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PART I.

CONSTRUCTION AND MEASUREMENT OF THE STANDARDS.

1. INTRODUCTION.

The work of this paper was undertaken with a view to the con-

struction and calculation of a primary standard of self-inductance for

the Bureau of Standards and of one for the Physical Laboratory of
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Clark University, Worcester, Mass. It is hoped that the following

account of the theory and methods of construction will direct the

way and materially decrease the labor of any future undertakings

of a similar character. Very little is to be found anywhere on the

precautions to be taken in very precise work of this kind, and there

were but few formulae accurate enough for the calculation of the

completed standard in absolute measure. It is hoped that the pres-

ent paper will to some extent fill this lacuna in the literature of the

subject.

The construction of a standard of inductance involves many con-

siderations. A primary standard need not necessarily be of a con-

venient size or weight for ordinary use, but qu the other hand it should

not be too difiicult to manage under favorable circumstances. A
standard of any kind should have as nearly as possible the character-

istics and properties which are required of standards of length and

mass—i. e., as nearly as possible unalterability with age, convenient

electrical magnitude for practical measurement, and furthermore all

dimensions should be readily determinable to the required degree of

accuracy and redeterminable at any time. A convenience which is

desirable, but not always attained, is the facility of comparing the

standard with one or more of its own subdivisions, thus checking

calculated values in terms of itself. This has been made possible in

the present instance, as will be explained below.

There are several materials available for forms for standard coils,

each with certain advantages and disadvantages. Metal, wood, glass,

plaster of Paris, and other compositions were all considered.

Wood has been used for standard inductances and has the advan-

tage of lightness and cheapness, but has also the absolutely prohibi-

tive fault of being liable to warp, however well seasoned and well

constructed. Metals must be barred out because of eddy currents

which render the value of the inductance a function of the periodicity.

Metal forms are also hard to obtain without strains and are very liable

to suffer distortion while being worked. Glass and plaster of Paris

are excellent materials for coils of small size. Plaster of Paris soaked

in paraffin has been tried and found to answer very well, but is more

liable to injury than marble, is less rigid, and can not be ground as

true. For large coils, glass would be very expensive, and although

cost should not be the determining factor in the construction of
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primary standards it nevertheless must be considered. Glass in

such large masses would also be very difficult to obtain. The mate-

rial chosen for this coil was marble.

2. THE ADVANTAGES OF MARBLE.

The advantages of marble are manifest. It is comparatively inex-

pensive and easy to obtain in almost any shape or size. It is unal-

terable and not attacked by moisture or air, as shown by the marvelous

preservation of temples and statues of ancient Greece and Rome,

which have stood the test of centuries both underground and exposed

to the elements. Its electrical resistance is very high, some samples

having a value as high as that of hard rubber. In ordinary work it

is feasible to wind bare wire directly on the marble. The coefficient

of magnetic susceptibility of marble is very small, and is negative

for all kinds investigated ; in other words, marble is diamagnetic.

The work of A. P. Wills ^ shows that almost any variety of marble

can be relied upon to be free from iron and to have a magnetic sus-

ceptibility of about — o.8x io~^

The following values are taken from Wills's paper:

Kind of Marble Susceptibility

Italian, ordinary .

.

Italian, statuary I

.

Rutland (Vermont)

Grey, Knoxville . .

.

Italian, statuary II

Glass

—.940X10-^

—.832X10-^

-.795X10-6

— .603X10-6

— .811X10-6

— .578X10-6

To avoid any uncertainty, it was thought best to determine the

coefficient of susceptibility of samples of the marble from which the

cylinders had been cut. Pieces were taken from the cores of the

cylinders and their susceptibility measured by the method of A. P.

Wills, the work being done by Mr. G. B. Stebbins, a fellow of Clark

University, to whom I am indebted for the following results:

For sample of Coil I, ic— — 0.986 X io~^

For sample of Coil II, k— —0.968 x lO"^

^ On the Susceptibility of Diamagnetic and Weakly Magnetic Substances, Physical

Review, 6, No. 33, April, 1898.
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From these values, which agree very closely with the values

found by Wills for Italian marble, it is found that for both

yLt= . 999988. Thus if all the space about the coil were filled with

marble like the sample the inductance would be altered by about

one part in 100,000. But only part of the air space is replaced by

the marble and less than half of the magnetic lines go through the

material; hence the effect of the small departure of fx from unity

amounts to only a few parts in a million and is absolutely negligible.

The density of the marble is about 2.74, and its coefficient of

linear expansion is about o.ooooio per degree centigrade, or about

half that of brass.

3. THE GRINDING MACHINE.

The marble dealers ^ delivered the cylinders accurate to an eighth

or a sixteenth of an inch. The dimensions chosen for these stand-

ards were such as to give an inductance of about 0.2 henry. For

theoretical reasons the length of the coil was made equal to the

radius multiplied by ^3. This made the diameter about 54 cm and

the length covered with wire about 46 cm, the total length of the

marble cylinder being about 5 1 cm ; the thickness of the hollow

cylinder after the core was removed was about 1 1 cm. It is thus

seen that the size and weight are not inconsiderable. The only

machine in Worcester capable of grinding such a cylinder was the

Poole grinder of the Rice, Barton & Fales Company.

The inductance coil consists of a single layer of wire wound on as

nearly a perfect circular cylinder of marble as it is possible to pro-

duce. Every turn of wire is thus open for inspection ; and there is

very little electrostatic capacity. In fact, with such a coil the

capacity is smaller than for any other coil of the same inductance.

A circular cylinder, determined by two dimensions only, is the easi-

est figure to obtain perfect. The wire was of such a size as to give

about 15 or 16 turns to the centimeter. With such a small pitch,

it is evident that a very close approximation is made to the mathe-

matical fiction of a cylindrical current sheet.

Cylinders of a diameter less than 45 cm can be ground also on the

Norton^ grinder, although I have had no experience with cylinders

^Torreys & Co., 69 Beverly street, Boston, Mass. ^Vid. sub.
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of such large size on this machine. An accuracy of from 1/5000 to

1, 10000 of an inch can be obtained on small work (say from 20 cm
down) both in steel and brass. The great advantage of this machine

is that the work can be revolved on centers, which is the most accu-

rate of all methods. The disadvantage is that the precision of the

work depends upon the straightness of the ways along which the

grinding tool runs.

The Poole grinder is used to grind the rolls or calenders employed

in paper machinery. It will grind cylinders up to 71 cm in diame-

ter and over three meters in length, the limit in weight being about

ten tons. On this grinder the cylinder being ground does not revolve

on centers, but the shaft turns on bearings provided with three points

of contact. It was therefore necessary to have a shaft whose bear-

ings could be ground true on centers. This was done by the Nor-

ton Emery Wheel Company, of Worcester, Mass. The dimensions

of the shaft were such that the sag of the shaft and marble when
supported on its ends would produce no noticeable error in the

diameter while being ground.

The deflection of a beam of circular cross section loaded at the

center with a weight IV is

If uniformly loaded with weight w per unit of length it is

where / is the moment of inertia of the cross section, E Young's

modulus of elasticity, and / the length between supports.

Calculating by both formulae and adding, it was found that a

shaft 10 cm in diameter would deflect less than 0.025 ^^ while

with 12.7 cm diameter the deflection would be only about o.oi cm.

The deflection is actually much less than this, as all weights were

less than those used in the calculation. The system of marble and

steel was much stiffer than the simple steel shaft and the points of

support nearer together than in the calculation. Besides, the bend-

ing of the shaft produces an error of the second order only, as the

change in diameter of a cylinder between grinding wheels of con-

stant distance apart, due to a sag of o.oi cm, is very small indeed,

being about one part in a million for a cylinder of 25 cm radius.
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4. SHAPING THE MARBLE CYLINDERS.

Figure i shows the shaft with marble cylinder mounted, the total

weight being in the neighborhood of three-quarters of a ton.

The Poole grinder is of special interest because in grinds the

work round and makes the sides parallel, to a great extent inde-

pendently of the ways on which the grinding wheels are carried.

Two emery wheels are rigidly connected together, one on each side

of the marble cylinder, so that as they grind at opposite ends of a

diameter they practically form a grinding caliper. The cylinder, or

" roll," is rotated on journals, which remain in position during the

whole process. It is the system of grinding wheels which is carried

back and forth on 45° angled ways.

-50-cm-

Fig. 1.

—

Section of Shaft and Marble Cylinder Mounted.

Consideration of this arrangement shows that if the two grinders

act evenly and alike from one end of the roll to the other, which

condition is indicated by the sound of the grinding, the roll must

be round, and at the worst slightly conical. A cone is ground

whenever the axis of the shaft of the roll is not parallel with the

plane of the two ways upon which the grinding bed slides. By
making this adjustment even roughly we may be sure of obtaining

a practically true cylinder independently of variations in the ways,

and even of the trueness of the shaft bearings.

A stream of water is continually flowing over the cylinder so that

the heating effect at the grinding area is practically eliminated.
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The grinders revolve at about 2,000 revolutions per minute. No
pains were spared in the adjustments of the grinder to make all as

nearly perfect as possible. It is easy to tell by the sound whether

the emery wheels are grinding evenly or not. The amount of stock

that is ground off in a single traverse is very small, not more than

a thousandth of an inch. When the roll is considered nearly

finished the distance between the wheels is not altered, and they

are allowed to grind back and forth several times in this manner.

It is not advisable to continue this process too long, as, when the

wheels have no stock to grind, what is technically known as

"pounding" ensues, i. e., the emery wheels rebound back and forth,

cutting depressions in the marble. The grinding wheels are con-

nected to a mass weighing about two tons, the whole suspended on

knife edges, but so sensitively balanced that a slight pressure of the

finger will move them.

