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Abstract 

The uncertainty of fracture toughness and associated fracture resistance curves for single 
edge-notched tension (SE(T) or SENT) specimens is a key component missing from widely 
accepted testing protocols. Complicating matters, these uncertainties are not easily calculated 
using traditional propagation-of-error techniques. Uncertainty estimation using Monte Carlo 
techniques for two test methods are presented and the effect of changing the distribution and 
tolerance specified for the measurement and input quantities on the results is investigated. 

Key words 

Crack tip opening displacement; CTOD; CTOD-R; Fracture resistance; fracture resistance 
curve; fracture toughness; J-integral; J-R; Monte Carlo methods; propagation of errors; 
experimental error; SENT; SE(T); single-edge-notched tension; uncertainty. 
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 Introduction 

Determining the fracture toughness and fracture resistance curves of metallic materials is a 
complicated process, and several test methods are available to describe the test procedure and 
associated computations [1-5]. None of these methods, however, provide guidance to estimate the 
uncertainty of the final measurement results. Because of the complex nature of the test procedure 
and computations, traditional propagation-of-errors techniques found in Ref. [6] are not practical. 
The purpose of this paper is to demonstrate that the uncertainty of the predicted starting crack depth, 
a0q, and the fitting parameters of the J-integral or crack tip opening displacement (CTOD) resistance 
curves can be obtained using Monte Carlo simulations according to Ref. [7]. Methods of analyzing 
the measurement data for CTOD-R curves are outlined in the test protocol published by 
ExxonMobil Upstream Research Company [3]. Methods of analyzing the measurement data for J-R 
curves are outlined in the recommended practice published by Natural Resources Canada – 
CanmetMATERIALS [2]. The methods to determine CTOD-R and J-R curves were developed 
independently and for different technical reasons. Since their original publication, many research 
programs have endeavored to improve and expand the methods and applicability. The background 
and evolution of the methods is outside the scope of this work. While giving credit to the originating 
authors and organizations that developed the framework for the methods, the methods have evolved 
sufficiently in time to be generally referred to as the CTOD-R and J-R methods.  

Multiple industrial and standards development organizations have endeavored to standardize 
the test protocols with varying degrees of success and completion. One of the challenges to 
standardizing the test and analysis methods is ensuring that measurement uncertainty can be 
estimated. This work further demonstrates that Monte Carlo methods can be employed on many 
other complex test and analysis methods. Various levels of tolerance associated with input and 
measurement quantities are investigated as well as three possible distributions for those 
uncertainties. 
 

 Measurement Procedure 

The clamped single edge-notched tension (SE(T) or SENT) specimen has been widely used 
in a single-specimen testing scheme to generate fracture resistance curves. The SE(T) specimen 
with appropriate notch geometry is a low-constraint specimen designed to reduce conservatism in 
the measurement of fracture toughness. The crack driving force is taken as either the J-integral or 
CTOD. The CTOD-R method uses a double-clip-gauge configuration where two clip gauges 
measure the crack opening displacement (COD, denoted by V), at two different distances (h1 and h2) 
from the surface of the specimen. Using the two measurements and the known distances, the crack 
mouth opening displacement (CMOD) is calculated at the surface of the specimen. In contrast the J-
R method uses a single clip gauge attached at the surface of the specimen to measure the CMOD 
directly. The minimum test record for the CTOD-R method will include the COD at h1 (V1), and the 
COD at h2 (V2), in addition to force. The minimum test record for the J-R method will include 
CMOD and force. Both test procedures use the same specimen geometry, gripping and loading 
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conditions. Both test procedures use a CMOD unloading compliance (UC) method to determine the 
change in crack length. The results of a direct comparison experiment were published by Weeks and 
Lucon [8], where the CTOD-R and J-R methods were employed during the same test. Barring minor 
differences in some of the procedural details and end-of-test conditions, the recommended practices 
were followed closely. Likewise, the analysis procedures as detailed in each recommended practice 
were followed closely in this work. One relevant difference is the end-of-test condition; this is 
specified in the CTOD-R procedure to determine the final crack length from an unloading 
compliance without significant plastic deformation. The end-of-test condition is simply taken as an 
unloading that follows the maximum force (PU) during the test but does not exceed a 0.2PU drop in 
load at the beginning of the unloading portion. This is to avoid significant plastic necking that 
influences the crack growth estimate. No such end-of-test condition is described in the J-R 
procedure source documents. For the purposes here, the end-of-test condition as prescribed in the 
CTOD-R procedure is used for both methods. 

Pre-test measurements of specimen and fixture geometry are given according to Fig. 1. In 
this work, only a square cross-section (W = B, B × W) specimen is considered. However, the 
measurement uncertainty and the propagated influence is expected to be very small if alternate (B × 
2B) geometries are considered. The clamped specimen has a minimum “daylight” between fixed 
hydraulic grips of 10W. Few measurement methods are prescribed in either of the test procedures, 
and in general, any method that has enough resolution and can be repeated should be adequate. 
These methods through the course of pre-test measurements and post-test measurements may 
include calipers, comparators, microscopes, or any combination, but not exclusive of other methods 
such as a coordinate measurement machine (CMM) or a profilometer. Digital equipment that 
includes a recording method (such as having a statistical process control output) are preferred to a 
manually read and recorded measurement to avoid reading and transcription errors. 

