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Abstract 

The Weight of Evidence (WoE) is defined to be the logarithm of the Bayes factor (BF) with base 
10, which is generally with single point hypothesis rather than diffuse hypothesis. They are used 
in applications such as forensic science, etc. To statistically estimate the standard error (SE) and 
the 95% confidence interval of BF and WoE, both parametric and nonparametric two-sample 
bootstrap algorithms are employed, respectively. Then, three challenging issues arise: 1. how to 
generate observed binomial variates; 2. how many variates are needed; 3. how to implement 
bootstrap algorithms. The observed binomial variates can be generated using either the stochastic 
function-call method (i.e., call rbinom in the R Stats Package) or the deterministic partition method 
via the expected binomial densities (i.e., call dbinom in the R Stats Package). To ensure the 
computational accuracies, the size of observed binomial variates is determined by the root-mean-
square deviation between the observed and expected binomial distributions, as well as the 
bootstrap sampling variability study. Thereafter, the parametric two-sample bootstrap algorithm is 
implemented on observed binomial variates generated using the stochastic function-call method, 
whereas the nonparametric two-sample bootstrap algorithm is carried out on observed binomial 
variates created using the deterministic partition method. In this article, a case study is carried out. 

Keywords 

weight of evidence, Bayes factor, standard error, binomial distribution, two-sample bootstrap, 
forensic science. 
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 Introduction 

The Weight of Evidence (WoE) is defined to be the logarithm of the Bayes factor (BF) with base 
10, which is generally with single point hypothesis rather than diffuse hypothesis [1-4]. They are 
used in applications such as forensic science, etc. It is imperative to statistically estimate the 
standard error (SE) and the 95% confidence interval (CI) of measures so that the conventional 
statistical evaluation and comparison of the performance accuracies of different classifiers can be 
implemented properly [5-8]. Moreover, for BF and WoE, to transfer information, the SEs of BF 
and WoE are also needed [9]. 
In our prior research regarding receiver operating characteristic (ROC) analysis on large datasets 
with or without data dependency, both observed genuine scores and impostor scores were all 
discrete and pre-generated by a classifier for decision making, and usually did not have well 
defined parametric distributions but nonparametric distributions. Scores might be integers, or 
real numbers, etc. Moreover, all statistics of interest were based on cumulative probabilities 
rather than probability densities. Thereafter, to estimate the SEs and 95% CIs of any statistics of 
interest, the nonparametric two-sample (two-layer if data dependency was involved) bootstrap 
algorithms were implemented in the light of our prior rigorous statistical research concerning the 
corresponding data structure and bootstrap algorithms [5-7, 10-16]. 
Specifically, the validation study was carried out to show that the nonparametric two-sample 
bootstrap algorithm could be applied to computing the SEs and 95% CIs of any measures in 
ROC analysis on large datasets in areas such as biometrics, speaker recognition, etc., when the 
analytical method cannot be used [14]. Therefore, the bootstrap algorithms could also be applied 
to estimating the SEs of the BF and WoE. The validation was conducted by computing the SEs 
of the area under ROC curve (AUC) using the well-established analytical Mann–Whitney 
statistic method and also using the bootstrap method. The analytical result is unique. The 
bootstrap results are expressed as a probability distribution due to its stochastic nature. The 
comparisons were carried out using relative errors and hypothesis testing. It was found that these 
two results matched very well. Such a validation study provides a sound foundation for the 
applications of the bootstrap algorithms in ROC analysis. 

