
NIST Technical Note 2222

Agile Robotic Planning with Gwendolen

John Michaloski

Craig Schlenoff

Rafael C. Cardoso

Michael Fisher

This publication is available free of charge from:

https://doi.org/10.6028/NIST.TN.2222

https://doi.org/10.6028/NIST.TN.2222

NIST Technical Note 2222

Agile Robotic Planning with Gwendolen
John Michaloski

Craig Schlenoff

Intelligent Systems Division

National Institute of Standards and Technology

Gaithersburg, MD, USA

Rafael Cardoso1

Department of Computing Science

University of Aberdeen

Aberdeen, UK

Michael Fisher2

Department of Computer Science

The University of Manchester

Manchester, UK

This publication is available free of charge from:

https://doi.org/10.6028/NIST.TN.2222

May 2022

U.S. Department of Commerce
Gina M. Raimondo, Secretary

National Institute of Standards and Technology
Laurie E. Locascio, NIST Director and Undersecretary of Commerce for Standards and Technology

1Work supported by UK Research and Innovation, and EPSRC Hubs for “Robotics and AI in Hazardous
Environments”: EP/R026092 (FAIR-SPACE), EP/R026173 (ORCA), and EP/R026084 (RAIN).

2Work supported supported by Royal Academy of Engineering.

https://doi.org/10.6028/NIST.TN.2222

Certain commercial entities, equipment, or materials may be identifed in this document in order to describe an
experimental procedure or concept adequately. Such identifcation is not intended to imply recommendation or
endorsement by the National Institute of Standards and Technology, nor is it intended to imply that the entities,

materials, or equipment are necessarily the best available for the purpose.

National Institute of Standards and Technology Technical Note 2222
Natl. Inst. Stand. Technol. Tech. Note 2222, 48 pages (May 2022)

This publication is available free of charge from: https://doi.org/10.6028/NIST.TN.2222

https://doi.org/10.6028/NIST.TN.2222

Abstract

The future of robotics foresees autonomous behavior that can complete tasks intelligently, with a

focus on adaptability, fexibility, and versatility. In such systems, it is critical for robots to quickly

and safely perform an operation. However, such aptitude is not limited to the speed of solving

tasks, but also requires other qualities such as adeptly detecting and recovering from task

irregularities, overcoming unforeseen task barriers by replanning to achieve stated goals, and

adroitly adapting to dynamic environments such as changing light illumination, noisy sensors, or

unexpected conditions. These intelligent characteristics defne robot agility (not to be confused

with robot agility akin to dexterity), and refer to approaches that allow robotic systems to be

fexible and capable of re-tasking in the face of a changing and often unpredictable environment.

Because robot task agility requires sophisticated dynamic and continuous planning and

replanning, the GWENDOLEN intelligent agent programming language is studied as a high-level

robot planner. In this report, we develop a manufacturing kitting case study to research the

operation of GWENDOLEN planning. The case study uses the combination of GWENDOLEN,

Canonical Robot Command Language (CRCL), Robot Operating System (ROS), and Gazebo

software components to simulate and evaluate robot planning. Several Agile Robotics for

Industrial Applications Competition (ARIAC) kitting agility challenges are used to evaluate

GWENDOLEN planning under various levels of operational duress. Both the benefts and

shortcomings will be reviewed.

Key words

robots; planning; agent; agility; simulation; kitting.

i

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.TN
.2222

Table of Contents

1. Background . 1

2. Gwendolen Software Architecture . 4

2.1. Gwendolen . 4

2.2. Agent Infrastructure Layer (AIL) . 4

2.3. Multi-Agent System (MAS) . 6

2.4. Model Checking Agent Programming Languages (MCAPL) 6

2.5. Agent JPF . 6

2.6. Java Pathfnder (JPF) . 6

2.7. Model Checking . 6

2.8. CRCL . 7

2.8.1. CRCL Client . 8

2.8.2. CRCL Server . 9

2.9. Gazebo Simulation Model of the Kitting World 9

2.10. ANTLR . 9

2.11. Gwendolen Grammar . 9

2.12. Run time execution . 10

3. Kitting Case Study . 10

3.1. Kitting World and Beliefs . 11

3.2. Basic Kitting Algorithm . 12

4. Gwendolen Programming . 13

4.1. Gwendolen Notation . 14

4.2. Gwendolen Example . 14

5. Gwendolen Kitting Agility . 15

5.1. Scenario One: Continuous Monitoring of Human Robot Proximity 17

5.2. Scenario Two: Dropped Gear Challenge . 18

5.3. ARIAC Scenario Discussion . 21

6. Discussion . 23

References . 25

Appendix A: GWENDOLEN Kitting Program . 28

ii

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.TN
.2222

Appendix B: JAVA ENVIRONMENT . 30

B.1 CRCL Java Jar Support . 30

B.2 Gwendolen-CRCL Repository . 31

B.3 Gwendolen CRCL Java Communication . 31

B.4 Gwendolen Java Files . 32

B.5 Gwendolen Java Environment . 34

Appendix C: CRCL KITTING MODEL ENHANCEMENTS 35

C.1 CRCL XSD Extension . 35

C.2 CRCL Inference Explanation . 37

Appendix D: ROS . 40

List of Tables

Table 1. Kitting Planning Steps . 13

Table 2. GWENDOLEN Notation . 14

Table 3. Agile IA Kitting Performance Metrics . 16

Table 4. GWENDOLEN CRCL File Descriptions . 33

List of Figures

Fig. 1. GWENDOLEN Kitting Software Architecture . 5

Fig. 2. Initial Kitting World . 11

Fig. 3. Kitting Tray with Slot Offsets . 38

Fig. 4. NIST Agility Performance of Robotic Systems . 40

iii

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.TN
.2222

Glossary

AI Artifcial Intelligence
AIL Agent Infrastructure Layer
AJPF Agent Java Pathfnder
ANTLR ANother Tool for Language Recognition
API Application Programming Interface
APRS Agility Performance of Robotic Systems
ARIAC Agile Robotics for Industrial Applications Competition
BDI Belief–desire–intention
BNF Backus–Naur form
CRCL Canonical Robot Control Language
DOM Document Object Model
IA Intelligent Agent
IDE Integrated Development Environment
IEC International Electrotechnical Commission
IEEE Institute of Electrical and Electronics Engineers
IO Input/Output
JAXB Java Architecture for XML Binding
JNDI Java Naming and Directory Interface
JPF Java Pathfnder
JVM Java Virtual Machine
LDAP Lightweight Directory Access Protocol
MAS Multi-agent system
MCAPL Model Checking Agent Programming Language
NASA National Aeronautics and Space Administration
NIST National Institute of Standards and Technology
PLC Programming Logic Controller
PDDL Planning Domain Defnition Language
RCS Real-time Control System
ROS Robot Operating System
ROS-I Robot Operating System Industrial
STL Standard Tessellation Language
SUT System Under Test
W3C World Wide Web Consortium
XJC XML Java Compiler
XML eXtensible Markup Language
XSD XML Schema Defnition

iv

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.TN
.2222

1. Background

A robot can be considered an intelligent agent (IA) since it perceives its environment with

sensors, takes actions autonomously to achieve goals, and may improve its performance by using

knowledge gained through experience. A robot that is assigned a goal is considered more

intelligent if it consistently takes actions that successfully maximize its goal.

We defne a task to mean achieving a goal by selecting a series of actions based on the given state

of the robot controller and environment. Tasks can be discrete events (e.g., place package into box)

or continuous activity (e.g., monitor the robot for safe human distancing) [1]. Tasks can also vary

in other ways, including timescale, diffculty, and detail. Given a task goal, an agile task planner

previews and then selects from the potential actions, based on the current state of the environment

in the problem domain and determines a feasible sequence of actions to achieve the goal. Of

interest in this paper is task representation and associated reasoning to handle and recover from

various random challenging events. Handling problems with a higher degree of intelligence results

in a smarter agile agent.

Intelligence defnes a wide range of competence. As such, we make clarifying assumptions as

to the behavior of the robot intelligent agent. We assume goal driven behavior makes decisions

based on trade-offs between conficting goals in the face of a dynamic environment. Further we

assume that the robot is not merely a simple refexive agent that makes decisions based solely on the

current environment but is a goal-based IA capable of thinking beyond the present to determine the

best course of actions in light of potentially changing environment to achieve its goal. Typically, a

goal-based IA uses lookahead search in planning in order that the planning maximizes the objective

function (the goal) and fnds the corresponding actions in order to reach it. Dynamic planning is

then defned as reevaluating the lookahead search every iteration in its effort at achieving the goal.

Overall, intelligent agents have been characterized into several models of operation, which we base

on Weiss [2] categorization:

• Logic-based agents – in which the planning about what action to perform is made via logical

deduction where the syntax is defned by frst order predicate logic and the semantics are

true or false, with a good example of this model being PDDL [3];

• Reactive agents – in which planning is implemented as a direct mapping from goal to action;

• Belief-desire-intention (BDI) agents – in which planning depends upon the manipulation of

data structures representing the beliefs, desires, and intentions of the agent;

• Layered architectures – in which planning is realized via multiple levels of software layers,

1

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.TN
.2222

such that reason about the environment is at different levels of abstraction, e.g., 4D Real-time

Control System (RCS) model of Albus [4];

• Subsumption architecture – is a control architecture conceived by Rodney Brooks that

instead of planning behavior by using a top-down representation of the world, couples

sensory information to action selection in an bottom-up fashion [5].

In this paper, we investigate GWENDOLEN which handles planning based on the BDI intelligent

agent model. BDI is used to reason about and plan goal-driven tasks. Beliefs provide information

on the likely state of the environment. Desires include information about the objectives to be

accomplished including priorities or payoffs that are associated with the various current objectives.

Intentions defne the currently chosen course of action. Intuitively, BDI represents a world that

the IA believes to be possible, desires to bring about, and intends to bring about, respectively.

Correspondingly, intelligent agents are viewed as being rational and acting in accordance with

their beliefs and goals [6].

One advantage of using rational BDI agents over classical planning, such as with PDDL [3], is

that BDI failure handling is achieved at the execution level. Assuming that the failure handling

plan exists and is correct, then the agent should be able to adapt to the failure using its current

plans without resorting to full replanning. The disadvantage is that some fexibility is lost in

executing tasks; since all plans are generated at compile time (usually manually coded by a

software developer or imported from an automated planner) we can not call a planner at runtime

and ask for an optimal solution to an unforeseen problem. Overall, GWENDOLEN planning can be

considered more trustworthy for characteristics such as explainability, traceability,

interpretability, and safety, since failure recovery planning must be anticipated, and accountable

to avoid unintended random responses.

The GWENDOLEN implementation we study differs from other IA programming languages

because it was built from the ground up with formal verifcation in mind [6]. The GWENDOLEN

implementation comes equipped with the Agent Java PathFinder (AJPF) [6] model checker,

which is based on the NASA JavaPathfnder. Model checking [7] is a formal technique that

verifes properties (usually specifed using some form of temporal logic) of a system by

exhaustively exploring the state space from a model (an abstraction of the implementation that

can be represented, for example, as fnite-state machine). AJPF verifes the IA program directly,

instead of relying on an abstract model. In agent verifcation, the IA must be verifed for not only

what it does, but why it chose that course of action, what it believed that made it choose to act in

this way, and what its intentions were that led to this plan. Overall, the explicit intentions in BDI

agent languages and the possibility of formal verifcation in GWENDOLEN both provide benefts

2

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.TN
.2222

for understanding and trust.

Even though GWENDOLEN’s effectiveness in responding to failures depends on pre-existing and

well-programmed plans, these plans can be formally verifed to provide assurances that they will

behave as expected. Furthermore, verifcation of autonomous robots can contribute to the

trustworthiness of the system and can be vital in application domains such as safety-critical

scenarios [8]. By using the GWENDOLEN language, IA programs can be directly verifed using

model checking, a formal technique that can be used for the verifcation of safety properties.

