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Abstract

The 2024 NIST Generative AI (GenAI) Pilot Study focuses on evaluating text-to-text (T2T) 

generation and discrimination tasks to assess the capabilities and limitations of generative 

AI models and AI detectors. The study aims to measure the effectiveness of AI-generated 

text in mimicking human writing and the ability of AI-based discriminators to distinguish 

between human- and AI-generated content. A curated dataset of article groups and asso-

ciated human- and machine-generated summaries served as the benchmark, with perfor-

mance assessed using statistical and machine learning-based metrics, including AUC (Area 

Under the Curve) and Brier scores.

The results indicate that while AI-generated summaries increasingly resemble human writ-

ing, detection models remain reasonably effective in distinguishing between them. Perfor-

mance varies significantly depending on the systems used, but there are some generators 

that could deceive most discriminators, and there are discriminators that could detect AI-

generated content from almost all generators. There is certainly room for improvement 

for both generator and discriminator systems. We also found that discriminator systems 

improved over the multiple rounds of testing.

Moving forward, future work will focus on refining evaluation methodologies, expanding 

multi-modal assessments across text, image, and audio domains, and developing standard-

ized benchmarking protocols. These efforts aim to provide a robust test and evaluation 

framework for assessing generative AI technologies and AI detector technologies, guiding 

both researchers and policymakers in understanding their evolving impact.

Keywords

Artificial Intelligence (AI), Generative AI, Discriminative AI, Deepfakes, Large Language Model 

(LLM), Forensics, Evaluation, Measurement, Provenance, Authenticity, Detection, Accu-

racy, and Robustness.
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1. Introduction

In recent years, digital content produced by generative artificial intelligence (AI) — such as 

deepfakes — has experienced unprecedented growth and spread across multiple modal-

ities, spanning images, videos, audio, text, and even code. This surge in generative AI 

presents both opportunities and challenges. The technologies have facilitated creative ex-

pression, enabling artists, designers, and writers to generate visually stunning content as 

well as fast professional written content. On the other hand, it has raised concerns regard-

ing the authenticity and integrity of media in the digital content world. With the recent 

advancements in generative AI technology, it is becoming increasingly difficult to distin-

guish AI-generated content from human-generated content in digital media.

The NIST Generative AI (GenAI) program is an umbrella program that supports evalua-

tions for research and measurement science in Generative AI across different modalities. 

It provides a platform for testing and evaluation to measure the performance of AI content 

“generators” and AI content “discriminators” (i.e., detectors). The platform is planned to 

support multiple modalities and technologies.

For the pilot study, the evaluation helps determine strengths and weaknesses of generative 

AI systems for the task of summarizing a collection of articles. Generator (G) teams are 

tested in two ways:

1. Their system’s ability to generate content that is indistinguishable from human-generated 

content. This is typically accomplished by inducing detectors to assign scores to AI-

generated content such that the score distribution for AI-generated content is sta-

tistically the same as the score distribution for human-generated content. This step 

is meant to help humans calibrate their trust in AI systems’ ability to perform gener-

ation tasks that are traditionally performed by humans.

2. Their system’s ability to generate content that can defeat skillful human and/or AI 

discriminators by leading them to claim the content is human-generated. This is 

typically accomplished by inducing detectors to assign lower detection scores to AI-

generated content than to human-generated content. This can be important from a 

national security and public safety perspective, especially when such tools are used 

by adversaries.

The pilot study also helps develop insights into how (via what means or cues) and when 

humans and AI can detect AI-generated content. Discriminator (D) teams are tested on 

their system’s ability to differentiate between AI-generated content and human-generated 

content.

In April 2024, NIST launched the GenAI Text-to-Text (T2T) pilot study. In the generator 

task, the objective of Text-to-Text Generators (T2T-G) is to automatically generate high-

quality summaries given a statement of information needed (“topic”) and a set of source 

articles to summarize. On the other side, the pilot Text-to-Text Discriminator (T2T-D) task 

is to detect if a summary was generated using a generative AI system or a human. This 

evaluation assumes completely AI-generated content, i.e., it ignores cases where humans 

1
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use AI tools to co-author content, such as rephrasing, grammar correction, editing, etc. 

Participants could join the study as part of a generator team, a discriminator team, or 

both.

This report outlines the task definitions, the evaluation protocol, the data used, the per-

formance metrics, and the evaluation results for both generators and discriminators. The 

insights gained from this evaluation will help in selecting future research directions and 

provide recommendations and guidance for a better understanding of generative AI and 

discriminative AI technologies, as well as the performance gap between them.

2. Related Work

Detection methods for AI-generated content are a constant cat-and-mouse game between 

the generation and detection communities. When a new detection method is developed, 

the generation community can quickly respond with a countermeasure. In particular, de-

tectors are often tied to specific generators and may not perform well on unknown ones. 

However, when a new generation method is developed, the detection community will of-

ten respond with new detectors capable of recognizing content created by the new gen-

eration method.

The NIST report on synthetic content [17] classified synthetic content detection techniques 

into three categories: provenance data detection (e.g., extracting watermarks or meta-

data), automated content detection (e.g., examining for inconsistencies in the content), 

and human-assisted detection (e.g., consulting domain experts).

In this section, we summarize insights from key references, highlighting current detec-

tion tools and the importance of initiatives such as NIST GenAI. To better understand AI-

generated content and its detection, we classify research into the following categories:

Tools for detecting AI-generated content: several tools for detecting AI-generated content 

have been developed to distinguish AI-generated content from human-authored materials. 

The research points to three primary methods: linguistic analysis, deep learning models, 

and metadata-based techniques.

• Linguistic and Statistical Analysis: Some detection tools focus on the distinct sta-

tistical patterns found in AI-generated text. Kumarage et al. [12], Penn State News 

[22], Shu et al. [24], Weber-Wulff et al. [29] highlight linguistic markers such as lack 

of coherence over long passages, repetitive structures, unnatural phrasing, and de-

viations in lexical richness and syntax. These methods are widely used but face lim-

itations as AI models improve their natural language generation capabilities.

• Deep Learning-Based Detection Models: Deep learning techniques form the back-

bone of most modern detection efforts. Adobe Content Authenticity Initiative (CAI) 

[1], DeepMind [3], DetectGPT [4], FakeCatcher [5], GPTZero [7], Harvard & MIT-IBM 

Watson Lab [8], Hive AI [9], Kirchenbauer et al. [11], Microsoft [16], OpenAI [19, 21],

Turnitin AI Detection [26] discuss neural network-based classifiers that analyze text 

and images, including: OpenAI’s GPT-Detector (e.g., trained to distinguish between 

2
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AI and human-generated text), MIT’s DeepFake-Text (e.g., used transformer-based 

models to spot unnatural sentence formations), Deepfake detection algorithms for 

images and videos (e.g., leveraged Convolutional Neural Networks (CNNs) and ad-

versarial training). These models show promise but require continuous updates as 

AI-generated content becomes more sophisticated.

• Metadata and Provenance-Based Techniques: Baly et al. [2], Turnitin AI Detection 

[26], Wardle and Derakhshan [28] explore metadata-based solutions, which include: 

Watermarking AI-generated content, Cryptographic signatures to trace content ori-

gins, Provenance tracking for images and videos (Adobe Content Authenticity Ini-

tiative). While effective, these solutions require widespread adoption to make a 

meaningful impact.

Role of Social Media and Information Dissemination: AI-generated information, whether 

factual or not, spreads rapidly through social media platforms. Research [6, 24, 27, 30] 

identifies key factors such as algorithmic amplification, echo chambers, and cognitive bi-

ases that exacerbate the problem. Detection tools are now integrating real-time monitor-

ing solutions to flag inappropriate content.

Fact-checking and Verification techniques: Despite technological advancements, human-

led fact-checking and verification remain crucial. Pennycook and Rand [23], Tan et al. 

[25], Wardle and Derakhshan [28] highlight hybrid approaches where AI assists human 

fact-checkers by pre-filtering likely incorrect information candidates, allowing experts to 

focus on verification and context.

These categories provide a holistic view of AI-related challenges, both positive and nega-

tive, the credible information problem, and the countermeasures available.

The National Institute of Standards and Technology (NIST) plays a vital role in evaluating 

AI-generated content detection. NIST evaluations do not take a position on whether the 

AI-generated content is factual or not. Our GenAI program focuses on benchmarking de-

tection tools, ensuring reliability and robustness. This initiative addresses key challenges, 

including: Evaluating model performance across different AI architectures and establishing 

benchmark test datasets for consistent detection results.

While detection tools continue to improve, challenges remain:

• Adversarial evolution: AI models learn to evade detection, requiring continual up-

dates to detection techniques.

• Scalability: Real-time, large-scale monitoring is resource-intensive.

• Legal & Ethical Considerations: Striking a balance between detection and privacy 

rights is crucial.

The battle against AI-generated deepfakes (information credibility) is ongoing. Research 

across multiple disciplines has produced effective detection methods, but as AI evolves, 

countermeasures may also need to evolve.
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The NIST GenAI initiative provides a much-needed evaluation framework for benchmark, 

ensuring that detection tools remain robust against ever-advancing generative models. Fu-

ture efforts may integrate AI detection with human oversight, policy intervention, and pub-

lic awareness campaigns to safeguard information integrity in the digital age.

Just like deepfake detectors, AI generators, and large language models (LLMs) have room 

for improvement. They should improve at understanding context, giving accurate informa-

tion, and reducing training bias. Enhancing creativity and clarity of AI-generated content 

will help in education, research, and content creation. Adding safeguards such as digital 

watermarks can prevent misuse. As AI-generated content becomes more advanced, mak-

ing it more transparent, fair, and trustworthy will ensure it benefits society.

3. Evaluation Framework

Figure 1. NIST GenAI, a generative adversarial paradigm.

The GenAI evaluation framework includes multiple rounds of evaluations for both gen-

erators and discriminators. The concept of the GenAI evaluation paradigm illustrated in 

Figure 1 is that generators create evolving AI data and provide it to discriminators for eval-

uation. The discriminators then determine if the output content is AI or human-generated, 

and provide performance results for each generator’s output. Generators, in turn, pro-

vide new, presumably improved, content for each discriminator’s evaluation. This pro-

cess continues in a recurring manner, resembling a generative adversarial paradigm. G-

participants, as well as D-participants, have opportunity to improve their systems to per-

form better against opposing systems than in previous rounds.
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Figure 2. GenAI multiple rounds of evaluation framework.

