} from itself is given by

$$
\begin{equation*}
\log R=\log a_{1}-\frac{a_{2}^{4}}{\left(a_{1}^{2}-a_{2}^{2}\right)^{2}} \log \frac{a_{1}}{a_{2}}+\frac{\mathrm{I}}{4} \frac{3 a_{2}^{2}-a_{1}^{2}}{a_{1}^{2}-a_{2}^{2}} \tag{129}
\end{equation*}
$$

The g. m. d. of a line of length a from a second line of the same length, distant in the same straight line $n a$, center to center, Fig. 5I, is given by the following formula:

Fig. 51
$\log R_{n}=\frac{(n+\mathrm{I})^{2}}{2} \log (n+\mathrm{r}) a-n^{2} \log n a+\frac{(n-\mathrm{I})^{2}}{2} \log (n-\mathrm{r}) a-\frac{3}{2}$
[130]
This formula is equivalent to the following, which is more convenient for calculation for all values of n greater than one. ${ }^{110}$
$\log R_{n}=\log n-\left[\frac{\mathrm{I}}{\mathrm{I} 2 n^{2}}+\frac{\mathrm{I}}{60 n^{4}}+\frac{\mathrm{I}}{\mathrm{I} 68 n^{6}}+\frac{\mathrm{I}}{360 n^{8}}+\frac{\mathrm{I}}{660 n^{10}}+\cdots \cdots\right]$
This formula is very convergent, and only two or three terms are generally required.

The following values of the geometrical mean distances (calling a unity) were calculated from the above formulas, all after the second being obtained by (I 3 I):

Fig. 52

$$
\begin{array}{ll}
R_{0}=0.22313 & R_{5}=4.98323 \\
R_{1}=0.89252 & R_{6}=5.98610 \\
R_{2}=1.95653 & R_{7}=6.98806 \\
R_{3}=2.9717 \mathrm{I} & R_{8}=7.98957 \\
R_{4}=3.97890 & R_{9}=8.99076
\end{array}
$$

If the lines are parallel and at distance d, Fig. 52, the $\mathrm{g} . \mathrm{m} . \mathrm{d}$. is given by
$\log R=\frac{d^{2}}{b^{2}} \log d+\frac{\mathrm{I}}{2}\left(\mathrm{I}-\frac{d^{2}}{b^{2}}\right) \log \left(b^{2}+d^{2}\right)+2 \frac{d}{b} \tan ^{-1} \frac{b}{d}-\frac{3}{2} \quad\left[\mathrm{I}_{3} 2\right]$
If $d=b$,

$$
\begin{equation*}
\log R=\log b+\frac{\pi}{2}-\frac{3}{2} \tag{I33}
\end{equation*}
$$

The g. m. d. from a point O_{2}, Fig. 53, outside a circle to the circumference of the circle, or to the entire area of the circle is the distance d from O_{2} to the center of the circle.
(I) The $\mathrm{g} . \mathrm{m} . \mathrm{d}$. from the center O_{1} to the circumference is of

Fig. 53 course the radius a. (2) The g. m. d. of any point (as O_{3}) within the circle from the circumference is also a. (3) The g. m. d. of any point on the circumference (as_{4}) from all other points of the circumference is also a. (4) Therefore the g. m. d. of a circular line of radius a from itself is a; that is,

$$
\begin{equation*}
R=a \tag{I34}
\end{equation*}
$$

for each of the four cases named above.
The g. m. d. of a point outside a circular ring, Fig. 54, from the ring is the distance d to the center of the ring. The g. m.d. of any point $\mathrm{O}_{1}, \mathrm{O}_{3}$, etc., within the ring is given by

$$
\log R=\frac{a_{1}{ }^{2} \log a_{1}-a_{2}{ }^{2} \log a_{2}}{a_{1}{ }^{2}-a_{2}{ }^{2}}-\frac{\mathrm{I}}{2} \quad[\mathrm{I} 35]
$$

The same expression gives the g. m. d. of any figure, as S_{1}, within the ring from the

Fig. 54 ring. The $\mathrm{g} . \mathrm{m}$. d. of an external figure,
as S_{2}, from the annular ring is equal to the g . m. d. of the center O_{1} from the figure S_{2}.

The g. m. d. from one circular area to another is the distance between their centers; that is,

Fig. 55

$$
\begin{equation*}
R=d \tag{136}
\end{equation*}
$$

for the area S_{1} with respect to S_{2} as it is for the point O_{1} with respect to S_{2}.

The $\mathrm{g} . \mathrm{m} . \mathrm{d}$. of a line of length a from a second parallel line of length a^{\prime} located symmetrically (Fig. 56) is given by Gray ${ }^{111}$, equation (II4). The g. m. d. of a line from a parallel and symmetrically

Fig. 56 situated rectangle is given by Gray's equation (II2). The g. m. d. of two unequal rectangles from one another is given by Gray's equation (II_{3}). ${ }^{112}$

The $\mathrm{g} . \mathrm{m}$. d. of two adjacent rectangles and of two obliquely situated rectangles are given by Rosa, ${ }^{113}$ equations ($8 a$) and (17). As these expressions are somewhat lengthy and not often required they are not repeated here. The values of the $\mathrm{g} . \mathrm{m}$. d. for two equal squares in various relative positions to one another have been accurately calculated ${ }^{114}$ by these formulas, and the results used in the determination ${ }^{115}$ of the correction term E of formula (93).

${ }^{111}$ Absolute Measurements, Vol. II, Part I.

There are a number of misprints in equations IO4, IO9, III, and II3 of Gray. The sign of the first term of equation lo4 should be + . The signs before p^{2} in the coefficients of the log in the first four terms of equation 109 should be all minus; thus $1 / 4$ $\left(\beta^{2}-p^{2}\right),-1 / 4\left(\alpha^{2}-p^{2}\right),-1 / 4\left[(\alpha-\beta)^{2}-p^{2}\right],+1 / 4\left[(a-\alpha)^{2}-p^{2}\right]$. Similarly in equation III the coefficients of the first two terms should be $1 / 2\left(\beta^{2}-p^{2}\right)$ and $-1 / 2\left(\alpha^{2}-p^{2}\right)$. In equation 113 the coefficient of β^{4} in each of the first four terms should be $1 / 6$ instead of $1 / 2$ and the first term should have $\log \left[\left(p+b+b^{\prime}\right)^{2}+\beta^{2}\right]$ instead of \log $\left[\left(p+b+b^{\prime}\right)^{2}-\beta^{2}\right]$.
${ }^{112}$ Also by Rosa, equation (8) this Bulletin, 3, p. 6; 1907.
${ }^{113}$ This Bulletin, 3, pp. 7 and 12; 1907.
${ }^{114}$ This Bulletin, 3, pp. 9-19; 1907.
${ }^{115}$ This Bulletin, 3, p. 37 ; 1907.

ARITHMETICAL MEAN DISTANCES

In the determination of self and mutual inductances by the method of geometrical mean distances it has been shown ${ }^{116}$ that more accurate formulas can be obtained by the use of certain arithmetical mean distances and arithmetical mean square distances taken in connection with geometrical mean distances.

The arithmetical mean distance of a point from a line is the arithmetical mean of the n distances of the point from the various points of the line, n being infinite. Similarly, the arithmetical mean distance of a line from itself is the arithmetical mean of the distances of the n pairs of points in the line from one another, n being infinite.

The a. m. d. of a line of length b from itself is ${ }^{117}$

$$
\begin{equation*}
S_{2}=\frac{b}{3} \tag{137}
\end{equation*}
$$

that is, while the $\mathrm{g} . \mathrm{m}$. d. of a line from itself is 0.22313 times its length, the a. m. d. is one-third the length.

The arithmetical mean square distance of a line from itself is of course larger than the square of the a. m. d. Putting $S_{2}{ }^{2}$ for the arithmetical mean square distance (a. m. s. d.).

$$
\begin{equation*}
S_{2}{ }^{2}=\frac{b^{2}}{6} \text { or } \sqrt{S_{2}^{2}}=\frac{b}{\sqrt{6}} \tag{I38}
\end{equation*}
$$

The arithmetical mean distance of a point in the circumference of a circle from the circle is the same as the a. $\mathrm{m} . \mathrm{d}$. of the circle from itself; that is, for a circle of radius a,

$$
\begin{equation*}
S_{1}=S_{2}=\frac{4}{\pi} a \tag{I39}
\end{equation*}
$$

The arithmetical mean square distance is

$$
\begin{equation*}
S_{2}^{2}=2 a^{2} \text { and } \sqrt{S_{2}^{2}}=a \sqrt{2} \tag{I4O}
\end{equation*}
$$

(The g. m. d. for this case is $R=a$, equation (I34).)

[^43]The arithmetical mean distance of an external point P from the circumference of a circle, Fig. 57, is

$$
\begin{equation*}
S_{1}=\sqrt{d^{2}+a^{2}} \tag{I4I}
\end{equation*}
$$

which is the distance PA.
The arithmetical mean distance from P to the entire area of the circle is

$$
\begin{equation*}
S_{1}=\sqrt{d^{2}+\frac{a^{2}}{2}} \tag{142}
\end{equation*}
$$

(The g. m. d. for each of these cases is $R=d$, equation (I 36).)
For the proof of these and other expressions for the arithmetical mean distances and applications of their use see the article referred to above.

10. HIGH-FREQUENCY FORMULAS

Excepting in a very few specified cases, the formulas of the preceding sections apply only to conductors carrying direct current or alternating currents of frequencies so low that the error, due to the assumption that the current is uniformly distributed over the cross section of the wire, is negligible.

In the case of standards of mutual inductance the inductance may be regarded as sensibly independent of the frequency, unless the two coils are very close together, and even then the capacity between the coils will be a more potent source of error than the departure of the current from a uniform distribution over the cross section of the wire.

The self-inductance of a coil or conductor, on the other hand, depends appreciably on the field in the cross section of the conductor, and any deviation of the distribution of the current in the wire from uniformity gives rise to a decrease in the inductance. The amount of this change depends on the frequency of the current and the radius of the cross section of the conductor, as well as on the conductivity and permeability of the material of which it is composed.

This decrease of the inductance is accompanied by an increase in the resistance of the conductor. Whereas, however, the inductance
with increasing frequency approaches a limiting value, the resistance increases indefinitely as the frequency approaches an infinite value. The change of resistance is always relatively much larger than the change in inductance.

The eddy current effects just described are, for the most part, negligible at low frequencies, except in the case of heavy conductors and in coils wound with stout wire in several layers. In the latter case, however, the diminution of the inductance, due to the irregular distribution of the current, is marked, to a greater or less degree, by the effect of the capacity between the windings of the coil, which gives rise to an increase of the inductance with the frequency. For the same reason the resistance is increased more than it would be by the eddy currents alone.

Unfortunately, the rigorous or approximate solution of the problem at high frequencies for the various cases for which the inductance with steady currents may be calculated is in many instances very difficult, if not impossible. Some of the simpler cases, however, because of their great importance, have received much attention, with the result that the changes of inductance and resistance may be calculated with a good degree of precision.

STRAIGHT CYLINDRICAL WIRES

This is the most important case of all, since the solution is rigorous, and the results may be applied to the construction of practical, absolute standards for high-frequency work. The problem has been treated successively by Maxwell, ${ }^{118}$ Heaviside, ${ }^{119}$ Rayleigh, ${ }^{120}$ and Kelvin. ${ }^{121}$

Putting $l=$ length of conductor
$\rho=$ radius of conductor
$\sigma=$ specific resistance of its material
$\mu=$ permeability
$f=$ frequency, $p=2 \pi f$
$R^{\prime}=$ resistance with current of frequency f
$L^{\prime}=$ inductance " " " " f

[^44]$$
21674^{\circ}-12-12
$$
\[

$$
\begin{aligned}
& R=\text { resistance with direct current } \\
& L=\text { inductance " " } \\
& X=2 \rho \sqrt{\frac{\pi p \mu}{\sigma}}
\end{aligned}
$$
\]

Thus

$$
\begin{align*}
& \frac{R^{\prime}}{R}=\frac{x}{2} \frac{W}{Y} \tag{143}\\
& L^{\prime}=2 l\left[\log \frac{2 l}{\rho}-1+\frac{\mu}{4}\left(\frac{4}{x} \cdot \frac{Z}{Y}\right)\right] \tag{144}
\end{align*}
$$

where

$$
\begin{align*}
W & =\text { bet } x \text { bi' }^{\prime} x \text {-bi } x \text { bert }^{\prime} x \\
Y & =\left(\text { bert }^{\prime} x\right)^{2}+\left(\text { bi }^{\prime} x\right)^{2} \\
Z & =\text { bet } x \text { bert }^{\prime} x+\text { bei } x \text { bel }^{\prime} x \tag{I44a}
\end{align*}
$$

Since from (96)

$$
L=2 l\left[\log \frac{2 l}{\rho}-\mathrm{I}+\frac{\mu}{4}\right]
$$

we find

$$
\begin{align*}
& \Delta L=L^{\prime}-L=-2 l \frac{\mu}{4}\left[\mathrm{I}-\frac{4}{x} \frac{Z}{Y}\right] \tag{145}\\
& \frac{\Delta L}{L}=-\frac{\frac{\mu}{4}\left(\mathrm{I}-\frac{4}{x} \frac{Z}{Y}\right)}{\log \frac{2 l}{\rho}-\mathrm{I}+\frac{\mu}{4}} \tag{146}
\end{align*}
$$

For nonmagnetic material the equation (146) takes the form

$$
\begin{equation*}
\frac{\Delta L}{L}=-\frac{\left(\mathrm{I}-\frac{4}{x} \frac{Z}{\bar{Y}}\right)}{4 \log \frac{2 l}{\rho}-3} \tag{147}
\end{equation*}
$$

In these expressions, fer x and bei x are functions introduced by Lord Kelvin, being respectively the real and imaginary parts of the ordinary Bessel function of order zero, J_{0}, having for its argument $x i \sqrt{i}$, where x is a real quantity, and $i=\sqrt{-\mathrm{I}}$. These functions are given by the series

$$
\left.\begin{array}{l}
\text { ber } x=1-\frac{x^{4}}{2^{2} 4^{2}}+\frac{x^{8}}{2^{2} 4^{2} 6^{2} 8^{2}}-\ldots \ldots \tag{148}\\
\text { bei } x=\frac{x^{2}}{2^{2}}-\frac{x^{6}}{2^{2} 4^{2} 6^{2}}+\frac{x^{10}}{2^{2} 4^{2} 6^{2} 8^{2} \mathrm{IO}^{2}}-\ldots \ldots
\end{array}\right\}
$$

and ber' x and $b^{\prime} i^{\prime} x$ are their differential coefficients with respect to x.

These series are very convergent, but the calculation, naturally, becomes laborious for large values of x. To lighten the labor of calculation Russell ${ }^{122}$ and Savidge ${ }^{123}$ have developed asymptotic expressions for ber x, bei x, ber ' x, bei ' x and the auxiliary quantities W, Y, and Z, which give their numerical values with an accuracy of about one part in ten thousand for values of x greater than about 6 , but whose accuracy increases rapidly as x becomes larger.

Savidge ${ }^{123}$ has, in addition, calculated extensive tables of the above functions and the allied ker and kei functions to four places of decimals, and for values of the argument ranging between I and 30 in steps of one unit. These tables will be found very useful in the solution of a variety of problems. For calculation with the formulas (143) to (147), however, it seemed desirable to construct tables in which the argument advances by smaller steps than in the tables of Savidge. For this purpose ber x, bei x, ber ' x and bei ' x were calculated directly from their series, for arguments from o.I to 5.0, in steps of 0.I, and from 5 to 7 in steps of 0.2. From these were obtained directly by ($144 a$) the values of W, Y, Z. For the larger values of x, the quantities W, Y, Z were calculated by asymptotic formulas, and checked at a few points by the direct series. Thus the interval from 5 to 10 was covered in steps of 0.2 , the interval Io to 15 in steps of 0.5 , and from 15 to 50 in steps of one unit, the aim being to keep the differences of the same order of magnitude. It will, probably, seldom be necessary to make calculations for values of x greater than about 50 . If such calculations are occasionally required, they may be made with little trouble by the asymptotic formulas given below.

[^45]Since making the above calculations, we have determined the expressions for the general terms in Russell's equations (8), (9), and (10), (loc. cit., p. 529), thus materially increasing their range of applicability.

These equations, thus extended, are

$$
\begin{align*}
& W=\frac{x}{2}\left\{I+\frac{6}{(\mid \underline{3})^{2}}\left(\frac{x}{2}\right)^{4}+\frac{30}{(\mid \underline{5})^{2}}\left(\frac{x}{2}\right)^{8}+\frac{140}{(\mid \underline{7})^{2}}\left(\frac{x}{2}\right)^{12}+\right. \\
& \left.+\frac{\mathrm{I} \cdot 2 \cdot 3 \cdots(2 n+\mathrm{I})}{\mathrm{I}^{2} 2^{2} 3^{2} \cdot \cdots n^{2}(\mid \underline{2 n+1})^{2}}\left(\frac{x}{2}\right)^{4 n}+\cdots\right\} \\
& Y=\frac{x^{2}}{4}\left\{\mathrm{I}+\frac{3}{(\mid \underline{3})^{2}}\left(\frac{x}{2}\right)^{4}+\frac{10}{(\mid \underline{5})^{2}}\left(\frac{x}{2}\right)^{8}+\frac{35}{(\mid 7)^{2}}\left(\frac{x}{2}\right)^{12}+\right. \\
& \left.+\frac{1}{(n+1)} \frac{1 \cdot 2 \cdot 3 \cdots(2 n+1)}{1^{2} 2^{2} 3^{2} \cdots n^{2}(\mid 2 n+1)^{2}}\left(\frac{x}{2}\right)^{4 n}+\cdots\right\} \tag{149}\\
& Z=\frac{x^{3}}{16}\left\{1+\frac{3}{2(\mid \underline{3})^{2}}\left(\frac{x}{2}\right)^{4}+\frac{10}{3(\mid \underline{5})^{2}}\left(\frac{x}{2}\right)^{8}+\frac{35}{4(\mid \underline{\mid I})^{2}}\left(\frac{x}{2}\right)^{12}+\cdots\right. \\
& \left.\left.+\frac{\mathrm{I}}{(n+\mathrm{I})^{2}} \frac{\mathrm{I} \cdot 2 \cdot 3 \cdots \cdots(2 n+\mathrm{I})}{\mathrm{I}^{2} 2^{2} 3^{2} \cdots n^{2}(\underline{2 n+\mathrm{I}})^{2}}\left(\frac{x}{2}\right)^{4 n}+\cdots\right\}\right)
\end{align*}
$$

It would have been simpler to have calculated the values of W, Y, and Z by these formulas than by the more indirect process actually used. The formulas (149) have, however, shown themselves of great service in checking the results. For completeness the asymptotic formulas of Savidge used have also been appended. They give results to one in one hundred thousand for $x \geqq 10$ and may be used with an error of not greater than one in ten thousand down to $x=6$.

$$
\begin{align*}
& \left.W=\frac{e^{x \sqrt{2}}}{2 \pi x}\left[\frac{1}{\sqrt{2}}+\frac{1}{8 x}+\frac{9}{(8 x)^{2} \sqrt{2}}+\frac{39}{(8 x)^{3}}+\frac{75}{2(8 x)^{4} \sqrt{2}}-\cdots\right]\right] \\
& Y=\frac{e^{x \sqrt{2}}}{2 \pi x}\left[\mathrm{I}-\frac{6}{8 x \sqrt{2}}+\frac{9}{(8 x)^{2}}+\frac{150}{(8 x)^{3} \sqrt{2}}+\frac{2475}{2(8 x)^{4}}+\cdots \cdot\right] \tag{array}\\
& \left.Z=\frac{e^{x \sqrt{2}}}{2 \pi x}\left[\frac{1}{\sqrt{2}}-\frac{3}{8 x}-\frac{15}{(8 x)^{2} \sqrt{2}}-\frac{45}{(8 x)^{3}}+\frac{315}{2(8 x)^{4} \sqrt{2}}+\cdots\right]\right][\mathrm{r} 50]
\end{align*}
$$

The results are given in Table XXII which gives the values, to one in one hundred thousand, of not only the quantities $\frac{x}{2} \frac{W}{Y}$ and
$\frac{4}{x} \frac{Z}{Y}$ required in the preceding formulas, but of $\frac{W}{Y}$ and $\frac{Z}{Y}$ also. These will be found useful in allied problems, and it may seem preferable in some cases to interpolate the values of these latter quantities to obtain the former. For example, with $x>2.5$ the first differences, and in some places the second differences also, are smaller with $\frac{W}{Y}$ than with $\frac{x}{2} \frac{W}{Y}$. The accuracy of the Table XXII may be regarded as greater than will usually be required, and should suffice for the most precise work.

In addition to the general formulas of Kelvin (143) and (144), Rayleigh ${ }^{124}$ has given expansions holding for small values of the argument x. These equations, which were extended to another term by Heaviside, are, expressed in the present nomenclature,

$$
\left.\begin{array}{l}
\frac{x}{2} \frac{W}{Y}=1+\frac{1}{12}\left(\frac{x}{2}\right)^{4}-\frac{1}{180}\left(\frac{x}{2}\right)^{8}+\frac{11}{12 \cdot 28 \cdot 30}\left(\frac{x}{2}\right)^{12}-\cdots \tag{array}\\
\frac{4}{x} \bar{Y}=1-\frac{1}{24}\left(\frac{x}{2}\right)^{4}+\frac{13}{43^{20}}\left(\frac{x}{2}\right)^{8}-\frac{647}{12^{2} \cdot 360 \cdot 56}\left(\frac{x}{2}\right)^{12}+\cdots
\end{array}\right\}
$$

Their applicability is limited to the range of values of x less than about 2 , and it will be more convenient to use Table XXII.

For very high frequencies Rayleigh gave also the limiting formulas

$$
\begin{aligned}
& R^{\prime}=\sqrt{\frac{\mathrm{I}}{2} p l \mu R} \\
& L^{\prime}=2 l\left[\log \frac{2 l}{\rho}-\mathrm{I}+\frac{\mathrm{I}}{2} \sqrt{\frac{\mu R}{2 p l}}\right]
\end{aligned}
$$

In some instances these formulas have been used, as though they were exact, over a considerable range of frequencies, without any statement being made as to the magnitude of the error involved. Expressing these formulas in the present nomenclature, we obtain the following formulas for infinite frequencies:

$$
\begin{align*}
\left(\frac{R^{\prime}}{R}\right)_{x=\infty} & =\frac{x}{2 \sqrt{2}} \tag{array}\\
\left(L^{\prime}\right)_{x=\infty} & =2 l\left[\log \frac{2 l}{\rho}-\mathrm{I}+\frac{\mu}{4}\left(\frac{4}{x \sqrt{2}}\right)\right]_{x=\infty} \\
& =2 l\left[\log \frac{2 l}{\rho}-\mathrm{I}\right] \tag{153}
\end{align*}
$$

These are seen to be in agreement with equations (143) and (144), if we remember that the limiting values of $\frac{W}{Y}$ and $\frac{Z}{Y}$ as the argument x is indefinitely increased are both $\frac{I}{\sqrt{2}}$. (See formulas (I 50).) From (150) we find that only for values of x greater than about 900 is the error from using (152) as small as one-tenth per cent. For $x=70$ the error is about I per cent, and in many practical cases it is still larger.
The limiting value of the change of inductance is found from (147) to be

$$
\begin{align*}
& \left(\frac{\Delta L}{L}\right)_{x=\infty}=-\frac{\mathrm{I}}{4 \log \frac{2 l}{\rho}-3} \tag{I54}\\
& (\Delta L)_{x=\infty}=-\frac{l}{2} \tag{I55}
\end{align*}
$$

The error from using (I_{53}) is only about one part in ten thousand for $x=60$. The error, however, arising from the neglect of the term $\frac{4}{x} \frac{Z}{Y}$ in (I47) is more than 5 per cent.

From (I_{54}) we obtain the curious result that the limiting value of the fractional change of inductance, as the frequency is indefinitely increased, depends only on the ratio of the length of the wire to the cross section. Table XXIII gives an idea of the way the limiting value falls off as this ratio is increased.

The preceding formulas show that the change of resistance and inductance are functions of the quantity

$$
\begin{equation*}
x=2 \rho \sqrt{\frac{\pi \mu \phi}{\sigma}}=2 \pi \rho \sqrt{2 \mu K f} \tag{array}
\end{equation*}
$$

where K is the conductivity.

