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Abstract 

Transactive energy may provide a way to support integration of customer distributed energy 
resources (DER) into the electric grid and to help manage DER flexibility to support 
distribution system and bulk grid needs. Use of DER flexibility includes peak shifting in 
response to forward market prices, real-time regulation in response to 5-minute prices, and, 
potentially, voltage regulation in response to distribution nodal prices. The work presented 
here compares two approaches for managing heat pump cooling to provide grid services. The 
first approach implements a rule-based real-time controller that manages power consumption 
based on 5-minute real-time prices. The second controller uses a model-based approach to 
optimize load based on day-ahead hourly prices. These approaches are evaluated on two 
reference grids using GridLAB-D with the same weather and price information. The real-
time controller reacts to a volatile price signal to reduce homeowner energy use and energy 
costs. The model-based controller minimizes energy use by pre-cooling before the price peak 
and allowing indoor temperature to drift up during peak price times. The model-based 
controller strategy results in cost savings when temperatures are allowed to move farther 
from the desired setpoint. Because this controller does not respond to real-time price 
volatility, there are no cost savings during sub-hourly real-time price spikes.  

Simulation results show both controllers adjusting temperature setpoints in response to price 
movement, reducing customer cost while staying within pre-defined comfort boundaries. 
These temperature adjustments resulted in significant power flow volatility at the substation. 
The average power flow change for the real-time controller, time step to time step, was 
approximately 10 % of the peak load. Some observed power flow changes were equivalent to 
simultaneously turning off or on all price-responsive loads on the grid. This power flow 
volatility resulted in voltage volatility at customer meters and greatly increased voltage 
regulator and capacitor bank actions on one of the tested grids. Analysis suggests that power 
flow volatility may be expected when many devices are price-responsive and controllers have 
the goal of reducing cost without considering voltage. Care must be taken to reduce the 
volatility of the price signal and boost hosting capacity to support synchronized price 
response by a large percentage of load.  

 
Keywords 

co-simulation; distribution grid; dynamic pricing; energy flexibility; load forecasting; grid-
edge systems; GridLAB-D; heat pump controller; hosting capacity; power quality; price-
responsive controller; real-time market; real-time price; transactive energy; volatility; voltage 
violations 
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Nomenclature 

CC  Comfort coefficient (unitless) 
DAP  Day-ahead market price 
deadband Range of allowed temperature variation around Tset without cooling (℃) 
DER  Distributed energy resources 
HVAC  Heating, ventilation, and air-conditioning 
k   PNNL real-time controller comfort parameter (unitless) 
LA   Learning Algorithm 
LFA   Load Forecasting Algorithm 
LFC  NIST Load Forecasting Controller 
NIST  National Institute of Standards and Technology 
offset_limit  Extent that adjusted setpoint can move above or below Tset (℃) 
Pavg    Average price over the last 24 hours ($/kWh) 
Pbid    Bid price submitted to the double auction market ($/kWh) 
PDA  Day-ahead price of electricity ($/kWh) 
RTC  PNNL real-time controller 
RTP  Real-time market price 
RTPavg Hourly-averaged RTP 
Tcsp   Adjusted cooling setpoint temperature (°C) 
TE  Transactive Energy 
Tmax   Maximum allowed customer setpoint temperature (Tcsp + offset_limit) (°C) 
Tset  Base setpoint (customer desired) temperature (°C) 
UCEF  Universal Cyber-Physical Systems Environment for Federation 
λ  LFC comfort parameter (unitless) 
σ   Price standard deviation ($/kWh) 
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 Introduction 

The electric grid is undergoing significant changes due to the proliferation of distributed 
energy resources (DER) and accompanying load growth. DER include photovoltaics (PV), 
electric vehicles (EV), batteries, and loads capable of providing demand response. The 
increasing load and the challenges of variable generation can strain existing distribution 
grids. Successfully adapting to this changing environment requires careful research and 
planning to avoid overburdening existing infrastructure while enabling the integration of new 
DER technologies and advanced automation and controls.  

Buildings consume 74 % of total electricity sold in the U.S. [1], but in the new electric grid 
paradigm, buildings are not solely electricity consumers. They also contain storage (both 
thermal and electrical) and generation that can offer flexibility for grid services such as 
voltage regulation and frequency response. Heating, ventilation, and air conditioning 
(HVAC), and hot water heating are significant sources of electricity consumption in 
buildings, while battery charging for vehicles and stationary applications is growing.  
Intelligent controls can manage these loads to provide flexibility to the grid and support the 
integration of intermittent renewable generation.  

Transactive energy (TE) may offer a solution to address some of these challenges. TE can 
support energy conservation, efficiency, and integration of renewable energy at the 
distribution levels. This report examines the cost, comfort, and grid power quality impacts of 
two different heat pump control strategies. The strategies use different price signals, but both 
have a goal of reducing cost while maintain comfort within acceptable limits. 

1.1. Flexibility and Demand Response 

Demand flexibility is the capability of DER, including generation, storage, and loads, to 
adjust a building’s demand profile across different timescales [2, 3]. It may be viewed as the 
amount of energy that a customer facility/DER can provide to the grid in response to grid 
needs. Grid needs are communicated by demand response (DR) event signals, market signals, 
or automatic sensing (e.g., voltage and frequency). In response to providing grid services, 
customers receive payments or other incentives that are provided by a market, DR program, 
or regulatory requirement.  

Two common approaches used to access building energy resource flexibility are event-based 
DR and dynamic price tariffs [3]. DR programs have been implemented widely across the 
U.S. and typically provide an incentive payment to a customer for allowing a utility or an 
aggregator to adjust the customer’s air conditioner setpoint temperature or alter water heater 
operation in response to grid conditions and electricity market prices. According to the 2020 
Federal Energy Regulatory Commission (FERC) assessment [4], there are 32 GW of DR 
available as a resource for peak load shedding. This is approximately 5 % of the U.S. peak 
demand.  

Despite this success in implementing DR programs, event-based DR has drawbacks: (1) it 
does not provide a regular signal that would continuously access the value of the building 
flexibility, and (2) customers are paid for the power that they do not use relative to an 
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artificial calculated baseline1 rather than only paying a given market price for the power that 
they do use. The importance of the first drawback is that event-based DR relegates customer 
generation and storage resources to reserves or emergency status rather than making them 
full-fledged 24/7 assets for grid stability. The importance of the second drawback is that the 
DR event approach is sub-optimal. It exists because of earlier lack of interval meter data and 
the related operations of the wholesale markets. Utilities forecast load and bid that into the 
market, but retail customers do not see market prices and cannot adjust energy consumption 
based on those prices.  

In contrast, dynamic price tariffs have been shown to be effective for incentivizing both 
manual and automated responses [5]. The most simple and common tariff is the time-of-use 
(TOU) tariff with fixed-price levels on a fixed schedule. A more dynamic tariff is the real-
time price (RTP) tariff, where customers are charged for their energy use based on the 
wholesale real-time market prices plus a distribution fee. While TOU tariffs are common in 
the U.S., they are not typically mandatory; less than 10 % of Americans are enrolled [5]. The 
number of RTP tariffs is smaller but there is a growing number in use [6, 7]. More complex 
proposed dynamic price approaches might incorporate distribution system modeling to find 
the equivalent of a distribution nodal price (akin to the transmission system locational 
marginal price). These nodal prices could vary across the distribution grid to address 
localized conditions, potentially even addressing both real and reactive power for voltage 
control [9, 10].  

The research presented here investigates the use of dynamic price tariffs for transactive 
energy management.  

1.2. Transactive Energy Management  

Transactive energy uses market signals (cleared prices or market tenders) to engage customer 
DER as market participants. Load controllers manage energy use in response to prices.  

The experiments reported here compare two transactive energy management approaches that 
work in fundamentally different ways with the intent of applying building flexibility, using 
home thermal properties and customer preference, to reduce feeder load on the bulk grid 
when the grid is stressed. The first approach responds to a RTP signal and enables fast 
response to real-time grid needs. The second approach responds to a day-ahead price signal 
to enable effective load planning. These approaches may be combined to provide effective 
use of building flexibility to provide grid frequency support. 

The first approach, adopted from Pacific Northwest National Laboratory (PNNL) and 
introduced in Section 2.3.1, responds to fluctuating 5-minute real-time wholesale market 
prices. The second approach, implemented in a controller developed at the National Institute 
of Standard and Technology (NIST) and covered in Section 2.3.2, responds to next-day 
wholesale market prices and plans energy use for the coming day.  