In the pilot study, as illustrated in Figure 2, generators had two rounds shown in brown, 

and discriminators had three rounds shown in blue. NIST provided initial source articles, 

organized by topic, to G-participants, who each submitted their AI-generated summaries to 

the G-leaderboard. NIST created a testset consisting of “genuine” human reference sum-

maries and generators’ AI summaries for discriminator evaluations. D-participants scored 

every summary in the testset and submitted their system output to NIST. NIST displayed 

its results on the D-Leaderboard.

In Round-1 discriminator evaluation, the NIST GenAI team used a baseline generator sys-

tem to create AI-generated summaries that detectors would have to discriminate from the 

human reference summaries.

Round-1 G-submissions provide AI summaries for Round-2 D-testset and Round-2 G-submissions 

for Round-3 D-testset. Although the process could continue, we concluded it at Round 3 

and report the results in this study. Using relevant metrics described in Section 6, we eval-

uate the performance of each generator based on the D-submissions. Simultaneously, we 

assess each discriminator’s performance on the G-submissions. At each round, both G and 

D-participants can see how their G-systems or D-systems are improving.

The submissions from Round-3 were completed on January 27, 2025. The entire collection 

of submissions, from both G-participants and D-participants over the three rounds, was 

analyzed. Details and analysis of the datasets and the G- and D-submissions are provided 

in Sections 7 and 8.
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4. Evaluation Infrastructure

This section provides a brief description of the NIST GenAI evaluation management and 

pipeline (backend and frontend).

4.1. Evaluation Management

4.1.1. Goal and Function within Evaluation

The evaluation management platform provides functionality and key components, sup-

porting a research and development cycle driven by adversarial evaluation. The platform 

allows for public-facing resource access, public- and private content management, and full 

evaluation cycle management including registration, submission access, and evaluation 

result access. Furthermore, conditions and requirements vary across challenge tasks and 

modalities, thus requiring mechanisms for constant adaptation to evaluation challenges. 

Lastly, the platform addresses core requirements such as availability, security, and usability, 

along with other NIST requirements. A high-level breakdown of requirements and features 

is provided below.

Platform Requirements

• Provide a content management system for the evaluation-driven research and de-

velopment cycle, utilizing an adversarial approach

• Manage and provide role-based access and functions

• Track participant progress

• Manage participant document and file access

• Handle dataset release and related licensing workflow

• Interface with various scoring backends and collect scoring results

• Manage result release and report rendering

• Provide an area for embedding additional micro-services like data visualization

Core Platform Features

• User accounts with roles (participant, liaison, admin, license-liaison, principal-investigator)

• Dynamic content management (front page, notices, public/private content pages)

• Dynamic asset management (public and private assets)

• Dynamic submission management and submission mode configuration

• Score pipeline integration: Each submission is automatically assigned scoring runs 

that are processed by the scoring backend

• Integration of aggregation pipeline: Scoring backend is capable of summarizing scor-

ing runs to track progress over time or provide a leader board

• Custom reports generation on the backend

• Business logic (BL) object-driven design: BL objects embed functionality that can 

be selected and chained to support dynamic use cases across various parts of the 

system

• Creation of platform Objects (e.g., Sites, Submissions, Licenses) that are parameter-

izable using JSON schema and modifiable using business logic
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4.1.2. Evaluation Platform architecture overview

Figure 3. System architecture showing frontend and backend components. The backend 

components can be scaled dynamically to match demand using a cloud cluster.

The evaluation platform is composed of a public-facing webapp frontend system and an in-

ternally operated and fully automated scoring backend system. The public-facing frontend 

application is run outside of the NIST firewall with no access to internal NIST infrastruc-

ture. Additionally, there is an independent instance of an R-shiny data visualization server 

as well as a PostgreSQL database instance, which are orchestrated to provide live scoring 

data visualization on the frontend by being updated as soon as scores are computed on 

the backend. The scoring backend is decoupled and resides within NIST premises to meet 

security requirements. Due to this system architecture, the scoring constantly polls the 

front end to keep the global application state synchronized.

4.1.3. Registration and Licensing process

To participate in NIST GenAI evaluation tasks, participants create an account on the web 

frontend. They need a login.gov account to do so. After signing up, participants need to 

complete the following workflow steps before being able to obtain the data and upload 

results:

• Provide participant information (e.g., name, country, affiliation, affiliation type)

• Create a team for licensing purposes

• Register for desired evaluation tracks

• Complete required agreements; the NIST GenAI team reviews these before the next 

step (see section 4.3)

• Obtain evaluation dataset(s) and generate system output

• Create a system slot on the submission dashboard
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4.1.4. Submission Process

Using the obtained evaluation dataset, participants generate system outputs to be evalu-

ated. Submissions can then be uploaded directly through the web platform via the sub-

mission dashboard, which presents a matrix of task phases across user systems. On the 

upload web platform, the participant specifies parameters tuned for each evaluation task 

if required. Once a submission is uploaded, the system automatically generates a parame-

terized scoring run, which is subsequently picked up by the scoring backend for processing. 

Upon completion of scoring, the results are uploaded back to the webapp and made avail-

able on the participant submission dashboard.

4.1.5. Analytics Backend

The scoring backend is responsible for processing all system submissions. The system pulls 

the submission file, scoring run information, and submission metadata, then processes the 

output using a linear pipeline of processing steps. If the submission scores successfully 

(i.e., all pipeline steps succeed), the scores will be uploaded to the evaluation platform, 

where they can be viewed by participants. If a step fails, the participant is provided with a 

detailed error available on the web app dashboard.

Besides static report cards with each submission, which are available only to participants 

on their dashboard, the system also provides real-time analytics in the form of a public, in-

teractive leaderboard. The leaderboard application draws data from the scoring database 

and is hosted on a separate R-Posit Connect instance within the virtual private cloud net-

work of the system. The leaderboard application is implemented in R-Shiny to allow for 

interactive data exploration and is updated automatically for each successfully scored sys-

tem output.

4.2. Evaluation Pipeline

4.2.1. Implementation Overview

The backend scoring system is operated behind the NIST firewall. It is utilizing a Cloud Clus-

ter (OpenStack or AWS), which allows for dynamic scaling of instances. Depending on the 

setup, it consists of one or multiple compute instances that have one-directional network 

access to the frontend web server. To orchestrate computation across instances we use 

an in-house developed software called “IndusR”. Within each instance, IndusR allows the 

creation of a set of independent agents that are orchestrated to process each submission 

independently. In addition to scaling the number of compute instances, the number of In-

dusR agents can also be scaled to accommodate increased workload during high-demand 

periods of evaluation. Each set of agents is executing a linear scoring workflow, which is de-

fined to carry out specific steps for each individual task’s phase, using a YAML configuration 

file. The agents manage the complete life cycle of system output scoring in an automated 

fashion by orchestrating tasks using a queuing system. Each submission is processed by ex-

ecuting a set of scoring pipeline steps. Each scoring step is expressed as a user-land script, 

8



NIST AI 700-1

June 2025

which can be implemented and leveraged in any programming language accessible on the 

instance. The pipeline either proceeds after each successful step or stops on a failed step.

Figure 4. The backend scoring system is a set of independently operating agents. The set of 

agents, as well as the hosting instances, can be scaled dynamically to match demand.

4.2.2. Scoring Process

Each scoring pipeline is configured individually per phase, but across tasks, the workflow 

can be generically described as follows:

• Pull scoring run, submission, and metadata from front end

• Setup scoring job and scoring parameters

• Validate submission file existence, syntax, and semantics

• Score system output

• Generate user report

• Ingest scores into scoring database

• Upload results to front end

4.2.3. Text-to-Text Validation and Testing

Each validation script for the Generator and Discriminator tracks ensures the correctness 

and consistency of system output submissions by verifying structural integrity and format 

compliance.

Generator Track Validation

The key validation steps for the Generator system outputs include:

• XML format validation: Uses xmllint to check if the submission file is well-formed 

and conforms to the DTD schema
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• Topic ID validation: Ensures that each GeneratorTopicResult has a unique topic at-

tribute and matches predefined topics from the reference .sgml file

• Elapsed time check: Verifies that the elapsedTime attribute contains only numeric 

values

• Word count enforcement: Ensures that each topic summary:

– Is not empty

– Does not exceed the maximum word count limit (250 words)

• Missing topic detection: Checks that all required topics from the reference .sgml file 

are included in the submission

Discriminator Track Validation

The key validation steps for the Discriminator system outputs include:

• Column integrity check: Ensures that all required columns (DatasetID, TaskID, Dis-

criminatorID, TaskID, DiscriminatorID, ModelVersion, FileID, ConfidenceScore) are 

present and correctly formatted.

• TaskID verification: Confirms that all entries belong to the ’detection’ task to main-

tain consistency.

• Model version consistency: Checks that only one unique ModelVersion exists in the 

submission.

• DatasetID matching: Ensures that DatasetID values in the submission match those 

in the reference index file.

• FileID coverage: Verifies that all files listed in the index are accounted for in the 

submission.

• Confidence score range: Ensures that scores are valid floating-point values between 

0 and 1.

• Score variability check: Detects cases where all detection scores are identical, which 

may indicate an issue with model predictions.

• Index column detection: Flags any unintended index columns that may have been 

included.

Testing Scoring System

To ensure the reliability and robustness of our scoring system, we implemented a struc-

tured testing framework that includes the following:

• Unit testing for the scorer: We developed automated unit tests to validate individ-

ual components of the scoring software, ensuring correctness in calculations and 

adherence to expected behavior.

• Test submissions: We generated a diverse set of valid and invalid test submissions to 

assess the scorer’s ability to handle different input scenarios, including edge cases 

and incorrect formats.

• We performed continuous updates and refinement: Regular update of the testing 

suite to align with software modifications, ensuring that changes in the scoring sys-

tem or platform are consistently validated before deployment.

By continuously refining our tests alongside software updates, we maintain evaluation ac-

curacy and catch potential issues early in development.
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4.2.4. Text-to-Text Scoring Software

Generator Track Scoring Software

The scoring software for the Generator track is responsible for evaluating the quality, con-

tent appropriateness, and overall reliability of AI-generated summaries. It follows a struc-

tured pipeline to ensure consistency and fairness in evaluation while integrating necessary 

preprocessing, validation, and scoring steps. The key components of the scoring pipeline 

are as follows:

• Parsing System Output Submissions: The software first processes and extracts the 

necessary information from system submissions. Submissions are expected in a pre-

defined format, and the parser ensures correct structure, extracting relevant fields 

such as system-generated summaries, metadata, and any additional information 

provided by participants.

