
GEOMETRICAL THEORY OF RADIATING SURFACES WITH
DISCUSSION OF LIGHT TUBES.

By Edward P. Hyde.

Theoretical photometry assumes two general laws of radiation,

(i) The law of variation of the intensity of illumination of a surface

in inverse proportion to the square of the distance of the surface

from the luminous source is merely a statement of a geometrical

property, if the rectilinear propagation of light is assumed. (2)

Lambert's law of variation of the intensity of a luminous surface in

direct proportion to the cosine of the angle of emission is an empi-

rical law based primarily on the observation that a uniformly bright

sphere, when viewed at a distance, appears as a uniformly bright

disk. It would seem to follow from KirchhofPs law that Lambert's

cosine law can be true only for a black body, but no satisfactory

experiments have been made, so far as the writer knows, to test the

law in its application to glowing surfaces. Numerous investigations

of the cosine law as applied to diffusing screens have been under-

taken, but the results of these are at considerable variance, due

principally to the difficulty of obtaining perfect mat surfaces.

These two laws, the inverse square law and Lambert's cosine law,

which are assumed as the basis of theoretical photometry, are appli-

cable to infinitesimal sources. The inverse square law follows rigor-

ously for a point source only, and the cosine law is always assumed

as applicable primarily to the infinitesimal elements of a surface, since

this is the inference from the observation that a uniformly bright

sphere, when viewed at a distance, appears as a uniformly bright disk.

These two laws may be stated mathematically as follows:

ds

H

Fig. 1.
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where

f— intensity of illumination of the screen at P, i. e. the quantity

of light per second falling normally on a imit area of the

screen at P.

i— specific light intensity of the radiating element of surface

dS, i. e. the quantity of light per second emitted normally

by dS.

<f>
— angle of emission from dS.

= anode of incidence on the screen at P.

r— distance between dS and P.

Since these two laws are deduced for sources of infinitesimal

dimensions, errors of considerable magnitude ma}' result in applying

them to- extended sources. Particularly is this so in the case of the

inverse square law. This law underlies the great majority of prac-

tical photometric measurements, and its applicability is seldom ques-

tioned. Indeed, when it is questioned, it is usually on the ground

that since the source is extended it is impossible to determine

the effective center of radiation. The source is considered as an

aggregate of point sources, rather than as a continuous surface, to

each element of which both the inverse square law and the cosine

law apply, and which, therefore, considered as a whole, will have a

complex law of its own, essentially different from the simple inverse

square law.

In a previous paper 1 the writer solved the case for a finite cylin-

der in connection with a study of Talbot's law as applied to the

rotating sectored disk. Since this case serves as an excellent illus-

tration of the difference between a point source and a radiating

surface, showing the errors resulting from an assumption of the

inverse square law for such a surface, its solution wrill be repeated

here with some additions.

Assuming Lambert's law and the inverse square law for infinitesi-

mal elements of surface, as combined in equation (i), if we let <£

(Fig. 2) be the angle of emission from any element of surface dS of

the radiating cylinder; 6 the angle of incidence of the ray from dS
on a screen at P placed at right angles to OP, where OP lies in

l This Bulk-tin, 2, p. 1; 1906.
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the plane perpendicular to the axis of the cylinder at its middle

point, O ; r the distance from the element dS to the screen at P

;

and i the specific light intensity, supposed to be constant over the

surface of the cylinder: then the intensity of illumination of the

screen at P is

cos (/> cos 6 dS
/- !P

L

taken over that part of the curved surface of the cylinder convex

toward P.

Fig. 2.

Expressing all the quantities involved in the above equation in

terms of the two cylindrical coordinates a and _y, and denoting the

radius of the cylinder by «, and the height by 2J1, the intensity of

illumination at P, at a distance, /, from the axis of the cylinder, is

given by the equation,

• C f(? cos a— a
) (J— a cos a

)
!a
JJ(

f=ia I I ) 2 , /2
—~~7 ,

—

zi> d ady (2 )

J J (a +1 —2alQO$a-\-yy J

in which the limits of y are— /*,-(- /z, and the limits of a are

— COS"
a a

v + cos ~
/
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The integral of the above expression is,

[ I'ol. 3, No. .'.