 

Figure 1 A case study: hypotheses H1 and H2 are the two expected binomial distributions B (100, 0.60) 
(red) and B (100, 0.70) (green), respectively, and the input data (i.e., the evidence) is at 62 (blue). 
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Certainly, the issue regarding the BF and WoE with single point hypothesis is quite different 
from those encountered in ROC analysis. If two competing hypotheses H1 and H2 are dealt with, 
the BF is defined to be the ratio of two probability densities p (E | H1) / p (E | H2) (see Section 2), 
i.e., the ratio of the two conditional probabilities under these two hypotheses based on the input 
data, i.e., the evidence E. Here two binomial probability distributions may be involved (see 
Sections 2 and 3) [2-4]. 
All these can be illustrated by a case study depicted in Figure 1, in which the binomial 
distribution B (n, p) with two parameters is assumed, that is, n Bernoulli trials take place with 
success probability p for each trial [3-4]. In Figure 1, hypotheses H1 and H2 are the two expected 
binomial distributions B (100, 0.60) (red, i.e., the left curve) and B (100, 0.70) (green, i.e., the 
right curve), respectively; and the input data, i.e., the evidence E, is at 62 (blue). Therefore, the 
BF, i.e., p (E | H1) / p (E | H2), is the ratio of the probability density of B (100, 0.60) at 62 to the 
probability density of B (100, 0.70) at 62, which is 3.9534. Thereafter the corresponding WoE is 
0.5970. 
Unlike ROC analysis stated above, here the two distributions are all well-defined discrete 
parametric probability distributions, namely, two binomial distributions. Binomial variates are 
only distributed at certain integers, and the probability densities of an expected binomial 
distribution can be computed exactly using the analytical formulas. However, the two sets of 
binomial variates (corresponding to the two sets of similarity scores in ROC analysis) are not 
provided before the bootstrap method is carried out. 
Therefore, to statistically estimate the SEs and 95% CIs of BF and WoE using the bootstrap 
algorithm [10-11], three challenging issues arise. 1. How are the observed binomial variates 
generated to form a distribution given the total number of trials (n) and the success probability 
(p)? 2. How is the sample size, i.e., the number of variates, determined so that (1) the observed 
binomial distribution can match the corresponding expected binomial distribution and (2) it is 
appropriate for the applications of bootstrap algorithms as far as the sampling variability is 
concerned? 3. How are the bootstrap algorithms implemented? 
To generate observed binomial variates, two methods are carried out: 1) the stochastic function-
call method (see Section 3.2), and 2) the deterministic partition method (see Section 3.3). The 
function-call method is to generate a set of observed random binomial variates by calling 
function rbinom in the R Stats Package [17-18]. Different calls generate different sets of 
observed binomial variates. Thus, this method is a stochastic process. The partition method is to 
create observed binomial variates based on the expected binomial probability densities that can 
be computed analytically or obtained by calling function dbinom in the R Stats Package [17-18]. 
This method creates only one set of binomial variates that form an observed binomial 
distribution based on a set of given binomial parameters (see Section 3.1). Hence, this method is 
a deterministic process. 
Certainly, to ensure the computation accuracy, any observed binomial distribution generated by 
either the function-call method or the partition method must match the corresponding expected 
binomial distribution in which the binomial probability densities are known. Thus, the total 
number of observed binomial variates, i.e., the sample size, is determined via the metric of the 
root-mean-square deviation (RMSD) between the observed and expected binomial distributions 
(see Section 4). 
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Moreover, while applying the bootstrap algorithms, like the bootstrap resampling variability, the 
sampling variability is also very important. As is known, the bootstrap resampling variability is 
because a limited number of bootstrap replications of a statistic of interest only constitute a 
subset of all possible bootstrap replications, which has been studied in Refs. [7, 11, 13-16, 19-
20]; and the bootstrap sampling variability is because a finite number of samples usually form a 
subset of the entire population, which has not been studied yet. Therefore, in this article, the 
sample size is also determined by the coefficients of variation (CV) for some statistics of interest 
while implementing bootstrap algorithms and carrying out the bootstrap variability study, which 
is caused by sampling (see Section 6). 
In this article, to statistically estimate the SE and 95% CI of BF and WoE, both the parametric 
and the nonparametric bootstrap algorithms are employed, respectively [10-11]. The parametric 
two-sample bootstrap algorithm is conducted on different sets of observed random binomial 
variates, each of which is stochastically generated using the function-call method and constitutes 
the corresponding observed binomial distribution with the same parameters n and p (see above). 
The nonparametric two-sample bootstrap algorithm is carried out on different sets of observed 
random binomial variates, and variates in each set are randomly selected with replacement (WR) 
from the same set of observed binomial variates, that is deterministically created using the 
partition method and forms only one observed binomial distribution with the same parameters n 
and p. 
The BF and thus the WoE are defined in Section 2. In Section 3, to generate observed binomial 
variates which simulate the expected binomial distribution, two methods, i.e., the function-call 
method and the partition method, are explored. In Section 4, the sample size is determined by the 
metric RMSD between the observed and expected binomial distributions. In Section 5, explored 
are the parametric two-sample bootstrap algorithm carried out on observed binomial variates 
generated using the function-call method, and the nonparametric two-sample bootstrap algorithm 
conducted on those created using the partition method. In Section 6, the sample size is also 
investigated via bootstrap variability study. In this article, the computational part of a case study 
based on Refs. [3-4]1 as shown in Figure 1 is mentioned in Section 7; for other cases, the same 
procedure employed in this article can be applied. 