To understand the basis of GWENDOLEN planning in operation, a case study using kitting is

developed. Kitting is a method to feed a set of subcomponents to an assembly station, where the

set of different subcomponents together are used to assemble one unit of a component. Kitting

constitutes collecting the subcomponents into a kit which is then transferred to the assembly

station [9]. In industrial assembly of manufactured products, kitting is often performed prior to

fnal assembly. The reasons for implementing such systems usually involve parallelized assembly

systems, product structures with many part numbers, quality assurance of the assembly, and high

value components [10]. For our research purposes, evaluation relied on the open-source

frameworks (Robot Operating System and Gazebo) for robot control and simulation. Gazebo uses

a physics-based engine to simulate such that the models of the robots, kits, and environment

provide a higher-fdelity approximation to the real-world.

This report is organized as follows. First, the GWENDOLEN software architecture is presented to

understand the structure of the software and the relationships of the elemental system modules

involved in the application of GWENDOLEN to kitting. Second, a kitting case study used to

evaluate GWENDOLEN will be presented with basic algorithms to handle kitting, as well as

discussion on the enhancement of CRCL to return kitting world model status and inferences.

Third, GWENDOLEN programming will be studied with an emphasis on coding kitting

GWENDOLEN plans. GWENDOLEN notation and code examples will be discussed. Next the use

ofGWENDOLEN to program a plan to handle a continuous and a discrete agile planning challenge

will be presented in detail.This will be followed by an assessment of GWENDOLEN for handling

other Agile Robotics for Industrial Applications Competition (ARIAC) challenges and

performance metrics. A summary discussion will review GWENDOLEN planning for handling

robotic agent kitting. A series of appendices follow. The frst appendix will contain the complete

GWENDOLEN program used in the report. The next appendix will examine the the Java

programming environment including Java CRCL library building and communication, as well as

a breakdown of the Java fles used in the GWENDOLEN programming. This will be followed by

an appendix that takes an in-depth look at the CRCL kitting model enhancements that were added

to the Extensible Markup Language (XML) schema and how Java was used to build and deploy

3

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.TN
.2222

these extensions, including a summary of the inferences used in understanding the kitting world

model. The fnal appendix will give a brief look at ROS CRCL deployment.

2. Gwendolen Software Architecture

GWENDOLEN is an intelligent agent programming language that defnes a planning grammar

specialized for BDI planning and multi-agent communication. GWENDOLEN IA programs are

compiled into a planning/reasoning Java data structures that defne the beliefs, desires, and

intentions. In conjunction with GWENDOLEN programs, the ability to call native Java functions

through an “action” call is available to connect GWENDOLEN plans to the physical “real” world.

In essence GWENDOLEN does goal-directed planning using a belief system in conjunction with

the real world beliefs in order to run a plan. It is the ability to compose or aggregate

GWENDOLEN plans that provides a powerful planning paradigm. The entire GWENDOLEN

beliefs and goals program is run as a compiled Java BDI framework that cyclically plans by

choosing intentions, and which uses Java to extend the GWENDOLEN program to enable

connection to the real world in order to modify the IA beliefs.

A software architecture describes the interaction and structural software components of a system.

For GWENDOLEN the software architecture of the implemented system adapted for the kitting

case study is shown in Figure 1. Each module role in the GWENDOLEN system architecture will

be discussed in the following, as well as its relationship with other modules.

2.1. Gwendolen

GWENDOLEN programs are presented as a series of plans that are compiled from a GWENDOLEN

program into the appropriate Agent Infrastructure Layer (AIL) data structures. GWENDOLEN plans

are enabled when an IA has certain beliefs and goals and suggests a sequence of deeds to be

performed in order to attain a goal. Plans may also be triggered by events, such as a change in

belief or the commitment to a new goal. GWENDOLEN agents also distinguish between two types

of goals. “Achievement goals” make statements about beliefs the IA wishes to hold. They remain

goals until the IA gains an appropriate belief. “Perform goals” simply state a sequence of deeds to

be performed and cease to be a goal as soon as that sequence is complete.

2.2. Agent Infrastructure Layer (AIL)

AIL is a toolkit of Java classes designed to support the implementation of BDI (Belief, Desire, and

Intention) programming languages that allows for model checking of programs implemented in

these BDI languages. Numerous BDI languages have been ported to the AIL platform, including:

4

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.TN
.2222

Fig. 1. GWENDOLEN Kitting Software Architecture

Jason [11] implementation of AgentSpeak [12], JAPL [13], SAAPL [14] and GOAL [15]. The

AIL contains data structures to store its internal state comprising: a belief base, a plan library, a

set of intentions, and other temporary state information which can be adapted to the operational

semantics of specifc BDI languages.

AIL supports a verifcation approach that encodes the relevant concepts from the AIL into the

model checker just once and then allows multiple languages to beneft from the encoding by

utilizing the AIL classes for belief, goal, etc., in their implementation. AIL can potentially prove

that it has preserved the semantics of the AIL data structures suffciently to generate sound results

from the model checking processes defned as building blocks.

5

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.TN
.2222

2.3. Multi-Agent System (MAS)

The MAS aspect of GWENDOLEN agent programming provides synchronization and

communication between agents using messages. MAS multi-agent planning was not used in this

report.

2.4. Model Checking Agent Programming Languages (MCAPL)

MCAPL interface allows inspection of a GWENDOLEN agent to deduce properties of that agent

for use in model checking. MCAPL is a customized Agent JPF extension customized for model

verifcation of AIL agents.

2.5. Agent JPF

Agent Java Pathfnder (AJPF) is an extension of the Java Pathfnder (JPF) model checker for model

checking BDI style agent programs.

2.6. Java Pathfnder (JPF)

Initially developed in the early 2000s by NASA, JPF is a verifcation and testing environment for

Java which integrates model checking, program analysis and testing [16]. JPF is implemented in

Java and its architecture is modular to support rapid prototyping of new features. JPF implements

a custom-made Java Virtual Machine (JVM) that interprets bytecode combined with a search

interface to allow the complete behavior of a Java program to be analyzed (including all

interleaving’s of concurrent programs). JPF supports many model checking features, and by

default, it checks for all runtime errors (e.g., uncaught exceptions), assertion violations (supports

Java’s assert), and deadlocks.

2.7. Model Checking

The model checking used by GWENDOLEN is based on a formal technique to verify software

correctness of a system by exhaustively exploring the state space from a model (an abstraction of

the implementation that can be represented, for example, as fnite-state machine). In general,

model checking is a technique for verifying state-based concurrent systems with several

advantages over traditional approaches that are based on simulation, testing, and deductive

reasoning [7]. For embedded real-time systems, model checking uses numerous automated

analysis techniques to detect elusive errors in the design of safety-critical systems that often elude

conventional simulation and testing techniques.

6

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.TN
.2222

Unfortunately, model-checking faces a combinatorial explosion of the possible states during

analysis that is more commonly known as the state explosion problem. For instance, JPF is an

explicit-state model checker software tool, since it enumerates all visited states, and suffers from

the state-explosion problem. As such, JPF is ideally suited to analyzing programs less than 10 K

lines of code but has been successfully applied to fnding errors in concurrent programs up to 100

K lines of code.

2.8. CRCL

To tackle the problem of cooperative robot-independent agility, a communication standard between

a host computer and any robot for control and status feedback is necessary. Currently, a myriad of

Cartesian and joint level programming schemes are found in commercial off–the–shelf industrial

robots that hide the back-end communication scheme from the host computer to the robot. Robot

programming that uses a standard-based back-end host-to-robot communication protocol would

fundamentally increase the robot agility assuming suffciently similar capabilities so that the brand

of robot would be interchangeable.

The primary standard in process control software programming is International Electrotechnical

Commission (IEC) 61131 an international programming standard that is applied to automated

industrial robots [17, 18] originally IEC 1131 before the IEC changed its numbering system. In

fact, many industrial robots are under the supervisory control of a Programming Logic Controller

(PLC) programmed in IEC 61131 invoking proprietary robot programs. To simplify the diffcult

programming aspect of IEC 61131, PLCOpen has been developed as a graphical XML

programming standard that capitalizes on IEC 61131 standard as a back-end device independent

representation [19]. IEC-61131 is a programming standard but does not address the host-to-robot

communication standard, so that it requires a standard wire interface (such as Foundation

Fieldbus [20]) or a proprietary wire interface. The use of a standard robot wire communication

standard allows agile collaboration between robot intelligent agents.

A major impediment to PLCOpen and IEC 61131 adoption for all robot programming is the lack

of cutting edge planning, motion control, and sensing technology required of advanced robot

functionality. For example, robot applications based on ROS offer support for composable system

architecture, collision avoidance motion, AI machine learning object grasping, as well as

sophisticated sensor fusion, such as navigation based on dynamic sensor mapping. Both industrial

and academic robotic application development require advanced software technology that plays a

major role in achieving agile robots.

A pure host computer to robot communication standard is the Robot Operating System Industrial

7

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.TN
.2222

(ROS-I) “Simple Message” protocol [21]. Simple Message is a low-level Ethernet socket

interface between ROS host computer and a robot controller that communicates joint messages. A

major shortcoming to Simple Message is the omission of Input/Output (IO) status or control (e.g.,

Emergency Stop). In addition, Simple Message assumes all motion commands are given as joint

related command values, so that a Cartesian motion path planned by a real-time robot controller is

not possible.

The Canonical Robot Control Language (CRCL) is a higher-level XML abstraction of robot and

gripper control and status communication standard. CRCL was developed in the U.S. at the

National Institute of Standards and Technology (NIST) [22]. CRCL contains separate XML

information models related to robot motion control and status reporting as well as underlying data

types for poses, speeds, and units. CRCL has both joint and Cartesian motion control commands.

Although easily extensible, as will be discussed later in this report, CRCL does not currently

provide XML abstractions for IO control, sensors, or peripheral robot devices besides grippers.

Because CRCL supports Cartesian motion and gripper control, it is well-suited to handle pick and

place robot planning operations required for the kitting planning challenges discussed later in the

report.

2.8.1. CRCL Client

It is the responsibility of the CRCL Client module to translate between the logical world model

required for GWENDOLEN reasoning and a CRCL physical description required of the lower level

real world (or in our case simulated real world). For example, GWENDOLEN uses the names for the

gears, while it is the responsibility of CRCL to map these gear names into physical locations for

commanding a robot. Thus, for each GWENDOLEN action, CRCL maps variables from a logical

description into the physical kitting object properties.

To enable planning at a logical reasoning level about the kitting world, the existing CRCL status

schema was extended to provide kitting model locations (i.e., gears, trays, kits, etc.) as well as

inferences about the kitting models (e.g., a specifc gear is located in a supply tray slot). The CRCL

status schema extension was intended for reporting on kitting models status in the environment.

However, such information could come from a sensor, such as a camera, as well. In fact, the

Gazebo simulation model reporting can be considered a “logical” camera in that it reports type

and location of an object in the environment. The CRCL status schema extension will be covered

further in Appendix 6.

8

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.TN
.2222

2.8.2. CRCL Server

CRCL Server is an interface to an underlying Robot Operating System (ROS) robot controller,

which must provide a real-time robot kinematic solver and handle motion trajectory planning. For

our research purposes, CRCL relied on the open-source frameworks – ROS and Gazebo – for

robot control and simulation. ROS is an open source software framework that provides libraries

and tools to help create robot systems. In order to offer robot programming abstraction, the server

converts CRCL messages and robot representations into ROS and Gazebo representations. The

parsing and serialization of CRCL messages in ROS relied on CodeSynthesis [23] and the Xerces

XML Document Object Model (DOM) parser [24]. CodeSynthesis “XSD” is an open-source,

cross-platform tool that generates C++ code to handle information modeled in World Wide Web

Consortium (W3C) XML Schema. CodeSynthesis uses the open source Apache Xerces XML

parser for the CRCL parsing.

2.9. Gazebo Simulation Model of the Kitting World

The NIST Agility Performance of Robotic Systems (APRS) laboratory contains two industrial

robots, a Fanuc LR-Mate 200iD and a Motoman SIA20F [25] that have been simulated in

Gazebo. Gazebo is an open-source 3D physics-based simulator that can be used to design a

virtual industrial robot world. Simulation is typically just a graphical visualization of the robot

sequence of operations. In the case of Gazebo, physics-based models of the robots, kits, and

environment provide a higher-fdelity approximation to the real-world. For example, the placing

of a “gear” into a slot holder in visual simulation could overlay two images at the bottom of the

slot (the gear and holder) without consequence. However, in the case of Gazebo physics-based

simulation, the gear would “bounce” out of the slot as it is physically impossible for two solid

objects to combine.