 
1 A counterfactual baseline depends on averaged historical energy use and assumption of infrequent events in order to estimate what power 
a customer would have used on a given day [40], rather than allowing the customer to determine the value of energy given all the real-time 
information at hand, including schedules and other private customer information. 
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The day-ahead wholesale energy market price (DAP) provides an hourly price of power for 
tomorrow. The wholesale RTP represents the marginal price of generation to the bulk system 
at different transmission system nodes and is more volatile than the DAP. Typically, 95 % of 
energy transactions in the wholesale energy markets are scheduled in the day-ahead market, 
with the rest scheduled in real-time [10].2 

While wholesale RTP provides a signal for incentivizing real-time demand adjustment to 
support the electric grid and can save money for customers who react quickly, it also has 
some weaknesses. A real-time signal is not useful for planning purposes, except by reference 
to its historical behavior. The real-time market is responding to minute-to-minute imbalances 
in supply and demand and therefore the RTP can change in unpredictable ways. In the 
context of distribution system flexibility, RTP induces DER to adjust power consumption. 
When price increases, controllers are likely to reduce load and the feeder aggregate power 
flow will drop in proportion to the price increase3. Wholesale RTP is a marginal price 
indicating bulk grid supply needs; it is not intended to have a connection to local voltage 
levels. However, aggregate response of loads to RTP can induce local voltage changes.  

DER management based on next-day hourly prices can enable optimization of load across the 
next day, balancing cost and comfort. Unlike the response to RTP, it does not provide cost 
savings via cutting load temporarily during short-term price spikes. Nonetheless, next-day 
prices are more stable, and energy purchased day-ahead may benefit resource planning both 
for the building owner and for the grid operator. One approach that has been tested in a utility 
pilot utilizes DAP to provide a forward planning signal which is combined with RTP for real-
time adjustments [12, 13]. This essentially implements a day-ahead retail market to bring 
customer demand flexibility into the wholesale market cycle, resulting in wholesale clearing 
prices that consider demand flexibility. 

1.3. Impact of DER on Voltage  

A number of research reports in recent years have focused on DER-related voltage 
challenges [14–17], specifically tied to PV systems. Inverters may trip offline in response to 
a grid voltage dip, which can have the undesired effect of losing generation when the grid 
needs it. PV generation will produce power when the sun shines and may produce more 
power at solar peak than the local grid requires, which may result in backflow of power to the 
substation as well as elevated voltage levels. After the sun sets, heavy demand and/or 
localized large loads (e.g., from EV charging) may result in under-voltage conditions.  

In response to these issues, the IEEE 1547 standard has been revised to enable smart 
inverters to ride through voltage dips [18] and to use reactive power to correct overvoltage 
due to PV over-production [17, 19]. Demand response may also be used to increase 
consumption to reduce voltage. And in the case of low voltage at peak loads, demand 
response may be used to reduce load and raise voltage [16]. In this study, the high 
penetration of PV systems does result in over-voltage conditions at certain times and 

 
2 Not all energy purchased by wholesale customers is procured through the short-term energy markets; a large percentage may be purchased 
via long-term bilateral contracts and many utilities own a significant percentage of their own generation resources. 
3 Controller and device heterogeneity will help to minimize this effect, but if every controller has as a goal to reduce cost with reference to 
the same volatile price signal, then power flow volatility will result.  
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locations, while peak load produces undervoltage conditions in a few locations on one of the 
distribution feeders studied.  

This research demonstrates the impact price volatility can have on voltage stability due to 
rapid shifts in power flows when heat pump controllers react to a volatile RTP signal in an 
unconstrained manner. The algorithms described in Section 2.3.1 and Section 2.3.2 were 
neither constrained by the grid conditions nor optimized to consider voltage stability. This 
study highlights the impact of controllers sensitive only to price that could lead to creating an 
undesired emergent behavior on voltage stability. This effect has anecdotal support but seems 
unreported in the literature.  

 Experiment 

2.1. Co-simulation Environment 

In this study, we used the U.S. National Institute of Standards and Technology (NIST) co-
simulation tool called the Universal Cyber-Physical Systems Environment for Federation 
(UCEF) [20]. The UCEF co-simulation environment supports integration of different 
simulation tools that are written in various software languages using the IEEE 1516-2010 
High Level Architecture (HLA) [21]. In HLA, an individual simulator is called a federate and 
combination of simulators forms a federation.  

A transactive energy co-simulation requires several key simulation components: the electric 
grid, the loads and generators connected to the grid, the local and supervisory controllers that 
control the loads and generators, and the market that coordinates supply and demand [22]. In 
UCEF, each of these components could be modeled as separate simulation federates or a 
combination of components as one single federate. GridLAB-D combines the loads and 
generators together with the grid itself for grid simulation.  

In this research, key simulation components consist of the GridLAB-D grid solver working 
with two grid models, along with two different heat pump controllers operating based on 
market prices. 

2.2. Grid Federate 

In the co-simulation experiments, two separate grid models were used. The first model is a 
larger feeder based on the IEEE 8500 reference grid (hereafter called “8500 grid”), and the 
second is a smaller grid feeder model, the R4-12.47-1 reference grid (hereafter “R4-1 grid”).  

The 8500 grid is described in the NIST Transactive Energy Challenge Phase II report [23] 
and shown in Fig. 1. This residential feeder model is populated with 1977 single family 
homes, each with controllable air conditioning systems (air-source heat pumps) and 
uncontrolled plug loads. For these homes, 90 % have PV systems and 50 % have electric 
resistance hot water heaters. The 8500 grid was modeled in GridLAB-D [14]. The houses 
have different base temperature setpoints that are unchanged throughout the day and 
uniformly distributed over the range 21.1 °C – 26.7 °C (70 °F – 80 °F)), with different 
randomized temperature deadbands (uniformly distributed over the range 1.11 °C – 1.67 °C 
(2.0 °F - 3.0 °F)) and offset limits (1.67 °C – 2.78 °C (3.0 °F – 5.0 °F)). The offset limit 
represents the maximum temperature deviation from the base setpoint that a homeowner 
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considers acceptable in response to price variation. Houses vary in their floor and window 
area, wall thermal capacity and insulation. Uncontrolled loads (hot water heater, appliances) 
follow typical residential usage with randomized sizes and schedules across houses.  

 
Fig. 1 IEEE 8500 reference grid [25] schematic. 

The R4-1 grid, Fig. 2, contains 523 residential homes, both single family as well as several 
multi-family dwellings. Approximately 30 % of the load on the grid can be attributed to 
small commercial and industrial facilities spread across the feeder. All homes on the grid 
have rooftop PVs and price-responsive heat pumps while half the homes have electric 
resistance hot water heaters. The R4-1 grid peak load is 3 MW compared to the 8500 grid’s 
larger 8 MW peak. In this experiment, setpoint temperatures, deadbands, and offset limits 
were set equal to the values used for the 8500 grid. The R4-1 grid is a smaller feeder but has 
the same wire diameters and voltage (12.47 kV) on the main trunk as the 8500 grid. These 
grid parameters result in a more robust grid with fewer voltage problems compared to the 
8500 grid.  

 
Fig. 2 R4-12.47-1 reference grid [26–28] schematic. 
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2.3. Heat Pump Transactive Controllers 

The experiment made use of two separate controllers: the PNNL Real-Time Controller 
(RTC), and the NIST Load Forecasting Controller (LFC). 

2.3.1. Real-Time Controller  
The RTC uses rule-based control that determines house setpoint temperatures based on the 
real-time price for the next time interval. The RTC used in this experiment has been 
implemented in a transactive energy pilot program [29]. It adjusts the indoor setpoint 
temperatures at every 5-min interval, moved up or down in proportion to the changes in RTP. 

The RTC federate includes both a thermostat setpoint controller and a double auction market 
as shown in Fig. 3. The RTC interacts with GridLAB-D, sending new house setpoint 
temperatures every 5 min and receiving back the current house temperatures. The blue oval 
inside the GridLAB-D Federate represents a GridLAB-D implementation of the grid 
topologies described above, including Loads and Generators components, as key actors in a 
TE co-simulation.  

  
Fig. 3 The PNNL Real-Time Controller with a GridLAB-D distribution grid model. 