For each of the pre-test specimen dimensions, the procedures provide either explicit or 
implicit measurement tolerances; these conditions imply a minimum resolution and are given in 
Table 1. The implicit limits are assumed from other measurement standards that the procedures 
considered here have referenced. In all instances, the tolerances provided herein include the 
uncertainty of the measurement instrument/method considered. 

The initial crack length (a0) will always be determined from post-test measurements, 
whether the specimen is fatigue pre-cracked or not. In situ measurements during the test may 
include COD1 and COD2 (V1 and V2) and force (P), or CMOD and force (P) as applicable. The 
measurement tolerances for clip gauge and force measurements are given implicitly by the 
applicable calibration standards. 
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(a) 

 
(b) (c) 

Figure 1.  (a) Notch geometry and integral knife-edge details for fatigue pre-cracked specimens, (b) details 
of the side grooves for each specimen, [the total reduction in thickness is 0.15B], (c) and double-clip-gauge 

mounting and height details.  
(All linear dimensions are in mm). 

 

Table 1.  Pre-test specimen geometry measurement tolerances (all units in mm) 

 Measurement CTOD-R Method J-R Method  
 B 0.050 (0.5 %) 0.050 (0.5 %)  
 BN 0.050 (0.5 %) 0.050 (0.5 %)  
 W 0.050 (0.5 %) 0.050 (0.5 %)  
 h1 0.2 % n/a  
 h2 0.2 % n/a  

Note: where a secondary tolerance is shown in parentheses, the larger of the two tolerances 
should be used. The bolded value represents the limit used in this study. 
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 Analysis Methods 

The computations outlined in the procedures take the measured force and displacement data 
and produce two outputs: the change in crack length (∆a) and the crack driving force as defined by 
the CTOD or J-integral. Since these computations involve multiple complicated steps, both the 
CTOD-R and J-R calculations are summarized here. 

For both methods, the crack depth aj is first calculated for each of the unloading/loading 
cycles (each cycle is denoted numerically as j) from the compliance of the unloading portion of the 
data set for each cycle. 

The CTOD-R method uses a 5th order polynomial to determine aj whereas the J-R method 
uses a 9th order polynomial equation. Both methods use the form found in Eq. (1), where n = 5, and 
n = 9 correspond to the CTOD-R, and J-R methods respectively. The coefficients for the 
polynomials can be found in Table 2. 

 

 
𝑎𝑎𝑗𝑗
𝑊𝑊 = �𝑟𝑟𝑘𝑘𝑈𝑈𝑗𝑗𝑘𝑘

𝑛𝑛

𝑘𝑘=0

 (1) 

 

Table 2.  Coefficients rk in Eq. (1). 

 k CTOD-R Method J-R Method  
 0 1.64461 2.044  
 1 -8.7084 -15.732  
 2 30.31342 73.238  
 3 -69.60922 -182.898  
 4 83.52325 175.653  
 5 -39.11201 60.930  
 6  -113.997  
 7  -113.031  
 8  8.548  
 9  142.840  

 
The term Uj in Eq. (1) is the normalized unloading compliance for each of the 

unloading/loading cycles. The unloading compliance is calculated differently between the two 
methods. The CTOD-R method must first convert the crack opening displacements (V1 and V2) to 
crack mouth opening displacement (CMOD (δM)) by way of Eq. (2). The J-R method measures 
CMOD directly and is available in the raw data record.  

 δ𝑀𝑀 = 𝑉𝑉1 −
ℎ1

ℎ2 − ℎ1
(𝑉𝑉2 − 𝑉𝑉1) (2) 
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Equation 3 is used to determine the normalized unloading compliance for the CTOD-R method,  
 

 
 
where, 

 

𝑈𝑈𝑗𝑗 =
1

1 + �𝐵𝐵𝑒𝑒𝑒𝑒𝑒𝑒𝐶𝐶δ𝑀𝑀(𝑗𝑗)𝐸𝐸′
 

 
 

𝐶𝐶δ𝑀𝑀(𝑓𝑓𝑓𝑓) = (Δδ𝑀𝑀/Δ𝑃𝑃)𝑗𝑗 

𝐵𝐵𝑒𝑒𝑒𝑒𝑒𝑒 = 𝐵𝐵 − (𝐵𝐵 − 𝐵𝐵𝑁𝑁)2/𝐵𝐵 , and 

𝐸𝐸′ = 𝐸𝐸/(1 − ν2). 