2.10. ANTLR

ANTLR (ANother Tool for Language Recognition) is a public-domain parser generator for

reading, processing, executing, or translating structured text. ANTLR combines the fexibility of

hand-coded parsing with the convenience of a parser generator [26]. For ANTLR processing, a

fle name with .g4 extension contains the GWENDOLEN grammar.

2.11. Gwendolen Grammar

GWENDOLEN is a BDI programming language described with a grammar. AIL is designed to

accept any representative BDI language that is parseable by ANTLR.

9

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.TN
.2222

2.12. Run time execution

For GWENDOLEN the system has been shown to be a layered approach to agent planning that is

based on a substrate of software model checking. GWENDOLEN is one of many potential BDI

languages that can be used by the AIL. The programmer is tasked with developing a combination

of a GWENDOLEN BDI program, and the Java action methods that supplement the BDI in planning

as well as connecting to the real world.

Upon execution, AIL accepts a GWENDOLEN program fle, compiles the GWENDOLEN into a

BDI Java representation based on the GWENDOLEN Backus–Naur form (BNF) syntax supplied

to ANTLR parser. From a grammar such as GWENDOLEN ANTLR generates a parser that can

build and walk parse trees which are used to generate the Java BDI data structures. Once the

BDI data structures are built, AIL then deterministically executes the BDI algorithm in solving the

GWENDOLEN planning problem.

3. Kitting Case Study

In manufacturing, kitting is a process in which individually separate but related items are grouped,

packaged, and supplied together as one unit (kit). Kitting is a well-studied manufacturing problem.

Kitting is a reasonably diffcult robot task to test agile task planning. Kitting requires grasping,

pick and place, and sorting/ordering of objects that can exhibit complexity with different grippers,

gripper changes, dynamic supply from a conveyor, etc. However, our goal is to understand and

examine agile tasking for basic kitting with one robot and one gripper manipulating simple gears,

trays, and kits in order to assess agility. In the case study, the kitting task is purposefully scoped to

be understandable while clarifying the various elements required. The intent is to demonstrate and

understand the GWENDOLEN agile task planner given a list of kitting agility challenges.

As background, the robot kitting operation is tasked with picking the appropriate gears from supply

trays, and then placing the gear into a kit. To keep the kitting scenario simple for discussion,

we will limit the robot agility requirements and assume the following. First, the robot already

has the correct part gripper and that all parts can use the same gripper. Second, we will assume

some combination of “small”, “medium”, and “large” part trays and kits will be available on the

worktable. The small supply kits contain four small gears, the medium supply kit has four medium

gears, and the large supply kit has two large gears. The kit of interest has storage for two medium

gears and two large gears.

Figure 2 illustrates the gears, trays, and kits used for kitting operation that exhibit a simple

geometry, with a peg handle on top to make it possible to pick the part with relative ease. We

10

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.TN
.2222

assume supply trays are flled with the same gear as shown in Figure 2 where one medium supply

tray contains up to four medium orange gears, and 1 large supply tray contains up to two green

large gears. The goal is to fll the two kits to capacity using the robot to move a matching gear

from the supply tray into an open slot in the kit. Despite the simplicity, the kitting task reduces to

a pick and place problem with a myriad of problems and challenges.

For our purposes, GWENDOLEN IA planning for the kitting problem is concerned with loading a

kit with two medium gears and one large gear. Of note, low level control and sensing

functionality, such as grippers, vision cameras, or other sensors is not relevant at the intelligent

agent level of planning for which GWENDOLEN is being evaluated. Clearly the problem can

exhibit a higher degree of complexity, with multiple robots, multiple end-effector types, tasking to

include unloading trays and kits, to name a few potential task variants. Later, specifc

GWENDOLEN code to handle agility tests such as dropped gears will be discussed.

3.1. Kitting World and Beliefs

For the GWENDOLEN assessment, the kitting world is defned as: two kit trays, one medium supply

tray, one large supply tray, and all the slots each tray contains. Initially, all the supply trays slots

contains gears, while all the kitting trays slots are empty. Figure 2 shows the layout of the initial

kitting world.

Fig. 2. Initial Kitting World

For GWENDOLEN we use the kitting trays, slots, and gear setup as the initial “belief”. These are

the beliefs our system starts with when planning. Gear supply trays (or vessels) are defned as the

name, type of gear contained, and then a "[]" delimited list of gear names. Kit trays are defned with

a kit name, and then slots, where a slot is defned by name (tray name, a period, and slot name), gear

type (small, medium or large) and then the state (either empty or the gear name). The use of the kit

name concatenated by a period and then the slot name, was a simple mechanism to realize a fully

qualifed name that can be recognized with just the name string. For grasping logistics, the belief

11

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.TN
.2222

that the gripper is open is asserted also. The following shows the GWENDOLEN initial beliefs:

Listing 1. GWENDOLEN Initial Beliefs World Model
:Initial Beliefs:
gripper("open")

gear_tray(medium_gear_vessel16, "medium", [
"part_medium_gear17",
"part_medium_gear18",
"part_medium_gear19",
"part_medium_gear20"])

gear_tray(large_gear_vessel21, "large", ["part_large_gear22","part_large_gear23"])

kit_tray(kit_m2l1_vessel14,[
slot("kit_m2l1_vessel14.slot1","medium","empty"),
slot("kit_m2l1_vessel14.slot2","medium","empty"),
slot("kit_m2l1_vessel14.slot3","large","empty")])

kit_tray(kit_m2l1_vessel15,[
slot("kit_m2l1_vessel15.slot1","medium","empty"),
slot("kit_m2l1_vessel15.slot2","medium","empty"),
slot("kit_m2l1_vessel15.slot3","large","empty")])

3.2. Basic Kitting Algorithm

The basic kitting algorithm, which assumes no error handling, follows. To fulfll a kitting task, frst

the robot must receive a kitting order (just one at a time for now) and the planner must reason about

the kitting problem. The basic planning sequence is shown in Table 1. First, a plan is produced

containing kitting actions that are then translated into a CRCL step to be transmitted to the Gazebo

simulator. Changes to the world model are reported through CRCL within the status report. These

changes include physical properties and or logically derived properties from the physical properties

(such as changes to occupancy of tray slots). Any failures are reported by CRCL.

In Table 1, the acquire_part plan is run where the goal is to fnd an open slot in a kit tray and then

a matching free gear of the same size in a supply tray. For this planning step, we assume CRCL

provides logical status information used in determining kitting open slots, supply tray gears, and

gear types. Next a take_part moves the robot arm to allow the gripper to grasp the gear and retract

from the supply tray. This planning step translates the logical gear name into a sequence of CRCL

commands to approach, move to, close gripper, and retract from the gear physical pose location.

Finally, the place_part moves the robot to place the gear in the open kitting slot. This planning

step translates the kitting slot name into a sequence of CRCL commands to approach, move to,

open gripper, and retract from the kitting open slot physical pose location.

The CRCL collection of commands execution is not monolithic to be sent all at once as a group, but

instead are sent as a “drip feed” to control the robot. In other words, the start of a CRCL “init” alerts

the CRCL Server that a CRCL command sequence is about to start. Then, after acknowledgement,

12

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.TN
.2222

Planner GWENDOLEN CRCL
acquire_part Beliefs: gripper is empty

Goals:
1) fnd_slot is a
GWENDOLEN Java action to
fnd empty kitting slot,
2) fnd_gear is a
GWENDOLEN Java action to
fnd matching supply gear
from supply tray

CRCL status reports logical
object properties and frst
order derived properties (slots
and gears in trays) every
cycle. Used here to determine
open kitting slot and
matching gear and location.

take_part take_part is a GWENDOLEN

Java action that does the
following:
approach gear
grasp gear
retract

init (speeds, units)
moveto pose (approach)
moveto pose (grasping point)
setgripper 1 (close)
moveto pose (retract)
end

place_part place_part is a GWENDOLEN

Java action that does the
following:
approach open kit slot
release gear
retract

init(speeds, units)
moveto pose (approach)
moveto pose (slot position)
setgripper 0 (open)
moveto pose (retract)
end

Table 1. Kitting Planning Steps

this is followed by a transmission of each command in order that waits for either a positive status

or error status acknowledgement. For a positive acknowledgement, the CRCL Client proceeds to

the next CRCL command until an “end” command is reached. Should the CRCL Server respond

with a negative or error status, then the CRCL Client will have to interpret and then translate the

error result into the GWENDOLEN planning domain.

4. Gwendolen Programming

GWENDOLEN programming is the focus of this section. Since GWENDOLEN has a unique

notation, illustrating basic concepts will help in understanding its programming approach. We

will use robotic kitting again for examples of code to understand GWENDOLEN intelligent agent

programming. Readers are referred to [6, 27] for an in-depth presentation on the syntax, structure,

and features of GWENDOLEN. Hereafter, we will cover the basics of GWENDOLEN language.

GWENDOLEN uses intentions to store the mechanism for achieving goals that generally include

actions, belief updates, and the commitment to goals. GWENDOLEN then defnes a plan with the

syntax:

13

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.TN
.2222

[+!goal |± belie f] : {guard}← body1,body2, . . . ,bodyn; (1)

A plan may match the top event of an intention, either a goal or the addition/removal of a belief.

The guard condition is checked against the agent’s state (beliefs) for a matching true belief. For

example, Bgrasped(Gear) is a guard which says proceed if the belief (denoted by B) grasped(Gear)

is true. Upon a true conditional guard, the plan body steps are executed. A body contains a series of

plan goals shown as body1,body2, . . . ,bodyn in (1). The body statements can be other goal plans,

or Java actions for execution, or belief fulfllment.

4.1. Gwendolen Notation

Briefy, GWENDOLEN uses the following notation to differentiate various BDI concepts, where:

Notation Description
+
-
+!
{ }
∼
(_)
← fnd_gear(Slots)

*gear(Gear)

+!move(Gear)

+!close_gripper

denotes the addition of a belief,
denotes the removal of a belief,
denotes the addition of a goal,
encloses the guard (context/precondition) of the plan,
denotes negation in this case of a belief (represented by B),
denotes a universal variable (which can match with any value).
← is the start of the body of the plan, fnd_gear(Slots) is an action and
Slots is a variable
the * means it waits until it has the belief gear(Gear) to proceed with
the plan (in this instance, this belief is added through the execution of
the previous action, fnd_gear(Slots)
adds the goal move(Gear); this will trigger another plan that must be
executed before returning to this plan
similar to +!move above, but this plan does not have an argument

Table 2. GWENDOLEN Notation

4.2. Gwendolen Example

As an example, the GWENDOLEN code for “kitting” is given in Listing 2. As shown, kitting is a

goal plan (denoted by +! that is triggered by a matching goal intention with appropriate parameters

Id, Size, where Id is a kitting open slot, while Size is the open slot size (small, medium, or large).

The goal plan conditional guard has two beliefs { B grasped(_), B gear_tray(IdGearTray, Size,

Slots) } such that a condition only triggers when the belief that a gripper is not grasping any

item and a belief that a gear supply tray belief exists with tray name, size, and all slots in the

tray are true. Consequently if the guard is true, the goal plan body performs a series of actions

14

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.TN
.2222

including a fnd_gear(Slots), which is a Java action to fnd a free gear from the given the tray slots.

*gear(Gear) waits until the fnd_gear is done and returns a free gear. Note only trays with gears

in slots are provided to fnd_gear or it would not be a belief. +!take_part(Id,Gear) [perform] is

a GWENDOLEN goal action to grasp the Gear. So it is part of the GWENDOLEN goal planning.

+!place_part(Id,Gear) [perform] is another GWENDOLEN goal plan but this time its goal is to

place Gear into slot id. Note, the GWENDOLEN goal is in fact another plan containing subplans.