The RTC market accepts bids representing the amount per kWh that each house is willing to 
pay for energy required to run the heat pump during the next 5-minute time interval. The 
operation of the double auction market is documented in Section 1.2.1 of [30] and in [31]. 
The thermostat setpoint controller submits a bid to the market for each house. By design, the 
RTC market clearing price is set by the wholesale market real-time price plus distribution 
costs and congestion limits (that may constrain the cleared load). In the current 
implementation, distribution congestion (voltage) is not used to adjust the price signal. The 
clearing price for the next five minutes is returned to the controller which translates this back 
to setpoint temperatures for each house. The setpoint temperatures are the control actions that 
GridLAB-D uses to maintain the desired thermal comfort.   

The specific algorithm for price-based control, implemented by the RTC, generates bid prices 
using the following equation (Eq. 1.1 from [30]). 

𝑃𝑃𝑏𝑏𝑏𝑏𝑏𝑏  =  𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎 + 𝑘𝑘𝜎𝜎(𝑇𝑇−𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇)
2·𝑜𝑜𝑜𝑜𝑜𝑜𝑇𝑇𝑇𝑇𝑇𝑇_𝑙𝑙𝑏𝑏𝑙𝑙𝑏𝑏𝑇𝑇

 ,                           (1) 

where  
Pbid  =  bid price submitted to the double auction market ($/kWh) 
Pavg  =  average price over the last 24 hours ($/kWh) 
σ =  standard deviation of the price over the last 24 hours ($/kWh) 
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𝑇𝑇 =  current indoor air temperature (℃) 
𝑇𝑇set  =  desired indoor air temperature (℃) 
𝑘𝑘  =  responsiveness desired by the consumer (unitless) 
offset_limit  =  extent that adjusted setpoint can move above or below Tset (℃). 

 

Pbid is the price that a customer is willing to pay to maintain thermal comfort closer to the 
desired setpoint temperature. In this research, where line congestion and distribution voltage 
are not accounted for, and where distribution costs are not considered, the clearing price is 
equal to RTP. The thermostat controller calculates the cooling setpoint temperatures (Tcsp) for 
each house as: 

𝑇𝑇𝑐𝑐𝑇𝑇𝑐𝑐  =  𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 +   2·𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜_𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑜𝑜
𝑘𝑘·𝜎𝜎  �𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 − 𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎�                        (2) 

where price is the clearing price from the RTC double auction market, which equals the RTP 
for the next 5-minute interval. Tcsp values are sent to the GridLAB-D model every five 
minutes to update the house temperature control setpoints. Equation 2 shows that setpoint 
temperature increases linearly with price for each house, and the slope of the increase is 
proportional to the offset_limit and inversely to comfort parameter, k, and price standard 
deviation. That is, a customer with higher comfort parameter will see less temperature 
increase, and likewise there will be less temperature increase when the range of prices 
(standard deviation) increases. Reference to yesterday's prices serves well when the range of 
prices is consistent day to day but can lead to over or under reaction by the RTC to prices if 
there is a shift in level of volatility from one day to another. 

2.3.2. Load Forecasting Tool for NIST Market Interactions 
The NIST Load Forecasting Controller (LFC) conceptual design, shown in Fig. 4, is based on 
the NIST TE Market Controller [32]. The LFC is a reduced version of the full TE Market 
Controller architecture; in this experiment it runs once per day to generate next-day house 
setpoint temperatures. The Learning Algorithm (LA) learns effective thermal parameters for 
each house for use with a simple house model. The Load Forecasting Algorithm (LFA) then 
uses the trained model parameters and next-day prices to optimize heat pump operation 
across the test day with the goal of minimizing daily energy cost while maintaining 
temperatures within occupant specified comfort limits.  

 
 

Fig. 4 Schematic representation of Load Forecasting Controller with information inputs, 
intermediate products, and outputs to GridLAB-D. 
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Realizing the objective of the LFC requires intelligent learning and control algorithms to 
manage cost and comfort while adapting to changing weather conditions, the thermal 
characteristics of homes, and the price of electricity. The intended application of the LFC is 
to control house resources including flexible loads such as heat pumps, water heaters, and 
electrical energy storage, based on next-day energy market transactions. For the work 
presented in this paper, only the heat pump operation is managed by sending adjusted 
setpoint temperatures to the GridLAB-D simulation engine. The water heater and other 
potential flexible loads are not adjusted.  

The LFC is comprised of two main components, a Learning Algorithm (LA) and a Load 
Forecasting Algorithm (LFA), as shown in Fig. 4. The LA [33] uses parameter optimization 
to learn key thermal parameters of a first-order lumped capacitance model from historical 
measured or simulated data for each house. It optimizes these thermal parameters by 
minimizing the error between simulated or measured indoor temperature and the output of 
the lumped capacitance model. The lumped capacitance model forecasts the indoor 
temperatures from estimates of heat pump energy, solar heat gain, heat gain from plug-loads, 
and outdoor air temperature. The output of the LA is input to the LFA. GridLAB-D 
simulations of three preceding days provide training data for the LA. The objective function 
of the LFA is formulated in such a way that it minimizes cost while maintaining thermal 
comfort. The mathematical representation of the objective function is given in Eq. 3 (Eq. 
1.12 from [32]), describing the multi-objective optimization problem 

           
[ ]

( ) ( )11 1 12,
min 1

kk SP k hpe k kk n
T T u P w xλ λ

−− − −∈
⋅ − + − ⋅ ⋅ ⋅ ,        (3) 

where:  
k represents the discrete simulation time steps [min]; 
n represents the forecast horizon 1440 [min]. For speed and stability of the optimization 

solver, the forecast horizon has been divided into 144 bins. Simulation data in each 
bin represents 10 min of the forecast horizon; 

u represents the binary decision variable [dimensionless], and at each simulation time 
step, it is defined as 

 
1,  if the heat pump operating
0,  otherwise;

u 
∈


  

Phpe represents the electrical power associated with the heat pump operation [W]; 
w represents heat pump power normalization factor [°C/W]. The normalization factor is 

defined as 1°C/max(𝑃𝑃ℎ𝑐𝑐𝑇𝑇);  
λ is a value between 0 and 1, representing the relative dominance between comfort and 

cost [dimensionless, varies between house models]; 
Tk represents the predicted indoor temperature at each simulation time step k [℃]; 
Tsp represents the setpoint temperature [℃]. Setpoint temperatures are obtained from 

GridLAB-D;  
x represents the vector of normalized values of the price of electricity [dimensionless] 

and is given by  
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( ) , [ , ]DA
DA

DA

px p k n
P

= ∀ ∈ , where DAP is the day-ahead price of electricity, and DAP is 

the average value of day-head price of electricity in [$/kWh]. 
Heat pump power consumption (Phpe) and price (x) were normalized to keep the terms of the 
objective function from dominating the solution. The DAP  and DAP values for electricity were 
obtained from two weeks (June 23rd to July 7th, 2017), using the day-ahead price of 
electricity. Detailed description of the optimization procedure for the LFA is documented in 
[32].  

The LFA is responsible for predicting the hourly energy consumption of a residential house, 
using market prices, weather data, forecast plug-loads, and customer thermal comfort 
requirements. Customers’ thermal comfort requirements are expressed using the λ parameter 
that is analogous to the k parameter used in the RTC approach. Weather conditions were 
obtained from historical data for Tucson Arizona.4 A forecast of plug-loads was obtained 
from simulation of the 8500 grid in GridLAB-D. The LFA utilizes a multi-objective 
optimization model [34] and constraints to forecast heat pump control actions. The 
optimization method attempts to find an optimal heat pump schedule that balances cost and 
comfort, outputting an optimal or an integer feasible solution. The LFA is terminated after it 
finds an optimal policy or exceeds a pre-defined stopping criterion of 3 min maximum 
timeout limit5.   

2.4. Experiment Design 

The UCEF co-simulation environment was used to simulate grid operations and house 
performance for July 6 and July 7, 2017. The experiment used California Independent 
System Operator (CAISO) DAP and RTP at the Tucson, AZ node. Prices for the test days 
and two weeks preceding are shown in Fig. 5 (preceding days are shown for comparison 
purposes). Day-ahead prices (in orange) are seen to generally peak around (0.05 - 0.07) 
$/kWh and dip down to (0.01 – 0.02) $/kWh at night. The RTP has some narrow price spikes 
and even a negative price spike on June 23. The average price for RTP and DAP is the same 
(0.032 $/kWh) across this two-week period. More detail on July 6 and 7 prices are provided 
below in this section. Fig. 6 provides the outdoor temperature and solar irradiance for the 
same days. These are key parameters for estimating heat pump load.  

