updates

NIST Technical Note NIST TN 2231

Stabilograms: Testbed Stability in a Pilot Experiment for Cellular Communication Anomaly Detection

Michael Frey
Mary Gregg
Jacob D. Rezac
Jason B. Coder
Aziz Kord
Anna Otterstetter
Jeanne Quimby
Alec Weiss

This publication is available free of charge from:
https://doi.org/10.6028/NIST.TN. 2231

NIST Technical Note NIST TN 2231

Stabilograms: Testbed Stability in a Pilot Experiment for Cellular Communication Anomaly Detection

Michael Frey
Mary Gregg
Statistical Engineering Division
Information Technology Laboratory
Jacob D. Rezac
Radio Frequency Division Communications Technology Laboratory
Jason B. Coder
Aziz Kord
Anna Otterstetter
Jeanne Quimby
Alec Weiss
Spectrum Technology and Research Division
Communications Technology Laboratory

This publication is available free of charge from:
https://doi.org/10.6028/NIST.TN. 2231
October 2022

U.S. Department of Commerce Gina M. Raimondo, Secretary

National Institute of Standards and Technology

Certain commercial entities, equipment, or materials may be identified in this document in order to describe an experimental procedure or concept adequately. Such identification is not intended to imply
recommendation or endorsement by the National Institute of Standards and Technology, nor is it intended to imply that the entities, materials, or equipment are necessarily the best available for the purpose.

NIST Technical Series Policies

Copyright, Fair Use, and Licensing Statements
NIST Technical Series Publication Identifier Syntax

Publication History
Approved by the NIST Editorial Review Board on 2022-07-26

How to cite this NIST Technical Series Publication:
Michael Frey, Mary Gregg, Jacob D. Rezac, Jason B. Coder, Aziz Kord, Anna Otterstetter, Jeanne Quimby, Alec Weiss (2022) Stabilograms: Testbed Stability in a Pilot Experiment for Cellular Communication Anomaly Detection. (National Institute of Standards and Technology, Gaithersburg, MD), NIST TN 2231. https://doi.org/10.6028/NIST.TN. 2231

NIST Author ORCID iDs

Michael Frey: 0000-0003-2368-9106
Mary Gregg: 0000-0003-2991-6939
Jacob D. Rezac: 0000-0003-2992-1738
Jason B. Coder: 0000-0003-0408-4400
Jeanne Quimby: 0000-0001-8320-0056
Alec Weiss: 0000-0001-5642-8872

Contact Information

jacob.rezac@nist.gov

Abstract

The National Institute of Standards and Technology's Communications Technology Laboratory conducted a cellular communication system pilot experiment in the summer of 2021. This pilot experiment was done to prepare for a broad-scope experiment to demonstrate anomaly detection from radiated emissions, possibly due to cyberattack. A goal of the pilot experiment was to check the experiment testbed for instabilities. A testbed is stable if measurements made over time with identical experiment settings exhibit no systematic variation. The data collected in the pilot experiment evidenced strong instabilities in the testbed's operation. These instabilities are seen in sequence plots of the experiment responses and, especially, in stabilograms devised expressly for this purpose in this work. Stabilograms are an intuitive and easy way to assess testbed instability. The instabilities reflected in the stabilograms are large enough to foreclose further analysis of the pilot data. The stabilograms from this study, though, suggest that if the testbed's instabilities can be effectively addressed, anomaly detection might be accomplished in the scenario under consideration.

Keywords

Anomaly detection; ANOVA model; cellular communication; pilot experiment; testbed stability.

Table of Contents

1. Introduction . 1
2. Stability Analysis . 2
3. Stabilogram ANOVA Model . 11
4. Summary and Final Remarks . 14

Appendix A: Derivations of Expected Mean-Squares 15

1. Introduction

The Communication Technology Laboratory (CTL) of the National Institute of Standards and Technology (NIST) conducted a cellular communication system pilot experiment in the summer of 2021. This pilot experiment, conducted with statistical support from the NIST Statistical Engineering Division, was done in preparation for a broad-scope experiment to demonstrate anomaly detection from radiated emissions, possibly due to cyberattack. Ciphering, ON or OFF, served as the anomaly to be detected in this experiment ${ }^{1}$. The pilot experiment had five purposes:

1. Gain facility with automated operation of the experiment testbed, and demonstrate an ability to collect data from the testbed in a stable manner.
2. Develop procedures for processing data collected from the testbed, to prepare the data for analysis.
3. Make determinations about which measurands to retain in the main, follow-on experiment.
4. Gain analysis experience with extraction of salient features for anomaly detection, and demonstrate the construction of anomaly detectors and associated performance (receiver operating characteristic, ROC) curves.
5. Use the pilot data to inform the design of the follow-on broad-scope anomaly detection experiment.

The pilot experiment was organized into $N_{S}=10$ sessions, each with $N_{B}=8$ blocks. The pilot experiment's sole factor, ciphering C, was the state of encryption between the wireless user equipment (UE) and the cellular base station (eNB). Ciphering C was operated at $N_{C}=2$ levels, ON and OFF. In each block, ciphering was ON for $N_{P}=9$ runs and then OFF for the same number $N_{P}=9$ of runs, amounting to $N_{C} N_{P} N_{B} N_{S}=1440$ runs for the experiment. Data were collected on the same set of 44 measurands in each run. Two runs in the collected data were identified as outliers, yielding, then, $N=1438$ runs for analysis. Many of the 44 measurands take the form of continuous distributions, which for analysis were represented by their centiles. Other measurands have discrete distributions which were represented by their proportions. Considering each centile/proportion as a response, and after excluding trivial responses ${ }^{2}$, each run in the pilot experiment yielded observations of 129 responses, representing in total the 44 measurands.