• Post-processing of Summary Text Files: Once parsed, the system output undergoes 

post-processing to standardize the format and clean the text. This step includes 

removing extraneous whitespace, normalizing encoding issues, and preparing the 

summaries for subsequent validation and scoring.

• Sanity Check and Toxicity Filtering: To ensure content appropriateness, each gener-

ated summary is analyzed for potential harmful or toxic content. This is done using:

– Detoxify: A deep learning-based toxicity classifier that identifies harmful or 

offensive language.

– Toxin: An additional filtering mechanism to cross-check and mitigate toxicity 

risks.

Summaries flagged for toxicity are either filtered out or issued warnings to notify 

participants of potential concerns.

• Quality Evaluation Against Source Articles: The core scoring function computes the 

quality of AI-generated summaries by comparing them against the original source 

articles. The methodology and quality metrics used for this comparison are detailed 

in Section 6.2. These evaluations provide insights into fluency, informativeness, co-

herence, and factual consistency.

• Baseline Detector Performance Measurement: To provide a comparative bench-

mark, the scoring software also computes the performance of the NIST baseline 

detector on the provided generator. This includes:

– AUC (Area Under the Curve): Measures the classifier’s ability to distinguish 

between AI-generated and human-authored summaries.

– Brier Score: Evaluates the accuracy of the baseline detector’s probabilistic pre-

dictions.

These scores are displayed on the G-leaderboard to provide participants with a ref-

erence benchmark. The details of Generator features and performance metrics are 

discussed in Section 6.
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• Summary Packaging for Discriminator Track: The final stage involves preparing the 

generated summaries for use in the Discriminator track. The processed summaries 

are structured, formatted, and packaged before being delivered to Discriminator 

track participants, ensuring that they are correctly labeled and meet the required 

specifications.

Discriminator Track Scoring Software

The Discriminator track scoring software evaluates the effectiveness of AI-generated text 

detection systems by analyzing their detection scores and computing performance met-

rics. The scoring process integrates multiple inputs and generates statistical evaluations to 

assess the accuracy and reliability of each submission.

• Input and Data Sources: The scorer processes the following inputs:

– Summaries categorized into three groups:

* Human-authored summaries

* NIST-generated AI summaries

* AI-generated summaries from Generator track participants (G-participants)

– A list of detection scores assigned by the Discriminator system for each sum-

mary

– Index and reference files containing ground-truth labels and metadata to vali-

date scoring results.

• Computation of AUC and Brier Scores: For each Discriminator submission, the scorer 

evaluates detection performance using AUC and Brier Score.

• Sub-score Computation for G-submissions: In addition to overall performance, the 

scorer calculates sub-scores for each individual Generator submission. This allows a 

breakdown of how well the Discriminator system identifies AI-generated summaries 

across different Generator systems. These sub-scores contribute to an aggregate 

evaluation of Discriminator performance.

• Visualization and Performance Metrics: To provide a comprehensive performance 

analysis, the scoring software generates:

– ROC (Receiver Operating Characteristic) Curve – A graphical representation of 

the trade-off between true positive and false positive rates. See [14].

– DET (Detection Error Tradeoff) Curve – A detailed performance visualization 

focusing on error rates in detection. See [14].

These curves are displayed on the platform to help participants assess their system’s 

effectiveness in distinguishing human and AI-generated summaries. The details of 

Discriminator performance metrics are discussed in Section 6.

4.2.5. Text-to-Text Baseline Models

To establish a performance benchmark for both the Generator and Discriminator tracks, 

we implemented a set of baseline models using widely recognized generative AI systems. 
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These baselines provide reference outputs for validating the evaluation pipeline as well as 

evaluating the effectiveness of participating systems.

Generator Baseline Outputs

For text generation, we employed two large-scale language models to provide baseline 

outputs:

• GPT-3.5 Turbo: A widely used large language model (LLM) [31] optimized for effi-

ciency and speed, serving as a strong benchmark for AI-generated summaries.

• GPT-4: A more advanced model [20] with improved contextual understanding and 

coherence, offering a higher-quality baseline for comparison.

These models were used to generate summaries based on the same inputs as participant 

systems, allowing for direct comparison of output quality, fluency, and informativeness.

Discriminator Baseline Outputs

For AI-generated text detection, we selected two baseline models designed to assess whether 

a given text was human-written or machine-generated:

• RADAR-Vicuna-7B: A fine-tuned Vicuna model [10] designed for text authenticity 

detection, using transformer-based representations for classification.

• RoBERTa-base-openai-detector: A RoBERTa-based classifier [18] trained specifically 

for identifying AI-generated content, providing a robust benchmark for evaluating 

detection performance.

These models were used to score system output, measuring their effectiveness in distin-

guishing human-authored and AI-generated text.

By establishing these baselines, we ensure that all submitted systems are evaluated with 

the reference outputs, offering a clear point of comparison for both generative and dis-

criminative performance. The generator baseline output also provides data for evaluating 

discriminators in Round 1.

4.3. Administrative and Regulatory Requirements

Evaluations conducted at NIST involve several administrative and regulatory requirements 

to ensure a smooth, secure, and legally compliant process in which the roles and respon-

sibilities of both NIST and participants are clearly defined and understood by all. The re-

quirements necessary in the context of GenAI are briefly described below. The GenAI team 

has developed internal best practice documentation to facilitate the process for these re-

quirements in the future.

4.3.1. Registration

To participate in a GenAI evaluation, a participant should register and create a profile on 

the GenAI website (https://ai-challenges.nist.gov/genai). A login.gov email address should 

be used. During registration, the participant provides their name, country, affiliation, af-
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filiation type, then creates a team or joins an existing one, then registers for the desired 

task(s).

Registration by a non-US participant may be subject to additional vetting steps before ap-

proval for participation is given.

4.3.2. Data Usage Agreements

For both the Generator and the Discriminator tracks, NIST provides data that participants 

process. The rules governing permissible use of this data are outlined in a data usage 

agreement (DUA) that participants are required to complete and return before participa-

tion is granted. The GenAI DUA was developed in coordination with NIST’s Office of Chief 

Counsel (OCC).

4.3.3. Data Transfer Agreement for Generators

The evaluation structure foresees output provided by Generator participants to be used 

as evaluation material downstream for Discriminator participants. For this reason, a Data 

Transfer Agreement (DTA) between NIST and the Generator providing data to NIST is being 

used. Such a process was developed and is completed in coordination with NIST’s Technol-

ogy Partnerships Office (TPO, https://www.nist.gov/tpo). Completion of the DTA by both 

the Generator participant and NIST is necessary for participation in the Generator track.

4.3.4. Human Subjects Research Determination

The entire protocol for the GenAI pilot study was submitted to NIST’s Research Protection 

Office (RPO, https://www.nist.gov/adlp/research-protections-office) with the title “Gen-

erative AI Challenge” and assigned number ITL-2023-0644. It received a determination of 

exempt human subjects research.

4.3.5. Software Usage Approvals

Any non-NIST software or tools used by NIST to generate evaluation data should be either 

approved and available at NIST already, or go through an approval process that includes:

• A review of the software’s terms of service or license, and a potential requirement to 

enter into a terms of service addendum that the provider agrees to after negotiation. 

This process is done in coordination with legal experts at NIST’s OCC.

• An IT security approval for use of a Low-Risk Internet Service (LRIS) for the use case of 

GenAI. This process is done in coordination with NIST’s Office of Information Systems 

Management (OISM, https://www.nist.gov/oism).

5. Tasks

The primary goal of the pilot GenAI evaluations is to understand system behavior for de-

tecting AI-generated versus human-generated content. This includes characteristics of un-
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detectable AI-generated content, how human content differs from AI content, and how the 

conclusions of the task can provide guidance to end users to help differentiate between 

the two types of content they may encounter regularly. This pilot evaluation does not ad-

dress the differentiation between “factual” and “non-factual” semantic content; however, 

this remains a potential topic of interest for future challenge problems.

5.1. Text-to-Text Generators (T2T-G)

Teams participating in the Text-to-Text Generators (T2T-G) task were given the following 

set of instructions for their task:

Given a topic and a set of about 25 relevant documents as input, create from the 

documents a brief, well-organized, fluent summary output which answers the need 

for information expressed in the topic statement. NIST human assessors developed 

topics of interest. Each assessor created a topic and chose a set of 25 documents 

relevant to the topic. The testing dataset documents came from a corpus comprising 

multiple newswire articles from the website https://duc.nist.gov/. G-participants 

should assume that the target audience of the summary is a supervisory information 

analyst who needs the summary to inform decision-making. 

• All processing of documents and generation of summaries should be auto-

matic.

• The summary can be no longer than 250 words (whitespace-delimited to-

kens). Submissions with summaries longer than 250 words will not be ac-

cepted by the G-validator.

• No bonus will be given for creating a shorter summary.

• No specific formatting other than linear is allowed (i.e., plain text).

There will be about 45 topics in the test data for generator teams. This set of 

summaries from all generator teams will serve as the testing data for discriminator 

teams, who will work on detecting whether the written content is human-generated 

or AI-generated. The summary output will be evaluated by determining how easy or 

difficult it is to discriminate AI-generated summaries from human-generated sum-

maries, i.e., the goal of generators is to output a summary that is indistinguishable 

from human-generated summaries.

5.2. Text-to-Text Discriminator (T2T-D)

The Discriminators received testsets consisting of AI-generated and human-generated sum-

maries but did not receive the source articles. Their task was to detect if a target text sum-

mary was generated using large language models (LLMs) such as ChatGPT or was written by 

a human. For each T2T-D trial consisting of a single summary, the T2T-D detection system 

should render a detection score (a real number between 0 and 1), with higher numbers 

indicating the target text summary is more likely to have been generated using LLM-based 

models. The primary metric for measuring detection performance is the Area Under the 

Receiver Operating Characteristic (ROC) Curve (AUC) as described in Section 6.
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6. Performance Metrics

6.1. Discriminator Metrics

This section describes the metrics that are used for measuring the Discriminator system’s 

performance.

6.1.1. Receiver Operating Characteristic (ROC)

The receiver operating characteristic (ROC) curve is a graphical visualization of discrim-

inator performance across all detector score thresholds. Macmillan and Creelman [13] 

provides detailed information about ROC curves for system evaluation. The curve can be 

drawn by calculating and plotting the true positive rate (TPR) and false positive rate (FPR) 

at different thresholds. In what follows,

• TP stands for True Positive (those correctly detected as AI-generated),

• FN stands for False Negative (those incorrectly detected as human-generated),

• FP stands for False Positive (those incorrectly detected as AI-generated), and

• TN stands for True Negative (those correctly detected as human-generated).

