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Abstract 

With an artifcial example of a 2D nonlinear advection diffusion equation on the unit square 
in R2, this paper considers the data assimilation problem of fnding initial values u(x,y,0), 
that can evolve into a close approximation to a desired target result u ∗(x,y,T ), at some 
realistic T > 0. Highly non smooth target data are considered, that may not correspond 
to actual solutions at time T , and it may not be possible to fnd such initial values. The 
aim is to illustrate the inherent diffculties of the ill-posed data assimilation problem, while 
demonstrating the use of a powerful computational tool. An explicit, O(∆t)2 accurate, 
stable marching fnite difference scheme, that can be run forward or backward in time, is 
used to fnd candidate initial values corresponding to the target data. These initial values 
are then marched forward, and compared to the target data. Instructive successful and un-
successful examples are presented, using non smooth target data corresponding to 8 bit, 
512 × 512 pixel gray-scale images of recognizable objects. The above explicit scheme 
may also be helpful in conjunction with more elaborate and computationally intensive as-
similation methods, by providing a preliminary assessment of target feasibility, as well as 
possibly useful initial results. 

Keywords 

2D time-reversed advection diffusion equations; numerical experiments; non smooth data 
assimilation; stabilized leapfrog scheme. 
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1. Introduction 

This paper uses an artifcial example of a 2D nonlinear advection diffusion equation, to-
gether with highly non-smooth target data associated with gray scale images of recogniz-
able objects, to illustrate the inherent diffculties of data assimilation in such equations. 
In addition, the usefulness of a direct non iterative computational tool, in the form of an 
explicit, O(∆t)2 accurate, stable marching fnite difference scheme, is demonstrated. That 
scheme can be run forward or backward in time. 

As is evident from Refs. [1–12] and the references therein, advection diffusion equations 
play an important role in environmental and geophysical sciences, and there is increasing 
interest in backward in time data assimilation computations. However, in many dissipa-
tive evolution equations, such ill-posed inverse computations may fail to produce useful 
information, even with sophisticated regularization. This might be anticipated on the ba-
sis of the rigorous uncertainty estimates discussed in Refs. [13–20]. As was stressed in 
the O(∆t) approach to the 2D Burgers equation developed in Ref. [12], data assimilation 
is fundamentally different from the more familiar backward recovery problem discussed in 
Refs. [21, 22], where initial values are sought from noisy data at time T > 0, approximating 
an actual solution to within a known small δ > 0 in the L 2 norm. In data assimilation, the 
desired target data at time T > 0 may differ from an actual solution by an unknown large 
δ > 0 in the L 2 norm. 

The present paper seeks to draw attention to the limited feasibility of data assimilation, 
by presenting instructive examples of successful as well as unsuccessful assimilation, and 
by exploring the important role played by the coeffcient values in the given evolution 
equation, as well as the value of T > 0. Signifcantly, the O(∆t)2 stabilized explicit leapfrog 
scheme discussed in Refs. [21, 22] can be used effectively for that purpose. 

In the unit square Ω ⊂ R2, with homogeneous boundary conditions on ∂ Ω, and positive 
coeffcients α(u), q(x,y), we study 2D nonlinear parabolic equations of the form 

ut = α(u)∇ · {q(x,y)∇u} + β (u)ux + γ(u)uy. (1) 

The following data assimilation/inverse design problem associated with Eq. (1) is con-
sidered: With appropriate T > 0, fnd initial values u(x,y,0) that can evolve into a close 
approximation to a desired target result u ∗(x,y,T ), at time T . Here, highly non smooth 
target data are considered that may not correspond to actual solutions of Eq. (1) at time T , 
and it may not be possible to fnd such initial values. 

The stabilized explicit leapfrog scheme discussed in Refs. [21, 22], is a direct, non iterative, 
stepwise computational method, that can be run forward or backward in time. Using this 
tool, examples are presented where useful initial values can be found that evolve into good 
approximations to the target data u ∗(x,y,T ), with modestly small L 1 relative errors. Such 
examples become even more successful with smaller values of T , but less successful with 
larger T . However, there are also examples where the resulting L 1 relative errors at time 
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T are not small, although the computed solutions exhibit important characteristic features 
associated with the desired targets u ∗(x,y,T ). Here, the fast and accurate explicit leapfrog 
scheme allows easy interactive exploration of whether closer agreement might result with 
reduced coeffcients α, q, β , γ, in Eq. (1). This is of interest in many applications where 
the evolution equation governing the process is only tentatively known, and appropriate 
readjustment of coeffcients is anticipated. Finally, with a given T > 0, and a given evolu-
tion equation in Eq. (1), there are examples of target data u ∗(x,y,T ), for which useful initial 
values cannot be found using this computational tool. 

The above direct approach may also be helpful if used in conjunction with more elaborate 
data assimilation procedures, based on neural networks and machine learning, by provid-
ing a preliminary assessment of the feasibility of the desired target data u ∗(x,y,T ), with 
the given evolution equation and value of T > 0. Successful leapfrog results may also pro-
vide valuable initial guesses that might be improved by subsequent processing with other 
methods. 

 
        
   

  IMAGES ARE DEFINED BY HIGHLY NON SMOOTH INTENSITY 
  DATA THAT CHALLENGE  ILL−POSED RECOVERY METHODS
 

Fig. 1. Plot of intensity values f (x,y) versus (x,y), in 512 × 512 pixel Abe Lincoln image. 
Intensity values range from 0 to 255, and result in a highly non smooth surface. Similar 
characteristics are found in numerous images of easily recognizable objects. Such images are 
not of bounded variation [23], present signifcant computational challenges, and provide 
instructive examples in data assimilation experiments. 