Taking the specific resistance of annealed copper at 20° as I .72 I microhms or 1721 in absolute electromagnetic units,

$$
K_{0}=5.8 \mathrm{II} \times \mathrm{IO}^{-4}
$$

and (156) takes the simple form

$$
x=0.02142 \rho \sqrt{f}
$$

To aid in making approximate calculations, and for purposes of orientation, the auxiliary Table XXIV has been calculated, giving the value $x=x_{0}$ for copper wire of the above conductivity and of a cross section of Imm radius at various frequencies. For the higher frequencies, the corresponding wave length λ in meters has been included as likely to be of service in calculations for wirelesstelegraph circuits. The range of this table may be considerably extended by remembering that x varies with \sqrt{f} or $\sqrt{\frac{\mathrm{r}}{\lambda}}$. Thus the value of x_{0} for 7500 cycles is found directly from the tabulated value for 750000 cycles by shifting the decimal point. Similarly, the value for $\lambda=150$ meters is obtained from the tabulated value for 15000 meters. It is for this reason that the larger values of λ have been tabulated.

To calculate x for a copper wire of radius $r \mathrm{~mm}$, we have $x=x_{0} r$, and if the conductivity have any value K, the further factor $\sqrt{\frac{K}{K_{0}}}$ must be applied. Finally, if the wire is, in addition, of magnetic material of permeability μ, an additional factor $\sqrt{\mu}$ is necessary to obtain the required value of x.

CONCENTRIC MAIN

The simple case of a cylindrical, straight wire may be regarded as a special case of the more general problem of a concentric main; that is, of a solid or tubular inner conductor surrounded by a coaxial tubular outer conductor. This case has been very completely treated by Russell, ${ }^{125}$ but as the formulas are not simple they are not given here.
${ }^{125}$ Phil. Mag., 17, p. 524; 1909.

TWO PARALLEL WIRES

Unless the two wires are so near together, relatively to their radius of cross section, that their mutual inductance is appreciably affected by changes in the distribution of the current within the wires, each wire may be treated by the formulas given for a straight, cylindrical wire.

Supposing, therefore, that the wires are alike in every respect

$$
\begin{equation*}
L^{\prime}=4 i\left[\log \frac{d}{\rho}+\frac{\mu}{4}\left(\frac{4}{x} \frac{Z}{Y}\right)\right] \tag{57}
\end{equation*}
$$

and from (IOI) we find for wires of nonmagnetic material

$$
\begin{align*}
\frac{\Delta L}{L} & =-\frac{\left(\mathrm{I}-\frac{4}{x} \frac{Z}{Y}\right)}{4 \log \frac{d}{\rho}+\mathrm{I}} \\
\left(\frac{\Delta L}{L}\right)_{x=\infty} & =-\frac{\mathrm{I}}{4 \log \frac{d}{\rho}+\mathrm{I}} \\
(\Delta L)_{x=\infty} & =l \\
\frac{R^{\prime}}{R} & =\frac{x}{2} \frac{W}{\bar{Y}} \tag{160}
\end{align*}
$$

$$
\left[\begin{array}{l}
\mathrm{I} 59 a]
\end{array}\right.
$$

and
the values of $\frac{Z}{Y}$ and $\frac{W}{Y}$ being taken from Table XXII.
Nicholson ${ }^{126}$ has recently given a solution of the problem, when the two wires are so close together that their mutual inductance suffers a sensible change with the frequency. To obtain an idea of the magnitude of this effect, in a practical case, the results by Nicholson's formulas were compared with those of (158) and (160). With $d=1 \mathrm{~cm}$ and $\rho=0.1 \mathrm{~cm}$, and with a frequency of 10^{6}, (158) gives $\frac{\Delta L}{L}=-8.5$ per cent, the effect of Nicholson's correction being to give a value of $\frac{\Delta L}{L}$ numerically only nine parts in ten thousand smaller.

Similarly for the resistance, (160) gives $\frac{R^{\prime}}{R}=7 \cdot 56$, while Nicholson's formula reduces this to 7.55 . Since this example relates to a rather unfarorable case, for a standard whose inductance is to be calculated from the dimensions, these corrections for mutual effect may, in general, be regarded as negligible, and the formulas (158), (I59), and (160) may be regarded as sufficiently accurate with the precision usually attainable in the measurement of the dimensions.

It is to be noticed that the maximum possible relative change of inductance, with the frequency, is greater with two parallel wires than with either alone, because this change with the parallel wires depends on the sum of their self-inductances which is greater than the resulting self-inductance of the combination (see p. I5I). Table XXIII gives an idea of the values attained by $\left(\frac{J L}{L}\right)_{x=x}$ in the case of the two parallel wires. This maximum change of inductance depends only on the ratio of their distance apart to the radius of cross section of the wire.

Eridently, other cases of linear conductors of circular cross section, may likewise be made to depend on the solution for straight wires.

CIRCULAR RING OF CIRCULAR SECTION

The inductance of a circular ring, in which the current is confined wholly to the circumference of the cross section was given in formula (65). Combining this with (63) we find that on the assumption that (65) represents the actual distribution of the current at infinite frequency,

$$
\begin{equation*}
(\lrcorner L)_{x=s}=-\pi a\left[1-\frac{1}{2} \rho^{2}\left(\log \frac{S_{a}}{\rho}-\frac{1}{3}\right)\right] \tag{16I}
\end{equation*}
$$

The absolute value of the change of inductance at infinite frequency is, in the case of a straight wire, (see 145)

$$
(\lrcorner L)_{x=i x}=-\frac{i}{2}
$$

which shows that, if the wire of the ring were stretched out straight, the ralue given in (16I) would become

$$
\begin{equation*}
(\Delta L)_{x=x}=-\frac{1}{2} 2 \pi \cdot z=-\pi \cdot z \tag{162}
\end{equation*}
$$

Equation (I6I) gives, therefore, the effect of the curvatures of the ring, which for ordinary cases will be seen to be small. The resistance and inductance of the ring must, therefore, very approximately follow the same law of variation with the frequency as the straight wire.

The assumption of formula (65) that at high frequencies the magnetic field is symmetrical around the axis of the cross section of the ring is not strictly true. Actually, it will be a little stronger toward the axis of the ring, so that the amplitude of the current is slightly larger in that part of the cross section which is nearest the axis of the ring. This effect, however, will be extremely small and may be neglected.

We have, therefore, with great approximation

$$
\begin{equation*}
\Delta L=-\pi a\left(\mathrm{I}-\frac{4}{x} \frac{Z}{Y}\right)\left[\mathrm{I}-\frac{\mathrm{r}}{2} \frac{\rho^{2}}{a^{2}}\left(\log \frac{8 a}{\rho}-\frac{\mathrm{r}}{3}\right)\right] \tag{163}
\end{equation*}
$$

or, if terms in $\frac{\rho^{2}}{a^{2}}$ may be neglected,

$$
\begin{align*}
& \frac{\Delta L}{L}=-\frac{\left(\mathrm{I}-\frac{4}{x} \frac{Z}{Y}\right)}{4 \log \frac{8 a}{\rho}-7} \tag{164}\\
& \left(\frac{\Delta L}{L}\right)_{x=\infty}=-\frac{\mathrm{I}}{4 \log \frac{8 a}{\rho}-7}
\end{align*}
$$

The values of $\left(\frac{\Delta L}{L}\right)_{x=\infty}$ for various values of the determinative ratio $\frac{8 a}{\rho}$ are tabulated in Table XXIII.

Neglecting the curvature, the change in resistance will be given by the same expression as for the straight wire, that is

$$
\begin{equation*}
\frac{R^{\prime}}{R}=\frac{x}{2} \frac{W}{Y} \tag{I66}
\end{equation*}
$$

The quantities $\frac{x}{2} \frac{W}{Y}$ and $\frac{4}{x} \frac{Z}{Y}$ are to be taken from Table XXII as before, the argument x being given by (156).

EXAMPLES ILLUSTRATING THE FORMULAS FOR HIGH FREQUENCY

 EXAMPLE 82. STRAIGHT WIRE, VERY HIGH FREQUENCYLet $f=500000$ cycles per second, and $\therefore \lambda=600$ meters
$l=200 \mathrm{~cm}$
$\rho=0.125 \mathrm{~cm}$.
If the wire is of copper, Table XXIV gives $x_{0}=15.146$ for a wire of $\rho=0.1 \mathrm{~cm}$. We find, therefore, $x=15.146 \times 1.25=18.932$. Entering Table XXII with this value of x, we find by interpolation, using second differences,

$$
\frac{x}{2} \frac{W}{Y}=\frac{R^{\prime}}{R}=6.95035 \quad \frac{4}{x} \frac{Z}{Y}=0.14923
$$

a slightly more accurate value of the latter may be found by making the interpolation for $\frac{Z}{Y}$.

$$
\frac{2 l}{\rho}=3200 \text { and } \therefore 4 \log \frac{2 l}{\rho}-3=29.284
$$

By (154)

$$
\left(\frac{\Delta L}{L}\right)_{x=\infty}=-0.034148
$$

The value found from Table XXIII by interpolation is $0.03416+$.
Formula (147) gives therefore $\frac{\Delta L}{L}=-0.034148(\mathrm{r}-0.14923$)
By (145)

$$
=-0.02905^{2}
$$

$$
\Delta L=-85.08 \mathrm{~cm}
$$

Recapitulating, the resistance at 500000 cycles per second is 6.95 times as great as with direct current, while the inductance is 85.08 cm or 2.9052 per cent less than the direct current value. This change of the inductance is 85.08 per cent of the possible change of 100 cm (0.034148 of the total inductance).

If the wire had been of manganin, for which the conductivity was one thirtieth of that of copper, the value of x becomes

$$
x=18.932 \times \sqrt{\frac{I}{30}}=3.4566
$$

and we find

$$
\begin{aligned}
\frac{R^{\prime}}{R}=1.47620 & \frac{4}{x} \frac{Z}{Y}
\end{aligned}=.772550
$$

The resistance is 1.47620 times the value at zero frequency, while the decrease of inductance is only 22.745 per cent of the total possible (0.034 I 48), or 0.007767 .

On the other hand, if the wire had been of iron (conductivity oneseventh of that of copper) and the permeability is assumed as low as 100

$$
x=\sqrt{\mathrm{IOO}} \sqrt{\frac{\mathrm{I}}{7}} \mathrm{I} .932=71.556
$$

$$
\frac{R^{\prime}}{R}=25.55 \mathrm{I} \quad \frac{4}{x} \frac{Z}{Y}=0.039526 \quad \mathrm{I}-\frac{4}{x} \frac{Z}{Y}=.96047
$$

$$
\begin{array}{ll}
\text { By (146) } & \left(\frac{\Delta L}{L}\right)_{x=\infty}=-\frac{100}{128.284}=-0.77950 \\
\text { By }(145) & (\Delta L)_{x=\infty}=-10000 \mathrm{~cm}
\end{array}
$$

and the actual changes are

$$
\begin{aligned}
\Delta L & =-9605 \mathrm{~cm} \\
\left(\frac{\Delta L}{L}\right) & =-0.77950 \times \cdot 96047=-0.7487
\end{aligned}
$$

The influence of this relatively low permeability is enormous. The resistance is more than twenty-five times its direct current value, while the inductance is less than the direct current value by nearly 75 per cent of the latter, the maximum possible change with this permeability being about 78 per cent.

EXAMPLE 83. STRAIGHT WIRE-LOW FREQUENCY

If we consider the same wires as in the previous example, except that the frequency is assumed as only r,ooo per second.

Then for copper, $x=0.6774 \times 1.25=0.84675$

$$
\frac{R^{\prime}}{R}=1.00266 \quad \frac{4}{x} \frac{Z}{Y}=0.99867 \quad \mathrm{I}-\frac{4}{x} \frac{Z}{Y}=0.00133
$$

$$
\begin{aligned}
& \Delta L=-0.133 \mathrm{~cm} \\
& \frac{\Delta L}{L}=-0.034 \mathrm{I} 48(.00 \mathrm{or} 33)=-0.000045
\end{aligned}
$$

The resistance increase is only 0.266 per cent and the decrease of inductance is only about forty-five millionths of the total.

For manganin, $x=0.84675 \sqrt{\frac{I}{30}}=0.1582$
By (151) $\quad \frac{R^{\prime}}{R}=1.0000030 \quad \frac{4}{x} \frac{Z}{Y}=1-0.000001_{5}$

$$
\mathrm{I}-\frac{4}{x} \frac{Z}{Y}=0.00000 \mathrm{I}_{5}
$$

The increase in resistance is about three millionths and the decrease in inductance about five hundred-millionths of the direct current values.

For iron, with $\mu=100$ as before

$$
\begin{aligned}
x & =0.84675 \sqrt{100} \sqrt{\frac{1}{7}}=3.2004 \\
\frac{R^{\prime}}{R} & =1.38516 \quad \frac{4}{x} \frac{Z}{Y}=0.8 \mathrm{r} 391 \quad \text { 1 }-\frac{4}{x} \frac{Z}{Y}=0.18609 \\
\frac{\Delta L}{L} & =-\frac{100}{128.284}(0.18609)=-0.14506
\end{aligned}
$$

That is, the resistance increase is 38.5 per cent, the inductance decrease 14.5 per cent of the direct current values.

EXAMPLE 84. PARALLEL WIRES

Let us take wires of the same diameter and length as in examples 82 and 83 and consider the same frequencies. The values of $\frac{x}{2} \frac{W}{Y}$ and $\frac{4}{x} \frac{Z}{Y}$ will be the same as those in the cases corresponding in the previous examples. Further, assume that the distance between the centers of the wires is $d=\mathrm{r} .5 \mathrm{~cm}$.

Then $\quad \frac{d}{\rho}=12 \quad 4 \log \frac{d}{\rho}+\mathrm{I}=10.9396$
\therefore for nonmagnetic material

$$
\left(\frac{\Delta L}{L}\right)_{x=\infty}=-\frac{\mathrm{I}}{\mathrm{IO} .9396}=-0.0914 \mathrm{I} 2 .
$$

as may also be found directly with sufficient precision from Table XXIII.

For iron wires, $\mu=100$

$$
\left(\frac{\Delta L}{L}\right)_{x=\infty}=-\frac{\mu}{4 \log \frac{d}{\rho}+\mu}=-\frac{100}{109.94}=-0.9308
$$

The results for the cases treated in the previous examples are, therefore, for the parallel wires, as follows:

Material	Frequency	$\frac{R^{\prime}}{R}$	$\frac{\Delta L}{L}$
Copper	500000	6.9504	-0.077772
"	1000	1.00266	-0.000122
Manganin	500000	1.4762	-0.020792
"	1000	I.0000030	-0.00000014
Iron ($\mu=100)$	50000	25.551	-0.8940
$"$	1000	1.3852	-0.1732

The following table shows the effect of reducing the radius of cross section to $\rho=0.01 \mathrm{~cm}$

Material	Frequency	X	$\left(\frac{\Delta L}{L}\right)_{x=\infty}$	$\frac{\mathrm{R}^{\prime}}{\mathrm{R}}$	$\frac{\Delta L}{L}$
Copper	500000	1.514	0.047522	1.02682	-0.000636
"	1000	0.06774	"	1.0000011	-2.6×10^{-0}
Manganin	500000	0.27652	0.047522	1.000030	-7.2×10^{-7}
"	1000	0.01237		$1+1.2 \times 10^{-10}$	-3×10^{-12}
Iron ($\mu=100$)	500000	$5 \cdot 7245$	0.83303	2.2974	0.4273
"	1000	0.25603	"	1.000022	-9.3×10^{-6}

EXAMPLE 85. CIRCULAR RING

Suppose the ring is of copper and that

$$
\rho=0.1 \mathrm{~cm}, \quad a=20 \mathrm{~cm}, \quad \lambda=700 \mathrm{~m}
$$

Then from Table XXIV, $x=14.023$ and from Table XXII,

$$
\frac{R^{\prime}}{R}=5.2173, \mathrm{I}-\frac{4}{x} \frac{Z}{Y}=0.79873
$$

$$
\begin{aligned}
\log \frac{8 a}{\rho} & =\log 1600=7.37776 \\
\frac{\rho}{a} & =0.005
\end{aligned}
$$

By (I 62), $(\Delta L)_{x=\infty}=-20 \pi=-62.83 \mathrm{~cm}$.
The correction term in (16I) $=1-0.0000880$
By (165) or Table XXIII,

$$
\left(\frac{\Delta L}{L}\right)_{x=\infty}=-0.0444^{2}
$$

and by (164),

$$
\begin{aligned}
\frac{\Delta L}{L} & =-0.04442 \times 0.79873 \\
& =-0.03548
\end{aligned}
$$

Washington, January i, igif.

note.

After the present paper had gone to press, a third formula for the mutual inductance of coaxial circles was published by Nagaoka (Tokyo Math. Phys., Soc. 6, p. Io; 191I). This formula was given by Nagaoka in the following form:

$$
M=4 \pi \sqrt{A a}\left\{4 \pi q^{2}\left(\frac{\mathrm{r}-4 q^{3}+9 q^{8}-\cdots \cdot}{\mathrm{r}-3 q^{2}+5 q^{6}-\cdots \cdot}\right)\right\}
$$

The general term of the numerator being $(-1)^{n-1} n^{2} q^{n^{2}-1}$ and that of the denominator $(-\mathrm{I})^{m}(2 m+\mathrm{I}) q^{(2 m+1)^{2}} \frac{4}{4}-1 / 4$.

The quantity q is calculated from the modulus $k_{1}{ }^{\prime}$, which is complementary to the modulus k_{1} of formula (2). Using the same nomenclature as in section I of this collection we have

$$
\begin{aligned}
q & =\frac{l}{2}+2\left(\frac{l}{2}\right)^{5}+\mathrm{I} 5\left(\frac{l}{2}\right)^{9}+\cdots \\
l & =\frac{\mathrm{I}-\sqrt{k_{1}^{\prime}}}{\mathrm{I}+\sqrt{k_{1}^{\prime}}}=\frac{k_{1}^{2}}{\left(\mathrm{I}+k_{1}{ }^{\prime}\right)\left(\mathrm{I}+\sqrt{\left.k_{1}^{\prime}\right)^{2}}\right.} \\
k_{1} & =\frac{r_{1}-r_{2}}{r_{1}+r_{2}}=\frac{4 A a}{\left(r_{1}+r_{2}\right)^{2}} \quad k_{1}^{\prime}=\frac{2 \sqrt{r_{1} r_{2}}}{r_{1}+r_{2}} \\
r_{1} & =\sqrt{(A+a)^{2}+d^{2}} \quad r_{2}=\sqrt{(A-a)^{2}+d^{2}}
\end{aligned}
$$

The general term of the above formula has been given for the sake of completeness. In general, however, the convergence is so rapid that all but the first terms are negligible.

As an example of the use of this formula, the calculation for the circles of examples 4 and II above is appended:

$$
\begin{array}{rlrl}
A & =a=25 \quad d=4 \\
R_{1} & =\sqrt{2516}=50.159744 \quad R_{2}=4 \\
k_{1}^{\prime} & =\frac{4 \sqrt{2516}}{4+\sqrt{2516}} \quad \sqrt{k_{1}^{\prime}}=0.72323683 \\
\frac{l}{2} & =0.080303278 & q=0.080309959 \\
\mathrm{I}-4 q^{3}+9 q^{8} & =0.99792812 & \mathrm{I}-3 q^{2}+5 q^{6}=0.98065227 \\
\log q^{*} & =\overline{\mathrm{I}} . \mathrm{I} 785770 \quad \therefore M=606.0676 \mathrm{~cm}
\end{array}
$$

which agrees very closely with the value 606.0674 found in examples 4 and ir.
On expansion the above formula becomes

$$
\mathrm{M}=4 \pi \sqrt{\mathrm{Aa}}\left\{4 \pi \mathrm{q}^{\frac{3}{2}}\left(\mathrm{I}+3 \mathrm{q}^{2}-4 \mathrm{q}^{3}+9 \mathrm{q}^{4}-\mathrm{I} 2 q^{5}+\cdots\right)\right\}
$$

which suggests that the quantity q in this expression is equal to the square of the corresponding quantity in formula (8) above. The truth of this proposition may be established by expressing Landen's transformation in terms of q functions.

As regards numerical calculation, therefore, this last formula of Nagaoka is entirely equivalent to his earlier formula (8).

APPENDIX

TABLES OF CONSTANTS AND FUNCTIONS USEFUL IN THE CALCULATION OF MUTUAL AND SELF-INDUCTANCE

TABLE I
Maxwell's Table of Values of $\log \frac{M}{4 \pi \sqrt{A a}}=\left[\left(\frac{2}{k}-k\right) F-\frac{2}{k} E\right]$
(For use with Formula (1))

	$\log \frac{M}{4 \pi \sqrt{A a}}$	Δ_{1}		$\log \frac{M}{4 \pi \sqrt{A a}}$	Δ_{1}
$60^{\circ} \quad 0^{\prime}$	1. 4994780	27868	$65^{\circ} 0^{\prime}$	1 I .6376633	27508
6^{\prime}	1.5022648	27854	6^{\prime}	1.6404141	27508
12^{\prime}	1.5050502	27840	12^{\prime}	1. 1.6431649	27507
18^{\prime}	1.5078342	27828	18^{\prime}	1. 1.6459156	27507
24^{\prime}	1.5106170	27816	22^{\prime}	1.6486663	27507
30^{\prime}	1.5133986	27803	30^{\prime}	$\underline{1} .6514170$	27509
36^{\prime}	1.5161789	27790	36^{\prime}	$\overline{1} .6541679$	27510
42^{\prime}	1.5189579	27778	42^{\prime}	1. 1.6569189	27512
48^{\prime}	1.5217357	27765	48^{\prime}	1.6596701	27514
54^{\prime}	1.5245122	27753	54^{\prime}	1. 1.6624215	27516
$61^{\circ} 0^{\prime}$	1.5272875	27743	$66^{\circ} 0^{\prime}$	1. 1.6651731	27519
6^{\prime}	1.5300618	27734	6^{\prime}	1.6679250	27522
12^{\prime}	1.5328352	27725	12^{\prime}	$\underline{1} .6706772$	27524
18^{\prime}	1.5356077	27715	18^{\prime}	1. 1.6734296	27528
24^{\prime}	1.5383792	27705	24^{\prime}	1. i . 6761824	27532
30^{\prime}	1. 5411497	27694	30^{\prime}	1.6789356	27535
36^{\prime}	1. 5439191	27683	36^{\prime}	1. 6816891	27539
42^{\prime}	1.5466874	27672	42^{\prime}	1.6844430	27543
48^{\prime}	1.5494546	27663	48^{\prime}	1. 1.6871973	27548
54^{\prime}	1.5522209	27654	54^{\prime}	1.6899521	27553
$62^{\circ} 0^{\prime}$	1.5549863	27645	$67^{\circ} 0^{\prime}$	1. 1.6927074	27561
6^{\prime}	1.5577508	27637	6^{\prime}	1.6954635	27567
12^{\prime}	1.5605145	27629	12^{\prime}	1. 6982202	27573
18^{\prime}	1.5632774	27622	18^{\prime}	1.7009775	27580
24^{\prime}	1.5660396	27615	24^{\prime}	1.7037355	27587
30^{\prime}	1.5688011	27607	30^{\prime}	1.7064942	27595
36^{\prime}	1.5715618	27598	36^{\prime}	1.7092537	27603
42^{\prime}	1.5743216	27589	42^{\prime}	1.7120140	27610
48^{\prime}	1.5770805	27582	48^{\prime}	1.7147750	27619
54^{\prime}	1.5798387	27575	54^{\prime}	1.7175369	27628
$63^{\circ} 0^{\prime}$	1.5825962	27570	$68^{\circ} 0^{\prime}$	1.7202997	27637
6^{\prime}	1.5853532	27567	6^{\prime}	1.7230634	27647
12^{\prime}	1.5881099	27563	12^{\prime}	1.7258281	27656
18^{\prime}	$\underline{1} .5908662$	27559	18^{\prime}	$\underline{1}$	27667
24^{\prime}	1.5936221	27555	24^{\prime}	1.7313604	27679
30^{\prime}	1.5963776	27549	30^{\prime}	1.7341283	27689
36^{\prime}	1.5991325	27543	36^{\prime}	1.7368972	27701
42^{\prime}	1. 6018868	27537	42^{\prime}	1.7396673	27713
48^{\prime}	1.6046405	27533	48^{\prime}	1.7424386	27725
54^{\prime}	1.6073938	27530	54^{\prime}	1.7452111	27737
$64^{\circ} 0^{\prime}$	1.6101468	27527	$69^{\circ} 0^{\prime}$	1.7479848	27749
6^{\prime}	1.6128995	27524	6^{\prime}	1.7507597	27763
12^{\prime}	1.6156519	27521	12^{\prime}	1.7535360	27778
18^{\prime}	1.6184040	27519	18^{\prime}	1.7563138	27791
24^{\prime}	1. 1.6211559	27516	24^{\prime}	1.7590929	27806
30^{\prime}	1.6239075	27514	30^{\prime}	1.7618735	27821
36^{\prime}	1.6266589	27513	36^{\prime}	1.7646556	27836
42^{\prime}	1.6294102	27512	42^{\prime}	1.7674392	27853
48^{\prime}	1.6321614	27510	48^{\prime}	1.7702245	27871
$54{ }^{\prime}$	1.6349124	27509	54^{\prime}	1.7730116	27888
$65^{\circ} 0^{\prime}$	1. 6376633	27508	$70^{\circ} \quad 0^{\prime}$	1. 7758004	27904