The finished surface is smooth, bright, and almost polished, except

for small scratches here and there, due to a loosening of emery parti-

cles from the wheels. No difference could be detected between any

two diameters, with the cathetometer used horizontally, in the pre-

liminary measurements. A second cylinder ground subsequently

on this same machine was ground to a given diameter, as nearly as

possible to within a few thousandths of an inch of the length of the

end standard by which it was measured.

5. MEASURING THE CYLINDERS.

After grinding, the cylinders were transferred to the machine

shop of the department of physics, Clark University, and all subse-

quent operations were carried on there.

A sketch of the shaft used, with the cast-iron flanged supporting

disks, is shown in Fig. i. The dimensions were such that the sag

under the actual load produced no appreciable error in the grinding.

It is necessary to protect the iron surface in contact with the marble

with tallow, otherwise the rust will bind the two surfaces so tightly

that they are separated only with great difficulty.

The measuring apparatus shown in Fig. 2 was devised so as to

afford an easy method for verifying the accuracy of the cylinder.

It consists of a heavy iron girder AB to which two brass pieces C
and D are screwed. These brass pieces formed part of a geometri-
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cal hinge. From these pieces hang two very stiff bars CF and DE.
These bars may be taken down by pulling out two accurately ground

steel rods C and D^ which, passing through two triangular holes in

the brass parts of the hinge, form a geometrical clamp.

The lower ends of the vertical bars were joined by a brass con-

necting rod EF^ freely movable about axes through E and F. The
system thus described forms a jointed parallelogram. The size was

such as to allow about one-fourth inch clearance between the verti-

cal bars and the cylinder when the latter was in place. Near the

middle of one of the bars CF was placed a Brown & Sharpe 0.5

mm micrometer screw with a large head graduated into 100 parts.

Fig. 2.

—

Measuring Apparatus.

Opposite, on the other bar, was placed a steel plunger, which was

lightly pressed against the cylinder by means of a spring. The
steel contact pieces were hardened, ground, and polished spherical.

The other end of the plunger (see Fig. 3) touches a steel lever

very near to its axis of rotation. This lever is gently held against

the plunger by a very light spring, and on the lever is placed a plane

mirror GH. Built out from the bar is a telescope and scale attach-

ment, by means of which any angular motion of the lever relative

to the bar ma}^ be accurately read to one-tenth of a scale division.

The mean of four settings with this arrangement always agreed

to within one ten-thousandth mm.
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TS^

To calibrate the apparatus at any time, all that is necessary is to

turn the micrometer screw through a given amount and note the

readings. The multiplication was generally such that one scale

division indicated about 0.0003 c^- ^ weight iv was placed on the

other bar to compensate for the weight of the telescope, etc. If

now the cylinder be placed in position inside of this caliper sys-

tem and turned, any variation in diameter

may be observed and measured.

Bearings of hard wood were built up from

the platen of a planer, and the cylinder and

shaft rested on these. By means of a crank

screwed to one end of the shaft the marble

cylinder could be turned on its axis, and it

could be moved back and forth by means of

the planer. Adjustments were made once

for all, so that the axis of the shaft, and

therefore of the cylinder, was parallel with

the ways of the planer. This could be

done by trial to about o. 3 mm. A scaffold-

ing was built up from the floor to support

the measuring apparatus, so that no jarring

due to motion of the cylinder could be

transmitted to the frame.

It is desirable to be able to start and stop

the heavy mass with small effort and with-

out any trembling of the bed. Mutton

tallow accomplishes this result, when using

wood bearings, better than any other lubri-

cant. Heavy oils ooze out, although while the cylinder is in rotation

they lubricate well.

The cylinder before being set up for measurement was put in a

lathe and nineteen circles i inch apart were drawn in pencil on the

surface. Sixteen equidistant generators were also drawn, so that

the whole surface was mapped out by a system of cylindrical coor-

dinates. In measuring the diameters of any circular section, the

cylinder was turned once around, thus giving two measures of each

diameter; if these did not closely agree the section was remeasured.

A number of surveys involving thousands of obser^^ations were made.

24353—No. 1—06 7

Fig. 3.

—

Plunger and Details of

Measuring Apparatus.
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The mean results are here plotted and show the remarkable perfection

of the cylinders. It is probably the nearest approach to the perfect

cylinder, for its size, which exists. No variation over 0.0013 cm
occurs.

A particular diameter was now chosen near one end as a standard

and all others referred to it. The Bureau of Standards furnished a

measured steel end standard about 54.1 cm long. This bar had

spherical ends, the curvature being such that the bar was a diameter

of the sphere of which they form a part. This construction allows

of small angular displacements of the bar without sensibly changing

its length. A series of comparisons between the bar and the stand-

ard diameter on the cylinder showed an average difference of only

.00011 mm. The arithmetical mean of all the diameters was now
taken, giving as a result:

Mean diameter of bare cylinder= length of the standard bar

+ .01355 cm.

By a consideration of the plots of the variations in diameter along

generators the mean circular section could be picked out, and by a

consideration of the different diameters of this mean circular section

a mean diameter could be deduced. This last estimate is entirely

independent of the first value deduced by taking the arithmetical

mean. The two results, however, agreed to within .00004 c^- This

is a variation of less than i in 1,000,000. It may, therefore, safely

be said that the mean diameter is correct to i part in 50,000, and

probably to within i part in 100,000. Two holes were bored into

the ends of the marble 180° apart and parallel to the axis; these holes

were 1 2 in. deep, so that the temperature of the marble may be accu-

rately determined by lowering thermometers into them. The ther-

mometers used were all compared over a large range with a stand-

ard thermometer of Baudin, calibrated by the Bureau International

at Sevres. Holes were now bored radially through the marble, all

cutting one and the same generator, and hard rubber plugs fitted in

them. Measurements showed that their surfaces could be made
practically continuous with the marble surface. A rough calcula-

tion will show that even were they out by a tenth of a millimeter

the effect on the mean radius is infinitesimal.
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6. RESULTS OF THE MEASUREMENTS.

97

The means of several series of measurements were plotted, and two

samples of sucli are given below. Tlie first (Fig. 4) shows the varia-

tions in diameter of the University coil on different circular sections,

as the cylinder is turned. The sections near the ends show more

variations than any other ; this is due to inequalities in grinding as

the wheels leave the surface at these points. The section marked

7 8
2 3 4

C

5 6 7 g

_____R 1?

B 10

R8

B 6

B 4

B 2 Sc lie is s jch

B

t lat thi s

A2
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lin e equa
JLmm
10

Is

A 12
"'

Fig. 4.

—

Diagrams Showing Variations in Diameters of a Number of Equidistant Circular

Sections of the University Cylinder. [Abscissa 7 is an Arbitrary Zero).

B TO happens to be so nearly circular that it is almost impossible to

see any variation at all. The inequalities there are about o.oooi

mm. These curves have no relation to one another, but are all

referred to an arbitrary zero, along generator 7. Fig. 5 shows the

variations of diameter along different generators, as one goes from

end to end, of the coil of the Bureau of Standards. The scale is

such that each division is equivalent to 0.0 1 mm. These curves are
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not independent, but show the actual relative position of every point

on the cylinder, any one point being taken as an arbitrary zero.

The cylinder is seen to be on the whole very slightly conical, the

amount, however, being very small, as the maximum variation is

only 0.013 mm and the mean variation only about 0.005 i^^-

The actual mean radius in terms of the standard is determined to

a far greater accuracy than this, better, in fact, than the length of

the end standard is known. The similarity of the different curves

to each other shows that the cylinder is very nearly round. A plot

of the variations in diameter on circular sections can easily be made

by plotting the eight values, found by reading up and down on

6 ''v^^ ^1^— 1
—

' ~~- = ^== - —

Fig. 5.

—

Diagrams Showing Variations in Diameters of Bureau of Standards Cylinder. Each

Space Represents 0.01 mm. The Mean Variation of All the Diameters is One-half a Space,

or 0.005 mm.

To estimate the accuracy of the wound coil numerous measure-

ments of the variations in diameter of the completed coil were made.

The variations were all under o.oi mm. The axis of the wire has

therefore less variation than this, as the above value, o.oi mm, is

due to the inequalities of four thicknesses of insulation, while the

variation in the axis is only due to two.

The winding was accomplished on warm days, so that as the coil

is generally at a lower temperature than that at which it was wound,

the greater contraction of the copper wire over that of the marble

would tighten rather than loosen it.
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The length of the standard bar furnished by the Bureau of Stand-

ards at 24.21° C is 54.1140db.0005 cm. Its coefficient of expansion

is o.ooooii. The measurements showed that the mean diameter of

the cylinder equals the length of the standard bar minus 0.00892

cm, the bar being at 17.50° C and the cylinder at 16.41° C. Tak-
ing the coefficient of expansion of marble to be 0.0000 10 (the mean
of all available values for Italian marble), we find the mean diameter

of the marble cylinder at 20° C as follows

:

Length of standard bar at 24.21° C =54- 1140 cm
Correction for 6. 71° C = . 0040

Length of standard bar at 17.50° C =54- noo
Deduct difference between diameter of cylinder and length of bar . . . . = . 0089

Diameter of marble at 16.41° C =54- ion
Correction for 3.6° C, =36 parts in a million = . 0019

Mean diameter of marble cylinder at 20° C =54- 1030

7. WINDING THE COILS.

The two coils differ only in detail. In what follows the first of

two values refers to the coil at Washington and the second to the

coil at Clark University. The wires used are such that when wound
on the cylinder there were 36.6 and 41.25 turns to an inch. These

correspond to diameters of 0.0695 cm and 0.0617 cm, respectively.