2. Use of Computational Examples Based on Sharp Image Data 

As in Refs. [12, 21, 22], numerical experiments will be presented involving 8 bit, 512×512 
pixel gray-scale images. As illustrated in Fig. 1, many images of easily recognizable objects 
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are defned by non smooth intensity data f (x,y), that would be quite diffcult to synthesize 
mathematically. These images are not of bounded variation. Rather, as shown in Ref. [23], 
with 0 < α < 0.7, and |h| = (h2

1 + h2
2)

1/2, they belong to the Lipschitz class Λ(α,1,∞), of 
functions f (x,y) satisfng Z 

| f (x + h1,y + h2) − f (x,y)|dxdy ≤ Const. |h|α , |h| ↓ 0, (2)
R2 

while images of bounded variation require α = 1. Such non smooth images pose signifcant 
challenges in ill-posed reconstruction, and they constitute an invaluable tool for exploring 
the possibility of computing a wide variety of dissipative evolution equations backward 
in time. In the present application, in addition to quantitative metrics of success or failure 
applied to the underlying data, such as relative errors in various L p norms, and peak signal 
to noise ratios (PSNR), the ability to view the assimilated data as an image, is quite helpful. 

The approach to be used is based on marching backward in time from the given target 
data at time T , using an O(∆t)2 explicit fnite difference scheme. As is well-known [24, 
p. 59], for ill-posed initial value problems, every consistent stepwise marching scheme, 
whether explicit or implicit, is necessarily unconditionally unstable. However, as shown 
in Refs. [12, 21, 22], it is possible to stabilize explicit marching schemes by applying an 
appropriate compensating smoothing operator at each time step to quench the instability. 
This renders the scheme unconditionally stable, but slightly inconsistent. In backward re-
constructions from relatively smooth data known to closely approximate the exact solutions 
at time T , the cumulative error caused by such smoothing is suffciently small to allow for 
useful results. Unexpectedly, such stabilized schemes may sometimes be useful in data as-
similation with non smooth targets at time T , by using more aggressive smoothing at each 
time step. 

Below, we review error bounds obtained in the recently developed schemes in Refs. [21, 
22]. A simplifed linear analysis in Sections 4 and 5 below, leads to the error estimates in 
Theorems 1 and 2 at the end of Section 4, together with the important Remark 2. These 
results examine the feasibility of data assimilation, and set the stage for the nonlinear com-
putational experiments discussed in Section 6. 

3. Stabilized Leapfrog Scheme in the Unit Square 

Let Ω be the unit square in R2 with boundary ∂ Ω. Let < , > and ∥ ∥2, respectively 
denote the scalar product and norm on L 2(Ω). With (x,y, t) ∈ Ω × (0,T ], positive α(u) 
and q(x,y), initial values u(x,y,0) = u0(x,y), and homogeneous boundary conditions on 
∂ Ω × [0,T ], we now consider the evolution equation in Eq. (1), 

ut = L†u ≡ α(u)∇ · {q(x,y)∇u} + β (u)ux + γ(u)uy. (3) 

The well-posed forward initial value problem in Eq. (3) becomes ill-posed if the time direc-
tion is reversed, and one wishes to recover u(x,y,0)) given desired target data u ∗(x,y,T ). 
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We contemplate both forward and time-reversed computations by allowing for possible 
negative time steps ∆t in the leapfrog time-marching fnite difference scheme to be de-
scribed below. With a given positive integer N, let |∆t| = T/(N + 1) be the time step 
magnitude, and let ũn(x,y) ≡ ũ(x,y,n∆t), n = 1, · · · ,N + 1, denote the intended approxi-
mation to u(x,y,n∆t). It is helpful to consider Fourier series expansions for ũn(x,y), on the 
unit square Ω, 

∞ 
nũn(x,y) = ∑ ũ j,k exp{2πi( jx + ky)}, (4) 

j,k=−∞ 

with Fourier coeffcients {ũn
j,k} given by Z 

nũ j,k = ũn(x,y)exp{−2πi( jx + ky)}dxdy, (5)
Ω 

With given fxed ω > 0 and p > 1, defne λ j,k, σ j,k, as follows 

λ j,k = 4π
2( j2 + k2), σ j,k = exp{−ω|∆t|λ j

p 
,k}. (6) 

For any f (x,y) ∈ L 2(Ω), let { f j,k} be its Fourier coeffcients as in Eq (5). Using Eq. (6), 
defne the linear operators P and S as follows 

P f = ∑∞ 
j,k=−∞ λ j

p 
,k f j,k exp{2πi( jx + ky)}, ∀ f ∈ L 2(Ω), 

(7) 
S f = ∑∞ 

j,k=−∞ σ j,k f j,k exp{2πi( jx + ky)}, ∀ f ∈ L 2(Ω). 