TABLE I-Continued

TABLE I-Continued

		$\log _{4^{\pi}} \frac{M}{\sqrt{A a}}$	Δ_{1}			$\log \frac{M}{4 \pi \sqrt{A a}}$	Δ_{1}
80°	0^{\prime}	0.0741812	33500	85°		0.2654154	46004
	6	0.0775312	33628		6^{\prime}	0.2700156	46499
	12^{\prime}	0.0808940	33760		12^{\prime}	0.2746655	47015
	18^{\prime}	0.0842700	33892		18^{\prime}	0.2793670	47553
	24^{\prime}	0.0876592	34027		4^{\prime}	0.2841223	48109
	30^{\prime}	0.0910619	34165		0^{\prime}	0.2889332	48689
	36^{\prime}	0.0944784	34307		6^{\prime}	0.2938021	49293
	42^{\prime}	0.0979091	34452		2^{\prime}	0.2987314	49924
	48^{\prime}	0.1013543	34601		8^{\prime}	0.3037238	50585
	54^{\prime}	0.1048144	34752		4^{\prime}	0.3087823	51274
81°	0^{\prime}	0.1082896	34906	86°	0^{\prime}	0.3139097	51995
	6^{\prime}	0.1117802	35064		6^{\prime}	0.3191092	52751
	12^{\prime}	0.1152866	35226		2^{\prime}	0.3243843	53544
	18^{\prime}	0.1188092	35392		8^{\prime}	0.3297387	54375
	24^{\prime}	0.1223484	35561		4^{\prime}	0.3351762	55250
	30^{\prime}	0.1259045	35735		0^{\prime}	0.3407012	56172
	36^{\prime}	0.1294780	35912		6^{\prime}	0.3463184	57143
	42^{\prime}	0.1330692	36094			0.3520327	58168
	48^{\prime}	0.1366786	36280		2^{\prime} 8^{\prime}	0.3578495	59254
	54^{\prime}	0.1403066	36470		54^{\prime}	0.3637749	60404
82°	0^{\prime}	0.1439536	36667	87°	0^{\prime}	0.3698154	61624
	6^{\prime}	0.1476203	36869		$6{ }^{\prime}$	0.3759777	62923
	12'	0.1513072	37076		$\begin{aligned} & 12^{\prime} \\ & 18^{\prime} \end{aligned}$		64306
	18^{\prime}	0.1550148	37287			0.3887006	65786
	24^{\prime}	0.1587435	37503		18 24^{\prime}	0.39527920.4020162	67370
	30^{\prime}	0.1624938	37722		30^{\prime}		69072
	36^{\prime}	0.1662660	37949		36^{\prime}	0.4020162 0.4089234	70904
	42^{\prime}	0.1700609	38183		42^{\prime}	0.4160138	72884
	48^{\prime}	0.1738792	38425		48^{\prime}	0.4233022	75031
	54^{\prime}	0.1777217	38673		54^{\prime}	0.4308053	77373
83°	0^{\prime}	0.1815890	38926	88°	0	0.4385417	79921
	6^{\prime}	0.1854816	39185		6^{\prime}	0.4465341	82723
	12^{\prime}	0.1894001	39452	12^{\prime}		0.4548064	85816
	18^{\prime}	0.1933453	39728	18^{\prime}		0.4633880	89247
	24^{\prime}	0.1973181	40013	24^{\prime}		0.4723127	93079
	30^{\prime}	0.2013194	40308	30^{\prime}		0.4816206	97389
	36^{\prime}	0.2053502	40605	36^{\prime}			102275
	42^{\prime}	0.2094108	40915	42^{\prime}		0.5015870	107868
	48^{\prime}	0.2135023	41236	$\begin{aligned} & 48^{\prime} \\ & 54^{\prime} \end{aligned}$		0.5015870 0.5123738	114341
	54^{\prime}	0.2176259	41565			0.5238079	121932
84°	0^{\prime}	0.2217824	41904	89°	$9^{\circ} 0$	0.5360011	130958
	6^{\prime}	0.2259728	42255	$\begin{gathered} 6^{\prime} \\ 12^{\prime} \end{gathered}$		0.5490969	141917
	12^{\prime}	0.2301983	42617			0.5632886	155520
	18^{\prime}	0.2344600	42991	$\begin{aligned} & 12^{\prime} \\ & 18^{\prime} \end{aligned}$		0.5788406	172914
	24^{\prime}	0.2387591	43379	$\begin{aligned} & 24^{\prime} \\ & 30^{\prime} \end{aligned}$		0.5961320	
	30^{\prime}	0.2430970	43778			0.6157370	228537
	36^{\prime}	0.2474748	44192	$\begin{aligned} & 30^{\prime} \\ & 36^{\prime} \end{aligned}$		0.6385907	277976363882
	42^{\prime}	0.2518940	44621	$42^{\prime}$$48^{\prime}$		0.6663883	
	48^{\prime}	0.2563561	45065			0.7027765	
	54^{\prime}	0.2608626	45526	54^{\prime}		0.7586941	
85°	0^{\prime}	0.2654154	46004				559176

The above table has been recalculated and some of the values corrected in the last place. The values given are sufficiently accurate to give M within one part in a million.

TABLE II
Giving the Values of Log F and Log E as Functions of $\tan \gamma$. (See p. 20)

$\tan \gamma$	Log F	F	Log E	E
0.1	0.1971996	1.5747065	0.1950415	1.5669007
0.2	0.2003678	1.5862361	0.1918928	1.5555817
0.3	0.2054261	1.6048192	0.1869144	1.5378514
0.4	0.2120849	1.6296146	0.1804536	1.5151429
0.5	0.2200096	1.6596236	0.1729048	1.4890346
0.6	0.2288634	1.6938051	0.1646557	1.4610185
0.7	0.2383385	1.7311652	0.1560492	1.4323502
0.8	0.2481728	1.7708135	0.1473640	1.4039900
0.9	0.2581561	1.8119912	0.1388116	1.3766121
1.0	0.2681272	1.8540745	0.1305409	1.3506441
1.5	0.3147473	2.0641787	0.0955992	1.2462329
2.0	0.3535711	2.2572057	0.0713258	1.1784897
2.5	0.3852192	2.4278352	0.0547850	1.1344491
3.0	0.4112984	2.5780917	0.0432738	1.1047748
4.0	0.4518237	2.8302429	0.0289324	1.0688885
5.0	0.4821752	3.0351154	0.0207426	1.0489205
7.5	0.5341061	3.4206300	0.0109567	1.0255497
10.0	0.5682672	3.7005581	0.0068338	1.0158598
12.5	0.5932708	3.9198622	0.0047004	1.0108819

TABLE III
Values of the Constant K as Functions of x / A and a/A
(For use in Formula (57))

\mathbf{x} / A	.50	0.75	1	1.25	1.50	1.75	2
a / A							
0.50	9.39283	12.30385	14.27982	15.62795	16.56549	17.23299	17.71973
0.55	9.52044	12.40135	14.34594	15.67140	16.59411	17.25215	17.73283
0.60	9.66358	12.50816	14.41766	15.71837	16.62503	17.27286	17.74701
0.65	9.82296	12.62412	14.49474	15.76867	16.65813	17.29504	17.76221
0.70	9.99921	12.74897	14.57688	15.82212	16.69330	17.31865	17.77841
0.75	10.19272	12.88232	14.66377	15.87850	16.73039	17.34357	17.79554

For the self-inductance of a single-layer winding on a solenoid; n is the whole number of turns of wire in the winding and a is the mean radius. The corrections by Tables VII and VIII must be made to get L from L_{s} as usual. (See p. 122.)

In the following table $2 a$ is the diameter, b is the length, and therefore $2 \alpha / b=\tan \gamma$. (See Fig. 33.)

$2_{\bar{b}}^{a}=\tan \gamma$	Q	$2_{\bar{b}=\tan \gamma}^{a}$	Q
0.20	3.63240	1.80	19.57938
0.30	5.23368	2.00	20.74631
0.40	6.71017	2.20	21.82049
0.50	8.07470	2.40	22.81496
0.60	9.33892	2.60	23.74013
0.70	10.51349	2.80	24.60482
0.80	11.60790	3.00	25.41613
0.90	12.63059	3.20	26.18009
1.00	13.58892	3.40	26.90177
1.20	15.33799	3.60	27.58548
1.40	16.89840	3.80	28.23494
1.60	18.30354	4.00	28.85335

For an explanation of the above formula, see page in 8.

Rosa
Grover]

TABLE V

Constants A and B for Strasser's Formula (82)

$$
\begin{aligned}
& A=2 \log _{e}[(n-1)!(n-2)!\cdots \cdot 1] \\
& B=3\left[(n-2) 2^{2} \log _{e} 2+(n-3) 3^{2} \log _{e} 3+\cdots(n-1)^{2} \log _{e}(n-1)\right]
\end{aligned}
$$

n	A.	B	n	A	B
1	0	0	16	354.396	35693
2	0	0	17	415.739	46775
3	1.38629	8.318	18	482.75	60314
4	4.96981	46.298	19	555.54	76662
5	11.3259	150.82	20	634.22	96198
6	20.9009	376.05	21	718.89	119330
7	34.0594	794.79	22	809.65	146490
8	51.1097	1499.58	23	906.59	178140
9	72.3189	2603.62	24	1009.81	214760
10	97.9226	4241.59	25	1119.38	256880
11	128.131	6570.33	26	1235.38	305030
12	163.136	9769.51	27	1357.91	359790
13	203.110	14042.2	28	1487.02	421750
14	248.215	19615.3	29	1622.80	491560
15	298.597	26740.1	30	1765.32	569860

We have recently recomputed Strasser's constants, finding several errors which are corrected here.

TABLE VI
Table of Constants for Stefan's Formula (90)

b / c or c / b	y_{1}	y_{2}	b / c or c / b	y_{1}	y_{2}
0.00	0.50000	0.1250	0.55	0.80815	0.3437
0.05	. 54899	. 1269	0.60	. 81823	. 3839
0.10	. 59243	. 1325	0.65	. 82648	. 4274
0.15	. 63102	. 1418	0.70	. 83311	. 4739
0.20	. 66520	. 1548	0.75	. 83831	. 5234
0.25	. 69532	. 1714	0.80	. 84225	. 5760
0.30	. 72172	. 1916	0.85	. 84509	. 6317
0.35	. 74469	. 2152	0.90	. 84697	. 6902
0.40	. 76454	. 2423	0.95	. 84801	. 7518
0.45	. 78154	. 2728	1.00	. 84834	. 8162
0.50	. 79600	. 3066			

There is in general no difficulty in obtaining y_{1} and y_{2} with sufficient accuracy by interpolation from this table, using second and in some cases third differences. The only case which may give trouble is when b / c or c / b is less than o.I. In such cases, however, Stefan's formula does not give precise results, and the errors in the interpolation will not be important.

Values of Correction Term A, Depending on the Ratio $\frac{d}{D}$ of the Diameters of Bare and Covered Wire on the Single Layer Coil
(For use in Formula (80))

$$
\mathrm{A}=\log _{e}\left(1.7452 \frac{d}{D}\right)
$$

$\frac{d}{D}$	A	Δ_{1}	$\frac{\mathrm{d}}{\mathrm{D}}$	A	Δ_{1}	$\frac{\mathrm{d}}{\mathrm{D}}$	A	Δ_{1}	Δ_{3}
1.00	0.5568	-100	0.75	0.2691	-134	0.50	-0.1363	-202	- 4
. 99	. 5468	-101	. 74	. 2557	-136	. 49	-. 1565	-206	- 5
. 98	. 5367	-103	. 73	. 2421	-138	. 48	- . 1771	-211	- 4
. 97	. 5264	-104	. 72	. 2283	-140	. 47	- . 1982	-215	- 4
. 96	. 5160	-105	. 71	. 2143	-142	. 46	- . 2197	-219	- 6
0.95	0.5055	-106	0.70	0.2001	-144	0.45	-0.2416	-225	- 5
. 94	. 4949	-107	. 69	. 1857	-146	. 44	- . 2641	-230	5
. 93	. 4842	-108	. 68	. 1711	-148	. 43	- . 2871	-235	6
. 92	. 4734	-109	. 67	. 1563	-150	. 42	-. 3106	-241	6
. 91	. 4625	-110	. 66	. 1413	-152	. 41	-. 3347	-247	- 6
0.90	0.4515	-112	0.65	0.1261	-155	0.40	-0.3594	-253	-7
. 89	. 4403	-113	. 64	. 1106	-157	. 39	-. 3847	-260	-7
. 88	. 4290	-114	. 63	. 0949	-160	. 38	-. 4107	-267	- 7
. 87	. 4176	-116	. 62	. 0789	-163	. 37	-. 4374	-274	- 7
. 86	. 4060	-117	. 61	. 0626	-166	. 36	-. 4648	-281	- 9
0.85	0.3943	-118	0.60	0.0460	-168	0.35	-0.4929	-290	9
. 84	. 3825	-120	. 59	. 0292	-171	. 34	-. 5219	-299	- 9
. 83	. 3705	-121	. 58	+. 0121	-174	. 33	-. 5518	-308	-9
. 82	. 3584	-123	. 57	- . 0053	-177	. 32	-. 5826	-317	-9
. 81	. 3461	-124	. 56	-. 0230	-180	. 31	-. 6143	-328	-11
0.80	0.3337	-126	0.55	-0.0410	-184	0.30	-0.6471	-339	-12
. 79	. 3211	-127	. 54	-. 0594	-187	. 29	- . 6810	-351	-13
. 78	. 3084	-129	. 53	-. 0781	-190	. 28	-. 7161	-364	-13
. 77	. 2955	-131	. 52	-. 0971	-194	. 27	-. 7525	-377	-15
. 76	. 2824	-133	. 51	-. .1165	-198	. 26	-. 7902	-392	-16
0.75	0.2691		0.50	-0.1363		0.25	-0.8294		

TABLE VII—Continued

$\frac{\mathrm{d}}{\mathrm{D}}$	A	\triangle_{1}	\triangle_{2}	$\frac{\mathrm{d}}{\mathrm{D}}$	A	\triangle_{1}	Δ_{2}
0.25	-0.8294	-408	-18	0.10	-1.7457	-1054	-124
. 24	-. 8702	-426	-19	. 09	-1.8511	-1178	-157
.23	-. 9128	-445	-20	. 08	-1.9689	-1335	- 206
. 22	-. 9573	-465	- 23	. 07	-2.1024	-1541	-283
. 21	-1.0038	-488	- 25	. 06	-2.2565	-1824	- 407
0.20	-1.0526	-513	-28	0.05	-2.4389	-2231	- 646
. 19	-1.1039	-541	- 30	. 04	-2.6620	-2877	-1177
. 18	-1.1580	-571	- 35	. 03	-2.9497	-4054	-2878
. 17	-1.2151	-606	- 39	. 02	-3.3551	-6932	
. 16	-1.2757	-645	-45	. 01	-4.0483		
0.15	-1.3402	-690	-51				
. 14	-1.4092	-741	-60				
. 13	-1.4833	-801	-70				
. 12	-1.5634	-870	-83				
. 11	-1.6504	-953	-101				
0.10	-1.7457						

TABLE VIII

Values of the Correction Term B, Depending on the Number of Turns of Wire on the Single Layer Coil

$$
\begin{aligned}
& \text { (For use in Formula (80)) } \\
& B=\frac{2}{n} \sum_{\mathrm{x}}^{n-\mathrm{I}} m \log _{e} \frac{m}{R_{m}}
\end{aligned}
$$

where R_{m} is geometric mean distance of the sections of the current sheet whose centers coincide with those of the wires. (See this Bulletin, 2, p. 168, equat. (II); 1906.)

Number of Turns $=\mathbf{n}$	B	Number of Turns $=\mathbf{n}$	\mathbf{B}
1	0.0000	50	0.3186
2	.1137	60	.3216
3	.1663	70	.3239
4	.1973	80	.3257
5	.2180	.30	.3270
6	.2329	100	.3280
7	.2443	125	.3298
8	.2532	150	.3311
9	.2604	175	.3321
10	.2664	200	.3328
15	.2857	300	.3351
20	.2974	400	.3356
25	.3042	500	.3359
30	.3083	600	.3361
35	.3119	700	.3363
40	.3148	800	.3364
45	.3169	900	.3365
50		1000	

TABLE IX

Value of the Constant A_{s} as a Function of $t / a, t$ being the Depth of the Winding and a the Mean Radius

$$
\begin{gathered}
A_{s}=0.6949-\frac{t^{2}}{96 a^{2}}\left(\log _{e} \frac{8 a}{t}+2.76\right) \\
\text { (For use in Formula (91)) }
\end{gathered}
$$

t/a	A_{s}
0	0.6949
0.10	0.6942
0.15	0.6933
0.20	0.6922
0.25	0.6909

TABLE X
Values of the Correction Term Bs depending on the Number of Turns of Square Conductor on Single Layer Coil

> (For use in Formula (91))

$$
B_{s}=\frac{2}{n} \sum_{\mathrm{I}}^{n-\mathrm{I}}\left(m \log \frac{R^{\prime} m}{R_{m}}\right)
$$

where $R_{m}^{\prime}=$ geom. mean distance for the two squares
$R_{m}=$ " " " " " elements of the current sheet. (See this Bulletin, 4, p. 373; 1907.)

Number of Turns	B_{s}	Number of Turns	B $_{s}$	Number of Turns	\mathbf{B}_{s}
1	0.0000	11	0.2844	21	0.3116
2	.1202	12	.2888	22	.3131
3	.1753	13	.2927	23	.3145
4	.2076	14	.2961	24	.3157
5	.2292	15	.2991	25	.3169
6	.2446	16	.3017	26	.3180
7	.2563	17	.3041	27	.3190
8	.2656	18	.3062	28	.3200
9	.2730	19	.3082	29	.3209
10	.2792	20	.3099	30	.3218

TABLE XI
Table of Napierian Logarithms to Nine Decimal Places for Numbers from 1 to 100

1	0.000000000	51	3.931825633
2	0.693147181	52	3.951243719
3	1.098612289	53	3.970291914
4	1.386294361	54	3.988984047
5	1.609437912	55	4.007333185
6	1.791759469	56	4.025351691
7	1.945910149	57	4.043051268
8	2.079441542	58	4.060443011
9	2.197224577	59	4.077537444
10	2.302585093	60	4.094344562
11	2.397895273	61	4.110873864
12	2.484906650	62	4.127134385
13	2.564949357	63	4.143134726
14	2.639057330	64	4.158883083
15	2.708050201	65	4.174387270
16	2.772588722	66	4.189654742
17	2.833213344	67	4.204692619
18	2.890371758	68	4.219507705
19	2.944438979	69	4.234106505
20	2.995732274	70	4.248495242
21	3.044522438	71	4.262679877
22	3.091042453	72	4.276666119
23	3.135494216	73	4.290459441
24	3.178053830	74	4.304065093
25	3.218875825	75	4.317488114
26	3.258096538	76	4.330733340
27	3.295836866	77	4.343805422
28	3.332204510	78	4.356708827
29	3.367295830	79	4.369447852
30	3.401197382	80	4.382026635
31	3.433987204	81	4.394339155
32	3.465735903	82	4.406719247
33	3.496507561	83	4.418840608
34	3.526360525	84	4.430816799
35	3.555348061	85	4.442651256
36	3.583518938	86	
37	3.610917913	87	4.465908119
38	3.637586160	88	4.477336814
39	3.663561646	89	4.488636370
40	3.688879454	90	4.499809670
41	3.713572067	91	4.510859507
42	3.737669618	92	4.521788577
43	3.761200116	93	4.532599493
44	3.784189634	94	4.543294782
45	3.806662490	95	4.553876892
46	3.828641396	96	4.564348191
47	3.850147602	97	4.574710979
48	3.871201011	98	4.584967479
49	3.891820298	99	4.595119850
50	3.912023005	100	4.605170186

$\log 1525=\log 25+\log 6 \mathrm{I} ; \log 9.8=\log 98-\log 10$, etc.