J— A a cos

in which

l*—a'-/f ,r 1

p- (r^/r v? V|- 2cot"V/J

^I-a
_ (l+df+ h*

q {1-af^Jr

(3)

(4)

Before substituting numerical values for a and /i, it is interesting

to note the form which the equation assumes when // approaches

infinity. Under this condition q approaches unity, and in the

limit equation (3) becomes

iria

j
1

(5)

Thus the intensity of illumination due to an infinitely longf uni-

formly radiating cylinder varies inversely as the first power of the

distance from the axis of the cylinder, a result which also followrs

from purely physical considerations of the normal flow of energy

across coaxial cylindrical surfaces.

Let us now give definite numerical values to a and Ji in equation

(3), compute the intensity of illumination at different distances, /,

and compare the relative values with those obtained on the assump-

tion of the inverse square law. Let us make // = 10mm and a = 1 mm,

TABLE I.

Deviation from the Inverse Square Law of the Radiation of a Cylinder

20 mm long and 1 mm radius.

Distances, / J Equation 3

1.0000 X/3000

J ( Inverse Square Law) Deviation

3000 mm 1.0000 X/3000 ±0.00 %
2000 " 2.2500 " 2.2500 < i 0.00 "

1000 " 9.0045 9.0000 i. ±0.05

500 " 3.6040X10 " 3.6000 xio " + 0.11 "

200 " 2.2545X10- " 2.2500 xio2 " 0.20 •

100 " 9.0081 • 10-' " 9.0000 xio2 " 0.09 "

80 " 1.4049 • 10 ! " 1.4062 • 10 :: " 0.09 •

50 " 3.5593X103 " 3.6000 xio :l " -1.13 "
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since these are the approximate dimensions of an 88-watt Nernst

glower, for which the case originally was solved. The results

of substituting these values of a and // in equation (3) for different

distances, /, are shown in Table I and Fig. 3.

In the first column of Table I are given the distances, /, for which

the values of J were computed. The second column contains the

+1.0*

+0.5%

-o.5°<:

-1.0 /
Q

2.0Z

-2.6°ZUL

2000

DISTANCE IN MILLIMETERS FROM AXIS OF CYLINDER

Fig. 3.

—

Deviation of Radiation 0/ Cylinderfrom Inverse Square Law.

ratios of the intensities at the different distances, /, to that at /= 3000

mm, obtained by direct substitution in equation (3), and the third

column gives the same ratios obtained by the inverse square law.

The differences, expressed as percentage deviations from the inverse

square law, are given in the fourth column. They are also shown
in the form of a curve by the solid line in Fig. 3, in which abscissas
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are distances, and ordinates are percentage deviations from the

inverse square law, as deduced from the value of the intensity at

7=3000 mm.
The value of J between 7=3000 mm and l=go mm is greater

(as compared with J at 7=3000 mm) than the value of J deduced

on the assumption of the inverse square law, the maximum devia-

tion being about -j-0.2 per cent. At distances less than 90 mm
the intensity becomes very much less than the values demanded by

the inverse square law, the deviation at 7= 50 mm being over 1 per

cent. The reason for the peculiar form which the curve takes

becomes evident when we consider the various elements that com-

bine to determine the illumination at any distance. The greater

part of the effective radiating surface is nearer the screen on

which the illumination is calculated than the center of the cvlinder,

from which the distance, 7, used in applying the inverse square

law is measured. On approaching the cylinder, if this effect alone

were considered, the illumination would increase more rapidly than

that calculated on the assumption of the inverse square law. On
the other hand, due to the increased inclination of the emitted

light, both to the radiating surface elements and to the screen on

which the rays impinge, the illumination falls off rapidly as the

cylinder is approached. A third element, which, however, is neg-

ligible over the range of distance investigated, is the difference in

the effective area of the cylindei at different distances. The com-

bination of these various effects produces the peculiar form of the

curve in Fig. 3. At great distances from the cylinder the difference

in distance from the screen to the radiating surface elements and

to the center of the cylinder is the most important element, and so

the curve of deviation from the inverse square law rises at first.

