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Abstract 

Customers and transactive energy (TE) market managers may rely on load forecasting 
algorithms to purchase or sell power in a forward market environment, using day-ahead and 
real-time pricing structures. Accurate load forecasting becomes necessary when a local 
controller or aggregator interacts with a market to purchase energy for future use. This study 
introduces a load forecasting tool (LFT) that estimates the next-day energy consumption of 
residential house models in GridLAB-D. The LFT is an integral part of the National Institute 
of Standards and Technology (NIST) TE simulation testbed which provides a platform for 
conducting TE experiments. The LFT is comprised of two main components, a learning 
algorithm and a load forecasting algorithm utilizing a first-order lumped capacitance model to 
forecast the next day indoor temperature and energy consumption. The lumped capacitance 
model simulates the thermal characteristics of a residential house in response to heat gains or 
losses due to the heat pump operation and other environmental conditions, such as outdoor air 
temperature and solar irradiance. The learning algorithm uses simulated indoor temperature 
from GridLAB-D and historical weather data for Tucson Arizona to estimate critical 
parameters of a residential house such as thermal time constant, solar heat gain coefficient, 
effective window area, and the heat pump coefficient of performance (COP). The load 
forecasting algorithm utilizes these parameters to optimize the operation of a residential heat 
pump while minimizing cost and maintaining thermal comfort. The load forecasting algorithm 
resulted in average energy savings of 9.4 % and average cost savings of 19.4 % compared to 
simulated baseline energy consumption in GridLAB-D. The LFT’s forecast temperature and 
energy consumption profiles have been integrated into a co-simulation experiment for 
validation.  
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Nomenclature 

A   Absorptance (dimensionless) 
ARe   Window area and the ratio of solar irradiance to the windows (m2)  
be   Intercept of a regression model for calculating COP (dimensionless) 
bhp   Intercept of a regression model for calculating Phpe (W) 
COP   Coefficient of performance (dimensionless) 
HVAC  Heating, ventilating, and air-conditioning 
I   Solar irradiance in (W/m2) 
k   Discrete simulation time steps (min) 
LA   Learning Algorithm 
lb  Lower bound temperature (°C) 
LC   Local Controller 
LFA   Load Forecasting Algorithm 
LFT  Load Forecasting Tool 
me   Slope of a regression model for calculating COP (1/°C) 
mhp   Slope of a regression model for calculating Phpe (W/°C) 
n   Forecast horizon 1440 min divided into 144 bins 
Ne   Inward-flowing fraction (dimensionless) 
NIST  National Institute of Standards and Technology 
NZERTF  Net-Zero Energy Residential Test Facility 
PDA  Day-ahead price of electricity ($/kWh) 
Phpe  Predicted heat pump power (W) 
qhp   Rate of heat generated or extracted by a heat pump (W) 
ql   Rate of heat generated inside a house by the internal loads (W) 
qsol   Total solar heat gain added to a house (W) 
RMSE  Root mean square error (dimensionless) 
SHGC   Solar heat gain coefficient 
T   Transmittance (dimensionless) 
T∞   Outside ambient dry-bulb temperatures (°C) 
TE  Transactive Energy 
Ti   Indoor temperature (°C) 
Tsp  Setpoint temperature (°C) 
u   Binary decision variable (dimensionless)  
UA   Overall heat transfer conductance (W/K)  
ub  Upper bound temperature (°C) 
w   Heat pump power normalization factor (1°C/W) 
x   Normalized day-ahead price of electricity (dimensionless) 
θ  Incidence angle between the solar irradiance on a surface and the normal to that 

surface (°) 
λ  Relative dominance between comfort and cost (dimensionless) 
τ   Building thermal time constant (h) 
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 Introduction 

Use of renewable energy sources, particularly rooftop photovoltaics on residential and 
commercial buildings, are on the rise [1], challenging our traditional management approaches 
of a centrally-controlled electricity grid.  Renewable energy sources can offer many 
opportunities for integration of low carbon emission and low-cost energy supplied into the 
grid, but it also creates technical challenges. Since these sources are intermittent, we need 
intelligent devices, control mechanisms, and storage capabilities to match generation with 
consumption.   These capabilities include electrical storage (batteries and electric vehicles) and 
thermal storage using building mass, ice or hot water tanks. In this evolving grid, customers 
must become active participants in grid management and provide grid services such as voltage 
control and frequency response.  
 