 
4 If using forecast weather data, one might expect the next-day heat pump energy forecast to be less accurate, resulting in actual day-of 
energy use greater or less than forecast. This would result in a required additional purchase or sell back of energy at RTP. For example, if 
forecast temperatures were lower than actual then additional energy would need to be purchased at RTP to compensate, or vice versa. 
5 The LFA was implemented in a desktop computer with Intel® Xeon® CPU E5-1630 v3 3.7 GHz processor and 16 GB of RAM, and the 
data time step was 1 min. 
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Fig. 5 CAISO RTP and DAP prices for June 23, 2017 to July7, 2017. 

 

  
Fig. 6 Measured outdoor temperature and solar irradiance (right axis) for Tucson, Arizona 
between June 23, 2017, and July 7, 2017. 
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While the CAISO day-ahead market and real-time market have the same average price over 
the two weeks of price data used for this study, the standard deviation of the two price signals 
is very different. Fig. 7 shows the RTP for July 6 and July 7. Fig. 8 shows the DAP along 
with the hourly-averaged RTP (RTPavg). The mean and standard deviation vary markedly 
both day-to-day and between markets comparing July 6 and July 7 test days. The July 7 RTP 
is exceptional in the magnitude and number of price spikes while July 6 has no price spikes. 
Across the two weeks, RTP and DAP have the same average, but RTP has significant sub-
hourly volatility. 

If the two controllers make use of different market prices (LFC using DAP, RTC using RTP), 
it is difficult to compare the performance of the two control approaches on cost. For any 
given day, the variations in RTP (peak magnitude, peak hour, unusual price spikes such as 
we see July 7 morning due to random events) make it difficult to compare the underlying 
LFC planning effectiveness versus the RTC real-time management. In order to address this 
variability, the decision was made to perform LFC simulations using the hourly-average of 
the RTP (RTPavg) in place of the DAP. This aligns the peaks and hourly magnitude across the 
day while removing sub-hourly volatility. Use of the RTPavg enables a direct comparison of 
cost performance between the two approaches for these two days.  

 

  
Fig. 7 CAISO Tucson Real-Time Market five-minute locational marginal prices for July 6, 
2017, and July 7, 2017.  



NIST TN 2241 
October 2022 
 

12 

 

 
Fig. 8 Tucson day-ahead market hourly prices and hourly-averaged real-time market prices 
for July 6, 2017, and July 7, 2017. 

For this study, GridLAB-D was simulated one day at a time using a one-minute time step. 
LFC and RTC temperature controllers provided adjusted setpoint temperatures on a 5-min 
schedule to follow the 5-min real-time market signal. Tucson outdoor temperature and solar 
irradiance data were provided to the grid simulator at 5-min resolution. GridLAB-D was 
configured to output a variety of temperature and voltage data for post-processing.  

 Results 

In this section we compare the results of the two algorithms for thermal comfort, energy 
forecasts, cost of using electrical energy, and their impact on voltage fluctuation on the grid. 

3.1. Comparing Thermal Comfort  

To compare the economic performance of the LFC and RTC algorithms, there is an 
underlying assumption that the two algorithms weight comfort versus cost in a comparable 
manner. In this section we evaluate that assumption to better interpret results.  

Both algorithms have a slider for comfort, enabling customers to express their desire for cost 
savings or thermal comfort. The RTC comfort parameter k represents the number of standard 
deviations that the price must diverge from the average to move Tcsp to Tmax (or Tmin for low 
prices). The LFC comfort parameter λ is a weighting factor in the cost versus comfort 
optimization for the LFC. For both approaches, house temperature setpoint is always 
maintained within the allowed occupant temperature limits, and thus “comfortable.” The key 
idea is that some customers are willing to pay more money to maintain house temperature 
closer to their optimal setpoint while others are willing to save money and allow precooling 
in the morning and higher temperatures during the afternoon when it is hot. 

The RTC algorithm’s adjusted setpoint (Tcsp) will reach Tmax when the price rises k*σ above 
the average price over the past 24 hours, Pavg, where σ is the price standard deviation during 
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that time. For example, consider Pavg = 0.10 $/kWh, with σ = 0.05 $/kWh. If k = 1 and the 
price rises to 0.15 $/kWh, then the house cooling setpoint will reach Tmax. This approach uses 
yesterday's prices as a gauge for "high" prices and expected volatility, which may not serve 
well if there is a significant shift in average price and volatility day to day.  

The LFC uses a different approach. It neither considers the previous day’s prices, nor uses 
rule-based control that ties next step temperature to the next step price. Rather, it is looking at 
a set of hourly prices for the next day and using a house model to explore different 
temperature profiles throughout the next day to optimize cost while maintaining thermal 
comfort. The LFC approach results in a profile that includes some precooling, with the 
amount depending on the thermal storage capacity and time constant of each home, rather 
than simply lowering Tcsp whenever the price is low. The LFC, as implemented in this study, 
uses hourly prices and model steps of ten minutes, not looking at five-minute RTP.  

Even though the two approaches work in fundamentally different ways, they allow for 
temperature deviation from Tset as a function of price and comfort parameter. This 
dependency on price and comfort parameter enables us to perform a basic comparison of the 
two approaches. For this comparison, a comfort coefficient (CC) was defined to quantify the 
average normalized temperature deviation from Tset for a given house for a given day.  

𝐶𝐶𝐶𝐶 = 1
𝑇𝑇𝑇𝑇𝑜𝑜
∑ |𝑇𝑇−𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇|

𝑜𝑜𝑜𝑜𝑜𝑜𝑇𝑇𝑇𝑇𝑇𝑇_𝑙𝑙𝑏𝑏𝑙𝑙𝑏𝑏𝑇𝑇
𝑇𝑇𝑇𝑇𝑜𝑜
𝑇𝑇𝑇𝑇=0         (4) 

 
where offset_limit is equal to Tmax-Tset, T is the house temperature at each time interval, and ts 
is the simulation time step. For a single day simulation and 5-min time steps, tsf = 288. 

Fig. 9 and Fig. 10 show the comparison of the CC metric as a function of k and λ for July 6 
and July 7 test days, respectively. In both plots, each data point represents the CC metric of a 
house. The values of k associated with each house were preset as part of the IEEE 8500 grid 
market definition used for the TE Challenge Phase II [13]. The values of λ were set using a 
simple linear mapping of k to λ, such that k from 0.5 to 3 maps to values of λ from 0 to 1. A 
value of λ = 0 indicates a customer most willing to allow the controller to adjust temperature 
to save money, while λ = 1 indicates a customer most interested in maintaining temperature 
close to the setpoint. 

As seen in Fig. 9 and Fig. 10, the two approaches do not have identical CC values over the 
range of k and λ for the two days with different shapes on July 6 verses July 7 due to the very 
different price curves on those days. Fig. 9 shows that the RTC has a CC value that drops 
gradually from approximately 0.4 at k = 0.5 to the noise floor6 of CC = 0.2 at k = 1.5. The 
CC curve for LFC has the same general shape, but with a sharper drop at low λ, indicating 
that LFC will allow more temperature variation at very low λ. 

Fig. 10 shows CC values higher on July 7 than seen on July 6 for all values of k. This is due 
to the strong spikes and much higher prices compared to the previous day (Fig. 7). The 
higher CC values at large k indicate that the RTC algorithm is raising temperatures for even 

 
6 The noise floor here is due to temperature variation within the deadband. 
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the most comfort-conscious customers due to the price spikes and increased Pavg and σ 
relative to July 6 values of the same.  

 

The July 7 LFC CC curve shows more scatter in CC across the range of λ. This may be due 
to the LFC adjusting the amount of precooling as a function of house thermal mass and 
insulation. Note the difference between LFC at λ = 1 and RTC at k = 3. The LFC places all 
weight on the comfort term and zero weight on the cost term and thus the comfort is at the 
noise floor (Tcsp = Tset). The RTC still allows some raising of Tset at k = 3 due to the higher 
prices on July 7 compared to July 6. 