But as / becomes smaller the effect of the increased inclination of

the emitted rays becomes more important, so that the curve crosses

the axis at 7=90 mm, the deviations from the inverse square law

becoming negative and increasing rapidly as the surface of the

cylinder is approached.

Although it is impossible to separate completely the different

effects, by considering the two extreme cases of (1) a cylinder with

radius a but with an infinitesimal height, and (2) a cylinder with

height 2I1 but with an infinitesimal radius, we can analyze the
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complex curve of Fig. 3 into two simple curves. For the first case,

if we make h approach zero in equation (3) we obtain as the ex-

pression for the illumination due to the radiation from the edge of

a flat circular disk,

/'= ih

Tp
[(/-i)V/+(/+i)cot-'Jj-2/ cot-y/J (6)

Substituting the numerical values used above, we get as the cor-

responding curve of deviations from the inverse square law the

dotted curve in Fig. 3, lying entirely above the axis of abscissas.

For the second case, making a approach zero in equation (2), h

remaining finite, we get as the expression for the illumination due

to a radiating line of length 2J1,

J"=2 iat
//

+H1
' /

tan- 1

"1 (7)

Substituting numerical values in this equation, we get the dotted

curve in Fig. 3 lying entirely below the axis of abscissas. The

addition of the two dotted curves gives a curve coincident with the

solid curve, which was plotted directly from equation (3).

fig. 4.

Another simple illustration of the treatment of a radiating surface,

as distinguished from a point source, or aggregate of point sources,

showing the errors resulting from the assumption of the applica-

bility of the inverse square law to such a source, is had in the case

of a finite plane of uniform specific light intensity, i. Suppose the

plane to be a circle of radius a (Fig. 4). The illumination at P, of

the screen normal to OP, where OP is perpendicular to the radi-

ating circular disk at its center, O, is given by equation (1),

integrated over the surface of the disk. Since, however, <£=#, and

all the variables can be expressed in terms of the single variable, x,
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the distance from the center of the disk to the element of surface

dSy equation (i) becomes,

cos
2

J n-r dS

2 7T / /'
> C x d x
'

J (*+/)

— TT 2
a

a*+i*
(3)

From this equation the illumination at different distances, /, can

be calculated, and the relative values compared with those obtained

from the inverse square law, starting from the illumination at some

definite distance, say /= iooo mm. The results of this comparison

are shown in Table II and Fig. 5, analogous to Table I and Fig. 3

for the corresponding case of a radiating cylinder.

TABLE II.

Deviation from the Inverse Square Law of the Radiation of a Flat Circular

Disk of 10 mm radius.

Distances,/ J (Equation 81 J (Inverse Square Law) Deviation

1000 mm 1.0000 /iooo 1.0000 x/1000 ± 0.00%

800 " 1.5624 " 1.5625 <(
0.01 "

500 " 3.9988 " 4.0000 tt 0.03 "

300 " 1.1100x10 " 1.1111x10 u — 0.10 "

100 " 9.9020X10 " 1.0000x10-
a 0.98 "

50 " 3.8465X10- " 4.0000X10*
a

3.8 M

30 " 1.0001x10 " 1.1111X108 tt -10.0 "

10 " 5.0005 X 10 '• " 1.0000X10*
a

50.0 "

5 " 8.0008 X10 :i " 4.0000X10*
a

80.0 "

1 " 9.9019X10' " 1.0000 xi o,! 11 99.0 "

In each of the above special cases the expression has been deduced

for the illumination at different distances along a single line or in

a single plane symmetrical with respect to the radiating surface.

Thus in the case of the cylinder, equation (3) gives the illumination

at points in the plane normal to the axis of the cylinder at its middle



Hyde.
\ Geometrical Theory ofRadiating Surfaces. 89

point; in the case of the disk, the illumination at points along the

line normal to the disk at its center. We shall now derive the expres-

sion which will give the illumination at any point in space, though

still only for a special case. Moreover, the idea of tubes of light

will be introduced, and functions will be derived for the light field,

analogous to potential and intensity in the electrostatic field.