One approach to address these challenges is transactive energy (TE). TE can be defined as “a 
system of economic and control mechanisms that allows the dynamic balance of supply and 
demand across the entire electrical infrastructure using value as a key operational parameter” 
[2].  With TE, the value of energy in real-time (or day-ahead) is communicated via local energy 
markets. Customers with intelligent devices can buy and sell energy in these markets. The 
market becomes the tool for customers to provide value to the grid without requiring a utility 
to individually manage millions of devices. Customer interactions with TE markets require 
autonomous control algorithms to achieve specific objectives such as managing energy 
consumption and cost while maintaining thermal comfort. These control algorithms interact 
with the retail market for acquiring energy and price of electricity, and control various devices 
on the customer side. In a TE environment, time-varying prices (day-ahead and real-time 
market prices), weather, occupant comfort criteria, season, and day of the week are all inputs 
to control decisions.   
 
Heating, ventilating, and air-conditioning (HVAC) is one of the largest electrical loads in a 
typical house. To evaluate HVAC control strategies that might involve preheating or pre-
cooling, temperature setbacks, or letting the temperature drift during peak price periods, it is 
essential to predict the resulting indoor air temperature changes. Many tools have been 
developed to simulate building energy use and comfort conditions [3]. Although details vary, 
these tools require information about a house’s location, orientation, number of windows, and 
other construction details. They also require expertise in crafting a simulation. A simpler 
approach is needed to develop control strategies that might be used in a typical home when 
detailed house design parameters are not known. This simpler approach is implemented in the 
National Institute of Standards and Technology (NIST) Load Forecasting Tool (LFT).  
 
As part of the NIST transactive energy co-simulation experiments, the LFT has been developed 
to enable simulation of building controllers interacting with a TE market, as shown in Fig. 1. 
Fig. 1 describes the various components involved in facilitating autonomous interactions 
between the customer and a TE market. The TE Market Controller includes a Load Forecasting 
Tool (LFT), a Local Controller (LC), and a TE User Agent. The TE Market Controller interacts 
with the TE Market and grid simulator via co-simulation to demonstrate and test various TE 
market designs, LFT designs, and grid scenarios. This paper focuses on the LFT; a summary 
of other components is documented in a forthcoming NIST publication. An implementation of 
the LFT presented here was developed in conjunction with TE co-simulation experiments. The 
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co-simulation experiment connects the TE Market Controller to wholesale market prices and 
a residential electric grid sited in Tucson Arizona. GridLAB-D [4] was used as the electric grid 
simulator, implementing the IEEE-8500 reference grid [5] with 1977 residential house models, 
having different thermal characteristics and thermal comfort requirements.  
 

 

 

The LFT is an integral part of the TE co-simulation. The main objective of the LFT is to learn 
from observation and predict the next-day’s hourly electrical energy consumption and indoor 
temperature setpoint profiles for residential house models implemented in GridLAB-D. 
Realizing the objective of the LFT requires intelligent learning and control algorithms to 
manage cost and comfort while adapting to changing weather conditions and the price of 
electricity. Resulting control actions include shifting the heat pump operation schedule via 
setpoint temperature adjustments (e.g., pre-cooling when the price is low). The LFT comprises 
two main components, a Learning Algorithm (LA) and a Load Forecasting Algorithm (LFA), 
interacting with TE Market via the TE User Agent and the GridLAB-D simulation environment 
via an LC.  
 
The LA is responsible for learning key thermal parameters of a lumped capacitance model 
using output from GridLAB-D simulation (indoor temperature and heat pump power 
consumption) and historical weather data for Tucson Arizona (outdoor temperature and solar 
irradiance). The output of the LA is used as an input to the LFA. The LFA is responsible for 
predicting the hourly energy consumption and indoor temperature setpoint profile of a 
residential house, using the day-ahead price of electricity, forecast weather conditions, and 
customer’s thermal comfort requirements. The forecast weather conditions were obtained from 

Fig. 1. Interaction of the components in TE Market Controller with the TE Market and the 
GridLAB-D simulation environment 
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historical data for Tucson Arizona. A forecast of plug-loads was obtained from generated 
performance information from GridLAB-D.   
 
In this study, it was assumed that the house models in GridLAB-D represented the performance 
of actual houses. Considering this assumption, GridLAB-D was used to generate performance 
information such as indoor temperature, plug-loads, heat pump power consumption, and the 
overall heat transfer conductance (UA) of all IEEE-8500 residential house models. The 
generated performance data were used to: 
 

1. Tune various parameters of a learning algorithm described in Sec. 2.; and  
2. Help a load forecasting algorithm to predict the next-day’s total electrical energy 

demand and indoor temperature setpoint profiles described in Sec. 3. 
 
The following sections provide a detailed description of the LFT components, the LA and LFA. 

 Learning Algorithm 

Using parameter optimization, the LA learns thermal parameters of a residential house by 
minimizing the error between generated indoor temperature from GridLAB-D and the output 
of the lumped capacitance model. The lumped capacitance model forecasts the indoor 
temperature as a function of key thermal parameters, heat pump energy, solar heat gain, heat 
gain from plug-loads, and outdoor air temperature. 
 