The vertical axis is the True Positive Rate (TPR), where TPR=TP/(TP+FN), and the horizontal 

axis is the False Positive Rate (FPR), where FPR=FP/(TN+FP), which is also known as False 

Acceptance Rate or False Alarm Rate.

6.1.2. Area Under the ROC curve (AUC)

The area under the ROC curve (AUC) is a score metric for the detection system. The AUC 

score quantifies the overall ability of a system to discriminate between two classes. The 

AUC value of a system output is a number between 0 and 1. A system no better at iden-

tifying true positives than random guessing has an AUC of 0.5. A perfect system (no false 

positives or negatives) has an AUC of 1. Partial AUC (pAUC) is AUC at a specified False 

Positive Rate (FPR).

6.1.3. True Positive Rate (TPR) at False Positive Rate (FPR)

Another score metric used for the detection system is True Positive Rate (TPR) rate at a 

specified False Positive Rate (FPR), abbreviated as TPR@FPR=x. In our evaluations we use 

TPR@FPR=0.1.

6.1.4. Detection Error Tradeoff (DET) and Equal Error Rate (EER)

The Detection Error Tradeoff (DET) curve is used as one of the graphical performance anal-

ysis tools [15]. The horizontal axis is the False Positive Rate (FPR), and the vertical axis is 

the False Negative Rate (FNR). [14] provides detailed information about DET curves for de-

tection system evaluation. Equal Error Rate (EER) is the point at which the False Positive 

Rate (FPR) and False Negative Rate (FNR) are equal.
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6.1.5. Brier Score

The Brier Score (BS) can be thought of as a cost function that measures how far system 

predictions are from the true values using ground-truth known data. It measures the mean 

square error between the predicted probability pi assigned to the possible outcomes for 

an event i and the actual outcome oi:

BS =
1
n

n

∑
i=1

(pi −oi)
2

where pi is the predicted probability of occurrence of the event, and oi is equal to 1 if 

the event occurred (target) and 0 if it did not (nontarget). This definition assumes that 

the prior probability that event i is AI-generated is 0.5 for each i. If this prior probability 

is known to be λ , the definition remains valid as long as the test examples are chosen 

“randomly” from the population of examples of which a proportion λ  is AI-generated. If 

the number of AI-generated examples is n1 and the number of human-generated examples 

is n0 in the testset, where n1 and n0 are selected by the experimenter, then the definition 

of BS requires the following modification:

BS =
λ

n1

n1

∑
i=1

(pi −1)2 +
1−λ

n0

n0

∑
i=1

(pi −0)2.

BS is the sum of two terms. The first term captures the system performance on a set 

of examples known to be targets (i.e., AI-generated). This term may be labeled ‘BrierT’ 

(Brier score from Targets only). The second term captures system performance on a set 

of examples known to be nontargets (i.e., human-generated). This term may be labeled 

‘BrierN’ (Brier score from nontargets only). Thus,

BrierT =
1
n1

n1

∑
i=1

(pi −1)2

and

BrierN =
1
n0

n0

∑
i=1

(pi −0)2.

Consequently, we have

BS = λ BrierT+(1−λ ) BrierN.

In practice, λ  is seldom known and it is customary to use λ = 1/2 in the definition of BS. 

In this case, BS is simply the average of BrierT and BrierN.

The goal for discriminator systems would be to get a high AUC score (closer to 1 is better) 

and low BrierT scores (closer to zero is better) against all participating generator systems 

and low BrierN scores for human-generated content.
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6.2. Generators Metrics

There are two distinct ways in which the success of generators can be measured.

1. The system’s ability to generate content that is indistinguishable from human-generated 

content. This is typically accomplished by training detectors to assign scores to AI-

generated content such that the score distribution for AI-generated content is sta-

tistically the same as the score distribution for human-generated content. For this 

scenario, the system AUC score should be around 0.5.

2. The system’s ability to generate content that can mislead human and/or AI discrim-

inators to claim the content is human-generated. This is typically accomplished by 

training detectors to assign lower detection scores to AI-generated content than to 

human-generated content. In this scenario, the AUC score for the system will be be-

tween 0 and 0.5. Also, BrierT scores would be closer to 1; that is, detection scores 

would be closer to zero.

Thus, the goal for generator systems could be either (a) to achieve a AUC score close to 

0.5 (for human-like performance) or (b) to drive down the discriminator AUC score (below 

or equal to 0.5 is better) and drive up the discriminator BrierT scores for AI-generated 

content against all participating discriminator systems (for misleading detector systems 

into classifying AI generated content as human generated and vice versa).

In some situations, we will also use a metric we call ‘BrierMax’, which is the maximum of 

BrierT and BrierN. Since the goal of discriminators is to drive down both BrierT and BrierN, 

a lower BrierMax score is better for discriminators.

After each round of the GenAI evaluation process, we report AUC and Brier scores for Gen-

erators and AUC, EER, Brier, AUC@FPR=0.1, TPR@FPR=0.1, and TNR@FNR=0.1 for Discrim-

inators in our leaderboard. We also have metrics of BrierT, BrierN, and other generator 

content quality measures, which are described in Section 6. To provide a comprehensive 

understanding of the system’s performance, we used AUC, BrierT, and BrierN scores for 

following data analysis.

6.2.1. Assessment of the Quality of AI-generated Summaries

As stated in Section 2.1, our main interest is in evaluating the ability of humans and state-

of-the-art (SOTA) algorithms to discriminate between AI-generated summaries and human-

generated summaries. However, there are many metrics available in the literature that 

attempt to evaluate the quality of the summary generated by AI or by a human. This eval-

uation is done by comparing the summaries with the source documents. This evaluation 

can also be performed by comparing the selected features of AI-generated summaries with 

the same features of human-generated summaries based on various attributes, including 

those that arise in the context of natural language processing. The metrics listed below 

have been proposed in the literature for such assessments. A subset of the following au-

tomatic G-metrics will be adopted to evaluate G-participants’ data outputs:
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• Syntactic Evaluation: Automatic analysis of syntactic complexity. https://www.benj

amins.com/catalog/ijcl.15.4.02lu

• BERTScore (Bidirectional Encoder Representations from Transformers Score): Simi-

larity score for each token in the candidate sentence with each token in the reference 

sentence using contextual embeddings. https://arxiv.org/pdf/1904.09675.pdf

• BLEU (BiLingual Evaluation Understudy): A metric based on n-gram overlap de-

signed for machine translation evaluation. This score is based on the idea of ‘mod-

ified word n-gram counts” when quantifying ‘precision” (the number of words in a 

candidate sentence that appear in a reference sentence). The BLEU score is a geo-

metric average of modified n-gram counts for n = 1,2, ...,N (N pre-assigned) penal-

ized by what the authors call a “brevity penalty” (BP). https://aclanthology.org/P02

-1040.pdf.

• METEOR (Metric for Evaluation of Translation with Explicit ORdering): A machine 

translation evaluation metric based on a generalized concept of unigram matching 

between the machine and human reference translations. This uses an alignment 

process between a reference document and a candidate document and then cal-

culates a “penalized” F-score, where the F-score is a weighted harmonic mean of 

precision and recall. Unlike BLEU, METEOR uses not only exact matches, but also 

stemmed matches, synonym matches, and paraphrase matches to improve flexibil-

ity.  url https://aclanthology.org/W05-0909.pdf.

• CHRF (Character n-gram F-score): A metric based on character n-gram F-score. ht

tps://www.statmt.org/wmt17/pdf/WMT70.pdf.

• SummaQA: A metric based on Question Answering. https://aclanthology.org/D19

-1320.pdf

• SUPERT (SUmmarization evaluation with Pseudoreferences and bERT): A metric 

based on selected salient sentences from the source documents, using contextual-

ized embeddings and soft token alignment techniques. This metric measures the 

relevance of a summary in two steps: (i) identifying the salient information in the 

input documents to build a pseudo reference summary, and (ii) measuring the se-

mantic overlap between the pseudo reference and the summary to be evaluated. 

https://aclanthology.org/2020.acl-main.124.pdf

• BLANC (Bacronymic Language model Approach for summary quality estimatioN): 

A measure of the performance boost gained by a pre-trained language model with 

access to a document summary while carrying out its language understanding task 

on the document’s text. https://arxiv.org/pdf/2002.09836.pdf

• Misc. statistics (extractiveness, novel n-grams, repetition, length): https://aclant

hology.org/N18-1065/

We intend to use these metrics to investigate the possibility of building an automatic clas-

sifier to discriminate between AI-generated summaries and human-generated summaries. 

We will investigate the possibility of a fusion metric that is a good discriminator. Discrim-
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ination capability will be assessed using ROC curves (or DET curves) constructed from our 

empirical data.

7. Data and Submissions

7.1. Data

Generators are evaluated on two rounds of submissions, while Discriminators are evalu-

ated on three.

In the first round of submissions from the generators (referred to as G-round-1), the G-

participants were provided with 10 topics below selected from a total of 45 topics, along 

with a set of 25 relevant documents for each topic.

G-round-1 topics:
"topic_3130", "topic_3693", "topic_4745", "topic_4803", "topic_4936",
"topic_5089", "topic_5246", "topic_5760", "topic_6609", "topic_9024".

In G-round-2, the G-participants were provided with all 45 topics, which included the ad-

ditional 35 topics that were not provided in the first round. The additional 35 topics are 

shown below.

G-round-2 topics:
"topic_0421", "topic_0923", "topic_1350", "topic_1526", "topic_2220",
"topic_2438", "topic_2840", "topic_3674", "topic_4283", "topic_4322",
"topic_4380", "topic_4600", "topic_4786", "topic_4793", "topic_5007",
"topic_5138", "topic_5567", "topic_5611", "topic_5940", "topic_6728",
"topic_7551", "topic_7793", "topic_7798", "topic_7834", "topic_8208",
"topic_8292", "topic_8723", "topic_8944", "topic_8976", "topic_9102",
"topic_9170", "topic_9182", "topic_9430", "topic_9494", "topic_9856".

For evaluating discriminators’ system across the three rounds, three testsets of summaries 

were created which we refer to as testset-1, testset-2, and testset-3.

Testset-1 consisted of AI summaries generated by the NIST GenAI team (NIST baseline gen-

erators: NIST-gpt3.5 and NIST-gpt4) on 10 topics out of a total of 45 available topics and 

used for the first round of discriminator evaluation (D-round-1). The 10 topics for D-round-

1 are the same as those from G-round-1.