(3) 

 
The J-R method uses a similar equation (see Eq. (4)) to determine the normalized unloading 

compliance but it includes a correction method that accounts for plastic necking and specimen 
rotation: 

where, 
 

𝑈𝑈𝑗𝑗 =
1

1 + �𝐵𝐵𝑒𝑒𝑒𝑒𝑒𝑒𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑗𝑗)𝐸𝐸
 

 
 

𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑓𝑓𝑓𝑓) = (Δ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶/Δ𝑃𝑃)𝑗𝑗/𝐹𝐹𝑗𝑗 

𝐵𝐵𝑒𝑒𝑒𝑒𝑒𝑒 = 𝐵𝐵 − (𝐵𝐵 − 𝐵𝐵𝑁𝑁)2/𝐵𝐵 

𝐹𝐹𝑗𝑗 = 1 − 0.165
𝑎𝑎0
𝑊𝑊
𝑃𝑃𝑗𝑗
𝑃𝑃𝑌𝑌′

, and 

𝑃𝑃𝑌𝑌 = σ𝑌𝑌𝐵𝐵𝑁𝑁(𝑊𝑊− 𝑎𝑎0). 

(4) 

 

The CTOD-R method requires that CTOD be calculated according to Eq. (5). 

 

 δ = 𝑉𝑉1 −
ℎ1 + 𝑎𝑎0
ℎ2 − ℎ1

(𝑉𝑉2 − 𝑉𝑉1) (5) 
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The J-R method is more computationally complicated and uses the following equations, 
 

where, 
 

𝐽𝐽𝑗𝑗 =
�𝐾𝐾𝑗𝑗�

2(1 − ν)2

𝐸𝐸 + 𝐽𝐽𝑝𝑝𝑝𝑝(𝑗𝑗) 
 
 

𝐾𝐾𝑗𝑗 = �
𝑃𝑃𝑗𝑗�π𝑎𝑎𝑗𝑗
𝑊𝑊�𝐵𝐵𝐵𝐵𝑁𝑁

�𝐺𝐺 �
𝑎𝑎𝑗𝑗
𝑊𝑊� 

𝐵𝐵𝑒𝑒𝑒𝑒𝑒𝑒 = 𝐵𝐵 − (𝐵𝐵 − 𝐵𝐵𝑁𝑁)2/𝐵𝐵, and 

𝐺𝐺 �
𝑎𝑎𝑗𝑗
𝑊𝑊� = �𝜏𝜏𝑘𝑘 �

𝑎𝑎𝑗𝑗
𝑊𝑊�

𝑘𝑘−112

𝑘𝑘=1

, 

(6) 

and the parameters τk are listed in Table 3. 
 

Table 3.  Values of 𝜏𝜏k to be used in Eq. (6) 

 k 1 2 3 4 5 6  
 τk 1.197 -2.133 23.886 -69.051 100.462 -41.397  

 k 7 8 9 10 11 12  
 τk -36.137 51.215 -6.607 -52.322 18.574 19.465  

 
The value of the plastic part of the J-integral (Jpl(j)) is given by 
 

 𝐽𝐽𝑝𝑝𝑝𝑝(𝑗𝑗) = �𝐽𝐽𝑝𝑝𝑝𝑝(𝑗𝑗−1) �
η𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑗𝑗−1)

𝑊𝑊− 𝑎𝑎𝑗𝑗−1
� �
𝐴𝐴𝑝𝑝𝑝𝑝(𝑗𝑗) − 𝐴𝐴𝑝𝑝𝑝𝑝(𝑗𝑗−1)

𝐵𝐵𝑁𝑁
�� �1 −

γ𝐿𝐿𝐿𝐿𝐿𝐿(𝑗𝑗−1)�𝑎𝑎𝑗𝑗 − 𝑎𝑎𝑗𝑗−1�
𝑊𝑊 − 𝑎𝑎𝑗𝑗−1

� (7) 

 
where ηCMOD(j−1) and γLLD(j−1) are evaluated from Eq. (8) and Eq. (9) respectively. 

 

 η𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑗𝑗−1) = �φ𝑘𝑘 �
𝑎𝑎𝑗𝑗
𝑊𝑊�

𝑘𝑘10

𝑘𝑘=0

 (8) 
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using the parameters φk listed in Table 4. 
 

 Table 4.  Values of φk to be used in Eq. (8) 

 k 0 1 2 3 4   
 φk 1.000 -1.089 9.519 -48.572 109.225   

 k 5 6 7 8 9 10  
 φk -73.116 -77.984 38.487 101.401 43.306 -110.770  

 

Next γLLD(J ) is calculated using the formula 

where, 
 

γ𝐿𝐿𝐿𝐿𝐿𝐿(𝐽𝐽) = η𝐿𝐿𝐿𝐿𝐿𝐿(𝑗𝑗) − 1 − �1 −
𝑎𝑎𝑗𝑗
𝑊𝑊�

η𝐿𝐿𝐿𝐿𝐿𝐿(𝑗𝑗)
′

η𝐿𝐿𝐿𝐿𝐿𝐿(𝑗𝑗)
 

 
 

η𝐿𝐿𝐿𝐿𝐿𝐿(𝑗𝑗)
′ = �𝑘𝑘

10

𝑘𝑘=0

ψ𝑘𝑘 �
𝑎𝑎𝑗𝑗
𝑊𝑊�

𝑘𝑘−1
, and  

η𝐿𝐿𝐿𝐿𝐿𝐿(𝑗𝑗) = �ψ𝑘𝑘 �
𝑎𝑎𝑗𝑗
𝑊𝑊�

𝑘𝑘10

𝑘𝑘=0

 

(9) 

and the parameters ψk are listed in Table 5. 