An experiment testbed is stable if measurements made over time with identical experiment (factor) settings exhibit no systematic, or patterned, variation. The statistical analysis of the pilot experiment response data found significant instabilities in the operation of the

[^0]testbed. These instabilities are detailed in this report through the use of sequence plots and stabilograms. The stabilogram is a novel graphical presentation of instability developed here expressly for this analysis. Given the testbed's instabilities, no further analysis of the data was attempted, either to build anomaly detectors or to proceed directly on to design the full-scope experiment. Rather, subsequent small, targeted experiments are planned to identify, understand, and minimize the source of the testbed's instabilities. The stabilograms used in this study suggest that, after these instabilities are removed, the research goal of detecting ciphering state might be achievable for the scenario represented by the pilot experiment's design.

The remainder of this report is organized as follows. Section 2 details the responses in the pilot experiment. For a representative set of five of these responses, this section also illustrates the testbed instabilities that were found. Section 3 presents the underlying fourway ANOVA (analysis of variance) model for the stabilograms presented in this report. Section 4 closes with a summary and some related final remarks.

2. Stability Analysis

Table 1 lists the 44 measurands in the pilot experiment, along with their column numbers and column labels in the associated data file [3]. Each experiment response is a centile or proportion derived from the sample distributions of these measurands in each experiment run. Each measurand in Table 1 is accompanied by a description of the measurand's type, whether discrete, continuous, binary, or categorical and a brief indication of its physical meaning. Table 2 spells out the acronyms used in Table 1.

Figures $1-5$ show sequence plots and stabilograms for the subset of measurands X_{1}, X_{13}, X_{19}, X_{41}, and X_{43}. While not exhaustive, this collection of measurands is sufficient 1) to support the conclusion that the pilot data evidence significant instabilities in the testbed's operation and 2) showcase the use and interpretation of stabilograms. This investigation of testbed instability found no significant dependence of instability on ciphering C. Therefore, the sequence plots and stabilograms in this report show results for ciphering ON and OFF combined. The upper left panel in each array of sequence plots shows the measurand as a function of run number, while the remaining three panels show the measurand as a function of session S, block B, and position P. The black bars plotted in the session, block, and position panels of these figures denote averages. For the discrete measurand X_{1} and X_{9} and the categorical measurand X_{19}, the plotted values are distribution proportions. The value whose proportion is displayed is denoted at the top of these figures. The values plotted for the continuous measurands X_{41} and X_{43} are the medians of their distributions.

Stabilograms are included in Figs. 1-5 for the representative subset of measurands X_{3}, X_{13}, X_{19}, X_{41}, and X_{43} examined in this report. The stabilogram is a diagrammatic device developed expressly for this investigation of testbed instability. Each square in a response stabilogram corresponds to a component source of relative variability in the response; the

Measurand	Column \#	Column label	Type	Description
X_{0}	7-8	G-H	d	Mean bits per symbol
X_{1}	10-13	J-M	d	Mean RB allocation
X_{2}	15-26	O-Z	q	Signaled MCS value
X_{3}	28-31	AB-AE	d	Retry count
X_{4}	33-36	AG-AJ	d	Real RSRP
X_{5}	38-39	AL-AM	d	Real RSRQ
X_{6}	41-43	AO-AQ	c	Aggregate PCC DL-SCH throughput
X_{7}	46-48	AT-AV	c	Mean PCC DL-SCH throughput
X_{8}	51-53	AY-BA	c	Mean UEs signaled on PCC/TTI
X_{9}	56-57	BD-BE	d	Minimum DL RB usage
X_{10}	59-61	BG-BI	c	Transport block rate
X_{11}	64-66	BL-BN	c	Mean HARQ TB size
X_{12}	69-70	BQ-BR	d	Mean bits per symbol
X_{13}	72-74	BT-BV	d	Average retransmission count
X_{14}	76-78	BX-BZ	c	Number of active TTIs
X_{15}	81-85	CC-CG	c	DL-SCH throughput
X_{16}	88-91	CJ-CM	d	Number of uses of 16QAM
X_{17}	93-95	CO-CQ	c	Retransmission count
X_{18}	98	CT	c	Transport block size
X_{19}	101-108	CW-DD	q	HARQ ID
X_{20}	110-113	DF-DI	d	Retry count
X_{21}	115-116	DK-DL	b	CRC for the DL decode
X_{22}^{*}	118-120	DN-DP	-	Radio network temporary identifier
X_{23}	123-125	DS-DU	c	UL-SCH throughput
X_{24}	128-132	DX-EB	c	DL-SCH throughput
X_{25}	135-143	EE-EM	d	Average UL-SCH throughput per UE
X_{26}	145	EO	c	Average DL-SCH throughput per UE
X_{27}	148-149	ER-ES	d	Number of MAC control blocks
X_{28}	151-152	EU-EV	d	Padding size
X_{29}	154-157	EX-FA	q	Signaled MCS value
X_{30}	159-161	FC-CE	c	Number of PDUs
X_{31}	164-174	FH-FR	c	Mean PDU size
X_{32}	177-178	FU-FV	d	Padding size
X_{33}	180-186	FX-GD	d	Aggregate SDU throughput
X_{34}	188-194	GF-GL	d	Aggregate SDU throughput
X_{35}	196-198	GN-GP	c	PDU receive rate
X_{36}	201-216	GS-HH	d	PDU count
X_{37}	218-220	HJ-HL	d	PDU ACK count
X_{38}	222-223	HN-HM	d	Status PDU count
X_{39}	225-227	HQ-HS	c	DL-SCH throughput
X_{40}	230	HV	c	PDCP layer DL throughput
X_{41}	233-235	HY-IA	c	Average DL UEs per TTI
X_{42}	238-239	ID-IE	d	Average SNR
X_{43}	241-251	IG-IQ	c	VSA power

Table 1. List of 44 measurands in the pilot experiment with their column numbers and labels in the associated data file [3]. Measurand types: b, binary; c, continuous; d, discrete; q, categorical. Acronyms and abbreviations used in this table and elsewhere can be found in Table 2. *There was an error in the data processing of X_{22}, and it should be excluded from any analysis.