 The BF and the WoE 

Let H1 and H2 denote two competing hypotheses. For instance, H1 is the prosecutor’s hypothesis 
and H2 is the defense lawyer’s hypothesis, etc. Each of them gives a prior marginal probability p 
(H1) and p (H2), respectively. Based on the input data, i.e., the evidence E, the prior conditional 
probabilities under each hypothesis are p (E | H1) and p (E | H2). With their posterior conditional 
probabilities p (H1 | E) and p (H2 | E), respectively, along with the posterior marginal probability 
p (E), it holds true that p (H1 | E) × p (E) = p (E | H1) × p (H1) and p (H2 | E) × p (E) = p (E | H2) 
× p (H2) [3-4, 21]. Thus, it follows 
 

 
1 Specific hardware and commercial and non-commercial software products identified in this paper were used in order to adequately support the 
development of technology to conduct the performance evaluations described in this document. In no case does such identification imply 
recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that the products and equipment identified 
are necessarily the best available for the purpose. 
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p (H1 | E)
p (H2 | E)

 = 
p (E | H1)
p (E | H2)

 × 
p (H1)
p (H2)

 . (1) 

 
In Eq. (1), p (H1) / p (H2) is the prior odds, and p (H1 | E) / p (H2 | E) is the posterior odds. Hence, 
the BF of H1 and H2 and the corresponding WoE are defined to be [1-4], respectively, 
 

BF (H1, H2) = 
p (E | H1)
p (E | H2)

 ; WoE (H1, H2) = log10 [BF (H1, H2)]. (2) 

 
The BF is the ratio of the two conditional probabilities under the two hypotheses H1 and H2 
based on the input data, i.e., the evidence E, which transforms the prior odds to the posterior 
odds as shown in Eq. (1). The WoE is defined to be the logarithm of the BF with base 10 and is 
employed in applications such as forensic science, etc. The value of BF (H1, H2) greater than 1, 
i.e., WoE (H1, H2) greater than zero indicates that H1 is more strongly supported by the evidence 
E under consideration than H2 [1-4]. In this article, for illustration, two binomial distributions are 
assumed. 

 Generate observed binomial variates 

 Binomial distribution 

In practice with single point hypothesis as illustrated in Section 1, the probabilities involved in 
BF and WoE are two binomial distributions [1-4]. As stated in Section 1, the first critical issue 
about investigating the SE of BF and thus WoE is how to generate an observed discrete binomial 
distribution that simulates the corresponding expected binomial distribution as accurately as 
possible. Let n ∈ {positive integers} denote the total number of trials, p ∈ [0, 1] represent the 
probability of success on each trial, and k ∈ {0, …, n} stand for the number of successes. 
The probability densities dk (n, p) at any integer 0 ≤ k ≤ n of an expected binomial distribution B 
(n, p) with given n and p can be computed exactly using the analytical formula 
 

dk (n, p) =  �
n
k
�  pk (1 − p)n−k (3) 

 
which is normalized to 1 with respect to integer k. Notice that the probability densities dk (n, p) 
are only distributed at integers k between [0, n]. Thereafter, the expected binomial distribution 
with n and p is expressed as 
 