 

Table 5. Values of ψk to be used in Eq. (9) 

 k 0 1 2 3 4  
 ψk -0.880 15.90 -35.440 18.644 18.399  

 k 5 6 7 8 9 10 
 ψk -1.2373 -12.756 -12.202 -4.447 5.397 14.187 
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Finally, Apl(j) is calculated according to Eq. (10). 
 
 
 
 
 
where, 

 

𝐴𝐴𝑝𝑝𝑝𝑝(𝑗𝑗) = 𝐴𝐴𝑝𝑝𝑝𝑝(𝑗𝑗−1)�𝑃𝑃𝑗𝑗 + 𝑃𝑃𝑗𝑗−1��𝐶𝐶𝐶𝐶𝐶𝐶𝐷𝐷𝑝𝑝𝑝𝑝(𝑗𝑗) − 𝐶𝐶𝐶𝐶𝐶𝐶𝐷𝐷𝑝𝑝𝑝𝑝(𝑗𝑗−1)�/2 
 
 

𝐶𝐶𝐶𝐶𝐶𝐶𝐷𝐷𝑝𝑝𝑝𝑝(𝑗𝑗) = 𝐶𝐶𝐶𝐶𝐶𝐶𝐷𝐷𝑗𝑗 − �𝑃𝑃𝑗𝑗𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑗𝑗)�. 
(10) 

 

The initial crack length a0q is estimated next as this value is required for the fracture 
resistance curves. In the CTOD-R method, a0q is estimated by fitting the crack depth versus CTOD 
(δj) (see Eq. (7) of [3]) using 

 

 𝑎𝑎𝑗𝑗 = 𝑎𝑎0𝑞𝑞 +
δ𝑗𝑗

1.4 + 𝐶𝐶1 δ𝑗𝑗2 + 𝐶𝐶2 δ𝑗𝑗3. (11) 

 

The range of data for fitting the model in Eq. (11) is min(aj) to the final crack depth (see 
9.3.2 and Fig. 13 in [3]).  

In the J -R method, the crack depth aj versus Jj is used to estimate a0q (see Eq. (14) of [2]) 
according to the following equation 

 

 𝑎𝑎𝑗𝑗 = 𝑎𝑎0𝑞𝑞 +
𝐽𝐽𝑗𝑗

2σ𝑌𝑌
+ 𝐵𝐵1 𝐽𝐽𝑗𝑗2 + 𝐵𝐵2 𝐽𝐽𝑗𝑗3 + 𝜖𝜖𝑗𝑗 (12) 

 

where σY is the material’s yield strength. The range of data used for fitting the model in Eq. (12) is 
from min(aj) to the unloading that occurs immediately before the maximum load. The upper limit is 
not the end-of-test condition for the J-R method, instead, it is the fitting boundary condition to 
determine a0q, similar to the method described in ASTM E1820 - Standard Test Method for 
Measurement of Fracture Toughness [1]. Using min(aj) ameliorates the problem of non-physical 
apparent negative crack growth. The goal of both methods is to estimate a0q, which is then used to 
compute crack growth, ∆aj, for each unloading/loading cycle using ∆aj = aj − a0q. 
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Finally, the resistance curves are plotted using CTOD, or J, vs ∆aj. Fitting parameters of the 
CTOD-R or J -R curves are determined from Eq. (13) and Eq. (14) given below. The power law 
fitting parameters (αδ and ηδ) for the CTOD-R curve are determined from (Eq. (9) in [3]) 

 

 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = αδ(Δ𝑎𝑎)ηδ.  (13) 

 

The range of data for the CTOD-R fit is from ∆aj = 0.5 mm to the last measured crack growth value 
(see 9.3.5 and Fig. 15 in [3]) using the method of least squares. 

The model for the J-R curve is not specified in the J-R method source documents yet it is 
frequently fit to a power law equation just as the CTOD-R curve is fit. This is consistent with other 
J-R test standards with different geometries, so the power law model (Eq. (A9.7) from [1]) is used 
to determine the parameters (αJ and ηJ ), 

 

 𝐽𝐽 = α𝐽𝐽(Δ𝑎𝑎)η𝐽𝐽 + ϵ𝑗𝑗 .  (14) 

 
The range of data for the J-R fit is not specified in the source documents, so the fitting range will be 
set to match that of the CTOD-R method. 

Fitting the CTOD-R and J-R curves requires the use of nonlinear least squares (NLS) since 
the exponent is estimated as one of the parameters. NLS can be sensitive to the starting values, and 
occasionally does not converge to a solution. 
 