The thicknesses of the insulations are very small, being only 0.0030

cm and 0.0008 cm for the two coils, respectively. The wire was

made expressly for this work by the General Electric Company,

being drawn through a diamond die, special precautions being taken

to insure a uniform thickness of insulation.

The insulation goes by the name of "Enamel," and is ideal for

the present purpose. As nothing could be assumed about its insula-

tion resistance it was necessary to measure it. Ordinary methods of

insulation resistance measurements could not be used, as the insula-

tion contained many microscopic faults which, although producing

no bad effect when used dry in the ordinary manner, allowed a cur-

rent to flow through the insulation into the salt water used in the

test.

It was finally decided to wind two wires at a time on the Univer-

sity coil, so that in reality the cylinder is covered by two separate
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helices of wire, every turn of one being between turns of the other,

except at the ends. Measuring the resistance between the two helices

the insulation resistance of the wire in place is found. This turned

out to be very high, about 30 or 40 megohms between two half-mile

lengths of wire in intimate contact.

Just before winding, the surface of the marble was rubbed with a

solution of paraffin in turpentine to clean it and increase the surface

insulation.

The wire was wound* single on the Bureau of Standards coil, but

the winding was subdivided into three parts, thus allowing many
combinations. The insulation on the wire of this latter coil being

nearly four times thicker than on the

other coil, it was thought unneces-

sary to wind it double, in order to

test its insulating properties.

The scheme of winding is easily

understood from the diagram. Fig. 6.

To guide the wire at the start a long

strip of paper was glued around the

end of the marble, about seven or

eight layers giving a sufficient thick-

ness. The inside edge was now trimmed with a special tool, the

cylinder being turned on its own axis. In the University coil two

strands were wound on at once, and the windings were pressed

close together during the process. A uniform tension was mechan-

ically maintained on the wire. The windings remained parallel to

the original ones, so that after six or seven hundred turns they

coincided almost exactly with the rim at the other end.

The wires go through the marble in the center of the plugs and

immediately return through the same holes. This allows the coil

to be subdivided and yet does not impair the uniformity of the wind-

ing
; indeed it is difficult to find the spots in question where this

division takes place.

In the University coil, in which the winding is double, there are

in reality four separate and distinct coils alike in pairs. The ter-

minals to these four coils are brought up to a hard rubber plug near

one end of the cylinder on the inside. The wiring on the inside is

Fig. 6.

—

Scheme of Winding.

i
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right-angled, so that the inductances of these portions may be cal-

culated and added to the total. They are, however, very small. It

is thus seen that any combination of the four coils may be made, the

current flowing in either direction in any section. This gives a

large number of different substandards whose values are calculable.

A standard of mutual inductance is also furnished by this coil,

since if the self-inductance of the whole coil is known, as well as

of the smaller coils, the following relation holds

:

from which J^^g may be calculated.

The coil in the possession of the Bureau of Standards is subdi-

vided into three smaller coils all unequal. Calling these coils i, 2,

and 3, the following values have been calculated

:

L, ^(1+2) -^(1+2+3)

A A2+3)

L,
which may be derived the following:

A« A-. A-a
A-3 -^1+2-3 A-2+3

-^-1+2+3-^*^1 2
M,,

M^ 3 ^(1+2)3 ^1(2+3) ,
and others.

The ratios of the calculated values may be checked experimentally

by the following process. Measure the self-inductance of two

adjoining coils (i) when the current is flowing in the same direction

in both, and (2) when it is flowing in opposite directions. This

measurement may be made in terms of any arbitrary unit.

This first measurement will give

—

and the second

where L^ and L^ are the self-inductances of the two coils and M^^^

their mutual inductance, and where Lg and Lq denote the results of

the measurements when the current is flowing in the same direction
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in both and in opposite directions, respectively. We may derive

from these equations the following

:

the first ratio is a calculated one, while the second is an experimental

one, independent of the unit used.

In a similar manner the ratio of Z ^ to L^ may be experimentally

tested.

8. AXIAL LENGTH OF THE WINDINGS.

The axial length of the windings was measured by means of a

Fuess cathetometer fitted with a micrometer microscope, the cylinder

being placed on end. The cathetometer was movable about its own
axis and a standard meter bar of the Societe Genevoise was placed

so that by a slight turning of the axis the bar was brought into the

field of view. To make sure that any differences in focus might

not affect the measurements the micrometer was calibrated at every

reading.

As the last turns of wire were so close to the guiding rims that

they could not conveniently be obser^^ed, readings were taken at

noted wires near the ends and also at the windings between the sep-

arate coils into which the total coil was divided, settings being made
on a fine German silver wire laid in the grooves between adjacent

wires. The total number of turns being known, the total length of

wire could easily be calculated. The readings were taken along six-

teen different generators of the cylinder. The lengths of the sub-

divisions were determined with about the same absolute deviation

as the total length. The wire was calipered with a Brown & Sharpe

wire gauge while being wound on the cylinder. The insulation

being hard enamel it was assumed not to be compressed by the ten-

sion of the wire against the marble. The diameter of the wire, as

calculated from the length measurements, came out smaller than the

gauge measurements, which means that the wire stretched slightly

while being laid on. The computed value of the diameter of the

w^ire is used in the calculations.

The meter bar of the Societe Genevoise, used in the measurements

on the University coil, had been calibrated at the Bureau of Standards

for its total length, but not for fractions of its length. To verify the
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calibration and obtain corrections for the fractional parts which were

used to measure the length of the coil, the bar was compared with a

10 cm nickel-steel standard. This standard was furnished by the

Bureau International des Poids et Mesures at Sevres, and had such

a table of corrections that any fraction of its length was completely

defined. The calibration agreed to within about 5 [x with that of

the Bureau of Standards, and furnished corrections as reliable as

that for the fractional parts required. The mean coefficient of

expansion used was:

at=io~^(i844.2+ o-66^') per degree centigrade,

which was the mean of three similar meter bars calibrated and used

by the Bureau International at Sevres, these three agreeing very

closely with each other.

The coil furnished to the Bureau of Standards was measured with

a meter bar of the Societe Genevoise, which was directly compared

with a similar one whose corrections were recently furnished by the

Bureau of Standards. The corrections obtained by this calibration

were very small. In other words, the two meter bars were nearly

identical.

Denoting the subdivisions into which the total coil was divided

by the numbers i, 2, and 3, the lengths of these sectional coils and

their number of turns are as follows, correction being made for tem-

perature and the calibration error of the bar:

Coils Number of turns Length at 20° C.

1 221 15.3347 cm

2 251 17.3565

3 189 13.1945

1+2+3 661 45.8857

1+2 472 32.6912

2+3 440 30.5510

The coefficients used to reduce these values were for the brass

meter bar:

a—\o~^ (1814.2+ 0.66/')
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and for the coil tlie coefficient of expansion of 7narble^ as the coil in

sinking from the high temperature at which it was wound would

separate the turns, and they would then move with the marble and

not as if they formed a copper sheet. The mean temperature of the

bar was 23? lo C, and that of the marble was 22?62 C.

The coefficient for marble was used because the wires would

decrease in diameter with decreasing temperature faster than the

marble would pull them together, and the amount by which they

would separate would be equal to the difference in contraction of a

copper over a marble cylinder divided by the number of turns

minus one.

PART n.

THEORY OF THE CALCULATION OF STANDARDS OF MUTUAL AND SELF
INDUCTANCE.

Six methods will be given, some of which are applicable to the

calculation of mutual and others to self-inductance. These methods

assume different degrees of importance, depending upon the dimen-

sions of the coil or coils. Some are applicable to short coils only

and some to long coils only, while others apply to any coil. Some
are approximate, although correct to a high degree of accuracy if

applied to a coil of the right shape, while two are absolute formulae.

The conditions for the use of the different methods will be given

under the description of them.

1. METHOD I.

SELF-INDUCTANCE BY SUMMATION OF A FINITE SERIES.

In Maxwell's treatise^ will be found the following well-known

expression for the mutual inductance between two coaxial parallel

circles in terms of elliptic integrals of the first and second kinds to

modulus k.

Af=47rV«^{(|-^)/^-|^| (i)

4 aA
k^ =

{a+Af+ b'

Elec, and Mag., Vol, II, page 339. (Third edition.)
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where a and A are the radii of the circles, respectively, and b the

distance between their planes.

Formula (i) above can be transformed into the following:

^-Stt 4-aA -^\F(^k,)-E
(^^o[ (2)

where k, = -^^

—

^ and 7\ and r^ are the greatest and least distances
' ^1+ ^2

from one circle to the other, respectively, as in Fig. 7.

r<
Taking an angle 7, such that its cosine is -^ Lord Rayleigh has

M
calculated the values^ of

/\'K-^|aA

angle for 7 between 60° and 90°.

If the radii of the two circles are equal

this angle is (/>, the angle between the maxi-

mum and minimum lines in Fig. 7.

When (/)= 9o°, the two circles are coinci-

dent and the self-inductance of a circular

filament (of zero cross-section) is infinite.

When (^= 60°, the circles are at a distance

apart equal to —^ times their common ra-

dius. This is about 1.15 times that radius.

As for other reasons the length of the

standard was nearly -^^3 times the radius, it

follows that not every element of the present

coil can be calculated by the table of Lord

for intervals of six minutes of

--/-

Fig. 7.

M
Ravleigh. A plot, Fig. 8, has been made of these values of

i a
^iT^aA

which shows graphically how the mutual inductance of the two

circles varies as we separate them from each other.