Regarding the [per f orm] designation on the goal invocation, GWENDOLEN recognises two types

of goal, “achieve” goals and “perform” goals [28]. An important distinction concerns the

replanning of GWENDOLEN failed goals. “Achieve” goals mean that if, after execution of the

plan, the goal is not achieved then it will be replanned, which is designated by a trailing

“[achieve]”. “Perform” goals always trigger planning but are not replanned if they fail to achieve

some state of the world. In our code we will rely stricly on [per f orm] as the sole GWENDOLEN

replanning mechanism designated by a trailing “[perform]”.

Listing 2. GWENDOLEN Kitting Plan
// Kitting is a goal with parameters Id, Size
// Id is the kitting open slot, while Size is the open slot size
// [perform] is a replanning designation
// There are two beliefs:
// ~B grasped(_) is a belief that says the gripper must not be grasping anything already
// B gear_tray(IdGearTray, Size, Slots) says a gear supply tray belief exists with tray

name, size and slots
+!kitting(Id, Size) [perform] : { ~B grasped(_), B gear_tray(IdGearTray, Size, Slots) }
<-

find_gear(Slots), &\Comment{// Java action to find a free gear given the slots}&
*gear(Gear), &\Comment{// waits until find_gear returns a free gear}&
+!take_part(Gear) [perform], &\Comment{// Goal action to grasp the Gear }&
+!place_part(Id,Gear) [perform]; &\Comment{// Goal to place Gear into slot id}&

5. Gwendolen Kitting Agility

Agility has been defned as the capability of surviving and prospering in a dynamic environment

of continuous and unpredictable change by reacting quickly and effectively [29, 30]. The IEEE

Robotics and Automation Standards Working Group on Robot Agility [31] provides a list of

desirable agility traits of robotic systems which is a complex combination of reconfgurability and

autonomy in contrast to the more pervasive pendant-taught robot programming. Aspects of robot

agility include hardware reconfgurability, software reconfgurability, communications, task

representation, sensing, perception, reasoning, planning, tasking, and execution [32]. Robot

agility exhibits many elements of intelligence through adapting to a challenging environment.

In order to assess agile planning, performance metrics are used to judge differing systems and

approaches to planning. Performance metrics for kitting have been previously studied in Downs et

15

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.TN
.2222

al. [33]. We will explore a few robot agility scenarios and how GWENDOLEN and its Java Agent

environment address the agility issues. In the application of GWENDOLEN planning to robotics,

the metrics of interest are agility and correctness. The agility handling of abnormal events is the

major thrust of GWENDOLEN evaluation, but key aspects of agility include the detection, handling,

and recovery of application agility challenges. For example, kitting agility includes handling of

hardware faults, dropped parts, missing parts, misoriented parts, or faulty parts. Table 3 outlines the

kitting performance metrics that include both correctness, effciency, and agility aspects. The table

provides a general performance metric category, specifc metric instances, and the GWENDOLEN

performance in the agile tasking category.

Table 3. Agile IA Kitting Performance Metrics

We will leverage the pre-existing agility challenges in order to explore GWENDOLEN for its

planning agility by developing and discussing kitting scenarios that handle several of the

challenges.

16

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.TN
.2222

5.1. Scenario One: Continuous Monitoring of Human Robot Proximity

In scenario one, we apply GWENDOLEN to handling of a continuous task for safely monitoring

the proximity of a human to the robot. This is important as most often robot accidents happen

when a human may temporarily be within the robot work envelope while power is available to

moveable elements of the robot for non-application, such as service, maintenance, and calibration

of the system [34]. So not surprisingly, one of the more important safety issues when dealing with

robots is restricting the closeness of a human to a robot. In these circumstances, where the human

does enter the robot workspace, the robot should immediately stop operation and power until the

human exits the robot workspace and is safe.

We will briefy sketch one method in which GWENDOLEN could handle such a “continuous”

event - monitoring a human safety violation when entering a robot workspace. Our method to

achieve this in GWENDOLEN is to create the humanProximityViolation belief in the Java code

and then having the GWENDOLEN detect_human_violation plan trigger and then wait until

human has exited the robot workspace by waiting until this critical safety condition has cleared by

monitoring its condition in the Java code.

The GWENDOLEN code snippet to effect this agent safety behavior is shown in listing 3.

GWENDOLEN code for this declares a belief guard monitoring for the creation of a

humanProximityViolation belief. When the belief humanProximityViolation is found to exist, the

body of the plan performs the Java code snippet “wait_on_belief”, which contains code to wait

until the human proximity violation is not longer valid, and then nullifes the

humanProximityViolation belief by removing it. The “remove_belief” Java action will actually

remove the humanProximityViolation belief from the GWENDOLEN environment in Java.

Listing 3. GWENDOLEN Human Proximity Belief
+humanProximityViolation : { B humanProximityViolation}
<-

wait_on_belief("humanProximityViolation"),
remove_belief("humanProximityViolation");

In the Java agent environment, a background thread is monitoring human proximity to the robot,

and if the distance indicates a proximity violation, we create an environment perception

corresponding to a humanProximityViolation belief. In Java we do this, by frst declaring

environment predicate humanProximityViolationPredicate which will be used to augment the

agent environment when a human proximity violation occurs. For simplicity, we randomly create

and then add the humanProximityViolationPredicate environment Perception to the agent belief

system. At this point, the GWENDOLEN code will trigger the guard associated with this belief

described previously. The Java code snippet to effect this agent behavior is shown in listing 4.

17

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.TN
.2222

Listing 4. GWENDOLEN Java Code to set environment Perception
// Declare environment predicate
public Predicate humanProximityViolationPredicate;
...
// Gwendolen Java actions connection to environment
public Unifier executeAction(String agName, Action act) throws AILexception
...
// code to detect human proximity violation omitted

// create and then add environment Perception
humanProximityViolationPredicate = new Predicate("humanProximityViolation");
addPercept(humanProximityViolationPredicate);

Within the executeAction Java code we also create a remove_belie f action to remove the

perception from the environment when the human proximity violation has been cleared. Once

cleared, we can then remove the humanProximityViolation environment perception. Note, we can

only remove the humanProximityViolation perception that was created in Java (as part of the

environment) in the Java agent environment. The Java code snippet to effect this agent behavior is

shown in listing 5.

Listing 5. GWENDOLEN Java to Remove an Existing Precept
if (actionname.equals("remove_belief")) {
StringTerm args = (StringTerm) act.getTerm(0);
if (args.toString().equalsIgnoreCase("humanProximityViolation"))
{
// Code to remove human proximity, as its now safe
removePercept(humanProximityViolationPredicate);

}
}

Timing issues remain a concern as there is no determinism associated with creating and responding

to the humanProximityViolation belief. Of note, it is not clear if this is the best mechanism for

dealing with real-time, continuously monitored, and spontaneous event in GWENDOLEN. In theory,

having this safety belief be continuously monitored before each GWENDOLEN cycle would be

preferable, but does not seem to be part of GWENDOLEN programming paradigm.

5.2. Scenario Two: Dropped Gear Challenge

GWENDOLEN is a good ft for the discrete event agile kitting case mainly due to the reactive

nature of agent-oriented programming. If an abnormal event happens during the execution but has

been identifed (failures, decrease in performance, etc.), then this abnormal event will trigger the

appropriate plan to react to it. It is important for the decision-making software to be able to handle

these abnormal situations in order to remain trustworthy as part of being agile. The following

scenario will explain how to use GWENDOLEN to handle a discrete abnormal event, which in this

case is a “dropped kitting gear”.

18

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.TN
.2222

As explained earlier, the basic kitting algorithm identifes an open kit slot, fnds a matching gear

from the supply tray that matches the empty slot size, grasps the gear; and then places the gear into

the open, matching gear size, kitting slot. Readily adapting to dropped gears could be considered a

litmus test for a kitting planner. We will explore handling a few combinations of discrete problems

associated with dropping the gear when “taking” the gear. In the best case, we would like to recover

gracefully from the dropped gear, and resume the kitting procedure if possible.

Assuming the gear has been dropped, we handle a few potential scenarios. For now, we will

ignore how the robot dropped the gear, be it either the momentary loss of pneumatic pressure to

the gripper or mishandling of the gear when grasping or losing hold of gear while moving to a goal

destination due to insuffcient friction while grasping the gear. Further we will assume the dropped

gear lands in a correct, graspable orientation. Problems such as gripper air pressure or robot servo

errors would mean aborting all kitting and calling maintenance. Handing off kitting operation to a

nearby robot is out of scope in this scenario.

Given this scenario, the agility problem can range from:

• attempting to pick up the gear again which assumes the gear is within reach,

• the gear is out of reach, and thus requires aborting this kitting operation and moving on to

the next kitting operation, possibly alerting personnel

• completely shutting off the robot operation due to some system fault.

For a potential best-case recovery operation, the dropped gear could remain on the table and be

within the reach of the robot so that it can try picking up the gear again.

We will explore the GWENDOLEN programming technique to wait on the completion of the

“take_part” operation and error handling. GWENDOLEN has a wait on belief operation

∗abelie f (code) that signals that a plan waits until an abelie f has been added to the environment,

and then proceeds to call a plan based on the code which can be true for successful operation or

some text describing the failure reason. In listing 6 we see the +!take_part(Location) plan

contains a line of code ∗action_result(Result), that waits for the Java take_part operation to

create an action_result belief with a list item Result.

Listing 6. GWENDOLEN Code to take a part from a tray
+!take_part(Location) [perform] : { ~B grasped(_), B gripper("open")}
<-

take_part(Location),
*action_result(Result),
+!check_action_result_take_part(Location, Result) [perform];

As mentioned, the ∗action_result(Result) waits until a status has been returned from take_part.

19

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.TN
.2222

Using this Result we can then branch to the check_action_result_take_part plan appropriate for

the success of the take_part operation. The Result of the action is then used to call one of several

+!check_action_result_take_part(Location,Result).

When the Result is “true”, the grasping of the gear consisting of the sequence of lower level

operations approach, pick, and retract has been successfully completed. In this case the

GWENDOLEN take_part plan is shown in listing 7. The take_part plan essentially updates the

belief system regarding the gripper and the grasped object.

Listing 7. GWENDOLEN Update to Belief upon Successful Take Part
+!check_action_result_take_part(Location, "true") [perform] : { True }
<-

-gripper("open"),
+gripper("close"),
+grasped(Gear);

Listing 8 shows three agile GWENDOLEN error handling goal plans all named

+!check_action_result_take_part. For +!check_action_result_take_part (Location,

“droppedGear′′) we check to see if the dropped gear is reachable.

This involves calling the +!check_action_result_take_part(Location,“reachableGear′′)

GWENDOLEN goal plan which returns either an “abort” or a “reachableGear” to resume the

kitting operation. Of note, the “reachableGear” +!check_action_result_take_part plan attempts

the take_part goal plan again, which can have unintended consequences as it is not a numerically

bounded test and could result in an infnite planning loop: grasp, drop, grasp, drop, etc. This is

known as the “butter-fngers” robot infnite drop loop 3. Although seemingly benign and

improbable, such a set of circumstances is indeed possible, and a completely verifable and

correct IA should anticipate and intelligently handle such egregious circumstances.

Listing 8. GWENDOLEN Plans for recovering from errors
+!check_action_result_take_part(Location, "droppedGear") [perform] : { True}
<-

reachable_gear(Location),
*action_result(Result),
-action_result(Result),
+!check_action_result_take_part(Location, Result) [perform];

+!check_action_result_take_part(Location, "reachableGear") [perform] : { True}
<-

take_part(Location),
*action_result(Result),
-action_result(Result),
+!check_action_result_take_part(Location, Result) [perform];

+!check_action_result_take_part(Location, "abort") [perform] : { True }
<-

trace("check_action_result_take_part abort taking Gear");

3Yes I made it up!

20

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.TN
.2222

Listing 9 shows the trace of operations using the GWENDOLEN kitting recovery plans as outlined

above. We use a simulated failure, in that the take_part Java code has randomly dropped the gear

to simulate some abnormal event, and when triggered, returns the “droppedGear” result.