B (n, p) = {dk (n, p) | k ∈ {0, …, n} and  ∑ dk (n, p) = 1n
k=0 }. (4) 

 
On the other hand, an observed binomial distribution with n and p constituted by N binomial 
variates is expressed by 
 

B� (N, n, p) = {Mk (N, n, p) / N | k ∈ {0, …, n} and  ∑ Mk (N, n, p) =  N n
k=0 }, (5) 
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where Mk (N, n, p) denotes the frequency of such an observed binomial distribution at k. In other 
words, there are Mk (N, n, p) observed binomial variates at k ∈ {0, …, n}, which are equal to k. 
So, Mk (N, n, p) / N is the probability of such an observed binomial distribution at a given k. 
Indeed, it is impossible to create N random binomial variates to form an observed binomial 
distribution B� (N, n, p), which can exactly match an expected binomial distribution B (n, p). In 
this article, two methods of generating binomial variates are explored, which are the stochastic 
function-call method and the deterministic partition method. 

 The stochastic function-call method 

One way of generating N random binomial variates is to call the function rbinom (N, n, p) in the 
R Stats Package [17-18]. They form an observed binomial distribution B� (N, n, p) in Eq. (5), 
where the frequency Mk (N, n, p) at k is the total number of ks in such a set of N random 
binomial variates. Each call rbinom (N, n, p) in the R Stats Package may produce different set of 
N random binomial variates. As a result, the function-call method is a stochastic process for a 
fixed set of N, n, and p. 

 The deterministic partition method 

The alternative way is to partition a preset total number of binomial variates N� to each number of 
success k as follows, 
 

 
thanks to the normalization of the binomial probability densities dk (n, p) with respect to k for the 
expected binomial distribution B (n, p) (see Eq. (3)). 
Such a probability density dk (n, p) at k can be calculated exactly using Eq. (3) or estimated 
accurately by calling the function dbinom (k, n, p) in the R Stats Package [17-18]. In practice, 
the latter is adopted. As always N� × dbinom (k, n, p) ends up with a real number, but it can be 
uniquely converted to an integer by “rounding half away from zero.” This unique integer is then 
assigned to the frequency of an observed binomial distribution at k, denoted by Mk (N�, n, p), 
which is certainly determined by the preset total number of binomial variates N�. Hence, the 
resultant total number of observed binomial variates N can be expressed by 
 

N = �Mk (N�, n, p)
n

k=0

.                                                                          (7) 

 
Here, Mk (N�, n, p) and thus N can all be determined uniquely. In other words, if N�, n and p are 
assumed, then all N observed binomial variates distributed in [0, n] are determined uniquely. As 
a result, this partition method is a deterministic process for a fixed set of N�, n, and p. 
 

N� = N� × � dk (n, p)
n

k=0

                                                                                    (6) 
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Then, the question is how accurate such an observed binomial distribution formed by N binomial 
variates generated using the above deterministic partition method is with respect to the 
corresponding expected binomial distribution with the same n and p. 
The resultant total number of observed binomial variants N is very close to the preset total 
number of observed binomial variants N�. After the observed binomial distribution is generated 
using the partition method, the resultant total number of observed binomial variates N rather than 
the preset total number N� is used to characterize the observed binomial distribution. Thus, for the 
sake of convenience (see Section 5.2), the resultant total number N will be used in the notations 
of both the observed frequency Mk (N, n, p) at k and the observed binomial distribution B� (N, n, 
p) created using the partition method. 
From here on, in all computations wherever binomial variates are generated using the partition 
method, the resultant total number of observed binomial variants N will be employed, for 
instance, in the computation of RMSD (see Section 4), in the nonparametric two-sample 
bootstrap algorithm to estimate SEs (see Section 5.2), and in the bootstrap variability study to 
determine the total number of observed binomial variates (see Section 6). 