300 500

DISTANCE IN MILLIMETERS FROM CENTER OF DISK

1000

-50>

"

-ioo<:f

Fig. 5.

—

Deviation of Radiation of Circular Disk from Inverse Square Law.

Before proceeding, however, it is desirable to introduce the term

specific luminousflux in place of the much less general term illumi-

nation. The illumination of a surface was defined by the Interna-

tional Congress of Electricians at Geneva in 1896 as the luminous

flux across a given surface, divided by the area of the surface. The
luminous flux was defined as the intensity of the source multiplied

by the solid angle subtended at the source by the given surface.
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This definition of luminousflux is applicable to point sources only,

since the solid angle can have no meaning in the case of a source of

finite dimensions. If, however, we define the luminous flux across

a given surface as the quantity of luminous energy flowing normally

across the surface in one second, we have a definition which is

equally applicable to radiating surfaces and to point sources. More-

over, if the unit of luminousflux is defined as the quantity of lumi-

nous energy which in one second flows normally across a surface

subtending a unit solid angle at a point source of unit intensity, the

new definition of luminous flux is in perfect agreement with the

existing definition for point sources, and is also applicable to

radiating surfaces.

Intensity of illumination, which may be' defined as

/=
-dS (9)

where d<$> is the luminous flux across the surface dS, always pre-

supposes the existence of a material screen. It is easily seen that

under this condition the resultant flux per unit area across any

imaginary surface may be zero, wdiereas the illumination on the two

sides of a material screen coincident with the imaginary surface

may be large, if the same on both sides of the screen. Since in the

problem of the light field this unique property of the possible separa-

tion of the positive and negative flux across a surface is found, it is

desirable, in considering the light field in its analogy to the electro-

static field to employ the term luminous jinx per unit area, rather

than the more special term illumination. At every point in space

there is some definite direction in which the flux of luminous energy

is a maximum. Let us define the quantity of luminous energy

which in one second flows normally across a surface of unit area

placed perpendicular to the direction of maximum flux, as the spe-

cific luminous /lux, <l>
()
at the point. 4>„ is a vector quantity, and the

component in any direction equals numerically the difference in

illumination on the two sides of an infinitely thin material screen

placed perpendicular to the direction. If the illumination on one

side is zero the specific luminousflux numerically equals the illumi-

nation on tlie other side of the screen. We shall employ the vector

specific luminous /lux in the following discussion, in which the

rectilinear propagation of light MS assumed.
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Considering the case of an infinitely long radiating strip of uniform

specific light intensity, ?\ let us determine the amount and direction

of the specific luminous flux at every point in space. Since, how-

ever, the field will be the same in all planes perpendicular to the

long dimension of the strip, it is only necessary to consider the dis-

tribution in any one of these parallel planes.

JTlg. O.

The component of the specific luminous flux at any point P (Fig.

6) across a surface, the normal to which lies in the same horizontal

plane as the normal to the radiating strip, but inclined to it at an

angle, w, is (equation i),

(*.)»=
;Jj-

cos
(f)

cos 6
dS (10)

taken over the entire strip. The distance from the element of sur-

face dS at S to the point P is given by the equation,

r^p+la-ruY+zr1

where a and /3 are the coordinates of the point S with reference to

the rectangular axes KH and MN lying in the strip and having as
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origin the point O. u and v are the coordinates of the point P with

reference to the axes MN and OD.
Moreover,

dS=dadfi
and

cos <p

Cos 6 can be obtained as follows: is the angle between the ray

PS and the normal PB to the surface at P. If the direction cosines

of PB and PS with reference to the right-handed system of axes PA,

PM', and PK' are, respectively, X, /jl, i>, and V, //, v\ then

cos <9 = \\' + /V+ z/z/ (ii)

where

\= cos (o fj.= — sin a) v=o

a— uV = cos</> /*'

Equation (n) becomes, on substitution,

a v a— u
cos 6 = — cos co— Sill ft)

Substituting in equation (io) the above expressions for i\ dS, cos c/>

and cos 0,

( C C r '' cos ^ ^a dft • r fz>(a—^) s:

( 0,

"""'J J t/3
s

+(«-«)*+f']'"'J J [F+fc
-//) Sill ft) <Ya r//3

(<S>o)»=^ COS ft) I I

— /r si:

where

[/3
;+(a-„)';+ rT

— h ;l A cos co— /V' />' sin co (12)

('(• rfarf/S f f (a-u) dad/3

J J [ff+(a-uy+V>y " J J [F+ia-uf+jy ^3)
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the integrals extending from /3= — cc to /3=-f-oc , and from a= — 1

to a— + 1, the width of the strip being taken as 2 units.