2.1. Lumped Capacitance Model 
 
The LA uses a first-order lumped capacitance model described in [2] to predict the interior air 
temperature of the house models in GridLAB-D. The houses in the IEEE-8500 grid model, 
implemented in GridLAB-D, are assumed to be a single control volume with a uniform indoor 
temperature. The first-order lumped capacitance model used to forecast the indoor temperature 
is given by Eq. (1.1) 
 

 expsol hp l sol hp l
i

q q q q q q tT T T T
UA UA τ∞ ∞

+ + + +   = + + − − −   
  

  (1.1) 

where: 
T∞ is the outside ambient dry-bulb temperatures, °C; 
qsol is the total solar heat gain added to the house, W; 
qhp is the rate of heat generated by the heat pump (thermal energy), W. The value of qhp 
is negative for the cooling season; 
ql is the rate of heat generated inside the house by the internal loads, W; 
Ti is the initial indoor temperature, °C; 
UA is the overall heat transfer conductance, W/K;  
τ is the building time constant, h; and 
t is time. 
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A discrete form of Eq. (1.1) is developed for the cooling season by defining Δt = tk+1- tk where 
k = 1,2,…,n are the discrete-time steps and n is the number of data points. Let 
(Qc = qsol + (-qhp) + ql) represent the total heat gain inside a house model in GridLAB-D in 
every time step. In the cooling season, qhp is the heat pump thermal energy used to extract heat 
from a house, hence the negative sign. Let Ti,k+1 represent the predicted indoor temperature and 
Ti the initial indoor temperature. Applying these concepts to Eq. (1.1) gives the one-step 
learning/prediction model:  
 

 , ,
, 1 , , , expc k c k

i k k i k k

Q Q tT T T T
UA UA τ+ ∞ ∞

  ∆ = + + − − −   
  

. (1.2) 

 
 
In all time steps, the values of (qsol) can be estimated from solar irradiance obtained from a 
weather file or generated performance data. Similarly, the values of (qhp) can be calculated 
from heat pump power (hp) consumption multiplied by the coefficient of performance (COP). 
Nonetheless, the values of COP are not known a priori and need to be estimated using methods 
discussed Sec. 2.1.2. The values of UA, and ql are defined as GridLAB-D model parameters 
and obtained from generated performance information. However, the values of τ are also not 
known a priori. The LA estimates the values of these unknown quantities from generated 
performance GridLAB-D data. A detailed derivation of Eq. (1.2) is documented in [6], [7], but 
a summary of the procedure for calculating qsol and qhp are provided in Sec. 2.1.1 and Sec. 
2.1.2. 
 
2.1.1. Solar Heat Gain 
 
Application of Eq. (1.2) requires an estimated value of solar heat gain (qsol) for each house. 
The authors in [8] provided detailed procedures for calculating solar heat gain. Modeling solar 
heat gain is a complex process involving many details about window size, orientation, shading, 
materials, and estimates of direct and indirect solar radiation. For the application intended in 
this work, these details are not available. A simpler mathematical representation of solar heat 
gain with fewer parameters is derived in [6], [7] given by 
 

 ( )sol e eq I SHGC ARθ= × × ,  (1.3) 

 ( ) ( ) ( )e eSHGC T N Aθ θ θ= − ,  (1.4) 
where: 

I is the solar irradiance in W/m2; 
SHGCe  is an approximation (effective) of the solar heat gain coefficient; and 
ARe is an approximation (effective) window area and the ratio of solar irradiance to the 
vertical surfaces of the windows in units of m2.  
θ is the incidence angle between the beam radiation on a surface and the normal to that 
surface;  
T is the transmittance; 
A is the absorptance; and 
Ne is the inward-flowing fraction (dimensionless). 
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The parameters in Eq. (1.3) and Eq. (1.4) capture the effects of window size and orientation, 
shading, and the fraction of direct or diffuse solar radiation. The values of these parameters 
can be learned from generated performance information by GridLAB-D, eliminating the user’s 
need for detailed custom configuration or prior knowledge of the parameters. The values of 
SHGCe and ARe for each house are found using multi-objective optimization described in 
Sec. 3. 
 
2.1.2. Heat Pump Thermal Energy for Learning 
 
As previously mentioned, application of Eq. (1.2) requires the values of the heat pump’s 
thermal energy (qhp). The capacity of a heat pump to generate thermal energy is given by  
 

  hp hpq P COP= × ,  (1.5) 
 
where, Php is the heat pump power (W) and COP is the coefficient of performance 
(dimensionless). COP is defined as the ratio of thermal energy added to or removed from a 
system and the amount of electric power used to perform the required work. It is a strong 
function of the outdoor temperature. As an example, the values of COP as a function of outdoor 
temperature for a two-stage air-source heat pump from the NIST Net-Zero Energy Residential 
Test Facility (NZERTF) [9], [10] are shown in Fig. 2. 
 