 Determine the total number of observed binomial variates using RMSD 

As stated in Section 1, the second challenging issue is: How many observed binomial variates are 
needed to ensure the computation accuracies of the SE of BF and WoE? This issue is 
investigated in two respects. One is examining the discrepancy between the observed binomial 
distribution, which is generated using either the function-call method or the partition method, 
and the expected binomial distribution; and the other is investigating the related bootstrap 
variability. The former is explored in this section, and the latter is studied in Section 6. 
To determine the statistical significance of the discrepancies between the observed and expected 
binomial distributions, the Kolmogorov-Smirnov test is too sensitive, because the binomial 
distribution is discrete and contains ties (i.e., repeated variates) [22]. On the other hand, in our 
case the chi-squared test for goodness of fit is not sensitive enough to differentiate between the 
observed and expected binomial distributions. 
Hence, to this end, the following metric RMSD is employed, 
 

RMSD = �
∑ [Mk (N, n, p) / N −  dk (n, p)]2n
k=0

n + 1  ,                                         (8) 

 
where dk (n, p) is the density of the expected binomial distribution B (n, p) at k, which can be in 
practice obtained by calling the function dbinom (k, n, p) in the R Stats Package [17-18]; and Mk 
(N, n, p) is the frequency at k of the N observed binomial variates, generated either by the 
function-call method (see Section 3.2) or by the partition method (see Section 3.3). 
If binomial variates are created using the function-call method, because it is a stochastic process, 
the average of 1,000 RMSDs for a set of (N, n, p) is used for comparisons. If they are generated 
using the partition method, since it is a deterministic approach, the RMSD is determined 
uniquely by Eq. (8). 
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 The two-sample bootstrap algorithm 

The third critical issue as stated in Section 1 is how to implement bootstrap algorithms to 
statistically estimate the SE of BF and WoE. Any observed binomial distribution can also be 
expressed using its variates other than its frequencies shown in Eq. (5). Such an expression is 
suitable while describing bootstrap algorithms [5-7]. Hence two observed binomial distributions 
B�i (Ni, ni, pi), i = 1, 2 are denoted by 
 

B�i (Ni, ni, pi) = {αi j (ni, pi) | j = 1, …, Ni}, i = 1, 2, (9) 
 
where αi j (ni, pi), j = 1, …, Ni, i = 1, 2, stand for two different sets of observed binomial variates 
corresponding to N1, n1, p1, and N2, n2, p2, respectively. 
Further, regarding the two-sample bootstrap method, there are parametric and nonparametric 
[10-11]. Concerning how to generate binomial variates to constitute an observed binomial 
distribution, there are the function-call method (see Section 3.2) and the partition method (see 
Section 3.3). The parametric two-sample bootstrap algorithm can only be applied to observed 
distributions of binomial variates generated using the function-call method [10-11], whereas the 
nonparametric two-sample bootstrap algorithm is better to be carried out on observed 
distributions of binomial variates created using the partition method due to smaller RMSD. 

 The parametric two-sample bootstrap algorithm 

To implement the parametric two-sample bootstrap algorithm, the two observed binomial 
distributions B�i (Ni, ni, pi), i = 1, 2, are generated by using the function-call method (see Section 
3.2), i.e., calling function rbinom (Ni, ni, pi) in the R Stats Package [17-18] to generate Ni 
random binomial variates for preset ni and pi, respectively. 
The parametric two-sample bootstrap algorithm is shown as follows [10-11]. 
 