Subsequently the goal plan check_action_result_take_part for “droppedGear” determines

whether the gear is within reach. If the gear is reachable, the goal plan

check_action_result_take_part for “reachableGear” is invoked which attempts the take_part

goal plan again. Since the Java code only simulates one “dropped gear”, take_part goal plan

succeeds and then the goal to place_part is performed.

Listing 9. GWENDOLEN Plans for recovering from errors
find_slot
find_gear
take_part

take_part(part_large_gear22)
check_action_result_take_part droppedGear

reachable_gear(part_large_gear22)
check_action_result_take_part reachableGear

take_part(part_large_gear22)
check_action_result_take_part T

place_part
place_part(kit_m2l1_vessel14.slot3)
check_action_result_place_part T

5.3. ARIAC Scenario Discussion

The ARIAC competition has a list of agility challenges [35] and performance metrics that

contribute to a fnal competition score, such as system cost, and some other Key Performance

Indicators (e.g., total cycle time, throughput) [36]. Previous winners of ARIAC competitions have

documented both agility challenges and the technical approach they adopted in winning the

ARIAC competition as well as handling the kitting challenges [37–39].

So far, two types of kitting challenges have been programmed and examined in GWENDOLEN:

discrete and continuous. The discrete agile event handling can be generalized to handle many of

the ARIAC competition challenges, such as faulty gripper or robot servo fault, sensor fault, and

random fault constraints. Although GWENDOLEN has been shown to handle a continuous agile

event, it is a more circumspect solution.

Some of the ARIAC challenges do not appear to be solvable for a novice GWENDOLEN planning

programmer. The ability to exhibit adaptive GWENDOLEN planning for handling priority-based

interruptions, such as a new and higher priority kitting order, is not readily apparent. Another

ARIAC challenge is exhibiting fexibility in robot sharing work in the case where one robot has

suffered a catastrophic fault (or “blackout”), and cannot continue kitting, and needs to delegate

to another IA robot. GWENDOLEN planning does support MAS but was not tested. The lack of

21

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.TN
.2222

sharing of BDI or the world model between robots could make hand-off of partially completed

task daunting. One of the biggest headaches found in the robot industry is resuming a line of

robots after a fault brings one of the robots down. Clearly, discarding unfnished auto bodies is not

feasible.

In order to maximize the ARIAC performance metric of kitting cycle time or in other words

complete the kitting as quickly as possible, optimizing kit flling by minimizing the robot distance

traveled is an obvious goal in planning. For optimization, GWENDOLEN planning could rely on

embedded Java actions optimization, which could implement a least distance traveled between

free kitting slot and supply tray gear optimization criteria. Such lower level optimization may not

be globally optimal nor intrinsically obvious. Since the scope of the kitting was limited to basic

GWENDOLEN kitting planning evaluation, acknowledging potential issues was deemed a

suffcient level of evaluation.

In addition to the ARIAC challenges, GWENDOLEN has lower-level planning issues that could

present problems, including:

• managing system correctness, such as do the beliefs match the environment. A simple

example of a fawed belief system, is the logical paradox when both B&¬B are both true

beliefs, such as the case when the belief grasping a gear and gripper open both exist (and

implicitly true in GWENDOLEN).

• detecting endless repetitive loops in overcoming dropped gear using a timing or loop count

mechanism.

• determining if kitting suffciency requirements are satisfed such as bad gear orientation such

as upside down, insuffcient free gears, or defective gears.

• faulty sensor error detection such as reporting incorrect gear locations and orientations and

understanding for instance, handling the CRCL error indicating a failed grasping operation.

• part quality so that defective parts are not used.

• robot suffciency requirements, enough payload, reach, dexterity to pick, possibly reorient,

and place a gear. If unable to reorient a gear, an extra reorienting device may be necessary.

To handle many continuous challenges, a periodic Java action can be run every cycle to reassess

challenges, for example, every cycle determining if the kit requirements are satisfed by the free

gear supply. If the continuous planning requirements are not met, an environment perception belief

can be issued that triggers a GWENDOLEN error handling plan.

22

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.TN
.2222

6. Discussion

The ideal smart factory is equipped with machines that are intelligent and adaptable to change and

disruption. The occurrence of an abnormal event should be routinely handled by a smart machine

with no human intervention. In this report, we address the issue of intelligent behavior in the

face of abnormal and challenging events. Due to several, yet seemingly inadequate, solutions to

IA planning, the GWENDOLEN programming language applied to a manufacturing kitting case

study was studied. GWENDOLEN is designed to handle and recover from abnormal but foreseen

events. This report studies the GWENDOLEN programming and its response to various kitting

agility problems against a proven set of kitting performance metrics from the ARIAC competition.

A GWENDOLEN program offers the planning option of composable plans to handle potential errors,

which was explored as a solution to the requirement of correctness, effcacy, as well as safety.

For the robotic IA, ignoring an error state can be unthinkable. Minimally, according to Asimov’s

Three Laws of Robotics, the robotic IA should when recognizing there is a problem, cause no

harm, gracefully operate until the problem is fxed, and attempt to fail-safely as a last resort. In all,

there are degrees of agility in handling faults, such as, acknowledgement and full remediation and

recovery from the problem, replanning an alternative strategy, or understanding the problem and

using a substitute backup plan. Although the case study concentrated on the fundamental elements

of kitting, planning for challenges either discrete or continuous were explored. Clearly, challenging

tests are necessary to evaluate run-time agility performance. In order to undertake these tests,

simulation was used to inject challenges at random times to evaluate system responsiveness. This

was done by replacing the actual communication to a robot with a “loopback” robot communication

option and pseudo-randomly introducing errors.

GWENDOLEN is suited for adapting to and recovering from kitting failures. Since GWENDOLEN

plans are composable, illustrative conditions checking for errors were developed, often with

alternative plans to recover from foreseeable errors. For GWENDOLEN evaluation, injecting

actuator or encoder faults into the simulation were not evaluated as these should be handled at a

lower level of control and reported. Likewise, effciency of the GWENDOLEN planner that

measured task and planning time, as well as optimizing robot speeds and distance traveled were

not a priority but could be handled by its native Java programming interface. Safety violations

such as humans in danger or capability violations were studied with GWENDOLEN as this issue is

paramount to industrial root planning.

We have found GWENDOLEN to exhibit many positive qualities. Most intriguing include the ability

to verify internal correctness operation via JPF checks. Some of the GWENDOLEN verifcation

techniques may not be appropriate, for many of the considered recovery techniques could lead

23

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.TN
.2222

to infnite loops, timing issues, or other failings. Trustworthiness of any IA computer system

is an overwhelming consideration regarding system confdence and acceptance. Without these

attributes, adoption of the technology is unclear.

Future work would leverage the agent-based nature of GWENDOLEN to explore more of the

ARIAC established challenges to verify the robustness of the GWENDOLEN planning. Potential

work includes work based on ARIAC agility challenges including the integration of multi-agent

shared error handling in an adaptive manner. Other illustrative agile challenges desirable for

GWENDOLEN IA planning include recovery from robot payload violations, robot reach

improbabilities, and the intrinsic understanding robot capabilities exemplifed by these

challenges.

Demonstration code for this report can be found in the github autonomy-and-verifcation user under

the gwendolen-crcl-kitting repository located at github.com/autonomy-and-verifcation/gwendole

n-crcl-kitting.

24

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.TN
.2222

github.com/autonomy-and-verification/gwendolen-crcl-kitting
github.com/autonomy-and-verification/gwendolen-crcl-kitting

References

[1] Gerkey BP, Matarić MJ (2004) A formal analysis and taxonomy of task allocation in multi-

robot systems. The International Journal of Robotics Research 23(9):939–954.

[2] Weiss G (2013) Multiagent systems (MIT Press), 2nd Ed.

[3] McDermott D (2003) The formal semantics of processes in PDDL. Proceedings of ICAPS

Workshop on PDDL (Citeseer), pp 101–155.

[4] Albus J, Huang HM, Messina E, Murphy K, Juberts M, Lacaze A, Balakirsky S, Shneier

M, Hong T, Scott H, Proctor F, Shackleford W, Michaloski J, Wavering A, Kramer T,

Dagalakis N, Rippey W, Stouffer K, Legowik S (2002) 4d/rcs version 2.0: A reference model

architecture for unmanned vehicle systems (National Institute of Standards and Technology,

Gaithersburg, MD), NISTIR 6910. https://doi.org/https://doi.org/10.6028/NIST.IR.6910

[5] Brooks R (1986) A robust layered control system for a mobile robot. IEEE Journal on

Robotics and Automation 2(1):14–23.

[6] Dennis LA, Fisher M, Webster MP, Bordini RH (2012) Model checking agent programming

languages. Automated Software Engineering 19(1):5–63.

[7] Clarke EM, Grumberg O, Kroening D, Peled D, Veith H (2018) Model checking (MIT press).

[8] Farrell M, Luckcuck M, Fisher M (2018) Robotics and integrated formal methods: Necessity

meets opportunity. Integrated Formal Methods (Springer), LNCS, Vol. 11023, pp 161–171.

[9] Caputo AC, Pelagagge PM, Salini P (2018) Economic comparison of manual and automation-

assisted kitting systems. IFAC-PapersOnLine 51(11):1482–1487. https://doi.org/10.1016/j.if

acol.2018.08.293

[10] Johansson MI (1991) Kitting systems for small size parts in manual assembly systems.

Production Research - Approaching the 21st Century, eds Pridham M, O’Brien C (London:

Taylor Francis), pp 225–230.

[11] Bordini RH, Hübner JF, Wooldridge M (2007) Programming multi-agent systems in

AgentSpeak using Jason. Vol. 8 (John Wiley & Sons).

[12] Rao AS (1996) AgentSpeak (L): BDI agents speak out in a logical computable language.

European Workshop on Modelling Autonomous Agents in a Multi-agent World (Springer), pp

42–55.

[13] Bahaj M, Soklabi A (2013) JAPL: The JADE agent programming language. Journal of

Emerging Technologies in Web Intelligence 5(3):272–278.

[14] Winikoff M (2007) Implementing commitment-based interactions. Proceedings of the 6th

International Joint Conference on Autonomous Agents and Multiagent Systems, pp 1–8.

[15] de Boer FS, Hindriks KV, van der Hoek W, Meyer JJC (2007) A verifcation framework for

agent programming with declarative goals. Journal of Applied Logic 5(2):277–302.

25

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.TN
.2222

https://doi.org/https://doi.org/10.6028/NIST.IR.6910
https://doi.org/10.1016/j.ifacol.2018.08.293
https://doi.org/10.1016/j.ifacol.2018.08.293

[16] NASA (2012) A Model Checker for Java Programs, ti.arc.nasa.gov/tech/rse/vandv/jpf.

Accessed: 1-Nov-2021.

[17] Bristol Babcock IEC-1131 - the frst universal process control language, www.automation.c

om/en-us/articles/2016-1/iec-1131-the-frst-universal-process-control-langu. Accessed:

2022-2-2.

[18] IEC Programmable controllers – Part 1 General information, webstore.iec.ch/preview/info_i

ec61131-1%7Bed2.0%7Den.pdf. Accessed: 2022-2-2.

[19] van der Wal E (2009) PLCopen. IEEE Industrial Electronics Magazine 3(4).

[20] FieldComm Group Foundation feldbus technical specifcations, www.feldcommgroup.org/

foundation-fieldbus-technical-specifications#230548828-3323929298. Accessed: 2022-2-2.

[21] ROSorg simple_message, wiki.ros.org/simple_message. Accessed: 2022-2-2.

[22] Proctor F, Balakirsky S, Kootbally Z, Kramer T, Schlenoff C, Shackleford W (2016) The

canonical robot command language (CRCL). Industrial Robot: An International Journal

43:495–502. https://doi.org/10.1108/IR-01-2016-0037

[23] CodeSynthesis XSD XML data binding for C++, www.codesynthesis.com/products/xsd.

Accessed: 2018-12-11.

[24] The Apache Software Foundation Xerces C++ parser, xerces.apache.org/xerces-c. Accessed:

2018-12-11.