Evaluating the above integrals,

A =

a— ?/; 1 * it V i — 2i i + w
-

! / \

2 L/(«- «)•+*] -.
=aVLT" + ~^J

H)

where

p=PM=TJ{-L-uf+^ q=PN=j{Ti+ u)%+tf (15)

Similarly
+ oc

(16)

—00

~~
2J [(«-«)•+»»]'- ~ 2 [_?~A

—l

Substituting these expressions for A and B in equation (12)

(<t>°>- = ^ L

—

7/ J
cos w+

1 L /? J
s:n w (1 7)

In order to determine the direction of specific luminous flux, i. e,

in order to find the value of a), which will make (3> )co a maximum,
put

dl^oX. = JKi n q+p)- u{q-pY\

gin
triv \q-f\

day 2 |_ pq y 2 |_ ~fa J
COS 0)=

from which

tan^ V̂ ~&— (18)
"

{q+p)-u(q-p)
K

'

It can readily be shown that this angle <w is the angle APE (Fig.

7) which the normal at the point (2/, v)

to the ellipse passing through the

point P (//, v\ and having as foci M
and N, makes with the line PA parallel

to the z^-axis. (Compare Figs. 6 and

7 in which the same letters refer to cor-

responding points.) For if a and b are Fig. 7.
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respectively the semimajor and semiminor axes of the ellipse, where

a2—lr'= c2=OM 2= i, the slope of the tangent at P is

tan OLP = tan APE--^^'-^ (19)av a"V

But

Therefore

2 2 2 2u v 8 9 a v
-^-r-72^ 1 or ar— «"=-rg-

tanAPE=^
g (20)a —u y '

Similarly the expression for tan t» reduces to the same form.

From equation (18)

_ v(<i—p) v(<f—p
%

) / x

°~{q+P)-u{q-p) (y+pT-ntf-f)
[2l)

For the ellipse with foci M, N,

</+/=MP+ NP= 2 a (22)

and from equations (15)

o*-f=4 u

Substituting these values in equation (21)

tan ft,0=-^-—

-

2 (23)

From equations (20) and (23)

c» =angle APE (24)

or the surface through any point (u
y
v) across which the specific

luminous flux due to an infinitely long uniformly radiating strip of

width MX — 2 is a maximum, will be tangent to the ellipse passing

through the point and having M and N as foci. Now, since the sys-

tem of confocal hyperbolas having the foci M and N is orthogonal

with respect to the system of confocal ellipses having the same foci,

it follows that the direction of maximum specific luminous flux at
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any point in the plane (being the same for all parallel planes) is in

the direction of the hyperbola through the point. In other words,

the direction of the vector <3> at all points in space is that of the

hyperbola through the point.

Suppose now we draw the system of confocal hyperbolas (Fig. 8)

in snch a way that the distance between the intercepts on the axis of

u of successive hyperbolas is constant and equal to i/t.

Fig. 8.

—

Lines 0/ Maximum Light Flux and Equipotential Surfaces for Uniformly Radiating Strip

of Infinite Length.

Since the specific luminous intensity, t\ of a radiating surface is

defined as the quantity of light per second radiated normally by a

unit area of the surface, the tubes formed by the hyperbolic cylinders

of unit height may be considered as unit light tubes, the flow of

light being along the tube at all points, and equal to unity at the

radiating surface.