TABLE XII

Values of F and E

The following table of elliptic integrals of the first and second kind is taken from Legendre's Traité des Fonctions Elliptiques, Volume 2, Table VIII :

	F	Δ_{1}	\triangle_{2}		E	\triangle_{1}	\triangle :
0°	1.570796	120	239	0°	1.570796	120	-239
1	1.570916	359	240	1	1.570677	- 359	-239
2	1.571275	599	240	2	1.570318	598	-239
3	1.571874	839	241	3	1.569720	- 836	-238
4	1.572712	1080	241	4	1.568884	-1 075	-238
5	1.573792	1321	243	5	1.567809	-1 312	-237
6	1.575114	1564	244	6	1.566497	-1 549	-236
7	1.576678	1808	246	7	1.564948	-1785	-235
8	1.578486	2054	247	8	1.563162	-2 020	-234
9	1.580541	2302	249	9	1.561142	-2 255	-233
10	1.582843	2551	252	10	1.558887	-2 487	-232
11	1.585394	2803	254	11	1.556400	-2719	-230
12	1.588197	3057	257	12	1.553681	-2949	-228
13	1.591254	3314	260	13	1.550732	-3 177	-227
14	1.594568	3574	263	14	1.547554	-3 404	-225
15	1.598142	3836	266	15	1.544150	-3629	-223
16	1.601978	4103	270	16	1.540521	-3 852	-221
17	1.606081	4373	274	17	1.536670	-4 073	-218
18	1.610454	4647	278	18	1.532597	-4 291	-216
19	1.615101	4925	283	19	1.528306	-4 507	-214
20	1.620026	5208	288	20	1.523799	-4721	-211
21	1.625234	5495	293	21	1.519079	-4 932	-208
22	1.630729	5788	298	22	1.514147	-5 140	-205
23	1.636517	6087	304	23	1.509007	-5 345	-202
24	1.642604	6391	311	24	1.503662	-5 547	-199
25	1.648995	6702	317	25	1.498115	-5 746	-196
26	1.655697	7019	324	26	1.492368	-5 942	-192
27	1.662716	7343	332	27	1.486427	-6 134	-189
28	1.670059	7675	340	28	1.480293	-6 323	-185
29	1.677735	8015	349	29	1.473970	-6 508	-181
30	1.685750	8364	358	30	1.467462	-6 689	-177
31	1.694114	8722	367	31	1.460774	-6 866	-173
32	1.702836	9089	377	32	1.453908	-7 039	-168
33	1.711925	9466	388	33	1.446869	-7 207	-164
34	1.721391	9854	400	34	1.439662	-7 371	-159
35	1.731245	10254	412	35	1.432291	-7531	-155
36	1.741499	10666	425	36	1.424760	-7685	-150
37	1.752165	11091	439	37	1.417075	-7835	-145
38	1.763256	11530	453	38	1.409240	-7980	-140
39	1.774786	11983	469	39	1.401260	-8 120	-134
40	1.786770	12452	486	40	1.393140	-8 254	-129
41	1.799222	12938	504	41	1.384886	-8 382	-123
42	1.812160	13442	523	42	1.376504	-8 505	-117
43	1.825602	13965	543	43	1.367999	-8 622	-111
44	1.839567	14508	565	44	1.359377	-8733	-105
45	1.854075	15073	588	45	1.350644	-8838	-98

TABLE XII-Continued

	F	\triangle_{1}	\triangle_{2}		E	Δ_{1}	Δ_{2}
45°	1.854075	15073	588	45°	1.350644	-8 838	-98
46	1.869148	15661	613	46	1.341806	-8936	-92
47	1.884809	16274	640	47	1.332870	-9 028	-85
48	1.901083	16914	669	48	1.323842	-9 113	-78
49	1.917997	17584	700	49	1.314729	-9 190	-71
50	1.935581	18284	735	50	1.305539	-9 261	-63
51	1.953865	19017	770	51	1.296278	-9 324	-56
52	1.972882	19787	809	52	1.286954	-9 380	-48
53	1.992670	20597	852	53	1.277574	-9 427	-40
54	2.013266	21449	898	54	1.268147	-9 467	-31
55	2.034715	22347	949	55	1.258680	-9 498	-22
56	2.057062	23296	1004	56	1.249182	-9 520	-14
57	2.080358	24300	1064	57	1.239661	-9 534	-4
58	2.104658	25364	1130	58	1.230127	-9 538	$+5$
59	2.130021	26494	1203	59	1.220589	-9 533	+15
60	2.156516	27698	1284	60	1.211056	-9518	$+25$
61	2.184213	28982	1373	61	1.201538	-9 492	36
62	2.213195	30355	1472	62	1.192046	-9 457	47
63	2.243549	31827	1583	63	1.182589	-9 410	58
64	2.275376	33410	1708	64	1.173180	-9 351	70
65	2.308787	35118	1848	65	1.163828	-9 281	82
66	2.343905	36965	2006	66	1.154547	-9 199	95
67	2.380870	38971	2186	67	1.145348	-9 104	109
68	2.419842	41158	2393	68	1.136244	-8 995	123
69	2.460999	43551	2631	69	1.127250	-8872	138
70	2.504550	46181	2907	70	1.118378	-8734	153
71	2.550731	49088	3230	71	1.109643	-8 581	169
72	2.599820	52318	3611	72	1.101062	-8 412	187
73	2.652138	55930	4066	73	1.092650	-8 225	205
74	2.708068	59996	4614	74	1.084425	-8 020	224
75	2.768063	64609	5283	75	1.076405	-7796	245
76	2.832673	69892	6112	76	1.068610	-7550	268
77	2.902565	76004	7156	77.	1.061059	-7 282	292
78	2.978569	83160	8497	78	1.053777	-6 990	318
79	3.061729	91657	10261	79	1.046786	-6 672	347
80	3.153385	101918	12647	80	1.040114	-6 325	379
81	3.255303	114565	15989	81	1.033789	-5 946	415
82	3.369868	130554	20879	82	1.027844	-5 531	455
83	3.500422	151433	28453	83	1.022313	-5 076	502
84	3.651856	179886	41130	84	1.017237	-4 573	558
85	3.831742	221016	64880	85	1.012664	-4 016	626
86	4.052758	285896	118167	86	1.008648	-3 389	715
87	4.338654	404063	288129	87	1.005259	-2 675	842
88	4.742717	692193		88	1.002584	-1832	1081
89	5.434910			89	1.000752	- 752	
90				90	1.000000		

TABLE XIII
Values of $\log F$ and $\log E$
(See Note, p. 213)

γ	Log F	Δ_{1}	Δ_{2}	$\underline{L o g} \mathrm{E}$	Δ_{1}	Δ_{2}
$45 \% 0$	0.26812722	34688	105	0.13054086	28279	52
45.1	0.26847411	34793	105	0.13025807	28331	52
45.2	0.26882204	34898	105	0.12997476	28383	52
45.3	0.26917102	35004	106	0.12969094	28434	52
45.4	0.26952106	35110	106	0.12940659	28486	51
45.5	0.26987216	35216	106	0.12912174	28537	51
45.6	0.27022431	35322	106	0.12883636	28589	51
45.7	0.27057753	35428	107	0.12855048	28640	51
45.8	0.27093181	35535	107	0.12826408	28691	51
45.9	0.27128716	35642	107	0.12797717	28742	51
46.0	0.27164358	35749	108	0.12768975	28793	51
46.1	0.27200108	35857	108	0.12740182	28844	51
46.2	0.27235965	35965	108	0.12711338	28894	50
46.3	0.27271930	36073	108	0.12682444	28945	50
46.4	0.27308003	36181	109	0.12653499	28995	50
46.5	0.27344184	36290	109	0.12624504	29045	50
46.6	0.27380474	36399	109	0.12595459	29095	50
46.7	0.27416873	36508	110	0.12566364	29145	50
46.8	0.27453381	36618	110	0.12537218	29195	50
46.9	0.27489999	36728	110	0.12508023	29245	50
47.0	0.27526727	36838	110	0.12478778	29295	49
47.1	0.27563565	36948	111	0.12449483	29344	49
47.2	0.27600513	37059	111	0.12420139	29393	49
47.3	0.27637572	37170	111	0.12390746	29443	49
47.4	0.27674741	37281	112	0.12361303	29492	49
47.5	0.27712023	37393	112	0.12331811	29541	49
47.6	0.27749415	37505	112	0.12302271	29589	49
47.7	0.27786920	37617	112	0.12272681	29638	49
47.8	0.27824537	37729	113	0.12243043	29687	48
47.9	0.27862266	37842	113	0.12213357	29735	48
48.0	0.27900109	37955	113	0.12183622	29783	48
48.1	0.27938064	38069	114	0.12153838	29831	48
48.2	0.27976133	38183	114	0.12124007	29879	48
48.3	0.28014315	38297	114	0.12094128	29927	48
48.4	0.28052612	38411	115	0.12064201	29975	48
48.5	0.28091023	38526	115	0.12034226	30022	47
48.6	0.28129548	38641	115	0.12004204	30070	47
48.7	0.28168189	38756	116	0.11974134	30117	47
48.8	0.28206945	38872	116	0.11944017	30164	47
48.9	0.28245817	38988	116	0.11913854	30211	47
49.0	0.28284805	39104	117	0.11883643	30258	47
49.1	0.28323909	39221	117	0.11853385	30304	46
49.2	0.28363130	39338	117	0.11823081	30351	46
49.3	0.28402467	39455	118	0.11792730	30397	46
49.4	0.28441923	39573	118	0.11762333	30443	46
49.5	0.28481495	39691	118	0.11731890	30489	46
49.6	0.28521186	39809	119	0.11701401	30535	46
49.7	0.28560996	39928	119	0.11670866	30581	46
49.8	0.28600924	40047	119	0.11640286	30626	45
49.9	0.28640971	40167	120	0.11609660	30671	45
50.0	0.28681137	40286	120	0.11578988	30717	45

TABLE XIII-Continued

γ	Log F	\triangle_{1}	\triangle_{2}	Log E	Δ_{1}	\triangle_{2}
50.0	0.28681137	40286	120	0.11578988	30717	45
50.1	0.28721424	40406	121	0.11548271	30762	45
50.2	0.28761830	40527	121	0.11517510	30807	45
50.3	0.28802357	40648	121	0.11486703	30851	45
50.4	0.28843005	40769	122	0.11455852	30896	44
50.5	0.28883774	40891	122	0.11424956	30940	44
50.6	0.28924665	41013	122	0.11394016	30985	44
50.7	0.28965677	41135	123	0.11363032	31028	44
50.8	0.29006812	41258	123	0.11332003	31072	44
50.9	0.29048070	41381	123	0.11300931	31116	43
51.0	0.29089451	41504	124	0.11269815	31159	43
51.1	0.29130955	41628	124	0.11238656	31203	43
51.2	0.29172584	41753	125	0.11207453	31246	43
51.3	0.29214336	41877	125	0.11176207	31289	43
51.4	0.29256214	42002	125	0.11144919	31332	43
51.5	0.29298216	42128	126	0.11113587	31374	42
51.6	0.29340344	42254	126	0.11082213	31417	42
51.7	0.29382597	42380	127	0.11050796	31459	42
51.8	0.29424977	42506	127	0.11019337	31501	42
51.9	0.29467483	42634	127	0.10987836	31543	42
52.0	0.29510117	42761	128	0.10956294	31584	41
52.1	0.29552878	42889	128	0.10924709	31626	41
52.2	0.29595767	43017	129	0.10893083	31667	41
52.3	0.29638784	43146	129	0.10861416	31708	41
52.4	0.29681930	43275	130	0.10829707	31749	41
52.5	0.29725205	43405	130	0.10797958	31790	41
52.6	0.29768610	43535	130	0.10766168	31831	40
52.7	0.29812144	43665	131	0.10734338	31871	40
52.8	0.29855810	43796	131	0.10702467	31911	40
52.9	0.29899606	43927	132	0.10670556	31951	40
53.0	0.29943533	44059	132	0.10638605	31991	40
53.1	0.29987592	44191	133	0.10606614	32030	39
53.2	0.30031783	44324	133	0.10574584	32070	39
53.3	0.30076107	44457	134	0.10542514	32109	39
53.4	0.30120564	44591	134	0.10510406	32148	39
53.5	0.30165155	44725	134	0.10478258	32186	38
53.6	0.30209880	44859	135	0.10446072	32225	38
53.7	0.30254739	44994	135	010413847	32263	38
53.8	0.30299733	45130	136	0.10381584	32301	38
53.9	0.30344863	45265	136	0.10349283	32339	38
54.0	0.30390128	45402	137	0.10316944	32377	37
54.1	0.30435530	45539	137	0.10284567	32414	37
54.2	0.30481069	45676	138	0.10252153	32451	37
54.3	0.30526745	45814	138	0.10219702	32488	37
54.4	0.30572559	45952	139	0.10187214	32525	37
54.5	0.30618511	46091	139	0.10154689	32562	36
54.6	0.30664602	46230	140	0.10122127	32598	36
54.7	0.30710833	46370	140	0.10089529	32634	36
54.8	0.30757203	46511	141	0.10056895	32670	36
54.9	0.30803714	46652	141	0.10024226	32705	35
55.0	0.30850365	46793	142	0.09991520	32741	35

TABLE XIII-Continued.

γ	$\log \mathrm{F}$	\triangle_{1}	$\triangle 2$	Log E	\triangle_{1}	\triangle_{2}
55.0	0.30850365	46793	142	0.09991520	32741	35
55.1	0.30897158	46935	142	0.09958779	32776	35
55.2	0.30944093	47077	143	0.09926003	32811	35
55.3	0.30991170	47220	143	0.09893193	32846	34
55.4	0.31038391	47364	144	0.09860347	32880	34
55.5	0.31085754	47508	145	0.09827467	32914	34
55.6	0.31133262	47652	145	0.09794553	32948	34
55.7	0.31180915	47798	146	0.09761605	32982	33
55.8	0.31228712	47943	146	0.09728623	33015	33
55.9	0.31276655	48089	147	0.09695607	33049	33
56.0	0.31324745	48236	147	0.09662559	33082	33
56.1	0.31372981	48384	148	0.09629477	33114	32
56.2	0.31421365	48532	149	0.09596363	33147	32
56.3	0.31469896	48680	149	0.09563216	33179	32
56.4	0.31518577	48829	150	0.0953 003\%	33211	32
56.5	0.31567406	48979	150	0.09496826	33243	31
56.6	0.31616385	49129	151	0.09463583	33274	31
56.7	0.31665514	49280	151	0.09430309	33305	31
56.8	0.31714794	49432	152	0.09397003	33336	31
56.9	0.31764226	49584	153	0.09363667	33367	30
57.0	0.31813809	49736	153	0.09330300	33397	30
57.1	0.31863545	49890	154	0.09296903	33428	30
57.2	0.31913435	50044	155	0.09263475	33457	30
57.3	0.31963479	50198	155	0.09230018	33487	29
57.4	0.32013677	50353	156	0.09196531	33516	29
57.5	0.32064030	50509	156	0.09163014	33545	29
57.6	0.32114539	50666	157	0.09129469	33574	28
57.7	0.32165204	50823	158	0.09095895	33603	28
57.8	0.32216027	50980	158	0.09062292	33631	28
57.9	0.32267008	51139	159	0.09028662	33659	28
58.0	0.32318146	51298	160	0.08995003	33686	27
58.1	0.32369444	51458	160	0.08961317	33714	27
58.2	0.32420902	51618	161	0.08927603	33741	27
58.3	0.32472520	51779	162	0.08893862	33767	26
58.4	0.32524299	51941	162	0.08860095	33794	26
58.5	0.32576240	52104	163	0.08826301	33820	26
58.6	0.32628344	52267	164	0.08792481	33846	26
58.7	0.32680611	52431	165	0.08758635	33871	25
58.8	0.32733041	52595	165	0.08724764	33897	25
58.9	0.32785637	52761	166	0.08690867	33922	25
59.0	0.32838397	52927	167	0.08656945	33946	24
59.1	0.32891324	53094	168	0.08622999	33971	24
59.2	0.32944418	53261	168	0.08589028	33995	24
59.3	0.32997679	53429	169	0.08555033	34018	23
59.4	0.33051108	53598	170	0.08521015	34042	23
59.5	0.33104707	53768	171	0.08486973	34065	23
59.6	0.33158475	53939	171	0.08452908	34088	22
59.7	0.33212414	54110	172	0.08418820	34110	22
59.8	0.33266524	54282	173	0.08384710	34132	22
59.9	0.33320806	54455	174	0.08350578	34154	21
60.0	0.33375261	54629	175	0.08316424	34176	21

TABLE XIII-Continued

γ	Log F	\triangle_{1}	\triangle_{2}	$\log \mathrm{E}$	\triangle_{1}	\triangle_{2}
$60: 0$	0.33375261	54629	175	0.08316424	34176	21
60.1	0.33429890	54803	175	0.08282248	34197	21
60.2	0.33484694	54979	176	0.08248051	34217	20
60.3	0.33539673	55155	177	0.08213834	34238	20
60.4	0.33594827	55332	178	0.0817 9596	34258	20
60.5	0.33650159	55510	179	0.08145338	34278	19
60.6	0.33705669	55688	179	0.08111060	34297	19
60.7	0.33761357	55868	180	0.08076763	34316	19
60.8	0.33817225	56048	181	0.08042446	34335	18
60.9	0.33873274	56229	182	0.08008111	34354	18
61.0	0.33929503	56412	183	0.07973758	34372	18
61.1	0.33985915	56595	184	0.07939386	34389	17
61.2	0.34042509	56778	185	0.07904997	34407	17
61.3	0.34099288	56963	186	0.07870590	34424	17
61.4	0.34156251	57149	187	0.07836167	34440	16
61.5	0.34213400	57336	188	0.07801727	34456	16
61.6	0.34270735	57523	188	0.07767270	34472	15
61.7	0.34328258	57712	189	0.07732798	34488	15
61.8	0.34385970	57901	190	0.07698310	34503	15
61.9	0.34443871	58091	191	0.07663807	34518	14
62.0	0.34501962	58283	192	0.07629290	34532	14
62.1	0.34560245	58475	193	0.07594758	34546	14
62.2	0.34618720	58668	194	0.07560212	34560	13
62.3	0.34677388	58863	195	0.07525652	34573	13
62.4	0.34736250	59058	196	1.07491079	34586	12
62.5	0.34795308	59254	197	0.07456494	34598	12
62.6	0.34854562	59451	198	0.07421895	34610	12
62.7	0.34914014	59650	199	0.07387285	34622	11
62.8	0.34973664	59849	200	0.07352664	34633	11
62.9	0.35033513	60050	202	0.07318030	34644	10
63.0	0.35093563	60251	203	0.07283387	34654	10
63.1	0.35153814	60454	204	0.07248732	34664	10
63.2	0.35214268	60658	205	0.07214068	34674	9
63.3	0.35274925	60862	206	0.07179394	34683	9
63.4	0.35335787	61068	207	0.07144711	34692	8
63.5	0.35396856	61275	208	0.07110019	34700	8
63.6	0.35458131	61483	209	0.07075319	34708	8
63.7	0.35519614	61693	210	0.07040610	34716	7
63.8	0.35581307	61903	212	0.07005895	34723	7
63.9	0.35643211	62115	213	0.06971172	34729	6
64.0	0.35705325	62328	214	0.06936442	34736	6
64.1	0.35767653	62542	215	0.06901706	34741	5
64.2	0.35830195	62757	216	0.06866965	34747	5
64.3	0.35892952	62974	218	0.06832218	34752	4
64.4	0.35955926	63191	219	0.06797466	34756	4
64.5	0.36019117	63410	220	0.06762710	34760	4
64.6	0.36082527	63630	221	0.06727950	34764	3
64.7	0.36146158	63852	223	0.06693186	34767	3
64.8	0.36210009	64075	224	0.06658420	34769	2
64.9	0.36274084	64299	225	0.06623650	34772	2
65.0	0.36338383	64524	227	0.06588879	34773	1

TABLE XIII-Continued

γ	Log F	Δ_{1}	\triangle_{2}	Log E	\triangle_{1}	$\triangle 2$
$65: 0$	0.36338383	64524	227	0.06588879	34773	1
65.1	0.36402907	64751	228	0.06554106	34774	1
65.2	0.36467658	64979	229	0.06519331	34775	+0
65.3	0.36532637	65209	231	0.06484556	34775	-0
65.4	0.36597846	65439	232	0.06449781	34775	1
65.5	0.36663286	65672	234	0.06415005	34775	1
65.6	0.36728957	65905	235	0.06380231	34773	2
65.7	0.36794863	66141	237	0.06345457	34772	2
65.8	0.36861003	66377	238	0.06310686	34769	3
65.9	0.36927380	66615	239	0.06275916	34767	3
66.0	0.36993995	66855	241	0.06241150	34764	4
66.1	0.37060850	67096	242	0.06206386	34760	4
66.2	0.37127946	67338	244	0.06171626	34756	5
66.3	0.37195284	67582	246	0.06136870	34751	5
66.4	0.37262866	67828	247	0.06102119	34746	6
66.5	0.37330694	68075	249	0.06067373	34740	6
66.6	0.37398768	68324	250	0.06032633	34734	7
66.7	0.37467092	68574	252	0.05997899	34727	7
66.8	0.37535666	68826	254	0.05963172	34720	8
66.9	0.37604492	69080	255	0.05928453	34712	8
67.0	0.37673572	69335	257	0.05893741	34703	9
67.1	0.37742907	69592	259	0.05859037	34695	9
67.2	0.37812499	69851	260	0.05824343	34685	10
67.3	0.37882349	70111	262	0.05789658	34675	11
67.4	0.37952460	70373	264	0.05754983	34664	11
67.5	0.38022833	70637	266	0.05720318	34653	12
67.6	0.38093471	70903	268	0.05685665	34642	12
67.7	0.38164373	71170	269	0.05651023	34629	13
67.8	0.38235544	71440	271	0.05616394	34617	13
67.9	0.38306984	71711	273	0.05581777	34603	14
68.0	0.38378695	71984	275	0.05547174	34589	15
68.1	0.38450679	72259	277	0.05512585	34575	15
68.2	0.38522938	72536	279	0.05478011	34559	16
68.3	0.38595475	72815	281	0.05443451	34544	16
68.4	0.38668290	73096	283	0.05408908	34527	17
68.5	0.38741386	73379	285	0.05374380	34510	18
68.6	0.38814765	73664	287	0.05339870	34493	18
68.7	0.38888429	73951	289	0.05305377	34475	19
68.8	0.38962380	74240	291	0.05270903	34456	19
68.9	0.39036620	74531	293	0.05236447	34436	20
69.0	0.39111152	74825	296	0.05202010	34416	21
69.1	0.39185977	75120	298	0.05167594	34396	21
69.2	0.39261097	75418	300	0.05133198	34375	22
69.3	0.39336515	75718	302	0.05098824	34353	23
69.4	0.39412234	76020	305	0.05064471	34330	23
69.5	0.39488254	76325	307	0.05030141	34307	24
69.6	0.39564579	76632	309	0.04995834	34283	24
69.7	0.39641211	76941	312	0.04961551	34259	25
69.8	0.39718152	77253	314	0.04927292	34233	26
69.9	0.39795405	77567	317	0.04893059	34208	26
70.0	0.39872972	77883	319	0.04858851	34181	27

TABLE XIII-Continued

γ	Log F	\triangle_{1}	\triangle_{2}	Log E	\triangle_{1}	\triangle_{2}
70.0	0.39872972	77883	319	0.04858851	34181	27
70.1	0.39950855	78202	322	0.04824670	34154	28
70.2	0.40029058	78524	324	0.04790516	34126	29
70.3	0.40107582	78848	327	0.04756390	34098	29
70.4	0.40186430	79175	329	0.04722292	34068	30
70.5	0.40265605	79504	332	0.04688224	34039	31
70.6	0.40345109	79836	335	0.04654185	34008	31
70.7	0.40424945	80171	337	0.04620177	33977	32
70.8	0.40505116	80508	340	0.04586201	33945	33
70.9	0.40585625	80849	343	0.04552256	33912	33
71.0	0.40666474	81192	346	0.04518344	33879	34
71.1	0.40747666	81538	349	0.04484465	33844	35
71.2	0.40829204	81887	352	0.04450621	33810	36
71.3	0.40911090	82239	355	0.04416812	33774	36
71.4	0.40993329	82594	358	0.04383038	33738	37
71.5	0.41075923	82952	361	0.04349300	33700	38
71.6	0.41158875	83313	364	0.04315600	33663	39
71.7	0.41242187	83677	367	0.04281937	33624	39
71.8	0.41325864	84044	371	0.04248313	33585	40
71.9	0.41409909	84415	374	0.04214729	33544	41
72.0	0.41494324	84789	377	0.04181184	33504	42
72.1	0.41579112	85166	381	0.04147681	33462	42
72.2	0.41664279	85547	384	0.04114219	33419	43
72.3	0.41749826	85931	388	0.04080799	33376	44
72.4	0.41835757	86319	391	0.04047423	33332	45
72.5	0.41922076	86710	395	0.04014091	33287	46
72.6	0.42008786	87105	399	0.03980804	33241	46
72.7	0.42095891	87503	402	0.03947563	33195	47
72.8	0.42183394	87906	406	0.03914368	33148	48
72.9	0.42271300	88312	410	0.03881220	33099	49
73.0	0.42359612	88722	414	0.03848121	33050	50
73.1	0.42448334	89136	418	0.03815070	33001	51
73.2	0.42537470	89554	422	0.03782070	32950	52
73.3	0.42627023	89976	426	0.03749120	32898	52
73.4	0.42716999	90402	430	0.03716221	32846	53
73.5	0.42807401	90832	435	0.03683375	32793	54
73.6	0.42898233	91267	439	0.03650582	32739	55
73.7	0.42989499	91706	443	0.03617843	32684	56
73.8	0.43081205	92149	448	0.03585160	32628	57
73.9	0.43173354	92597	452	0.03552532	32571	58
74.0	0.43265950	93049	457	0.03519961	32513	59
74.1	0.43359000	93506	462	0.03487448	32455	60
74.2	0.43452506	93968	467	0.03454993	32395	60
74.3	0.43546474	94435	472	0.03422598	32335	61
74.4	0.43640909	94906	477	0.03390263	32273	62
74.5	0.43735815	95583	482	0.03357989	32211	63
74.6	0.43831198	95865	487	0.03325778	32148	64
74.7	0.43927063	96352	492	0.03293630	32084	65
74.8	0.44023414	96844	498	0.03261546	32019	66
74.9	0.44120258	97341	503	0.03229528	31952	67
75.0	0.44217599	97844	509	0.03197575	31885	68