As in Refs. [12, 21, 22], the operator S will be used as a stabilizing smoothing operator at 
each time step. With the nonlinear operator L† as in Eq (3), let 

n nL†ũn ≡ α(ũn)∇ · {q(x,y)∇ũn} + β (x,y, ũn)ũ + γ(x,y, ũn)ũy . (8)x 

Consider the following stabilized leapfrog time-marching difference scheme for the system 
in Eq (3), in which only the time variable is discretized, while the space variables remain 
continuous, 

un+1˜ = Sũn−1 + 2∆tSL†ũn , n = 1,2, · · · ,N, 

ũ0(x,y) = u0(x,y), ũ1(x,y) = u0(x,y)+ ∆tL†u0. (9) 

The above semi-discrete problem is highly nonlinear. The analysis presented in Sections 
4 and 5 below, although limited to a related simplifed linear problem, is relevant to the 
above semi-discrete problem. In Section 6, where actual numerical computations are dis-
cussed, a uniform grid is imposed on Ω, the space variables are discretized using centered 
differencing, and FFT algorithms are used to synthesize the smoothing operator S. 
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4. Fourier Stability Analysis in Linearized Problem 

Useful insight into the behavior of the nonlinear scheme in Eq. (9) involving L†, can be 
gained by analyzing a related problem with constant coeffcients, involving a linear operator 
L. With constants a, b, c, such that a, |b|, |c| > 0, consider the initial value problem on the 
unit square Ω, 

ut = Lu ≡ a∆u + bux + cuy, 0 < t ≤ T, 
(10) 

u(x,y,0) = u0(x,y), 

together with homogeneous boundary conditions on ∂ Ω. Let |∆t| = T/(N + 1). With 
u(x,y, t) the unique solution in Eq. (10), let 

θ
1 = u(x,y,0), un(x,y) = u(x,y,n∆t), n ≥ 1. (11) 

Then, the exact solution un satisfes the following leapfrog system 

n n+1
θ n+1 = u , u = θ n + 2∆tLun + τn , n = 1,2, · · · ,N, (12) 

where, for n = 1,2, · · · ,N, the truncation error term τn is given by 

τ
n = {(∆t)3/6}{uttt(x,y,s)}, n|∆t| < |s| < (n + 1)|∆t|. (13) 

Defne the following two component vectors and matrix G 

V n = [θ n , un]T , Φ
n = [0, τ

n]T , (14)τ 

� � 
0 I

G = . (15)I 2∆tL 

One may then rewrite Eq. (12) as 

V n+1 + Φn = GV n 
τ , n = 1,2, · · · ,N. (16) 

1Defne L 2(Ω) norms for two component vectors W = [w w2]T , and 2 × 2 matrices H, as 
follows 

∥ W ∥2
2= (∥ w1 ∥2

2 + ∥ w2 ∥2
2), ∥ H ∥2= sup {∥ HW ∥2 / ∥ W ∥2}. (17) 

∥W∥2 ̸=0 

Also, for functions h(x,y, t) on Ω × [0,T ], defne the norm |||h|||2,∞ as follows 

|||h|||2,∞ ≡ sup {∥ h(·, t) ∥2}. (18) 
0≤t≤T 

One may also write the stabilized leapfrog scheme for computing Eq. (10) in matrix-vector 
notation. Let 

θ̃
1(x,y) = u0(x,y), ũ1(x,y) = u0(x,y)+ ∆tLu0. (19) 
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Then, 
u(x,y,∆t) = ũ1(x,y)+ τ0 , 

(20) 
τ0 = {(∆t)2/2}{utt(x,y,r)}, 0 < |r| < |∆t|. 

With Ṽ n = [θ̃ n , ũn]T , the operator S as in Eq. (7), and matrix Λ defned as � � 
S 0

Λ = , (21)0 S 

the stabilized marching leapfrog scheme for Eq. (10), 

θ̃
n+1 n n+1 = Sθ̃

n n = Sũ , ũ + 2∆tSLũ , n = 1,2, · · · ,N, (22) 

may be written as 
Ṽ n+1 = ΛGṼ n , n = 1,2, · · · ,N. (23) 

Note that with τ0 as in Eq. (20), 

∥ V 1 −Ṽ 1 ∥2=∥ τ0 ∥2 . (24) 

However, as will be seen later with data assimilation, it is possible for the true initial data 
u0(x,y) in Eq. (19) to only be known approximately, leading to a signifcantly larger value 
for ∥ V 1 −Ṽ 1 ∥2, 

∥ V 1 −Ṽ 1 ∥2= A ≫∥ τ0 ∥2 . (25) 

Unlike the case in Eq. (9), the linear difference scheme in Eq. (23) is susceptible to Fourier 
analysis. If Lũn ≡ h(x,y), then its Fourier coeffcients {h j,k} are given by h j,k = g j,kũn

j,k, 
where 

g j,k = −{4π
2a( j2 + k2) − 2πi(b j + ck)}. (26) 

Hence, from Eqs. (6), (7) and (22), 

unθ̃ n+1 = ∑∞ 
j,k=−∞ σ j,k ˜ j,k exp{2πi( jx + ky)}, 

(27) 
un+1˜ = ∑∞ 

j,k=−∞ σ j,k{θ̃ 
j
n 
,k + 2∆tg j,kũn

j,k}exp{2πi( jx + ky)}. 

Lemma 1 Let λ j,k, σ j,k, be as in Eq. (6), let a, b, c, be as in Eq. (10), and let g j,k be as 
in Eq. (26). Choose a positive integer J such that if λJ = 4π2J, we have 

max( j2+k2)≤J {|g j,k|} ≤ 2aλJ, |g j,k| ≤ 2aλ j,k, ∀ ( j2 + k2) > J. (28) 

With p > 1, choose ω ≥ 4a(λJ)
1−p in Eq. (6). Then, � � 

σ j,k 1 + 2|∆t||g j,k| ≤ 1 + 4a|∆t|λJ. (29) 
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Hence, 
∥ ΛG ∥2< 1 + 4a|∆t|λJ < exp{4a|∆t|λJ}, (30) 

and, for n = 1,2, · · · ,N, 

∥ Ṽ n+1 ∥2=∥ (ΛG)nṼ 1 ∥2< exp{4an|∆t|λJ} ∥ Ṽ 1 ∥2 . (31) 

Therefore, with this choice of (ω, p), the linear leapfrog scheme in Eq. (23), is uncondi-
tionally stable, marching forward or backward in time. 