22261—07 7
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It will now be shown that the specific luminous flux at any point

is proportional to the number of unit light tubes per unit area of

a surface perpendicular to the direction of maximum flow. In other

words, the specific luminous flux <3> is solenoidal, the effect at any

point being the same mathematically as if the energy starting out

in a light tube continued in the same tube. Of course we know
physically that an eye placed at any point can see the whole radiat-

ing surface, so that the solenoidal property of the specific luminous

flux is merely a mathematical property, as is probably also true in

the case of Faraday tubes. But the specific luminous flux <E> ,
and

hence the intensity of illumination at any point, can be determined

by the application of this property, which will now be proved, viz.

that the quantity of luminous energy per second flowing across suc-

cessive elliptic cylinders between two definite hyperbolic cylinders

is constant.

Since the distance MN between the foci has been taken as equal

to 2, the major and minor axes of the confocal ellipses and hyper-

bolas will be 2 cosh;r, 2 sinh.r, and 2 cosy, 2 siny, respectively, where

x and y are arbitrary parameters.

The u-v plane with the orthogonal system of confocal ellipses

and hyperbolas corresponding to x= constant and y — constant,

respectively, may be considered as the conformal representation of

the x-y plane. The relations between the variables are expressed

by the equations of the ellipses and hyberbolas:22 22U . V U V , NC+^o- = I ^C-„:^ = 1
( 2 5)cosher sinhlr cos

2

j sin
a

jK

from which

#=cosh;r cos y z/=sinh x sin y (26)

If in equation (19) we substitute for a and b, the semimajor and

semiminor axes of the ellipse through any point, the expressions

cosh x and siuh .r, and for u and v the values given in equation

(26), we obtain for tan o) (equation 24) the expression,

// u sinh 2
.r cosh x cos ytan <w =—- = . a ;

r
a~ v coshlr sinh x sin y
sinh x cos y , N=—L ^~

-

(
2 7)cosh x sm y
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from which

sin con

sinh x cos y
^/sinh

2 ^- -|-sin
2

_y

cosh x sin y
COS (Dn—

^/sinh
2 # -j- sin !y

Substituting these values in equation (17)

97

(28)

(29)

4>
fl

Trt
f [\ . , ,1 cosh .*• sin j

»

... . sinh x cos 1/

+ ( ?-/)smh * sm^_=_
j

For the ellipse (equation 22)

o-\-p=2a= 2 cosh _r

and for the hyperbola,

q—p=2a' = 2 cosy

from which

^>=cosh _r— cos j
^=cosh .r-f-cosj

^= cosh2 x— cos
%y

—

sinh2 x -\- sin
2
j/

(30)

(31)

Substituting these values in equation (30) and putting for u its

value from equation (26)

<I>,

7r z sin y
-^/sinh

2^+ sin
2

y
(32)

(The denominator ^sinhlr-f-sin
2

;}/ which is equal to ^ /( ^—V(£H£)'
is the linear magnification at the point (x, y) in the transformation

from the x-y to the n-v plane).

It follows from equation (32) that the ratio of the two values of

maximum specific luminous flux at the points of intersection of any

definite hyperbola, y= constant, with two ellipses x r and xff
is

*.' -^/sinhV+ sin2
;K

^V' ^sm\i?xf
-f-sin

2

j
(33)
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Now the ratio of the distances on the two ellipses intercepted by

the two consecutive hyperbolas y and y-\-Jy is readily obtained.

From equations (26), for any ellipse .r= constant

J?(—— cosh x sin y 4y\ z/?'=sinh x cos yJy

and therefore

4s=^(4uy+(4vy=4y^smh2x+sin2

y (34)

Hence the ratio of the distances on the two ellipses x1 and x'\

between the same two consecutive hyperbolas y and y-\-4y, is

4S ' ^ sinh2
^:' -\- sivfy

J77
=
VsuihV'+sin> ^

Comparing this equation with equation (33)

*„" " Js'
(36)

or

^'Js'^^'As" (37)

which states that the total flux of light within a light tube remains

constant. In other words 4> is solenoidal, and therefore its diver-

gence must be zero,

d

dH**) +v(^V = ° (38)
?/\ Jll Ol\ JV

At x— co, where the ellipses become circles, it follows from equa-

tion (32) that

sinh x uy;

and so is ])roportional to sin y at any circle x— constant. At x— 00

the hyperbolas arc radial, and it can easily be shown that the angle

6 which the hyperbola at infinity makes 'with the axis of v is —y.