ANOVA	analysis of variance
CRC	cyclic redundancy check
DL	downlink
HARQ	hybrid automatic repreat request
ID	identification
MAC	medium access control
MCS	modulation coding state
MS	mean square
RB	resource block
PCC	primary component carrier
PDU	protocol data unit
QAM	quadrature amplitude modulation
ROC	receiver operating characteristic
RSRP	reference signal received power
RSRQ	reference signal received quality
SCH	scheduled
SDU	sevice data unit
TTI	transmit time interval
UE	user equipment
UL	uplink

Table 2. Abbreviations and acronyms.
area and side length of each square represent, respectively, mean-square (MS) variation and root-mean-square (RMS) variation. The squares in each stabilogram are scaled so that the variation associated with random measurement error E (black square) is represented by a unit square with sides of unit length. Then, the stabilogram squares for each of the other sources of variation represent relative MS and RMS variation.

The stabilograms in Figures 1-5 are color-coded: the variation due to change in ciphering C in blue, random error E in black, and the systematic errors associated with P, B, and S in red for testbed instabilities reflected by position, block, and session. A testbed instability can be considered to be present if the red P, B, and S squares are about the same size or larger than the black unit square for E. These instabilities (red squares) are separately of practical concern for detection if they are also large relative to the ciphering state (blue square) that is sought to be determined. These stabilograms can be understood as depicting strength and power signal-to-noise ratios for C relative to the noise E, and interference-tonoise ratios for P, B, and S. From this signal detection perspective, the interfering sources P, B, and S, are indeed extant if their strength and power is on the order of or greater than those of the ambient noise E; they become an issue for signal (anomaly) detection if they dominate the signal C.

The relative MS variations shown in a stabilogram derive from a standard ANOVA and assume a four-way additive effects ANOVA model of response with fixed effects C, P, B, and S. This statistical model is presented in detail in the following section of this report. The remainder of this section interprets the sequence plots and stabilograms in Figs. 1-5.
Measurand \mathbf{X}_{3} : Figure 1 shows the proportion $X_{3}^{1.0}$ of times the measurand X_{3} took the value 1.0 for each run. The session and block sequence plots show no significant patterned variation in $X_{3}^{1.0}$ over the course of the experiment. The position sequence plot, though, shows that $X_{3}^{1.0}$ changed systematically as a function of P. The stabilogram summarizes the same effects; the red square for P is large relative to the black unit square for random error E, while the red squares for B and S are small relative to the black square. The sequence plots show that the response $X_{3}^{1.0}$ tends to be slightly greater when ciphering is $O N$. The stabilogram describes the size of this effect by the blue square's size relative to that of the black square.
Measurand $\mathbf{X}_{\mathbf{1 3}}$: Figure 2 shows for each run the proportion X_{13}^{1} of times the measurand X_{13} took the value 0.01 . A large interference effect due to position P can be seen in the position sequence plot. In particular, the second measurement within each block tended to exhibit a much higher proportion for the value 0.01 for measurand X_{13} compared to other measurement positions. The stabilogram confirms the out-sized position effect. As with the response $X_{3}^{1.0}$ in Figure 1, the sequence plots and the stabilogram for response $X_{13}^{0.01}$ agree on the presence of a small, but visible effect due to ciphering.

Measurand \mathbf{X}_{19} : Figure 3 shows the proportion X_{19}^{0} of times measurand X_{19} took the value 0 for each run. The stabilogram for X_{19}^{0} show no instability (vanishingly small red squares); however, it also shows that X_{19}^{0} is useless for anomaly detection (small blue square). In the session plot in this figure, the mean proportion is fairly constant over S, but some heteroscedasticity seems to be present; less random variation seems present during session 6 in the session plot compared to other sessions. The run plot shows this, also.

Measurand $\mathbf{X}_{\mathbf{4 1}}$: Figure 4 shows the median $X_{41}^{50 t h}$ of measurand X_{41}. This response is another illustration of extreme position instability. The median of X_{41} varies systematically across measurement position; the first measurement within a block exhibited consistently lower values than other positions, while the highest values were seen at measurement positions 5-7. This position effect is strongly reflected in the stabilogram.

Measurand \mathbf{X}_{43} : Figure 5 shows the median $X_{43}^{50 t h}$ of measurand X_{43}. The run plot shows the median following a general rise over the time of the pilot experiment; this shows up, too, in the session plot. Testbed instability was also expressed through position P, with measurements occurring at later positions tending to exhibit larger values. The stabilogram shows that these interference effects, P and S, obscure what might otherwise be, in coordination with other responses, a small, but potentially detectable ciphering effect C (blue square).
x3, value 1.0

Fig. 1. Sequence plots (top) and stabilogram (bottom) for the response X_{3}^{1}. The testbed appears in the X_{3}^{1} position plot to change state in a systematic fashion as a function of block position P-the signature of testbed instability. This is confirmed by the large position effect (red square) in the stabilogram. The sequence plots also show a small ciphering effect; the mean responses of X_{3}^{1} with respect to P, B, and S are consistently higher with $C=\mathrm{ON}$. This accords with the small, but present, ciphering effect C (blue square) in the stabilogram. The effect S is so small relative to the noise E that the square associated with S in stabilogram is not visible.
x13, value 0.01
Encryption status - Off - On

$X_{13}^{0.01}[\mathrm{BU}, 73]$

Fig. 2. Sequence plots (top) and stabilogram (bottom) for the response $X_{13}^{0.01}$. With respect to $X_{13}^{0.01}$, the testbed appears to consistently depart from its baseline operation at position 2 in each block of each session. The ciphering effect C (blue square) in $X_{13}^{0.01}$ is small relative to both the random variation (black square) and the testbed's interfering position effect P. The session effect S is so small relative to the noise E that the square associated with S in stabilogram is not visible.
x19, value 0
Encryption status - Off - On