Professor Nagaoka has shown ^ that the mutual inductance between

two parallel coaxial circles can also be expressed in terms of Q-

functions, and has given the necessary formulae. It is easy, on

^ See table in Maxwell, page 347, and Gray, Vol. II, p. 852.

^Phil. Mag,, p. 19, July, 1903.
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account of the extreme rapidity of the convergence of the series he

deduces, to calculate M by means of the ^-series derived from the

formulae in terms of the ^-functions.

It is not possible to use Nagaoka's results to obtain a

formula for the self-inductance of a coil as the necessary

formulae for the integration of ^-functions with respect to

the modulus do not yet exist and would seem to be of the

utmost complexit}^

The self-inductance of two turns of wire is given by

:

where L^ is the self-inductance of a single turn and M-^^ is

the mutual inductance between turn i and turn 2. In

general let M^^ be the mutual inductance between turn m
and turn 7t. The self-inductance of three turns is given by:

L,^i,L,+ 2{2M,,)^2M,,

Similarly for four turns

A =:4A+2(3J/,,)+ 2(2^^,3)+2i^u

The law is evident, so that the expression for a coil of n

turns is

L^ = nL,+ 2{n-i)M,,-^2{7t-2)M,,-\-2{n-i,)M,,-\-

2{n-{7t-2)}M, _^+ 2{;/-(;/-i)}Af,, (3)

The term Z^, the self-inductance of a single

turn, is obtained by finding the mutual inductance

of two circular filaments at a distance apart

equal to the logarithmic mean distance of the

cross section of the wire from itself.

For steady currents this is

0.7788 /[), where p is the radius

of the cross section

of the wire. For

very high frequency

currents it is /a, the

radius. The dis-

tance apart to be

used in the calculations of the values of the M^s is the distance

from axis to axis of the wires forming the two circles; further-

more this distance is the same whether the frequency is low or high.

— Curve. Ordinates Represent Values of
-—7^^-

Abscissas Represent Values of the Modulus 7.
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It is thus seen that this method gives a means of computing the

difference in self-inductance of a coil due to a change of frequency

of the currents in it.

This method is proposed for the computation of coils with a

small number of turns, say, 20 or 30. Such a computation will

require as many interpolations from the table of lyord Rayleigh, as

there are turns in the coil. A small portion of the table will cover

the corresponding angles (/> for such a coil. Form the first and

second differences and use the interpolation formula

A{x)^A^x{hA X
(5M. {h^A-^^'ih'A etc.) (4)

A{x^ is the required interpolated value, and hA^ 3M, WA etc. are

the first, second, and third differences, respectively, and x is the

difference between the parameter for which the function A is

desired, and the nearest one preceding it in the table.

This interpolation formula is to be found in Legendre, Traite des

Fonctions Elliptiques. Having obtained these values, it is easy by

means of a multiplying and adding machine to obtain the value of

the self-inductance sought.

2. METHOD II.

SELF-INDUCTANCE BY CONVERGING INFINITE SERIES.

In Maxwell ^ will be found the following well-known

series for the mutual inductance between two circles,

whose radii are a and a -f-j, and whose distance apart is x.

a\y

Sa
^=4-.log-(i+i^+^^y ,

/+3-^' /4-3-^>
32^

+ 47r«(-2-i--|
y ^v^— x^ y^— Gx'^y

16a' 48^
f . . .) (5)

Fig. 9.

r is the least distance from one wire to the other, as shown in Fig. 9.

If the two circles be assumed to have the same radius a^ the

formula (5) becomes, noticing that j)/= o and 7^=x in this case,

J/=4,r«log^(i+^^+ . . .)+4^4-2-,v5+ . . .) (6)

^Elec. and Mag., Vol. II, page 345, Third edition.
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By integrating equation (5) over the cross section of a circular coil

with rectangular cross section, Weinstein ^ has shown that the self-

inductance of such a coil may be given by the following formula:

a is the mean radius of coil,

b is the axial breadth,

c is the radial depth.

L— /^iTn^{a\-\- fji)

where, writing x for ^jc^

Sa I irx 1 . / , 2N ,

I 1 / , 9xX=log-+--y-^ log (1+^^)+—. log (1+^^)

T

i

1

221
"6^/^= ^[(^logY~2 ^""^ (i+-^'))(i + 3-^')+ 3-45-^'+-

Fig. lo" -i.67r^^+ 3-2^'tan-^^-^plog(i+^^)4-^.rnog(i+
p^^^

This formula reduces to the special cases independently worked

out by Mr. Niven and Lord Rayleigh, given below. The formula

is here reprinted because, as printed in the second edition of Maxwell,

it is inaccurate, although correct in the third edition.

Stefan^ has very materially reduced the labor of computation by

this formula by presenting it in the following form: In Table I

c

L= 4^an'\[i+^g^jlog^p=p -J.+ j^.y.j (8)

Stefan ^ gives the following formula, without proof, for the cor-

rection to be applied to the self-inductance of a coil to take into

account the insulation of the wire:

Z\L= 47ran\ log— +0.15494

^Wied. Annalen, 21, pp. 329-350, 1884; Maxwell, Vol. II, Appendix, p. 350.

2 Wied. Annalen, 22, pp. 107-117, 1884.

=*Wied. Annalen, 22, p. 116; 1884.
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This correction is to be added to the self-inductance computed by

any of the formulae just given, where there are a number of layers

of wire in the cross section of the coil.

11 — total number of turns.

«= mean radius of the coil.

Z>= diameter of covered wire.

<^= diameter of bare wire.

Maxwell, Volume II, page 329, gives the number 0.11835 instead

of 0.15494.

TABLE I.

Showing Values of the Constants y-^^ andy2 of Equation (8).

X yi y. X yi yo

0.00 0.50000 0.1250 0.50 0.79600 0.3066

.05 .54899 .1269 .55 .80815 .3437

.10 .59243 .1325 .60 .81823 .3839

.15 .63102 .1418 .65 .82648 .4274

.20 .66520 .1548 .70 .83311 .4739

.25 .69532 .1714 .75 .83831 .5234

.30 .72172 .1916 .80 .84225 .5760

.35 .74469 .2152 .85 .84509 .6317

.40 .76454 .2423 .90 .84697 .6902

.45 .78155 .2728 .95 .84801 .7518

.50 .79600 .3066 1.00 .84834 .8162

The following formulae, equations (9) and (10), independently

worked out by Lord Rayleigh^ and Mr. Niven, may be obtained

from equation (7) by giving the proper values to x. The formulae

so deduced are very good approximations when the cross section of

the coil is small compared with the area inclosed by a single turn.

(a) For a coil whose axial dimension is zero (that is, a flat spiral),

d— o^ and the self-inductance is given by the formula

L= /\.7r7t^a\ loga\]
8a

-^°+S)] (9)

^Collected Papers, Vol. II, p. 15.
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{b) For a coil whose radial dimension is zero (that is, a cylindrical

coil of a single layer), c—O^ and the self-inductance is given by the

formula

, r 8^ I b' / Sa i\"|
, ^L= ^^n^a\\og T-2+32pr^ T+ 4JJ
^'""^

Formula (10) was derived independently by the writer, not

knowing in what manner it was obtained by the above-mentioned

mathematicians.

(f)
For a coil of circular cross section, the self-inductance is given

by the following formula obtained by integration of equation (5)

over a circular area.

In these three formulae

n is the total number of turns in the coil.

a is the mean radius of coil.

b is the axial dimension.

c is the radial dimension.

p is the radius of circular cross-section.

These formulae are obtained by integrating the series of equation

(5) over the cross-section of the coil. In particular, formula (10) is

obtained by the integration of equation (6).

In order to compute a more accurate expression for the self-

inductance of a cylindrical coil of a single layer, whose axial dimen-

sion b is large compared with the radius a of the coil it was neces-

sary to compute more terms of the series (6).

By expanding the terms of

M
^ira

i^-.)Fi.)-lEi.:

in infinite series and combining them, three extra terms were

obtained to the series of Maxwell, equation (6), for the case in which

y is put equal to zero (the condition for equal radii).
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To do this it was necessary to employ the following expansions/

'^ =—^n—2=—i—25 if

—

¥— ^

k' is the complementary modulus.

Fi.)= logj+ij^ogj-^)

,

i'3' ,L 4 2 2 \

,

i'3'5' J, 4 2 2 2 \
+2-'4^6^« V°?;?-i:2-M-pj

4-E!i'5!z! /s/wi J_ A J_ J_\

+ • •

+^:f-f..^-r2-^4)

,

i' 3'5 J. 4 2 2 I \

, I'l's"; ,s/i 4 A A A- _l\
^2^4^6^8'' V'^^/.^~i.2~3.4~5.6~7.8y

+ . . .

Puttins: c—— the formula derived is
^ 2a

^ira ^
^[ ' 4 64 256 (128)'

, j_2_V I
31 A 247 ^a

I

163,695 s

+
1 4 "^^ i536'+(i28rx84" •

•

^Gray: Absolute Meas. in Elec. and Mag., Vol. II, Part I, page 320.

24353—No. I—06 8

(12)
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The last three terms in each of the parentheses are the new

terms, and form a continuation of Maxwell's formula, equation (6),

for the case y — o. Hence, this formula gives the mutual induct-

ance between two circles of the same radius, when placed at a dis-

tance apart equal to x.

w \ \

dx'W
\ \

w

1

i!
/ /

/ /

1
'

; /

/ /

/ /

/ /

/ /

Fig. 11.