Algorithm I (The parametric two-sample bootstrap) 
 
1: for j = 1 to B do 
2: call rbinom (N1, n1, p1) in the R Stats Package 
                  to form a new observed binomial distribution B�1 j (N1, n1, p1) with N1 random variates 
3: call rbinom (N2, n2, p2) in the R Stats Package 
                  to form a new observed binomial distribution B�2 j (N2, n2, p2) with N2 random variates 
4: B�1 j (N1, n1, p1) & B�2 j (N2, n2, p2) ⇒ statistics  S�jm, m = 1, 2 
5: end for 
6:  {S�jm | j = 1, … , B}  ⇒  SE�B

m and (Q�Bm(α/2), Q�Bm(1 −  α/2)), m = 1, 2 
7: end 
 
where B is the number of the two-sample bootstrap replications, m = 1 stands for BF and m = 2 
represents WoE, and the two statistics of interest are S�j1 = BF�j and S�j2 = WoE�j. 
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As shown from Step 1 to 5, Algorithm I runs B times. In the j-th iteration, N1 (N2) random 
binomial variates for n1 and p1 (n2 and p2) are generated by calling the function rbinom (N1, n1, 
p1) (rbinom (N2, n2, p2)) in the R Stats Package to form a new observed binomial distribution B�1 j 
(N1, n1, p1) (B�2 j (N2, n2, p2)), and then at Step 4 from these two new sets of binomial variates the 
j-th bootstrap replications of statistics of interest, i.e., S�j1 = BF�j and S�j2 = WoE�j are generated. 

If the single point hypothesis is of interest as pointed out in Sections 2 and 3.1, the BF is a ratio 
of two conditional probabilities at the input data (i.e., the evidence) y based on Eq. (2). In the 
binomial case as illustrated in Section 1, such a conditional probability at a specific success 
number k can be estimated by dividing the frequency at k in the new observed binomial 
distribution by the total number of variates. And the WoE is obtained by Eq. (2) accordingly. 

Finally, as indicated in Step 6, from the sets {S�jm | j = 1, … , B}, m = 1, 2, the estimator of the SE, 
denoted by SE�B

m, i.e., the sample standard deviation of these B bootstrap replications, and the 
estimators of the α/2 100% and (1 - α/2) 100% quantiles of the distribution of the bootstrap 
replications, denoted by Q�Bm(α/2) and Q�Bm(1 −  α/2), at the significance level α can be 
calculated [11]. Definition 2 of quantile in Ref. [23] is adopted. That is, the sample quantile is 
obtained by inverting the empirical distribution function with averaging at discontinuities. Thus, 
(Q�Bm(α/2), Q�Bm(1 −  α/2)) stands for the estimated bootstrap (1 - α) 100% CI. If 95% CI is of 
interest, then α is set to be 0.05. 
Further, based on our extensive Monte Carlo studies of bootstrap variability in ROC analysis on 
large datasets with or without data dependency, the number of bootstrap replications B is 
determined to be 2,000 in order to reduce the bootstrap variance and ensure the accuracy of the 
computation (see Section 6) [7, 11, 13-16, 19-20]. 

 The nonparametric two-sample bootstrap algorithm 

For any set of N, n and p, the observed binomial distribution generated using the partition 
method has much less RMSD with respect to the corresponding expected binomial distribution 
than the one created using the function-call method. Moreover, the partition method is a 
deterministic process, meaning that it generates only one observed binomial distribution for a set 
of N, n and p as shown in Section 3.3. 
Hence, the nonparametric two-sample bootstrap algorithm is carried out to the two observed 
binomial distributions B�1 (N1, n1, p1) and B�2 (N2, n2, p2) generated using the partition method 
with the resultant total numbers of binomial variates N1 and N2, respectively (see Section 3.3). 
The nonparametric two-sample bootstrap algorithm is shown in the following [5-7, 10-11]. 
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Algorithm II (The nonparametric two-sample bootstrap) 
 