Fig. 3. Sequence plots (top) and stabilogram (bottom) for the response X_{19}^{0}. The interference effects P, B, and S due to testbed instability are vanishingly small compared to the random variation (black square) present in X_{19}^{0}. The run and session plots suggest an unusual testbed instability in the form of heteroscedasticity-the variability in the response seems somewhat smaller in session 6 than in other sessions. The ciphering and block effects C and B are so small relative to the noise E that the squares associated with them in stabilogram are not visible.
$x 41,50$ th quantile

Fig. 4. Sequence plots (top) and stabilogram (bottom) for the response $X_{41}^{50 t h}$. The interference effect P due to testbed instability dominates all other effects in $X_{41}^{50 \text { th }}$ The ciphering, block, and session effects C, B, and S on $X_{41}^{50 t h}$ are so small relative to the noise E that the squares associated with them in the stabilogram are not visible.
x43, 50th quantile

Fig. 5. Sequence plots (top) and stabilogram (bottom) for the median $X_{43}^{50 t h}$ of measurand X_{43}. The run and session plots show an unstable testbed drifting over time. Testbed instability is also clearly reflected in position within block. Some instability may also exist across block, though if it does exist, it is small and seems to diminish in the later blocks of each session. The stabilogram is in accord with these observations, with relatively large red squares for P and S and a small square for B.

3. Stabilogram ANOVA Model

The stabilograms presented in this report are based on the additive, fixed-effects, four-way ANOVA model [1, 2]

$$
\begin{equation*}
X_{c p b s}=\mu+\alpha_{c}+\beta_{p}+\gamma_{b}+\delta_{s}+\varepsilon_{c p b s} \tag{1}
\end{equation*}
$$

where $X_{c p b s}$ is an experiment response measured with the ciphering set to C at sequence position P in block B of session S, with $c=\mathrm{ON}$, OFF, $p=1, \ldots, N_{P}, b=1, \ldots, N_{B}$, and $s=1, \ldots, N_{S}$, where $N_{p}=9, N_{B}=8$, and $N_{S}=10$. The ANOVA model represents the overall response average by μ and allows for additive deviations $\alpha_{c}, \beta_{p}, \gamma_{b}$, and δ_{s} from μ that depend on the ciphering setting C and the position P, block B, and session S in which the response $X_{c p b s}$ was observed. The deviations $\alpha_{c}, \beta_{p}, \gamma_{b}$, and δ_{s} satisfy the condition

$$
\begin{equation*}
\sum_{c=\mathrm{ON}}^{\mathrm{OFF}} \alpha_{c}=\sum_{p=1}^{N_{P}} \beta_{p}=\sum_{b=1}^{N_{B}} \gamma_{b}=\sum_{s=1}^{N_{S}} \delta_{s}=0 \tag{2}
\end{equation*}
$$

so that all the parameters in (1) are estimable. The model assumes that, beyond the additive fixed effects due to C, P, B, and S, all variation remaining in $X_{c p b s}$ is random, represented by the random error $\varepsilon_{c p b s}$. These random errors $\varepsilon_{c p b s}$ are assumed to be uncorrelated with zero mean and common variance σ^{2}. (Beyond these, no assumptions about the model errors $\varepsilon_{c p b s}$ are required for the development of the stabilogram that follows.) ANOVA model (1) has only a single replicate per treatment (that is, per given C, P, B, S setting combination) and does not allow for possible interactions among C, P, B, and S. Excluding interactions is appropriate for the present exploratory analysis; the model's limited purpose is to assess the individual effects of β_{p}, γ_{b}, and δ_{s} relative to α_{c} and σ. While mathematically some instability is present if and only if some of the β_{p}, γ_{b}, and δ_{s} are non-zero; more practically, for purposes of testbed evaluation, instability should be considered to possibly be present if any of the position, block, or session effects are larger than that of the random variation.

ANOVA response model (1) has 31 parameters, μ and σ plus the sets of fixed effects parameters $\alpha_{c}, \beta_{p}, \gamma_{b}$, and δ_{s}. These parameters are all readily estimated from the measured responses $X_{c p b s}$. Unbiased estimators ${ }^{3}$ for these parameters are ${ }^{4}$

$$
\begin{array}{ll}
\hat{\mu}=\bar{X}_{\bullet \bullet \bullet \bullet}, & \hat{\sigma}^{2}=\frac{1}{D_{E}} \mathrm{SS}_{E} \\
\hat{\alpha}_{c}=\bar{X}_{c \bullet \bullet \bullet}-\bar{X}_{\bullet \bullet \bullet \bullet}, & \hat{\beta}_{p}=\bar{X}_{\bullet p \bullet \bullet}-\bar{X}_{\bullet \bullet \bullet \bullet} \tag{3}\\
\hat{\gamma}_{b}=\bar{X}_{\bullet \bullet b \bullet}-\bar{X}_{\bullet \bullet \bullet}, & \hat{\delta}_{s}=\bar{X}_{\bullet \bullet \bullet s}-\bar{X}_{\bullet \bullet \bullet \bullet},
\end{array}
$$

[^1]where SS_{E} is the ANOVA model's error sum-of-squares
\[

$$
\begin{equation*}
\mathrm{SS}_{E}=\sum_{c, p, b, s} e_{c p b s}^{2} \tag{4}
\end{equation*}
$$

\]

with residuals

$$
\begin{equation*}
e_{c p b s}=X_{c p b s}-\left(\mu+\hat{\alpha}_{c}+\hat{\beta}_{p}+\hat{\gamma}_{b}+\hat{\delta}_{s}\right) . \tag{5}
\end{equation*}
$$