[25] Piliptchak P, Aksu M, Proctor FM, Michaloski JL (2019) Physics-based simulation of agile

robotic systems. ASME International Mechanical Engineering Congress and Exposition

(American Society of Mechanical Engineers), Vol. 59384.

[26] Parr TJ, Quong RW (1995) ANTLR: A predicated-LL (K) parser generator. Software:

Practice and Experience 25(7):789–810.

[27] Dennis LA, Farwer B (2008) Gwendolen: A bdi language for verifable agents. Proceedings

of the AISB 2008 Symposium on Logic and the Simulation of Interaction and Reasoning,

Society for the Study of Artifcial Intelligence and Simulation of Behaviour (Citeseer), pp

16–23.

[28] Dennis L Gwendolen semantics: 2017, personalpages.manchester.ac.uk/staff/louise.dennis/

pubs/ulcs-17-001.pdf. Accessed: 2021-12-11.

[29] Gunasekaran A (1999) Agile manufacturing A framework for research and development.

International Journal of Production Economics 62(1-2):87–105.

[30] Cho H, Jung M, Kim M (1996) Enabling technologies of agile manufacturing and its related

activities in Korea. Computers & Industrial Engineering 30(3):323–334.

[31] IEEE P2940 – IEEE Standard for Measuring Robot Agility, https://standards.ieee.org/proje

ct/2940.html. Accessed: 2021-4-6.

[32] Downs A, Kootbally Z, Harrison W, Pilliptchak P, Antonishek B, Aksu M, Schlenoff C, Gupta

26

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.TN
.2222

ti.arc.nasa.gov/tech/rse/vandv/jpf
www.automation.com/en-us/articles/2016-1/iec-1131-the-first-universal-process-control-langu
www.automation.com/en-us/articles/2016-1/iec-1131-the-first-universal-process-control-langu
webstore.iec.ch/preview/info_iec61131-1%7Bed2.0%7Den.pdf
webstore.iec.ch/preview/info_iec61131-1%7Bed2.0%7Den.pdf
www.fieldcommgroup.org/foundation-fieldbus-technical-specifications#230548828-3323929298
www.fieldcommgroup.org/foundation-fieldbus-technical-specifications#230548828-3323929298
wiki.ros.org/simple_message
https://doi.org/10.1108/IR-01-2016-0037
www.codesynthesis.com/products/xsd
xerces.apache.org/xerces-c
personalpages.manchester.ac.uk/staff/louise.dennis/pubs/ulcs-17-001.pdf
personalpages.manchester.ac.uk/staff/louise.dennis/pubs/ulcs-17-001.pdf
https://standards.ieee.org/project/2940.html
https://standards.ieee.org/project/2940.html

SK (2021) Assessing industrial robot agility through international competitions. Robotics and

Computer-Integrated Manufacturing 70:102–113. https://doi.org/10.1016/j.rcim.2020.1021

13

[33] Downs A, Harrison W, Schlenoff C (2016) Test methods for robot agility in manufacturing.

Industrial Robot: An International Journal 43(5).

[34] OSHA (1987) Guidelines for robotics safety (U.S. Department of Labor), STD 01-12-002.

[35] National Institute of Standards and Technology ARIAC agility challenges, github.com/usn

istgov/ARIAC/blob/ariac2021/wiki/documentation/agility_challenges.md. Accessed:

2021-12-11.

[36] National Institute of Standards and Technology ARIAC scoring, github.com/usnistgov/ARI

AC/blob/ariac2021/wiki/documentation/scoring.md. Accessed: 2021-12-11.

[37] Feng SW, Guo T, Bekris KE, Yu J (2021) Team rubot’s experiences and lessons from the

ARIAC. Robotics and Computer-Integrated Manufacturing 70:102–126.

[38] Vidács A, Szabó G (2021) Winning ARIAC 2020 by KISSing the BEAR: Keeping things

simple in Best Effort Agile Robotics. Robotics and Computer-Integrated Manufacturing

71:102166.

[39] Wan G, Dong X, Dong Q, He Y, Zeng P Design and implementation of agent-based robotic

system for agile manufacturing: A case study of ARIAC 2021. Robotics and Computer-

Integrated Manufacturing Submitted.

[40] Apache Netbeans, netbeans.apache.org. Accessed: 2022-4-22.

[41] Apache Maven, maven.apache.org. Accessed: 2022-4-22.

[42] National Institute of Standards and Technology CRCL to ROS github repository, github.com

/usnistgov/crcl2ros. Accessed: 2021-12-11.

27

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.TN
.2222

https://doi.org/10.1016/j.rcim.2020.102113
https://doi.org/10.1016/j.rcim.2020.102113
github.com/usnistgov/ARIAC/ blob/ariac2021/wiki/documentation/agility_challenges.md
github.com/usnistgov/ARIAC/ blob/ariac2021/wiki/documentation/agility_challenges.md
github.com/usnistgov/ARIAC/blob/ ariac2021/wiki/documentation/scoring.md
github.com/usnistgov/ARIAC/blob/ ariac2021/wiki/documentation/scoring.md
netbeans.apache.org
maven.apache.org
github.com/usnistgov/crcl2ros
github.com/usnistgov/crcl2ros

Appendix A: GWENDOLEN Kitting Program

A GWENDOLEN program consists of a fle with fve elements: name, initial beliefs, reasoning rules,

initial goals, and plans. The “:name:” of the IA robot is “lrmate”. The “initial beliefs” describe the

beliefs of the starting IA and has previously been discussed when describing the starting kitting

world model. Of note, at the higher level of GWENDOLEN IA planning, we have assumed all

the belief defnitions are logical, and no physical location of trays, slots or gears are defned or

required. The belief for a tray slot require either the slot contains a gear or is “empty”. The “initial

goal” is to perform the “new_tray” action. The “plans” for “place_part” are not as fully feshed out

as the “take_part” plans, which is used to illustrate GWENDOLEN agility programming features.

We do not have any “reasoning rules”.

Listing 10. GWENDOLEN Kitting Listing
// Name of the intelligent agent Fanuc LRMate
:name: lrmate

// For more information See :Initial Beliefs:
// tray and kit setup explained earlier
:Initial Beliefs:
gripper("open")

gear_tray(medium_gear_vessel16, "medium", [
"part_medium_gear17",
"part_medium_gear18",
"part_medium_gear19",
"part_medium_gear20"])

gear_tray(large_gear_vessel21, "large", ["part_large_gear22","part_large_gear23"])

kit_tray(kit_m2l1_vessel14,[
slot("kit_m2l1_vessel14.slot1","medium","empty"),
slot("kit_m2l1_vessel14.slot2","medium","empty"),
slot("kit_m2l1_vessel14.slot3","large","empty")])

kit_tray(kit_m2l1_vessel15,[
slot("kit_m2l1_vessel15.slot1","medium","empty"),
slot("kit_m2l1_vessel15.slot2","medium","empty"),
slot("kit_m2l1_vessel15.slot3","large","empty")])

:Initial Goals:
new_tray [perform]

:Plans:
+!new_tray [perform] : { B kit_tray(IdKitTray,Slots) }
<-

find_slot(Slots), &\Comment{ // call Java find_slot action}&
-kit_tray(IdKitTray,Slots), &\Comment{ // remove belief}&
+!loop [perform]; &\Comment{ // initiate goal}&

// loop through all the kit open slot with size
+!loop [perform] : { B slot_active(Id, SizeSlot, Slot) }
<-

-slot_active(Id, SizeSlot, Slot), &\Comment{// remove belief}&
+!kitting(Id, SizeSlot) [perform], &\Comment{// perform kitting goal}&
+!loop [perform]; &\Comment{// loop while slots_active belief is true}&

// Kitting goal plan takes kit slot and gear size

28

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.TN
.2222

+!kitting(Id, Size) [perform] : { ~B grasped(_), B gear_tray(IdGearTray, Size, Slots) }
<-

find_gear(Slots),&\Comment{// invoke Java action}&
*gear(Gear),&\Comment{// wait for Java gear result}&
+!take_part(Gear) [perform],&\Comment{// perform gwen take_part goal with gear}&
+!place_part(Id,Gear) [perform]; &\Comment{// perform place_part twen goal with id

slot and gear}&

// Make slot-active belief given lot belief belief match
+slot(Id, SizeSlot, Slot) : { True }
<-

+slot_active(Id, SizeSlot, Slot);

// Keep looping goal if kitting tray belief exists
// notes, this comes before loop below with simple
// true belief
+!loop [perform] : { B kit_tray(IdKitTray, Slots) }
<-

+!new_tray [perform];

// All done, loop until another goal
+!loop [perform] : { True }
<-

wait(2000),
+!loop [perform];

// This belief is called when a human gets too close to the robot
+humanProximityViolation : { B humanProximityViolation}
<-

remove_belief("humanProximityViolation");&\Comment{// for now remove perception
belief using Java action}&

// Basic kitting action to pickup up gear from supply tray
+!take_part(Location) [perform] : { ~B grasped(_), B gripper("open")}
<-

take_part(Location),
*action_result(Result),,&\Comment{// wait for Java take|gear result}&
-gripper("open"),&\Comment{// valid belief unless aborted}&
+gripper("close"),
+grasped(Gear),
// check if fail or success
+!check_action_result_take_part(Location, Result) [perform];

// When take_part result is true - no error
+!check_action_result_take_part(Location, "true") [perform] : { True } ;

// Dropped gear, if reachable try again, else abort
+!check_action_result_take_part(Location, "droppedGear") [perform] : { True}
<-

reachable_gear(Location),
*action_result(Result),
+!check_action_result_take_part(Location, Result) [perform];

// If dropped gear is reachable, attempt pickup
+!check_action_result_take_part(Location, "reachableGear") [perform] : { True}
<-

take_part(Location),&\Comment{// call Java action}&
*action_result(Result), &\Comment{// wait for take_part result}&
// use check action corresponding to take_part result
+!check_action_result_take_part(Location, Result) [perform];

// abort plan, undo take_part beliefs
+!check_action_result_take_part(Location, "abortGear") [perform] : { True }
<-

-grasped(Gear),
-gripper("close"),

29

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.TN
.2222

+gripper("open");

// place_part has no agile fault recovery
// the gwen goal plan puts a Gear into a slot location and returns T/F
+!place_part(Location, Gear) [perform] : { B grasped(Gear), B gripper("close")}
<-

place_part(Location),
*action_result(Result),
-grasped(Gear),
-gripper("close"),
+gripper("open"),
+!check_action_result_place_part(Location, Gear, Result) [perform];

// Successful place of gear into kit
+!check_action_result_place_part(Location, Gear, "true") [perform] : { True } ;

// Unsuccessful place of gear into kit, retry again
// No agile fault handling for place_part
+!check_action_result_place_part(Location, Gear, "false") [perform] : { True }
<-

place_part(Location, Gear),
*action_result(Result),
+!check_action_result_place_part(Location, Gear, Result) [perform];

Appendix B: JAVA ENVIRONMENT

The GWENDOLEN environment planning actions are coded in Java. Java is an integral part of

the GWENDOLEN programming. Upon invocation, the AIL parses the GWENDOLEN program as

given in Appendix A for syntactic correctness, and then compiles plans from GWENDOLEN into

Java code. Active goal and belief plans are evaluated in order every cycle until a true guard has

been detected, and its associated plan is executed. Note, within each plan a goal can be desired,

which invokes the associated goal/belief subplans which attempt to solve the goal. The use of a

“*” belief within a plan is akin to a co-routine, in that the plan waits until the matching belief has

been asserted.

B.1 CRCL Java Jar Support

The GWENDOLEN environment planning actions relies on CRCL Java language support. In

addition several Java jar libraries were used to support use of CRCL, including:

• crcl4java-base – XML Java Compiler (XJC) autogenerated Java Architecture for XML

Binding (JAXB) annotated classes corresponding to the CRCL schemas. Code found at

https://github.com/ros-industrial/crcl.

• crcl4java-utils – class for sending and receiving CRCL classes over a TCP Socket, Pose math

conversions, etc. Code found at https://github.com/ros-industrial/crcl.