 Monte Carlo Simulation 

The complex nature of the calculations described in Sec. 3 is not conducive to uncertainty 
estimation using propagation-of-errors techniques. Instead, a Monte Carlo approach as described in 
GUM Supplement I [7] is used to obtain uncertainty estimates of a0q and the parameters of the  
CTOD-R (α�δ, η�δ) and J-R (α�𝐽𝐽, η�𝐽𝐽) curves. The steps of this Monte Carlo algorithm are as follows: 

1. Specify distributions and associated parameters for each input quantity based on available 
data. 

2. Generate random perturbations of each observed data point according to the parameters of 
step 1. 

3. Compute 𝑎𝑎�0𝑞𝑞 and (α�δ, η�δ) or (α�𝐽𝐽, η�𝐽𝐽) as appropriate using the perturbed data set. 

4. Discard samples where the calculations failed, or where 𝑎𝑎�0𝑞𝑞 differs from initial crack length, 
a0, by more than 0.5 mm. 
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5. Repeat steps 2 to 4 many times and build simulated distributions of the quantities of interest. 
6. Compute the standard uncertainty and coverage interval for each of the simulated 

distributions.  
Table 6 lists measurement tolerances for in-situ measured quantities for the two test 

methods. Not all measurement tolerances are quantified in the two standards. For example, 
coefficients obtained by finite element analysis for the J-R method (see Tables 2-4 of [2]) are 
provided without uncertainties or tolerances. 

Table 6.  Measurement tolerances on acquired data 

 Measurement CTOD-R Method J-R Method  
 P (N) 0.2 % 0.2 %  
 CMOD (mm) n/a 0.2 %  
 V1 (mm) 0.2 % n/a  
 V2 (mm) 0.2 % n/a  

Note: Pre-test specimen geometry measurement tolerances are shown in Table 1. 

 
The measurement tolerances in Table 1 and Table 6 can either be bounds on the value of an 

input quantity or actual uncertainties of a measurand. For example, the tolerance prescribes that the 
value of an input must be known within a range of values or that input has a known uncertainty 
associated with it. The latter is usually known from calibrations or statistical process data. The 
distributions associated with the tolerances are not declared in the source documents of either 
method, so the following analysis considers three reasonable options: 
 

• Specifications are bounds to uniform distributions. 

• Specifications are bounds to triangular distributions. 

• Specifications are uncertainties associated with normal distributions. 

 
For example, the input quantity for the specimen thickness, B, has a tolerance of ±0.050 mm, 

and without specific guidance the distribution of B is either uniform or triangular on the interval [B - 
0.050 mm, B +0.050 mm], or can be assumed to be a normal distribution with mean B and standard 
deviation of 0.025 mm (setting the standard deviation as half of the tolerance produces a distribution 
where approximately 95 % of the sampled values will be between B – 0.050 mm and B + 0.050 
mm). A simulated value of B is obtained by generating a random draw from the chosen distribution. 
 

All code used to analyze the data in this document is written using R [9]. For each 
combination of method (CTOD-R or J-R) and distribution (uniform, triangular, or normal) the 
objective is to obtain 10,000 valid data sets. A single simulated data set can fail to produce valid 
results if 𝑎𝑎�0𝑞𝑞 > min�𝑎𝑎�𝑗𝑗� in the region of interest, if any of the intermediate NLS fits fail, or if the 
CTOD-R or J-R curve is convex instead of concave. Such data sets are discarded, and a new data 
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set is obtained. The next section does a deep dive into the intermediate calculations for each 
method, offering an illuminating view into both methods. The results from the Monte Carlo 
simulation are shown in Sec. 6. 

 Intermediate Calculations 

This section illustrates the computation process, using both methods, to determine a0q, and 
CTOD-R or J-R curve parameters from observed data. While the equations and steps have been 
previously presented, this section is critical to understanding how adding the tolerances from Table 
1 and Table 6 affects all the calculations. The observed data used in this paper is shown in Fig. 2. 
The data and analysis were previously published in Ref. [8] as specimen HT-105-10. The specimen 
measurements are B = 17.529 mm, BN = 14.928 mm, W = 17.529 mm,  
h1 = 2.000 mm, h2 = 8.000 mm, and a0 = 6.978 mm. Post-test measurement of a0 is based on the  
9-point method with a tolerance of 0.025 mm. The material properties necessary for the calculations 
include σY = 745 MPa, ν = 0.3 (ul), and E = 205 GPa. The intention of this work is to determine 
measurement-specific influences on the uncertainty separate from material-properties-related 
uncertainty, therefore, the uncertainty in the material properties for the purposes here is set to zero. 
For each distribution (normal, uniform, and triangular), data is simulated based on the tolerances in 
Table 1 and Table 6 to perform the necessary intermediate calculations. 