The error degrees-of-freedom in (3) is

$$
\begin{equation*}
D_{E}=N-1-\left(N_{C}-1\right)-\left(N_{P}-1\right)-\left(N_{B}-1\right)-\left(N_{S}-1\right), \tag{6}
\end{equation*}
$$

where $N=N_{C} N_{P} N_{B} N_{S}$. The other sums-of-squares associated with the fixed effects in model (1) are

$$
\begin{align*}
& \mathrm{SS}_{C}=\sum_{c, p, b, s} \hat{\alpha}_{c}^{2}, \quad \mathrm{SS}_{P}=\sum_{c, p, b, s} \hat{\beta}_{p}^{2}, \tag{7}\\
& \mathrm{SS}_{B}=\sum_{c, p, b, s} \hat{\gamma}_{b}^{2}, \quad \mathrm{SS}_{S}=\sum_{c, p, b, s} \hat{\delta}_{s}^{2} .
\end{align*}
$$

The total sum-of-squares

$$
\begin{equation*}
\mathrm{SS}_{T}=\sum_{c, p, b, s}\left(X_{c p b s}-\hat{\mu}\right)^{2} \tag{8}
\end{equation*}
$$

is a measure of all the (squared) variation in the $X_{c p b s}$. The algebraic identity

$$
\begin{equation*}
\mathrm{SS}_{T}=\mathrm{SS}_{C}+\mathrm{SS}_{P}+\mathrm{SS}_{B}+\mathrm{SS}_{S}+\mathrm{SS}_{E} \tag{9}
\end{equation*}
$$

called an ANOVA decomposition, partitions the total variation SS_{T} into parts attributable to each of C, P, B, S, and E. Associated with the ANOVA sums-of-squares in (4) and (7) are the ANOVA mean-squares presented with their expectations in Table 3. These meansquares, suitably adjusted, yield the unbiased estimators of the squared effect sizes given in Table 4.

For the adjusted mean-squares in Table 4, two observations can be made. First, because the adjusted mean-squares are unbiased estimators of the squares of the corresponding effects in the ANOVA model, they are meaningful measures of the variability due to those effects. Second, because of the ANOVA decomposition (9) from which the mean-squares in Table 4 derive, they account for all the variability present in the response $X_{c p b s}$.
The adjusted mean-squares in Table 4 can be compared to assess the relative effect sizes of P, B, S, E, and C. A stabilogram shows the relative effect sizes in Table 4 as red squares for the systematic instability effects, a black square for the relative random measurement effect, and a blue unit square for the ciphering effect that is the target for detection. The areas of the stabilogram squares are the estimated relative mean-square effect sizes, while the lengths of the squares' edges are the relative root-mean-square (RMS) effect sizes. The areas in a stabilogram are determined as in the fourth column of Table 4.

ANOVA sources of variation	Mean-squares	Expected mean-squares	ANOVA F statistics
Ciphering C	$\mathrm{MS}_{C}=\frac{\mathrm{SS}_{C}}{N_{C}-1}$	$\frac{N}{N_{C}\left(N_{C}-1\right)} \sum_{c} \alpha_{c}^{2}+\sigma^{2}$	$F_{C}=\frac{\mathrm{MS}_{C}}{\mathrm{MS}_{E}}$
Position P	$\mathrm{MS}_{P}=\frac{\mathrm{SS}_{P}}{N_{P}-1}$	$\frac{N}{N_{P}\left(N_{P}-1\right)} \sum_{p} \beta_{p}^{2}+\sigma^{2}$	$F_{P}=\frac{\mathrm{MS}_{P}}{\mathrm{MS}_{E}}$
Block B	$\mathrm{MS}_{B}=\frac{\mathrm{SS}_{B}}{N_{B}-1}$	$\frac{N}{N_{B}\left(N_{B}-1\right)} \sum_{b} \gamma_{b}^{2}+\sigma^{2}$	$F_{B}=\frac{\mathrm{MS}_{B}}{\mathrm{MS}_{E}}$
Session S	$\mathrm{MS}_{S}=\frac{\mathrm{SS}_{S}}{N_{S}-1}$	$\frac{N}{N_{S}\left(N_{S}-1\right)} \sum_{s} \alpha_{s}^{2}+\sigma^{2}$	$F_{S}=\frac{\mathrm{MS}_{S}}{\mathrm{MS}_{E}}$
Error E	$\mathrm{MS}_{E}=\frac{\mathrm{SS}_{E}}{D_{E}}$	σ^{2}	

Table 3. Mean-squares and their expectations for ANOVA model (1). The expected mean-squares lead algebraically to the unbiased estimators presented in Table 4.

Effect	Average squared effect size	Unbiased estimator	Estimated relative average squared effect size
Ciphering C	$\frac{1}{N_{C}} \sum_{c} \alpha_{c}^{2}$	$\frac{N_{C}-1}{N}\left(\mathrm{MS}_{C}-\mathrm{MS}_{E}\right)$	$\frac{N_{C}-1}{N} r\left(F_{C}-1\right)$
Position P	$\frac{1}{N_{P}} \sum_{p} \beta_{p}^{2}$	$\frac{N_{P}-1}{N}\left(\mathrm{MS}_{P}-\mathrm{MS}_{E}\right)$	$\frac{N_{P}-1}{N} r\left(F_{P}-1\right)$
Block B	$\frac{1}{N_{B}} \sum_{b} \gamma_{b}^{2}$	$\frac{N_{B}-1}{N}\left(\mathrm{MS}_{B}-\mathrm{MS}_{E}\right)$	$\frac{N_{B}-1}{N} r\left(F_{B}-1\right)$
Session S	$\frac{1}{N_{S}} \sum_{c} \delta_{s}^{2}$	$\frac{N_{S}-1}{N}\left(\mathrm{MS}_{S}-\mathrm{MS}_{E}\right)$	$\frac{N_{S}-1}{N} r\left(F_{S}-1\right)$
Error E	σ^{2}	MS_{E}	1

Table 4. Average squared effect sizes for model (1), their unbiased estimators, and their estimated average squared effect sizes relative to the measurement error E. These last quantities provide the areas for the squares in the stabilogram. The ramp function $r(x)=\max (x, 0)$ in the rightmost column addresses cases where the effect is not significant and the F-statistic is less than unity.