The slope of the tangent to the hyperbola is, in general,
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/ o /in onu cosh x sin y
tan(90° — &)- -72-= -r-=w 7 #"z/ smh.rcosjy

= tan y coth .r

At x = 00 this becomes

tan (90 — #)= tan y

and therefore

#=90°—y (40)

Hence, since for x = constant, <E> is proportional to sinj (equation

39) when ,r is so large compared with the width of the strip that the

ellipses approximate circles, the number of the hyperbolic light tubes

per unit arc of circle is proportional to cos 0, i. e. the distribution of

light tubes follows the cosine law. In the analogous electrical

problem of a charged strip of infinite length the tubes of force are

uniformly distributed at x— cc
, but the charges are distributed over

the surface of the conductor according to the cosine law, the

density of charge at any point u = u
x
being proportional to the cosine

of the angle which the tangent at infinity to the hyperbola that

passes through the point u— ii
x , v— o makes with the axis of v, i. e.

cos 6.

The fundamental difference between the electrical and optical

problems for an infinite strip of finite width would seem to be that

in the one case the condition is imposed that the field of force shall

be uniform at infinity, and the distribution of the charge over the

surface of the strip is determined by this condition. In the other

case the surface charge is assumed to be uniform and the distribu-

tion of the light tubes at infinity is determined.

It is easy to obtain equations for the light field analogous to those

of the electrostatic field. It has already been shown that <I> is

solenoidal, so that

b

dL(*«)«+S(*-X
= '

Moreover, since the specific light flux along any ellipse (x= con-

stant) is zerOj the elliptic cylinders may be considered as level sur-
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faces. Let ^ be a function, holomorphic in a certain region of the

x-y plane, and let it depend upon x only, so that for x constant "^t

is constant. Furthermore, let the function be of such a nature that

for equal positive increments of x the changes in "SP are equal in

amount and negative in sign. Then

— ^-—= constant. (41)

In the transformed plane M* becomes a function of ?/, v which

is constant over the surface of the elliptic cylinders, and which

decreases by equal amounts between successive cylinders, if the

ellipses are drawn to correspond to equal increments of x. Since

for x constant M* is constant

• by

Moreover, along any hyperbola from any ellipse to the next,

/[
dx— constant. (42)OX

^jy cons t.

If, now, dn be an infinitesimal distance along the normal to the

ellipse at any point in the field,—i. e. along the tangent to the

hyperbola through the point, since dn is proportional to dx multi-

plied by the coefficient of linear magnification in the transforma-

tion from the x-y to the u-v plane, it follows from equations (41) and

(42) that for any point in the field

o* C
(43)dn ^/smh 2x+sury

in which C is a constant.

Moreover, since (equation 32)

<&,
it i sin y

^/sinh
s
.r-f sin

2

y
it follows that

<$> =—C shiy (44)on
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From this equation it is seen that, although in going from one

hyperbola to another <£ varies in proportion to sin y y
along any

one hyperbola <J> at any point is proportional to the rate of decrease

of M* along the hyperbola. Hence, M* may be considered as a special

form of potential function, from which the specific luminous flux is

derived according to equation (44).

In general, if we denote the specific luminous flux in any direc-

tion q by (4> )? , and if the unit in terms of which <£ is expressed

be so chosen that C in equation (44) becomes unity,

(3>o)<z = ^0 cos {nq) = - -^ cos (iiq) sin y = - -<— sin y (45)

Since "T" is a function of x only, it follows from equation (41) that

In the transformation to the u-v plane

or

J^=/i2J f^ (47)

in which h is the coefficient of linear magnification. Hence (equa-

tion 46)

d^ 2 ^ d^2

(48)

In Fig. 8 the ellipses are drawn to correspond to equal increments

of ¥.

In the earlier paragraphs of the paper two examples were given

of the numerical errors incident to the application of the inverse

square law to radiating surfaces. A similar numerical computation

might be made for the case we have just studied. In fact, the errors

incident to the application of the inverse square law might be deduced

for the variation of intensity with distance in any number of direc-

tions from the strip. But since two examples of the effect of dis-
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tance have already been given, and since in the case of the radiating

strip the specific luminous flux in any direction at any point in the

field is known, an excellent opportunity is afforded to show numer-

ically the errors incident to assuming for a finite radiating surface as

a whole the cosine law which applies only to the infinitesimal

elements of the surface.