The results show that we should expect little difference in cost and comfort between the two 
algorithms on July 6 except at the lowest values of k and λ. Most homes will see a Tcsp that 
remains near Tset. In contrast, on July 7, the range of Tcsp variation increases. Over the ranges 
of k and λ, the LFC tends to have less Tcsp variation at high λ compared to RTC, but more at 
the low end (λ < 0.4).  
 

Fig. 9 Comfort Coefficient comparison across the comfort range for RTC (left) and LFC (right) 
for July 6. Each point represents the CC metric for a house in the 8500 grid. 

Fig. 10 Comfort Coefficient comparison across the comfort range for RTC (left) and LFC 
(right) for July 7. Each point represents the CC metric for a house in the 8500 grid. 
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3.2. Energy Forecasts 

The NIST LFC estimates tomorrow’s total hourly energy consumption by adding the 
predicted heat pump energy consumption and plug-loads for each house. The estimated 
hourly total energy consumption can be compared to the simulated energy use of each house 
in GridLAB-D. Fig. 11 shows LFC’s hourly forecast energy consumption across the day for 
one house and the resulting GridLAB-D’s simulated energy consumption required to 
maintain the house temperature at the LFC-prescribed Tcsp (input to GridLAB-D). The results 
shown in Fig. 11 are representative of the observed differences between LFC generated 
energy forecasts and the simulated GridLAB-D energy consumption.  
 

  
Fig. 11 Comparison of LFC forecast hourly energy consumption versus the GridLAB-D 
simulated energy consumption for a representative house on July 7.  

In comparison, the RTC makes no forecast. It only observes the deviation of the current 
house temperature from the base setpoint (Tset) and provides a bid price above which it is 
willing to shut off the heat pump (or keep it off), given customer comfort requirements.  
 
3.3. Cost Performance 

The LFC model produces a house temperature setpoint profile that should ideally meet 
customer comfort requirements at lowest cost, if energy is paid for based on the same day-
ahead prices. The temperature setpoint profile for each house is provided to GridLAB-D as 
input, and GridLAB-D returns simulated indoor temperatures and energy consumption for 
each house. While the RTC approach charges all energy use during each 5-min interval at the 
RTP for that interval, the cost for the LFC controller is computed per Equation (5). For LFC, 
day-ahead forecast energy is paid for at the day-ahead price. Any energy consumption 
difference from the forecast (more or less) is paid for at RTP. 
 

𝐶𝐶𝐿𝐿𝐿𝐿𝐿𝐿 =  𝐸𝐸ℎ𝑜𝑜
12
𝑃𝑃𝐷𝐷𝐷𝐷  + �𝐸𝐸 − 𝐸𝐸ℎ𝑜𝑜

12
�𝑃𝑃𝑅𝑅𝑇𝑇𝑅𝑅                  (5) 

 
where 
 CLFC  =  cost per 5-min time interval for LFC controller ($) 
 Ehf  =  LFC hourly forecast energy consumption for next day (kWh) 
 PDA  =  next day hourly price ($/kWh) 
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 E  =  energy consumption per 5-min time interval (kWh) 
 PRTP  =  RTP price for the time interval ($/kWh) 
 
Fig. 12 presents cumulative energy cost for RTC, LFC, and a no-control baseline 
(temperatures held constant at Tset) for a single house that has a low comfort (more cost-
conscious) setting on July 7. As shown in Fig. 12, prior to 10 a.m., the RTC and LFC track 
the baseline. After 10 a.m., the RTC reacts to the rising prices by allowing Tcsp to drift 
upwards (Fig. 13), saving some energy and reducing cost. The LFC performs some pre-
cooling that keeps the cost higher than the RTC until the peak pricing period when the cost of 
the LFC drops below the cost of the RTC.  
 
Note that GridLAB-D had power flow convergence issues that seem to be tied to price 
fluctuations and resulting power flow fluctuations on the 8500 grid7. The 24-hour baseline 
simulations ran for the full day. LFC hourly price fluctuations induced GridLAB-D solver 
convergence failure typically around peak load. With RTC and its stronger price fluctuations, 
GridLAB-D encountered convergence issues earlier, as seen in Fig. 12. Due to these 
convergence issues, the analyses of the results on cost and power flow volatility are only 
valid until simulation stopped.   
 

 
Fig. 12  Cumulative electricity cost for a typical house with low-comfort parameter       
λ = 0.087), July 7.  

Fig. 13 shows the Tcsp profiles for the two controllers along with the RTP profile on the 
secondary axis. The RTC algorithm raises Tcsp in the morning due to the already high 
(compared to July 6 average) morning prices. The LFC, on the other hand, is performing pre-
cooling (from 8:00 a.m. to 9:30 a.m. and 12:00 p.m. to 3:00 p.m.) in anticipation of even 
higher afternoon prices. LFC attempts to reduce cost by letting the indoor temperature float 
during the peak price periods.   
 

 
7 Similar issues with this grid model were encountered in previous publications. 
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Fig. 13 Cooling setpoint temperatures from RTC and LFC controllers for the same low-
comfort house as in Fig. 12, July 7, 8500 grid. The RTP profile is shown in black on 
secondary vertical axis. 

The house indoor temperature bounces around Tcsp within the deadband, as shown in Fig. 14.  
 

 
Fig. 14 Comparing house air temperature to LFC Tcsp for the house seen in Fig. 13. 
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Fig. 15 compares controllers’ actions for a house with a high-comfort parameter. In this case, 
we expect the controller to maintain the temperature closer to Tset, given the customer 
preference for comfort over cost savings, as shown in Fig. 15 versus Fig. 13.  The RTC also 
reduces the amount of temperature excursion away from Tset, although setpoints still hit Tmax. 
 

 
Fig. 15 Cooling setpoint temperatures for RTC and LFC controllers for a house with a high-
comfort setting (λ = 0.82), July 7, 8500 grid. 

Considering Fig. 15, the RTC algorithm reacts to the high prices on July 7 (compared to July 
6 when peak prices were less than $0.10) and responds by raising Tcsp in the morning. The 
RTC algorithm judges whether the current price is high or low based on prices from the day 
before and volatility of those prices. On July 7th, RTC reacts strongly to the much higher 
prices, raising Tcsp to Tmax during the price spike in the morning. RTC has no foresight to 
expect even higher prices in the afternoon. On the other hand, the LFC attempts to balance 
comfort and cost across the day without reference to July 6 temperatures. Tcsp is only raised 
about 1 ℃ during the peak price period.  
 
Fig. 16 shows the cumulative cost impact for the same house. The LFC cost tracks closer to 
the baseline, since Tcsp is kept close to Tset. The RTC cost is less due to raising Tcsp up well 
above Tset as shown in Fig. 15. After 4 p.m. the RTC cost drops close to zero. This is due to 
solar PV energy production combined with an energy efficient house and the strong RTC 
response to price spikes. Under these conditions, the PV is generating excess energy that is 
flowing back to the grid. The excess generation is being reimbursed at the high RTP, 
resulting in reduced cost to the homeowner. In contrast, the LFC does not react to RTP price 
spikes; however, it is minimizing energy use generally during the hours with high average 
RTP cost such that we see some decline in the cost of energy between 16:00 and 18:00 
relative to the baseline. 
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Fig. 16 Cumulative electricity cost for the same high-comfort house shown in Fig. 15. The 
energy cost drops when PV generation is greater than house consumption and the owner is 
paid for power flowing out to the grid. 

Finally, consider a similar high-comfort house with no PV on the roof as shown in Fig. 17. In 
this case, the RTC saved money by raising Tcsp in response to price spikes, but there is no 
drop in cost due to PV net metering. The RTC algorithm saves money by driving the setpoint 
temperature higher (Fig. 15) while the LFC keeps the adjusted setpoint closer to the base 
setpoint and thus the cost also tracks close to the baseline.  
 

 
Fig. 17 Cumulative electricity cost, comparing controller performance to baseline for a high-
comfort house with no PV generation (λ = 0.88).  

All the cost results presented so far are from July 7. On July 6, the RTP price peak and 
volatility is lower compared to July 7. For reference, consider the temperature setpoint results 
(Fig. 18) and cost results (Fig. 19) on July 6 for the same low-comfort house shown in Fig. 
12 and Fig. 13. In Fig. 18, the RTC Tcsp follows the rise and fall of the RTP, rising up toward 
Tmax. The LFC allows the Tcsp to drift up to Tmax during the highest price periods. In Fig. 19, 
despite this house having a low-comfort setting (λ = 0.087), the cost data shows only small 
deviations from baseline for both the RTC and LFC algorithms. Fig. 19 shows that GridLAB-
D still had convergence issues, even with the lower price volatility. However, examination of 
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the voltage and power flow fluctuations in Section 3.4 show that the July 6 prices still 
induced synchronized temperature adjustments resulting in strong power flow fluctuations.  
 