Proof : We frst show how to fnd a positive integer J such that Eq. (28) is valid. We have 
2λ 2 2λ 2|g j,k|2 = a j,k + 4π2(b j + ck)2 ≤ a j,k + 2d2λ j,k, where 0 < d = max(|b|, |c|). Choose 

2λ 2a positive integer J such that 4π2J > (2d2/a2). Then, ∀ ( j,k), |g j,k|2 ≤ a j,k + a2λJλ j,k, 

which implies Eq. (28). Next, the inequality in Eq. (29) is valid whenever ( j2 + k2) ≤ J, 
since σ j,k ≤ 1. For ( j2 + k2) > J, we have λJ < λ j,k and |g j,k| ≤ 2aλ j,k. Hence 

σ j,k = exp{−ω|∆t|λ j
p 
,k} ≤ exp{−ω|∆t|λ j,kλ p−1} ≤ exp{−4a|∆t|λ j,k}, (32)J � �−1since ωλ p−1 ≥ 4a. Also, exp{−4a|∆t|λ j,k} ≤ 1 + 4a|∆t|λ j,k , since 1 + x ≤ ex for real J � � 

x. Hence, with |g j,k| ≤ 2aλ j,k for ( j2 + k2) > J, we fnd σ j,k 1 + 2|∆t||g j,k| ≤ 1. Thus, 
Eq. (29) is valid ∀ ( j,k). 

We now establish the stability inequality in Eq. (30). From Eq. (17) and Parseval’s relation, 

∞ 
n∥ Ṽ n ∥2

2 = ∑ (|θ̃ j
n 
,k|

2 + |ũ j,k|
2), n = 1,2, · · ·N + 1. (33) 

j,k=−∞ 

From Eq. (27), 

θ̃
n+1 = σ j,kũn ũn+1 = σ j,k{θ̃ j

n 
,k + 2∆tg j,kũn

j,k}, (34)j,k j,k, j,k 

and 
|θ̃ n+1|2 = σ j 

2 
,k|ũn

j,k|
2 ,j,k 

(35) 
n+1|ũ j,k |

2 ≤ σ2 
j,k|θ̃ 

j
n 
,k|

2 + 4∆t2σ j 
2 
,k|g j,k|2|ũn

j,k|
2 + 4|∆t|σ2 

j,k|g j,k||θ̃ 
j
n 
,kũn

j,k|. 

un unUsing 2|θ̃ 
j
n 
,k ˜ j,k| ≤ |θ̃ 

j
n 
,k|

2 + | ̃ j,k|
2, we have 

n n4|∆t|σ2 
j,k|g j,k||θ̃ j

n 
,kũ j,k| ≤ 2|∆t|σ j 

2 
,k|g j,k||θ̃ j

n 
,k|

2 + 2|∆t|σ j 
2 
,k|g j,k||ũ j,k|

2 . (36) 

Hence, from Eqs. (35), (36), 

n+1 n|θ̃ n+1|2 + |ũ j,k |
2 < (|θ̃ j

n 
,k|

2 + |ũ j,k|
2)σ2 

j,k(1 + 2|∆t||g j,k|)2 , n = 1,2, · · ·N. (37)j,k 
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Therefore, on using Eq. (29) in Eq. (37), together with Eq. (33), 

∥ Ṽ n+1 ∥2=∥ ΛGṼ n ∥2≤ (1 + 4a|∆t|λJ) ∥ Ṽ n ∥2, (38) 

and Eqs. (30) and (31), follow from Eqs. (38) and (17). QED. 

With a change in notation, where the present un(x,y) is denoted by ωn(x,y), and the present 
positive constant ω in Eq. (6) is denoted by γ , the following result is stated and proved as 
Lemma 5.2 in Ref. [22]. 

Lemma 2 Let un(x,y) ≡ u(x,y,n∆t) be the exact solution in Eq. (10). Let ω, p, λ j,k, σ j,k, 
be as in Eq. (6). Let P and S be as in Eq. (7), let L be the linear operator in Eq. (10), and 
let τn be as in Eq. (13). With the norm defnition in Eq (18), and 1 ≤ n ≤ N, 

∥ τn ∥2 ≤ (1/6) |∆t|3 |||uttt |||2,∞, 
∥ un − Sun ∥2 ≤ ω|∆t| |||Pu|||2,∞, 

|∆t| ∥ Lun − SLun ∥2 ≤ ω(∆t)2 |||PLu|||2,∞. (39) 

Moreover, with V n as in Eq. (14), 
√ 

∥ GV n − ΛGV n ∥2≤ ωK 3 |∆t| |||Pu|||2,∞, (40) 

where the constant K is given by 

K = {1+(8/3)(∆t)2|||PLu|||22,∞/|||Pu|||22 
,∞}1/2 . (41) 

While the stabilized leapfrog scheme is unconditionally stable running forward or back-
ward in time, it introduces a small error at each time step ∆t, whose cumulative effect does 
not vanish as |∆t| ↓ 0. Returning to Eq. (10), the well-posed forward problem, with ∆t > 0, 
is considered frst. 