TABLE XIII-Continued

γ	Log F	\triangle_{1}	\triangle_{2}	Log E	\triangle_{1}	\triangle_{2}
75.0	0.44217599	97844	509	0.03197575	31885	68
75.1	0.44315444	98353	514	0.03165690	31817	69
75.2	0.44413797	98867	520	0.03133872	31748	70
75.3	0.44512664	99387	526	0.03102124	31678	71
75.4	0.44612051	99913	532	0.03070446	31607	72
75.5	0.44711965	100446	538	0.03038839	31535	73
75.6	0.44812410	100984	544	0.03007304	31462	74
75.7	0.44913394	101528	551	0.02975842	31388	75
75.8	0.45014922	102079	557	0.02944454	3.1313	76
75.9	0.45117001	102637	564	0.02913141	31237	77
76.0	0.45219638	103201	571	0.02881904	31159	78
76.1	0.45322839	103771	578	0.02850745	31081	79
76.2	0.45426610	104349	585	0.02819664	31002	80
76.3	0.45530959	104934	592	0.02788663	30921	82
76.4	0.45635893	105526	599	0.02757742	30839	83
76.5	0.45741419	106126	607	0.02726902	30757	84
76.6	0.45847545	106733	615	0.02696145	30673	85
76.7	0.45954278	107347	622	0.02665472	30588	86
76.8	0.46061625	107970	630	0.02634884	30502	87
76.9	0.46169594	108600	639	0.02604382	30415	88
77.0	0.46278195	109239	647	0.02573967	30327	89
77.1	0.46387433	109886	656	0.02543640	30237	91
77.2	0.46497319	110541	664	0.02513403	30147	92
77.3	0.46607860	111206	673	0.02483257	30055	93
77.4	0.46719066	111879	682	0.02453202	29962	94
77.5	0.46830945	112561	692	0.02423240	29868	95
77.6	0.46943506	113253	701	0.02393372	29772	97
77.7	0.47056760	113954	711	0.02363600	29676	98
77.8	0.47170714	114665	721	0.02333925	29578	99
77.9	0.47285379	115386	731	0.02304347	29479	100
78.0	0.47400766	116118	742	0.02274868	29378	102
78.1	0.47516884	116860	753	0.02245490	29277	103
78.2	0.47633743	117612	764	0.02216213	29174	104
78.3	0.47751355	118376	775	0.02187039	29070	105
78.4	0.47869731	119150	786	0.02157969	28964	107
78.5	0.47988881	119937	798	0.02129005	28858	108
78.6	0.48108818	120735	810	0.02100148	28750	109
78.7	0.48229553	121545	823	0.02071398	28640	111
78.8	0.48351098	122368	835	0.02042758	28529	112
78.9	0.48473466	123203	848	0.02014229	28417	113
79.0	0.48596669	124052	862	0.01985811 *	28304	115
79.1	0.48720721	124914	876	0.01957507	28189	116
79.2	0.48845635	125789	890	0.01929318	28073	118
79.3	0.48971424	126679	904	0.01901246	27955	119
79.4	0.49098103	127583	919	0.01873291	27836	120
79.5	0.49225687	128503	934	0.01845454	27716	122
79.6	0.49354189	129437	950	0.01817739	27594	123
79.7	0.49483626	130387	966	0.01790145	27470	125
79.8	0.49614013	131353	983	0.01762675	27345	126
79.9	0.49745367	132336	1000	0.01735330	27219	128
80.0	0.49877703	133336	1018	0.01708111	27091	129

TABLE XIII--Continued

γ	Log F	\triangle_{1}	\triangle_{2}	Log E	\triangle_{1}	\triangle_{2}
80.0	0.49877703	13 3336	1018	0.01708111	27091	129
80.1	0.50011040	134354	1036	0.01681020	26962	131
80.2	0.50145394	135390	1054	0.01654058	26831	132
80.3	0.50280783	136444	1073	0.01627227	26698	134
80.4	0.50417227	137517	1093	0.01600529	26564	136
80.5	0.50554744	138610	1113	0.01573965	26429	137
80.6	0.50693354	139724	1134	0.01547536	26291	139
80.7	0.50833078	140858	1156	0.01521245	26153	140
80.8	0.50973936	142014	1178	0.01495092	26012	142
80.9	0.51115949	143192	1201	0.01469080	25870	144
81.0	0.51259141	144393	1225	0.01443210	25726	145
81.1	0.51403534	145617	1249	0.01417484	25581	147
81.2	0.51549151	146867	1274	0.01391903	25433	149
81.3	0.51696018	148141	1300	0.01366470	25285	151
81.4	0.51844159	149441	1327	0.01341185	25134	152
81.5	0.51993600	150769	1355	0.01316052	24981	154
81.6	0.52144369	152124	1384	0.01291070	24827	156
81.7	0.52296493	153508	1414	0.01266243	24671	158
81.8	0.52450001	154922	1445	0.01241572	24513	160
81.9	0.52604923	156366	1477	0.01217058	24354.	162
82.0	0.52761289	157843	1510	0.01192704	24192	163
82.1	0.52919132	159352	1544	0.01168512	24029	165
82.2	0.53078485	160896	1579	0.01144483	23863	167
82.3	0.53239381	162476	1616	0.01120620	23696	169
82.4	0.53401857	164092	1655	0.01096924	23527	171
82.5	0.53565949	165747	1694	0.01073397	23356	173
82.6	0.53731696	167441	1736	0.01050041	23183	175
82.7	0.53899137	169177	1779	0.01026859	23007	177
82.8	0.54068313	170955	1823	0.01003851	22830	179
82.9	0.54239268	172778	1870	0.00981021	22651	181
83.0	0.54412047	174648	1918	0.00958371	22469	184
83.1	0.54586695	176566	1968	0.00935902	22285	186
83.2	0.54763260	178534	2021	0.00913616	22100	188
83.3	0.54941795	180555	2076	0.00891517	21912	190
83.4	0.55122350	182631	2133	0.00869605	21721	193
83.5	0.55304980	184764	2193	0.00847884	21529	195
83.6	0.55489744	186956	2255	0.00826355	21334	197
83.7	0.55676700	189211	2320	0.00805021	21137	199
83.8	0.55865912	191532	2389	0.00783884	20937	202
83.9	0.56057443	193921	2460	0.00762947	20735	204
84.0	0.56251364	196381	2535	0.00742211	20531	207
84.1	0.56447745	198916	2614	0.00721680	20324	209
84.2	0.56646661	201531	2697	0.00701356	20115	212
84.3	0.56848192	204228	2784	0.00681241	19903	214
84.4	0.57052420	207012	2875	0.00661338	19689	217
84.5	0.57259431	209887	2972	0.00641649	19472	220
84.6	0.57469318	212859	3073	0.00622177	19252	222
84.7	0.57682177	215932	3180	0.00602925	19029	225
84.8	0.57898109	219112	3293	0.00583896	18804	228
84.9	0.58117221	222405	3413	0.00565092	18576	231
85.0	0.58339626	225818	3539	0.00546516	18345	234

TABLE XIII-Continued

γ	$\log F$	\triangle_{1}	\triangle_{2}	Log E	\triangle_{1}	\triangle_{2}
85.0	0.58339626	225818	3539	0.00546516	18345	234
85.1	0.58565444	229357	3673	0.00528171	18111	237
85.2	0.58794801	233031	3816	0.00510060	17874	240
85.3	0.59027832	236846	3967	0.00492185	17634	243
85.4	0.59264679	240813	4127	0.00474551	17391	246
85.5	0.59505492	244940	4299	0.00457160	17145	249
85.6	0.59750432	249239	4481	0.00440015	16896	253
85.7	0.59999671	253720	4676	0.00423119	16643	256
85.8	0.60253391	258396	4885	0.00406476	16387	260
85.9	0.60511788	263281	5109	0.00390089	16127	263
86.0	0.60775069	268390	5349	0.00373962	15864	267
86.1	0.61043459	273739	5607	0.00358097	15598	270
86.2	0.61317198	279346	5886	0.00342499	15327	274
86.3	0.61596543	285231	6186	0.00327172	-15053	278
86.4	0.61881775	291418	6512	0.00312118	14775	282
86.5	0.62173193	297929	6865	0.00297343	14493	286
86.6	0.62471122	304794	7248	0.00282850	14207	290
86.7	0.62775916	312042	7667	0.00268642	13917	295
86.8	0.63087958	319709	8124	0.00254725	13622	299
86.9	0.63407668	327834	8626	0.00241103	13323	304
87.0	0.63735501	336459	9177	0.00227779	13020	308
87.1	0.64071961	345636	9785	0.00214759	12712	313
87.2	0.64417597	355422	10459	0.00202048	12398	318
87.3	0.64773019	365881	11208	0.00189649	12080	324
87.4	0.65138900	377089	12043	0.00177569	11757	329
87.5	0.65515989	389132	12980	0.00165813	11428	335
87.6	0.65905121	402112	14035	0.00154385	11093	340
87.7	0.66307233	416147	15230	0.00143292	10753	347
87.8	0.66723380	431377	16590	0.00132540	10406	353
87.9	0.67154757	447967	18149	0.00122134	10053	360
88.0	0.67602724	466116	19948	0.00112081	9693	367
88.1	0.68068840	486064	22040	0.00102387	9327	374
88.2	0.68554904	508104	24492	0.00093060	8953	382
88.3	0.69063009	532597	27396	0.00084107	8571	390
88.4	0.69595605	559993	30870	0.00075536	8181	399
88.5	0.70155598	590862	35077	0.00067355	7782	408
88.6	0.70746460	625940	40245	0.00059573	7374	418
88.7	0.71372400	666184	46693	0.00052199	6956	429
88.8	0.72038584	712878	54895	0.00045242	6527	441
88.9	0.72751462	767773	65561	0.00038715	6087	453
89.0	0.73519234	833334	79812	0.00032628	5633	467
89.1	0.74352568	913146	99496	0.00026995	5166	483
89.2	0.75265714	1012642	127847	0.00021829	4683	501
89.3	0.76278356	1140489	170975	0.00017146	4181	522
89.4	0.77418844	1311464	241655	0.00012965	3660	546
89.5	0.78730308	1553119	370693	0.00009305	3114	576
89.6	0.80283427	1923813	650756	0.00006192	2538	615
89.7	0.82207240	2574569	1501510	0.00003654	1923	670
89.8	0.84781809	4076079		0.00001731	1253	774
89.9	0.88857889			0.00000479	479	
90.0	Inf.			0.00000000		

The preceding table of logarithms of the elliptic integrals of the first and second kinds is taken from Legendre's Traité des Fonctions Elliptiques, volume 2, Table I. The values from 45° to 90° are given for intervals of $0 . \frac{\mathrm{r}}{}$. The values from 0° to 45°, which are comparatively seldom required, have been omitted. For formula and table to be used in interpolation, see page 214 .

TABLE XIV
Binominal Coefficients for Interpolation by Differences

k	Coefficients ofΔ_{2} and Δ_{3}		k	$\begin{aligned} & \text { Coefficients of } \\ & \Delta_{2} \text { and } \Delta_{3} \end{aligned}$		k	Coefficients of		k	Coefficients of Δ_{2} and Δ_{3}	
	K_{2}	\mathbf{K}_{3}		K_{2}	K_{3}		K_{2}	K_{3}		K_{2}	K_{3}
0.01	-0.005	+0.003	0.26	-0.096	$+0.056$	0.51	-0.125	+0.062	0.76	-0.091	+0.038
. 02	- . 010	+.006	. 27	- . 099	$+.057$. 52	- . 125	$+.062$. 77	- . 089	$+.036$
. 03	- . 015	+ . 010	. 28	-. 101	+ . 058	. 53	- . 125	+ . 061	. 78	- . 086	$+.035$
. 04	- . 019	+ . 013	. 29	- . 103	+ . 059	. 54	- . 124	+ . 060	. 79	- . 083	$+.033$
. 05	- . 024	+ . 015	. 30	- . 105	+ . 060	. 55	-. 124	+ . 060	. 80	- . 080	$+.032$
. 06	-. 028	+ . 018	. 31	- . 107	$+.060$. 56	- . 124	+ . 059	. 81	- . 077	$+.031$
. 07	-. 033	+ . 021	. 32	- . 109	+ . 061	. 57	-. 123	$+.058$. 82	- . 074	+.029
. 08	- . 037	+ . 024	. 33	-. 111	+ . 062	. 58	-. 122	+ . 058	. 83	- . 071	$+.028$
. 09	-. 041	+ . 026	. 34	- . 112	+ . 062	. 59	- . 121	+ . 057	. 84	- . 067	+ . 026
. 10	-. 045	+ . 028	. 35	-. 114	+ . 063	. 60	- . 120	+ . 056	. 85	-. 064	+ . 024
. 11	-. 049	+ . 031	. 36	-. 115	+ . 063	. 61	-. 119	+ . 055	. 86	-. 060	$+.023$
. 12	-. 053	+.033	. 37	- . 117	+ . 063	. 62	- . 118	+ . 054	. 87	- . 057	+. 021
. 13	-. 057	+ .035	. 38	- . 118	+ . 064	. 63	- . 117	+ . 053	. 88	-. 053	+.020
. 14	-. 060	+ . 037	. 39	-. 119	+ . 064	. 64	- . 115	+ . 052	. 89	-. 049	+. 018
. 15	-. 064	+ .039	. 40	- . 120	+ . 064	. 65	-. 114	+ . 051	. 90	-. 045	+ . 016
. 16	-. 067	+ . 041	. 41	- . 121	+ . 064	. 66	- . 112	+ . 050	. 91	-. 041	+ . 015
. 17	-. 071	+ . 043	. 42	- . 122	+. 064	. 67	- . 111	+ . 049	. 92	- . 037	+ . 013
. 18	-. 074	+ . 045	. 43	-. 123	+. 064	. 68	- . 109	+ . 048	. 93	-. 033	+. 012
. 19	-. 077	+ . 046	. 44	-. 123	+ . 064	. 69	-. 107	+ . 047	. 94	-. 028	+. 010
. 20	-. 080	+ . 048	. 45	- . 124	+ . 064	. 70	-. 105	+ . 045	. 95	- . 024	$+.008$
. 21	-. 083	+ . 049	. 46	- . 124	+ . 064	. 71	--. 103	+. 044	. 96	- . 019	+. 007
. 22	-. 086	+. 051	. 47	- . 125	+ . 064	. 72	-. 101	+ . 043	. 97	- . 015	+. 005
. 23	-. 089	+ . 052	. 48	- . 125	+.063	. 73	- . 099	+ . 042	. 98	-. 010	$+.003$
. 24	-. 091	$+.053$. 49	$-.125$	+ .063	. 74	-. 096	+ . 040	. 99	-. 005	+. 002
. 25	-. 094	+ . 055	. 50	-. 125	+ . 063	. 75	-. 094	+ . 039	1.00	-. 000	+.000

INTERPOLATION FORMULA

$$
\begin{align*}
& f(a+h)=f(a)+k \triangle_{1}+\frac{k(k-1)}{2!} \triangle_{2}+\frac{k(k-1)(k-2)}{3!} \triangle_{3} \\
& \quad+\frac{k(k-1)(k-2)(k-3)}{4!} \triangle_{4}+\cdots \tag{a}\\
& \text { or, } f(a+h)= f(a)+k \triangle_{1}+K_{2} \triangle_{2}+K_{3} \triangle_{3}+\cdots \tag{b}
\end{align*}
$$

where the constants K_{2} and K_{3} are given in the above table as functions of k and

$$
k=\frac{h}{\delta}
$$

where h is the remainder above the value of a for which the function is given in the table, and δ is the increment of a in the table.

mlustration

To find the value of $\log F$ for $49^{\circ} 15^{\prime} 36^{\prime \prime}=49^{\circ} 260$
For $49^{\circ} 2 \quad \log F=0.2836 \quad 3130=f(a)$

$$
h=.06, \quad \delta=0.1 \quad k=0.6
$$

From Table XIV, $\quad K_{2}=-.120$
$K_{3}=+.056$
From Table XIII,

$$
\begin{aligned}
& \triangle_{1}=39338 \\
& \triangle_{2}=117 \\
& \triangle_{3}= \\
& \text { I }
\end{aligned}
$$

Substituting these values of $K_{2}, K_{3}, \triangle_{1}, \triangle_{2}, \triangle_{3}$ in formula (b) above we have as the value of $\log F$ for the given angle

$$
\log F=0.28363130+0.00023603-0.00000014=0.28386719 .
$$

TABLE XV

Values of the Quantities $q-\frac{l}{2}$ or $q_{1}-\frac{l_{1}}{2}$ and $\log _{10}(1+\epsilon)$ with Argument q or q_{1}

$$
\begin{aligned}
q-\frac{l}{2} & =2\left(\frac{l}{2}\right)^{5}+{ }_{15}\left(\frac{l}{2}\right)^{9}+\cdots \\
\epsilon & =3 q^{4}-4 q^{6}+9 q^{8}-12 q^{10}+\cdots \\
q_{1}-\frac{l_{1}}{2} & =2\left(\frac{l_{1}}{2}\right)^{5}+15\left(\frac{l_{1}}{2}\right)^{9}+\cdots
\end{aligned}
$$

(For use with Formulas (8), (9), (45), (76), (77), and (78))

$\stackrel{\text { or }}{\text { q }} \mathrm{q}_{1}$	$\begin{gathered} q-\frac{1}{2} \\ \text { or } q_{1}-\frac{1_{1}}{2} \end{gathered}$	\triangle	ε	\triangle	$\log _{10}(1+\varepsilon)$	\triangle
0.020	0.00000001	0	0.00000048	22	0.00000021	9
. 022	. 00000001	1	. 00000070	29	. 00000030	13
. 024	. 00000002	0	. 00000099	38	. 00000043	16
. 026	. 00000002	1	. 00000137	47	. 00000059	21
. 028	. 00000003	2	. 00000184	59	.00000080	25
0.030	0.00000005	2	0.00000243	71	0.00000105	31
. 032	. 00000007	2	. 00000314	86	. 00000136	38
. 034	. 00000009	3	. 00000400	103	. 00000174	44
. 036	. 00000012	4	. 00000503	121	. 00000218	53
. 038	.00000016	5	.00000624	142	.00000271	61
0.040	0.00000021	5	0.00000766	165	0.00000332	72
. 042	. 00000026	7	. 00000931	191	. 00000404	83
. 044	. 00000033	8	. 00001122	217	. 00000487	94
. 046	. 00000041	10	. 00001339	249	. 00000581	109
. 048	.00000051	12	.00001588	280	.00000690	122
0.050	0.00000063	13	0.00001868	318	0.00000812	138
. 052	. 00000076	16	. 00002186	355	. 00000950	154
. 054	. 00000092	18	. 00002541	397	. 00001104	172
. 056	. 00000110	21	. 00002938	442	. 00001276	192
. 058	.00000131	25	. 00003380	490	.00001468	213
0.060	0.00000156	27	0.00003870	540	0.00001681	234
. 062	. 00000183	32	. 00004410	596	. 00001915	259
. 064	. 00000215	36	. 00005006	654	. 00002174	283
. 066	. 00000251	40	. 00005660	715	. 00002457	312
. 068	. 00000291	45	. 00006375	781	. 00002769	339
0.070	0.00000336	51	0.00007156	851	0.00003108	369
. 072	. 00000387	57	. 00008007	924	. 00003477	401
. 074	. 00000444	63	. 00008931	1002	. 00003878	436
. 076	. 00000507	70	. 00009933	1083	. 00004314	470
. 078	. 00000577	78	. 00011016	1169	. 00004784	509

TABLE XV—Continued

$\underset{\text { or }}{ } \mathrm{q}_{1}$	$\begin{gathered} q-\frac{1}{2} \\ \text { or } q_{1}-\frac{l_{1}}{2} \end{gathered}$	\triangle	ε	\triangle	$\log _{10}(1+\varepsilon)$	\triangle
0.080	0.00000655	86	0.00012185	1259	0.00005293	545
. 082	. 00000741	95	. 00013444	1354	. 00005838	588
. 084	. 00000836	105	. 00014798	1453	. 00006426	631
. 086	. 00000941	114	. 00016251	1557	. 00007057	676
. 088	. 00001055	126	. 00017808	1666	. 00007733	724
0.090	0.00001181	137	0.00019474	1779	0.00008457	772
. 092	. 00001318	150	. 00021253	1899	. 00009229	825
. 094	. 00001468	162	. 00023152	2022	. 00010054	878
. 096	. 00001630	177	. 00025174	2150	. 00010932	937
. 098	. 00001807	193	. 00027324	2285	. 00011869	988
0.100	0.00002000	102	0.00029609	1194	0.00012857	519
. 101	. 00002102	106	. 00030803	1230	. 00013376	533
. 102	. 00002208	110	. 00032033	1266	. 00013909	550
. 103	. 00002318	115	. 00033299	1303	. 00014459	566
. 104	. 00002433	119	. 00034602	1340	. 00015025	582
0.105	0.00002552	123	0.00035942	1379	0.00015607	598
. 106	. 00002675	129	. 00037321	1410	. 00016205	616
. 107	. 00002804	134	. 00038731	1465	. 00016821	632
. 108	. 00002938	138	. 00040196	1498	. 00017453	651
. 109	. 00003076	144	. 00041694	1539	. 00018104	668
0.110	0.00003220	149	0.00043233	1581	0.00018772	686
. 111	. 00003369	154	. 00044814	1624	. 00019458	705
. 112	. 00003523	160	. 00046438	1667	. 00020163	724
. 113	. 00003683	166	. 00048105	1711	. 00020887	742
. 114	. 00003849	172	.00049816	1756	. 00021629	762
0.115	0.00004021	178	0.00051572	1802	0.00022391	783
. 116	. 00004199	184	. 00053374	1848	. 00023174	802
. 117	. 00004383	191	. 00055222	1895	. 00023976	823
. 118	. 00004574	196	. 00057117	1943	. 00024799	843
. 119	.00004770	204	. 00059060	1992	. 00025642	865
0.120	0.00004974	210	0.00061052	2041	0.00026507	885
. 121	. 00005184	218	. 00063093	2091	. 00027392	908
. 122	. 00005402	226	. 00065184	2143	. 00028300	930
. 123	. 00005628	232	. 00067327	2195	. 00029230	953
. 124	. 00005860	240	. 00069522	2247	. 00030183	975
0.125	0.00006100	248	0.00071769	2301	0.00031158	998
. 126	. 00006348	255	. 00074070	2355	. 00032156	1022
. 127	. 00006603	265	. 00076425	2410	. 00033178	1046
. 128	. 00006868	272	. 00078835	2466	. 00034224	1071
. 129	. 00007140	280	. 00081301	2523	. 00035295	1094

TABLE XV-Continued

or $\mathrm{q}^{\mathrm{q}} \mathrm{q}_{1}$	$\mathrm{q}-\frac{1}{2}$ or $q_{1}-\frac{l_{1}}{2}$	\triangle	ε	\triangle	$\log _{10}(1+\varepsilon)$	Δ
0.130	0.00007420	290	0.00083824	2581	0.00036389	1120
. 131	. 00007710	299	. 00086405	2639	. 00037509	1145
. 132	. 00008009	308	. 00089044	2698	. 00038654	1171
. 133	. 00008317	317	. 00091742	2759	. 00039825	1196
. 134	. 00008634	327	. 00094501	2820	. 00041021	1224
0.135	0.00008961	336	0.00097321	2881	0.00042245	1251
. 136	. 00009297	347	. 00100202	2945	. 00043496	1277
. 137	. 00009644	357	. 00103147	3012	. 00044773	1305
. 138	. 00010001	367	. 00106155	3073	. 00046078	1333
. 139	. 00010368	378	. 00109228	3138	. 00047411	1362
0.140	0.00010746	389	0.00112366	3204	0.00048773	1389
. 141	. 00011135	401	. 00115570	3272	. 00050162	1420
. 142	. 00011536	411	. 00118842	3339	. 00051582	1448
. 143	. 00011947	423	. 00122181	3409	. 00053030	1479
. 144	. 00012370	435	. 00125590	3479	. 00054509	1509
0.145	0.00012805	448	0.00129069	3549	0.00056018	1539
. 146	. 00013253	459	. 00132618	3621	. 00057557	1571
. 147	. 00013712	473	. 00136239	3694	. 00059128	1602
. 148	. 00014185	485	. 00139933	3768	. 00060730	1634
. 149	. 00014670	498	. 00143701	3842	. 00062364	1666
0.150	0.00015168		0.00147543		0.00064030	

Tables XV and XVI are reproduced from Nagaoka's paper; see footnote, page 12.