• rcsjava – Java jar library that implements the NIST rcslib “posemath” classes in Java for

30

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.TN
.2222

https://github.com/ros-industrial/crcl
https://github.com/ros-industrial/crcl

representing robot positions, rotations, and translations in a variety of coordinate systems.

The original rcslib Java code repository can be found at https://github.com/usnistgov/rcslib

The source for these CRCL Java jar libraries has been bundled and included in the repository

under the java folder found at https://github.com/autonomy-and-verifcation/gwendolen-cr

cl-kitting/tree/master/java. The CRCL java code was developed using Apache Netbeans [40]

and Maven [41], so if you need to modify the CRCL XML schemas to recompile or regenerate

the jar library fles, you will need to install Netbeans which includes Maven. You can either use

the Netbeans Integrated Development Environment (IDE) to generate the jar libraries or use the

Windows batch script win32build.bat which uses Maven to generate the jar library. In either case,

you will fnd the jar library under the target folder.

B.2 Gwendolen-CRCL Repository

The GWENDOLEN repository is based on the MCAPL code base found at

https://sourceforge.net/projects/mcapl/. This code base has been adapted by removing much of

the non-GWENDOLEN programming as possible. The use of Eclipse to run Gwendolen code

remains. After cloning the gwendolen-crcl-kitting repository you will fnd the GWENDOLEN code

in the ajpf2018/src/examples/gwendolen/crcl folder.

B.3 Gwendolen CRCL Java Communication

The primary connection to the real-world is the CRCL Client written in java.

The intelligent agent plan reasoning used a Java kitting model that can run either the CRCL Client

locally or have the CRCL Client connect to a CRCL Server which controls a real robot. For

evaluating GWENDOLEN planning code, the “loopback” CRCL Client was used as it handles all

world modeling locally, which makes debugging easier. To enable this “loopback” functionality,

the CRCL Client is provided a description of initial kitting world model and then programmatically

determines object properties (object name, pose, location, type) by monitoring CRCL moves of

gears between tray locations. CRCL Client “loopback” status reporting included inferring gear

and kitting tray slot properties using this monitoring that are not reported by an actual CRCL

Server. Within the local CRCL Client, the ability to derive frst order reasoning about the kitting

objects was coded and used for understanding open slots and free gears locations. For example,

each supply vessel has slots that may or may not contain a small/medium/large gear depending on

the vessel type. By cycling through the gears, it can be established which gear slots contain a gear

as well as its properties: name, type (should match vessel supply type), and state (open or contain a

gear name). Likewise, a kit has slot properties similar to supply vessels, but can be a combination

31

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.TN
.2222

https://github.com/usnistgov/rcslib
https://github.com/autonomy-and-verification/gwendolen-crcl-kitting/tree/master/java
https://github.com/autonomy-and-verification/gwendolen-crcl-kitting/tree/master/java
https://sourceforge.net/projects/mcapl/

of small/medium/large gear slots.

The CRCL Client reads the Globals.bLoopback, which is a fag that when true does a “loopback”

CRCL Client connection by accepting CRCL commands and simulating the actions that the robot

would take. Real or simulated, the CRCL Client must have established the scene and gear/tray

properties that is size, location, type, and for trays all the slots within the tray have been defned.

Inferences can be performed locally or remotely to understand the underlying slot states of the

trays, either open or contains a gear. Assuming the “loopback” capability, self-contained inferences

determine the state of all the slots and gear locations, and is used to determine a sequence of

operations to grasp a free gear that matches the kit open slot sizes. To achieve updates of gear

locations, the gripper close and open operations are monitored. When a gripper is closed, the last

moveto pose is used to fnd the closet gear, and that is the object that is being moved. When the

gripper is opened then the gear is being placed into the kit open slot and the gear’s location is now

set to the open slot location.

When CRCL Server communication is established, then CRCL commands are sent, and the status

contains the model and model inferences. Clearly, the inferences could be done locally in

GWENDOLEN planner or be done at a lower level of control.

B.4 Gwendolen Java Files

The source for the GWENDOLEN evaluation Java code can be found in the \ajpf\src\examples

\crcl\kitting folder that contains the following fles shown in Table 4.

32

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.TN
.2222

File Description
CRCLClient.java Client interface to CRCL which uses the JAXB class defnitions to communicate

XML messages to CRCL Server. If loopback fag set, CRCL connection channel
ignored.

CShape.java CShape describes the basic attributes of the world model objects defned with a
name, type and location. Slots can also be shapes. Trays also have a contains
"slot" items. In addition, each shape has inferences about its state - for example if
a slot is “empty”, or contains a gear. Depending on the parent (kit or supply tray)
this can be a free gear or a flled slot.

CShapes.java CShapes is a container for the 1) shape instances in the kitting scene, and 2)
feature defnitions of the parts in the scene (gears, kits, supply vessel, and as well
as the slots in a tray) such as centroid, size, containing slots, etc.

Globals.java Globals is a wrapper for global fags and other general purpose utilities. All
variables are public static.

KittingEnv.java Inherited implementation of AILEnv. Implements AILEnv which is an interface
to be satisfed by any environment that is to interact with the AIL classes. The
class KittingEnv provides the implementation of an “action” GWENDOLEN call
which connects GWENDOLEN plans to the physical “real” world. In essence
GWENDOLEN does goal-directed planning using a belief system in conjunction
with the real world beliefs in order to run a plan.

KittingInterface.java Provides methods to perform or fake performing the kitting demonstration for the
Fanuc LRMate robot. If live CRCL model status, then the robot will use the model
inferences to determine the free gear and matching kit open slot.

TestCases.java A smattering of methods to test the CRCL communication as well as lower level
simulation validity.

rcs_robot.java Basic defnitions of the robot that will be manipulated. Contains defnitions for
robot base offset from the world origin (0,0,0), grasping offsets, bend pose for the
robot to grasp the gears, and a approach/retract amount for grasp/release pre/post
operation.

rcs_world.java Model information about the objects in the scene. This is simplifed for testing
purpose.

robot.ail AIL confguration data. See following discussion.
robot.gwen GWENDOLEN program. See Appendix A.
run.bat A Windows batch fle to run the GWENDOLEN evaluation application. Note,

most of the batch environment variables are derived from relative folder locations.
However, the Eclipse java executable may have to be modifed: C:\Users\myu
sername\.p2\pool\plugins\org.eclipse.justj.openjdk.hotspot.jre
.full.win32.x86_64_17.0.1.v20211116-1657\jre\bin\java.exe where
“myusername” is your home directory. The easiest way to determine the Eclipse
Java compiler is to Navigate to Run to Run Con f igurations and then Click [Show
Command Button] button to see actual command.

Table 4. GWENDOLEN CRCL File Descriptions

Listing 11 shows the robot.ail confguration fle used by the AIL layer in the GWENDOLEN

software architecture. The AIL confguration fle requires the mas. f ile parameter to give the BDI

program, which is the GWENDOLEN program. In Listing 11, the parameter mas. f ile is given as

mas.file=C:\\Users\\michalos\\Documents\\agilityperformancemetrics\\Gwendol

33

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.TN
.2222

en\\gwendolen-crcl-kitting-master\\ajpf2018\\src\\examples\\gwendolen\\crc

l\backslash\backslashkitting\\robot.gwen

where michalos is the home directory and gives the full path to the GWENDOLEN program fle.

Note, since we are testing on a Windows system, it is required to have double backslashes (i.e., \\)
as the separator character between folders.

Listing 11. GWENDOLEN MAS Confguration File
mas.file = C:\\Users\\michalos\\Documents\\agilityperformancemetrics\\Gwendolen\\

gwendolen-crcl-kitting-master\\ajpf2018\\src\\examples\\gwendolen\\crcl\\kitting\\
robot.gwen

mas.builder = gwendolen.GwendolenMASBuilder
env = gwendolen.crcl.kitting.KittingEnv
log.info = ail.mas.DefaultEnvironment
log.fine = ail.semantics.operationalrules
log.warning = ajpf.MCAPLAgent
log.format = brief

The env parameter gives the GWENDOLEN Java environment fle as an identifers which is the

folder path of the fle separated by a period (i.e., “.”). The other parameters are boilerplate and did

not require special confguration.

B.5 Gwendolen Java Environment

The Gwendolen Java environment fle KittingEnv. java contains the Java actions associated with

the GWENDOLEN program plans. The Java method executeAction is the primary mechanism for

GWENDOLEN plans to communicate with the environment and/or lower level control

functionality. The Java method executeAction accepts a string and multiple arguments and then

uses a branching mechanism to determine which GWENDOLEN action to execute. In theory the

Java action execution could be an infnite loop, which would be a problem although

GWENDOLEN is a multi-threaded execution environment. When the Java method executeAction

has fnished executing it returns an environment belief, generally a true or false belief string is

returned to indicate success or failure. However, as was shown an action can return a more

descriptive belief string to indicate various forms of status.

Listing 12. Java executeAction method
public Unifier executeAction(String agName, Action act) throws AILexception {

String actionname = act.getFunctor();

The f ind_gear(Slots) action was invoked from within the +!kitting GWENDOLEN goal plan. The

f ind_gear action gets a list of slots containing gears defned as gear_tray(IdGearTray,Size,Slots)

beliefs that are known to be in a supply tray of the correct size. The f ind_gear action uses the

CRCL API method gearInSupplyTray with the slot as a gear name to see if gear is in supply tray.

34

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.TN
.2222

′′);)If so we create a new AIL environment Predicate (i.e., gearPredicate = new Predicate(“gear

called “gear” and add the term slot (i.e., gearPredicate.addTerm(slot);) which is the name of gear

(e.g., part_medium_gear17) as part of the predicate, which is then published to the AIL system as

a belief (i.e., addPercept(gearPredicate);) . GWENDOLEN code ∗gear(Gear) has been waiting

on this belief to be satisfed before preceding with the next step in the goal plan.

Listing 13. Java fndGear match inside executeAction method
if (actionname.equals("find_gear")) {

ListTerm slots = (ListTerm) act.getTerm(0);
for (Term slot : slots) {

// No gear has empty assigned as a property
// instead will check to see if in tray
if(crcl.gearInSupplyTray(slot.toString()) > 0) {

gearPredicate = new Predicate("gear");
gearPredicate.addTerm(slot);
addPercept(gearPredicate);
break;

}
}

}

Finally, Javadoc for the CRCL that does not contain the status extension is available online and can

be found here: http://ros-industrial.github.io/crcl/crcl/index.html.

Appendix C: CRCL KITTING MODEL ENHANCEMENTS

CRCL is designed to handle pick-and-place industrial robot applications. The CRCL goal is to

abstract the many different communication protocols that control commercial, industrial robots.

This section covers in detail the extensions to CRCL to communicate kitting world model status

and inferences.

For our kitting plan evaluation, we extended CRCL status functionality to include reporting the

kitting world model as well as derived kitting inferences. Such extension allowed a point-to-point

communication scheme between world model sensors and the command/control/planning IA. This

was done by extending CRCL XSD to incorporate model property reporting as well as all tray

property inferences.

C.1 CRCL XSD Extension

Fortunately, in spite of XML complexity this extension was a mostly straightforward affair. We

modifed the XSD schemas found in the crcl4java-base project resource folder and used XJC in

Netbeans to autogenerate JAXB annotated classes corresponding to the extended CRCL schemas.

These JAXB classes were bundled into a Java JAR library that is included in the

autonomy-and-verifcation github gwendolen-crcl-kitting repository library distributions. Code to

35

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.TN
.2222

http://ros-industrial.github.io/crcl/crcl/index.html

rebuild or modify the CRCL XSD schemas is included in the gwendolen-crcl-kitting repository

under the java/crcl4java-base folder with instructions to build the JAR fle using Netbeans.

We found that reporting kitting model status as well as the kitting slot inferences could be done

either at the CRCL Server (requiring the CRCL XSD status extensions) or as a loopback testing

mechanism in the CRCL Client. In either case, CRCL must have some domain knowledge about

the kitting world model in order to make inferences about trays and slots. However, this “loopback”

ability to discern the kitting world and make inferences simplifed GWENDOLEN evaluation. Thus,

GWENDOLEN IA evaluation could be done in situ without controlling an actual robot and still be

as effective.