4. Summary and Final Remarks

A goal of the pilot study was to practice testbed operation and to detect instabilities that might be present in that operation. Standard sequence plots were made to examine the testbed data for instabilities. Also, a new exploratory graphical device called a stabilogram was devised to aid this investigation. Some representative stabilograms are presented in this report. These stabilograms show 1) that significant instabilities were present and 2) that, if these instabilities were removed, the research goal of detecting ciphering state in the scenario represented by the pilot experiment's design might be accomplished.

The pilot experiment was structured into sessions and blocks, consistent with the way the testbed equipment was operated (i.e., with power cycling and ciphering state changes). This structure allowed the testbed stabilograms to be constructed with three meaningful instability components, the stabilograms' red P, B, and S squares. This structure allowed the stabilograms to both detect the presence of instabilities and suggest their potential origin(s). In particular, instability reflected in position P within each block is of first concern.

Testbed stability should ideally be monitored or subsequently assessed as part of the execution and analysis of any experiment. The stabilogram is an easy exploratory visual check for potential instability in an experiment testbed's operation. The squares in a stabilogram represent the different sources of variability in the response under consideration: the squares' areas represent variance (signal, noise, or interference power) and the squares' edges are standard deviations (signal, noise, or interference strength). The stabilogram is scaled so that the black square has unit size, with then the other squares representing strengths and powers relative to those of the (black) measurement error. The stabilogram's interpretation is quick and intuitive:

- The red squares represent testbed instabilities, while the black square represents random variation. Compare the sizes of the red squares to that of the black square. If any of these red squares are of the same order or larger than the black square, instability is said to be present for purposes of testbed investigation. The greater the size of a red square relative to the black square, the greater is that testbed instability.
- The stabilogram's blue unit square represents the experiment's factor - e.g., the ciphering C in the pilot experiment. Compare the sizes of the red squares (representing instabilities) to that of the blue square. If a red square is large relative to the blue factor effect, this renders the factor difficult to detect with the response under consideration. The larger a red square is relative to the blue factor square, the more difficult the detection problem is using the response in question.
- In the absence of any large red instability square, the problem of detecting the factor represented by the blue square comes down to the blue square's size relative to that of the black random variation (noise) square. In this case the smaller the black (noise) square is relative to the blue (factor) square, the easier detection will be with the response in question.
- A pilot experiment with an instrumented testbed often captures many experiment responses in parallel. Provided these response stabilograms evidence little testbed instability, the stabilograms can be compared to visually rank the different responses for their relative potential as features for an anomaly detector.

The stabilogram is applicable to experiments of the present type with one two-level factor. By simple modification of the ANOVA model in (1), stabilograms can be prepared equally well for experiments with more than one factor and/or to factors with more than two levels and, in particular, to factor screening experiments with many factors. For a stabilogram to be applicable, though, replicate runs are needed, a requirement that can usually be satisfied in the setting of a pilot experiment.

Appendix A: Derivations of Expected Mean-Squares

This appendix presents derivations for the expected mean-squares $E\left[\mathrm{MS}_{c}\right]$ and $E\left[\mathrm{MS}_{E}\right]$ in Table 3. These quantities are the basis for the Table 4 entries that are used to construct stabilograms. The derivations presented here, while original, are typical of those associated with linear statistical models. Derivations for models similar to (1) can be found in [1, 2].

Derivation of $E\left[\mathrm{MS}_{C}\right]$: The ANOVA sum-of-squares SS_{C} in (8) can be written

$$
\begin{align*}
\mathrm{SS}_{C} & =\sum_{c, p, b, s} \hat{\alpha}_{c}^{2} \\
& =N_{P} N_{B} N_{S} \sum_{c}\left(\bar{X}_{c \bullet \bullet \bullet}-\bar{X}_{\bullet \bullet \bullet}\right)^{2} \\
& =\frac{N_{C}}{N}\left(\sum_{c} X_{c \bullet \bullet \bullet}^{2}-\frac{X_{\bullet \bullet \bullet \bullet}^{2}}{N_{C}}\right), \tag{10}
\end{align*}
$$

using $N=N_{C} N_{P} N_{B} N_{S}$. Then the expectation of SS_{C} in (10) is

$$
\begin{align*}
E\left[\mathrm{SS}_{C}\right] & =\frac{N_{C}}{N} \sum_{c} E\left[X_{c \bullet \bullet \bullet}^{2}\right]-\frac{1}{N} E\left[X_{\bullet \bullet \bullet \bullet}^{2}\right] \\
& =\frac{N_{C}}{N} \sum_{c} E\left[\sum_{p_{1}, p_{2}} \sum_{b_{1}, b_{2}} \sum_{s_{1}, s_{2}} X_{c p_{1} b_{1} s_{1}} X_{c p_{2} b_{2} s_{2}}\right]-\frac{1}{N} E\left[X_{\bullet \bullet \bullet \bullet}^{2}\right] \\
& =\frac{N_{C}}{N} \sum_{c} \sum_{p_{1}, p_{2}} \sum_{b_{1}, b_{2}} \sum_{s_{1}, s_{2}} E\left[X_{c p_{1} b_{1} s_{1}} X_{c p_{2} b_{2} s_{2}}\right]-\frac{1}{N} E\left[X_{\bullet \bullet \bullet \bullet}^{2}\right] \tag{11}
\end{align*}
$$