Theorem 1 With ∆t > 0 and T = (N + 1)∆t, let un(x,y) be the unique exact solution of 
Eq. (10) at t = n∆t, where a, |b|, |c| > 0. Let P and S be the operators defned in Eq. (7). 
With λJ as in Lemma 1, let p > 1, and let ω = 4aλ 1−p in the smoothing operator S. Let V n 

J 
be as in Eq. (14), let Ṽ n be the solution of the forward leapfrog scheme in Eq. (23), and let 
K be the constant defned in Eq. (41). If En = V n − Ṽ n denotes the error at tn = n∆t, n = 
1,2, · · · ,N + 1, we have, with the norm defnitions in Eq. (18) 

√ 
∥ En ∥2 ≤ 3 K (λJ)

−p{exp(4aλJtn) − 1} |||Pu∥||2,∞ 

+ (24aλJ)
−1(∆t)2 {exp(4aλJtn) − 1} |||uttt |||2,∞ 

+ exp(4aλJtn) ∥ V 1 −Ṽ 1 ∥2 . (42) 

Proof : Let Ψn = Φτ 
n +(GV n − ΛGV n), where Φn 

τ is as defned in Eq. (14). Then, En+1 = 
ΛGEn + Ψn, and 

n−1 
En+1 (ΛG) j

Ψ
n− j/(∆t),= (ΛG)nE1 + ∆t ∑ n = 1,2, · · · ,N. (43) 

j=0 
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Table 1 

Values of constants C1 −C3 in Eq. (46), with following parameter values: 
T = 1 × 10−4 , |∆t| = 5 × 10−8 , a = 1, p = 3, ω = 2× 10−7 , λJ = 4472. 

4aT λJC1 = e C2 = (λJ)
−p(C1 − 1) C3 = {(24aλJ)

−1(∆t)2(C1 − 1)}
C1 < 5.99 C2 < 5.58 × 10−11 C3 < 1.17 × 10−19 

Hence 

∥ En+1 ∥2 ≤ ∥ (ΛG)n ∥ V 1 −Ṽ 1 ∥2 
n−1 

+ max{∥ Ψk ∥2 /∆t}∆t ∑ ∥ (ΛG) j ∥2 . (44)
k j=0 

From Eq. (31) in Lemma 1, ∥ (ΛG)k ∥2≤ exp{4aλJtk}. Also, 

n−1 Z tn 
∆t ∑ ∥ (ΛG) j ∥2≤ e4asλJ ds = exp{(4aλJtn) − 1}/(4aλJ). (45)

0j=0 

From Eq. (39) in Lemma 2, ∥ Φn 
τ ∥2≤ (1/6)|∆t|3|||uttt |||2,∞, while ∥ GV n − ΛV n ∥2 satisfes 

Eq. (40) in Lemma 2, with ω = 4a(λJ)
1−p. Therefore, Eq. (42) follows after applying 

Eq. (45) in Eq. (44). QED. 

Remark 1. The frst term on the right hand side in Eq. (42) is the stabilization penalty, 
which is the price that must be paid for using the leapfrog scheme in the computation of the 
well-posed forward linear problem in Eq. (10). Without stabilization, the leapfrog scheme 
is unconditionally unstable for that forward problem, and no error bound is possible. If the 
initial data u0(x,y) in Eq. (19) are known exactly, then, from Eq. (24), ∥ V 1 −Ṽ 1 ∥2=∥ τ0 ∥2, 
and the last term on the right in Eq. (42) is O(∆t)2. However, as may be seen from Eq. (47) 
and Table 1 below, with appropriate parameter values, useful results may still be possible 
if the initial data in Eq. (19) merely approximate the true values. 

Defne the constants C1, C2, C3, C4, as follows 

4aT λJC1 = e , C2 = {(λJ)
−p(C1− 1)}, C3 = {(24aλJ)

−1(∆t)2(C1 − 1)}, 
√ (46) 

C4 = 3K C2 |||Pu|||2,∞ +C3 |||uttt |||2,∞. 

Using Eq. (42), we have 

max ∥ En ∥2≤ C1 ∥ V 1 −Ṽ 1 ∥2 +C4. (47)
n 

In the ill-posed backward problem, we contemplate marching backward in time from t = 
T = (N + 1)|∆t|, using negative time time steps ∆t. However, the needed initial data 
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u0(x,y) ≡ u(x,y,T ), where u(x,y, t) is the unique exact solution in Eq. (10), are seldom 
known exactly. For this reason, the ill-posed backward problem is generally formulated as 
follows: 

With ∆t < 0, target data g(x,y) are given and assumed to approximate true data u(x,y,T ) , 
while g + ∆tLg approximates true data u(x,y,T −|∆t|) , both in the L 2(Ω) norm. More-
over, the unique true backward solution u(x,y, t) corresponding to the unknown exact data 
u(x,y,T ), is such that both u(x,y,0) and u(x,y, |∆t|) satisfy known L 2(Ω) bounds. Specif-
ically, for some δ > 0, presumed known and small, and some M ≫ δ , 

∥ g − u(·,T ) ∥2
2 + ∥ (g + ∆tLg) − u(·,T −|∆t|) ∥2

2≤ δ 2 , 
(48) 

∥ u(·,0) ∥2
2 + ∥ u(·, |∆t|) ∥2

2≤ M2 . 