1: for j = 1 to B do 
2: select N1 binomial variates randomly WR from B�1 (N1, n1, p1) 
                                to form a new observed binomial distribution B�1 j (N1, n1, p1) 
3: select N2 binomial variates randomly WR from B�2 (N2, n2, p2) 
                                to form a new observed binomial distribution B�2 j (N2, n2, p2) 
4: B�1 j (N1, n1, p1) & B�2 j (N2, n2, p2) ⇒ statistics  S�jm, m = 1, 2 
5: end for 
6:  {S�jm | j = 1, … , B}  ⇒  SE�B

m and (Q�Bm(α/2), Q�Bm(1 −  α/2)), m = 1, 2 
7: end 
 
where WR stands for “with replacement,” and m = 1 represents BF and m = 2 stands for WoE. 
By comparison with Algorithm I, only Steps 2 and 3 are different regarding how the bootstrap 
samples of binomial variates are generated. Here, in the j-th iteration, N1 (N2) binomial variates 
are randomly selected WR from the original observed binomial distribution B�1 (N1, n1, p1) (B�2 
(N2, n2, p2)), that is generated by the partition method, to constitute a new observed binomial 
distribution B�1 j (N1, n1, p1) (B�2 j (N2, n2, p2)). Everything else stays the same. 

 Determine the sample size, i.e., the total number of observed binomial 
variates via bootstrap variability studies 

To ensure the computational accuracies of the SE and 95% CI of BF and WoE, the sample size, 
i.e., the total number of observed binomial variates is determined not only by the discrepancy 
between the observed binomial distributions and the expected binomial distributions, but also by 
the bootstrap variability. The former is investigated using RMSD for both the function-call 
method and the partition method in Section 4. And the latter is studied in this section. 

 The bootstrap variability studies 

While employing the parametric and nonparametric two-sample bootstrap algorithms to estimate 
the SE and the 95% CI of BF and WoE, to reduce the bootstrap variance and ensure the accuracy 
of computation, the bootstrap variability must be studied, which determines the sample size as 
well as the number of bootstrap replications. 
As pointed out in the literature [10-11, 19-20], the substantial bootstrap variance is caused by the 
sampling variability and the bootstrap resampling variability. The former is because a finite 
number of samples usually form a subset of the entire population. The latter is because a limited 
number of bootstrap replications of a statistic of interest only constitute a subset of all possible 
bootstrap replications. 
Further, the bootstrap variance produces the variance of the SE and the variance of the two 
bounds of the CI of the bootstrap distribution formed by the bootstrap replications of the statistic. 
Hence, these variances are functions of the sample size as well as the number of bootstrap 
replications. Inversely, the sample size and the number of bootstrap replications can be 
determined from these variances. 
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Concerning the number of bootstrap replications, based on our extensive Monte Carlo studies of 
bootstrap resampling variability in ROC analysis on large datasets with or without data 
dependency, the number of bootstrap replications is determined to be 2,000 (see Section 5) [7, 
11, 13-16, 19-20]. 
Regarding the sample size, i.e., the total number of observed binomial variates, the study of 
sampling variability is carried out in terms of the six estimated CVs of SE, lower-bound (LB) 
and upper-bound (UB) of CI, i.e., CVSE, CVLB and CVUB, for BF and WoE, respectively. 
These six CVs are derived from 500 runs of SEs, LBs and UBs of CIs, using the parametric and 
nonparametric two-sample bootstrap algorithms on different specific total numbers of observed 
binomial variates generated by the stochastic function-call method and the deterministic partition 
method, respectively. 

 The sample size derived from the bootstrap variability studies 

Concerning the sampling variability, it is explored using the following Algorithm III. As pointed 
out above, the sample size, i.e., the total number of observed binomial variates is determined not 
only by using RMSD in Section 4 while generating observed binomial distributions, but also by 
Algorithm III here while carrying out the bootstrap algorithm. 
 