 
Fig. 18 Cooling setpoint temperatures for RTC and LFC, July 6, 8500 grid. Compare to July 
7 data for the same low-comfort house in Fig. 13. 

 
Fig. 19 Cumulative cost of energy for July 6 for low-comfort house shown in Fig. 12.  
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3.4. 8500 Grid Power and Voltage Dynamics 

GridLAB-D simulations provided minutely results for substation power flows, house meter 
voltages, as well as voltage regulator and capacitor bank actions (mechanical switching). 
Results suggest that the RTC and LFC controllers can have significantly different impact on 
the distribution power quality and hardware action.  
 
3.4.1. Voltage Violations 
The normal acceptable voltage range for service below 600 V as defined by ANSI C84.1 [22] 
is nominal voltage +/- 5 %, or a service voltage of 114 V up to 126 V. This is termed Range 
A. The ANSI standard states that “The occurrence of service voltage variation outside this 
range should be infrequent.” Therefore, the number of occurrences of voltage outside this 
range, and duration of time outside this range is a measure of distribution grid power quality 
and can be used to judge the impact of the control algorithms.  
 
The number of PV systems on the 8500 grid used in this experiment [14] is above what a 
utility would normally permit, given that overvoltage conditions are present when the sun is 
shining. The simulation results in Table 1 show the presence of voltage violations. In the case 
of the baseline simulations, voltage violations can be attributed to over-voltage conditions 
that are almost entirely limited to the morning when there is significant solar generation 
while the heat pump load is still low.  
 
In contrast, the over-voltage counts for LFC and RTC occur throughout the day and are 
primarily tied to price changes. The LFC and RTC controllers adjust Tcsp in response to 
prices, leading to synchronized power flow changes and voltage fluctuations. In the case of 
RTC, Tcsp is changed in proportion to RTP every 5 min. In the case of LFC, each house is 
separately optimized based on hourly day-ahead RTPavg but temperatures move up and down 
at each LFC optimization time step (10 min), impacting heat pump operation. For reference, 
compare the Tcsp variations for baseline (green Tset line), LFC and RTC in Fig. 13 and Fig. 
15.  
 
Table 1 Voltage violations outside Range A levels and average time step to time step power 
flow changes for the 8500 grid. 

 July 6 Voltage 
violationsa 

July 7 Voltage 
violationsa 

July 6 
average change 
in power flowb 

(kW) 

July 7 
average change 
in power flowb 

(kW) 
Count 
(per h) 

Duration 
(min/h) 

Count 
(per h) 

Duration 
(min/h) 

baseline 0.29 0.80 0.22 0.65 101 101 
RTC 1.80 7.2 2.16 9.2 745 870 
LFC-RTPavg 1.11 3.3 1.16 3.7 423 447 

a. average per house 
b. timestep-to-timestep change, absolute value 

 
The right-hand columns of Table 1 give a measure of the power flow volatility, showing the 
average change in power flow from one time step to the next. RTC produces stronger 
fluctuations than LFC and LFC stronger than baseline. This power flow volatility leads to 



NIST TN 2241 
October 2022 
 

22 

voltage volatility, with voltage violation counts and durations as shown in the left columns of 
Table 1.  However, despite the stronger price fluctuations on July 7 (Fig. 7) the voltage 
violations and power flow fluctuations on July 6 are only slightly lower than what is 
observed on July 7. The reason for this can be tied to the operation of the two controllers 
producing similarly volatile Tcsp profiles on July 6th versus July 7th (Fig. 18 and Fig. 13). The 
relationship between temperature and voltage is studied more in section 3.4.4. 

3.4.2. Substation Power Flows 
Another way to look at voltage volatility is to examine power flows through the substation 
for the 8500 grid. Fig. 20 shows the baseline substation power flow, a classic duck curve 
with decrease in load in the morning followed by an increase in load up to when the sun sets 
at 8 p.m. In addition, power fluctuations are minimal (refer back to Table 1). In contrast, the 
fluctuations in power flow at the substation are greater for the LFC (Fig. 21) and even 
stronger for the RTC (Fig. 22). There are also significant negative power excursions in 
response to the RTC indicating power flow back to the transmission grid. The substation 
power flow and voltage fluctuations are not incorporated as constraints in the LFC and RTC 
algorithms. However, this analysis shows the indirect impact of grid condition-unaware 
controllers on grid stability.    

 
Fig. 20 Substation power flows for the baseline case, July 7. 
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Fig. 21 Substation power flows for the LFC, July 7. 

 

 
Fig. 22 Substation power flows for the RTC, July 7. 



NIST TN 2241 
October 2022 
 

24 

Note that the power flow figures above present the feeder aggregate flows at the substation 
represented by the average of five recorded minutely values during each 5 min time interval. 
There is actually tremendous variation of power flows among the minutely data within each 5 
min time interval. The average max-min difference seen in the minutely data is 1507 kW, 
approximately twice the magnitude of the 5 min average power flow changes shown in Table 
1.  This implies that there are even greater power flow changes than the ones indicated in 
these power flow plots.   

These power flow changes result in voltage fluctuations as seen in Fig. 23 (RTC July 7), Fig. 
24 (RTC July 6), and in Fig. 25 (LFC July 7). The voltages presented here are the average 
voltages across all 1977 house meters on the 8500 grid. July 6 fluctuations are less than July 
7, and LFC fluctuations less than RTC, as seen in the voltage violation and power flow data 
given in Table 1.  

 

Fig. 23 Average hourly voltage across house meters, 8500 grid using RTC on July 7. 

 

 

Fig. 24 Average hourly voltage across house meters, 8500 grid using RTC on July 6. 
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Fig. 25 Average hourly voltage across house meters, 8500 grid using LFC on July 7. 

 
3.4.3. Voltage Regulator and Capacitor Bank Action 
These changes in power and voltage cause voltage regulators and capacitor banks to adjust 
their operation as well. There are four voltage regulators and capacitor banks on the IEEE 
8500 grid as shown in Fig. 1. As can be seen in Fig. 26 and Fig. 27, the July 7 results show 
that voltage regulators and capacitor banks see significantly more switching action in 
response to RTC control than to the LFC control. Both RTC and LFC cause increased 
switching action compared to the baseline controller. This increase in switching action leads 
to more wear and tear on the grid hardware.  

 
Fig. 26 Sum of voltage regulator actions for 
July 7. 

 
Fig. 27 Sum of capacitor bank control 
actions for July 7. 

 

3.4.4. Correlation of Voltage and Price Movement 
Consider the Tcsp profiles (baseline, LFC, RTC) for the three houses shown in Fig. 13, Fig. 
15, and Fig. 18. For the baseline case, each home has a flat temperature across the day (Tset), 
which produces the stable power flow seen in Fig. 20. For RTC, the adjusted Tcsp moves in 
proportion to the RTP (except when the temperature is clipped at Tmax). Raising Tcsp leads to 
heat pumps shutting off while lowering Tcsp leads to heat pumps turning on. A large 
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movement in price of electricity results in a large movement in Tcsp. If a price jump follows a 
large price drop, there would be a change from all heat pumps ON to all heat pumps OFF in a 
single action with a resulting drop of approximately 6 MW load. This can be observed in 
several instances in Fig. 22. The end result is synchronization of heat pumps (or more 
generally, all price-responsive loads) on the grid.  

Fig. 28 overlays the average RTC Tcsp profile of all houses with the substation average real 
power flow. Fig. 29 shows the correlation of changes in temperature at each 5-min step with 
the changes in power flow at each step along with a fit line. The resulting correlation 
coefficient is R = -0.83.  

 
Fig. 28 RTC average Tcsp across all 8500 grid houses compared to the resulting substation 
real power flow at each 5-min interval, July 7.  