Analogously to the well-posed forward problem in Eq. (23), we now choose ∆t < 0 and 
consider the stabilized leapfrog scheme marching backward from t = T with the given data 
g(x,y) in Eq. (48) 

Ṽ n+1 = ΛGṼ n , n = 1,2, · · · ,N, Ṽ 1 = [g, (g + ∆tLg)]T , (49) 

where, with δ , M as in Eq. (48), Φn 
τ as in Eq. (14), and n = 1,2, · · ·N, the true solution 

satisfes 
V n+1 = GV n + Φτ 

n , ∥ V 1 −Ṽ 1 ∥2≤ δ , ∥ V N+1 ∥2≤ M. (50) 

Proof of the next result follows the same steps used in the preceding Theorem. 

Theorem 2 With g(x,y), M, δ , as in Eq. (48), ∆t < 0, and T = (N + 1)|∆t|, let V n be the 
exact solution of the backward problem in Eq. (50) at time T − n|∆t|, n = 1,2, · · · ,N + 1. 
With a, p, λJ, as in Lemma 1, let ω = 4a(λJ)

1−p in the smoothing operator S in Eq. (7). Let 
Ṽ n be the corresponding solution of the stabilized backward leapfrog scheme in Eq. (49), 
let K be the constant in Eq. (41), and let En ≡ V n − Ṽ n denote the error at time T − n|∆t|. 
Then, for n = 1,2, · · · ,N + 1 with the norm defnitions in Eq. (18) 

√ 
∥ En ∥2 ≤ 3 K (λJ)

−p {exp(4an|∆t|λJ) − 1}|||Pu|||2,∞ 

+ (24aλJ)
−1 (∆t)2 {exp(4an|∆t|λJ) − 1}|||uttt |||2,∞ 

+ δ exp{4an|∆t|λJ}. (51) 

Using Eq. (51), and the defnitions in Eq. (46), we have 

max ∥ En ∥2≤ C1 δ +C4. (52)
n 

Remark 2 The stability analysis of the linear constant coeffcient problem presented in 
this section, provides valuable insight into the diffculties attending data assimilation in 
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dissipative evolution equations. In that context, g(x,y) in the above Theorem represents 
possibly non smooth target data u ∗(x,y,T ), differing from an actual solution u(x,y,T ) by 
an unknown amount δ in the L 2(Ω) norm. Marching backward from T > 0 with g(x,y), 
leads to the error EN+1 at t = 0, obeying Eq. (52) with the defnitions in Eq. (46). The 
computed backward solution at t = 0 is now used as the initial data Ṽ 1 in the forward 
computation discussed in the preceding Theorem. However, Ṽ 1 is only an approximation 
to the true initial data V 1, with ∥ V 1 − Ṽ 1 ∥2≤ C1 δ + C4, from Eq. (52). Hence, from 
Eq. (47), the forward computation with such approximate initial data leads to an error 
EN+1 at time T > 0 satisfying 

∥ EN+1 ∥2≤ C1 (C1 δ +C4)+C4 = (C1)2 
δ +C4(C1+ 1) (53) 

The feasibility of data assimilation hinges on the true value of δ > 0, together with the 
values for |||Pu|||2,∞, |||uttt |||2,∞, T, |∆t|, a, p, ω, and λJ = (ω/4a)1/(1−p). With the 
parameter values listed in Table 1, Eq. (53) gives ∥ EN+1 ∥2< 36 δ + 7 C4, where C4 may 
be expected to be negligibly small, given the values for C2, C3. This leads to successful 
assimilation, provided δ is reasonably small. However, if in Table 1 we choose T three 
times larger, and ω ten times smaller, we fnd λJ = 14142, C1 = 2.35 × 107 , C2 = 8.29 × 
10−6 , C3 = 1.73 × 10−13. With (C1)2 = 5.53× 1014, useful data assimilation is unlikely. 

5. Leapfrog Nonlinear Computational Instability and the RAW Filter 

The results in Theorems 1 and 2 indicate that the stabilizing approach in Eqs. (23) and 
(49), is sound for the leapfrog scheme applied to the linearized problem, and that it can 
deliver useful results at realistic parameter values. In the case of the O(∆t) pure explicit 
scheme discussed in Ref. [12], such linear stability analysis was found to carry over to the 
nonlinear problem. However, as has been known for some time, for the O(∆t)2 leapfrog 
scheme, linear stability is necessary but not suffcient in the presence of nonlinearities. 

In recent years, effective methods of preventing leapfrog nonlinear instability have been de-
veloped and analyzed [25–27]. These are post processing time domain fltering techniques, 
which are applied at every time step, and which consist of replacing the computed solution 
with a specifc linear combination of computations at previous time steps. Such techniques 
can also be usefully applied in the present 2D nonlinear advection diffusion problem. 

We frst describe the Robert-Asselin-Williams flter (RAW) [26, 27] as it applies to the 
stabilized leapfrog scheme for the forward nonlinear problem with the nonlinear opera-
tor L† previously defned in Eq. (8), together with the smoothing operator S defned in 
Eq. (7). With ∆t > 0, and with ũn(x,y) ≡ ũ(x,y,n∆t), denoting the intended approximation 
to u(x,y,n∆t), let 

θ̃
1(x,y) = u0(x,y), ũ1(x,y) = u0(x,y)+ ∆tL†

θ̃
1 . (54) 

11 



NIST TN 2227 
July 2022 

This forward problem is defned by 

θ̃ n+1 = Sũn , 
(55) 

ũn+1 = Sθ̃ n + 2∆tSL†ũn , n = 1,2, · · · ,N. 