Consider a current sheet, the current in it being unity and the

length of the circular cylindrical sheet being b.

dx
Then in a length dx there will be a current — and in another

dx'
element dx' a current of strength —7-. The mutual inductance

between these two circular elements is then

dM^M,,/^."^-^

where M^, ^ is the mutual inductance between two circular fila-

ments at points whose coordinates are x' and x and hence whose

distance apart is ix'— x). The total self inductance of the current

sheet is

u_ u_

j.^ dx dx'
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Using the following formulae of integration, which may readily be

deduced by integration by parts, we obtain formula (13).

b_ b_

I dx'
j
{x'—xY log {x' —x)dx— 2b''-

(;2+i)(;2+2)
log b

2(2;^+ 3) ^«+ 2

(;^+i)X;2+2)

where ;2 is integral, even and positive, and

+- +-
n+2

)(;^+2;

I ^^

L— ^iraii'

/^Y , 8a 43i\

1024

10

I3IO72

35

if ;^ is even,

if n is odd.

A

B

C

D
4194304

(13)

The last three terms, B^ C, Z>, are derived from the new terms of

the extended equation of Maxwell. The terms marked A are the

well known ones for the special case, worked out by Lord Rayleigh

and Mr. Niven.

This equation is comparatively easy to work with. It applies the

better the shorter the coil. For a long coil, i. e. one as long as 44
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cm with a diameter of 54 cm, it gives results about three or four

parts in 100,000 too small.

For such a coil the rapidity of convergence may be seen by the

following set of values

L— 6,iTan^\ i.09i865-f-.i52585— .006352-1-.000972— .000168 V

For short coils the convergence is very rapid. The terms for a

coil of length 21 cm, diameter 54 cm, are as follows:

L— \'Tran'^\ i.849647-f-.o62003— .000558 -f.00002 2— .0000013 >

The formula is thus seen to be practically exact up to eignt places

of significant figures. This formula the writer considers the best

for the calculation of the self inductance of cylindrical current sheets,

as it does not require any special tables, and having once obtained

the logarithms of the several numerical factors it is a matter of

about forty minutes to compute the value of a coil with seven place

tables correct to six places of significant figures.

For very long coils, this formula gives results a trifle too small

and the computation of an extra term is desirable. It is, however,

amply sufficient for the present purpose.

3. METHOD III.

SELF-INDUCTANCE IN TERMS OF ELLIPTIC INTEGRALS. EXACT FORMULA.

It is proposed to find the mutual inductance between two coaxial

helices, using the Neumann formula

M= r fco^i^^^
(14)

where ds and ds' denote elements of arc of the respective circuits, e

the angle between these elements, and r their distance apart. The
integral is to be taken over both circuits.

Let the equations of the two helices be respectively

:

y— a cos Q y' —A cos 0'

2— a sin

x^pe x'^p'6'
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where a and A are the radii of the two helices, p and/' their respec-

tive pitches, that is the amount advanced per radian of revohition,

the amount advanced in one complete turn being 2iTp. Ivfeumann's

formula, which in rectangular coordinates is

C C dx dx' -\-dy dy' -^dz dz'

becomes on substituting the required values

{// ^Aa cos {0- e')]de dO'M=
e,' Je,^{pO-p'ej^-A'^a'-2Aacos> {6-0') (^5)

This expression is unintegrable in terms of any known functions

and therefore the general problem proposed is not solvable. Let us

put/=/', i.e., make the two helices have the same pitch, then

, ,
{p'-^Aa cos{e-6')}de dO'

f f \P'-

^p\e-e'y-YA'-\-a^-zAa cos {6-e')

Change the variable, putting

We now have

M^ C f (p'^Aa cos ct>)dct>dct,'

JOr' Jo-y/p'f-\-a'^A'-2aA cos cf)

We can integrate this expression with respect to cp' giving, if

we make the number of turns an integral one, n (say),

JoV/<#>'+^'+^'-2^^ cos <j>

This integral is still unmanageable.

Putting/'=o, w^e obtain the mutual inductance between a circle

and a coaxial helix; equation (15) then becomes,

M= r r ^^ -

jo Jo-^/A'-^a'-

Qos{e-e')dede'

2 Aa cos {o-e^)^p'e'
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This equation has been integrated by J. Viriamu Jones.

Take as new variable
(f)
= 0—6' and put a^ = A^-\-a^—2 Aa cos (^,

we have
-9^2. r*9,^^ ^^g cl>.de.d(t>M

J-0 Jo ^fO'-\-a'

But we can find for every value of (that is, for every element of

the helix) an element on the circle corresponding to a constant value

of 6. Hence, if we integrate first with respect to 6 keeping </> con-

stant, and then with respect to <^ from o to 27r we shall obtain the

required integral. Thus,

,^ , ,. . ^dd
M-

' -.1 Aa cos (bi

e/o

1 ,Aa COS 4,^= \ d4> ^ log ^^'+ LJ'^'« ^V^ «' (16)

This expression is then the mutual inductance between a helix and

a coaxial circle, the circle being in the plane of one end of the helix.

Prof. J. Viriamu Jones ^ has found that this integral can be

reduced to the expression

M,=eiK+a)ck^^^+'^{F-n)^ (17)

F^ E^ and IT are the complete elliptic integrals of the first, second,

and third kinds, respectively, and

{A^af {A^af-^d''

^= axial length of helix,

— c^= — i-\-k^^ sin^yS, and sin y5= w-

To find the mutual inductance between a helix and a current

sheet, both circular and cylindrical, we may proceed in the follow-

iphil. Trans. Roy. Soc, vol. 182 (1891), A; Proc. Roy. Soc, vol. 03, page 192;

Phil. Mag., Jan., 1889.
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ing manner. Integrate the expression found for the mutual induct-

ance between a circle and a helix, thus making the circle develop

the cylindrical current sheet. If we call x the variable along the

axis of the current sheet, we easily see that the mutual inductance

between a circle and a coaxial cylindrical circular current sheet is

given by

r^xi r^2tT /^2Tr

.^ . . . . ., ^^ cos {e-e')Jf^X-2
/^27r /^2Tr

dx \ dd \ de'

J/^27r

f^x.2

I Aac

o 9y xi

rr
a\

I
cos cj)

^A'-^a'-2Aacos(e-e')+x'

cos <^ <f;i:

2'7rAa\ I cos <^ log (x^-{-^a^-\-x/)d<f)

I
cos (^ log {x^-{-^a^^Xj^'')d<f) (18)

If the circle is in the plane of the end of the current sheet x^= o

and the second integral of the last expression reduces to

X COS </) loga d<^

which when combined with the first integral gives

/^277

M—27rAa I cos

J
277

COS 4, \og(^^+^,+^y^
(,g)

Comparing this expression with equation (16) we immediately see,

since pO is the axial length of the helix, that the mutual inductance

between a circle and a coaxial helix is zdentzcalfy the same as that

between a circle and a coaxial current sheet of same axial length as

the helix and occupying the same position. This result was obtained

by Professor Jones, and appears to the writer to be a remarkable one.

It leads immediately to the conclusion that the mutual inductance
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between two coaxial current sheets is the same as that between a

current sheet and a coaxial helix of same axial length and radius,

and occupying the same position.

The writer has found an expression for this mutual inductance in

terms of elliptic integrals of all three kinds.

Integrate expression (i8) from x— x^ to x— x^

M--

2 IT.

dx
I

27rAacoscl> log^^^^+ Ji +
^^^'~-^-^'

)

where /(^)= ^ log (^+^i +^^_ V?Cp7^ (20)

and therefore /{^)'=y{~^)

If the axial length of the two current sheets be denoted hy 2m and

2/ respectively, and the distance apart of their mean planes by x^^

the expression becomes

M=27r Aa
I
cos (ji.dcj)] f {x^-\-l-^m)—f {x^-^l—m)^f{x^— l—m)

-/(^o-^+^O (20a)

Equation (20a), which expresses the mutual inductance between a

current sheet of length 2m and radius A and one of length 2/ and

radius <2, may be integrated in a manner similar to the simpler one

actually reduced.

The problem of the mutual inductance of two coaxial cylindrical

circular current sheets may then be considered to be completely

solved.
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If the two current sheets be made coincident in position and of the

same axial length, i. e., letting x^ — o^ and 2/= 2??2, and using the

relation (20) above, the equation reduces to

M—\irT A a I cos
(f)

. d(j>\ f {2.171)—f (o) (21)

As yet the two cylinders may differ in radii. Replacingy( 2/;/) and

fip) by their equivalents (see eq. (20)) the following equation is

obtained, and it remains to reduce it to elliptic integrals of standard

form.

M
4.7rAa

X27rcos cf> . d(l> ^J^^^^

X27r

iP)

i-Q) (22)

where <^= axial length.

We may now proceed to determine the above three integrals in

turn, designating them as P, Q^ and R^ respectively.

Integrating the first integral (P) by parts, a new expression is

obtained, of which the integrated portion vanishes at the limits,

giving:
.

P^b'Aa
r sin'

Jo a -yi a'

(j)d(p

+ 6-' (23)

Now make the following substitution

TT
(f)

Then

yjr^-—- or (p— iT—2^
4 A

sin (^= sin (77—21/^) = sin 2-v/r=2 sin a/t cos -v/r

cos (^ = cos (tt— 2y\r)= — COS 21/^=2 sin^-v/r— i

d(^— —2dyfr
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rrr ij^

The limits are now and - instead of 27r and o. If we call
2 2

2'^{A^aY-^b' (24)

4 Aa _4 Aa
^ =(A-^ay^d'-'~^

.__±Aa__
"^-{A^ay-'

the integral (23) may be written

I
sin^ ^/r COS^ yfrd'yjr16 /^'M^^ j sin

? (^+ «)'
I
(i-^' sii\^ (^+ «)^ I (i-^^ sin^ ^|r) Jj-^ sin^ ^

The value of this integral has been found by Jones ^ to be:

^- Aa '^X~k^+^^^-^>\

In Cayley's Treatise on Elliptic Functions, section 183, may be

found the following relation:

/^'2 sin ^ cos ^^(7^- n) = - -- /^(/^)i^(/^^ ^)+ ^(/^)i^(/^^ y8)+ /^/^)^(^' /S)

where

sin/3=:VL_^~^f_^ k'.^^-k'
,2

k' ^ k'

and —c^— — \^k'"-s\VL'^

by means of which the necessary integral 11 may be calculated.