TABLE XVI

Values of ϵ_{1} and $-\epsilon_{1}^{\prime}$ with Argument q_{1}

$$
\begin{aligned}
\epsilon_{1} & =32 q_{1}^{3}-40 q_{1}^{4}+48 q_{1}^{5}-\cdots \cdot \\
-\epsilon_{1}^{\prime} & =8 q_{1}^{2}-\epsilon_{1} .
\end{aligned}
$$

(For use with Formulas (9) and (9a))

q_{1}	ϵ_{1}	Δ	$-\epsilon_{1}^{\prime}$	Δ
0.0100	0.00003160	93	0.00076840	1499
. 0099	. 00003067	92	. 00075341	1484
. 0098	. 00002975	89	. 00073857	1471
. 0097	. 00002886	89	. 00072386	1455
. 0096	. 00002797	86	. 00070931	1442
0.0095	0.00002711	84	0.00069489	1428
. 0094	. 00002627	83	. 00068061	1413
. 0093	. 00002544	81	. 00066648	1399
. 0092	. 00002463	78	. 00065249	1386
. 0091	. 00002385	78	. 00063863	1370
0.0090	0.00002307	76	0.00062493	1356
. 0089	. 00002231	74	. 00061137	1342
. 0088	. 00002157	73	. 00059795	1327
. 0087	. 00002084	71	. 00058468	1313
. 0086	. 00002013	69	. 00057155	1299
0.0085	0.00001944	67	0.00055856	1285
. 0084	. 00001877	67	. 00054571	1269
. 0083	. 00001810	64	. 00053302	1256
. 0082	. 00001746	62	. 00052046	1242
. 0081	. 00001684	62	. 00050804	1226
0.0080	0.00001622	60	0.00049578	1212
. 0079	. 00001562	59	. 00048366	1197
. 0078	. 00001503	56	. 00047169	1184
. 0077	. 00001447	55	. 00045985	1169
. 0076	. 00001392	55	. 00044816	1153
0.0075	0.00001337	52	0.00043663	1140
. 0074	. 00001285	51	. 00042523	1125
. 0073	. 00001234	51	. 00041398	1109
. 0072	. 00001183	48	. 00040289	1096
. 0071	. 00001135	47	. 00039193	1081
0.0070	0.00001088	46	0.00038112	1066
. 0069	. 00001042	45	. 00037046	1051
. 0068	. 00000997	43	. 00035995	1037
. 0067	. 00000954	42	. 00034958	1022
. 0066	. 00000912	40	. 00033936	1008
0.0065	0.00000872	40	0.00032928	992
. 0064	. 00000832	38	. 00031936	978
. 0063	. 00000794	37	. 00030958	963
. 0062	. 00000757	37	. 00029995	947
. 0061	. 00000720	34	. 00029048	934

TABLE XVI-Continued

q_{1}	${ }^{\boldsymbol{\epsilon}}$	Δ	$-\epsilon_{1}^{\prime}$	Δ
0.0060	0.00000686	34	0.00028114	918
. 0059	. 00000652	33	. 00027196	903
. 0058	. 00000619	30	. 00026293	890
. 0057	. 00000589	31	. 00025403	873
. 0056	. 00000558	30	. 00024530	858
0.0055	0.00000528	27	0.00023672	845
. 0054	. 00000501	28	. 00022827	828
. 0053	. 00000473	26	. 00021999	814
. 0052	. 00000447	26	. 00021185	798
. 0051	.00000421	24	. 00020387	784
0.0050	0.00000397	23	0.00019603	769
. 0049	. 00000374	22	. 00018834	754
. 0048	. 00000352	22	. 00018080	738
. 0047	. 00000330	21	. 00017342	723
. 0046	. 00000309	19	.00016619	709
0.0045	0.00000290	18	0.00015910	694
. 0044	. 00000272	19	. 00015216	677
. 0043	. 00000253	17	. 00014539	663
. 0042	. 00000236	16	. 00013876	648
. 0041	. 00000220	16	. 00013228	632
0.0040	0.00000204	15	0.00012596	617
. 0039	. 00000189	14	. 00011979	602
. 0038	. 00000175	14	. 00011377	586
. 0037	. 00000161	13	. 00010791	571
. 0036	.00000148	12	. 00010220	556
0.0035	0.00000136	11	0.00009664	541
. 0034	. 00000125	11	. 00009123	525
. 0033	. 00000114	9	. 00008598	511
. 0032	. 00000105	10	. 00008087	494
. 0031	. 00000095	9	. 00007593	479
0.0030	0.00000086	8	0.00007114	464
. 0029	. 00000078	8	. 00006650	448
. 0028	. 000.00070	7	. 00005202	433
. 0027	. 00000063	7	. 00005769	417
. 0026	. 00000056	6	. 00005352	402
0.0025	0.00000050	6	0.00004950	386
. 0024	. 00000044	5	. 00004564	371
. 0023	. 00000039	5	. 00004193	355
. 0022	. 00000034	4	. 00003838	340
. 0021	. 00000030	4	. 00003498	324
0.0020	0.00000026	4	0.00003174	308
. 0019	. 00000022	3	. 00002866	293
. 0018	. 00000019	3	. 00002573	277
. 0017	. 00000016	3	. 00002296	261
. 0016	. 00000013	2	. 00002035	246

TABLE XVI--Continued

q_{1}	ϵ_{1}	Δ	$-\epsilon_{1}^{\prime}$	Δ
0.0015	0.00000011	2	0.00001789	230
. 0014	. 00000009	2	. 00001559	214
. 0013	. 00000007	1	. 00001345	199
. 0012	. 00000006	2	. 00001146	182
. 0011	.00000004	1	. 00000964	167
0.0010	0.00000003	1	0.00000797	151
. 0009	. 00000002	0	. 00000646	136
. 0008	. 00000002	1	. 00000510	119
. 0007	.00000001	0	. 00000391	104
. 0006	.00000001	1	. 00000287	87
0.0005	0.00000000		0.00000200	72
. 0004	. 00000000		. 00000128	56
. 0003	. 00000000		. 00000072	40
. 0002	. 00000000		. 00000032	24
. 0001	. 00000000		. 00000008	

TABLE XVII
Coefficients of the Hypergeometric Series in Formula (18)

Series	a_{1}	a_{2}	a_{3}
$F\left(\frac{1}{12}, \frac{5}{12}, \frac{1}{2}, \frac{\mathrm{~J}-1}{\mathrm{~J}}\right)$	0.0694444	0.0355260	0.0238485
$\mathrm{~F}\left(-\frac{1}{12}, \frac{7}{12}, \frac{1}{2}, \frac{\mathrm{~J}-1}{\mathrm{~J}}\right)$	-0.0972222	-0.0470358	-0.0310523
$\mathrm{~F}\left(\frac{5}{12}, \frac{13}{12}, \frac{3}{2}, \frac{\mathrm{~J}-1}{\mathrm{~J}}\right)$	0.3009259	0.1776300	0.1260562
$\mathrm{~F}\left(\frac{7}{12}, \frac{11}{12}, \frac{3}{2}, \frac{\mathrm{~J}-1}{\mathrm{~J}}\right)$	0.3564814	0.2163645	0.1552615

TABLE XVIII

Showing the Location and Magnitude of the Positive and Negative Maxima and the Positions of the Roots of the Coefficients in Gray's and Searle and Airey's Formulas
(For use in Formulas (40), (43), and (56))

$\frac{\mathrm{x}}{\mathrm{A}}$	X_{2}	$\frac{\mathrm{x}}{\mathrm{A}}$	X_{4}	$\frac{\mathrm{x}}{\mathrm{A}}$	X_{6}	$\frac{\mathrm{x}}{\mathrm{A}}$	X_{8}	
$\begin{aligned} & 0 \\ & 0.8660 \\ & \infty \end{aligned}$	$\begin{aligned} & 3.0000 \\ & 0 \\ & -\infty \end{aligned}$	$\begin{aligned} & 0 \\ & 0.531 \\ & 1.118 \\ & 1.489 \\ & \infty \end{aligned}$	$\begin{gathered} 2.5000 \\ 0 \\ -3.750 \\ 0 \\ +\infty \end{gathered}$	$\begin{aligned} & 0 \\ & 0.3898 \end{aligned}$	$\begin{aligned} & 2.1875 \\ & 0 \end{aligned}$	0	1.9688	
						0.3000	0	
				$\begin{aligned} & 0.3898 \\ & 0.6961 \end{aligned}$	-1.8273	0.5162	- 1.2177	
				$\begin{aligned} & 0.6961 \\ & 0.9203 \end{aligned}$	0	0.687	0	
				1.737	+30.69	1.1521	+ 7.364	
				2.063	0	1.268	0	
				∞	$-\infty$	2.309	-570.97	
						2.613	0	
						∞	$+\infty$	
$\frac{\mathrm{x}}{\text { A }}$		X_{10}	$\frac{\mathrm{x}}{\text { A }}$	X_{12} *		$\frac{\mathrm{x}}{\mathrm{A}}$	X_{14}	
0		1.8407	0	1.6758		0	1.5710	
0.2575		0	0.2193	30		0.1936	0	
0.4145		-0.924	0.3466		0.756	0.2992	- 0.6446	
0.5		0	0.4629	90		0.4010	0	
0.8		+ 3.428	0.6475		+ 2.000	0.5460	+ 1.396	
0.93		0	0.762		0	0.6439	0	
1.4		-60.80	1.052	-18.20		0.8515	- 8.166	
1.58		0	1.145	0		0.9559	0	
2.86		+18892	1.734	+836.1		1.289	+154.6	
3.15		0	1.902	- 0		1.414	0	
∞		$-\infty$	3.406	-963500		2.044	-16993	
			3.618	0		2.207	0	
			∞		$+\infty$	$\begin{aligned} & 3.950 \\ & 4.226 \end{aligned}$	+70850000	
					$+\infty$		0	
						∞	$-\infty$	

The function $X_{2 n}$ has n roots, between which values it makes oscillations of ever-increasing amplitude, and for values of $\frac{x}{A}$ greater than the largest root the function increases rapidly without limit. The functions $L_{2 n}$ have the same form as $X_{2 n}, \frac{l}{a}$ being the variable instead of $\frac{x}{A}$.

$$
21674^{\circ}-\mathrm{I} 2-\mathrm{I} 5
$$

TABLE XIX

Values of Coefficients in Gray's and Searle and Airey's Formulas
(For use in Formulas (40), (43), and (56))

$\frac{\mathrm{X}}{\mathrm{~A}}$	X_{2}	X_{4}	\mathbf{X}_{6}	X_{8}	X_{10}	X_{12}	X_{14}
0.0	$+3.000$	+ 2.500	+ 2.188	+ 1.969	+ 1.841	+ 1.676	+ 1.571
0.1	2.960	2.400	2.015	1.712	1.494	1.234	+ 1.032
0.2	2.840	2.106	1.521	1.017	+ 0.618	+ 0.216	- 0.073
0.3	2.640	1.632	+ 0.780	+ 0.090	- 0.355	- 0.635	- 0.645
0.4	2.360	1.002	0.090	- 0.764	- 0.874	- 0.596	- 0.0093
0.5	2.000	+ 0.250	- 0.938	- 1.203	- 0.526	+ 0.483	+ 1.208
0.6	1.560	- 0.580	- 1.577	- 0.909	+ 0.760	+ 1.793	+ 1.000
0.7	1.040	1.438	1.814	+ 0.228	2.467	+ 1.662	- 3.175
0.8	+ 0.440	2.262	1.452	+ 2.207	3.423	- 1.733	- 7.231
0.9	- 0.240	- 2.976	- 0.335	+ 4.606	+ 1.924	- 8.748	- 6.811
1.0	- 1.000	3.500	+ 1.688	+ 6.719	- 3.878	- 16.46	+ 10.48
1.1	- 1.840	- 3.750	4.673	7.240			
1.2	-2.760	- 3.606	8.589	+ 4.509	- 31.72	$+22.27$	+119.6
1.3	-3.760	- 2.976	13.28	- 3.595			
1.4	- 4.840	1.734	18.44	- 19.49	- 60.66		$+29.1$
1.5	- 6.000	+ 0.250	+ 23.56	- 46.24	- 48.96	+765.7	-486.5
1.6	- 7.240	+ 3.114	27.90	- 89.42			
1.7	-8.560	7.008	30.46	- 137.4	+151.0	+818.1	
1.8	- 9.960	12.09	29.83	- 205.2			
1.9	-11.44	18.53	24.50	- 285.9		+ 21.8	
2.0	-13.00	+ 26.50	+ 12.19	- 375.0	+1591	- 1969	-16740
2.1	-14.64	36.55	- 9.64	- 464.9			
2.2	-16.36	47.80	- 44.09	- 538.3	4059	-14090	-1840
2.3	-18.16	62.54	- 104.9	- 570.9			
2.4	-20.04	77.61	- 166.3	- 535.5			
2.5	-22.00	+ 96.24	- 263.4	- 386.7	10908	-80050	
2.6	-24.04	117.6	- 390.4	- 64.4			$+658400$
2.7	-26.16	142.2	- 559.0	+ 505.9			
2.8	-28.36	169.0	- 801.2	1433	18390	-222400	
2.9	-30.64	201.3	-1039.1	2833			
3.0	-33.00	+ 236.5	-1370.3	+4869	+15797	-509200	19132000
3.25	-38.25	+ 343.1	-2553	+14118			
3.5	-46,00	+ 480.2	-4414	+33030	-146970	-893400	33670000
3.75	-53.25	+ 653.1	-7215	+68410		+265600	
4.0	-61.00	+ 866.5	-11286	+130400	-1.229×10^{6}	$+6.625 \times 10^{6}$	59080000
4.25	-69.25						-16530000
4.5	-77.00	+1440.3	-24956	+399000	-5.683×10^{6}	$+5.972 \times 10^{7}$	-4.172×10^{3}
5.0	-97.00	+2252.5	-49810	+1038700	-2.007×10^{7}	$+3.463 \times 10^{8}$	-4.855×10^{9}

This table used in conjunction with the preceding should make it possible to investigate the convergence of Gray's or Searle and Airey's formula in any given case. It will also facilitate calculations by these formulas when $\frac{x}{A}$ has one of the values included in the table. This table gives also the values of the $L_{2 n}$ coefficients if $\frac{l}{a}$ be taken as argument in place of $\frac{x}{A}$.

TABLE XX

Nagaoka's Table of Values of the Correction Factor for the Ends K, as a Function of the Angle $\theta=\tan ^{-1} \frac{2 a}{b}$
(For use in Formula (75))

θ	\underline{K}	Δ_{1}	\triangle_{2}	θ	K	\triangle_{1}	\triangle_{2}
0°	1.000000	- 7370	+ 72	45°	0.688423	- 7659	
1	0.992630	- 7298	67	46	. 680764	- 7754	- 102
2	. 985332	- 7231	63	47	. 673010	- 7856	- 108
3	. 978101	-. 7168	60	48	. 665154	- 7964	- 115
4	. 970933	- 7109	56	49	. 657190	- 8079	- 120
5	0.963825	- 7053	+ 52	50	0.649111	- 8199	- 128
6	. 956771	- 7001	47	51	. 640912	- 8327	- 136
7	. 949770	- 6955	44	52	. 632585	- 8463	- 142
8	. 942815	- 6910	40	53	. 624122	- 8605	- 152
9	. 935906	- 6870	37	54	. 615517	- 8757	- 160
10	0.929036	- 6833	+ 34	55	0.606760	- 8917	- 169
11	922203	- 6799	30	56	. 597843	- 9086	- 179
12	. 915404	- 6769	27	57	. 588757	- 9265	- 190
13	. 908635	- 6742	24	58	. 579492	- 9455	- 200
14	. 901893	6718	19	59	. 570037	- 9655	- 214
15	0.895175	- 6699	+ 18	60	0.560382	- 9869	- 226
16	. 888476	- 6681	14	61	. 550513	-10095	- 239
17	. 881795	- 6067	10	62	. 540418	-10334	- 256
18	. 875128	- 6657	8	63	. 530084	-10590	- 270
19	. 868471	- 6649	4	64	. 519494	-10860	- 288
20	0.861822	- 6645		65	0.508634	-11148	- 308
21	. 855177	- 6643	- 2	66	. 497486	-11456	- 328
22	. 848534	- 6645	- 5	67	. 486030	-11784	- 351
23	. 841889	- 6650	- 9	68	. 474246	-12135	- 376
24	. 835239	- 6659	10	69	. 462111	-12511	- 403
25	0.828580	- 6669	- 16	70	0.449600	-12914	- 435
26	. 821911	- 6685	- 17	71	. 436686	-13349	- 467
27	. 815226	- 6702	- 21	72	. 423337	-13816	- 506
28	. 808524	- 6723	- 24	72	. 409521	-14322	- 549
29	. 801801	- 6747	28	74	. 395199	-14871	- 597
30	0.795054	- 6775	- 32	75	0.380328	-15468	- 653
31	. 788279	- 6807	- 34	76	. 364860	-16121	- 717
32	. 781472	- 6841	- 39	77	. 348739	-16838	-791
33	. 774631	- 6880	- 41	78	. 331901	-17629	- 881
34	. 767751	- 6921	- 46	79	. 314272	-18510	- 985
35	0.760830	- 6967	- 50	80	0.295762	-19495	- 1116
36	. 753863	- 7017	- 54	81	. 276267	-20611	- 1275
37	. 746846	- 7071	- 57	82	. 255656	-21886	- 1484
38	. 739775	- 7128	- 61	83	. 233770	-23370	- 1758
39	. 732647	- 7189	- 67	84	. 210400	-25128	- 2144
40	0.725458	- 7256	- 71	85	0.185272	-27272	- 2725
41	. 718202	- 7327	- 75	86	. 158000	-29997	- 3707
42	. 710875	- 7402	-81	87	. 128003	-33704	- 5760
43	. 703473	- 7483	-84	88	. 094299	-39464	-1537
44	. 695990	- 7567	- 92	89	. 054835	-54835	

TABLE XXI

Nagaoka's Table of Values of the End Correction K as Function of the Ratio $\frac{\text { Diameter }}{\text { Length }}$
For use in Formula (75))

$\frac{\text { Diameter }}{\text { Length }}$	K	\triangle_{1}	\triangle_{2}	$\frac{\text { Diameter }}{\text { Length }}$	K	$\triangle 1$	$\triangle 2$
0.00	1.000000	-4231	+24	0.45	0.833723	-3160	+21
. 01	. 995769	-4207	26	. 46	. 830563	-3139	22
. 02	. 991562	-4181	24	. 47	. 827424	-3117	21
. 03	. 987381	-4157	25	. 48	. 824307	-3096	21
. 04	. 983224	-4132	25	. 49	. 821211	-3075	21
0.05	0.979092	-4107	+25	0.50	0.818136	-3054	+21
. 06	. 974985	-4082	26	. 51	. 815082	-3033	21
. 07	. 970903	-4056	24	. 52	. 812049	-3012	21
. 08	. 966847	-4032	24	. 53	. 809037	-2991	20
. 09	. 962815	-4008	26	. 54	. 806046	-2971	21
0.10	0.958807	-3982	+25	0.55	0.803075	-2950	$+20$
. 11	. 954825	-3957	24	. 56	. 800125	-2930	20
. 12	. 950868	-3933	23	. 57	. 797195	-2910	20
. 13	. 946935	-3910	26	. 58	. 794285	-2890	20
. 14	. 943025	-3884	27	. 59	. 791395	-2870	20
0.15	0.939141	-3857	+23	0.60	0.788525	-2850	+19
. 16	. 935284	-3834	23	. 61	. 785675	-2831	19
. 17	. 931450	-3811	26	. 62	. 782844	-2812	20
. 18	. 927639	-3785	24	. 63	. 780032	-2792	19
. 19	. 923854	-3761	24	. 64	. 777240	-2773	19
0.20	0.920093	-3737	+24	0.65	0.774467	-2754	+19
. 21	. 916356	-3713	24	. 66	. 771713	-2735	19
. 22	. 912643	-3689	25	. 67	. 768978	-2716	19
. 23	. 908954	-3664	23	. 68	. 766262	-2697	18
. 24	. 905290	-3641	25	. 69	. 763565	-2679	18
0.25	0.901649	-3616	+23	0.70	0.760886	-2661	+18
. 26	. 898033	-3593	24	. 71	. 758225	-2643	19
. 27	. 894440	-3569	23	. 72	. 755582	-2624	17
. 28	. 890871	-3546	24	. 73	. 752958	-2607	18
. 29	. 887325	-3522	24	. 74	. 750351	-2589	18
0.30	0.883803	-3498	+22	0.75	0.747762	-2571	+17
. 31	. 880305	-3476	24	. 76	. 745191	-2554	17
. 32	. 876829	-3452	23	. 77	. 742637	-2537	18
. 33	. 873377	-3429	23	. 78	. 740100	-2519	17
. 34	. 869948	-3406	22	. 79	. 737581	-2502	16
0.35	0.866542	-3384	+24	0.80	0.735079	-2486	+19
. 36	. 863158	-3360	22	. 81	. 732593	-2467	16
. 37	. 859799	-3338	23	. 82	. 730126	-2451	16
. 38	. 856461	-3315	22	. 83	. 727675	-2435	16
. 39	. 853146	-3293	23	. 84	. 725240	-2419	17
0.40	0.849853	-3270	+22	0.85	0.722821	-2402	+16
. 41	. 846583	-3248	23	. 86	.720 419	-2386	16
. 42	. 843335	-3225	21	. 87	. 718033	-2370	15
. 43	. 840110	-3204	21	. 88	. 715663	-2355	16
. 44	. 836906	-3183	23	. 89	. 713308	-2339	17

TABLE XXI-Continued

$\frac{\text { Diameter }}{\text { Length }}$	K	Δ_{1}	Δ_{2}	$\frac{\text { Diameter }}{\text { Length }}$	K	\triangle_{1}	Λ_{2}	\triangle_{3}
0.90	0.710969	-2322	$+14$	2.50	0.471865	-9292	$+405$	
. 91	. 708647	-2308	16	2.60	. 452573	-8887	378	
. 92	. 706339	-2292	15	2.70	. 453686	-8509	355	
. 93	. 704047	-2277	16	2.80	. 445177	-8154	330	
. 94	. 701770	-2261	14	2.90	. 437023	-7824	312	
0.95	0.699509	-2247	+ 15	3.00	0.429199	-7512	+ 293	
. 96	. 697262	-2232	15	3.10	. 421687	-7219	275	
. 97	. 695030	-2217	15	3.20	. 414468	-6944	260	
. 98	. 692813	-2202	14	3.30	. 407524	-6684	245	
. 99	. 690611	-2188	14	3.40	. 400840	-6439	230	
1.00	0.688423	-10726	+ 344	3.50	0.394401	-6209	+ 220	
1.05	. 677697	-10382	330	3.60	. 388192	-5989	207	
1.10	. 667315	-10052	316	3.70	. 382203	-5782	195	
1.15	. 657263	-9736	303	3.80	. 376421	-5587	186	
1.20	. 647527	-9433	290	3.90	. 370834	-5401	174	
1.25	0.638094	-9143	+ 278	4.00	0.365433	-5227	+168	
1.30	. 628951	-8865	266	4.10	. 360206	-5059	161	
1.35	. 620086	-8599	255	4.20	. 355147	-4898	152	
1.40	. 611487	-8343	244	4.30	. 350249	-4746	141	
1.45	. 603144	-8099	236	4.40	. 345503	-4605	138	
1.50	0.595045	-7863	+ 224	4.50	0.340898	-4467	+ 134	
1.55	. 587182	-7639	215	4.60	. 336431	-4333	125	
1.60	. 579543	-7424	208	4.70	. 332098	-4208	118	
1.65	. 572119	-7216	198	4.80	. 327890	-4090	115	
1.70	. 564903	-7018	190	4.90	. 323800	-3975	102	
1.75	0.557885	-6828	+ 184	5.00	0.319825	-18321	+2227	-397
1.80	. 551057	-6644	176	5.50	. 301504	-16094	1830	-306
1.85	. 544413	-6468	170	6.00	. 285410	-14264	1524	-241
1.90	. 537945	-6298	161	6.50	. 271146	-12740	1283	-193
1.95	. 531647	-6137	154	7.00	. 258406	-11457	1090	-153
2.00	0.525510	-11809	+ 580	7.50	0.246949	-10367	+ 937	-127
2.10	. 513701	-11229	539	8.00	. 236582	-9430	810	-104
2.20	. 502472	-10690	499	8.50	. 227152	-8620	706	-86
2.30	. 491782	-10191	465	9.00	. 218532	-7914	620	
2.40	. 481591	-9726	434	9.50	. 210618	-7294		
				10.00	0.203324			

In the last part of this table several errors in the fifth and sixth places of decimals have been corrected.