For n = 1,2, · · · ,N, the forward problem is modifed as follows under RAW fltering. With 
u1 1 θ̃ 1 θ̃ 1positive constants ξ , η , where ξ = 0.53, and 0.01 ≤ η ≤ 0.2, and with ˜ = ũ , = , 

θ̃ n+1 un= S ̃  , 

un+1 un˜ = Sθ̃ n + 2∆tSL† ˜ , � � (56)
θ̃ n+1 = θ̃ n+1 + 0.5ξ η ũn+1 − 2θ̃ n+1 + θ̃ n , 

� � 
ũn+1 = ũn+1 − 0.5η(1 − ξ ) ũn+1 − 2θ̃ n+1 + θ̃ n , 

with the fltered arrays θ̃ n+1 , ũn+1 , overwriting the unfltered arrays θ̃ n+1 , ũn+1 , at each 
1time step. With given data g(x,y) for ũ(x,y,T ) satisfying Eq. (48), and θ̃ 1 = g(x,y), ũ = 

g + ∆tL†g, with ∆t < 0, the backward problem is modifed in exactly the same way. The 
recommended value ξ = 0.53 in Ref. [26] is designed to maintain the O(∆t)2 accuracy in 
the leapfrog scheme. 

Remark 3. Prior information about the solution is essential in ill-posed inverse problems. 
When data assimilation is feasible, interactive adjustment of the pair (ω, p) in Eqs. (6, 
7) in the smoothing operator S, often leads to useful results. This process is similar to the 
manual tuning of an FM station, or the manual focusing of binoculars, and likewise requires 
user recognition of a correct solution. Beginning with small values of ω and p, chosen 
so as not to oversmooth the solution, a small number of successive trials are performed. 
Because of the underlying explicit marching difference scheme, this can be accomplished 
in a relatively short time. The values of (ω, p) are increased slowly if instability is detected, 
and are likewise decreased slowly to increase sharpness, provided no instability results. As 
is the case with binoculars, when data assimilation is feasible, useful results are obtained 
after relatively few trials. There may be several possible good solutions. 

6. 2D Nonlinear Computational Experiments 

It remains to be seen whether the simplifed linear analysis in Section 4 is predictive of 
behavior in the following nonlinear advection diffusion equation in the unit square Ω ⊂ R2, 

ut = α(u)∇ · {q(x,y)∇u} + β (u)ux + γ(u)uy. (57) 
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where 

α(u) = exp(0.0165u), q(x,y) = 0.001(1.0 + 2(sin(πx))(exp(2y)), 
(58) 

β (u) = 0.417uexp(2cos(u)), γ(u) = 4u. 

In the following 5 numerical experiments, a 512 × 512 equispaced grid is placed on the 
unit square Ω. Second order accurate centered fnite differencing is used for the space 
variables in the fully discrete nonlinear leapfrog scheme corresponding to Eq. (9). With 
|∆t| = 5.0 × 10−8 , ω = 2.0× 10−7, and p = 3.0, Fast Fourier Transform (FFT) algorithms 
are used to synthesize the smoothing operator S defned in Eq. (7), and RAW fltering is 
applied at every time step in accordance with Eq. (56). 

With ũN+1(x,y) in Eq. (56) the computed approximation to the given target data u ∗(x,y,T ) 
at T =(N +1)|∆t|, we compute the L 1(Ω) relative errors, ∥ ũN+1 −u ∗(.,T ) ∥1 / ∥ u ∗(.,T ) ∥1, 
and the L 2(Ω) peak signal to noise ratios PSNR, where n o 

PSNR = 20.0 log10 255.0 (∥ ũN+1 − u ∗ (.,T ) ∥2)
−1 . (59) 

Highly successful data assimilation would require an L 1 relative error on the order of 10% 
or less, with a PSNR ≥ 30. 

In all fve experiments, the target data u ∗(x,y,T ) are given at T = 1.0× 10−4. Signifcantly 
better results are obtained with T chosen ten times smaller. However, the aim in the present 
paper is to illustrate data assimilation behavior given a T value that is presumed adequate. 
In the Bill Clinton image in Fig. 2, the target data in the leftmost column are run backward 
to time t = 0, to produce the candidate initial data in the middle column. These data are now 
marched forward in time, to obtain the assimilated data in the rightmost column. Here, an 
L 1 relative error of 18% with PSNR = 19 in Table 2, together with the image and contour 
plot in the rightmost column, indicate modestly successful assimilation. 

Better results are achieved with the Hubble telescope barred spiral galaxy image in Fig. 3. 
In Table 3, we fnd an L 1 relative error of 16% with PSNR = 27. The image and contour 
plot in the rightmost column are a fair approximation to the target data in the leftmost 
column. 

Signifcantly less success is achieved in the jet engine image in Fig. 4. In Table 4, we fnd 
an L 1 relative error of 33% with PSNR = 16. The contour plot in the rightmost column is 
an unsatisfactory approximation to the corresponding plot in the leftmost column. 

The next two experiments involve the 1951 USAF resolution chart image. These two ex-
periments are aimed at the practical situation where, although the target data and T value 
are given accurately, the actual values of the nonlinear coeffcients α(u), β (u), γ(u), in 
Eq. (58) are only tentatively known or surmised, and may need readjustment. 
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Signifcant failure is evident in Fig. 5, using the original nonlinearities in Eq. (58). In 
Table 5, we fnd an L 1 relative error of 102% with PSNR = 11. In neither the image nor 
the contour plot, can the small characters be identifed in the rightmost column data. 