 
Fig. 29 Correlation of stepwise change in substation power flow with change in average 
house Tcsp for each 5-min time interval, July 7, RTC, 8500 grid. R = -0.83. Power flow and 
Tcsp as shown in Fig. 28.  
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The Tcsp is itself driven by price. The relationship of RTC Tcsp to price is linear, as can be 
seen from Eq. 2. However, because Tcsp is clipped at Tmax for high prices, the relationship is 
not linear in implementation, as can be seen in Fig. 15 where RTP and Tcsp are both shown. 
The correlation of change in Tcsp to change in RTP has a coefficient of R = 0.51, as shown in 
Fig. 30 with the fit line. However, 85 % of the data points fall on the more vertical line of 
points clustered near the origin. All the points off that line are due to clipping of Tcsp.

 

Fig. 30 Correlation of change in average house Tcsp with change in RTP for each 5-min time 
interval, July 7, RTC, 8500 grid, with R = 0.51. 

We see that price changes induce Tcsp changes which in turn cause power flow changes. And 
voltage changes are strongly correlated with these power flow changes (Fig. 31), with a 
correlation coefficient R = -0.91. 

 

Fig. 31 Correlation of stepwise change in average house meter voltage with change in 
substation power flow, for each 5-min time interval, July 7, RTC, 8500 grid. 

Finally, we can look at the correlation of voltage to price, which combines the correlations 
given in Fig. 29 to Fig. 31. This correlation is shown in Fig. 32 with a relatively low 
correlation coefficient of R = 0.36. The large majority of price changes are on the order of 
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0.01 $/kWh. For the larger price changes, it is notable that positive changes in price almost 
always result in positive changes in voltage except for a handful of data points, and the same 
result is seen looking at negative price changes resulting in negative voltage changes. 

 

Fig. 32 Correlation of stepwise change in average house meter voltage with change in RTP, 
for each 5-min time interval, July 7, RTC, 8500 grid. 

In the case of the LFC controller, Tcsp is determined for each house independently by 
optimizing the temperature profile across the next day using the RTPavg. Although each 
house profile is unique, there is still a pattern driven by the price signal. The Tcsp, averaged 
across all houses, is shown in Fig. 33 along with the RTPavg price. There is no strong 
correlation between RTPavg and Tcsp, while we see the LFC controller precooling prior to the 
peak price period and then allowing the house temperature to rise during the peak prices.   

 

Fig. 33 LFC average house Tcsp with corresponding RTPavg price, July 7, 8500 grid. 

The average Tcsp is shown with the corresponding substation power flow in Fig. 34. In this 
case, one can see that many of the temperature drops are accompanied by power flow jumps. 
In fact, in most cases, each change in direction of the Tcsp trend (from down trend to up, or up 
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to down) is accompanied by a change in power flow on the order of 1 MW. The correlation 
coefficient for change in power flow with change in temperature is R = -0.45, with data 
shown in Fig. 35.  

 
Fig. 34 LFC average Tcsp across all 8500 grid houses together with the resulting substation 
real power flow at each 5-min interval 

 
Fig. 35 Correlation of the change in substation power with the change in Tcsp for LFC 
controller, July 7, 8500 grid. 

The key point to be made here is that, despite the relatively gentle LFC Tcsp movements 
(compared to the RTC), there are movements in power and voltage that are correlated with 
Tcsp, which is itself based on an hourly price signal. Synchronization across houses is an issue 
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when there are changes in Tcsp trend from cooling to warming (or vice versa), as evidenced 
by resulting significant changes in power flow. This is then reflected in the voltage with 
fluctuations and voltage violations (Table 1), along with voltage regulator and capacitor bank 
actions. 

3.5. R4-1 Grid Power Quality 

The R4-1 grid was included in the test plan to observe power quality impact of price changes 
on a different grid for comparison to the 8500 grid results. The R4-1 grid is more robust, 
producing less voltage fluctuation for a given power flow change. The experiments presented 
in previous sections for the 8500 grid were repeated for the RTC, using the same CAISO 
RTP and Tucson weather, similar houses and the same metrics.   

Fig. 36 shows the substation power flow for the no control baseline case for the R4-1 grid on 
July 7, with the same duck curve profile peaking at 3 MW load at 8 p.m., as compared to 8 
MW on the 8500 grid. Whereas the 8500 grid is entirely residential, the R4-1 residential load 
is, on average, 70 % of the total load with the remainder coming from some small 
commercial and industrial loads spread across the feeder.  

 
Fig. 36 July 7 R4-12.47-1 grid baseline substation power flow. 

The impact of the RTC controller on the R4-1 substation power flow can be seen in Fig. 37. 
The real power standard deviation is close to 1 MW, which relative to the peak load is the 
same as what was seen for the 8500 grid (Fig. 20).  
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Fig. 37 July 7 R4-12.47-1 grid RTC substation power flows. 

The average house meter voltage deviations are shown in Fig. 38, corresponding to the power 
flows in Fig. 37. The voltage fluctuations are about 20 % or less of what was seen for the 
corresponding 8500 grid data shown in Fig. 23. This clearly shows that the same relative 
power flows on the R4-1 grid produce significantly less voltage disturbance such that grid 
voltages could be kept within limits. In other words, smaller actual power flow fluctuations 
on the same size grid wires result in smaller voltage fluctuations. While one sees price-
induced power flow oscillations, the more robust R4-1 grid has more stable voltages.  

 
Fig. 38 July 7 R4-12.47-1 RTC average voltage across house meters. 
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The RTC substation power flow overlays the Tcsp in Fig. 39. The correlation of changes in 
substation power flow to changes in Tcsp is shown in Fig. 40, with R = -0.83. The results 
appear very similar to results seen in Fig. 28 and Fig. 29 for the 8500 grid. 
 

 
Fig. 39 RTC average Tcsp for R4-1 grid houses compared to the resulting substation real 
power flow at each 5-min interval, July 7. 

 
Fig. 40 Correlation of stepwise change in substation power flow with change in average 
house Tcsp for each 5-min time interval, July 7, RTC, R4-1grid, R = -0.83.  

The correlation of change in voltage to change in power is R = -0.96, and the final correlation 
of voltage to price has a correlation coefficient of R = 0.27. These R4-1 grid results, with 
price-responsive load reaction to price changes inducing power flow and voltage volatility, 
confirm the results seen with the 8500 grid. However, we note that the R4-1 grid is more 
stable with respect to voltage due to lower actual power flows for the same wire diameters. 
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3.6. Discussion 

These experiments have demonstrated the differences in energy management for two heat 
pump controllers managing indoor temperature based on price signals and customer comfort 
selections. The results provide some insights into potential power quality issues that may be 
encountered when deploying price-based control algorithms.  

The experiments demonstrate that energy and cost reductions are possible while maintaining 
occupant comfort within selected ranges. For this hot summer scenario, energy is saved when 
the house temperature is raised above the base setpoint, and cost is lowered by reducing heat 
pump run time when prices are high.  

Results show the sensitivity of cost savings to house thermal characteristics, customer 
comfort preferences, the presence of rooftop PV, and net metering policies. Only heat pump 
control was considered in this work, but it can be expected that an individual customer would 
save more or less money depending on when they operate other household devices (e.g., the 
clothes dryer) or whether they have price-aware controllers on other appliances such as the 
hot water heater.   

The two control approaches are sufficiently different that combining them could produce 
additional cost savings. That is, the RTC algorithm might benefit from day-ahead planning to 
take advantage of pre-cooling and use of the resulting stored thermal energy during the 
highest price period. Likewise, the LFC might achieve additional cost savings by responding 
to short-term extreme price spikes.  

Use of dynamic price control can deliver significant adjustment of feeder load to benefit the 
bulk grid, but the bulk market price does not consider distribution voltage. A number of 
serious power quality issues were observed in the simulations presented here: voltage 
violations, voltage volatility, and related impact on voltage regulator and capacitor bank 
actions. The voltage violations are a key factor determining hosting capacity, and it appears 
that response to dynamic prices has the potential to reduce hosting capacity. This raises 
several questions that should be discussed. 

1. Are these power and voltage fluctuations representative of what we would see on a 
real distribution grid, considering that these simulated grids use identical heat pump 
controllers responding to the same signals?  

2. Is it reasonable to base conclusions on an extreme peak day like July 7? 
3. Is the bulk CAISO RTP signal a realistic signal to pass to customer DER? 

 
In response to question 1, the two reference grids used in these experiments are based on two 
real-world feeders. The only significant change is that nearly all the residential homes are 
fitted with rooftop solar PV which contributes to over-voltage conditions for the 8500 grid, 
even for the baseline case. Additionally, all houses have price-responsive heat pump 
temperature control. Most of the observed voltage violations (Table 1) are not due to the PV, 
but rather to power flow fluctuations induced by the price-responsive heat pump controllers.  