To express the second part of the integral Q— I cos </> -yja^-^-b^ d(f>

put i/r^- —

®

22
then cos yjr= sin

®

2

Sm lir= COS ~
2

^Loc. cit.
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cos (f)=2 cos^ -—I
2

i + cos ^—2 cos^ -
2

a^j^b^^A''^a^^2aA^b''-2Aa (cos <^+i)

=.(A^af^b''-^Aa cos' ^

a^+Z''=<?'^ I -^ sin' -^^zX^-k' sin' ./r)

where /^' =—3— and is always less than unity.

gr=
I

5'^i- .^'sin'i/r (2 sin'A/r-l)(-2^i/r)

2"

This integral being an even function we may write

TT

Q = ^2
j

y'Iirplm^(2 sin' i/r-iy^/r

-/^'sin'i/r)

/^'sin'i/r

IT

d^if— 4.2
I
^i — /^' sin'o/r ^T^

Jo

TT T

Jo Jo

a-a+Gs, say (25)

where Ai/r= y i — /^'sin'^/r

Now by Bierens de Haan's tables of definite integrals,

Q, = S2l\F{k)-E{A (26)
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and

Q,= 8^k'~^{2^k')F{k)-2{i+ k')B{k)^ (27)

Both of these formulae have been verified independently by direct

reduction/

The second part of the integral Q = Qi— Q^— Q3 ^^ therefore

= ^^{2(1-^') ^ {^)+{^'- 2) E W} (28)

i? is expressed in the same way that Q is, excepting that d is put

equal to zero, which gives b= A-\~a and k^^= j-~—rg= c^. Inserting
{A -\- a)

these values, we obtain

^=f^\^-''^' ^ W-(^^+«^)
E (^ (29)

The problem then by this method is completely solved, as we have

M
47r Aa P-Q+-R

It was at first thought that instead of putting A = a for the coeffi-

cient of mutual inductance of two coincident current sheets, which

would give the self-inductance of a single such current sheet, it

might be found more accurate to compute the mutual inductance of

two such current sheets of radii a^r 2 and a— r 2^ where r is the

logarithmic mean distance of the cross section of the wire, a circle,

from itself. This is given ^ by r =0.7788/0 where p is the radius of

the section of the wire. More accurately it is r— p ^-^.

By direct calculation it is found that this refinement is unneces-

sary, the result being the same to seven significant figures whether

a be put equal to y^, or whether the above suggestion be followed.

^Jordan, Traits d'Analyse, II, 22.

^Maxwell, Elec. and Mag., Vol. II, page 324. Third edition.
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There is, however, a direct and important gain in simplicity by

putting a — A.

In this case c— i and c' — o in equation (24).

The equation for P then simplifies into

Q^^^{j-k-)F-(2-k^)l^ (30)

and

R^—-a
3

4(3!^

Hence

Z'=47ra^{/^-e+i?}

This is the self-inductance on the assumption that the current per

unit length of current sheet is unity. If there are n^ turns of wire

per unit of length in the coil, and unit current flows in each turn,

the corresponding current in the current sheet would be n^ units

instead of one, and as this current enters to the second power the

self-inductance of a cylindrical coil is

Z= 47r^V{^-G+^}

11

We may replace n^ by -7 and the equation becomes finally

This formula involves finding the complete elliptic integrals of

the first and second kinds only, a fairly easy matter, using Legen-

dre's tables.
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Calling 2a = d this equation may be reduced to the following,

suggested by the formula of Method IV. Hence, for the case con-

sidered the above equation (31) and the corresponding one of

method VI are identical and equal to

L^Yj}yP{d'-b')E^pb'F-d']^ (32)

where (^= diameter of cylinder= 2<2

<^= length of cylinder

d' d'

k is the modulus of the elliptic integrals E and F.

By computing, however, with both formulae (31) and (32) a valu-

able check on the work is obtained. This was done by the writer

before the equivalence of the two formulae was discovered.

This equivalence also, of course, gives a check upon the theo-

retical accuracy of both the formulae of this method and that of

method IV.

4. METHOD IV.

MUTUAL AND SELF INDUCTANCE BY MEANS OF ELLIPTIC INTEGRALS,
DUE TO KIRCHHOFF.

The following formula is an unpublished formula of Kirchhoff's

for the mutual inductance between two coaxial cylindrical current

sheets, symmetrically placed

:

I J
I

s

IT
I

I

i Li &+&!
I

4

I I

^S

I _J
Fig. 12.

Let a and a' be the radii of the internal and external solenoids,

respectively.
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b and b' the corresponding lengths.

71 and n' the total number of turns in each.

Then the mutual inductance between the two solenoids is given

by the following expression

:

b b'

where

c'-^2(^{a'-^a')-2{a'-ay^
(34)

and where

and

-\-ca^iT

c— m the expression lor V

c— — c' in the expression for V^

F and E are the complete elliptic integrals of the first and second

kinds respectively, to modulus k^ where

^aa'
k'^~.

c^j^(^a'^ay

P{q) and E{q) are the incomplete elliptic integrals of the first

and second kinds, respectively, to modulus k^ given by

k^— ~
2_|_/ /I \2 ?

their amplitude being given by the following

equations

:
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c
sm am q— ,

^ ; cos am q

a' -\-a
A am q ^c'-^(a'-ay

These integrals may all be found in the tables of Legendre, Traite

des Fonctions Elliptiques, Tome II.

This formula, which is an exact one, is very valuable, as it

expresses the mutual inductance between two symmetrically placed

solenoids in terms of elliptic integrals of the first and second kinds

only.

It is shown below to be equivalent to the equation of method III

for the case in which b— b'.

It is to be noticed that it is more general than the formula of

method III.

To find the self-inductance of a solenoid, we apply this formula to

the case of two identical solenoids identically placed, and compute

their mutual inductance. The formula simplifies very materially

under these circumstances as

b-b' b^b'
,— o— c and —c' — b.

2 2

The term containing the incomplete integrals drops out entirely

since it contains the factor {a!— a) which is zero. Putting 2a = d
we have

n^ d^ _ 7t^ d^ , .

F=4^7r-^=4^7r_ (35)

The term involving F drops out in V^ since the fraction multiplying

it contains in the numerator either <r, which is zero, or a'^—a'^

which is also zero.

Notice also that the last term of V^ equation (35), just cancels the

first term of equation {2)3)i leaving the following equation for the

self-inductance

:
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^=^'^Jj/('^'-*o^+/*'^-^j (36)

where the letters have the meanings already given.

This formula, as has been said before, is identical with the one

deduced in method III, and therefore they afford a check on each

other, not only numerically, but theoretically, as showing the cor-

rectness of the improved formula of KirchhofF.

The formula in its complete form was communicated to me by

Prof. Antonio Roiti, of Florence, to whom it was communicated by

Professor Kirchhoff in writing.

Professor Roiti ^ employed it in his calculation of the mutual

inductance of the coils used in his determination of the ohm in

absolute value.

5. METHOD V.

MUTUAL INDUCTANCE BY MEANS OF A CONVERGING INFINITE SERIES,
DEDUCED BY INTEGRATION OF A SERIES IN SPHERICAL HARMONICS,
DUE TO MAXWELL.

The self-inductance of an infinitely long solenoid per unit of length,

where n^ is the number of turns per unit length, is

6^ being the area of the cross section of the solenoid.

The mutual inductance between two coaxial circular cylindrical

solenoids of infinite length per unit of length is

M—A^ir7t^7i^ S

where 5 is the area of the smaller section; n^ and ;// are the num-

ber of turns per unit length for the two coils, respectively.

For a coil of finite length we must take into account the demag-

netizing effect of the ends. These ends act, as is well known, like

the ends of a magnet uniformly polarized axially. Since the ends

cause a demagnetizing effect, or in other words a decrease in the

induction because the field through one coil, due to unit current in

the other, is decreased, it follows that the expression

L— \ini^Sb

^ II Nuovo Cimento, vol. 12, page 60, 1882, and vol. 15, page 97, 1884.

24353—No. 1—06 9
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is an upper limit to the value for the self-inductance of a solenoid

of length b^ area 6^ and n^ turns per unit of length.

The longer the coil, in comparison with the area of its cross

section, the more nearly does this give the true value.

It is interesting to note that, since S—ira^^ the foregoing approxi-

mate formula for the self-inductance of a long coil may be written

L=2'rran^X27ran^b ^2)7)

or in words the easy rule:

The selfinductance of a long solenoid is approximately given by

multiplying the leiigth of wire in U7iit length of the coil^ by the. total

length of wire in the coil.

The following demonstration is taken from Maxwell: ^ In Thom-
son and Tait's treatise on Natural Philosophy, article 546, Example
II, is to be found the following expression for the potential of a

plane circular magnetic shell, at a point P (x^y^z)^ in terms of

spherical harmonics.

The P's are those zonal harmonics corresponding to the angle

shown in the figure.

f I r'

^ '

' 2 ^

Fig. 13.