However, the direct, accurate, and relatively fast leapfrog computations described in Eq. (56), 
allow for easy experimentation with successively smaller nonlinearities. With new co-
effcients 6 times smaller, α(u) = exp(0.00275u), β (u) = 0.0695uexp(2cos(u)), γ(u) = 
0.667u, there is noticeable improvement and modestly successful assimilation in Fig. 6, 
with an L 1 relative error of 48% with PSNR = 15. Clearly, many other choices for 
α(u), β (u), γ(u), may be found that would result in equally successful assimilation. The 
experiment in Fig. 6 merely indicates a need for reconsideration of the physics that led to 
Eq. (58). 

7. Concluding Remarks 

A stable, second order accurate, backward marching explicit fnite difference scheme, was 
applied to explore diffculties that inevitably arise in data assimilation in nonlinear advec-
tion diffusion equations. These diffculties originate from ill-posedness of the inverse prob-
lem, together with non smooth target data that may not correspond to an actual solution of 
the evolution equation at the prescribed time T > 0. Moreover, the value of T > 0 at which 
target data are prescribed, must be small enough to be compatible with the governing non-
linearities. Instructive successful and unsuccessful examples were presented illustrating 
several key points. 

The leapfrog scheme approach may be helpful in conjunction with more elaborate compu-
tationally intensive data assimilation procedures, by providing a preliminary assessment of 
the feasibility of the desired target data at a given T value, as well as possibly useful initial 
results. The scheme may also be used for prior experimentation with other T values, or 
with readjusted coeffcients in the evolution equation. 
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Evolved at time T

Evolved at time T

Computed at time 0

Contour plot at time 0

Target data at time T

Contour plot at time T

DATA ASSIMILATION IN BILL CLINTON IMAGE AT T=1.0E−4

Fig. 2. Target data at time T , in leftmost column, are marched backward in time to obtain 
candidate initial data in middle column. When marched forward to time T , middle column 
data evolve into rightmost column. Quantitative error estimates are provided in Table 2. 

Table 2 

President Clinton target image at T = 1.0 × 10−4 . 
L 1-norm behavior in data assimilation. 

Target L 1 norm at T Computed at 0 Achieved at T L 1 Rel Err PSNR 
87.64 90.31 88.29 18.29 % 19.49 
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Evolved at time T

Evolved at time T

Computed at time 0

Contour plot at time 0

Target data at time T

Contour plot at time T

     DATA ASSIMILATION IN  GALAXY IMAGE AT T=1.0E−4

Fig. 3. Target data at time T , in leftmost column, are marched backward in time to obtain 
candidate initial data in middle column. When marched forward to time T , middle column 
data evolve into rightmost column. Quantitative error estimates are provided in Table 3. 

Table 3 

Hubble telescope barred galaxy NGC1300 target image at T = 1.0 × 10−4 . 
L 1-norm behavior in data assimilation. 

Target L 1 norm at T Computed at 0 Achieved at T L 1 Rel Err PSNR 
26.72 27.08 26.87 16.19 % 27.43 
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   Evolved at time T

    Evolved at time T

Computed at time 0

  Contour plot at time 0

Target data at time T

Contour plot at time T

DATA ASSIMILATION IN JET ENGINE IMAGE AT T=1.0E−4

Fig. 4. Target data at time T , in leftmost column, are marched backward in time to obtain 
candidate initial data in middle column. When marched forward to time T , middle column 
data evolve into rightmost column. Quantitative error estimates are provided in Table 4. 

Table 4 

Jet engine target image at T = 1.0 × 10−4 . 
L 1-norm behavior in data assimilation. 

Target L 1 norm at T Computed at 0 Achieved at T L 1 Rel Err PSNR 
69.52 75.09 72.22 32.80 % 15.90 
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Evolved at time T

Evolved at time T

Computed at time 0

Contour plot at time 0

Target data at time T

Contour plot at time T

DATA ASSIMILATION IN USAF CHART IMAGE AT T=1.0E−4

Fig. 5. Target data at time T , in leftmost column, are marched backward in time to obtain 
candidate initial data in middle column. When marched forward to time T , middle column 
data evolve into rightmost column. Quantitative error estimates are provided in Table 5. 

Table 5 

USAF resolution chart target image at T = 1.0 × 10−4 . 
L 1-norm behavior in data assimilation. 

Target L 1 norm at T Computed at 0 Achieved at T L 1 Rel Err PSNR 
46.75 57.41 52.93 102.28% 10.59 
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Evolved at time T

Evolved at time T

Computed at time 0

Contour plot at time 0

Target data at time T

Contour plot at time T

DATA ASSIMILATION IN USAF CHART IMAGE AT T=1.0E−4
      (after reducing nonlinearities in evolution equation)

Fig. 6. Target data at time T , in leftmost column, are marched backward in time to obtain 
candidate initial data in middle column. When marched forward to time T , middle column 
data evolve into rightmost column. Quantitative error estimates are provided in Table 6. 

Table 6 

USAF resolution chart target image at T = 1.0 × 10−4 . 
(after interactive reduction of nonlinearities in evolution equation.) 

L 1-norm behavior in data assimilation. 

Target L 1 norm at T Computed at 0 Achieved at T L 1 Rel Err PSNR 
46.75 48.56 48.27 48.08 % 15.15 
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