D-round-1 topics:
"topic_3130", "topic_3693", "topic_4745", "topic_4803", "topic_4936",
"topic_5089", "topic_5246", "topic_5760", "topic_6609", "topic_9024".

For each topic, 4 variations of AI-summaries were created. NIST-gpt3.5 could only create 

AI summaries for 6 out of the chosen 10 topics (topic_3130, topic_4745, topic_4936, 

topic_5246, topic_6609, topic_9024) due to token limitations. Four variations of hu-

man summaries (by 4 different human summarizers) per topic were also included for these 

10 topics. Altogether, there were 104 summaries in testset-1 (24 AI summaries from NIST-

gpt35, 40 AI summaries from NIST-gpt4, and 40 human summaries).
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Testset-2 consisted of AI summaries generated by G-participants on the 10 topics consid-

ered for testset-1, along with testset-1 itself. Each submission from each G-participant 

contained only one summary per topic (no variations). The NIST GenAI team considered 

25 topics (10 topics from testset-1 and 15 additional topics) for which AI summaries were 

created with 4 variations for each considered topic. The 15 additional topics considered 

by NIST-gpt4 were

D-round-2 topics:
"topic_1350", "topic_2840", "topic_3674", "topic_4283", "topic_4322",
"topic_4380", "topic_4793", "topic_5007", "topic_5567", "topic_5611",
"topic_8208", "topic_8292", "topic_8723", "topic_9430", "topic_9494".

NIST-gpt3.5 could only create AI summaries for 9 of these additional 15 topics (shown be-

low) due to a token limitation.

"topic_1350", "topic_3674", "topic_4283", "topic_4380", "topic_5007",
"topic_5567", "topic_5611", "topic_8292", "topic_8723".

Four variations of human summaries (by 4 different human summarizers) per topic were 

also included in this testset. Altogether, there were 530 summaries in testset-2 (270 AI 

summaries from external G-participants, 60 AI summaries from NIST-gpt35, 100 AI sum-

maries from NIST-gpt4, and 100 human summaries).

Testset-3 was constructed using the 270 AI summaries from the external G-participants 

from testset-2 and an additional 945 AI summaries (1 AI summary per topic for each of 

the 45 topics by each of 21 G-submissions). NIST-gpt35 generated 108 AI summaries (4 

variations per topic for 27 topics – due to a token limitation, only 27 out of the 45 topics 

could be processed by NIST-gpt35). These 27 topics are listed below.

"topic_0421", "topic_0923", "topic_1350", "topic_2220", "topic_3130",
"topic_3674", "topic_4283", "topic_4380", "topic_4600", "topic_4745",
"topic_4936", "topic_5007", "topic_5138", "topic_5246", "topic_5567",
"topic_5611", "topic_5940", "topic_6609", "topic_7551", "topic_7798",
"topic_8292", "topic_8723", "topic_8944", "topic_8976", "topic_9024",
"topic_9102", "topic_9856".

NIST-gpt4 generated 180 AI summaries (4 variations per topic for all 45 topics). A total 

of 180 human summaries (4 different human summarizers per topic for all 45 topics) were 

also included in this testset. This resulted in a total of 1683 summaries (1503 AI summaries 

and 180 Human summaries) in testset-3. The full list of 45 topics is shown below.

D-round-3 topics:
"topic_0421", "topic_0923", "topic_1350", "topic_1526", "topic_2220",
"topic_2438", "topic_2840", "topic_3130", "topic_3674", "topic_3693",
"topic_4283", "topic_4322", "topic_4380", "topic_4600", "topic_4745",
"topic_4786", "topic_4793", "topic_4803", "topic_4936", "topic_5007",
"topic_5089", "topic_5138", "topic_5246", "topic_5567", "topic_5611",
"topic_5760", "topic_5940", "topic_6609", "topic_6728", "topic_7551",
"topic_7793", "topic_7798", "topic_7834", "topic_8208", "topic_8292",

21



NIST AI 700-1

June 2025

"topic_8723", "topic_8944", "topic_8976", "topic_9024", "topic_9102",
"topic_9170", "topic_9182", "topic_9430", "topic_9494", "topic_9856".

7.2. Submissions

A total of 172 entities from 13 different countries initially registered for the evaluation. 

However, a total of 6 G-teams and 11 D-teams from 14 organizations, which included 

academia, industry, and government, ultimately participated in the first pilot study of GenAI 

T2T. All participant information, including their institution and country details, was self-

reported.

7.2.1. Generators

Table 1 shows which G-teams participated in G-round-1 and G-round-2. For generators, 

a total of 48 valid submissions (without duplicates) were received, 27 for G-round-1 and 

21 for G-round-2. Figure 5 illustrates the submission count per team for each round for 

generators.

Table 1. G-teams participation summary. Six teams participated in G-round-1. Of these 6, 

only 3 teams participated in G-round-2.

 G-Team  G-round-1  G-round-2

 0782f  Yes  No

 0dea0  Yes  No

 6fc49  Yes  Yes

 804fe  Yes  Yes

 87a8c  Yes  Yes

 aa872  Yes  No
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Figure 5. GenAI T2T G-submission count per team

In G-round-1, there were six G-participants identified using the labels (“0782f”, “0dea0”, 

“6fc49”, “804fe”, “87a8c”, “aa872”). In addition, there were two NIST baseline generators:

NIST-gpt35 and NIST-gpt4. The G-participants list and their submission IDs are given in 

Table 10 in Appendix-A.

In G-round-1, the G-participants were given 10 topics (the same topics as in Discriminator 

round-1). Not counting the NIST baseline submissions, there were a total of 27 submis-

sions, each submission consisting of one AI summary for each of the 10 G-Round-1 top-

ics. Thus, a total of 10 summaries were presented as part of each submission by each 

G-participant. In addition, NIST-gpt3.5 and NIST-gpt4 each submitted 4 summaries per 

topic. These two G-baselines considered 25 topics (10 from Discriminator round-1 and 15 

new topics), of which GPT3.5 could only generate summaries for 15 topics due to token 

limitations.

The topics given to GPT4 are shown below.

Testset-1 topics
 "topic_3130", "topic_3693", "topic_4745", "topic_4803", "topic_4936",
 "topic_5089", "topic_5246", "topic_5760", "topic_6609", "topic_9024"

Testset-2 topics
 "topic_1350", "topic_2840", "topic_3674", "topic_4283", "topic_4322",
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 "topic_4380", "topic_4793", "topic_5007", "topic_5567", "topic_5611",
 "topic_8208", "topic_8292", "topic_8723", "topic_9430", "topic_9494"

GPT3.5 used only the following subset of 15 (out of the 25) topics.

Testset-1 topics
"topic_3130", "topic_4745", "topic_4936", "topic_5246", "topic_6609",
"topic_9024".

Testset-2 topics
"topic_1350", "topic_3674", "topic_4283", "topic_4380", "topic_5007",
"topic_5567", "topic_5611", "topic_8292", "topic_8723".

In G-round-2, there were 3 G-participants and two NIST baseline Generators (NIST-gpt3.5 

and NIST-gpt4). There were a total of 21 G-participant submissions. In addition, NIST-

gpt4 submitted 180 AI summaries (45 topics with 4 summaries per topic) and NIST-gpt35 

submitted 108 AI summaries (4 summaries for each of 27 of the 45 topics; token limits pre-

vented NIST-gpt3.5 from producing summaries for the remaining 18 topics). See Table 12 

in Appendix-A for the details.

7.2.2. Discriminators

Table 2 shows which D-teams participated in D-round-1, D-round-2 and D-round-3.

Table 2. D-teams participation summary. 11 teams participated in D-round-1. Of these 11, 

only 8 teams participated in D-round-2. Of these 8, only 6 participated in D-round-3. In 

addition to these, NIST made a submission using a baseline, but this is not shown in this 

table, but it is shown in Figure 6

 D-Team  D-round-1  D-round-2  D-round-3 

 0dea0  Yes  No  No 

 18126  Yes  Yes  Yes 

 29d48  Yes  Yes  Yes 

 6655b  Yes  Yes  Yes 

 6fc49  Yes  Yes  No 

 804fe  Yes  Yes  Yes 

 87a8c  Yes  Yes  Yes 

 993ad  Yes  No  No 

 9de37  Yes  Yes  No 

 b3cd9  Yes  Yes  Yes 

 d718e  Yes  No  No 
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Figure 6. GenAI T2T D-submission count per team

For discriminators, a total of 348 valid submissions (without duplicates) were received, 

with 50 for the D-round-1, 137 for the D-round-2, and 161 for the D-round-3 (note: one of 

these 161 submissions is from a NIST baseline algorithm). Figure 6 illustrates the submis-

sion count per team for each round for discriminators, respectively.

In D-round-1, the Testset-1 data was used to evaluate the D-participants. Each of the 11 

D-participants submitted a variable number of evaluations of the testset. In D-round-2, 

the total number of AI summaries used is 430 (10 from each of the 27 G-submissions 

+ 100 from GPT4 + 60 from GPT3.5). A total number of human summaries used in this 

round is 100 (4 human summaries for each of 25 topics). Thus, each D-participant eval-

uated 530 summaries (430 AI + 100 Human). There were a total of 137 D-submissions 

from 8 D-participants. The list of participants and their submission IDs is given in Table 11 

in Appendix-A. In D-round-3, there were 7 discriminator teams (including the NIST base-

line submission) and a total of 161 submissions. Table 13 in Appendix-A gives a list of the 

Discriminator IDs and their respective submission IDs.
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8. Data Analyses and Results

We measure the performance of generators (G) and discriminators (D) using multiple met-

rics (AUC, BrierT, BrierN). Keep in mind that the D-participants have already trained their 

systems on their own training data and do not know the ground truth in any of the test 

sets. An AUC value of 1 indicates that the detection scores for targets (AI-generated) are 

all higher than any of the detection scores for non-targets (human-generated). However, 

the AUC metric does not reflect whether or not the detector is properly calibrated. In par-

ticular, even if all the detection scores are close to 1, or all the detection scores are close 

to zero, as long as the detection scores for targets are greater than the detection scores for 

non-targets, the AUC value will still be 1. However, for the detection scores to be useful for 

a general user of the detector, it would be advisable to calibrate the system such that the 

detection scores are as close to one as possible for targets and as close to zero as possible 

for nontargets. To what extent these goals are met can be quantified by the BrierT scores 

(for targets) and the BrierN scores (for nontargets). Hence, in addition to reporting the 

AUC metric, we also report BrierN and BrierT scores to help participants assess how well 

calibrated their systems are.