Listing 14 illustrates the XSD defnition of the CRCLStatusType which is used to report all status

information be it from the robot, gripper, force torque sensor, or in our case an environment model.

CRCLStatusType need not be monolithic, and status reporting can be confgured to report more or

less status information. For model status information, each CRCLStatusType can contain zero or

more ModelStatus elements to report on logical models, which we examine further.

Listing 14. CRCL Extension to handle list of model parameters
<xs:complexType name="CRCLStatusType">
...

<xs:sequence minOccurs="0" >
<xs:element name="ModelStatus" maxOccurs="unbounded" type="ModelsStatusType"/>

</xs:sequence>

Listing 15 gives an overview of the XSD for the ModelsStatusType, which reports on the logical

models in the environment. The basic logical model is name and pose. Included in the properties

are the inferred properties about a model that are included as part of the model status. An instance

of ModelsStatusType has the following elements for Name; Pose which is defned as a CRCL pose

type (xyz rotation: x rotation, z rotation); an optional Twist; an optional Wrench; and fnally a

sequence of Properties, defned as a MapType XSD type.

Listing 15. ModelsStatusType Extension to CRCL Status
<xs:complexType name="ModelsStatusType">

<xs:sequence>
<xs:element name="Name" type="xs:string"/>
<xs:element name="Pose" type="PoseType"/>
<xs:element name="Twist" type="TwistType" minOccurs="0"/>
<xs:element name="Wrench" type="WrenchType" minOccurs="0"/>
<xs:sequence minOccurs="0" >

<xs:element name="Properties" type="MapType"/>
</xs:sequence>

</xs:sequence>
</xs:complexType>

Listing 16 gives an overview of the XSD for the MapType. MapType Properties describe either a

slot or a gear parent. For a slot, name, type, location, and state are given. Location is the reoriented

36

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.TN
.2222

position based on the orientation of the parent tray. For a gear, the property gives the parent tray

name hosting the gear (if one) and the slot in the parent tray. Although all gears are supposed to

be within a slot in a tray, in the case of a dropped gear, the gear could fall and land in a reachable

position within the robot workspace.

Listing 16. XSD Map Type to defne Kitting Properties
<xs:complexType>

<xs:sequence>
<xs:element name="item" type="MapItemType" minOccurs="0" maxOccurs="

unbounded"/>
</xs:sequence>

</xs:complexType>
<xs:unique name="item">

<xs:selector xpath="item"/>
<xs:field xpath="key"/>

</xs:unique>
</xs:element>

<xs:complexType name="MapType">
<xs:sequence>

<xs:element ref="map"/>
</xs:sequence>

</xs:complexType>

<xs:complexType name="MapItemType">
<xs:sequence>

<xs:element name="key" type="xs:string"/>
<xs:element name="value" type="xs:string"/>

</xs:sequence>
<xs:attribute name="name" use="required"/>
</xs:complexType>

C.2 CRCL Inference Explanation

The CRCL Client acts like a logical camera sensor but instead of extracting gear, kit, and tray

model knowledge from a camera, it relies on a Gazebo plugin that reports on all models in the

simulation world. The CRCL Client was responsible for reporting model properties that lead to

generating inferences about the kitting models (e.g., a gear located in a supply tray slot).

For each kit, supply vessel, and gear, knowledge inferences are produced by studying the

relationship of the gears and trays. The kitting world model is known à priori. As an example, we

will show a medium kitting tray and how its slots are defned as offsets. Figure 3 shows the

physical relationships for the one large gear and two medium gears kitting tray.

In order to make inferences, CRCL must understand the relationship between each tray type and

its slots. Thus, the CRCL Client contains physical descriptions of all trays (both supply and kit)

types as well as the relationship to contained slots. Since the kitting model is maintained in

Gazebo, we have used Standard Tessellation Language (STL) to defne kitting model object and

for each object defned the centroid is defned at the minimum Z and with a centered (x,y) on this

37

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.TN
.2222

plane. Note, not all the kitting world model objects were so positioned, so we reoriented the STL

object fle to adhere to this scene positioning. We adjusted all kitting world model objects to use

this representation so that we understand how to place an object on a fat surface, as well as

understanding where the object is when Gazebo reports a kitting model location. Further, without

a centroid at the bottom of the part, a gear in a Gazebo physics based simulation will bounce if

incorrectly placed into a tray slot.

Fig. 3. Kitting Tray with Slot Offsets

Below is a diagnostic dump of the inferred knowledge. The gear inferences are produced by

studying the location of a gear and comparing to all the locations of each tray’s slots. If close

enough (we assume a small error), the gear is inferred to be resident in the tray slot. Thus for each

gear in our kitting demo after we have moved gear part_medium_gear17, we have the following

inferences about all the gears. This unto itself is generally not useful, as we are either trying to fnd

an EMPTY slot in a kit or a matching gear size in a supply tray to the empty kitting slot. However,

if we are trying to recover from an adversity, such as dropping the gear, the location of the gear can

be important as if the gear is reachable by the robot, it can be picked up even if not in a gear tray.

Listing 17 gives a diagnostic dump of gears 17–20 and 22–23 inferred knowledge. In the listing,

the gear name is followed by its location given as pose in world coordinate space (x,y,z and xyzw

quaternion), followed by what tray the gear is located. Note, gears have inferences (but are more

informative and not as important for solving the kitting problem) that give the tray (parent) and the

tray slot where the gear is located. It is easier to scan trays for an appropriate gear, than search

each gear for an appropriate tray match.

38

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.TN
.2222

Listing 17. CRCL gear inferences after moving part_medium_gear17
part_medium_gear17 at 0.4564, -1.0120, 0.9200 0.0000, 0.0000, 0.0000, 1.0000,

In: medium_gear_vessel16(slot1)

part_medium_gear18 at 0.1500, -1.2000, 0.9200 -0.0010, -0.0000, 0.0170, 0.9999,
In: medium_gear_vessel16(slot2)

part_medium_gear19 at 0.1500, -1.2800, 0.9200 0.0010, -0.0030, 0.0180, 0.9998,
In: medium_gear_vessel16(slot4)

part_medium_gear20 at 0.2300, -1.2800, 0.9200 -0.0020, 0.0010, 0.0120, 0.9999,
In: medium_gear_vessel16(slot3)

part_large_gear22 at 0.3900, -1.2100, 0.9200 0.0020, -0.0020, 0.0160, 0.9999,
In: large_gear_vessel21(slot2)

part_large_gear23 at 0.3900, -1.3200, 0.9200 -0.0020, -0.0010, 0.1880, 0.9822,
In: large_gear_vessel21(slot1)

For tray inferences, such as for kits or supply vessels, the inferences provide the status of each of

the trays slots – either containing a name slot or “empty”. For a kit or supply tray (e.g., kit=

kit_m2l1_vessel14 while gear supply vessel= medium_gear_vessel16) the Gazebo derived model

knowledge gives the location (as well as orientation) of the kitting object. Inferences follow and

are indented to display the inferred knowledge about the slots contained in the tray and their state.

The state shows whether the tray is empty or occupied. If occupied, the name of the gear in the

slot (e.g., part_medium_gear17) is given. If unoccupied, "empty" is designated as the name. This

information is inferred by knowing the reoriented location of the slot (based on the tray

orientation) and whether there is a gear close to this location. If a gear is nearby, it is inferred to

be in the slot. If no gear is near, then the slot is “empty”. Listing 18 gives a diagnostic dump of

CRCL tray slot inferences after a gear move. Of note, each slot inference also contains the

reoriented location of the slot in world coordinates so this is helpful knowledge. All shapes are

represented in world coordinates but must be transformed into the robot coordinate system to be

useful to a CRCL Server robot.

39

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.TN
.2222

Listing 18. CRCL tray slot inferences after gear move
kit_m2l1_vessel14 at 0.4000, -1.0500, 0.9200 0.0000, 0.0000, -0.7200, 0.6940,

slot1 part_medium_gear part_medium_gear17 (0.4564,-1.0120, 0.9200)
slot2 part_medium_gear empty (0.4535,-1.0920, 0.9200)
slot3 part_large_gear empty (0.3600,-1.0485, 0.9200)

kit_m2l1_vessel15 at 0.1800, -1.0500, 0.9200 0.0000, 0.0000, -0.7200, 0.6940,
slot1 part_medium_gear empty (0.2364,-1.0120, 0.9200)
slot2 part_medium_gear empty (0.2335,-1.0920, 0.9200)
slot3 part_large_gear empty (0.1400,-1.0485, 0.9200)

medium_gear_vessel16 at 0.1900, -1.2400, 0.9200 0.0000, 0.0000, 0.0170, 0.9999,
slot1 part_medium_gear empty (0.2282,-1.1991, 0.9200)
slot2 part_medium_gear part_medium_gear18 (0.1491,-1.2018, 0.9200)
slot3 part_medium_gear part_medium_gear20 (0.2309,-1.2782, 0.9200)
slot4 part_medium_gear part_medium_gear19 (0.1518,-1.2809, 0.9200)

large_gear_vessel21 at 0.3900, -1.2600, 0.9200 0.0000, 0.0000, 0.7210, 0.6930,
slot1 part_large_gear part_large_gear23 (0.3922,-1.3150, 0.9200)
slot2 part_large_gear part_large_gear22 (0.3878,-1.2050, 0.9200)

Appendix D: ROS

The ROS side is coded in C++ and uses CodeSynthesis to parse and serialize the CRCL XML. Once

parsed, the CRCL is translated into ROS representation suitable for moveit! trajectory planning and

kinematic solving. Joint positions are then updated to Gazebo using the gazebo_ros_api plugin.

(a) Gazebo Simulation of APRS Kitting (b) Physical Real World APRS Kitting Layout

Fig. 4. NIST Agility Performance of Robotic Systems

There are several CRCL Server GitHub repositories that implement a CRCL Server with a ROS

and Gazebo back-end. However, there is only one GitHub repository that supports CRCL and the

kitting world model enhancements [42]. This repository has Gazebo, ROS, and CRCL code to

model the NIST APRS laboratory setup for real world kitting shown in Figure 4b. Figure 4a

40

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.TN
.2222

shows the Gazebo simulation of the APRS laboratory, which only supports a Fanuc LRMate robot

at this time. You can add the Motoman robot by having the gazebo_ros_api plugin launch the

Motoman robot. This repository has only been tested for a Ubuntu 16.04 and 18.04 Linux

distribution. For compatibility issues with existing ROS modules and GWENDOLEN

implementations (i.e., deprecated ROSBridge Version 1), the implementation used the ROS

Kinetic version and Gazebo version 7. Note, it is not diffcult porting the Windows GWENDOLEN

Java code to Ubuntu Eclipse and was originally done by the authors.

41

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.TN
.2222

	Background
	Gwendolen Software Architecture
	Gwendolen
	Agent Infrastructure Layer (AIL)
	Multi-Agent System (MAS)
	Model Checking Agent Programming Languages (MCAPL)
	Agent JPF
	Java Pathfinder (JPF)
	Model Checking
	CRCL
	CRCL Client
	CRCL Server

	Gazebo Simulation Model of the Kitting World
	ANTLR
	Gwendolen Grammar
	Run time execution

	Kitting Case Study
	Kitting World and Beliefs
	Basic Kitting Algorithm

	Gwendolen Programming
	Gwendolen Notation
	Gwendolen Example

	Gwendolen Kitting Agility
	Scenario One: Continuous Monitoring of Human Robot Proximity
	Scenario Two: Dropped Gear Challenge
	ARIAC Scenario Discussion

	Discussion
	References
	Appendix A: Gwendolen Kitting Program
	Appendix B: JAVA ENVIRONMENT
	B.1 CRCL Java Jar Support
	B.2 Gwendolen-CRCL Repository
	B.3 Gwendolen CRCL Java Communication
	B.4 Gwendolen Java Files
	B.5 Gwendolen Java Environment

	Appendix C: CRCL KITTING MODEL ENHANCEMENTS
	C.1 CRCL XSD Extension
	C.2 CRCL Inference Explanation

	Appendix D: ROS