I I r* I I 3 r^

2 4 6 <2'
r<,a

1 ^^ I I <^* I I 3 «^ ^ 1

27r 3 PgH i-i P,— r>a
2 r 2 4 r^ ^ 2 4 6 r' *

^Klectricity and Magnetism, II, p. 311.
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If we differentiate the second series with respect to r, we shall

obtain the radial component of the force. Now multiply by 2ir r^ dfi

2
and integrate from />t= i to 11= -^—

^
where A is the radius of the

larger of the two coils. This gives the coefficient of inductance of

a single winding of the outer solenoid due to the circular disk which

forms the end of the inner solenoid at a distance 2 from the positive

end.

To find it for all the windings integrate from 2= to 2= b^ the

length of the solenoids. Multiplying this by 7i^ n^ the effect of one

end of the inner solenoid is obtained in diminishing the coefficient

of mutual inductance as given for the case of infinite length. The
result is:

M—^ir^n^n^a^ (b—zAa) where

^^ A^b-r I. 3 I a' I A\
"""2 A 2. 42. 3^^V^ r^/

^2.4.6 4.5.^*1, 2 ^ r^ +2 r^y ^^ ^

where r' = ^'+^^
It appears then that when the solenoids are not infinitely long,

the length b must be diminished by ^4a at each end.

When the solenoid is quite long compared with its radius

_ I \ a^ I «*

''"2~l6Z'~i28Z*^
•••*

In computing self-inductance a—A and a= 0.4.2^^ = 0.4.2, approx.

Hence the self-inductance of a solenoid may be computed by the

simple formula

L= 27ran X 2'Kanb' (39)

Where b' ^ the value used in the calculation, is the length b dimin-

ished by 0.86 times the radius.

Applying formula (38) to a coil of the following dimensions we
obtain these results:

radius, <2 = 27.09 cm
length, b= 44. 1 2 cm

;2= 7 1 6 turns.
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The inductance found is 0.2163 henry, whereas the true inductance

is 0.2145 henry. The correction to the length in this calculation is

15.99 ^^s-

The simpler expression (39) gives results to only 30 per cent for

this case, but for long coils of length over ten times their diameter

it is accurate enough for rough experimental purposes.

It is thus seen that the equation (38) gives results on such a coil

as the one described, for example, to about i part in 100.

The formula of this method does not converge very rapidly for

coils as short as those to which it had to be applied, so that the

labor of extending it, while not very great, was thought unwarranted.

6. METHOD VI.

MUTUAL INDUCTANCE. ROITI'S FORMULA.

Professor Roiti has kindly communicated to me the following

unpublished expansion of Maxwell's formula of method V, which

he used in calculating the mutual inductance of two coils used in

his determination of the ohm. It has not been found convenient

as yet to verify this formula, but it looks very much simpler for

numerical calculation than the one just given in method V.

where .,^=(^)V^^ ./=(^)V^=

and where

a and A are the internal and external radii, respectively,

b and b^ are the respective lengths,

n and n' are the respective total numbers of turns.

The longer the coils in comparison with their radii the faster does

this series converge.
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7. DATA FOR CALCULATION.

ARBITRARY CORRECTION TO THE LENGTHS.

The coil lengths as given above (p. 103) were not used in the cal-

culations. The length of any coil was taken to extend from the

center of gravity of the last semicircle of wire on one end to the

corresponding point in the last semicircle at the other end. The

reasons for this are as follows : To take the length of coil from edge

to edge of wire is evidently taking a superior limit to the length,

w^hile to take the length to extend from the axis of the last wire on

one end to the axis of the last wire on the other is evidently using

an inferior limit to the length that should be employed. As for low

frequencies the current is almost uniformly distributed throughout

the cross section of the conductor, and it is the mutual effect of the

5'^-i

Fig. 14.

current filaments which produces the self-inductance, the assump-

tion made above seemed to the writer to be nearer the truth than

either of the above extreme cases.

This correction gave the value 0.0365 cm to be subtracted from

each coil length.

It occurred to the writer that this arbitrary but reasonable assump-

tion could be tested by a reduction to an extreme case. Suppose the

coil reduced to one turn, at what distance apart may we consider the

current filaments to be concentrated so that the mutual inductance

between them will give the actual self-inductance of the one turn?

The theory of the logarithmic mean distance says that this distance

is given by 0.7788 X radius of the wire, which for this case is 0.0248

cm ; but according to the assumption above made this distance w^ould

be 2 X radiusof the bare wire— .0365 cm = .0269 cm, which is in pretty

good agreement with the value 0.0248 derived above.

Or the following argument might be tried. What is the average

length of all the infinitely thin current sheets into which the area

of Fig. 14, considered as a current sheet with round ends, might be

divided? Calculation shows that the average length w^ould be

obtained by subtracting 0.0138 cm from the total length.
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How well does this apply in the limiting case of one turn? The
average length of current sheets into which a circle the size of the

wire may be divided is 0.0496 cm.

What is the length of the current sheet equivalent to the circle?

The theory of the logarithmic mean value says that the circle is

equivalent to two filaments at a distance apart of 0.0248 cm; and it

also asserts that the current sheet equivalent to this is given by the

equation

.0248= ^X0.2231

whence b— =0.111 cm and the agreement is not nearly so
o

good.

As the whole thing is arbitrary the former assumption has been

chosen as preferable to the latter and the lengths corrected accord-

ingly.

Taking account of the thickness of the insulation at both ends,

the correction to be subtracted from each coil length is

By the above theory 0.0365 cm
Two thicknesses insulation 0060

Total correction 0425

The difference in length in the current sheets calculated on these

two assumptions is 0.02 cm, or about i part in 2,000 of the total

length. This means about i part in 4,000 difference in the self-

induction.

Should a better value be suggested, the calculated values may be

corrected.

The average deviation of the mean of the length measurements

considered as measurements of a single invariable length, was for

the longest coil only about 0.005 cm, and for the shortest coil 0.003

cm, which is a degree of precision better than i part in 9,000 and i

in 4,000 for the two coils, respectively. In other words, the end

windings actually deviated from the mean length by only these

amounts on the average.

The value of the mean length is of course much more accurately

determined than this, as the average of the different measurements

represents the true mean length of the coil better than the average

deviations of them from the mean length as measured.



Coffin.-\ Absolute Standards ofInductance. ^ZZ

The data used in the calculations is contained in the following

table. The lengths of the sections are obtained from those on page

103 by subtracting 0.0425 cm, and the diameter is obtained from the

value given on page 99 by adding 0.0694, the thickness of the cov-

ered wire.

TABLE II.

Showing the Dimensions of the Several Sections of the Bureau of Standards Inductance

Standard.

Coil Number of turns Length in cm Diameter in cm

1 221 15.2922 54.1724

2 251 17.3140 54.1724

3 189 13.1520 54.1724

1+2+3 661 45.8432 54.1724

1+2 472 32.6487 54.1724

2+ 3 440 30.5085 54.1724

The ohmic resistances of the three coils are approximately as

follows:

Coil 1 21. 10 ohms
Coil 2 23. 85

Coil 3 17. 76

Total 62. 71

8. CLARK UNIVERSITY COIL.

The same general considerations apply to the measurements, cal-

culations, and data of the coil retained by Clark University.

The diameter compared with the standard rod w^as 0.00125 cm
larger than the 7nean diameter. The comparison of the rod with

the cylinder gave the following result.

Diam. (^.8, 6.5) = rod+.01 48 cm, with an average deviation of

the mean of .00011 cm, and

mean diam = rod -+.0148 cm— .0013 cm
= rod+ .oi35 cm.

The c^'linder and rod were both at the same temperature, I9?6 C,

and as the expansion of marble and steel is practically the same.
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these numbers require no correction to reduce to 20°, so that since

the length of rod is 54. 11 15 at 20° C, the mean diameter of the bare

cylinder at 20° is

54.1115 cm+0.0135 cm= 54.i250 cm

The diameter of the covered wire was .0617 cm
Of the bare wire, .0602 cm
Twice insulation, .0015 cm

The length measurements gave the following results reduced to

20° C (marble was at 25?36C, scale at 26?ioC).

Total coil length at 20° = 44.1548 cm, 716 turns.

lyonger half of coil at 20° 0=23.4397 cm, 380 turns.

Shorter half of coil at 20^0= 20.7151 cm, 336 turns.

In the first of these determinations the average deviation of the

separate measurements from the mean was 8 parts in 430,000 ; the

remaining two had deviations of about 8 parts in 200,000.

Correcting these lengths as explained above, 0.0369 cm is to be

subtracted from each coil length.

The data as used for calculation are here tabulated:

TABLE III.

Showing the Dimensions of the Sections of the Clark Standard of Inductance.

Coil
Number of

turns
Length coils from edge

to edge
Corrected for calcula-

tion
Diameter

A
B

A+B

380

336

716

23.4397 cm

20.7151

44.1548

23.4028 cm

20.6783

44.1179

54.1867 cm

54.1867

54.1867
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Using these data the following values of self-inductance were

obtained for the three coils, in henrys:

TABLE IV.

Showing the Values of Inductances of the Separate Sections, Computed by Three Different

Formulae.

Coil Method I Method II Method III

Ai+2

Bn-2

fA+B)i+3

0.0728935 henry

0.0876479

0.216234^

0.0728924 henry

0.0876483

0.216240

0.0728932 henry

0.0876488

0.216246

I This value is about 4 parts in 100,000 too small, as is expected in the use of the logarithmic
formula.