 
Fig. 2. The COP and regression models of a two-stage air-source heat pump as a function of 
outdoor temperature in the cooling season 
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COP can be approximated by a first or a second-order polynomial fit to the NZERTF heat 
pump’s coefficient of performance data, as shown in Fig. 2. A second-order polynomial model 
can provide a better fit, but for simplicity of implementation, we used the first-order 
approximation (denoted as COPe) 
 

 e e eCOP m T b∞= + ,  (1.6) 
 
where me is the slope in (1 ℃⁄ ), be is the intercept (dimensionless), and T∞ is the outdoor 
temperature in ℃. Substituting Eq. (1.6) into Eq. (1.5) gives us  
 

 
( ).

 ehp hp

ehp e

q P COP

m T bP ∞

×

× +

=

=
  (1.7) 

 
Substituting Eq. (1.3) and Eq. (1.7) into Eq. (1.2) to replace qsol and qhp gives the updated one-step 
learning/prediction model: 
 
 

 

( ) ( )( )

( ) ( )( )

,
, 1 ,

,
, , exp

e e e e l kk k
i k k

e e e e
k

hp

h l kpk k
i k

e

I SHGC AR m T b q
T T

UA
I SHGC AR m T b q tT T

U

P

P

A τ

∞

+ ∞

∞

∞

× × − × + +
= +

 × × − × + +  ∆ + − − −     

 (1.8) 

 
Application of Eq. (1.8) requires estimated values of SHGCe, ARe, me, be, and τ (denoted as τe).  
 
 
2.1.3. Estimating Solar Heat Gain, COPe, and Thermal Time Constant 
 
To estimate key parameters of solar heat gain (ARe, Ne), thermal time constant (τe), and the 
coefficient of performance (me, be), we used an optimization algorithm described in [6], [7]. 
The optimization algorithm utilizes Eq. (1.8) to learn these effective parameters from generated 
performance data from GridLAB-D over a 3-day training window. The 3-day training window 
provided sufficient accuracy, as measured by relative root mean square error (% RMSE) 
statistics shown in Fig. 4, because the daily variation in solar irradiance and outdoor 
temperature were minimal for the historical weather data used in this study. In general, a 1-day 
training window would not be sufficient because the prediction accuracy can be highly 
influenced by the solar irradiance variability from one day to the next. For example, if the 
parameters were learned on a cloudy day and applied to a sunny day, the model over-predicted 
the temperature. The model under-predicted the temperature when the opposite was true. 
 
The objective function for the optimization algorithm is defined as the sum of squared error 
(SSE) between the generated indoor temperature from GridLAB-D (Ts) and the predicted 
temperature (Ti) obtained from Eq.(1.8).  The objective function can be expressed as 
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 ( ) 2

2
, , , ,e e e e e s if AR N m b T Tτ = −  , and (1.9) 

 
the optimization problem becomes 
 

 

( )
, , , ,
min      , , , ,               

1
0 1
1 1

1
1 104

e e e e e
e e e e eAR N m b

e

e

e

e

e

f AR N m b

AR
N
m

b

τ
τ

τ

≤ ≤ ∞
≤ ≤

− ≤ ≤
≤ ≤ ∞
≤ ≤

,  (1.10) 

 
where the units of ARe is m2, Ne is dimensionless, me is 1 ℃⁄ , be is dimensionless, and τe is h. 
The bounds of the Ne are [0, 1] because it only represents the fraction of the solar irradiance 
absorbed into the interior spaces. To ensure that for every unit change in the outdoor 
temperature, there is a maximum of one unit change in the estimated value of the COPe, the 
bounds of me are set to [-1, 1]. The lower bounds of the ARe and be are set to 1 for numerical 
stability, but their upper bounds can float because they are not known a priori. For numeric 
stability, we set the lower bound of τe to 1 h and its upper bound to 104 h. The upper bound for 
τe was arbitrarily set to the estimated value of the thermal time constant of the NZERTF at 
NIST in Gaithersburg, Maryland [7]. The NZERTF is a four-bedroom single-family house on 
the campus of NIST [11], [12]. We assume that the estimated time constant (τe) of the NZERTF 
represents the highest practical time constant of a very well-insulated residential house with a 
significant thermal mass capacity. We used the MATLAB non-linear optimization algorithm 
(fmincon) with its default interior-point algorithm to solve the optimization problem in Eq. 
(1.10) subject to the given constraints.  
 