In order to determine the errors incident to the application of the

cosine law to the surface as a whole let us calculate the specific

luminous flux at different distances in a direction normal to the strip

at its middle point, and in a direction making an angle of 45 ° with

the normal at the middle point. For any definite distance the former,

multiplied by the cosine of 45 °, would equal the latter if the cosine

law, which has been assumed for the elements of surface, applied to

the surface as a whole. The difference between the two values

gives the error for the distance used.

From equations (26)

// = cosh x cos y e'=sinh x sin y.

Therefore,

z'
2

u2= ( 1 + smhlr) ( 1 -sm» sin
2y= ~. - j-g- (49)

/rsinlr.r=sinhVt:-f- (1 — z>°~) sinlr.r— :
;;

(50)

In the direction making an angle of 45 ° with the normal to the

strip at its middle point e
r =//, and so for distances measured in this

direction xandy can be expressed in terms of the single coordinate u.

Substituting u for v in equation (50)

sinh 4

.r-f- (1 — 2//') sinh2
^;= «s

from which

sinh*==fc7i(2«,-i+^i+ 4«*) (51)

Also from equations (49)

Sin y — ~r—. =
, , t ., z (52)

smh.r V^(2w - I+VI +4*4

)
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For distances measured in the direction of the normal to the strip

at its middle point 71 — and therefore co$y— o. Hence we have

siny=i (53)

and from equations (49)

sirihx—2> (54)

By substituting for sinh,rand sinjy in equation (32) the values

given in equations (54) and (53), the specific luminous flux at differ-

ent distances d— v in the direction normal to the strip at its middle

point is obtained. In a similar way, by substituting the values given

in equations (51) and (52), the specific luminous flux at distances

d=^i2ir is obtained for points lying on the line making an angle of

45 with the normal to the strip at its middle point. The specific

luminous flux determined in this way is not, however, that in the

direction of 45 °, but rather the maximum specific luminous flux at

the point, which is in the direction of the hyperbola through the

point. The value in the direction of 45 ° is obtained by multiply-

ing the maximum value by the cosine of the angle between the

given direction and the tangent to the hyperbola at the point. This

angle will evidently be (Fig. 6) the difference between 45 ° and co

where (equation 28)

sinh x cos ysm ®o =
1 • x. 2 , -

4= (55)

The differences, expressed as percentage errors, between the true

value of <E> in the direction of 45 ° and that calculated from the

value of <l> in the direction of the normal by multiplying the latter

by cos 45 ,
are shown in the form of a curve in Fig. 9. The abscis-

sas are distances, d, expressed in the unit in terms of which the

width of the strip is 2, and the ordinates are percentage errors

between the true value and that computed on the assumption of the

cosine law for the strip as a whole. For every distance the true

value at 45 ° is greater than that deduced from the value at o° by

assuming the cosine law.

It is seen from a consideration of Fig. 9 that the curve approaches

the axis of distances asymptotically, so that at d— 00 the error would
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be zero. As d becomes smaller the error increases slowly at first,

but at d=6 or 7 it begins to increase rapidly, reaching a maximum
of 23.4 per cent at d=i. From this point it decreases rapidly to

zero at d—o. That the error should be zero at d=oo and at d—o
might have been predicted, for at infinity the width of the strip is

5 10

DISTANCES

Fig. 9.

—

Deviation of Radiation of Infinite Strip from Cosine Law. {45°).

infinitesimal relative to the distance, and for a strip of infinitesimal

width the cosine law by hypothesis would apply to the strip as a

whole. At d=o the total flux is due to the element of surface

around the point u 0, and so the flux in any direction is equal to

the maximum flux, which is normal to the surface, multiplied by

the cosine of the angle of emission. In other words, at each of the

two limits we arc dealing with surfaces relatively infinitesimal in

size, and for such surfaces we assumed the cosine law in the

beginning.