Algorithm III (Variability study concerning the number of binomial variates while 
bootstrap) 
 
1: for i = 1 to L do 
2:     for j = 1 to B do 
3:           (Algorithm I or II: Step 2 through Step 3)i j

 

4:           B�1 i j (N1, n1, p1) & B�2 i j (N2, n2, p2) ⇒ statistics  S�i jm, m = 1, 2 
5:     end for 
6:     {S�i jm | j = 1, … , B}  ⇒  SE�B i

m  and (Q�B i
m (α/2), Q�B i

m (1 − α/2)), m = 1, 2 
7: end for 
8: {SE�B i

m , Q�B i
m (α/2), Q�B i

m (1 − α/2) | i = 1, … , L} ⇒ 
                                              CV�B,L

m (𝜅𝜅),𝜅𝜅 = 𝐒𝐒𝐒𝐒B,L
m ,𝐐𝐐B,L

m (α/2),𝐐𝐐B,L
m (1 − α/2)             m = 1, 2 

9: end 
 
where L is the number of Monte Carlo iterations, B is the number of bootstrap replications, and 
m = 1 stands for BF and m = 2 represents WoE. Step 3 in Algorithm III is equivalent to Step 2 
through Step 3 in Algorithms I and II, respectively. Thus, Algorithm III can be applied to the 
bootstrap variability studies while either the parametric two-sample bootstrap Algorithm I or the 
nonparametric two-sample bootstrap Algorithm II is carried out. 
Moreover, as shown in Sections 5.1 and 5.2, Step 3 in Algorithm III is related to the total 
numbers of observed binomial variates N1 and N2. As a result, all quantities in Steps 4, 6 and 8 of 
Algorithm III are the functions of N1 and N2. To make expressions simpler, N1 and N2 are not 
shown as independent variables here. 
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As indicated from Steps 1 to 7, Algorithm III runs L iterations for a specified B. The part from 
Steps 2 to 6 of Algorithm III is equivalent to Algorithms I and II, respectively, which generates 
the i-th SE�B i

m , Q�B i
m (α/2), and Q�B i

m (1 − α/2) of BF (i.e., m = 1) and WoE (i.e., m = 2) in the i-th 
iteration for a given B. 
As shown in Step 8, for a specified B, after L iterations of executing the two-sample bootstrap 
algorithm, the following six sets are generated, 
 

                  𝐒𝐒𝐒𝐒B,L
m =  �SE�B i

m  � i = 1, … , L}, 
        𝐐𝐐B,L

m (α/2)  =  {Q�B i
m (α/2), | i =  1, … , L},               m =  1, 2. 

𝐐𝐐B,L
m (1 − α/2)  =  {Q�B i

m (1 − α/2), | i =  1, … , L}, 
(10) 

 
Thereafter, from these six sets, the six estimated coefficients of variation CV�s of SE, LB and UB 
of CI, i.e., CVSE, CVLB and CVUB, for BF and WoE, respectively, can be obtained, 
 

CV�B,L
m (𝜅𝜅) =  

�VA�RB,L
m (κ)

E�B,L
m , where 𝜅𝜅 = 𝐒𝐒𝐒𝐒B,L

m ,𝐐𝐐B,L
m (α/2),𝐐𝐐B,L

m (1 − α/2), m = 1, 2. (11) 

 
It is clear that the estimated CV�s are functions of the number of bootstrap replications B, the 
number of Monte Carlo iterations L, the significance level α, and the total numbers of observed 
binomial variates N1 and N2. 
In this study, L is set to be 500 and B is set to be 2,000 based on our prior investigation in Refs. 
[7, 13-16]; and α is set to be 0.05 if the 95% CI is of interest as stated in Section 5.1. 
Hence, the total numbers of variates of the two binomial distributions N1 and N2 can be determined 
by the tolerable CVs. Indeed, N1 and N2 may very well be different. Because such a bootstrap 
variability study takes substantial CPU time, N1 and N2 are assumed to be equal in this article. 

 The computational part of a case study 

The theoretical framework of estimating the SE of WoE was accomplished in this research 
paper. We are working on the computational part. After that, we can compute the SE and 95% CI 
of WoE in a case study using the parametric two-sample bootstrap algorithm as well as the 
nonparametric two-sample bootstrap algorithm, respectively. For other cases, the same procedure 
employed in this article can be applied. 
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