To provide insight into the intermediate calculations, the analyses for the CTOD-R method 
will be followed by the J-R method, before showing the Monte Carlo results. Plots are presented of 
observed data from a single unloading, the calculated data used to estimate a0q, and the CTOD-R or 
J-R curves as well as the fit as appropriate for each method. Results are shown for simulated data 
sets based on the three assumed distributions and the uncertainty specifications in Table 1 and Table 
6. Again, the goal is to illustrate the effect of each choice on the intermediate calculations and the 
result. 
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Figure 2.  Plot of force vs. calculated δM for the CTOD-R method (black) and observed CMOD for the J-R 
method (red), noting very little discernable difference in the source data. The circle data points denote the 
force associated with each jth-cycle and the one solid circle data point denotes the cycle with the maximum 

load (Pu); this unloading (19) is used later.  

 

 CTOD-R Method Calculations 

 
Unloading number 19 from the observed data is used here to illustrate the effects of 

distributional assumptions and uncertainty specifications on the simulated data. The observed data is 
shown in Fig. 3a. Figs. 3b-3d display simulated data based on normal, uniform, and triangular 
distributions and the uncertainty specifications in Table 1 and Table 6. The variability in all three 
simulated data sets is much larger than the variability in the observed data. Although the general 
features remain with respect to the “relaxation” and intentional unloading (in displacement control) 
none of the simulated data retain the distinct elbow and the tight correlation between adjacent 
points. Whether the specified tolerances produce realistic data is an unanswered question, but that is 
of significant interest. 
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(a) Observed (b) Normal (c) Uniform (d) Triangular 

Figure 3.  (a) Observed 𝛿𝛿M vs force from unloading 19. (b)-(d) Simulated data for unloading 19 based on 
three candidate distributions and the measurement tolerances specified in Table 1 and Table 6. 

 
The next step in the analysis after generating the simulated data sets is to estimate a0q. 

Calculations of aj for each loading are completed next. Continuing with the side-by-side 
comparison of observed data and simulated data, Fig. 4a shows aj and CTOD (δj) values used in the 
a0q fit for the observed data, while Figs. 4b-4d show the fits based on aj and δj values calculated 
from the simulated data for each of the three distributions of interest. The variability of the observed 
data about the fitted curve is very small compared to the variability of the simulated data sets about 
their fitted curves. 
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(a) Observed (b) Normal 

  

  
(c) Uniform (d) Triangular 

  

Figure 4.  Data and fitted curves to obtain a0q for (a) observed 𝛿𝛿M vs calculated aj data and for (b)-(d) 
simulated data for three candidate distributions based on the measurement tolerances specified in Table 1 

and Table 6. 

 
The last step in the CTOD-R method is to fit the CTOD-R curve. The fitted curves, and the 

data used for those fits, are shown in Fig. 5a for the observed data, and Figs. 5b-5d for the simulated 
data. As with the a0q fits, the CTOD-R curve fit shows noticeably better fit for the observed data 
than for the simulated data. 
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(a) Observed (b) Normal 

  

  
(c) Uniform (d) Triangular 

  

Figure 5.  Data and fitted CTOD-R curves for (a) observed CTOD-R data and for (b)-(d) simulated data for 
three candidate distributions based on the measurement tolerances specified in Table 1 and Table 6. 

 

 J-R Method Calculations 

 
A similar approach to that of Sec. 5.1 is used to illustrate the J-R method, stepping through 

the calculations, and comparing the observed data to simulated data for the three distributions of 
interest. The observed data for unloading number 19 is shown in Fig. 6a, and in Figs. 6b-6d for 
simulated data. Just as for the CTOD-R method, the observed data shows sharply defined features of 
relaxation preceding the subsequent intentional unloading points. These features are again much less 
defined for the simulated data sets. 
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(a) Observed (b) Normal (c) Uniform (d) Triangular 

Figure 6.  (a) Observed data for the J-R method, unloading 19. (b)-(d) Simulated data for unloading 19 
based on three candidate distributions and the measurement tolerances specified in Table 1 and Table 6. 

 

Figure 7 shows the crack length vs. J as well as the cubic curve fits to obtain the estimate of 
a0q. Although both the CTOD-R and J-R methods use a cubic function to calculate a0q, there is 
more variability in the curve shapes for the J-R method, possibly due to different criteria for which 
points are used in the fit. The observed data and fit are shown in Fig. 7a. For the observed data, the 
fitted curve appears to give a reasonable value when extrapolated to J = zero, giving the estimated 
a0q. The simulated data and fits are shown in Figs. 7b-7d for each distribution, respectively. The 
increased variability in the simulated data sets is expected to influence the a0q estimates. 
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(a) Observed (b) Normal 

  

  
(c) Uniform (d) Triangular 

  

Figure 7.  Data and fitted curves to obtain a0q for (a) observed J-R data and for (b)-(d) simulated data for 
three candidate distributions based on the measurement tolerances specified in Table 1 and  

Table 6. 