The first expectation in (11) is

$$
\begin{aligned}
E\left[X_{c p_{1} b_{1} s_{1}} X_{c p_{2} b_{2} s_{2}}\right] & =E\left[\left(\mu+\alpha_{c}+\beta_{p_{1}}+\gamma_{b_{1}}+\delta_{s_{1}}+\varepsilon_{c p_{1} b_{1} s_{1}}\right)\left(\mu+\alpha_{c}+\beta_{p_{2}}+\gamma_{b_{2}}+\delta_{s_{2}}+\varepsilon_{c p_{2} b_{2} s_{2}}\right)\right] \\
& =\left(\mu+\alpha_{c}+\beta_{p_{1}}+\gamma_{b_{1}}+\delta_{s_{1}}\right)\left(\mu+\alpha_{c}+\beta_{p_{2}}+\gamma_{b_{2}}+\delta_{s_{2}}\right)+\delta_{p_{1} p_{2}} \delta_{b_{1} b_{2}} \delta_{s_{1} s_{2}} \sigma^{2}
\end{aligned}
$$

where, for example, $\delta_{s_{1} s_{2}}$ is the Kronecker delta function with $\delta_{s_{1} s_{2}}=1$ if $s_{1}=s_{2}$ and $\delta_{s_{1} s_{2}}=0$ otherwise. Then, using the constraints in (2), the multiple sum in (11) is

$$
\begin{align*}
\sum_{c} \sum_{p_{1}, p_{2}} \sum_{b_{1}, b_{2}} \sum_{s_{1}, s_{2}} E\left[X_{c p_{1} b_{1} s_{1}} X_{c p_{2} b_{2} s_{2}}\right]= & \sum_{c} \sum_{p_{1} p_{2}} \sum_{b_{1} b_{2}} \sum_{s_{1} s_{2}}\left(\mu+\alpha_{c}\right)^{2} \\
& +N_{P} N_{B} N_{S} \sum_{p_{1} b_{1} s_{1}}\left(\beta_{p_{1}}+\gamma_{b_{1}}+\delta_{s_{1}}\right) \sum_{c}\left(\mu+\alpha_{c}\right) \\
& +N_{P} N_{B} N_{S} \sum_{c}\left(\mu+\alpha_{c}\right) \sum_{p_{2} b_{2} s_{2}}\left(\beta_{p_{2}}+\gamma_{b_{2}}+\delta_{s_{2}}\right) \\
& +N_{C} \sum_{p_{1} b_{1} s_{1}}\left(\beta_{p_{1}}+\gamma_{b_{1}}+\delta_{s_{1}}\right) \sum_{p_{2} b_{2} s_{2}}\left(\beta_{p_{2}}+\gamma_{b_{2}}+\delta_{s_{2}}\right) \\
= & \frac{N^{2}}{N_{C}^{2}} \sum_{c}\left(\mu+\alpha_{c}\right)^{2}+N \sigma^{2} \\
= & \frac{N^{2}}{N_{C}^{2}}\left(N_{C} \mu^{2}+\sum_{c} \alpha_{c}^{2}\right)+N \sigma^{2} . \tag{12}
\end{align*}
$$

The second expectation in (11) is

$$
\begin{align*}
E\left[X_{\bullet \bullet \bullet \bullet}^{2}\right] & =V\left[X_{\bullet \bullet \bullet \bullet}\right]+E^{2}\left[X_{\bullet \bullet \bullet \bullet}\right] \\
& =\sum_{c, p, b, s} V\left[X_{c p b s}\right]+\left(\sum_{c, p, b, s} E\left[X_{c p b s}\right]\right)^{2} \\
& =\sum_{c, p, b, s} V\left[\varepsilon_{c p b s}\right]+\left(\sum_{c, p, b, s}\left(\mu+\alpha_{c}+\beta_{p}+\gamma_{b}+\delta_{s}\right)\right)^{2} \\
& =N \sigma^{2}+N^{2} \mu^{2} \tag{13}
\end{align*}
$$

using $N=N_{C} N_{P} N_{B} N_{S}$ to arrive at (13). Returning results (12) and (13) to (11) yields

$$
\begin{align*}
E\left[\mathrm{SS}_{C}\right] & =\frac{\left(N^{2} / N_{C}^{2}\right)\left(N_{C} \mu^{2}+\sum_{c} \alpha_{c}^{2}\right)+N \sigma^{2}}{N / N_{C}}-\frac{N \sigma^{2}+N^{2} \mu^{2}}{N} \\
& =\frac{N}{N_{C}} \sum_{c} \alpha_{c}^{2}+\left(N_{C}-1\right) \sigma^{2} . \tag{14}
\end{align*}
$$

We therefore conclude that

$$
E\left[\mathrm{MS}_{C}\right]=\frac{N}{N_{C}\left(N_{C}-1\right)} \sum_{c} \alpha_{c}^{2}+\sigma^{2}
$$

as given in Table 3. The expectations in Table 3 for the ANOVA mean-squares $\mathrm{MS}_{P}, \mathrm{MS}_{B}$, and MS_{S} have analogous derivations.