One may point to utility pilots and existing dynamic price tariffs and the apparent lack of any 
of these power flow fluctuations and resulting voltage violations. However, the authors are 
not aware of published power flow and voltage violation data. In addition, existing dynamic 
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tariffs are not mandatory, but subscribed to by only a limited number of customers. And 
finally, there are likely a limited number of devices responding automatically to the price 
signals. Thus, the penetration of price-responsive load on any existing grid is much less (as a 
percentage of total load) than seen in this simulation study. Yet, as utilities seek to integrate 
more customer resource flexibility, and as customers add more price-responsive DER 
(consider EVs and batteries in addition to electric hot-water heaters), it is possible that 
dynamic tariffs will become more common and that more loads will be price-responsive.  

If the primary controller goal is to save the customer money, then the behavior of different 
controllers will align—use power when the price is low and avoid consumption when the 
price is high. This leads to the conclusion that the voltage instability seen in this study is very 
possible on a future grid with a higher percentage of price-responsive load despite a 
heterogeneity of devices and controllers. Nonetheless, there may be other drivers that reduce 
synchronized price response, such as an aggregator selling flexibility into a regulation 
market, or a vendor marketing a controller that seeks to only operate a device when 
renewable power is available, independent of an energy market price signal. Price signal 
volatility may also be reduced.  

Furthermore, because the control algorithms used in this work are based solely on bulk 
system energy price and customer comfort preference, distribution grid voltage and power 
flow conditions are treated as externalities to these control schemes.  It is therefore not 
surprising that factors kept external to the market optimization scheme will not be optimized.  
A primary lesson from this work is that, under very high DER penetrations, grid operations 
would benefit from the development and use of control strategies that internalize some of the 
considerations examined in this work but excluded from consideration by the implemented 
controllers.    

In response to question 2, note that voltage violations in Table 1 were similar comparing July 
6 to July 7. Even the LFC, which uses an hourly price signal and relatively gentle 
temperature adjustments, saw significant voltage violations on July 6 compared to baseline. 
With regard to these relatively small and gentle temperature adjustments impacting voltage, 
it was noted that a change in the Tcsp trend direction from up to down or down to up induces 
synchronized demand adjustment leading to the observed voltage volatility. Per the 
discussion above, the heat pump controllers only look at bulk price and comfort parameters 
and do not consider voltage impact. A distribution utility should be able to moderate the price 
signal to reduce voltage impacts.  

Finally, for question 3, we should understand how the CAISO Real-Time Market (RTM) 
works, what the signal communicates, and then consider what utilities are doing today as 
they roll out dynamic prices. The CAISO RTM is an imbalance market used to match 
generation to supply in real time. Generally, market clearing prices are higher when the grid 
load is higher. However, RTM prices can spike or drop in unexpected ways due to 
unscheduled or must-run generation or load that was not considered in forecasts [37]. In 
addition, volatility can be partially attributed to a small pool of available generators 
participating in the market at peak load conditions. One may conclude, based on [37], that 
RTP is a useful measure of real-time grid load that might be used to incentivize additional 
distribution load and generation to reduce imbalances. However, the results presented here 
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provide a caution—more price-responsive loads will lead to more power flow fluctuations 
that may be a problem on some grids.  

We can observe now that some utilities and local public utility commissions recognize the 
importance of accessing customer DER flexibility and the value of a dynamic price signal. 
The bulk market RTP or DAP provide readily available signals. Some utilities are using a 
real-time 5-min price based on RTP [12]. Some are using a day-ahead hourly signal based on 
DAP [38]. Some are using an hourly signal based on RTPavg [39]. All of these are in play and 
may become more common. 

Some principles can be discerned out of this discussion. 

• Price variation incentivizes flexibility to help balance the grid, but price-responsive 
controllers will have some impact on voltage.  

• DAP and RTP communicate bulk grid capacity needs but do not consider distribution 
grid constraints. Some price signals may not be suitable for more-constrained grids.  

• Controllers with the goal of saving money will adjust power usage to avoid 
consumption when price is higher and shift the load to when price is lower.  

• DAP and RTP present different time scales of price variation leading to different 
effective strategies for using thermal storage to achieve cost savings. Controllers must 
adapt their strategy to the available electricity tariff(s).  

• An increased number of price-responsive controllers as well as larger changes in price 
will both lead to bigger power flow changes and greater savings to customers.  

• A more volatile price signal will tend to induce more synchronized load response 
with corresponding voltage volatility.  

• The degree to which power flow changes impact voltage depends on grid wires and 
hardware. Increased wire thickness reduces voltage volatility. 

There are some potential methods to reduce the impact of price response on grid voltage 
fluctuations. The first approach is to smooth the price signal. Price volatility may be reduced 
to avoid large movements in power flow and voltage. This might be accomplished with a 
smoothed RTP signal as well as removal of price spikes.  

A second approach is to consider adjusting a price signal based on local voltage levels. This 
might be used to align peak prices with the time of local peak load (which may be different 
from time of the peak of the bulk grid). Alternatively, prices might be adjusted at a more 
granular level: lower prices at a PV hot spot (high voltage) or higher at an EV load pocket 
(low voltage). The adjustment could be made such that the average price at all points on the 
grid is the same across a day while the amount of price variation may be more or less in one 
location or another.  

Another solution may be to avoid billing a customer based on 5-min RTP, which incentivizes 
fast response to price changes. An alternative, as used in [39], may be to communicate the 
RTP, but to bill based on the past hour’s RTPavg. In this way, smart devices will see 
increasing prices and try to reduce consumption across the hour but not react as strongly to 
every price change.  
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Finally, the utility may consider various hardware solutions, such as use of more capable 
voltage regulators, or installation of batteries for the sole purpose of reducing voltage 
volatility. In this case, it seems the batteries would be working against the price signal, thus 
indicating the price by itself is not ideal. But this might be an overall simpler solution that 
does not require adjusting prices throughout a system. This approach and the others just 
mentioned, when combined with existing tools like Volt-Var control, should help to boost the 
hosting capacity of distribution grids while still successfully engaging customer flexibility.  

 Conclusion 

Two transactive management approaches were simulated side-by-side, using the same houses 
on the same grids with the same weather. The rule-based real-time price controller adjusts 
house cooling setpoint temperature directly in response to RTP, considering current house 
temperature relative to the setpoint temperature, customer comfort, and previous day price 
average and standard deviation. The model-based load forecasting controller determines the 
cooling setpoint a day ahead based on hourly prices for the next day. This enables planning 
for precooling and avoidance of peak price times, making optimal use of available thermal 
storage while considering customer comfort. The two approaches respond to different 
incentive signals which makes direct comparison difficult. For these tests, the 5-minute real-
time market price signal was averaged over each hour to produce a comparable signal for the 
model-based load forecasting controller to use as a day-ahead price. 

Simulation results show that both controllers reduce homeowner electricity cost below a 
baseline with a fixed heat pump temperature setpoint. The LFC can perform better than 
baseline for cost-conscious homeowners by using pre-cooling strategies to take advantage of 
short-term thermal storage. The RTC can save money in the presence of a volatile RTP by 
responding in real-time with setpoint temperature adjustments.  

However, both of these price-responsive controllers induced power flow fluctuations with 
resulting voltage fluctuations. For the more constrained 8500 grid, the result was significant 
voltage violations, more so for the RTC than the LFC. For the more robust R4-1 grid, voltage 
fluctuations were significantly less. On the 8500 grid, LFC voltage violations (Table 1) 
increased on the order of 400 % above baseline. The RTC controller doubled that again for 
voltage deviations, voltage regulator actions and capacitor bank actions leading to reduced 
power quality.  

Analysis of the impact of dynamic prices on voltage suggests these results are indicative of 
voltage problems on a future grid with a high percentage of price-responsive loads if care is 
not taken to manage volatility of the price signal and if the grid is near its hosting capacity. It 
appears that large price changes, or a shift in price trend from rising to falling (or vice versa) 
can result in synchronized load response, with devices turning on or off together. This can 
result in large shifts in power flow at the substation. The grid must be able to handle these 
jumps in power flow and resulting voltage changes.  

Future research will investigate methods for further reducing the voltage volatility to support 
increased hosting capacity and improve power quality while still engaging customer 
flexibility to support a high-DER grid.  
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