 

The results of fitting the J-R curves are shown in Fig. 8a for the observed data, and in  
Figs. 8b-d for simulated data. For the observed data, the estimated J-R curve appears to adequately 
represent the data. For the three simulated data sets, and especially for the data based on the normal 
distribution, the amount of variability in the data is larger. A residual analysis is necessary to 
determine the goodness of fit for each scenario, however for the purposes here, it is adequate to 
show that there is larger data variability. 
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(a) Observed (b) Normal 

  

  
(c) Uniform (d) Triangular 

  

Figure 8.  Data and fitted J-R curves for (a) observed J-R method data and for (b)-(d) simulated data for 
three candidate distributions based on the measurement tolerances specified in Table 1 and  

Table 6. 

 

 Monte Carlo Results 

Monte Carlo simulations are performed by starting with the observed data, generating 
simulated data sets, and performing all the calculations to obtain 10,000 CTOD-R or J-R 
curves for each combination of method and distribution (normal, uniform, and triangular). 
Some trials are disregarded if intermediate calculations failed to produce the minimum 
number of points needed to estimate a0q or some other calculation error occurred (for 
example one of the nonlinear least squares fits did not converge, something that happens 
occasionally for no clear reason). A second set of simulations are also performed where the 
measurement tolerances specified in Table 1 and Table 6 are reduced by half. This will 



 
 
NIST TN 2212 
February 2023 
 
 

19 

elucidate potential benefits of improving the measurement process or revisiting the allowed 
tolerances in the methods and standards to match current measurement capabilities. 

The output of the Monte Carlo simulations are 10,000 parameter estimates (alpha and 
eta pairs) each of which defines one possible CTOD-R or J-R curve. Since the curves 
themselves are important outputs for MOOSE, some kind of coverage bound around the 
observed data curve is an important secondary output. There are two common ways of 
treating a coverage bound around a curve (as opposed to an uncertainty for a parameter 
estimate), with different interpretations. The first is a “simultaneous” coverage band, where 
over all the x-values the entire observed curve f(x) falls within the upper and lower limits of 
the band with a specified probability (usually 95 %). The second is a “point-wise” coverage 
band, where at each x-value x_i, the corresponding f(x_i) value lies between the upper and 
lower limit of the band with a specified probability (usually 95 %). The point-wise approach 
does not make any claims about containing the entire f(x) curve with some probability but is 
commonly used and computationally simpler. The point-wise approach is used here, and to 
construct the point-wise coverage bounds on the CTOD-R and J-R curves as shown in Sec. 
6.1 and Sec. 6.2, the process is as follows. For a given ∆a value, method, and distribution, 
compute the 10,000 corresponding CTOD or J values from the 10,000 parameter pairs. The 
coverage interval, at that ∆a value, is then the 0.025 and 0.975 quantiles of those 10,000 
CTOD or J values. Repeating this step over the whole range of ∆a values gives a smooth 
curve for both the 0.025 and 0.975 quantiles and thus 95 % coverage bounds around the 
CTOD-R or J-R curve from the observed data. 

Table 7 shows the observed parameter estimates as well as the mean and standard 
deviations for a0q and the two estimated parameters for the CTOD-R or J-R curves. Standard 
uncertainties are shown in parentheses next to the mean values. 
 

Table 7.  Resulting a0q and power law fitting coefficients for the two methods and different data 
distributions. 

 Method Distribution a0q α η  

 

CTOD-R 

Observed 7.133 1.167 0.670  
 Uniform 7.110 (0.138) 1.201 (0.136) 0.608 (0.101)  
 Normal 7.117 (0.118) 1.189 (0.115) 0.628 (0.086)  
 Triangular 7.126 (0.098) 1.181 (0.094) 0.644 (0.071)  

 

J-R 

Observed 7.014 1322.972 0.468  
 Uniform 7.010 (0.034) 1325.153 (45.532) 0.453 (0.050)  
 Normal 7.012 (0.026) 1321.996 (37.835) 0.460 (0.043)  
 Triangular 7.013 (0.019) 1319.234 (29.833) 0.467 (0.035)  
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 CTOD-R Results 

 
Figure 9 shows results with a lower limit of 0.5 mm for the CTOD-R method. Each 

row of plots compares results by distribution when the measurement tolerances used in the 
simulations are reduced by half.  

  
(a) Normal (b) 50% of Normal 

  

  
(c) Uniform (d) 50% of Uniform 

  

  
(e) Triangular (f) 50 % of Triangular 

  

Figure 9.  Estimated CTOD-R curves for observed data (black lines) and 95 % coverage bands 
estimated via simulation (gray shaded regions); (a)-(b) simulations with a normal distribution based 
on the full tolerance and on 50 % of the measurement tolerances specified in Table 1 and Table 6, 

(c)-(d) for a uniform distribution, (e)-(f) for a triangular distribution.   
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 J-R Results 

 
For the J-R method, Fig. 10 shows results with a lower limit of 0.5 mm. The top row 

shows results by distribution when the measurement tolerances used in the simulations are 
reduced by half, while the bottom row shows results when full measurement tolerances are 
used. 