Our data analysis is primarily driven by the following main questions. Other questions of 

secondary interest will be discussed in a future publication.

(1) Which G-submissions perform well against all or most of the D-submissions on each 

of the metrics (AUC, BrierT, BrierN)?

(2) Which D-submissions perform well against all or most of the G-submissions on each 

of the metrics (AUC, BrierT, BrierN)?

8.1. Results for Test Set-1 (D-Round 1)

To understand how successful gpt3.5 and gpt4 are in generating summaries that are indis-

tinguishable from human summaries, we calculated AUC values, BrierT scores, and BrierN 

scores across all 50 D-submissions. The distributions of these metric values are illustrated 

in Figure 7.

The red points correspond to AUC values for gpt3.5 and the blue points are AUC values 

for gpt4, both computed across all 50 detector submissions. The AUC values ranged from 

about 0.4 to 1 for both discriminators. The orange and lavender points are for gpt3.5 and 

gpt4, respectively, showing the distribution of Brier scores (BrierT) for AI-generated sum-

maries (which we refer to as ‘targets’). Recall, D-submissions with BrierT scores close to 

zero are desired. However, we see some submissions resulting in a BrierT score as high as 

1 (the maximum possible value). This means the discriminator was very confident that the 

summary was human-generated (detector scores close to 0) even though it was generated 

by AI.

The dark green points show the BrierN scores across all 50 detector submissions for human-

generated summaries, which we refer to as “nontargets.” There is only one plot for BrierN 

since this score does not depend on who generated the AI summaries; it is calculated based 
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Figure 7. Box plot with superimposed jittered points: D-round-1 comparison of the 

NIST-gpt3.5 and NIST-gpt4 generators across all discriminators for AUC (targets+nontargets), 

BrierT (targets), and BrierN (non-targets) scores

on human summaries only. Discriminator performance is good when BrierN score is close 

to zero. However, we see that there are D-submissions with BrierN scores close to 1. This 

means the discriminator was very confident (detector scores close to 1) that the summary 

was generated by AI even though it was human-generated.

The distributions of detector scores (pooled across all D-submissions) for summaries gener-

ated by NIST-gpt3.5 and NIST-gpt4 were not statistically different (P-value = 0.1124). Like-

wise, BrierT scores were also not statistically different at a significance level of 0.05. See 

Table 3.

Table 3. Kolmogorov-Smirnov test results comparing NIST-gpt3.5 and NIST-gpt4.

 Metric  p-value

 AUC  0.1124

 BrierT  0.06779
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A generator may be considered “successful” against discriminators if the AUC values from 

all, or almost all, discriminators are less than or equal to 0.5. If the AUC value is 0.5, it 

means that the discriminator is unable to tell the difference between AI-generated and 

human-generated content, and thus randomly guessing. If the AUC value is less than 0.5, 

it means that more AI-generated content has detection scores closer to zero than human-

generated content, and thus confuses AI-generated content with human-generated con-

tent and vice versa. If the AUC for a detector is close to 1, but scores for AI-generated 

content are close to zero. i.e., highly confident the content is human-generated, then the 

BrierT scores will be large, indicating that the detector needs to be calibrated.

Figure 8 shows a plot of the AUC values against BrierT scores. The red points are from 

NIST-gpt3.5, and the blue points are from NIST-gpt4. Each red point represents an eval-

uation of the AI content produced by NIST-gpt3.5 by a discriminator. Likewise, each blue 

point corresponds to an evaluation of the AI content from NIST-gpt4 by a discriminator. 

Successful generators will have low AUC values or high BrierT values against any discrim-

inator. Here we see that several of the blue points and the red points meet this descrip-

tion. See the unshaded region. Thus, generally speaking, gpt3.5 and gpt4 appear to have 

reasonable success in making many detectors believe the content generated by them are 

human-generated. See Table 4.

Figure 8. AUC versus BrierT scores for all D-submissions on the NIST-gpt3.5 (red) and 

NIST-gpt4 (blue) generator data. The yellow shaded region in the top-left corresponds to 

D-submissions with AUC ≥ 0.5 and BrierT score ≤ 0.25. The points in the unshaded region 

correspond to detector submissions that either have low AUC values or have high BrierT 

scores.
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Table 4. Performance metrics for selected subset of G-submission/D-submission pairs where 

the D-submissions have difficulty reliably recognizing AI-generated content.

 G-Participant  D-Submission  D-Participant  AUC  BrierT

 NIST-gpt4  13  18126  0.3713  0.7017

 NIST-gpt3.5  14  18126  0.3625  0.9003

 NIST-gpt3.5  15  6655b  0.4818  1.0000

 NIST-gpt3.5  78  87a8c  0.3396  0.7105

 NIST-gpt4  78  87a8c  0.3831  0.7043

 NIST-gpt4  52  993ad  0.4778  0.6859

Figure 9. Box plots of detection scores assigned by D-round-1 D-submission (ID: 15) to 

NIST-gpt3.5 generated summaries and to human-generated summaries. All scores are either 

zero or very close to zero.

It may be surprising to see a BrierT score of 1 (NIST-gpt3.5/D-Submission 15), but an ex-

amination of the submitted scores for both AI-generated and human summaries, we see 

that the AI-generated summaries receive a detector score of zero or very close to zero (the 

discriminator thinks the AI-generated content is human-generated), resulting in a BrierT 

score of 1. See Figure 9.
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Figure 10 shows a plot of 
√

BrierN versus 
√

BrierT . The submissions with AUC scores 

equal to or greater than 0.9 are depicted using solid filled red circles (gpt3.5) or solid filled 

blue circles (gpt4). Open circles have AUC less than 0.9. The size of the circles is propor-

tional to the AUC values. The yellow shaded region represents discriminator submissions 

that have AUC values greater than or equal to 0.9 and also have BrierT and BrierN scores 

less than or equal to 0.25 (0.5 in the square root scale).

Figure 10. BrierN versus BrierT plotted using a square root scale. Red points correspond to 

discriminators evaluation of gpt3.5 generated summaries. Blue points correspond to 

discriminators evaluation of gpt4 summaries. Solid filled circles correspond to discriminator 

AUC value of 0.9 or higher. Open circles correspond to AUC values of less than 0.9. Smaller 

the circle the lower is the AUC value. Solid filled circles in the yellow shaded region may be 

regarded as ’better’ discriminators since they have lower BrierT and BrierN scores and a 

higher than 0.9 AUC.

Performance metrics (AUC, BrierT, and BrierN) for those D-submissions with high AUC val-

ues that also appear to be well calibrated (low BrierT and BrierN scores) when evaluated 

with the reference NIST-gpt3.5 are given in Table 5 and against NIST-gpt4 in Table 6.
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Table 5. Performance metrics for selected D-submissions against NIST-gpt3.5

 G-Submission  D-Submission  AUC  BrierT  BrierN  D-participant

 gpt3.5  12  0.996  0.017  0.051  6655b

 gpt3.5  84  0.989  0.036  0.110  804fe

 gpt3.5  18  0.988  0.038  0.108  804fe

 gpt3.5  86  0.987  0.037  0.110  804fe

 gpt3.5  87  0.985  0.037  0.110  804fe

 gpt3.5  83  0.979  0.065  0.080  804fe

 gpt3.5  85  0.978  0.039  0.117  804fe

 gpt3.5  11  0.967  0.037  0.157  804fe

 gpt3.5  8  0.944  0.084  0.046  0dea0

 gpt3.5  10  0.929  0.057  0.234  804fe

 gpt3.5  34  0.921  0.082  0.074  b3cd9

 gpt3.5  9  0.907  0.080  0.183  804fe

Table 6. Performance metrics for selected D-submissions against NIST-gpt4

 G-Submission  D-Submission  AUC  BrierT  BrierN  D-Participant

 gpt4  12  1.000  0.000  0.051  6655b

 gpt4  84  0.997  0.014  0.110  804fe

 gpt4  86  0.997  0.015  0.110  804fe

 gpt4  87  0.997  0.015  0.110  804fe

 gpt4  18  0.996  0.015  0.108  804fe

 gpt4  85  0.993  0.015  0.117  804fe

 gpt4  83  0.993  0.036  0.080  804fe

 gpt4  11  0.992  0.011  0.157  804fe

 gpt4  25  0.987  0.158  0.014  9de37

 gpt4  37  0.986  0.138  0.011  9de37

 gpt4  8  0.985  0.000  0.046  0dea0

 gpt4  36  0.979  0.166  0.014  9de37

 gpt4  10  0.968  0.019  0.234  804fe

 gpt4  9  0.948  0.040  0.183  804fe

 gpt4  34  0.938  0.049  0.074  b3cd9

 gpt4  21  0.900  0.000  0.204  18126

Figure 11 shows BrierN scores for all D-submissions. A well-performing, well-calibrated 

discriminator would give low scores to human-generated content; hence its BrierN score 

would be close to zero. It is reasonable to consider submissions with BrierN score above 

0.25 to be poorly calibrated. There are a number of submissions that are in the poorly 

calibrated range. It is possible for a poorly calibrated discriminator to have an AUC value 

close to 1 or even equal to 1. In such cases, interpreting the “detector score” as a proba-

bility would be highly misleading and cause many false positives if, for instance, one uses 

a threshold of 0.5 for the classification.
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Figure 11. Density Histogram of BrierN scores across all D-submissions

8.2. Results for Test Set-2 (D-Round 2)

To understand how indistinguishable summaries created by the generators are from hu-

man summaries, we calculated AUC values and BrierT scores for each G-submission, across 

all 137 D-submissions.

Figure 12 shows a heatmap of the AUC scores corresponding to each Generator-Discriminator 

pair, with rows labeled by Discriminator submissions and columns labeled by Generator 

submissions. Yellow color in a cell indicates that the discriminator is able to discriminate 

very well against the corresponding generator. Thus, rows that show mostly yellow corre-

spond to discriminator submissions that are performing well (on this metric) against most 

generators. Conversely, purple color (also dark green and dark blue to a lesser extent) in-

dicates cells where the generator is winning well against the corresponding discriminator. 

We see that there are some generators that win against most discriminators on the AUC 

metric.
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Figure 12. Heatmap of AUC scores corresponding to each Generator and Discriminator pair. 

Rows are labeled by Discriminator team submissions and columns by Generator team 

submissions. Yellow cells identify Generator-Discriminator submission pairs where the 

D-submission wins against the G-submission on the AUC metric. Rows that are mostly yellow 

indicate D-submissions that perform well against most G-submissions. Columns that are 

mostly purple, blue, or green indicate generator submissions that confused most of the 

discriminators. Cells that are colored white correspond to cases where the generator 

submission and the discriminator submission are both from the same team and hence were 

not considered in this heatmap.