Fig. 3 shows the simulated indoor air temperature from GridLAB-D and the predicted indoor 
air temperature, using Eq. (1.10), of a randomly selected house over the 3-day training window. 
For visual clarity, the top and middle subplots show the moving average of the simulated and 
predicted air temperature, where each average value is calculated over a sliding window of 
length 30 min. The bottom subplot shows the simulated and predicted indoor temperature 
profiles over 2 h window. 
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Fig. 3. Comparisons between simulated indoor air temperature from GridLAB-D and predicted 
indoor air temperature from optimization Eq. (1.10) 
 
We used % RMSE statistics to describe the goodness of fit and characterize the performance 
of the LA described in Eq. (1.10). Fig. 4 shows the % RMSE and the average % RMSE of 
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predicted indoor temperature and simulated indoor temperature in GridLAB-D for all house 
models. The maximum % RMSE statistic over the 3-day training data set is 1.78 %.  
 

 
Fig. 4. The % RMSE and average error between predicted and simulated indoor air temperature 
for all houses, using Eq. (1.10) 
 
Estimate of me and be parameters are used in Eq. (1.6) to calculate the COPe of heat pumps in 
GridLAB-D. Fig. 5 shows the of COPe of heat pumps for all house models in GridLAB-D over 
the 3-day training window, where the values are in minutes. 
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Fig. 5. The effective coefficient of performance over the 3-day training window for all house 
models in GridLAB-D from July 4th to July 7th 

As shown in Fig. 5, the maximum value of the COPe is approximately 3.3 at night when the 
outdoor temperature is cooler, and its minimum value is 2 when the outdoor temperature is 
hotter. 
 

 Load Forecasting Algorithm 

As previously mentioned, LFA is another critical component of the LFT. The main objectives 
of the LFA are to predict the next day’s heat pump energy consumption of a residential house 
and generate an indoor temperature setpoint profile. We focus on developing intelligent control 
strategies using the day-ahead price of electricity and customer comfort preferences to achieve 
these objectives. As mentioned in Sec. 2, HVAC (heat pump) is the most significant electrical 
load in a typical home; therefore, it can substantially impact the overall energy consumption 
and cost. Our goal is to reduce the cost of operating the heat pump while maintaining thermal 
comfort. We used an optimization algorithm to look ahead using the day-ahead price of 
electricity and a customer’s thermal comfort preferences to achieve this goal. This section 
defines an optimization problem and uses a linear integer optimization algorithm to generate 
heat pump control actions, using the lumped capacitance model given in Eq.  (1.8) to predict 
the Ti for the next day. Inputs for the LFA, including forecast data needed for the LFA are 
given in Table 1.    
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Table 1. Input Data Needed for Predicting the Heat Pump Energy Consumption and 
Indoor Temperature Setpoint Profile 

Optimization algorithm inputs Description (in context of current research) 
Forecast solar irradiance (W/m2) Solar irradiance taken from weather file, recorded 

historical measurements data for Tucson Arizona. 
Plug-loads (W) and the overall heat 
transfer conductance UA (W/K) 

The values for forecast plug-loads taken from the 
performance information data generated in 
GridLAB-D for the same day as the predicted load. 

Forecast of outside dry-bulb 
temperature, T∞ (°C) 

This data taken from a weather file, recorded 
historical measurements data for Tucson Arizona.  

Forecast of day-ahead price of 
electricity 

The day-ahead price of electricity was obtained 
from the market-clearing prices of California 
Independent System Operator (CAISO) for Tucson, 
Arizona.  

Forecast of heat pump electrical 
power consumption (Phpe) for the 
cooling season. 

The Phpe (W) values for the cooling season are 
obtained from Eq. (1.11).  Eq. (1.11) was derived 
from a linear regression fit to simulated heat 
pump’s power consumption from GridLAB-D.  

Effective parameters: ARe (m2), Ne 
(dimensionless), τe (h), me (1/°C), and 
be (dimensionless). 

Effective parameters are obtained from LA 
described in Sec. 2. 

Customer preferences such as indoor 
temperature setpoint (Tsp) (°C) and 
offset_limit (°C).  

The offset_limit is the maximum temperature rise or 
minimum temperature fall from a given setpoint 
temperature (Tsp) [4].  

The angle of incidence cos(θ) for solar 
irradiance. 

The angle of incidence is calculated from 
geographical location of a house under 
consideration. A detailed explanation of cos(θ) is 
given [13] and an implemented example in [6], [7]. 

 
A schematic representation of the LFA process for obtaining the next-day hourly heat pump 
energy consumption and setpoint temperature profile is shown in Fig. 6.   
 