  
(a) Normal (b) 50% of Normal 

  

  
(c) Uniform (d) 50% of Uniform 

  

  
(e) Triangular (f) 50 % of Triangular 

  

Figure 10.  Estimated J-R curves for observed data (black lines) and 95 % coverage bands 
estimated via simulation (gray shaded regions). (a)-(b) simulations with a normal distribution based 
on the full tolerance and on 50 % of the measurement tolerances specified in Table 1 and Table 6, 

(c)-(d) for a uniform distribution, (e)-(f) for a triangular distribution.   
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 Discussion 

From the results presented in Fig. 9 and Fig. 10, an assumed uniform distribution of 
the added noise has the largest effect and leads to the widest coverage bands on the  
CTOD-R and J-R curves. Assuming the normal distribution (with standard deviation of half 
the specified tolerance) instead leads to much narrower coverage bands, and this effect is 
even more pronounced with the triangular distribution. Both the uniform and triangular 
distributions have hard limits on their possible values, whereas for the normal distribution no 
such hard boundary is present. Thus, for the normal distribution, although most of the values 
(about 95 % of them) will fall within ±2 standard deviations, more extreme values can and 
will be sampled. Whether this representation of the measurement tolerances is accurate or not 
is an open question. For all three distributions considered, however, halving the uncertainty 
budget leads to a substantial reduction in the width of the coverage bands. A sensitivity study 
(easily supported by this Monte Carlo approach) that examines the contribution of individual 
uncertainty components to the uncertainty estimates could be a valuable source of 
information to illuminate where attention is best focused to improve measurements. 

Comparing the coverage bands between the two methods is valuable even if they do 
not represent an accurate quantification of the uncertainty. The CTOD-R method is 
computationally simpler than the J-R method. However, the CTOD-R method includes one 
additional measurement tolerance and so it remains to be seen if the additional measurement 
tolerance influences the uncertainty more than the computational rigor with unknown 
uncertainties associated with fitting coefficients derived from finite element analysis (FEA) 
[10, 11]. While a sensitivity study is an important item to explore, a sensitivity study will not 
alter the conclusion that the J-R method has a smaller relative coverage band for every 
distribution and tolerance considered.  

Another important finding from this work comes from the intermediate calculations. 
The measurement tolerances listed in Tables 1 and 6 produce simulated data sets that have 
much more variation than what is observed in the actual data for all assumed uncertainty 
distributions considered. This effect is so pronounced that it is difficult to even see the key 
features of each unloading. It is noteworthy that random uncertainties in physical 
measurements is expected to be significantly less than the measurement tolerance. What has 
been done thus far is to assume that the full measurement tolerance constitutes random noise. 
The measurement tolerance must include random signal noise but is expected to be 
dominated by non-linearities and bias. This study and presented method were devised to 
estimate the maximum uncertainty that can be expected from the test methods; refinements 
are part of the continuing work in this area. 

There are several avenues for future work. First, the Monte Carlo approach used here 
fully supports sensitivity studies to investigate the contribution of individual uncertainty 
components to the final uncertainty estimates. Determining which distribution is appropriate 
for a particular measurand is also important. While the triangular distribution produces the 
smallest uncertainties, it may be the least relevant to the measurands required in these 
methods and therefore leads to an underestimated uncertainty. 
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Secondly, additional work is needed to investigate various fitting methods. Nonlinear 
least-squares regression was used to perform the fits required to obtain fracture toughness 
parameters; however, there are measurement errors associated with the independent variables 
(since they come from calculated values that are based on measurements that have errors), 
which is a clear violation of regression assumptions. Regression methods that account for 
errors in both independent and dependent variables, such as orthogonal distance regression or 
errors-in-variables regression, would technically be more appropriate for fitting. The current 
framework of the Monte Carlo simulation is flexible enough to determine if different fitting 
methods would improve upon the uncertainty, and if so, if that improvement warranted the 
additional computational rigor. 

Lastly, this work focused on the original source documents for the test methods and 
significant research and improvements have been published since. New work using this 
method will include an examination of various suggested improvements to the measurements 
and analysis calculations. 
 

 Conclusions 

This paper demonstrates that Monte Carlo methods can be successfully used to obtain the 
uncertainty of fracture toughness and fracture resistance curves. Monte Carlo simulations are 
an especially useful statistical tool when the measurement equation is too complex to 
estimate the uncertainty from propagation of errors. A detailed view of the computation 
process on the measured data to the resultant CTOD-R or J-R curve has also been shown. 
The final output of this work, the 95 % coverage bands around the CTOD-R and J-R curves, 
showed that the assumptions and choices surrounding the measurement tolerances play a 
large role in the size and shape of those coverage bands. 

Much work remains before estimated standard uncertainties can be thoroughly evaluated 
for the single-edge-notched tension test, but this paper aims to foster discussion around these 
methods, specific assumptions, and the choices that support improvements in the test 
procedures, leading ultimately to a fully informed and robust consensus standard. 
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