Figure 13 shows a heatmap of BrierT scores for all Generator-Discriminator combinations. 

Here a generator does well against a discriminator if the cell color is green, light green, or 
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yellow (cells with BrierT scores ≥ 0.25). We see that only a few generators do well against 

most of the discriminators on this metric.

Figure 13. Heatmap of BrierT scores corresponding to each Generator and Discriminator pair. 

Rows are labeled by Discriminator team submissions and columns by Generator team 

submissions. Green, light green, or yellow cells identify Generator-Discriminator submission 

pairs where the D-submissions give a low score to G-submissions, in the range of scores for 

human-generated content. Rows that are mostly purple indicate D-submissions that perform 

well against most G-submissions. Columns that are mostly yellow, light green, or green 

correspond to generators that perform well against most discriminators. White cells are 

those generator/discriminator pairs involving the same team for both tasks and are not 

considered in performance evaluations here.
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Figure 14 shows a bar-plot of BrierN scores for Discriminators. Here purple and blue bars in-

dicate that the discriminator performs very well in terms of recognizing Human-generated 

content.

Figure 14. Bar-plot of BrierN scores for discriminators. Shades of red identify Discriminator 

submissions that give a high detection score (closer to 1 than closer to zero) to 

human-generated content. Shades of blue are more desirable for discriminators.
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8.3. Results for Test Set-3 (D-Round 3)

Generator submissions that do well against Discriminator submissions will have a low AUC 

score (less than or equal to 0.5) or a high BrierT score (greater than or equal to 0.25) or 

both. Table 7 displays the 27 submission pairs for which AUC values are below or equal to 

0.5 and BrierT scores above or equal to 0.99. Note that G-submission IDs 53 and 95 are 

from G-team labeled 804fe, and G-submission ID 110 is from G-team labeled 87a8c.

Table 7. G-submissions that perform well against the indicated D-submissions. For each 

G-submission, the AUC value for the corresponding D-submission is less than or equal to 0.5 

and BrierT scores are greater than or equal to 0.99.

 G-Participant  G-Submission ID  D-Participant  D-Submission ID  AUC  BrierT

 804fe  95  6655b  439  0.5000  0.9996

 6fc49  22  18126  397  0.4972  1.0000

 804fe  95  18126  397  0.4972  1.0000

 87a8c  111  18126  397  0.4972  1.0000

 87a8c  113  18126  397  0.4972  1.0000

 804fe  95  18126  412  0.4856  0.9987

 87a8c  188  29d48  346  0.4709  0.9993

 Baseline2  gpt4  18126  412  0.4637  0.9973

 804fe  80  6655b  439  0.4406  0.9994

 804fe  162  18126  412  0.4311  0.9984

 aa872  114  29d48  346  0.4144  0.9995

 87a8c  67  804fe  417  0.4006  0.9940

 0dea0  58  18126  412  0.3994  0.9993

 0782f  32  29d48  346  0.3872  0.9995

 87a8c  188  6655b  439  0.3778  0.9992

 87a8c  187  6655b  439  0.3556  0.9993

 87a8c  190  6655b  439  0.3333  0.9993

 804fe  53  6655b  435  0.3139  1.0000

 804fe  53  6655b  436  0.3139  1.0000

 804fe  53  6655b  437  0.3139  1.0000

 804fe  53  6655b  438  0.3139  1.0000

 87a8c  110  6655b  435  0.3139  1.0000

 87a8c  110  6655b  436  0.3139  1.0000

 87a8c  110  6655b  437  0.3139  1.0000

 87a8c  110  6655b  438  0.3139  1.0000

 87a8c  189  6655b  439  0.2222  0.9996

 804fe  95  18126  474  0.0083  0.9999

High performance D-submissions should have a high AUC value and, if they are calibrated 

reasonably well, should have low BrierT and BrierN scores. The G-submissionID/D-submissionID 

pairs that have AUC above or equal to 0.995 and BrierT and BrierN scores below 0.0125 

are listed in Table 8.
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Table 8. D-submissions that perform well against the indicated G-submissions. For each 

G-submission, the AUC value for the corresponding D-submission is close to 1 and BrierT and 

BrierN scores are close to 0.

 DTeam  D.subID  GTeam  G.subID  AUC  BrierT  BrierN

 29d48  186  6fc49  358  1.0000  0.0000  0.0047

 Baseline1  186  6fc49  327  1.0000  0.0000  0.0003

 29d48  186  6fc49  359  1.0000  0.0000  0.0062

 804fe  114  aa872  417  1.0000  0.0000  0.0094

 29d48  186  6fc49  371  1.0000  0.0001  0.0077

 29d48  186  6fc49  372  1.0000  0.0001  0.0112

 29d48  186  6fc49  356  1.0000  0.0001  0.0062

 29d48  192  87a8c  358  1.0000  0.0089  0.0047

 18126  193  87a8c  397  0.9972  0.0000  0.0056

 18126  195  87a8c  397  0.9972  0.0000  0.0056

 18126  196  87a8c  397  0.9972  0.0000  0.0056

 18126  198  87a8c  397  0.9972  0.0000  0.0056

 18126  200  87a8c  397  0.9972  0.0000  0.0056

 18126  201  87a8c  397  0.9972  0.0000  0.0056

 18126  306  87a8c  397  0.9972  0.0000  0.0056

 b3cd9  24  804fe  409  0.9972  0.0001  0.0062

 b3cd9  31  0782f  409  0.9972  0.0001  0.0062

 b3cd9  32  0782f  409  0.9972  0.0001  0.0062

 b3cd9  65  87a8c  409  0.9972  0.0001  0.0062

 b3cd9  90  6fc49  409  0.9972  0.0001  0.0062

 b3cd9  114  aa872  409  0.9972  0.0001  0.0062

 b3cd9  115  aa872  409  0.9972  0.0001  0.0062

 b3cd9  116  aa872  409  0.9972  0.0001  0.0062

 b3cd9  162  804fe  409  0.9972  0.0001  0.0062

 b3cd9  191  87a8c  409  0.9972  0.0001  0.0062

 b3cd9  193  87a8c  409  0.9972  0.0001  0.0062

 b3cd9  195  87a8c  409  0.9972  0.0001  0.0062

 b3cd9  198  87a8c  409  0.9972  0.0001  0.0062

 b3cd9  199  87a8c  409  0.9972  0.0001  0.0062

 b3cd9  200  87a8c  409  0.9972  0.0001  0.0062

 b3cd9  306  87a8c  409  0.9972  0.0001  0.0062

 b3cd9  312  87a8c  409  0.9972  0.0001  0.0062

 b3cd9  gpt4  baseline2  409  0.9972  0.0001  0.0062

 b3cd9  201  87a8c  409  0.9972  0.0002  0.0062

 b3cd9  206  6fc49  409  0.9972  0.0004  0.0062

 b3cd9  196  87a8c  409  0.9972  0.0011  0.0062

 b3cd9  192  87a8c  409  0.9970  0.0108  0.0062

 b3cd9  189  87a8c  409  0.9970  0.0113  0.0062

 b3cd9  30  0782f  409  0.9969  0.0001  0.0062

 b3cd9  29  0782f  409  0.9969  0.0006  0.0062

 b3cd9  33  0782f  409  0.9969  0.0006  0.0062
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Figure 15 shows a heatmap of the AUC scores corresponding to each Generator-Discriminator 

pair. Yellow color in a cell indicates that the discriminator is winning (on this metric) against 

the corresponding generator. Thus rows that show mostly yellow correspond to discrimi-

nators that are winning against most generators. Conversely, purple color (also dark green 

and dark blue) indicates cells where the generator is winning well against the correspond-

ing discriminator. We see that there are some generators that win against most discrimi-

nators and a few discriminators that win against most generators. 

Figure 15. Heatmap of AUC scores corresponding to each Generator and Discriminator pair. 

Rows are labeled by Discriminator team submissions and columns by Generator team 

submissions. Yellow cells identify Generator-Discriminator submission pairs where the 

D-submission wins against the G-submission. Rows that are mostly yellow indicate 

D-submissions that perform well against most G-submissions.
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Figure 16 shows a heatmap of BrierT scores for all Generator-Discriminator combinations. 

Here a generator does well against a discriminator if the cell color is green, light green, 

or yellow (in increasing performance). We see that only a few generators do well against 

most of the discriminators on this metric.

Figure 16. Heatmap of BrierT scores corresponding to each Generator and Discriminator pair. 

Rows are labeled by Discriminator team submissions and columns by Generator team 

submissions. Green, light green, or yellow cells identify Generator-Discriminator submission 

pairs where the G-submission wins against the D-submission. Rows that are mostly green, 

light green, or yellow indicate D-submissions that perform well against most G-submissions.
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Figure 17 shows a bar-plot of BrierN scores for Discriminators. Here purple and blue bars 

indicate that the discriminator performs very well in terms of recognizing Human gener-

ated content. 

Figure 17. Bar-plot of BrierN scores for discriminators. Shades of red identify Discriminator 

submissions that give a high detection score (closer to 1 than closer to zero) to 

human-generated content. Shades of blue are more desirable for discriminators.

8.4. Evolution of Discriminators

A natural question one might ask is whether or not the discriminators improved over the 

different rounds. One could make this assessment by tracking how AUC scores changed 

from D-round-1 to D-round-2 to D-round-3.
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Figure 18. Empirical CDFs of AUC scores for the pool of D-submissions from D-round-1, 

D-round-2 and D-round-3.

Figure 18 shows the cumulative distribution functions (CDFs) for AUC scores from all D-

submissions in round 1 (black), round 2 (red) and round 3 (blue). We see that, gener-

ally speaking, there were a greater proportion of AUC scores closer to one for D-round-

3 submissions, followed by D-round-2 submissions and then by D-round-1 submissions. 

Although these rounds used different testsets, we see this pattern as an indication that 

D-systems generally improved over time, resulting in better discrimination in each round 

than in earlier rounds. One could track this improvement, or lack thereof, at an individual 

submission level or even by individual topic levels. However, these more detailed analyses 

are deferred to a subsequent publication.

9. Strengths, Limitations, and Challenges

9.1. Strengths

Comprehensive Evaluation Framework: This study establishes a robust framework for 

evaluating generative AI and discriminator models, incorporating multiple rounds of test-

ing and diverse performance metrics such as AUC, BrierT, BrierN, and ROC curves.
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Adversarial Testing Approach: The study’s iterative process, where generators and dis-

criminators can continuously improve by adapting to each other’s outputs, mirrors real-

world adversarial scenarios, ensuring that the evaluations remain relevant and challeng-

ing.