 

 
Fig. 6. A schematic representation of the LFA processes for predicting heat pump load for the 
next day 
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The LFA utilizes a multi-objective optimization problem and constraints to forecast heat pump 
control actions. The optimization problem in the LFA is formulated such that the solver selects 
control actions to minimize the overall value of the objective function (Eq. (1.12)) while 
satisfying the constraints. The output of the optimization function is a vector of heat pump 
control actions for the next 24 hours. These control actions are directly related to the hourly 
heat pump energy consumption of a residential house model represented by Eq (1.8) because 
the optimization problem is formulated in such a way that the heat pump operation is the 
control variable. The predicted hourly heat pump energy consumption for a residential house 
model is summed and added to its baseline load (plug-loads and water heater load where 
applicable) from GridLAB-D to calculate the total energy demand for tomorrow. The same 
procedure is applied to all 1977 house models. The total energy demand for all residential 
houses is assembled into a vector of House Energy Demand in LFT as shown in Fig. 6. The 
House Energy Demand is communicated to the market to pre-purchase electricity. The other 
output of the LFT is predicted indoor temperature setpoint profile from LFA to GridLAB-D 
via the LC. 
 
The LFA is designed to output an optimal or an integer feasible solution. The LFA is 
terminated after it finds an optimal policy or exceeds a pre-defined stopping criterion of 3 min 
maximum timeout limit. The stopping criterion was imposed on the optimization solver 
discussed in Sec. 3.2. The LFA was implemented in a desktop computer with Intel® Xeon® 
CPU E5-1630 v3 3.7 GHz processor and 16 GB of RAM.  
 
Recall that in Sec. 2.1.2, the capacity of a heat pump to generate thermal energy was defined 
as the product of heat pump power consumption (Php) and the coefficient of performance 
(COP) given by Eq. (1.5). In Sec. 2.1.3, the values of Php, for all house models in GridLAB-
D, were known and we used the LA to estimate the values of the COPe from observation. 
However, in a realistic scenario that requires forecasting the next day’s indoor temperature, the 
values of Php are not known a priori. Therefore, there is a need for a model to predict Php 
(denoted as Phpe) and utilize Eq. (1.8) to predict Ti. Section 3.1 describes a procedure for 
identifying parameters of a regression model to forecast Phpe as a function of the outdoor 
temperature. 
 
3.1. Heat Pump Power for LFA 
 
To predict Phpe as a function of outdoor temperature we need a model that is simple to 
implement and provides accurate estimate of the heat pump power consumption. It is known 
that heat pump power consumption is a strong function of the outdoor temperature. Using this 
information, we used a simple first-order linear regression model and estimated its slope and 
intercept from generated performance data; that is, heat pump power consumption data from 
GridLAB-D as a function of the outdoor temperature, as shown in Fig. 7. 
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Fig. 7. Estimating the parameters of the first-order linear regression model using heat pump 
power consumption of a residential house model in GridLAB-D versus the outdoor 
temperature, and its residual plot 

We performed similar analysis, as shown in Fig. 7, to identify the parameters of first-order 
linear regression models for all house models represented by Eq. (1.8) in this study. Using the 
slope and intercept of regression estimates, we can calculate the electrical power consumption 
(Phpe) of a heat pump as a function of outdoor temperature by 
 

 ,hpe hp hpP m T b∞= × −  (1.11) 
 
where, Phpe is the electrical power in (W), mhp (W/°C) and bhp (W) are the slope and intercept 
of the linear regression model, and T∞ is the outdoor temperature in °C.  
 
The RMSE statistics for estimating the slope and intercept of Eq. (1.11) for all house models 
is given in Fig. 8. 
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Fig. 8. The RMSE and average error statistics for estimating Phpe from generated performance 
information, representing all house models in GridLAB-D 

As can be seen from Fig. 8, the values of RMSE suggest that our linear model provides a 
reasonable estimate of the heat pump power consumption as a function of outdoor temperature. 
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3.2. Objective Function and Constraints 
 
The objective function of the LFA is formulated in such a way that it minimizes cost while 
maintaining thermal comfort. The mathematical representation of the objective function is 
given in Eq. (1.12), describing the multi-objective optimization problem 
 

 
[ ]

( ) ( )11 1 12,
min 1

kk SP k hpe k kk n
T T u P w xλ λ

−− − −∈
⋅ − + − ⋅ ⋅ ⋅ ,   (1.12) 

where:  
k represents the discrete simulation time steps [min]; 
n represents the forecast horizon 1440 [min]. For speed and stability of the optimization 

solver, the forecast horizon has been divided into 144 bins. Simulation data in each 
bin represents 10 min of the forecast horizon; 

u represents the binary decision variable [dimensionless], and at each simulation time 
step, it is defined as 

 
1,  if the heat pump operating
0,  otherwise;

u 
∈


  

Phpe represents the electrical power associated with the operation heat pump [W], given 
by Eq. (1.11); 

w represents heat pump power normalization factor [1°C/W]. The normalization factor is 
defined as 1°C/max(𝑃𝑃ℎ𝑝𝑝𝑝𝑝), where Phpe is given by Eq. (1.11);  

λ is a value between 0 and 1, representing the relative dominance between comfort and 
cost [dimensionless, varies between house models]; 

Tk represents the predicted indoor temperature at each simulation time step k [℃] 
obtained from Eq. (1.2); 

Tsp represents the setpoint temperature [℃]. Setpoint temperatures are obtained from 
GridLAB-D;  

x represents the vector of normalized values of the price of electricity [dimensionless] 
and is given by  

( ) , [ , ]DA
DA

DA

px p k n
P

= ∀ ∈ , where DAP is the day-ahead price of electricity, and DAP is 

the average value of day-head price of electricity in [$/kWh]. 
 