TABLE XXII

Functions for Calculating Resistance and Inductance of Straight, Cylindrical Wires with Varying Frequency (sec. 10)

\pm	$\frac{\mathbf{W}}{\mathbf{Y}}$	$\triangle_{1} \quad \triangle_{2}$	$\frac{\mathrm{X}}{2} \frac{\mathrm{~W}}{\mathbf{Y}}$	$\triangle_{1} \quad \triangle_{2}$	$\underset{\mathbf{Y}}{\mathbf{Y}}$	$\triangle_{1} \quad \triangle_{2}$	$\frac{4}{\mathbf{X}} \quad \underset{\mathbf{Y}}{ }$	Δ_{1}	\triangle_{2}
0.0	∞		1.00000	$0+1$	0.	$+2500$	1.00000		
. 1	20.00000		1.00000	$+1+2$	0.02500	2500	1.00000	0	-2
. 2	10.00020		1.00001	$3+6$	0.05000	$2500-1$	1.00000	-	3
. 3	6.66693		1.00004	$9+10$	0.07500	2499	0.99998	-	- 5
. 4	5.00065		1.00013	$19+16$	0.09999	$2499-2$	0.99993	-10	8
0.5	4.00128		1.00032	+ $35+22$	0.12498	+2497-3	0.99984	- 18	-11
. 6	3.33557		1.00067	$57+31$	0.14995	$2494-4$	0.99966	- 29	-14
. 7	2.86069		1.00124	$88+40$	0.17489	$2490-7$	0.99937	- 43	-20
. 8	2.50530		1.00212	$128+51$	0.19979	2483-10	0.99894	- 64	-25
. 9	2.22978		1.00340	$179+60$	0.22462	2473-12	0.99830	- 89	-31
1.0	2.01038		1.00519	$+239+74$	0.24935	+2461-18	0.99741	-120	-36
1.1	1.83196		1.00758	$313+86$	0.27396	2443-21	0.99621	- 156	-43
1.2	1.68451		1-01071	399100	0.29839	2422-27	0.99465	- 199	-50
1.3	1.56108		1.01470	499114	0.32261	2395-34	0.99266	- 249	-57
1.4	1.45670		1.01969	613128	0.34656	2361-41	0.99017	- 306	-63
1.5	1.36776		1.02582	+ 741141	0.37017	+2320-48	0.98711	- 369	-69
1.6	1.29154		1.03323	882153	0.39337	2272-56	0.98342	-438	-76
1.7	1.22594		1.04205	1035165	0.41609	2216-64	0.97904	- 514	-81
1.8	1.16934		1.05240	1200176	0.43825	2152-72	0.97390	- 595	-86
1.9	1.12042		1.06440	1376183	0.45977	2080-81	0.96795	- 681	-89
2.0	1.07816	$-3649+505$	1.07816	1559192	0.48057	+1999-90	0.96113	- 770	-92
2.1	1.04167	-3144442	1.09375	1751192	0.50056	1909-96	0.95343	-862	-92
2.2	1.01023	$2702 \quad 387$	1.11126	1943195	0.51965	1813-102	0.94482	-954	-91
2.3	0.98321	$2315 \quad 339$	1.13069	2138192	0.53778	1711-108	0.93527	-1045	-90
2.4	0.96006	1976297	1.15207	2330188	0.55489	1603-113	0.92482	-1135	-86
2.5	0.94030	$-1679+256$	1.17538	$2518 \quad 179$	0.57092	$+1490-115$	0.91347	-1221	-81
2.6	0.92351	1423224	1.20056	2697170	0.58582	$1375-116$	0.90126	-1301	-73
2.7	0.90928	1199190	1.22753	2867157	0.59957	1259-116	0.88825	-1374	-65
2.8	0.89729	1009162	1.25620	3024142	0.61216	1143-114	0.87451	-1439	-56
2.9	0.88720	847136	1.28644	$3166 \quad 128$	0.62359	$1029-111$	0.86012	-1495	-47
3.0	0.87873	$-711+114$	1.31809	$+3293+109$	0.63388	+ 918-106	0.84517	-1542	-36
3.1	0.87162	59792	1.35102	$3402+93$	0.64306	$812-100$	0.82975	-1578	-25
3.2	0.86565	50575	1.38504	$3495+76$	0.65118	$712-93$	0.81397	-1603	-16
3.3	0.86060	$430 \quad 58$	1.41999	$3571+61$	0.65830	$619-87$	0.79794	-1619	- 6
3.4	0.85630	37246	1.45570	$3632+44$	0.66449	$532-78$	0.78175	-1625	$+4$
3.5	0.85258	$-326+36$	1.49202	$+3677+31$	0.66981	454-70	0.76550	-1621	+11
3.6	0.84932	$290 \quad 24$	1.52879	$3708+19$	0.67436	$384-61$	0.74929	-1610	+20
3.7	0.84642	26618	1.56587	$3727+10$	0.67820	$323-55$	0.73320	-1590	26
3.8	0.84376	24813	1.60314	$3737-1$	0.58143	268-47	0.71729	-1564	31
3.9	0.84128	235	1.64051	$3736-7$	0.68411	$221-4 C$	0.70165	-1533	36

TABLE XXII-Continued

x	$\frac{\mathbf{W}}{\mathbf{Y}}$	$\triangle_{1} \quad \Delta_{2}$	X W $\frac{\mathrm{W}}{}$	$\triangle_{1} \quad \triangle_{2}$	$\frac{Z}{\mathbf{Y}}$	$\triangle_{1} \quad \Delta_{2}$	$\frac{4}{\mathbf{X}} \quad \frac{Z}{Y}$	$\triangle_{1} \quad \triangle_{2}$
4.0	0.83893	$-227+5$	1.67787	+3729-12	0.68632	$+181-33$	0.68632	$-1497+39$
4.1	0.8366	222 3	1.715	$3717-17$	0.68813	148-28	0.67135	-145843
4.2	0.8344	$219+1$	1.75233	$3700-19$	0.68961	120-23	0.65677	-1415 43
4.3	0.83225	218	1.78933	$3681-20$	0.69082	$97-17$	0.64262	-1372 45
4.4	0.83007	218	1.82614	$3661-22$	0.69179	80-15	0.62890	-1327 45
4.5	0.82789	$-218+1$	1.8627	+3639-20	0.69259	+ 65-12	0.61563	$-1282+45$
4.6	0.82571	$217+1$	1.899	$3619-21$	0.69324	$53-$	0.60281	-1237 45
4.7	0.82354	$216+$	1.93533	3598-19	0.69377	$45-6$	0.59044	-1192 43
4.8	0.82138	$215+1$	1.97131	3579-17	0.69422	39 -	0.57852	-1149 43
4.9	0.81923	$-214+2$	2.00710	+3562-15	0.69461	$35-3$	0.56703	-110642
5.0	0.81709	$-419+14$	2.04272	+ 7081-45	0.69496	+62-6	0.55597	$-2091+151$
5.2	0.81290	40518	2.11353	7036-31	0.69558	$56-1$	0.53506	1940138
5.4	0.8088	38720	2.18389	7005-19	0.69614	55	0.51566	1802124
5.6	0.8049	$367 \quad 22$	2.25393	6987-8	0.69669	$55+1$	0.49764	1678112
5.8	0.80131	$345 \quad 23$	2.32380	6979 0	0.69725	$56-1$	0.48086	1566101
6.0	0.7978	$-322+21$	2.3935	$+6979+4$	0.69781	+55-1	0.46521	$-1465+91$
6.2	0.7946	30121	2.4633	6983	0.69836	$54-2$	0.45056	137482
6.4	0.79163	$280 \quad 19$	2.53321	6992	0.69891	$52-3$	0.43682	129274
6.6	0.78883	261	2.60313	6999	0.69942	$49-3$	0.42389	121868
6.8	0.78621	24416	2.67312	70078	0.69991	$46-4$	0.41171	115062
7.0	0.7837	$-228+13$	2.743	$+7015+6$	0.7003	+42-3	0.40021	$-1088+57$
7.2	0.78149	21513	2.813	7021	0.70080	39	0.38933	103152
7.4	0.77934	20212	2.883	7026	0.70118	35	0.37902	97949
7.6	0.77731	$190 \quad 11$	2.953	7031	0.70154	32	0.36923	93045
7.8	0.77541	179	3.02411	$7034+1$	0.70185	$29-2$	0.35992	88542
8.0	0.7736	$-170+8$	3.094	$+7035+3$	0.70214	$+27-2$	0.35107	$-843+39$
8.2	0.77191	162	3.16480	7038	0.70241	25	0.34263	80436
8.4	0.77028	154	3.23518	$7039+1$	0.70265	$23-2$	0.33460	768 34
8.6	0.76874	147	3.30557	$7040+$	0.70288	20	0.32692	73432
8.8	0.76727	140	3.37597	$7041+1$	0.70308	19 -1	0.31958	70230
9.0	0.7658	$-134+6$	3.446	+ 7042	0.70327	+18 -2	0.31257	$-672+28$
9.2	0.7645	128	3.51680	$7043-1$	0.70345	16	0.30585	$644 \quad 26$
9.4	0.76324	123	3.5872	$7043+2$	0.70362	15	0.29941	$617 \quad 25$
9.6	0.7620	117	3.657	$7045+4$	0.703	14	0.29324	593 23
9.8	0.76084	$-113+4$	3.72812	$7046+2$	0.70391	+13 - ${ }^{\text {- }}$	0.28731	$-569+21$
10.0	0.7597	$-261+24$	3.7985	$+17620+3$	0.704	+30 -4	0.28162	$-1330+120$
10.5	0.75710	23721	3.974	17623	0.70435	26	0.26832	1210104
11.0	0.75473	$216 \quad 19$	4.15100	17627	0.70461	22	0.25622	110691
11.5	0.75257	19716	4.32727	17631	0.70483	19	0.24516	101580
12.0	0.75060	$181 \quad 15$	4.50358	17635	0.70503	17 -2	0.23501	935
12.5	0.74879	$-166+13$	4.67993	$+17638+3$	0.70520	+15 -1	0.22567	$-863+64$
13.0	0.7471	15411	4.85631	17641	0.70535	14	0.21703	80057
13.5	0.74559	10	5.03272	17643	0.70549	12	0.20903	743 51
14.0	0.74416	132	5.20915	17645	0.70561	11	0.20160	69246
14.5	0.74284	$-123+8$	5.38560	$17648+2$	0.70572	+9-1	0.19468	$-646+40$

TABLE XXII—Continued

\pm	$\frac{\mathrm{W}}{\mathrm{Y}}$	\triangle_{1}	\triangle_{2}	$\frac{\mathrm{E}}{2} \frac{\mathrm{~W}}{\mathrm{Y}}$	$\Delta_{1} \quad \Delta_{2}$	$\frac{Z}{\bar{Y}}$	\triangle_{1}	\triangle_{2}	$\frac{4}{\mathbf{\Sigma}} \quad \frac{\mathrm{Z}}{\mathbf{Y}}$	$\Delta_{1} \quad \Delta_{2}$
15.0	0.74161	-222	+27	5.56208	$+35301+6$	0.70581	+16	-3	0.18822	$-1172+137$
16.0	0.73939	195	22	5.91509	35307	0.70597	13	2	0.17649	1035114
17.0	0.73743	173	19	6.26817	$35312 \quad 5$	0.70611	11	1	0.16614	92197
18.0	0.73570	154	16	6.62129	35317	0.70622	10	2	0.15694	82482
19.0	0.73416	139	13	6.97446	35321 3	0.70632	8	-1	0.14870	74270
20.0	0.73277	-125	+11	7.32767	$+35324+3$	0.70640	7	-1	0.14128	$-672+61$
21.0	0.73151	114	10	7.68091	35327	0.70646	6	1	0.13456	61153
22.0	0.73038	104	9	8.03418	35329	0.70652	5	0	0.12846	55846
23.0	0.72935	95	8	8.38748	35331	0.70657	5	1	0.12288	51141
24.0	0.72840	87	7	8.74079	$35333 \quad 2$	0.70662	4	-1	0.11777	$470 \quad 36$
25.0	0.72753	-80	+ 5	9.09412	$+35335+2$	0.70666	+3	0	0.11307	$-434+32$
26.0	0.72673	-143	+20	9.44748	$+70674+5$	0.70669	6	-1	0.10872	$-776+103$
28.0	0.72530	123	15	10.15422	$70679+4$	0.70675	5	-1	0.10096	67284
30.0	0.72407	-108	+13	10.86101	$+70683+3$	0.70680	+4	-1	0.09424	$-589+69$
32.0	0.72299	95	11	11.56785	70686	0.70684	3	--	0.08835	51958
34.0	0.72204	84	9	12.27471	70689	0.70687	2	--	0.08316	$462 \quad 49$
36.0	0.72120	75	8	12.98160	70691	0.70689	2	..	0.07854	41341
38.0	0.72045	68	7	13.68852	706932	0.70691	2	--	0.07441	$372 \quad 35$
40.0	0.71977	- 61	+ 6	14.39545	+ 70695	0.70693	+2	.-	0.07069	$-336+30$
42.0	0.71916	55	5	15.10240	706962	0.70695	1	.-	0.06733	30627
44.0	0.71861	50	4	15.80936	70698	0.70696	2	..	0.06427	$279 \quad 23$
46.0	0.71810	46	4	16.51634	70699 0	0.70698	1	.-	0.06148	25620
48.0	0.71764	- 43	+ 3	17.22333	$+70699+1$	0.70699	+1	--	0.05892	$-236+17$
50.0	0.71721	-170	+49	17.93032	+353509 +13	0.70700	+3	.-	0.05656	$-942+269$
60.0	0.71551	121	30	21.46541	3535228	0.70703	2	--	0.04713	673168
70.0	0.71430	91	20	25.00063	3535305	0.70705	1		0.04040	505112
80.0	0.71340	70	+14	28.53593	$353535+3$	0.70706	1	--	0.03535	39379
90.0	0.71270	- 56	--	32.07127	353538	0.70707	+1	-.	0.03142	$-314+55$
100.0	0.71213			35.60666		0.70708			0.02828	
∞	0.70711			∞		0.70711			0.	

TABLE XXIII

Values of Limiting Change of Inductance with the Frequency

$\frac{21}{\rho}$	Single Wire		$\frac{\mathrm{d}}{\rho}$	Parallel Wires		$\frac{8 a}{\rho}$	Circular Rings		
	$\left(\frac{\Delta \mathbf{L}}{\mathbf{L}}\right)_{\mathrm{x}=\infty}$	$\Delta_{1} \quad \Delta_{2}$		$\left(\frac{\Delta \mathbf{L}}{\mathrm{L}}\right)_{\mathrm{x}=\infty}$	$\Delta_{1} \quad \Delta_{2}$		$\left(\frac{\Delta \mathbf{L}}{\mathbf{L}}\right)_{\mathrm{x}=\infty}$	$\Delta_{1} \quad \Delta_{2}$	
50	0.07906	$-988+538$	5	0.13445.12244	$\begin{array}{r}-1201+342 \\ 859 \\ \hline 206\end{array}$				
100	0.06485		7	. 11385	653137	100	0.08756	$-1710+987$	
200	$5497 \quad 450$. 10732	51684	200	7046	$723 \quad 294$	
300	5047	$277 \quad 82$	9		-432	300	6323	$429 \quad 134$	
400	4770	$195 \quad 47$. 10216	$-2078+1219$	400	58945600	29575	
500	4575	$-148+30$	10	0.097847706		500		$-220+47$	
			20		$859 \quad 359$		5600		
600	0.04427	$-118+21$	30	6847	500160	600	0.05380	$-173+32$	
700	4309	$97 \quad 15$	40	6347	34088	700	5207	14123	
800	4213	8211	50	6007	$-252+55$	$\begin{aligned} & 800 \\ & 900 \end{aligned}$	$\begin{aligned} & 5066 \\ & 4948 \end{aligned}$	$118 \quad 17$	
900	4131	$-71+9$						$-101+13$	
			60	0.05755	$-197+37$				
1000	0.04060	$-411+207$	70	5557	$160 \quad 26$	1000	0.04847	- $574+297$	
2000	3649	$204 \quad 72$	80	53975263	$134 \quad 20$	2000	4273	277101	
3000	34453314	$131 \quad 36$	90		$-114+15$	3000	3996	17650	
4000		$95 \quad 22$		5263		4000	3820	$126 \quad 29$	
5000	3219	$-74+14$	100	0.05149	$-643+336$	5000	3694	$-97+19$	
			200	4506	$307 \quad 113$				
6000	0.03145	$-60+10$	300	4199	19456	6000	0.03597	$-78+13$	
7000	3085	$50 \quad 7$	400	4005	$138 \quad 32$	7000	3519	$65 \quad 10$	
8000	3035	43$-37+4$	500	3857	$-106+21$	$\begin{aligned} & 8000 \\ & 9000 \end{aligned}$	$\begin{aligned} & 3454 \\ & 3399 \end{aligned}$	$55 \quad 8$	
9000	2992							$-48+6$	
			600	0.03761	- $85+14$	10000	0.03351	$-285+140$	
10000	0.02955	$-224+108$	700	3676	$71 \quad 11$				
20000	2731	11640	800	36053545	$60 \quad 8$	20000	3066	14550	
30000	2615	$76 \quad 20$	900		$-52+6$	30000	2921	$95 \quad 25$	
40000	2539	56 12				40000	2826	$70 \quad 16$	
50000	2483	$-44+8$	$\begin{aligned} & 1000 \\ & 2000 \end{aligned}$	$\begin{array}{r} 0.03493 \\ 3183 \end{array}$	$-309+154$	50000	2756	$-54+10$	
					15553				
60000	0.02438	$-36+6$	3000	3028	$102 \quad 27$	60000	0.02702	$-44+7$	
70000	2402	$\begin{array}{rr} 30 & 4 \\ 26 & 3 \\ -23+ & 2 \end{array}$	$\begin{aligned} & 4000 \\ & 5000 \end{aligned}$	2926	$75 \quad 17$	70000	2658	$37 \cdot 5$	
80000	2372				$-58+11$	$\begin{aligned} & 80000 \\ & 90000 \end{aligned}$	$2621 \quad 32 \quad 4$		
90000			6000				$2589-28+3$		
					$-47+7$	$\begin{array}{r} 100000 \\ 1000000 \end{array}$			
100000	0.02323		7000	2746 40 6			0.02561		
1000000	1913		8000	$2706 \quad 34 \quad 4$		1000000	2072		
			9000		$-30+3$				
			10000	2643					

TABLE XXIV
Values of the Argument x_{0} for Copper Wires 1 mm Radius and Conductivity 5.811×10^{-4} c g. s. Units

INDEX

[Italicized page numbers refer to examples illustrating the formulas. Proper names are also italicized.]

A

Absolute formulas: Mutual inductance of coaxial circles, 6, 7, 9, 20, 21, 23; mutual inductance of concentric, coaxial solenoids, $64,73,78,9 I$; mutual inductance of coaxial solenoids, $64,69,73,89$; self-inductance of solenoids, 117, 118, 129 , 132, 133, Table IV; mutual inductance of circle and solenoid, 99, 100, 103, 106, $107,108,109$; inductance of rectangle of rectangular section, 155 .
Absolute invariant 17 .
Adjacent conductors. See Linear conductors.
Aivey. See Searle and Airey.
Ampere balance. See Current balance.
Amplitude of incomplete elliptic integrals, 64, 100.
Annular area, geometric mean distance of, 168,169 ; geometric mean distance of point to area, 169.
Annulus. See Annular area.
Approximate formulas; inductance of solenoid of more than one layer, Cohen, i40, 150; inductance of circular ring, Kirchhoff, IIO, I14; mutual inductance of coaxial solenoids of equal length, 55,78 ; inductance of coil of rectangular cross section, Maxwell, 135, 143; Perry 126, 143; mutual inductance of coaxial circles, Wiedemann, footnote I3.
Arithmetical mean distance, 171, 172.
Arithmetical mean square distance, $171,172$.
Asymptotic formulas for W, Y, and Z, I76.
Attraction of coils. See Current balance.
Ayrton and Jones current balance, IO4.

B

Bar. See Rectangular bar.
Ber and bei functions, 174, 175.
Bessel functions, 15,174 .
Bláthy, inductance of a ring, 113.
Breadth, equivalent of coil $38,47,48$.
Bromwich, 16, III, 113.

C

Campbell, extension of Jones's formula, roo, ro9; form for standard of mutual inductance, 108 .
Choice of formulas: Mutual inductance of coaxial circles, 19; mutual inductance of coaxial coils of rectangular section, 43; mutual inductance of coaxial solenoids, 73, $83,84,86$; inductance of solenoids, 125 ; inductance of coils of rectangular cross section, 142.
Circles. See Coaxial circles, Circular areas, Circle and coaxial solenoid.
Circle and coaxial solenoid, mutual inductance of, 98-1 ro.
Circular areas: Geometric mean distance of, 167 ; geometric mean distance of a point from, 169 ; geometric mean distance of two, 170 ; arithmetical mean distance of, 17 r ; arithmetical mean square distance of, 17 I .

Circular coils of rectangular cross section: Inductance of, 135-150; choice of formulas, 142 ; mutual inductance of coaxial, $33-52$; choice of formulas, 42.
Coaxial circles: Formulas for the inductance of, 6-32; choice of formulas, 19 ; summary of formulas, 19.
Coaxial coils of rectangular cross section: Formulas for the mutual inductance of, 33-52; choice of formulas, 42.
Coaxial solenoids: Formulas for the mutual inductance of, 52-98; case where coils are not concentric, $59,64,73$; choice of formulas, $73,83,84,86$.
Coefficients: In Stefan's formula (90), 196; in hypergeometrical series of Mathy formula (18), 220; in formulas (40), (43), and (56), $221,222$.
Coffin, Absolute formula for mutual inductance of equal circles, 14, 15, 30; coaxial solenoids, 73 ; inductance of solenoid, 117, 129 ; derivation of Lorenz's formula, II8.
Cohen, absolute formula for the mutual inductance of coaxial solenoids $64,69,73$, $78,79,9 I$; correction of Wien's formula, III; approximate formula for the inductance of solenoids of several layers, 140, 150.
Complementary modulus, 8 , Io, II.
Complete elliptic integrals. See Elliptic integrals.
Concentric coaxial solenoids. See Coaxial solenoids.
Concentric conductors, inductance of, 158 ; with high frequency, 179.
Conductors. See Concentric conductors, linear conductors, rings, tubes, tapes, etc.
Constant of Lorenz apparatus. See Lorenz apparatus.
Constants. See Tables of constants, etc.
Correction, of current sheet formulas for inductance of solenoids for windiug of round wire, 122, 127; for unequal distribution of current over cross section of coil, 140-142, 147-149; of simple expression for toroidal coil, 125.
Correction factor. See End correction, correction, etc.
Cross section. See Coaxial coils of rectangular cross section, Circular coils of rectangular cross section, Equal coils of rectangular cross section, Square cross section.
Current balance, of Ayrton and Jones, 104, 106; of National Physical Laboratory, ro7. Current sheets, 76, 97, 119.
Cylindrical wire. See Straight cylindrical wire.
Cylindrical coils. See Solenoids, Coaxial solenoids.
Cylindrical conductors. See Linear conductors.

D

Decrease of inductance with the frequency: General considerations, 172 ; of straight cylindrical wires, $173,174,177,179,183-185$; of two parallel cylindrical wires, 180 , 181, 185, 186; of a circular ring, $18 \mathrm{r}, 182,186,187$.
Differential coefficients, 34, 39.
Dimensions of equivalent current sheet $76,97,119$.
Disk in Lovenz apparatus. See Lorenz apparatus.
Distribution of current. See Correction for unequal, High frequency formulas, Increase of resistance, Decrease of inductance.
Dynamometers: Gray, 60, 86; Ayrton and Jones, 104, 106.

E

Eddy currents. See High frequency formulas, Decrease of inductance, Increase of resistance.
Ellipse. See Elliptical area.
Elliptical area, geometric mean distance of, 167.
Elliptic integrals. See also Incomplete elliptic integrals, mutual inductance formulas involving $6,7,9,64,68,71,98,99,100$; inductance of solenoids, 118 ; series expansions for complete, 8,9 ; tables of, as functions of $\tan \gamma, 193$; Legendre's Tables, 202-2I2.
End correction: For mutual inductance of equal concentric solenoids, 55 ; for selfinductance of solenoids, $119-121,130-132,223-225$.
End effect. See End correction.