Diverse Data Sources: The inclusion of multiple topics and multiple human-generated 

summaries contributes towards a broad testing environment.

Clear Performance Metrics: The study effectively utilizes various statistical measures, such 

performance heatmaps, the Kolmogorov-Smirnov test for comparing distributions, and 

Area under the ROC curve (AUC) to assess system accuracy and robustness. The separation 

of BrierT and BrierN scores enables detailed analysis of model misclassification behavior.

Standardization and Benchmarking: By establishing clear guidelines and standardized eval-

uation metrics, the study contributes to the broader AI research community by providing 

a reproducible framework for future assessments of generative AI systems.

9.2. Limitations

Limited Scope of Text Domains: The study focuses on summarization tasks, which, while 

crucial, may not fully capture the broader landscape of AI-generated content detection 

across different textual modalities, such as conversational AI, creative writing, or technical 

documentation.

Assumption of Strict AI-Vs.-Human Authorship Distinction: While the study assumes clear 

distinctions between AI-generated and human-generated text, the increasing sophistica-

tion of AI models may challenge the binary classification framework. Future iterations 

could explore more nuanced categories, such as hybrid human-AI co-authored texts.

Scalability Constraints: The evaluation process involves extensive human and computa-

tional resources, potentially limiting scalability to large-scale assessments. The ability to 

generalize findings beyond the tested dataset remains uncertain.

Potential Bias in Discriminator Models: Some discriminator models may be biased to-

wards specific linguistic patterns present in human-generated summaries, potentially skew-

ing evaluation results. Ensuring diverse and unbiased training data for discriminators is 

critical for accurate assessment.

9.3. Challenges

Evolving AI Generation Techniques: Generative models are rapidly improving, often out-

pacing discriminator capabilities. The study acknowledges this cat-and-mouse dynamic, 

but maintaining up-to-date benchmarks and evaluation criteria remains a continuous chal-

lenge.

Broader Societal Considerations: The study provides a technical evaluation but does not 

address the societal implications of AI-generated content detection, nor does it consider 

policy or regulatory perspectives.

42



NIST AI 700-1

June 2025

Computational Resource Requirements: The extensive evaluation process, particularly 

the large-scale comparisons of generators and discriminators, requires significant compu-

tational resources. Developing efficient evaluation methodologies that balance accuracy 

and feasibility will be crucial moving forward.

10. Conclusion

The NIST GenAI Text-to-Text Pilot Study presents a well-structured and rigorous evaluation 

framework for generative AI detection. While it offers valuable insights into the strengths 

and weaknesses of current-generation models, challenges such as evolving AI capabilities 

and scalability constraints should be addressed in future research. Expanding the scope of 

text domains, incorporating hybrid human-AI content, and refining evaluation techniques 

will further enhance the evaluation’s impact in advancing AI-generated content detection 

methodologies.

11. Recommendations for Future Work

Expanding the Scope of Text Domains: Future research should move beyond summariza-

tion tasks to evaluate AI-generated content across diverse domains such as creative writ-

ing, conversational AI, technical documentation, and legal texts. This will provide a more 

comprehensive understanding of generative AI capabilities and detection challenges.

Developing More Robust Discriminators: Given the rapid advancements in generative AI, 

discriminator models should also evolve. Future work should focus on hybrid approaches 

combining statistical, linguistic, and deep-learning-based methods for more accurate de-

tection of AI-generated text.

Investigating Human-AI Collaboration: Rather than viewing AI-generated and human-

generated texts as distinct categories, future studies should explore hybrid models where 

AI assists human writers. Understanding how co-authored content differs from purely AI-

generated or human-generated text is crucial.

Enhancing Scalability and Efficiency: Large-scale evaluations require extensive computa-

tional resources. Future research should explore optimized evaluation methodologies, in-

cluding active learning and semi-supervised approaches, to improve efficiency while main-

taining accuracy.

Addressing Bias in Detection Models: Discriminator models can exhibit skewed perfor-

mance across different classes of inputs, which can impact their effectiveness. Future 

studies should investigate methods for mitigating bias, such as diverse training datasets 

and fairness-aware machine learning techniques.

Developing Benchmark Datasets for Multimodal Content: Since synthetic media spans 

multiple modalities (text, images, audio, and video), future work should focus on creating 

benchmark datasets that evaluate AI-generated content holistically across different media 

formats. Currently, the GenAI team is focused on measuring and evaluating the capabilities 
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and limitations of Generative AI technologies, without taking socio-technical concerns into 

account.

Advancing Explainability in Detection Models: It is worth exploring when and for what 

purposes explanations may be useful to users; for cases where they are, what kinds of 

explanations would be helpful; and what XAI techniques might be able to provide those 

kinds of explanations. Future research should consider developing explainable AI (XAI) 

techniques that provide insights into why a particular text was classified as AI-generated 

or human-written.

Establishing Continuous Benchmarking and Competitions: Regular benchmarking efforts 

and competitions, similar to the NIST GenAI Pilot study, should be conducted to track 

progress in AI generation and detection, fostering collaboration across academia, indus-

try, and policy organizations.
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A. Supplementary Information

Each of the G and D-participants submitted a variable number of evaluation submissions.

Table 9. D-participants in D-round-1, their submission IDs, and total number of submissions 

per participant.

 D-Participant D-Submission IDs  Submission Count

 0dea0 7, 8  2

 18126 13, 14, 19, 21, 44, 47, 49, 68  8

 29d48 4  1

 6655b 12, 15, 59, 73, 99, 101, 102, 103  8

 6fc49 26, 98  2

 804fe 1, 2, 5, 6, 9, 10, 11, 18, 82, 83, 84, 85, 86, 87  14

 87a8c 76, 77, 78, 92, 93, 96, 104  7

 993ad 46, 50, 52  3

 9de37 25, 36, 37  3

 b3cd9 34  1

 d718e 40  1

Table 10. G-participants in G-round-1, their submission IDs, and number of submissions. 

There were two NIST baseline G-participants: NIST-gpt35 and NIST-gpt4. Not counting 

the NIST baselines, there were a total of 27 submissions, each submission consisting of one 

AI summary for each of the 10 topics. Thus, a total of 10 summaries were presented as part 

of each submission by each external G-participant.

 G-participant G-submission IDs  Submission Count

 0782f 29, 30, 31, 32, 33  5

 0dea0 58  1

 6fc49 22, 90  2

 804fe 24, 53, 80, 95  4

 87a8c 65, 66, 67, 69, 70, 75, 108, 109, 110, 111, 112, 113  12

 aa872 114, 115, 116  3

 NIST gpt3.5  1

 NIST gpt4  1
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Table 11. D-participants in D-round-2, submission IDs, and number of submissions. There 

were a total of 137 D-submissions from 8 D-participants.

 D-Participant D-Submission IDs  Submission Count

 18126 119, 127, 128, 129, 135, 207, 208, 252, 254, 262, 264, 

265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 

276, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 

289, 290, 291, 292, 293, 294, 295, 307, 309, 311, 313, 

314, 315, 316

 47

 29d48 138, 139, 140, 142, 144, 209, 210, 211, 212, 213, 214, 

215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 

226, 227, 228, 229, 230, 231, 232, 233, 236, 237, 238, 

239, 240, 241, 242, 243, 244, 245, 296, 297

 42

 6655b 124  1

 6fc49 205, 247  2

 804fe 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 

175, 176, 177, 178, 179, 180, 181, 183, 184, 185, 248, 

249, 257, 258, 259, 260, 263, 317, 318, 319, 320, 321, 

322, 323, 324, 325

 37

 87a8c 302, 303, 304, 310  4

 9de37 121, 125, 126  3

 b3cd9 261  1

Table 12. G-participants in G-round-2, submission IDs, and number of submissions. There 

were seven external G-participants and two NIST baseline Generators (NIST-gpt35 and 

NIST-gpt4). There were a total of 47 external participant submissions.

 G-participant G-submission IDs  Submission Count

 0782f 29, 30, 31, 32, 33  5

 0dea0 58  1

 6fc49 186, 206, 22, 90  4

 804fe 162, 24, 53, 80, 95  5

 87a8c 108, 109, 110, 111, 112, 113, 187, 188, 189, 190, 191, 

192, 193, 194, 195, 196, 198, 199, 200, 201, 202, 306, 

312, 65, 66, 67, 69, 70, 75

 29

 aa872 114, 115, 116  3

 baseline1 gpt3.5  1

 baseline2 gpt4  1
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Table 13. D-participants in D-round-3, submission IDs, and number of submissions. In this 

round, there were 7 discriminator teams and a total of 161 submissions. One of these 

submissions is from NIST GenAI team using an in-house baseline algorithm.

 D-Participant D-Submission IDs  Submission Count

 18126 328, 338, 339, 340, 341, 342, 343, 344, 345, 382, 383, 

384, 385, 386, 387, 388, 389, 390, 391, 392, 393, 396, 

397, 398, 399, 400, 401, 402, 403, 407, 410, 411, 412, 

413, 414, 415, 416, 422, 423, 424, 425, 426, 427, 428, 

429, 440, 442, 443, 444, 445, 446, 448, 450, 451, 452, 

454, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 

471, 474, 492, 493, 494, 495, 496, 497, 498, 499, 500, 

501, 502, 503, 504, 505, 506, 508, 509, 511, 512, 513, 

514, 515, 516, 517

 92

 29d48 346, 348, 349, 350, 351, 353, 354, 355, 356, 357, 358, 

359, 362, 363, 366, 367, 368, 369, 370, 371, 372, 373, 

374, 375, 376, 377, 379, 381

 28

 6655b 431, 435, 436, 437, 438, 439, 441  7

 804fe 329, 417, 418, 419, 421, 447, 449, 453, 455, 456, 457, 

458, 460, 473, 475, 476, 477, 478, 479, 480, 481, 482, 

483, 484, 485, 486, 487, 488, 489, 490

 30

 87a8c 335, 337  2

 b3cd9 409  1

 Baseline1 327  1

Figure 19. AUC for the pool of D-submissions from D-round-1.
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Figure 20. AUC for the pool of D-submissions from D-round-2.

50



NIST AI 700-1

June 2025

Figure 21. AUC for the pool of D-submissions from D-round-3.
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Figure 21. (continued). AUC for the pool of D-submissions from D-round-3.
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