Heat pump power consumption (Phpe) and price (x) were normalized to keep the terms of the 
objective function from dominating the solution. The DAP  and DAP values for electricity were 
obtained from two weeks (June 23rd to July 7th, 2017), using the day-ahead price of electricity 
for Tucson, Arizona described in Table 1, as shown in Fig. 9. 
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Fig. 9. Two weeks of the day-ahead price of electricity for Tucson, Arizona from Jun 23rd to 
July 7th, 2017 
 
To obtain values of λ used in Eq. (1.12), we used a linear mapping from the GridLAB-D house 
comfort parameters described in [14] to λ, where the comfort parameter represents a 
homeowner’s desire for comfort versus saving money. The value of λ is between 0 (most cost-
conscious) and 1 (most comfort-conscious). 
 
The objective function defined in Eq. (1.12) contains a non-linear term, the absolute value of 
(Tk - Tsp). In its current form, we cannot solve it using a linear optimization method. Applying 
a linear optimization method requires that the objective function and all its constraints are 
expressed in linear form. To linearize the objective function, the absolute value term given in 
Eq. (1.12) is replaced with a variable Z, and two additional linear constraints are added to the 
problem definition. The linear constraints replacing the absolute value term of the objective 
function are expressed as 
 

 
( )

1

1,
k SP k

k SP k

T T Z
T T Z

−

−

− ≤

− − ≤
  (1.13) 

where Z has a unit of [°C]. 
In addition, Tk is constrained as 

 klb T ub≤ ≤ ,  (1.14) 
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where lb and ub represent the lower and upper bound temperatures limits [℃]. The lb and ub 
temperature values are different for each house model, calculated by Tsp ± offset_limit. The 
offset_limit represents the temperature rise from a setpoint to the maximum allowed 
temperature specified by a customer, or the temperature reduction to a minimum temperature. 
The range of offset_limit is 1.67 ℃ < offset_limit < 2.78 ℃.  
  
Substituting the Z term and adding the constraints to Eq. (1.12) gives us the linear form of the 
objective function and its constraints as  
 

 

[ ]
( ) ( )

( )

11 1 1 12,

1

1

min 1

:
kk k hpe k kk n

k SP k

k SP k

k

Z u P w x

Subject to
T T Z

T T Z
lb T ub

λ λ
−− − − −∈

−

−

⋅ + − ⋅ ⋅ ⋅

− ≤

− − ≤

≤ ≤

 . (1.15) 

 
The optimization problem in Eq. (1.15) was modeled as a pure integer problem in YALMIP 
[14], a modeling and optimization toolbox for MATLAB. The integer optimization model was 
solved using the linear integer programming algorithm (intlinprog) from MATLAB with its 
default settings except for the MaxTime (stopping criterion in Fig. 6) parameter. MaxTime 
parameter is the maximum time that intlinprog runs to find a solution. The default value for 
MaxTime is 7200 s, which can prohibit a simulation of over 1900 house models from being 
completed in a reasonable time. In this study, the value for MaxTime was set to 180 s.  Fig. 10 
shows the daily predicted heat pump energy demand (top subplot) and total energy demand 
(bottom subplot) for all residential house models and their average energy use across all houses 
for tomorrow.  
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Fig. 10. The daily predicted heat pump energy demand and total energy demand and their 
average energy use across all houses for tomorrow 

The daily total energy demand of a residential house model is the sum of hourly predicted heat 
pump energy demand from the LFA, plug-loads, and water heater (where applicable). The 
energy consumptions for the plug-loads and water heater were obtained from generated 
performance data from GridLAB-D. Note that not all house models in GridLAB-D have an 
electric water heater unit. The daily cost of energy consumption is calculated as the sum of 
hourly energy demand for tomorrow multiplied by the hourly day-ahead price of electricity for 
July 7th, as shown in Fig. 9.  
 
The objective of the LFA is to minimize cost but maintain thermal comfort. To avoid higher 
cost the LFA may choose to pre-cool the indoor temperature near the lb limit when the cost of 
electricity is lower. Conversely, the LFA may choose to let the indoor temperature drift up to 
the ub limit when electricity is more expensive. The LFA achieves its objective by controlling 
the heat pump operation. To demonstrate the LFA’s effectiveness, we selected three different 
houses, having maximum (top subplot), minimum (middle subplot), and average (bottom 
subplot) integrated hourly heat pump energy demand, as shown in Fig. 11. The LFA avoids 
the peak price of electricity by shifting the heat pump’s operation to other times when the price 
is cheaper.  
 