Equal circles, mutual inductance of $14,28,30,18$.
Equal coils of rectangular cross section, mutual inductance of, 33, 39, 40, 44, 45, 47, 49-5I.
Equal paralle1 rectangles. See Paralle1 rectangles.
Equal squares. See Squares, Geometric mean distance.
Equal solenoids, mutual inductance of, 69-71, 94-97.
Equal radii. See Equal circles, Equal coils of rectangular cross section, Equal solenoids, Solenoids of equal radii.
Equal cross section. See Equal coils of rectangular cross section.
Equivalent circles. See Equivalent filaments.
Equivalent breadth. See Equivalent filaments.
Equivalent radius. See Equivalent filaments.
Equivalent length. See Dimensions of equivalent current sheet.
Equivalent filaments, 38, 39, 47, 48.
Errors in Rowoland's and Rayleigh's formulas, 36, 37.
Exact formulas. See Absolute formulas.
Examples illustrating the formulas: For mutual inductance of coaxial circles, 20-32; mutual inductance of coaxial coils of rectangular cross section, 44-52; mutual inductance of coaxial solenoids, 77-98; mutual inductance of circle and solenoid, IO3-1IO; self-inductance of circular ring, 114-115; self-inductance of solenoids, 126-135; self-inductance of coils of rectangular cross section, 142-150; self and mutual inductance of linear conductors, $159-166$; inductance and resistance with high frequency, 183 - 187.
Extension of Maxwell's series formula for circles, 14, 30; Maxwell's formula for equal, concentric solenoids, $53,77-80$; Ròiti's formula for coaxial solenoids, $57-59$, 80-86; Jones's formula for circle and solenoid, IoI, 102, I03-106, IO8, 109; Rayleigh's and Nivens's formula for the inductance of solenoids, 117, 129; Russell's formulas for W, Y, and $Z, 176$.

F

Filaments. See Equivalent filaments.
Force of attraction of coils. See Dynamometers, Current balances.
Formulas. See Absolute formulas, Approximate formulas, Correction formulas, Interpolation formulas.
Frequency. See High frequency formulas.
Fröhlich, inductance of toroidal coil, 125.
Functions. See Bessel functions, \mathbf{p} function, \boldsymbol{q} series, Ber and bei functions, Werand kei functions, tables, coefficients, W, Y, and Z.

G

General term: In Wallis's formulas for F and $E, 9$; in formulas (5) and (6), 9, ro; in Havelock's formula for coaxial solenoids, 56 ; in Gray's and Searle and Airey's formulas, 63 ; in Russell's formula for coaxial solenoid, 68 ; in Lorenz's formula for circle and solenoid, 99 ; in the Webster-Havelock formula, 121; in Russel1's formulas for W, Y, and Z, , 176 .
Geometric mean distance, 42, 52, 166-170.
Glazebrook, 34 .
Gray, mutual inductance of coaxial solenoids, 59, 60, 86-89; dynamometer, 60,86 ; geometric mean distance formulas, 170 .

H

Harmonics. See Zonal harmonics.
Havelock, mutual inductance of coaxial circles, 15, 16, 27, 29, 30; mutual inductance of coaxial solenoids, $55,56,72,78$; mutual inductance of short secondary on long primary, 68; self-inductance of solenoids (see Webster).
Heaviside, equal coaxial solenoids, 55,78 ; high frequency formulas, 173.
Hicks, inductance of a ring, 113 .
High frequency formulas, III, I72-187.

Himstedt, mutual inductance of solenoids, 72.
Hollow tube. See Tube.
Hypergeometric Series, 17, 56, Table XVII.

I

Illustration of formulas. See Examples for illustrating the formulas.
Incomplete elliptic integrals, 64, 67, 100.
Increase of resistance with the frequency, 172-174, 177, 178-183, 183-187, Table XXII.

Infinite solenoid, inductance of, II6.
Insulation of wires, correction for, $I_{3} 8,139,140-142$.
Integrals. See Elliptic integrals, Incomplete elliptic integrals.
Interpolation: In Tables XV and XVI, 12 ; in Table XXII, 177 ; formula for, 214.
Invariant. See Absolute invariant.

J

Jacobi, q series, II, 12, 65-67, I20, I21; Theta functions, 66.
Jones, mutual inductance of circle and solenoid, 99, io2, 1o6; see also Ayrton, Campbell.
Joubert. See Mascart.

K

Kelvin, resistance and inductance of straight wires at high frequency, 173, 174; ber and bei functions, 175.
Ker and Kei functions, 175.
Kirchhoff, inductance of a ring, IIO, II4; inductance of a solenoid, II8; summation formula for the inductance of a solenoid, I 23 ; inductance of a square, I 54 ; formula for mutual inductance of coaxial coils, 73.

L

Landen's transformation, 7.
Layers, coils of several. See Solenoids.
Legendre's tables, 6, 8, 10, 20, 44, roo, Tables XII and XIII.
Limiting formulas for resistance and inductance of straight wires with the frequency, 177 .
Line, geometric mean distance of, 167 ; geometrical mean distance of two lines, 168, 169,170 ; arithmetical mean distance of, 171 ; arithmetical mean square distance of, 171.

Linear conductors, self and mutual inductance of, 150-159, 159-166; mutual inductance of two conductors in the same straight line, 152, I6I.
Logarithms. See Natural logarithms.
Long coils, mutual inductance, choice of formulas, 73-77; self-inductance of, I16, II7, I20, I29, I3O-I33.
Lovenz, apparatus, 34, Iо3, Io7; mutual inductance of circle and solenoid, 98; inductance of solenoids, $117,118,129,130,132,133$.
Lyle, mutual inductance of coils of rectangular cross section, $38,47,48$.

M

Martens, mutual inductance of rectangles, 156 .
Mascart, 55.
Mathy, corrected formula of, for coaxial circles, 17,31 ; simple special formula derived from this, 18,32 .
Maxzell, mutual inductance of coaxial circles, 6-8, 13, 20, 2F, 28, Table I; mutual inductance of equal coaxial, concentric solenoids, $53,77,79,80$; inductance of a ring, IIo, III, II4, II5; inductance of coil of rectangular cross section, I35, I36, 142, 143; correction for distribution of current in round wires, I40.

McGill University, Lorenz apparatus of, 103.
Method of obtaining dimension of coils. See Dimensions of equivalent current sheets.
Minchin, inductance of ring, II3.
Misprints in authorities quoted, 34, 55, 64, 100, 103, 170.
Modified Radius. See Equivalent filaments.
Modulus. See Elliptic integrals, Incomplete integrals, Complementary modulus.
Multiple conductors, inductance of, $159,165$.
Mutual inductance. See detailed headings, such as Coaxial circles, Coaxial solenoids, etc.
Mutual inductance by means of self-inductance formulas, 71, 95, 96.

N

Nagaoka, mutual inductance of coaxial circles, 11, 12, 26, 27, Table XV and XVI; mutual inductance of coaxial solenoids $64-67,73,89,91-93$; inductance of solenoids, II9-121, I3O-I32.
Nasmyth, 87.
National Physical Laboratory, current balance of, 107.
Natural logarithms of numbers from i to ioo, Table XI.
Neumann, inductance of straight cylindrical wire, 151, 159; mutual inductance of parallel rectangles, $156,164$.
Nicholson, inductance and resistance of parallel wires at high frequency, 180.
Niven. See Rayleigh.
Noninductive Shunts, inductance of, 158.

0

Ohm, determination of, 34 ; see also Lorenz apparatus.
Olshausen, absolute formulas for mutual inductance of coaxial coils, 73.

P

p function of Weierstrass, $17,65$.
Parallel bars. See Rectangular bars.
Parallel circles. See Coaxial circles.
Parallel lines. See Lines.
Parallel rectangles. See Rectangles.
Parallel squares. See Squares.
Parallel wires, mutual inductance of, 151, 160 ; see also Return circuit.
Parameter, in Olshausen's formula, 73.
Permeability. See High frequency formulas, Linear conductors.
Perry, inductance of coil of rectangular cross section, 136,143 .
Pitch of winding, 76, 97, 119.
Plane, coaxial circles in the same, $14,15, \mathrm{IS}$.
q Series of Jacobi, II, 65-67.
Quadratures, formula of, $34,35,45,46,90$.

R

Rayleigh (also Rayleigh and Niven), formula of quadratures, 34, 35, 45, 46, 90 ; inductance of circular ring, III, II4, II5; inductance of solenoids, II6, I26-I29; inductance and resistance of straight wires at high frequency, 173, 177.
Rectangles, geometric mean distance of, see Rectangular area; inductance of, I54, I55, I63, 164 ; mutual inductance of parallel rectangles, 155,164 .
Rectangular areas, geometric mean distauce of, 167, 168; geometrical mean distance of two, 170 .

Rectangular bars, inductance of, 152, 153,162 ; mutual inductance of, 153,154 .
Rectangular cross section. See Coaxial coils of rectangular cross section, Equal coils of rectangular cross section.
Reduction from current sheet to winding of round wires, I22, I28, Tables VII and VIII.

Resistance. See Increase of resistance with the frequency.
Return Circuit, inductance of parallel wire, I5I, I52, I67; same at high frequency, I80, I81, 185,186 ; inductance with rectangular cross section, I54, 162.
Ring, inductance of circular solid, IIO-II2, II4; inductance with elliptical cross section, II3; inductance and resistance with high frequency, I8I, 182, 186.
Ròiti, Mutual inductance of coaxial solenoids, $57,58,80-84,87$.
Rosa, extension of Maxwell's formula for coaxial coils, I4, 30; mutual inductance of coils of rectangular cross section, 39, 49, 50; Rosa-Weinstein formula for coaxial coils, 40, 41, 51, 69-71, 94-97; extension of Searle and Airey's formula 61-63, 8286,94; mutual inductance of circle and solenoid, 101, 102, 103, 105, 109; correction for inductance of toroidal coil, $125,134,135$; correction of current sheet formulas for winding of round wires, I22, $128-130$, Tables VII and VIII; correction for distribution of current in coil of rectangular cross section, I38, I39, I4I, r44150, Tables IX and X; geometric mean distance, $168-170$; arithmetical mean distance and arithmetical mean square distance, I7I, I72.
Rowland, mutual inductance of coaxial coils, $33,34,44,45$.
Russell, mutual inductance of coaxial solenoids, $67,68,69,83$; self-inductance of solenoids, 12 I ; formulas for the functions W, Y, and $Z, 175, I_{76}$; inductance and resistance of concentric main, 179 .

S

Savidge, tables of functions for high frequency calculations, $175,176$.
Searle and Airey, mutual inductance of coaxial solenoids, 61-63, 82-86, 94.
Self-inductance, mutual inductance by means of, 41, 52, 71, 95, 96; see also detailed headings as Solenoids, Circular coils of rectangular cross sections, etc.
Series formulas for F and $E, 8,9,22$, see Hypergeometric Series, W, Y, and Z functions, and other detailed headings.
Short coils, inductance of short solenoids, II6, I20, I26, I28, I3O.
Short secondary on long primary, mutual inductance of, 68, 69, 93, 94 .
Shunts. See Noninductive shunts.
Simple formula for certain coaxial circles, I8, 32.
Single layer coils. See Solenoids, Circle and coaxial solenoids.
Solenoids, inductance of infinite, II6; inductance of, II6-I26, I26-135; inductance of solenoid of more than one layer I3S-140, 150; see also Coaxial solenoids.
Solid Ring. See Ring.
Squares, inductance of, I54, i62, 164; mutual inductance of parallel, $155,156,164$; geometric mean distance of, 167 .
Square cross section, mutual inductance of coaxial coils of, 39, 41, 47, 49.
Stefan, mutual inductance of coaxial coils, 40 ; inductance of circular coil of rectangular cross section, 137, 144-147, 149; correction for distribution of current in round wires, I4I.
Stirling's constants, I7, I9.
Straight cylindrical wire, inductance of, 150 , 151,159 , 160 ; inductance and resistance of, at high frequency, 173-179, 183-185, Tables XXII, XXIII.
Strasser, inductance of single layer coil, I23, I24, I34, I47, Table V.
Strip. See Tape.
Subdivision, calculation of inductance by, 43, 74, 88-90.
Summation formula for inductance of solenoid, $123, I 27$.
Sumec, inductance of rectangle of rectangular cross section, I55.

$$
\mathrm{T}
$$

Tables of Constants, 189-230. For detailed summary see Table of contents.
Tape, winding of II9; self and mutual inductance of, 156, 157,165 ; geometric̣ mean distance of, 168, 169.

Taylor's theorem, 33.
Terezazua, inductance of ring, footnote III.
Theta functions, 66.
Thick current sheet, 138,139 .
Thin strip. See Tape.
Thin-walled Tube. See Tube.
Thomson, J. J., inductance of ring of elliptical section, II3.
Toroidal coil, inductance of, 124, $125,134$.
Tube, inductance of hollow, tubular ring, II2, II3, 115 ; straight tube, see High frequency formulas.

U

Unequal circles. See Coaxial circles.
Unequal cross section, choice of formulas for mutual inductance of coils of, 43 .
Uniform magnetic field, inductance of ring rotating in, II3, II4.
Uniform distribution of current in cross section, 140, 141, 147-149; see also High frequency formulas.
Uniform winding. See Dimensions of equivalent current sheets.

W

W, \mathbf{Y}, and \mathbf{Z} functions, definitions of, 174 ; expansions for, $\mathbf{I 7 6}, 177$; see also Table XXII.

Wallis, series expansions for elliptic integrals, 9.
Webster, inductance of a solenoid, $121,132$.
Weierstrass, \mathbf{p} functions, $17,65$.
Weinstein, mutual inductance of coaxial circles, $\overline{7}, 25$; mutual inductance of coaxial coils, 40, 4I, 51, 71, 96 ; inductance of coil of rectangular cross section, 137, 143 .
Wiedemann, mutual inductance of circles, footnote, 13 .
Wien, inductance of ring, III, II2; ring rotating in uniform magnetic field, II3, II4.

Y

\mathbf{Y} function. See W, Y, and Z functions.
Z function. See W, Y, and Z functions.
Zonal harmonics, 59 .

$$
21674^{\circ}-12=16
$$

[^0]: ${ }^{1}$ This Bulletin, 4, p 301; 1907.
 ${ }^{2}$ Electricity and Magnetism, Vol. II, \& 7or.

[^1]: ${ }^{3}$ Greenhill's "Elliptic Functions," pp. 9, 176.

[^2]: ${ }^{5}$ Phil. Mag., 6, p. 19; 1903. Recently a third expression has been found by Nagaoka (Tokyo Math. Phys. Soc., 6, p. Io; 1911). (See p. 187 below.)

[^3]: ${ }^{7}$ Electricity and Magnetism, Vol. II, \& 705.
 8 This is equivalent to the approximate formula given by Wiedemann, $M=4 \pi a\left\{\log \frac{2 l}{c}-2.45\right\}$, where l is the circumference of the smaller circle and c is the same as r above.

 $$
 21674^{\circ}-12-2
 $$

[^4]: ${ }^{9}$ J. G. Coffin, this Bulletin, 2, p. II3; 1906.
 ${ }^{10}$ This Bulletin, 2, p. 364; 1906.
 ${ }^{11}$ Loc. cit., p. II.

[^5]: ${ }^{13} \mathrm{Mr}$. T. J. Bromwich, of Cambridge, England, has recently communicated to us the same formula, without giving the proof, including however terms no higher than those in α^{3}.
 ${ }^{14}$ Jour. de Phys., 10, p. 33; 1901.

[^6]: ${ }^{15 a}$ Nagaoka has recently shown (Tokyo Math. Phys. Soc., 6, p. IO; I9II) that formula (19) may be derived from Maxwell's formula (I).

[^7]: ${ }^{16}$ Collected Papers, p. 162. Am. Jour. Sci. [3], XV, 1878.
 ${ }^{17}$ Gray, Absolute Measurements, Vol. II, Part II, p. 322.
 ${ }^{18}$ Electricity and Magnetism, Vol. II, Appendix II, Chapter XIV.
 ${ }^{19}$ Gray, Absolute Measurements, Vol. II, Part II, p. 403.
 ${ }^{20}$ This Bulletin, 2, p. 370-372; 1906.

[^8]: ${ }^{23}$ Phil. Mag., 3, p. 310; 1902. Also this Bulletin, 2, pp. 374-378; 1906.

[^9]: ${ }^{25}$ Wied. Annalen, 22, p. 107; 1884.
 ${ }^{26}$ Wied. Annalen, 21, p. 350; 1884.
 ${ }^{26 a}$ This Bulletin, 4, p. 342, equation (20); 1907.

[^10]: ${ }^{27}$ Wied. Annalen, 21, p. 350; 1884.

[^11]: ${ }^{28}$ For other values of the geometric mean distances of squares in a plane see this Bulletin, 3, p. I; 1907.

[^12]: ${ }^{29}$ Electricity and Magnetism, Vol. II, \& 678.

[^13]: ${ }^{30}$ Electricity and Magnetism, Vol. I, p. 533.
 ${ }^{31}$ There are some misprints in Heaviside, 2, p. 277. The radius of the inner solenoid should be c_{2}, of the outer c_{1}, and ρ is c_{2}^{2} / c_{1}^{2}.
 ${ }^{32}$ Phil. Mag., 15, p. 339; 1908. There is a misprint in Havelock's equation (25). In the factor outside the brackets, read a^{2} instead of a.

[^14]: ${ }^{33}$ For the derivation and method of extension of this formula see this Bulletin, 3, pp. 309-310. Recently we have carried it out still further to include the case of coils of moderate length. This formula was originally given (without proof and including the main term in $\left(\frac{1}{\rho_{i}^{7}}-\frac{1}{\rho_{2}^{7}}\right)$ only) in this Bulletin, 2, p. 130; 1906.

[^15]: ${ }^{34}$ Absolute Measurements, 2, Part I, p. 274, equation 53.
 ${ }^{35}$ Rosa, this Bulletin, 3, p. 22I; 1907.

[^16]: ${ }^{38}$ This Bulletin, 3, p. 301 ; 1907.
 ${ }^{39}$ Jour. Coll. Sci., Tokyo, 27, art. 6; 1909. There are a number of misprints in Nagaoka's article, which we have detected and corrected by a careful check on the derivation of the formulas.

[^17]: ${ }^{41}$ Phil. Mag., 15, p. 343; 1908.

[^18]: ${ }^{42}$ Rosa, this Bulletin, 2, p. 35I; 1906.

[^19]: ${ }^{43}$ This Bulletin, 2, p. 342; 1906.

[^20]: ${ }^{44}$ Wied. Annalen, 26, p. 55 I ; 1885.
 ${ }^{45}$ Phil. Mag., 15, p. 342 ; 1908.

[^21]: ${ }^{45 a}$ Phys. Rev., 31, p. 617; 1910.
 ${ }^{45 \mathrm{~b}}$ This Bulletin, 2, p. 125; 1906.
 ${ }^{45 \mathrm{C}}$ This Bulletin, 3, p. 301; 1907.

[^22]: ${ }^{46}$ Rosa, this Bulletin, 2, p. 18r; 1906.
 ${ }^{47}$ Rosa, this Bulletin, 2, p. 161, 1906; and 3, p. I; 1907.
 ${ }^{48}$ Searle and Airey, Electrician (London), 56, p. 318; 1905.

[^23]: ${ }^{49}$ Phil. Mag., 15, p. 341.

[^24]: ${ }^{51}$ This Bulletin, 3, p. 8; 1907.
 ${ }^{52}$ Jour. Tokyo, Math. Phys. Soc. (2), 4, p. 284; 1908.

[^25]: $21674^{\circ}-12-7$

[^26]: ${ }^{53}$ Wied. Annalen, 25, p. I; i885. Oeuvres Scientifiques, 2, p. I62.

[^27]: ${ }^{54}$ J. V. Jones, Proc. Roy. Soc., 63, p. 198; 1898. Also, Trans. Roy. Soc., 182, A; 1891. Jones's first formula was given in Phil. Mag., 27, p. 6r; 1889.

[^28]: ${ }^{55}$ A. Campbell, Proc. Roy. Soc, A, 79, p. 428; 1907. There is a misprint in the formula as given in Campbell's paper. It was, however, used correctly in the numerical calculations given in the paper.

[^29]: ${ }^{57}$ This Bulletin, 3, p. 218; 1907.
 ${ }^{58}$ Phil. Mag., 27, p. 61; 1889. In this example, P_{0} should be 0.654870 instead of 0.54870 , as printed in Jones's article.

[^30]: ${ }^{61}$ Pogg. Annalen, 121, p. 55I; 1864.
 ${ }^{62}$ Wied. Annalen, 53, p. 935; I894.

[^31]: ${ }^{63}$ Rayleigh's Collected Papers, Vol. II, p. 15.
 ${ }^{64}$ Neglecting the correction for effect of insulation and shape of section of the separate wires.
 ${ }^{65}$ Max Wien, Wied. Annalen, 53, p. 928, 1894, derived by direct integration of Maxwell's formula (I2) over the cross section of the ring, the formula

 $$
 L=4 \pi a\left\{\left(\mathrm{I}+\frac{\rho^{2}}{8 a^{2}}\right) \log \frac{8 a}{\rho}-0.0083 \frac{\rho^{2}}{a^{2}}-\mathrm{I} .75\right\}
 $$

 It was shown, however, by Terezawa, Tokyo Math. Phys. Soc., 5, p. 84, 1909, that this formula is in error, the correct result being identical with that of Rayleigh and Niven (63). This result was verified by Mr. Cohen at the Bureau of Standards in 1909, and quite recently independently by Mr. T. J. Bromwich of Cambridge, England. The error of Wien's expression is in practical cases of no importance.

[^32]: ${ }^{74}$ Proc. Roy. Soc., 32, pp. IO4-I4I; I88r. Rayleigh's Collected Papers, 2, p. I5.

[^33]: ${ }^{75}$ This Bulletin, 2, p. II3; 1906.
 ${ }^{76}$ Wied. Annal., 7, p. 16I; 1879. Oeuvres_Scientifiques de L._Lorenz, Tome, 2, I, p. 196.

[^34]: ${ }^{77}$ This Bulletin, 2, p. I23, equation (3I); 1906.
 ${ }^{78}$ This Bulletin, 2, p. I27, equation (36). The notation is slightly different.

[^35]: ${ }^{80}$ Bull. of Amer. Math. Soc., 14, No. I, p. I; 1907.
 ${ }^{81}$ Phil. Mag., 15, p. 332; 1908.
 ${ }^{82}$ Phil. Mag., 13, eq. (48), p. 445; 1907.

[^36]: ${ }^{87}$ This Bulletin, 4, p. 14I; 1907.
 ${ }^{88}$ Wied. Annal., 63, p. 142; 1897.
 ${ }^{89}$ This Bulletin, 4, p. 141; 1907.

[^37]: ${ }^{90}$ This Bulletin, 4, p. 14I; 1907. This value applies to any toroidal coils, of 24 turns or more.
 ${ }^{91}$ Elect. and Mag., Vol. II, \& 706.

[^38]: ${ }^{92}$ John Perry, Phil. Mag., 30, p. 223; I890.

[^39]: ${ }^{93}$ Phil. Trans., I865, and Collected Works.
 ${ }^{94}$ Wied. Annal., 21, p. 329; 1884.
 ${ }^{95}$ Wied. Annal., 22, p. II3; I884.

[^40]: ${ }^{96}$ This Bulletin, 4, p. 369; 1907.

[^41]: ${ }^{99}$ This Bulletin, 3, p. 37; 1907.

[^42]: ${ }^{107}$ Allgemeine Gesetze der Inducirten Ströme, Abh. Berlin Akad.
 ${ }^{108}$ Ann. der Phys. 29, p. 963; 1909.

[^43]: ${ }^{116}$ Rosa, this Bulletin, 4, pp. 326-32; 1907.
 ${ }^{117}$ Rosa, this Bulletin, 4, p. 326; 1907.

[^44]: ${ }^{118}$ Elect. and Mag., II, 8690.
 ${ }^{119}$ Elect. Papers, II, p. 64.
 ${ }^{120}$ Phil. Mag., 21, p. 381; 1886.
 ${ }^{121}$ Math. and Phys. Papers, III, p. 491; 1889.

[^45]: ${ }^{122}$ Phil. Mag., 17, p. 524; 1909.
 ${ }^{123}$ Phil. Mag., 19, p. 49; 19 Io.