The ohmic resistances of the windings are given below

:

Coil A^

Coil A^

Coil B^

Coil B,

21.92 ohms

21.91

19.83

19-33

Total {A-^B) 82.99
1+3

The calculations were made by seven-place logarithms. Three

formulae were at first employed, which for convenience are given

below with references to places where they occur in the text. How-
ever, as two of these formulae (II and III) were found to be iden-

tical, the later calculations were made with but the first two.

In the following formulae,

^= diameter of the winding,

«= radius of the winding,

<^= length of the winding,

n — whole number of turns of wire,

N=\og ^
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!^?:/a'-^') i^t-iN-^yi See page ,.3.
1072 ^'\ 120/ 4194304 ^^\ 420/13

11. Z= -ir^^lpid^- b')E^pb'F- d\ See page 1 24.

In formula 11,/^— d^^h^ and the complete elliptic integralsE andF

are to the modulus ^ = 72 , /2= T2d -\-o p

III. Z=4^rf^Jjj|(/r-^)-^,[2(l-/fe^)^-(2-/SrO^]-«

See page 123.

A sample calculation by means of I and II is here given. The
labor is much diminished by carefully planning these calculations

and using the correct number of significant figures. The values of

the logarithms of all the constants of the formulae are also given.
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9. TEMPERATURE COEFFICIENT OF THE INDUCTANCE STANDARDS.

In very accurate work variation of temperature may have a

decided influence. The only way it can affect the self-inductance

of the standard coil is by a change in the length and the mean
radius.

These vary, for reasons stated above (page 104), with the same

temperature coefficient as that of marble, namely, about o.ooooi per

degree centigrade.

It is evident that these changes in dimensions may be allowed

for and the temperature coefficient of inductance computed for any

given coil.

To find the magnitude of this coefficient the following calcula-

tions were undertaken on coil A, of the Clark standards.

The self-inductance was calculated, making a change of o.i per

cent in the length but keeping the radius constant, and a coefficient

=--, was thus determined. Then by making an equal change in the

radius and keeping the length constant ^— was determined.

Then evidently,

dL= ^r^da 4- -^-jdb.
oa ob

for simultaneous changes in a and b as long as they are small.

The results w^ere that

.1 per cent increase in a produced .152 per cent increase in L

.1 per cent increase in b produced .052 per cent decrease in L

This means that

^--= .00491 henrys per cm

^= —.00194 henrys per cm

This shows that the length measurements on the radii should be

about 2.5 times as precise as those on the length to give the same

relative error in the computations.
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A change of i in 1,000 in both a and b would produce a joint

error in L of about i in 1,000. So that the inductance temperature

coefficient of this particular coil is about 4--ooooi per 1° C, as the

linear temperature coefficient is about +.00001 per 1° C. The tem-

perature coefficients of the other coils are approximateh' of this

same order. A reference to the table below will show just how

the coefficient^ varies for coils of different lengths. The coefh-

cients -^ have not as yet been calculated.

bL

Values of
L

1% change in a produces

a
Coil ^ b

1 1.436 15.29 cm
2 1.465 17.31

3 1.411 13.15

1+2+3 1.646 45.84

1+2 1.582 32.65

2+3 1.554 30.51

10. ON THE DISTRIBUTED CAPACITY OF A COIL.

Distributed capacity must not be confounded with the ordinary

electrostatic capacity of an insulated conductor. A coil of wire con-

sidered as an insulated conductor, has, of course, a definite electro-

static capacity, which is numerically measured by the quantity of

electricity necessary to raise the coil to unit potential.

To explain the idea of distributed capacity, consider a coil of a

single layer in which an electrical charge is oscillating. The period

of this oscillation has a value given by the formula

T^ 27r VZ^ C
where 7" is the period of a complete oscillation to and fro in seconds;

L^ the self-inductance of the coil for high frequency currents in

henrys and C^ the distributed capacity of the coil in farads. If T
and L^ are known, then the value of C^, may be computed by the

formula. This capacity, C^,, arises in the following manner:

On account of the rapidity of the oscillations, the distribution of

the moving charge is not uniform; this causes different portions of the
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same coil to be at different potentials for the time being, so that two

adjacent turns being at different potentials, a cha:^ge will accumulate

on them, for the instant, just as if they were insulated conductors

in the same relative position and charged to the same difference of

potential. Strictly speaking, every portion of the wire would be

at a different potential from every other portion, and to be exact

one should speak of adjacent portions of adjacent turns. The dis-

tribution of the potential upon the wires is connected with the

period, so that it follows that the distributed capacity is some func-

tion of the period. Such conditions give rise to a true electrostatic

capacity which helps determine the frequency of the oscillations.

The calculation of the value of this capacity is evidently a very

complex matter. It would be much larger for coils of many layers

than for a coil of a single layer with the same number of turns.

Paul Drude,^ in a most instructive and valuable paper, makes an

approximate theoretical calculation, thoroughly checked by experi-

ment, upon the value of the wave length X for the fundamental

oscillation in a coil of a single layer. By means of his results, the

fundamental periods for the two coils here considered may be calcu-

lated. The value of this capacity for single-layer coils is very small,

lyodge and Glazebrook^ estimated the value of the distributed

capacity of the coil they used in their experiments to be but a small

fraction (2 or 3 per cent) of the total value of the capacity they used,

and their coil was one of many layers in which one would expect

this capacity to be large.

Since Q, the capacity in the electrostatic system is —g times C^^

the same capacity in the electro-magnetic system, where

z;=:3X 10^^ cm sec~\

it follows that we may

V

write

2^^/

A

CV= 2,7V-i„C,„=

and therefore

2~ '^VA,C

In Drude's paper (pp. 32 1-323) we may obtain the value of X'2 for

any coil by the following formula: \ '^—f- ^, where / is the total

^Wied. Annalen, 9, p. 293. ^'j^rans. Camb. Phil. Soc, XVIII.
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length of wire in the coil, and where /^ is a function to be taken

from the table, and depending for a given wire, wound in a given

manner, upon the ratio of the length of the coil to its diameter.

Making these calculations, the following table is obtained

:

TABLE V.

Showing the Approximate Values of the Distributed Capacities of the Various Sections of the

Two Standard Coils.

[The values in the last column are probably correct to about 5 per cent. See also F. Dolezalek,

Wied. Ann. 12, p. 1142. 1903.]

Coil
Length
of coil

b cm

Num-
ber

turns
b/2r f

Length of
wire in cm

i A in cm L„in
henrys

Distrib.
Cap. in
cm

1+2+3 45.84 661 0.847 1.43 1.125X105 1.63X105 0.180 14.8

1+2 32.65 472 .604 1.67 .803 " 1.34 " .113 15.9

2+3 30.51 440 .563 1.75 .750 " 1.31 '' .102 16.9

2 17.31 251 .321 2.08 .427 '' .888 *' .0442 17.7

1 15.29 221 .282 2.12 .376 " .800 " .0362 17.8

3 13.15 189 .243 2.13 .322 " .708 " .0283 17.9

A+B 44.12 716 .814 1.47 1.240X10S 1.80X105 .216 15.0

A 23.40 380 .451 1.86 .647 " 1.20 " .0876 28.8

B 20.68 336 .382 1.95 .572 '* 1.12 " .0729 23.4

11. EFFECT OF DEVIATIONS FROM THE MEAN RADIUS.

Another point of interest in the calculation of the self-inductance

of so-called circular coils with any cross section, is the influence of

the deviations from circularity.

Max Wien ^ has made the following experiment. The self-induct-

ance of a circular coil was carefully measured, the coil was then

strained into an ellipse whose axes were in the ratio of two to three.

The self-inductance changed from 751.5 to 730.4 arbitrary units.

That such a large distortion should produce such a small variation

is surprising, and proves that small variations from true circularity

affect the self-inductance but little. In other words, a coil of ellip-

tical shape, or even of an irregular shape, if the ellipticity or irreg-

ularities were small, would have almost exactly the same self-

^ Wien Ann. 53.
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inductance as a truly circular coil, as long as they had the same

mean radius.

The mathematics of such a case would be formidable, but the

results of the experiments of Max Wien show that it is not worth

while to attempt any theoretical solution of the problem.

It can be shown also ^ that if the dimensions of the cross section of

a coil are small in comparison with the radius, it makes but very

little difference what the shape of the cross section is, as long as it

is of constant area. That is, a coil with the same cross section has

very closely the same self-inductance as a coil of the same mean
radius, but whose cross section is a circle or a polygon of the same

area.

Frolich^ has recently constructed a standard of self-inductance

consisting of a marble ring of rectangular cross section closely

wound with wire. It is wound so that every turn lies in a plane

passing through the axis of the ring. The self-inductance of such

a coil is well known to be

R^a
L— \n^a log R—a

where 2a is the side of the cross section, and R is the mean radius

of the ring.

It would seem that such a shape would offer great difficulties in

turning accurately. It certainly requires a large number of meas-

urements of inside and outside diameters, and of the width, both

inside and outside. The wire can not possibly be equally spaced on

the outside and inside, and the turning of the sharp corners, assumed

in the theory, is only approximately attained in practice. The
wound coil is liable to injury, as its weight, which is considerable,

must always bear on the wires.

It would seem that such a coil, although possible to construct, as

the fine work of Frolich has proven, is not the best form for a

primary standard of self-inductance.

Note:—In conclusion the writer wishes to acknowledge his indebtedness to Clark

University for the opportunity to carry out the research and for the facilities afforded,

and to Prof. A. G. Webster for his many fertile suggestions, his infinite patience, and

his support and encouragement throughout the investigation.

^ Statement of Lord Rayleigh, loc. cit. Coll. Papers, Vol. II, p. 15.

"^Frolich: Ann. der Phy. u. Ch. 63, 1897, p. 142.
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