______________________________________________________________________________________________________ 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.TN

.2181



 

19 

 
Fig. 11. A one-day profile of hourly predicted heat pump energy demand and the day-ahead 
price of electricity for July 7th.    

As mentioned before, heat pump control actions in the LFA resulted in predicted indoor 
temperature profiles for all houses, which are used as adjusted setpoint temperatures input to 
GridLAB-D. GridLAB-D uses the adjusted setpoint temperatures to control its internal heat 
pump operation. The predicted indoor temperature profiles and predicted heat pump energy 
demand for the houses shown in Fig. 11 are given in Fig. 12. 
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Fig. 12. The impact of heat pump energy consumption on indoor temperature profiles 
generated by the LFA  

 
As shown in Fig. 12, the LFA maintains the indoor temperature within the ub and lb 
constraints. The LFA is managing the indoor temperature by generating heat pump control 
actions to reduce cost by avoiding the peak price of electricity and maintaining thermal 
comfort.  
 
To verify the resulting energy savings of the LFA, we compared the predicted heat pump 
energy demand with the simulated heat pump energy demand from GridLAB-D on July 7th, as 
shown in  Fig. 13.  
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Fig. 13. Simulated heat pump energy demand from GridLAB-D and predicted heat pump 
energy demand from LFA for all houses 

As shown in Fig. 13, the LFA reduced the energy demand, shifting the histogram to the left 
with a resulting 9.4 % energy savings (on average) compared to the simulated heat pump 
energy demand from GridLAB-D.  The heat pump energy savings were realized for all houses 
except for four, where the predicted energy demand exceed the simulated energy demand by 
less than 5 %, as shown in Fig. 14.  
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Fig. 14. Percent difference in energy consumption of simulated heat pump energy demand 
from GridLAB-D minus the predicted heat pump energy demand from the LFA 

 
To verify the resulting cost savings of the LFA, we compared the cost of predicted heat pump 
energy demand with the cost of simulated heat pump energy demand from GridLAB-D on July 
7th, as shown in Fig. 15. The cost of energy consumption is calculated as the sum of hourly 
heat pump energy demand multiplied by the hourly day-ahead price of electricity for July 7th, 
as shown in Fig. 9. 
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Fig. 15. The cost of predicted heat pump energy demand from LFA and simulated heat pump 
energy demand from GridLAB-D 

As shown in Fig. 15, the LFA produced 19.4 % in cost savings (on average) compared to the 
simulated heat pump energy demand from GridLAB-D.  The cost savings were realized for all 
houses because the LFA avoided the peak price of electricity as shown in Fig. 11. The percent 
difference in cost of predicted heat pump energy demand and simulated heat pump energy 
demand from GridLAB-D is shown in  Fig. 16. 
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Fig. 16. Percent difference in cost of simulated heat pump energy demand minus the cost of 
predicted heat pump energy demand 

 
The results of additional comparisons, using the output of the LFT on energy consumption and 
voltage stability are reported in [15].   
 

 Conclusion and Future Work 

Customers and transactive energy market managers may rely on load forecasting algorithms 
to purchase or sell energy in a forward market environment, using day-ahead and real-time 
pricing structures. Accurate load forecasting becomes necessary when a local controller 
interacts with an electricity market environment to purchase energy for future use or an 
aggregator who can bid energy for sale into the electricity markets. This report introduced the 
LFT that estimated next day energy consumption for all residential house models in 
GridLAB-D. The LFT achieved its objectives by utilizing the LA and the LFA described in 
Sec. 2 and Sec. 3, respectively. The LA estimated key parameters of residential house models 
given by Eq. (1.8), such as thermal time constant, solar heat gain coefficient, effective window 
area, and heat pump’s coefficient of performance using generated performance information 
and historical weather data. The LFA utilized a multi-objective optimization problem to 
minimize cost and maintain thermal comfort, resulting in average energy savings of 9.4 % and 
average cost savings of 19.4 % compared to simulated heat pump energy demand from 
GridLAB-D. The LFA used the residential house model given by Eq. (1.8) to forecast the next 
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day’s indoor temperature by manipulating heat pump operation. The LA and LFA were applied 
to 1977 residential house models. All components of the LFT were implemented standalone, 
resulting in predicted indoor temperature profiles and predicted total energy demand. The 
predicted indoor temperature profiles, for each house, was provided as a file input to GridLAB-
D. GridLAB-D used these temperature profiles as adjusted thermostat setpoints for controlling 
the operation of the heat pumps in each house. Future work might entail integrating the LFT 
in a real-time simulation with GridLAB-D.  
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