Derivation of $E\left[\mathrm{MS}_{E}\right]$: The ANOVA total sum-of-squares SS_{T} in (8) can be written

$$
\begin{align*}
\mathrm{SS}_{T} & =\sum_{c, p, b, s}\left(X_{c p b s}-\bar{X}_{\bullet \bullet \bullet \bullet}\right)^{2} \\
& =\sum_{c, p, b, s} X_{c p b s}^{2}-\frac{X_{\bullet \bullet \bullet}^{2}}{N} . \tag{15}
\end{align*}
$$

Using $E\left[\varepsilon_{c p b s}\right]=0$ and the constraints in (2), the expectation of the first term in (15) becomes

$$
\begin{align*}
\sum_{c, p, b, s} E\left[X_{c p b s}^{2}\right] & =\sum_{c, p, b, s} E\left[\left(\mu+\alpha_{c}+\beta_{p}+\gamma_{b}+\delta_{s}+\varepsilon_{c p b s}\right)^{2}\right] \\
& =N \mu^{2}+\sum_{c, p, b, s}\left(\alpha_{c}+\beta_{p}+\gamma_{b}+\delta_{s}\right)^{2}+N \sigma^{2} \\
& =N \mu^{2}+\frac{N}{N_{C}} \sum_{c} \alpha_{c}^{2}+\frac{N}{N_{P}} \sum_{p} \beta_{p}^{2}+\frac{N}{N_{B}} \sum_{b} \gamma_{b}^{2}+\frac{N}{N_{S}} \sum_{s} \delta_{s}^{2}+N \sigma^{2} \tag{16}
\end{align*}
$$

The expectation of the squared total $X_{\bullet \bullet \bullet \bullet}^{2}$ in (15) is derived in (13). Returning the results from (13) and (16) to the total sum-of-squares SS_{T} in (15) yields the expected value

$$
\begin{align*}
E\left[\mathrm{SS}_{T}\right] & =\left(N \mu^{2}+\frac{N}{N_{C}} \sum_{c} \alpha_{c}^{2}+\frac{N}{N_{P}} \sum_{p} \beta_{p}^{2}+\frac{N}{N_{B}} \sum_{b} \gamma_{b}^{2}+\frac{N}{N_{S}} \sum_{s} \delta_{s}^{2}+N \sigma^{2}\right)-\frac{N \sigma^{2}+N^{2} \mu^{2}}{N} \\
& =\frac{N}{N_{C}} \sum_{c} \alpha_{c}^{2}+\frac{N}{N_{P}} \sum_{p} \beta_{p}^{2}+\frac{N}{N_{B}} \sum_{b} \gamma_{b}^{2}+\frac{N}{N_{S}} \sum_{s} \delta_{s}^{2}+(N-1) \sigma^{2} \tag{17}
\end{align*}
$$

The expected error sum-of-squares $E\left[\mathrm{SS}_{E}\right]$ can be obtained from the ANOVA decomposition in (9), using the expected sums-of-squares in (14) and(17); we have

$$
\begin{align*}
E\left[\mathrm{SS}_{E}\right] & =E\left[\mathrm{SS}_{T}\right]-E\left[\mathrm{SS}_{C}\right]-E\left[\mathrm{SS}_{P}\right]-E\left[\mathrm{SS}_{C}\right]-E\left[\mathrm{SS}_{P}\right] \\
& =\frac{N}{N_{C}} \sum_{c} \alpha_{c}^{2}+\frac{N}{N_{P}} \sum_{p} \beta_{p}^{2}+\frac{N}{N_{B}} \sum_{b} \gamma_{b}^{2}+\frac{N}{N_{S}} \sum_{s} \delta_{s}^{2}+(N-1) \sigma^{2} \\
& -\left(\frac{N}{N_{C}} \sum_{c} \alpha_{c}^{2}+\left(N_{C}-1\right) \sigma^{2}\right)-\left(\frac{N}{N_{P}} \sum_{p} \beta_{p}^{2}+\left(N_{P}-1\right) \sigma^{2}\right) \\
& -\left(\frac{N}{N_{B}} \sum_{b} \gamma_{b}^{2}+\left(N_{B}-1\right) \sigma^{2}\right)-\left(\frac{N}{N_{S}} \sum_{s} \delta_{p}^{2}+\left(N_{S}-1\right) \sigma^{2}\right) \\
& =D_{E} \sigma^{2} \tag{18}
\end{align*}
$$

where D_{E} is the error degrees-of-freedom in (6). The expected error mean-square is therefore

$$
\begin{equation*}
E\left[\mathrm{MS}_{E}\right]=\frac{E\left[\mathrm{SS}_{E}\right]}{D_{E}}=\sigma^{2} \tag{19}
\end{equation*}
$$

This completes the derivations of the expected mean-squares in Table 3, justifying the quantities in Table 4 used to construct stabilograms.

References

[1] Neter, J., Kutner, M. H., Nachtsheim, C. J., \& Wasserman, W. (2004). Applied linear statistical models. 5th ed. McGraw-Hill/Irwin.
[2] Montgomery, D. C. (2017). Design and analysis of experiments. John Wiley \& sons.
[3] Frey, M., Gregg, M., Rezac, J., Coder, J., Kord, A., Midzor, M., Quimby, J., Weiss, A. (2022), Data Publication: Stabilograms for a Cellular Communication Anomaly Detection Experiment, National Institute of Standards and Technology, https://doi.org/10.18434/mds2-2679

[^0]: ${ }^{1}$ Ciphering refers here specifically to encryption of user plane traffic between the user equipment and the base station in a Long-Term Evolution (LTE) system.
 ${ }^{2}$ A run's location can be identified by its session S, its block B within the session, and its position P within the block. A trivial response is a response that changed very little or not at all as a function of C, P, B, or S.

[^1]: ${ }^{3}$ An estimator is any function of the data $X_{c p b s}$. An estimator $\hat{\kappa}$ of a parameter κ is unbiased if on average it neither over- nor underestimates the parameter; that is $E[\hat{\kappa}]=\kappa$.
 ${ }^{4}$ Standard "dot" notation for sums and averages is used here. For example, $X_{\bullet \ldots . \bullet}$ is the responses $X_{c p b s}$ summed over all four of their indices c, p, b, s. Similarly, $\bar{X}_{\bullet \ldots . \bullet}$ is the responses $X_{c p b s}$ averaged over all four indices; $\bar{X}_{c \bullet \bullet}$ is the responses $X_{c p b s}$, for each of value of $c=\mathrm{ON}, \mathrm{OFF}$, averaged over its other indices p, b, s, etc.

